WO2021235100A1 - Information processing device, information processing method, and program - Google Patents

Information processing device, information processing method, and program Download PDF

Info

Publication number
WO2021235100A1
WO2021235100A1 PCT/JP2021/013352 JP2021013352W WO2021235100A1 WO 2021235100 A1 WO2021235100 A1 WO 2021235100A1 JP 2021013352 W JP2021013352 W JP 2021013352W WO 2021235100 A1 WO2021235100 A1 WO 2021235100A1
Authority
WO
WIPO (PCT)
Prior art keywords
point cloud
information processing
route
distance
point
Prior art date
Application number
PCT/JP2021/013352
Other languages
French (fr)
Japanese (ja)
Inventor
淳也 白石
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Publication of WO2021235100A1 publication Critical patent/WO2021235100A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions

Definitions

  • This disclosure relates to information processing devices, information processing methods, and programs.
  • the information processing apparatus includes a route planning unit that plans a movement route using a reference point on an environmental map represented by point cloud data, and the route planning unit is the point.
  • the point cloud closest to the reference point is determined based on the position and the degree of dispersion of each point cloud included in the group data, and the reference point is based on the position and the degree of dispersion of the nearest point cloud.
  • the distance between the nearest point cloud and the point cloud are calculated, and the movement route is planned based on the distance.
  • the information processing method is based on the position and the degree of dispersion of each point cloud included in the point cloud data on an environment map represented by the point cloud data by an arithmetic processing device. Determining the nearest point cloud from the reference point, and calculating the distance between the nearest point cloud and the reference point based on the position of the nearest point cloud and the degree of dispersion. It includes planning a movement route on the environmental map based on the distance.
  • the program according to the embodiment of the present disclosure causes a computer to function as a route planning unit for planning a movement route using a reference point on an environment map represented by point cloud data, and causes the route planning unit to perform the above-mentioned.
  • the point cloud closest to the reference point is determined based on the position and the degree of dispersion of each point cloud included in the point cloud data, and the recent position based on the position and the degree of dispersion of the nearest point cloud.
  • the distance between the nearby point cloud and the reference point is calculated, and the movement route is planned based on the distance.
  • the nearest point cloud is located on the environment map represented by the point cloud data, based on the position and the degree of dispersion of each point cloud.
  • Determine the point cloud to be calculate the distance between the nearest point cloud and the reference point based on the degree of dispersion of the nearest point cloud, and plan the movement route on the environmental map based on the calculated distance. be able to.
  • the information processing apparatus according to the present embodiment can create a route plan considering the variation of the point cloud included in the point cloud data without performing complicated calculation.
  • FIG. 1 is a schematic diagram illustrating a route plan created by the information processing apparatus according to the present embodiment.
  • a route plan for finding a route r for moving from the current position A to the destination B without colliding with the obstacle 2 is performed.
  • a robot traveling on a two-dimensional plane, a drone flying in a three-dimensional space, or the like can be exemplified.
  • the positions of the moving body 1 and the obstacle 2 are recognized based on the data acquired by the sensor, and an environmental map expressing the environment around the moving body 1 is constructed based on the recognition result.
  • the moving body 1 can plan the optimum route r from the current position A to the destination B on the constructed environment map, and move according to the planned optimum route r.
  • the moving body 1 can move to the destination B without colliding with the obstacle 2 by repeatedly executing the above-mentioned route planning and movement until the moving body 1 reaches the destination B.
  • ESDF Euclidean Signed Distance Fields
  • ESDF Euclidean Signed Distance Fields
  • TSDF Truncated Signed Distance Fields
  • the data acquired by the sensor includes variations in frequency and magnitude or outliers depending on the surrounding environment and measurement conditions. Therefore, the environment map constructed based on the data acquired by the sensor and the route plan of the moving body 1 planned based on the environment map also include errors and ambiguities according to the accuracy of the sensor. It ends up.
  • an environmental map is constructed using some representative value (for example, a median value or an average value) without considering the above-mentioned variations and outliers, and a route plan is performed based on the environmental map. It is possible that the moving object 1 cannot safely avoid the obstacle 2. Further, in order for the moving body 1 to safely avoid the obstacle 2, the route is planned with an excessively large margin, so that the planned route may not be the optimum route. could be.
  • some representative value for example, a median value or an average value
  • the calculation load of the route plan may become excessively large.
  • the amount of data is significantly larger than that in a two-dimensional plane, so that the computational load of constructing an environmental map and route planning becomes extremely large.
  • it becomes difficult to calculate the route plan at high speed so that the moving speed of the moving body may be limited according to the calculation speed of the route plan.
  • the power consumption of the information processing apparatus that calculates the route plan may increase.
  • the information processing apparatus expresses the environment map with point cloud data, and plans the movement route of the moving body 1 based on the position and the degree of dispersion of each point cloud included in the point cloud data. Specifically, the information processing apparatus sets the point cloud closest to the reference point on the map represented by the point cloud data based on the position and the degree of dispersion of each point cloud included in the point cloud data. It is possible to determine and plan the movement path of the moving body 1 based on the distance considering the degree of dispersion between the reference point and the nearest point cloud.
  • the information processing apparatus can reflect the error and ambiguity of the sensor in the movement path of the moving body 1 as the degree of dispersion of the point cloud included in the point cloud data. Therefore, the information processing apparatus according to the present embodiment can create a route plan of the mobile body 1 reflecting the error and ambiguity of the sensor with higher efficiency.
  • FIG. 2 is a block diagram showing a functional configuration of the information processing apparatus 10 according to the present embodiment.
  • FIG. 3 is an explanatory diagram illustrating the point cloud data and the clustering of the point cloud data.
  • FIG. 4 is an explanatory diagram illustrating a method of determining the nearest cluster from the reference point.
  • the information processing apparatus 10 includes a map construction unit 110, a route planning unit 120, and a self-position estimation unit 130.
  • the information processing apparatus 10 constructs an environmental map around the moving body 1 based on the data acquired by the sensor unit 20, and moves to the destination of the moving body 1 using the constructed environmental map. You can plan the route.
  • the movement path planned by the information processing apparatus 10 is output to, for example, a drive control unit 31 that controls the drive unit 32 of the mobile body 1.
  • the sensor unit 20, the drive control unit 31, and the drive unit 32 may be provided in, for example, the moving body 1.
  • the information processing apparatus 10 may be provided inside the moving body 1 or may be provided outside the moving body 1.
  • the information processing device 10 may output a route plan to the moving body 1 via the internal wiring.
  • the information processing device 10 may transmit a route plan to the mobile body 1 via wireless communication or the like.
  • the sensor unit 20 outputs the sensing result of the environment around the moving body 1 as point cloud data which is a set of points.
  • the sensor unit 20 includes a distance measuring sensor that measures a distance to an object, such as an ultrasonic sensor (Sound Navigation And Ringing: SONAR), a ToF (Time of Flat) sensor, or a LiDAR (Light Detection And Ringing) sensor. But it may be.
  • the sensor unit 20 generates point cloud data by converting the measurement points into points in the three-dimensional coordinate system based on the information regarding the distance and direction to the measurement points acquired from the distance measurement sensor. be able to.
  • the sensor unit 20 may include an image pickup device that acquires an image of the surrounding environment of the moving body 1 such as a stereo camera, a monocular camera, a color camera, an infrared camera, or a polarized camera.
  • the sensor unit 20 estimates the depth of the image points included in the captured image based on the captured image, and converts the image points into points in the three-dimensional coordinate system based on the information regarding the estimated depth. This makes it possible to generate point cloud data.
  • the sensor unit 20 may be provided in an external device or object of the mobile body 1 as long as it can acquire information about the environment around the mobile body 1.
  • the sensor unit 20 may be provided on the ceiling, wall, floor, or the like of the space in which the moving body 1 is present.
  • the map construction unit 110 includes a clustering unit 111, a cluster extraction unit 112, and a map generation unit 113, and uses the point cloud data acquired by the sensor unit 20 to represent an environment around the moving body 1. To build.
  • the clustering unit 111 generates cluster data including a plurality of clusters by clustering the point cloud included in the point cloud data acquired by the sensor unit 20. Specifically, as shown in FIG. 3, the clustering unit 111 generates cluster data including a plurality of cluster CLs by clustering a point cloud PC which is a set of points P in a three-dimensional coordinate system.
  • the cluster CL generated by clustering corresponds to one microplane constituting the surface of the object existing around the moving body 1.
  • the clustering unit 111 may perform clustering after dividing the point cloud included in the point cloud data according to the following procedure.
  • the clustering unit 111 determines whether or not to divide the point cloud based on a predetermined division condition. When the point cloud satisfies a predetermined division condition, the clustering unit 111 divides the point cloud. Next, the clustering unit 111 repeatedly divides the divided point cloud until the above-mentioned division condition is not satisfied. Subsequently, the clustering unit 111 determines, based on a predetermined clustering condition, whether or not to perform clustering of the divided point cloud until the above-mentioned division condition is not satisfied. After that, the clustering unit 111 performs clustering on a point cloud satisfying a predetermined clustering condition.
  • the predetermined division condition may include a condition that the number of points included in the point cloud is a predetermined number or more.
  • the predetermined division condition is the longest side of the rectangular region when the minimum rectangular region (also called a bounding box) containing all the points of the point cloud is set in the three-dimensional coordinate system. It may include the condition that the length is equal to or longer than a predetermined length.
  • the predetermined division condition may include a condition that the density of points in the point cloud is equal to or higher than a predetermined value.
  • the density of points in the point cloud may be, for example, a value obtained by dividing the number of points included in the point cloud by the size of the above bounding box.
  • the predetermined division condition may include a condition in which a plurality of the above-mentioned conditions are combined.
  • the predetermined clustering condition may include a condition that the number of points included in the point cloud is a predetermined number or more. Further, the predetermined clustering condition may include a condition that the length of the longest side of the bounding box is equal to or greater than the predetermined length. Further, the predetermined clustering condition may include a condition that the density of points in the above point cloud is equal to or higher than a predetermined value. Further, the predetermined clustering condition may include a condition in which a plurality of the above-mentioned conditions are combined.
  • the clustering unit 111 since the clustering unit 111 performs clustering for each of the point clouds after the division until the predetermined division condition is not satisfied, the size of each of the point clouds to be clustered is made smaller. be able to. Therefore, the clustering unit 111 can further shorten the clustering processing time. Further, since the clustering unit 111 can exclude a point cloud that does not satisfy a predetermined clustering condition and is likely to be inaccurate from the target of clustering, the accuracy of clustering can be further improved.
  • the cluster extraction unit 112 extracts parameters indicating the positions and shapes of the clusters generated by the clustering by the clustering unit 111. Specifically, the cluster extraction unit 112 extracts parameters indicating the position and shape when expressing each of the clusters as an ellipsoid which is an approximation of the second moment. For example, the cluster extraction unit 112 may calculate the average value of the coordinates of the point cloud included in the cluster in the three-dimensional coordinate system, and extract the average value of the coordinates of the point cloud as a parameter indicating the position of the cluster. Further, the cluster extraction unit 112 may calculate the covariance of the coordinates of the point cloud included in the cluster in the three-dimensional coordinate system, and extract the covariance of the coordinates of the point cloud as a parameter indicating the shape of the cluster.
  • the map generation unit 113 constructs an environment map expressing the environment around the mobile body 1 by using the cluster generated by the clustering by the clustering unit 111.
  • the map generation unit 113 is an ellipsoid in which the average value of the coordinates of the point cloud included in the cluster is the center of gravity and the covariance of the coordinates of the point cloud included in the cluster is the spread of the shape.
  • the map generation unit 113 can represent each of the clusters on the environmental map in a shape that reflects the degree of dispersion (that is, covariance) of the point cloud included in the cluster. That is, the map generation unit 113 can express a microplane group on the surface of an object existing around the moving body 1 by using each ellipsoid of the cluster generated by the clustering by the clustering unit 111.
  • the map generation unit 113 may group one or a plurality of clusters generated by clustering by the clustering unit 111 for each object existing in the environment map. Specifically, the map generation unit 113 recognizes which surface microplane of an object such as a person, a wall, or a floor exists around the moving object 1 in each of the clusters, and recognizes which surface microplane of the same object corresponds to. Clusters corresponding to microplanes may be grouped together.
  • the route planning unit 120 includes the nearest neighbor cluster determination unit 121, the distance calculation unit 122, and the route calculation unit 123, and plans the movement route of the moving body 1 on the environment map constructed by the map construction unit 110. Specifically, the route planning unit 120 sets a reference point between the current position A and the destination B of the moving body 1, and is located between the reference point and the cluster closest to the reference point. Plan the route so that the distance considering the degree of dispersion is maximized.
  • the distance considering the degree of dispersion is, for example, the Mahalanobis distance.
  • the nearest neighbor cluster determination unit 121 determines the cluster closest to the reference point set between the current position A and the destination B of the mobile body 1 on the environmental map based on the degree of dispersion of the clusters. .. Specifically, the nearest neighbor cluster determination unit 121 determines the cluster that is the nearest neighbor on the environmental map with respect to the reference point based on the Mahalanobis distance.
  • the nearest neighbor cluster determination unit 121 is located between the reference point RP and each of the clusters CL1, CL2, CL3, CL4, CL5, and CL6 in the vicinity of the reference point RP on the environment map.
  • Mahalanobis distance d m (x, xi ', ⁇ 'xi) by evaluating each from the reference point RP may be recently determined near a cluster CL5.
  • the distance calculation unit 122 calculates the distance based on the degree of dispersion of the cluster between the reference point RP and the nearest cluster CL5. Specifically, the distance calculation unit 122, a reference point RP, the Mahalanobis distance d m between the nearest cluster CL5, or Mahalanobis distance d m functions as a variable U (x) is calculated, the Mahalanobis distance d m or calculating the function U (x) as the value of the field at the reference point RP.
  • the route calculation unit 123 evaluates the field value at the reference point RP and sequentially calculates a route that secures a sufficient margin for the nearest neighbor cluster, so that the current position A of the mobile body 1 to the destination B can be calculated. Plan a travel route. Specifically, the route calculating section 123 calculates a Mahalanobis distance d m, or Mahalanobis distance d m functions as a variable U (x) in the reference point RP calculated in the distance calculating section 122, these Mahalanobis distances d m or function U (x) that is sequentially calculating the comparison satisfies path between predefined threshold, to plan a travel route of the moving body 1.
  • the route calculation unit 123 may plan the movement route of the moving body 1 by calculating the Mahalanobis distance dm or the route in which the value of the function U (x) having the Mahalanobis distance dm as a variable is maximized. ..
  • the Mahalanobis distance d m as shown in Equation 1 below, a distance that reflects the covariance representing the degree of dispersion of clusters, as covariance smaller distance is large, the distance as the covariance is large is evaluated small The distance.
  • the route calculation unit 123 in consideration of the variations set of points included in the point cloud data can be a margin of the point group to plan a sufficient path.
  • the self-position estimation unit 130 estimates the position of the mobile body 1 on the environment map based on the information about the environment around the mobile body 1 acquired by the sensor unit 20. Further, the self-position estimation unit 130 generates position data indicating the estimated position of the moving body 1 and outputs the position data to the route calculation unit 123.
  • the self-position estimation unit 130 may estimate the position of the moving body 1 based on the sensing result of the sensor that measures the state of the moving body 1.
  • the self-position estimation unit 130 calculates the moving direction and moving distance of the moving body 1 based on the sensing result of the encoder provided at each joint of the leg portion included in the moving mechanism of the moving body 1, and the moving body 1 is used.
  • the position of 1 may be estimated.
  • the self-position estimation unit 130 calculates the moving direction and the moving distance of the moving body 1 based on the sensing result of the encoder provided on each wheel included in the moving mechanism of the moving body 1, and determines the position of the moving body 1. You may estimate.
  • the self-position estimation unit 130 has a moving direction and a moving distance of the moving body 1 based on the sensing result of an IMU (Inertial Measurement Unit) having a 3-axis gyro sensor and a 3-way accelerometer provided in the moving body 1. May be calculated to estimate the position of the moving body 1.
  • IMU Inertial Measurement Unit
  • the self-position estimation unit 130 may estimate the position of the moving body 1 based on the information acquired by another sensor such as a GNSS (Global Navigation Satellite System) sensor.
  • GNSS Global Navigation Satellite System
  • the drive control unit 31 controls the movement of the moving body 1 by controlling the drive unit 32 based on the route plan created by the route planning unit 120. For example, the drive control unit 31 may control the drive unit 32 so that the moving body 1 moves along the route planned in the route plan.
  • the drive unit 32 is, for example, a motor or an actuator that drives a movement mechanism included in the moving body 1.
  • the drive unit 32 is a motor that drives a two-wheeled or four-wheeled wheel-type moving mechanism, an actuator that drives a two-legged or four-legged moving mechanism, or a moving mechanism such as a propeller or a rotary wing. It may be a motor or the like that drives the wheel.
  • the information processing apparatus 10 having the above configuration determines the cluster closest to the reference point based on the Mahalanobis distance in the environment map represented by the point cloud data, and the Mahalanobis between the reference point and the nearest cluster.
  • the movement route of the moving body 1 can be planned so that a sufficient distance is secured. Therefore, the information processing apparatus 10 can plan a movement path reflecting the variation of the point cloud included in the point cloud data with high efficiency without performing additional complicated calculation.
  • the Mahalanobis distance is exemplified as the distance in consideration of the degree of dispersion, but the technique according to the present disclosure is not limited to the above example.
  • the distance considering the degree of dispersion may be, for example, a distance calculated with the Mahalanobis distance as a variable. Further, the distance considering the degree of dispersion may be any distance as long as it is a distance defined with the variation of the point cloud (for example, the covariance of the coordinates of each point included in the point cloud) as a variable.
  • FIG. 5 is a flowchart illustrating an operation flow of the information processing apparatus 10 according to the present embodiment.
  • the map construction unit 110 acquires point cloud data from the sensor unit 20 (S101). Subsequently, the clustering unit 111 clusters the point cloud included in the point cloud data (S102). Next, the cluster extraction unit 112 extracts the position and shape of each cluster by calculating the average value and covariance of the coordinates of the point cloud included in each clustered cluster (S103). After that, the map generation unit 113 constructs an environment map in which each cluster is represented by an ellipsoid of the extracted position and shape (S104). As a result, the map construction unit 110 can construct an environment map that expresses the environment around the moving body 1.
  • the route planning unit 120 sets a reference point on the constructed environment map (S111).
  • the nearest neighbor cluster determination unit 121 determines the nearest neighbor cluster from the reference point by calculating the Mahalanobis distance between each cluster on the environment map and the reference point (S112).
  • the distance calculation unit 122 calculates a Mahalanobis distance between the reference point and the nearest cluster, or a function using the Mahalanobis distance as a variable, and calculates the field value at the reference point (S113).
  • the route calculation unit 123 creates a route plan so that the value of the field based on the Mahalanobis distance between the reference point and the nearest cluster satisfies the comparison condition with the predetermined threshold value (S114).
  • the drive control unit 31 controls the drive of the drive unit 32 so that the moving body 1 moves along the route based on the created route plan (S115).
  • the route planning unit 120 sequentially and repeatedly calculates a route such that the Mahalanobis distance between the reference point and the nearest cluster satisfies the comparison condition with the predetermined threshold value until the moving body 1 reaches the destination. , The moving body 1 can be moved to the destination by a safe route.
  • the information processing apparatus 10 clusters the point cloud data obtained by sensing the objects existing around the moving body 1, and determines the distance based on the position and the degree of dispersion of each cluster. Can be used to create a route plan. According to this, the information processing apparatus 10 according to the present embodiment can create a route plan in consideration of the sensing variation of the point cloud data and the like with high efficiency.
  • FIG. 6 is a block diagram showing a functional configuration of the information processing apparatus 11 according to the first modification.
  • the information processing apparatus 11 further includes a database construction unit 140. Since the other configurations are substantially the same as those of the information processing apparatus 10 described with reference to FIG. 2, the description thereof is omitted here.
  • the database construction unit 140 constructs a search database that is referred to when the nearest neighbor cluster determination unit 121 determines the nearest neighbor cluster from the reference point.
  • the search database is a database having a tree-shaped spatially divided data structure for classifying points existing in a predetermined space such as a kd tree, a quadtree, or an ocree.
  • the database construction unit 140 may construct a search database by, for example, classifying the positions of each cluster existing in the three-dimensional coordinate system according to the spatial division data structure as described above.
  • the nearest cluster determination unit 121 can more efficiently determine the cluster closest to the reference point by searching the spatially divided data structure of the search database. Therefore, the information processing apparatus 11 according to the first modification can plan the movement route more efficiently.
  • FIG. 7 is an explanatory diagram illustrating a route planning method of the information processing apparatus according to the second modification.
  • the route calculation unit 123 may define the potential field PF as shown in FIG. 7 and plan a route along the differential gradient of the potential field PF as the movement route of the moving body 1. Specifically, the path calculation unit 123 defines the potential field PF represented by the following mathematical formula 2 on the environment map, and calculates the differential gradient at each point of the potential field PF to move the moving body 1. You may plan a route.
  • V m is a potential based on the Mahalanobis distance between the reference point and the nearest cluster.
  • V w is a potential based on the Euclidean distance between the current position A and the destination B.
  • ⁇ and ⁇ are weighting variables. Therefore, the potential field PF is, for example, a field in which the repulsive force from the nearest cluster corresponding to the object existing in the environment around the moving body 1 and the attractive force to the destination B are weighted and superimposed.
  • the path calculation unit 123 can plan a movement path according to the differential gradient by sequentially calculating the differential gradient of the potential field PF at the current position A of the moving body 1. Since the calculation of the differential gradient of the potential field PF can be executed at high speed with a small amount of calculation, the information processing apparatus 10 according to the second modification can plan the movement path more efficiently. Is.
  • FIG. 8 is an explanatory diagram illustrating a route planning method of the information processing apparatus according to the third modification.
  • the route calculation unit 123 may create a topological map obtained by dividing the environmental map TM as shown in FIG. 8 by Voronoi, and plan the movement route of the moving body 1 based on the topological map.
  • the route calculation unit 123 first divides the environment map TM into a plurality of areas (Voronoi division) depending on which of the objects Ob is closest to the Mahalanobis distance. That is, the Voronoi division line BB that divides the environment map TM into a plurality of regions is provided so as to be equidistant from each of the clusters on the surface of the objects Ob facing each other at the Mahalanobis distance. Next, the route calculation unit 123 provides a plurality of nodes nd on the Voronoi partition line BB, and expresses the connection relationship between the nodes nd as a topological map.
  • the route calculation unit 123 can calculate the plan of the movement route of the moving body 1 on the environment map TM as the connection plan between the nodes nd on the topological map.
  • the mobile body 1 moves on the Voronoi partition line BB of the environment map TM based on the connection between the nodes nd planned in the topological map. Therefore, since the information processing apparatus 10 according to the third modification can perform route planning in consideration of the variation of the point cloud included in the point cloud data, it is possible to plan a movement route with higher robustness. can.
  • FIG. 9 is a block diagram showing a functional configuration of the information processing apparatus 14 according to the fourth modification.
  • the information processing apparatus 14 includes N first sensor units 20-1 to Nth sensor units 20-N. Since the other configurations are substantially the same as those of the information processing apparatus 10 described with reference to FIG. 2, the description thereof is omitted here.
  • the first sensor unit 20-1 to the Nth sensor unit 20-N include sensors of the same type or different types, and output the sensing result of the environment around the moving body 1 as point cloud data.
  • the first sensor unit 20-1 to the Nth sensor unit 20-N may include a distance measuring sensor such as a stereo camera, an ultrasonic sensor, a ToF sensor, or a LiDAR sensor, and may include a monocular camera, a color camera, and an infrared camera. , Or an image pickup device such as a polarized camera may be included.
  • the point cloud data acquired by the plurality of first sensor units 20-1 to Nth sensor unit 20-N are individually clustered by the clustering unit 111, and individually by the cluster extraction unit 112 of each cluster. The position and shape are extracted. After that, the point cloud data acquired by the plurality of first sensor units 20-1 to Nth sensor unit 20-N are integrated by the map generation unit 113 and used to generate the environment map around the moving body 1. Will be.
  • the information processing apparatus 14 determines the degree of dispersion of the point cloud of the ellipsoid of the cluster even when the variation of the point cloud data acquired by each of the plurality of first sensor units 20-1 to Nth sensor unit 20-N is different. It can be reflected in the environmental map as a shape. Therefore, the information processing apparatus 14 can be used to generate an environmental map by the same processing even if the point cloud data has different variations, and it is possible to create a route plan using the environmental map. Is.
  • FIG. 10 is a block diagram showing a functional configuration of the information processing apparatus 15 according to the fifth modification.
  • the information processing apparatus 15 includes a variation estimation unit 114 in place of the clustering unit 111 and the cluster extraction unit 112, and determines the nearest neighbor point in place of the nearest neighbor cluster determination unit 121.
  • a unit 124 is provided. Since the other configurations are substantially the same as those of the information processing apparatus 10 described with reference to FIG. 2, the description thereof is omitted here.
  • the information processing device 15 according to the fifth modification is a modification in which the variation of the point cloud is estimated by using another method instead of the clustering of the point cloud.
  • the variation estimation unit 114 may estimate the variation of each point included in the point cloud data based on the variation model of the sensor unit 20 that acquires the point cloud data.
  • the map generation unit 113 can be similarly used. It becomes possible to construct an environmental map.
  • the variation estimation unit 114 may estimate the variation of each point included in the point cloud data based on the reliability of the measurement result provided by the sensor unit 20 that acquires the point cloud data.
  • the score for evaluating that the objects captured by the left and right cameras are the same can be used as the reliability of the measurement result.
  • the certainty of the measurement result can be evaluated by the intensity of the reflected light from the object. Therefore, when the sensor that acquires the point cloud data is a ToF sensor, the intensity of the reflected light can be used as the reliability of the measurement result.
  • the information processing apparatus 15 similarly uses the map generation unit 113 to map the environment. Can be constructed. Further, the information processing apparatus 15 can estimate the variation with relatively high accuracy by estimating the variation of each point included in the point cloud data based on the state of sensing by the sensor unit 20.
  • the map generation unit 113 determines the coordinates and variations of each point included in the point group data, similarly to the information processing apparatus 10 described with reference to FIG. Based on this, an environmental map can be constructed. That is, the map generation unit 113 can express the surface of the object existing around the moving body 1 by expressing each point included in the point cloud data as a sphere having a size corresponding to the variation.
  • the nearest neighbor cluster determination unit 121 does not determine the cluster that is the closest to the reference point on the environment map, but the nearest neighbor point determination unit 124 determines the reference point.
  • the nearest point on the environmental map will be determined. Therefore, the nearest neighbor point determination unit 124 can determine the point closest to the reference point on the environmental map based on the Mahalanobis distance, similarly to the nearest neighbor cluster determination unit 121.
  • the information processing apparatus 15 builds an environmental map in the map generation unit 113 in the same manner even when the number of point clouds included in the point cloud data acquired by the sensor unit 20 is small. It is possible to do.
  • FIG. 11 is a block diagram showing a functional configuration of the information processing apparatus 16 according to the sixth modification.
  • the information processing apparatus 16 further includes an uncertainty extraction unit 150. Since the other configurations are substantially the same as those of the information processing apparatus 10 described with reference to FIG. 2, the description thereof is omitted here.
  • the uncertainty extraction unit 150 extracts the uncertainty of the self-position of the moving body 1 estimated by the self-position estimation unit 130. Specifically, the uncertainty extraction unit 150 may extract the uncertainty of the self-position of the moving body 1 as the covariance of the coordinates of the self-position. Since the Mahalanobis distance is a distance index considering the covariance, it is possible to easily incorporate the uncertainty or variation of other factors as the covariance. For example, the map generation unit 113 further adds the covariance of the coordinates of the self-position of the moving body 1 to the covariance of the coordinates of the point cloud included in each cluster to increase the uncertainty of the self-position of the moving body 1. It may be reflected in the environmental map.
  • the information processing apparatus 16 can reflect the uncertainty of the self-position of the moving body 1 on the environmental map, so that it is possible to plan a safer moving route. be.
  • FIG. 12 is a block diagram showing a hardware configuration example of the information processing apparatus 10 according to the present embodiment.
  • the function of the information processing apparatus 10 according to the present embodiment is realized by the cooperation between the software and the hardware described below.
  • the functions of the map construction unit 110, 110A, the route planning unit 120, 120A, the self-position estimation unit 130, the database construction unit 140, and the uncertainty extraction unit 150 described above may be executed by the CPU 901.
  • the information processing device 10 includes a CPU (Central Processing Unit) 901, a ROM (Read Only Memory) 903, and a RAM (Random Access Memory) 905.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the information processing device 10 may further include a host bus 907, a bridge 909, an external bus 911, an interface 913, an input device 915, an output device 917, a storage device 919, a drive 921, a connection port 923, and a communication device 925. .. Further, the information processing apparatus 10 may have another processing circuit such as a DSP (Digital Signal Processor) or an ASIC (Application Specific Integrated Circuit) in place of the CPU 901 or together with the CPU 901.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • the CPU 901 functions as an arithmetic processing device or a control device, and controls the overall operation of the information processing device 10 according to various programs recorded in the ROM 903, the RAM 905, the storage device 919, or the removable recording medium 927.
  • the ROM 903 stores programs used by the CPU 901, calculation parameters, and the like.
  • the RAM 905 temporarily stores a program used in the execution of the CPU 901, a parameter used in the execution, and the like.
  • the CPU 901, ROM 903, and RAM 905 are connected to each other by a host bus 907 composed of an internal bus such as a CPU bus. Further, the host bus 907 is connected to an external bus 911 such as a PCI (Peripheral Component Interconnect / Interface) bus via a bridge 909.
  • a PCI Peripheral Component Interconnect / Interface
  • the input device 915 is a device that receives input from a user such as a mouse, a keyboard, a touch panel, a button, a switch, or a lever.
  • the input device 915 may be a microphone or the like that detects a user's voice. Further, the input device 915 may be, for example, a remote control device using infrared rays or other radio waves, or an externally connected device 929 corresponding to the operation of the information processing device 10.
  • the input device 915 further includes an input control circuit that outputs an input signal generated based on the information input by the user to the CPU 901. By operating the input device 915, the user can input various data to the information processing device 10 or instruct the processing operation.
  • the output device 917 is a device capable of visually or audibly presenting the information acquired or generated by the information processing device 10 to the user.
  • the output device 917 may be, for example, a display device such as an LCD (Liquid Crystal Display), a PDP (Plasma Display Panel), an OLED (Organic Light Emitting Display) display, a hologram, or a projector.
  • the output device 917 may be a sound output device such as a speaker or headphones, or may be a printing device such as a printer device.
  • the output device 917 may output the information obtained by the processing of the information processing device 10 as a video such as a text or an image, or a sound such as voice or sound.
  • the storage device 919 is a data storage device configured as an example of the storage unit of the information processing device 10.
  • the storage device 919 may be configured by, for example, a magnetic storage device such as an HDD (Hard Disk Drive), a semiconductor storage device, an optical storage device, an optical magnetic storage device, or the like.
  • the storage device 919 can store a program executed by the CPU 901, various data, various data acquired from the outside, and the like.
  • the drive 921 is a read or write device for a removable recording medium 927 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory, and is built in or externally attached to the information processing device 10.
  • the drive 921 can read the information recorded in the attached removable recording medium 927 and output it to the RAM 905. Further, the drive 921 can write a record on the removable recording medium 927 mounted on the drive 921.
  • connection port 923 is a port for directly connecting the external connection device 929 to the information processing device 10.
  • the connection port 923 may be, for example, a USB (Universal Serial Bus) port, an IEEE1394 port, a SCSI (Small Computer System Interface) port, or the like.
  • the connection port 923 may be an RS-232C port, an optical audio terminal, an HDMI (registered trademark) (High-Definition Multidimedia Interface) port, or the like.
  • the communication device 925 is, for example, a communication interface composed of a communication device for connecting to the communication network 931.
  • the communication device 925 may be, for example, a communication card for a wired or wireless LAN (Local Area Network), Bluetooth (registered trademark), WUSB (Wireless USB), or the like. Further, the communication device 925 may be a router for optical communication, a router for ADSL (Asymmetric Digital Subscriber Line), a modem for various communications, or the like.
  • the communication device 925 can send and receive signals and the like to and from the Internet or other communication devices using a predetermined protocol such as TCP / IP.
  • the communication network 931 connected to the communication device 925 is a network connected by wire or wirelessly, and is, for example, an Internet communication network, a home LAN, an infrared communication network, a radio wave communication network, a satellite communication network, or the like. May be good.
  • the technique according to the present disclosure has been described above with reference to embodiments and modifications. However, the technique according to the present disclosure is not limited to the above-described embodiment and the like, and various modifications can be made. For example, the technique according to the present disclosure can be applied not only to a route plan in an environmental map of a three-dimensional space but also to a route plan in an environmental map of a two-dimensional plane.
  • the technology according to the present disclosure may have the following configuration.
  • the technique according to the present disclosure having the following configuration, the movement of a moving object on the environmental map based on the distance reflecting the degree of dispersion of the point cloud on the environmental map represented by the point cloud data.
  • the route will be planned. Therefore, according to the technique according to the present disclosure, it is possible to create a safe route plan for a moving object with higher efficiency.
  • the effects exerted by the techniques according to the present disclosure are not necessarily limited to the effects described herein, and may be any of the effects described in the present disclosure.
  • It is equipped with a route planning unit that plans a movement route using reference points on an environmental map represented by point cloud data.
  • the route planning unit determines a point cloud closest to the reference point based on the position and degree of dispersion of each point cloud included in the point cloud data, and the position of the nearest point cloud and the said An information processing device that calculates the distance between the reference point and the nearest point cloud based on the degree of dispersion, and plans the movement path based on the distance.
  • the point cloud data is data obtained by further clustering the point clouds acquired by the sensor.
  • the route planning unit determines the cluster closest to the reference point based on the average value and covariance of the point cloud included in each of the clusters generated by the clustering. Information processing device.
  • the route planning unit generates a topological map obtained by dividing the environmental map into Voronoi diagrams based on the Mahalanobis distance, and plans the movement route based on the topological map, any one of the above (7) to (9).
  • the information processing device described in the section. (12) Further provided with a database construction unit for constructing a map database showing the interrelationship of each of the point clouds included in the point cloud data.
  • the point cloud data includes point cloud data acquired by two or more sensors.
  • the information processing apparatus according to (13) above, wherein the two or more sensors include sensors of different types or the same type.
  • the environment map is a map of a three-dimensional space.
  • the point cloud closest to the reference point is determined based on the position and the degree of dispersion of each point cloud included in the point cloud data.
  • An information processing method comprising planning a travel route on the environmental map based on the distance.
  • Computer It functions as a route planning unit that plans a movement route using reference points on an environmental map represented by point cloud data.
  • the route planning unit is made to determine the point cloud closest to the reference point based on the position and the degree of dispersion of each point cloud included in the point cloud data, and the position of the nearest point cloud and the said A program that calculates the distance between the nearest point cloud and the reference point based on the degree of dispersion, and plans the movement route based on the distance.

Abstract

An information processing device according to the present invention comprises a route planning unit that plans a movement route by using a reference point on an environment map expressed by point group data. The route planning unit determines a point group nearest to the reference point on the basis of the position and the degree of dispersion of each of the point groups included in the point group data, calculates the distance between the reference point and the nearest point group on the basis of the position and degree of dispersion of the nearest point group, and plans the movement route on the basis of said distance.

Description

情報処理装置、情報処理方法、及びプログラムInformation processing equipment, information processing methods, and programs
 本開示は、情報処理装置、情報処理方法、及びプログラムに関する。 This disclosure relates to information processing devices, information processing methods, and programs.
 近年、ロボット産業の発展に伴って、警備ロボット又は介護ロボットなどの自律的に移動可能なロボットの開発が進められている。様々な環境でロボットを自律的に移動可能とするためには、例えば、SLAM(Simultaneous Localization And Mapping)等を用いてロボットに自律的に地図構築及び自己位置推定を行わせることが検討されている(例えば、特許文献1)。 In recent years, with the development of the robot industry, the development of autonomously movable robots such as security robots and nursing care robots has been promoted. In order to make the robot move autonomously in various environments, for example, it is considered to make the robot autonomously perform map construction and self-position estimation using SLAM (Simultaneus Localization And Mapping) or the like. (For example, Patent Document 1).
特開2012-064131号公報Japanese Unexamined Patent Publication No. 2012-064131
 このような自律移動ロボットなどを含む移動体では、移動速度を高めるため、又は消費電力を低減するために、構築された地図上で目的地までの経路計画をより低い演算負荷で作成することが望まれている。 In mobile objects including such autonomous mobile robots, it is possible to create a route plan to a destination on a constructed map with a lower computational load in order to increase the moving speed or reduce power consumption. It is desired.
 よって、移動体の経路計画をより高効率で作成することが可能な情報処理装置、情報処理方法、及びプログラムを提供することが望ましい。 Therefore, it is desirable to provide an information processing device, an information processing method, and a program capable of creating a mobile route plan with higher efficiency.
 本開示の一実施形態に係る情報処理装置は、点群データにて表現される環境地図上にて参照点を用いて移動経路を計画する経路計画部を備え、前記経路計画部は、前記点群データに含まれる点群の各々の位置及び分散度合いに基づいて前記参照点から最近傍となる点群を決定し、前記最近傍の点群の前記位置及び前記分散度合いに基づいて前記参照点と前記最近傍の点群との距離を演算し、前記距離に基づいて前記移動経路を計画する。 The information processing apparatus according to the embodiment of the present disclosure includes a route planning unit that plans a movement route using a reference point on an environmental map represented by point cloud data, and the route planning unit is the point. The point cloud closest to the reference point is determined based on the position and the degree of dispersion of each point cloud included in the group data, and the reference point is based on the position and the degree of dispersion of the nearest point cloud. And the distance between the nearest point cloud and the point cloud are calculated, and the movement route is planned based on the distance.
 本開示の一実施形態に係る情報処理方法は、演算処理装置によって、点群データで表現される環境地図上にて、前記点群データに含まれる点群の各々の位置及び分散度合いに基づいて参照点から最近傍となる点群を決定することと、前記最近傍の点群の前記位置及び前記分散度合いに基づいて前記最近傍の点群と前記参照点との距離を演算することと、前記距離に基づいて前記環境地図上での移動経路を計画することとを含む。 The information processing method according to the embodiment of the present disclosure is based on the position and the degree of dispersion of each point cloud included in the point cloud data on an environment map represented by the point cloud data by an arithmetic processing device. Determining the nearest point cloud from the reference point, and calculating the distance between the nearest point cloud and the reference point based on the position of the nearest point cloud and the degree of dispersion. It includes planning a movement route on the environmental map based on the distance.
 本開示の一実施形態に係るプログラムは、コンピュータを、点群データで表現される環境地図上にて参照点を用いて移動経路を計画する経路計画部として機能させ、前記経路計画部に、前記点群データに含まれる点群の各々の位置及び分散度合いに基づいて前記参照点から最近傍となる点群を決定させ、前記最近傍の点群の前記位置及び前記分散度合いに基づいて前記最近傍の点群と前記参照点との距離を演算させ、前記距離に基づいて前記移動経路を計画させる。 The program according to the embodiment of the present disclosure causes a computer to function as a route planning unit for planning a movement route using a reference point on an environment map represented by point cloud data, and causes the route planning unit to perform the above-mentioned. The point cloud closest to the reference point is determined based on the position and the degree of dispersion of each point cloud included in the point cloud data, and the recent position based on the position and the degree of dispersion of the nearest point cloud. The distance between the nearby point cloud and the reference point is calculated, and the movement route is planned based on the distance.
 本開示の一実施形態に係る情報処理装置、情報処理方法、及びプログラムでは、点群データで表現される環境地図上にて、点群の各々の位置及び分散度合いに基づいて参照点から最近傍となる点群を決定し、最近傍の点群の分散度合いに基づいて最近傍の点群と参照点との距離を演算し、演算した距離に基づいて環境地図上での移動経路を計画することができる。これにより、例えば、本実施形態に係る情報処理装置は、点群データに含まれる点群のばらつきを考慮した経路計画を複雑な演算を行うことなく作成することができる。 In the information processing apparatus, information processing method, and program according to the embodiment of the present disclosure, the nearest point cloud is located on the environment map represented by the point cloud data, based on the position and the degree of dispersion of each point cloud. Determine the point cloud to be, calculate the distance between the nearest point cloud and the reference point based on the degree of dispersion of the nearest point cloud, and plan the movement route on the environmental map based on the calculated distance. be able to. Thereby, for example, the information processing apparatus according to the present embodiment can create a route plan considering the variation of the point cloud included in the point cloud data without performing complicated calculation.
本開示の一実施形態に係る情報処理装置にて作成される経路計画を説明する模式図である。It is a schematic diagram explaining the route plan created by the information processing apparatus which concerns on one Embodiment of this disclosure. 同実施形態に係る情報処理装置の機能構成を示すブロック図である。It is a block diagram which shows the functional structure of the information processing apparatus which concerns on the same embodiment. 点群データ、及び点群データのクラスタリングについて説明する説明図である。It is explanatory drawing explaining the point cloud data and the clustering of a point cloud data. 参照点から最近傍のクラスタを決定する方法を説明する説明図である。It is explanatory drawing explaining the method of determining the nearest cluster from a reference point. 同実施形態に係る情報処理装置の動作の流れを説明するフローチャート図である。It is a flowchart explaining the operation flow of the information processing apparatus which concerns on this embodiment. 第1の変形例に係る情報処理装置の機能構成を示すブロック図である。It is a block diagram which shows the functional structure of the information processing apparatus which concerns on 1st modification. 第2の変形例に係る情報処理装置の経路計画方法について説明する説明図である。It is explanatory drawing explaining the route planning method of the information processing apparatus which concerns on the 2nd modification. 第3の変形例に係る情報処理装置の経路計画方法について説明する説明図である。It is explanatory drawing explaining the route planning method of the information processing apparatus which concerns on 3rd modification. 第4の変形例に係る情報処理装置の機能構成を示すブロック図である。It is a block diagram which shows the functional structure of the information processing apparatus which concerns on 4th modification. 第5の変形例に係る情報処理装置の機能構成を示すブロック図である。It is a block diagram which shows the functional structure of the information processing apparatus which concerns on 5th modification. 第6の変形例に係る情報処理装置の機能構成を示すブロック図である。It is a block diagram which shows the functional structure of the information processing apparatus which concerns on 6th modification. 同実施形態に係る情報処理装置のハードウェア構成例を示すブロック図である。It is a block diagram which shows the hardware configuration example of the information processing apparatus which concerns on the same embodiment.
 以下、本開示における実施形態について、図面を参照して詳細に説明する。以下で説明する実施形態は本開示の一具体例であって、本開示にかかる技術が以下の態様に限定されるわけではない。また、本開示の各構成要素の配置、寸法、及び寸法比等についても、各図に示す様態に限定されるわけではない。 Hereinafter, embodiments in the present disclosure will be described in detail with reference to the drawings. The embodiments described below are specific examples of the present disclosure, and the technique according to the present disclosure is not limited to the following aspects. Further, the arrangement, dimensions, dimensional ratio, etc. of each component of the present disclosure are not limited to the modes shown in the respective figures.
 なお、説明は以下の順序で行う。
 1.実施形態
  1.1.概要
  1.2.構成例
  1.3.動作例
 2.変形例
 3.ハードウェア構成例
The explanation will be given in the following order.
1. 1. Embodiment 1.1. Overview 1.2. Configuration example 1.3. Operation example 2. Modification example 3. Hardware configuration example
 <1.第1の実施形態>
 (1.1.概要)
 まず、図1を参照して、本開示の一実施形態に係る情報処理装置の概要について説明する。図1は、本実施形態に係る情報処理装置にて作成される経路計画を説明する模式図である。
<1. First Embodiment>
(1.1. Overview)
First, with reference to FIG. 1, an outline of the information processing apparatus according to the embodiment of the present disclosure will be described. FIG. 1 is a schematic diagram illustrating a route plan created by the information processing apparatus according to the present embodiment.
 図1に示すように、例えば、自律的に移動可能な移動体1では、現在位置Aから目的地Bまで障害物2に衝突することなく移動するための経路rを求める経路計画が行われる。なお、自律的に移動可能な移動体1としては、二次元平面上を走行するロボット、又は三次元空間内を飛行するドローンなどを例示することができる。 As shown in FIG. 1, for example, in the autonomously movable mobile body 1, a route plan for finding a route r for moving from the current position A to the destination B without colliding with the obstacle 2 is performed. As the moving body 1 that can move autonomously, a robot traveling on a two-dimensional plane, a drone flying in a three-dimensional space, or the like can be exemplified.
 このような経路計画では、センサにて取得されたデータに基づいて移動体1及び障害物2の位置が認識され、認識結果に基づいて移動体1の周囲の環境を表現する環境地図が構築される。これにより、移動体1は、構築した環境地図上で現在位置Aから目的地Bまでの最適な経路rを計画し、計画された最適な経路rに従って移動することができる。移動体1は、目的地Bに到達するまで上記の経路計画及び移動を繰り返し実行することで、障害物2に衝突することなく目的地Bまで移動することができる。 In such a route plan, the positions of the moving body 1 and the obstacle 2 are recognized based on the data acquired by the sensor, and an environmental map expressing the environment around the moving body 1 is constructed based on the recognition result. NS. As a result, the moving body 1 can plan the optimum route r from the current position A to the destination B on the constructed environment map, and move according to the planned optimum route r. The moving body 1 can move to the destination B without colliding with the obstacle 2 by repeatedly executing the above-mentioned route planning and movement until the moving body 1 reaches the destination B.
 例えば、測距センサ等にて取得された障害物2までの物理的な距離を地図上の各グリッドに設定することで、移動体1の周囲の環境を表現するESDF(Euclidean Signed Distance Fields)又はTSDF(Truncated Signed Distance Fields)などの技術が検討されている。このような技術を用いることで、移動体1は、周囲の環境を表現する環境地図を構築し、該環境地図に基づいて経路計画を行うことができる。 For example, ESDF (Euclidean Signed Distance Fields) or ESDF (Euclidean Signed Distance Fields) that expresses the environment around the moving body 1 by setting the physical distance to the obstacle 2 acquired by the distance measuring sensor or the like in each grid on the map. Technologies such as TSDF (Truncated Signed Distance Fields) are being studied. By using such a technique, the mobile body 1 can construct an environmental map expressing the surrounding environment and perform route planning based on the environmental map.
 しかしながら、実際には、センサにて取得されるデータには、周囲の環境、及び測定条件に応じた頻度及び大きさのばらつき又は外れ値が含まれてしまう。したがって、センサにて取得されるデータに基づいて構築される環境地図、及び該環境地図に基づいて計画される移動体1の経路計画にも、センサの精度に応じた誤差及び曖昧さが含まれてしまう。 However, in reality, the data acquired by the sensor includes variations in frequency and magnitude or outliers depending on the surrounding environment and measurement conditions. Therefore, the environment map constructed based on the data acquired by the sensor and the route plan of the moving body 1 planned based on the environment map also include errors and ambiguities according to the accuracy of the sensor. It ends up.
 ここで、上記のばらつき及び外れ値を考慮せずに、何らかの代表値(例えば、中央値、又は平均値など)を用いて環境地図を構築し、該環境地図に基づいて経路計画を行う場合、移動体1が障害物2を安全に回避できない可能性があり得る。また、移動体1が障害物2を安全に回避できるようにするために、過度に大きなマージンを持たせて経路を計画することになるため、計画される経路が最適な経路とならない可能性があり得る。 Here, when an environmental map is constructed using some representative value (for example, a median value or an average value) without considering the above-mentioned variations and outliers, and a route plan is performed based on the environmental map. It is possible that the moving object 1 cannot safely avoid the obstacle 2. Further, in order for the moving body 1 to safely avoid the obstacle 2, the route is planned with an excessively large margin, so that the planned route may not be the optimum route. could be.
 一方、上記のばらつき及び外れ値を考慮して環境地図を構築し、該環境地図に基づいて経路計画を行う場合、経路計画の演算負荷が過度に大きくなってしまうことがあり得る。特に、三次元空間では、二次元平面よりもデータ量が大幅に増加するため、環境地図の構築、及び経路計画の演算負荷が極めて大きくなってしまう。このような場合、経路計画を高速で演算することが困難となるため、経路計画の演算速度に応じて移動体の移動速度が制限されてしまうことがあり得る。また、演算負荷の増加に応じて、経路計画を算出する情報処理装置の消費電力が増大してしまうことがあり得る。 On the other hand, when an environmental map is constructed in consideration of the above variations and outliers and a route plan is performed based on the environmental map, the calculation load of the route plan may become excessively large. In particular, in a three-dimensional space, the amount of data is significantly larger than that in a two-dimensional plane, so that the computational load of constructing an environmental map and route planning becomes extremely large. In such a case, it becomes difficult to calculate the route plan at high speed, so that the moving speed of the moving body may be limited according to the calculation speed of the route plan. Further, as the calculation load increases, the power consumption of the information processing apparatus that calculates the route plan may increase.
 本実施形態に係る情報処理装置は、環境地図を点群データにて表現し、点群データに含まれる点群の各々の位置及び分散度合いに基づいて移動体1の移動経路を計画する。具体的には、情報処理装置は、点群データで表現される地図上にて、点群データに含まれる点群の各々の位置及び分散度合いに基づいて参照点から最近傍となる点群を決定し、参照点と最近傍の点群との分散度合いを考慮した距離に基づいて移動体1の移動経路を計画することができる。 The information processing apparatus according to the present embodiment expresses the environment map with point cloud data, and plans the movement route of the moving body 1 based on the position and the degree of dispersion of each point cloud included in the point cloud data. Specifically, the information processing apparatus sets the point cloud closest to the reference point on the map represented by the point cloud data based on the position and the degree of dispersion of each point cloud included in the point cloud data. It is possible to determine and plan the movement path of the moving body 1 based on the distance considering the degree of dispersion between the reference point and the nearest point cloud.
 これによれば、本実施形態に係る情報処理装置は、センサの誤差及び曖昧さを点群データに含まれる点群の分散度合いとして移動体1の移動経路に反映することができる。したがって、本実施形態に係る情報処理装置は、センサの誤差及び曖昧さを反映した移動体1の経路計画をより高効率に作成することが可能である。 According to this, the information processing apparatus according to the present embodiment can reflect the error and ambiguity of the sensor in the movement path of the moving body 1 as the degree of dispersion of the point cloud included in the point cloud data. Therefore, the information processing apparatus according to the present embodiment can create a route plan of the mobile body 1 reflecting the error and ambiguity of the sensor with higher efficiency.
 (1.2.構成例)
 続いて、図2~図4を参照して、上記で概要を説明した本実施形態に係る情報処理装置のより具体的な構成について説明する。図2は、本実施形態に係る情報処理装置10の機能構成を示すブロック図である。図3は、点群データ、及び点群データのクラスタリングについて説明する説明図である。図4は、参照点から最近傍のクラスタを決定する方法を説明する説明図である。
(1.2. Configuration example)
Subsequently, with reference to FIGS. 2 to 4, a more specific configuration of the information processing apparatus according to the present embodiment, which has been outlined above, will be described. FIG. 2 is a block diagram showing a functional configuration of the information processing apparatus 10 according to the present embodiment. FIG. 3 is an explanatory diagram illustrating the point cloud data and the clustering of the point cloud data. FIG. 4 is an explanatory diagram illustrating a method of determining the nearest cluster from the reference point.
 図2に示すように、本実施形態に係る情報処理装置10は、地図構築部110と、経路計画部120と、自己位置推定部130とを備える。 As shown in FIG. 2, the information processing apparatus 10 according to the present embodiment includes a map construction unit 110, a route planning unit 120, and a self-position estimation unit 130.
 情報処理装置10は、例えば、センサ部20にて取得されたデータに基づいて、移動体1の周囲の環境地図を構築し、構築された環境地図を用いて移動体1の目的地への移動経路を計画することができる。情報処理装置10にて計画された移動経路は、例えば、移動体1の駆動部32を制御する駆動制御部31に出力される。 For example, the information processing apparatus 10 constructs an environmental map around the moving body 1 based on the data acquired by the sensor unit 20, and moves to the destination of the moving body 1 using the constructed environmental map. You can plan the route. The movement path planned by the information processing apparatus 10 is output to, for example, a drive control unit 31 that controls the drive unit 32 of the mobile body 1.
 ここで、センサ部20、駆動制御部31、及び駆動部32は、例えば、移動体1に備えられてもよい。情報処理装置10は、移動体1の内部に備えられてもよく、移動体1の外部に備えられてもよい。情報処理装置10が移動体1の内部に備えられる場合、情報処理装置10は、内部配線を介して移動体1に経路計画を出力してもよい。また、情報処理装置10が移動体1の外部に備えられる場合、情報処理装置10は、無線通信等を介して移動体1に経路計画を送信してもよい。 Here, the sensor unit 20, the drive control unit 31, and the drive unit 32 may be provided in, for example, the moving body 1. The information processing apparatus 10 may be provided inside the moving body 1 or may be provided outside the moving body 1. When the information processing device 10 is provided inside the moving body 1, the information processing device 10 may output a route plan to the moving body 1 via the internal wiring. Further, when the information processing device 10 is provided outside the mobile body 1, the information processing device 10 may transmit a route plan to the mobile body 1 via wireless communication or the like.
 センサ部20は、移動体1の周囲の環境のセンシング結果を点の集合である点群データとして出力する。 The sensor unit 20 outputs the sensing result of the environment around the moving body 1 as point cloud data which is a set of points.
 例えば、センサ部20は、超音波センサ(Sound Navigation And Ranging:SONAR)、ToF(Time of Flight)センサ、又はLiDAR(Light Detection And Ranging)センサなどの対象までの距離を測定する測距センサを含んでもよい。このような場合、センサ部20は、測距センサから取得された測定点までの距離及び方向に関する情報に基づいて測定点を三次元座標系における点に変換することで、点群データを生成することができる。 For example, the sensor unit 20 includes a distance measuring sensor that measures a distance to an object, such as an ultrasonic sensor (Sound Navigation And Ringing: SONAR), a ToF (Time of Flat) sensor, or a LiDAR (Light Detection And Ringing) sensor. But it may be. In such a case, the sensor unit 20 generates point cloud data by converting the measurement points into points in the three-dimensional coordinate system based on the information regarding the distance and direction to the measurement points acquired from the distance measurement sensor. be able to.
 または、センサ部20は、ステレオカメラ、単眼カメラ、カラーカメラ、赤外線カメラ、又は偏光カメラなどの移動体1の周囲の環境の画像を取得する撮像装置を含んでもよい。このような場合、センサ部20は、撮像画像に基づいて、撮像画像に含まれる画像点の深度を推定し、推定された深度に関する情報に基づいて画像点を三次元座標系における点に変換することで、点群データを生成することができる。 Alternatively, the sensor unit 20 may include an image pickup device that acquires an image of the surrounding environment of the moving body 1 such as a stereo camera, a monocular camera, a color camera, an infrared camera, or a polarized camera. In such a case, the sensor unit 20 estimates the depth of the image points included in the captured image based on the captured image, and converts the image points into points in the three-dimensional coordinate system based on the information regarding the estimated depth. This makes it possible to generate point cloud data.
 なお、センサ部20は、移動体1の周囲の環境に関する情報を取得することができれば、移動体1の外部の装置又はオブジェクト等に備えられてもよい。例えば、センサ部20は、移動体1が存在する空間の天井、壁、又は床等に備えられてもよい。 The sensor unit 20 may be provided in an external device or object of the mobile body 1 as long as it can acquire information about the environment around the mobile body 1. For example, the sensor unit 20 may be provided on the ceiling, wall, floor, or the like of the space in which the moving body 1 is present.
 地図構築部110は、クラスタリング部111、クラスタ抽出部112、及び地図生成部113を含み、センサ部20にて取得された点群データを用いて、移動体1の周囲の環境を表現する環境地図を構築する。 The map construction unit 110 includes a clustering unit 111, a cluster extraction unit 112, and a map generation unit 113, and uses the point cloud data acquired by the sensor unit 20 to represent an environment around the moving body 1. To build.
 クラスタリング部111は、センサ部20にて取得された点群データに含まれる点群をクラスタリングすることで、複数のクラスタを含むクラスタデータを生成する。具体的には、図3に示すように、クラスタリング部111は、三次元座標系における点Pの集合である点群PCをクラスタリングすることで、複数のクラスタCLを含むクラスタデータを生成する。なお、クラスタリングにて生成されたクラスタCLは、移動体1の周囲に存在するオブジェクトの表面を構成する1つの微小平面に対応する。 The clustering unit 111 generates cluster data including a plurality of clusters by clustering the point cloud included in the point cloud data acquired by the sensor unit 20. Specifically, as shown in FIG. 3, the clustering unit 111 generates cluster data including a plurality of cluster CLs by clustering a point cloud PC which is a set of points P in a three-dimensional coordinate system. The cluster CL generated by clustering corresponds to one microplane constituting the surface of the object existing around the moving body 1.
 例えば、クラスタリング部111は、以下の手順に従って、点群データに含まれる点群を分割した後、クラスタリングしてもよい。 For example, the clustering unit 111 may perform clustering after dividing the point cloud included in the point cloud data according to the following procedure.
 まず、クラスタリング部111は、所定の分割条件に基づいて、点群の分割を行うか否かを判定する。点群が所定の分割条件を満たす場合、クラスタリング部111は、点群を分割する。次に、クラスタリング部111は、分割された点群について、上記の分割条件を満たさなくなるまで点群を繰り返し分割する。続いて、クラスタリング部111は、所定のクラスタリング条件に基づいて、上記の分割条件を満たさなくなるまで分割された点群のクラスタリングを行うか否かを判定する。その後、クラスタリング部111は、所定のクラスタリング条件を満たす点群に対してクラスタリングを行う。 First, the clustering unit 111 determines whether or not to divide the point cloud based on a predetermined division condition. When the point cloud satisfies a predetermined division condition, the clustering unit 111 divides the point cloud. Next, the clustering unit 111 repeatedly divides the divided point cloud until the above-mentioned division condition is not satisfied. Subsequently, the clustering unit 111 determines, based on a predetermined clustering condition, whether or not to perform clustering of the divided point cloud until the above-mentioned division condition is not satisfied. After that, the clustering unit 111 performs clustering on a point cloud satisfying a predetermined clustering condition.
 ここで、所定の分割条件は、点群に含まれる点の数が所定の数以上であるという条件を含んでもよい。また、所定の分割条件は、三次元座標系にて点群の全ての点を内包する最小の直方形領域(バウンディングボックスとも称される)を設定した際に、直方形領域の最も長い辺の長さが所定の長さ以上であるという条件を含んでもよい。また、所定の分割条件は、点群における点の密度が所定の値以上であるという条件を含んでもよい。点群における点の密度は、例えば、点群に含まれる点の数を上記のバウンディングボックスの大きさで除算した値としてもよい。さらに、所定の分割条件は、上述した条件を複数組み合わせた条件を含んでもよい。 Here, the predetermined division condition may include a condition that the number of points included in the point cloud is a predetermined number or more. In addition, the predetermined division condition is the longest side of the rectangular region when the minimum rectangular region (also called a bounding box) containing all the points of the point cloud is set in the three-dimensional coordinate system. It may include the condition that the length is equal to or longer than a predetermined length. Further, the predetermined division condition may include a condition that the density of points in the point cloud is equal to or higher than a predetermined value. The density of points in the point cloud may be, for example, a value obtained by dividing the number of points included in the point cloud by the size of the above bounding box. Further, the predetermined division condition may include a condition in which a plurality of the above-mentioned conditions are combined.
 また、所定のクラスタリング条件とは、点群に含まれる点の数が所定の数以上であるという条件を含んでもよい。また、所定のクラスタリング条件は、上記のバウンディングボックスの最も長い辺の長さが所定の長さ以上であるという条件を含んでもよい。また、所定のクラスタリング条件は、上記の点群における点の密度が所定の値以上であるという条件を含んでもよい。さらに、所定のクラスタリング条件は、上述した条件を複数組み合わせた条件を含んでもよい。 Further, the predetermined clustering condition may include a condition that the number of points included in the point cloud is a predetermined number or more. Further, the predetermined clustering condition may include a condition that the length of the longest side of the bounding box is equal to or greater than the predetermined length. Further, the predetermined clustering condition may include a condition that the density of points in the above point cloud is equal to or higher than a predetermined value. Further, the predetermined clustering condition may include a condition in which a plurality of the above-mentioned conditions are combined.
 これによれば、クラスタリング部111は、所定の分割条件を満たさなくなるまで分割した後の点群の各々に対してクラスタリングを行うため、クラスタリングの対象となる点群の各々の大きさをより小さくすることができる。したがって、クラスタリング部111は、クラスタリングの処理時間をより短縮することができる。また、クラスタリング部111は、所定のクラスタリング条件を満たさず、不正確である可能性が高い点群をクラスタリングの対象から外すことができるため、クラスタリングの精度をより高めることができる。 According to this, since the clustering unit 111 performs clustering for each of the point clouds after the division until the predetermined division condition is not satisfied, the size of each of the point clouds to be clustered is made smaller. be able to. Therefore, the clustering unit 111 can further shorten the clustering processing time. Further, since the clustering unit 111 can exclude a point cloud that does not satisfy a predetermined clustering condition and is likely to be inaccurate from the target of clustering, the accuracy of clustering can be further improved.
 クラスタ抽出部112は、クラスタリング部111によるクラスタリングにて生成されたクラスタの各々の位置及び形状を示すパラメータを抽出する。具体的には、クラスタ抽出部112は、クラスタの各々を二次モーメント近似である楕円体として表現する際の位置及び形状を示すパラメータを抽出する。例えば、クラスタ抽出部112は、クラスタに含まれる点群の三次元座標系における座標の平均値を演算し、点群の座標の平均値をクラスタの位置を示すパラメータとして抽出してもよい。また、クラスタ抽出部112は、クラスタに含まれる点群の三次元座標系における座標の共分散を演算し、点群の座標の共分散をクラスタの形状を示すパラメータとして抽出してもよい。 The cluster extraction unit 112 extracts parameters indicating the positions and shapes of the clusters generated by the clustering by the clustering unit 111. Specifically, the cluster extraction unit 112 extracts parameters indicating the position and shape when expressing each of the clusters as an ellipsoid which is an approximation of the second moment. For example, the cluster extraction unit 112 may calculate the average value of the coordinates of the point cloud included in the cluster in the three-dimensional coordinate system, and extract the average value of the coordinates of the point cloud as a parameter indicating the position of the cluster. Further, the cluster extraction unit 112 may calculate the covariance of the coordinates of the point cloud included in the cluster in the three-dimensional coordinate system, and extract the covariance of the coordinates of the point cloud as a parameter indicating the shape of the cluster.
 地図生成部113は、クラスタリング部111によるクラスタリングにて生成されたクラスタを用いて、移動体1の周囲の環境を表現する環境地図を構築する。具体的には、地図生成部113は、クラスタに含まれる点群の座標の平均値を重心とし、クラスタに含まれる点群の座標の共分散を形状の広がりとする楕円体にてクラスタの各々を空間表現することで、環境地図を構築する。これによれば、地図生成部113は、クラスタに含まれる点群の分散度合い(すなわち、共分散)が反映された形状にてクラスタの各々を環境地図上に表現することができる。すなわち、地図生成部113は、クラスタリング部111によるクラスタリングにて生成されたクラスタの各々の楕円体を用いて、移動体1の周囲に存在するオブジェクトの表面の微小平面群を表現することができる。 The map generation unit 113 constructs an environment map expressing the environment around the mobile body 1 by using the cluster generated by the clustering by the clustering unit 111. Specifically, the map generation unit 113 is an ellipsoid in which the average value of the coordinates of the point cloud included in the cluster is the center of gravity and the covariance of the coordinates of the point cloud included in the cluster is the spread of the shape. Build an environmental map by spatially expressing. According to this, the map generation unit 113 can represent each of the clusters on the environmental map in a shape that reflects the degree of dispersion (that is, covariance) of the point cloud included in the cluster. That is, the map generation unit 113 can express a microplane group on the surface of an object existing around the moving body 1 by using each ellipsoid of the cluster generated by the clustering by the clustering unit 111.
 なお、地図生成部113は、クラスタリング部111によるクラスタリングにて生成された1又は複数のクラスタを環境地図に存在するオブジェクトごとにグループ化してもよい。具体的には、地図生成部113は、クラスタの各々が移動体1の周囲に存在する人、壁、又は床などのオブジェクトのいずれの表面の微小平面に対応するのかを認識し、同じオブジェクトの微小平面に対応するクラスタ同士をグループ化してもよい。 The map generation unit 113 may group one or a plurality of clusters generated by clustering by the clustering unit 111 for each object existing in the environment map. Specifically, the map generation unit 113 recognizes which surface microplane of an object such as a person, a wall, or a floor exists around the moving object 1 in each of the clusters, and recognizes which surface microplane of the same object corresponds to. Clusters corresponding to microplanes may be grouped together.
 経路計画部120は、最近傍クラスタ決定部121、距離演算部122、及び経路演算部123を含み、地図構築部110にて構築された環境地図上にて移動体1の移動経路を計画する。具体的には、経路計画部120は、移動体1の現在位置Aと目的地Bとの間に参照点を設定し、参照点と、参照点に対して最近傍となるクラスタとの間の分散度合いを考慮した距離が最大となるように経路を計画する。なお、分散度合いを考慮した距離とは、例えば、マハラノビス距離である。 The route planning unit 120 includes the nearest neighbor cluster determination unit 121, the distance calculation unit 122, and the route calculation unit 123, and plans the movement route of the moving body 1 on the environment map constructed by the map construction unit 110. Specifically, the route planning unit 120 sets a reference point between the current position A and the destination B of the moving body 1, and is located between the reference point and the cluster closest to the reference point. Plan the route so that the distance considering the degree of dispersion is maximized. The distance considering the degree of dispersion is, for example, the Mahalanobis distance.
 最近傍クラスタ決定部121は、移動体1の現在位置Aと目的地Bとの間に設定された参照点に対して環境地図上で最近傍となるクラスタをクラスタの分散度合いに基づいて決定する。具体的には、最近傍クラスタ決定部121は、マハラノビス距離に基づいて、参照点に対して環境地図上で最近傍となるクラスタを決定する。 The nearest neighbor cluster determination unit 121 determines the cluster closest to the reference point set between the current position A and the destination B of the mobile body 1 on the environmental map based on the degree of dispersion of the clusters. .. Specifically, the nearest neighbor cluster determination unit 121 determines the cluster that is the nearest neighbor on the environmental map with respect to the reference point based on the Mahalanobis distance.
 例えば、図4に示すように、最近傍クラスタ決定部121は、環境地図上において、参照点RPと、参照点RPの近傍のクラスタCL1、CL2、CL3、CL4、CL5、CL6の各々との間のマハラノビス距離d(x,xi’,Σ’xi)をそれぞれ評価することで、参照点RPから最近傍のクラスタCL5を決定してもよい。 For example, as shown in FIG. 4, the nearest neighbor cluster determination unit 121 is located between the reference point RP and each of the clusters CL1, CL2, CL3, CL4, CL5, and CL6 in the vicinity of the reference point RP on the environment map. Mahalanobis distance d m (x, xi ', Σ'xi) by evaluating each from the reference point RP may be recently determined near a cluster CL5.
 距離演算部122は、参照点RPと、最近傍のクラスタCL5との間のクラスタの分散度合いに基づく距離を演算する。具体的には、距離演算部122は、参照点RPと、最近傍のクラスタCL5との間のマハラノビス距離d、又はマハラノビス距離dを変数とする関数U(x)を演算し、マハラノビス距離d又は関数U(x)を参照点RPにおける場の値として算出する。 The distance calculation unit 122 calculates the distance based on the degree of dispersion of the cluster between the reference point RP and the nearest cluster CL5. Specifically, the distance calculation unit 122, a reference point RP, the Mahalanobis distance d m between the nearest cluster CL5, or Mahalanobis distance d m functions as a variable U (x) is calculated, the Mahalanobis distance d m or calculating the function U (x) as the value of the field at the reference point RP.
 経路演算部123は、参照点RPにおける場の値を評価し、最近傍クラスタに対し十分なマージンが確保される経路を逐次演算することで、移動体1の現在位置Aから目的地Bまでの移動経路を計画する。具体的には、経路演算部123は、距離演算部122にて算出された参照点RPにおけるマハラノビス距離d、又はマハラノビス距離dを変数とする関数U(x)を求め、これらのマハラノビス距離d又は関数U(x)があらかじめ定義された閾値との比較条件を満たす経路を逐次演算することで、移動体1の移動経路を計画する。例えば、経路演算部123は、マハラノビス距離dm、又はマハラノビス距離dmを変数とする関数U(x)の値が最大化される経路を演算することで移動体1の移動経路を計画してもよい。 The route calculation unit 123 evaluates the field value at the reference point RP and sequentially calculates a route that secures a sufficient margin for the nearest neighbor cluster, so that the current position A of the mobile body 1 to the destination B can be calculated. Plan a travel route. Specifically, the route calculating section 123 calculates a Mahalanobis distance d m, or Mahalanobis distance d m functions as a variable U (x) in the reference point RP calculated in the distance calculating section 122, these Mahalanobis distances d m or function U (x) that is sequentially calculating the comparison satisfies path between predefined threshold, to plan a travel route of the moving body 1. For example, the route calculation unit 123 may plan the movement route of the moving body 1 by calculating the Mahalanobis distance dm or the route in which the value of the function U (x) having the Mahalanobis distance dm as a variable is maximized. ..
 マハラノビス距離dは、下記の数式1で示すように、クラスタの分散度合いを表す共分散を反映した距離であり、共分散が小さいほど距離が大きく、共分散が大きいほど距離が小さく評価される距離である。マハラノビス距離dを用いることによって、経路演算部123は、点群データに含まれる点群のばらつきを考慮した上で、点群とのマージンが十分に確保された経路を計画することができる。 The Mahalanobis distance d m, as shown in Equation 1 below, a distance that reflects the covariance representing the degree of dispersion of clusters, as covariance smaller distance is large, the distance as the covariance is large is evaluated small The distance. By using the Mahalanobis distance d m, the route calculation unit 123, in consideration of the variations set of points included in the point cloud data can be a margin of the point group to plan a sufficient path.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 自己位置推定部130は、センサ部20にて取得された移動体1の周囲の環境に関する情報に基づいて、環境地図における移動体1の位置を推定する。さらに、自己位置推定部130は、推定された移動体1の位置を示す位置データを生成し、経路演算部123に出力する。 The self-position estimation unit 130 estimates the position of the mobile body 1 on the environment map based on the information about the environment around the mobile body 1 acquired by the sensor unit 20. Further, the self-position estimation unit 130 generates position data indicating the estimated position of the moving body 1 and outputs the position data to the route calculation unit 123.
 また、自己位置推定部130は、移動体1の状態を測定するセンサのセンシング結果に基づいて移動体1の位置を推定してもよい。 Further, the self-position estimation unit 130 may estimate the position of the moving body 1 based on the sensing result of the sensor that measures the state of the moving body 1.
 例えば、自己位置推定部130は、移動体1の移動機構に含まれる脚部の各関節に設けられたエンコーダのセンシング結果に基づいて、移動体1の移動方向及び移動距離を算出し、移動体1の位置を推定してもよい。例えば、自己位置推定部130は、移動体1の移動機構に含まれる各車輪に設けられたエンコーダのセンシング結果に基づいて移動体1の移動方向及び移動距離を算出し、移動体1の位置を推定してもよい。例えば、自己位置推定部130は、移動体1に備えられた3軸のジャイロセンサ及び3方向の加速度計を有するIMU(Inertial Measurement Unit)のセンシング結果に基づいて移動体1の移動方向及び移動距離を算出し、移動体1の位置を推定してもよい。 For example, the self-position estimation unit 130 calculates the moving direction and moving distance of the moving body 1 based on the sensing result of the encoder provided at each joint of the leg portion included in the moving mechanism of the moving body 1, and the moving body 1 is used. The position of 1 may be estimated. For example, the self-position estimation unit 130 calculates the moving direction and the moving distance of the moving body 1 based on the sensing result of the encoder provided on each wheel included in the moving mechanism of the moving body 1, and determines the position of the moving body 1. You may estimate. For example, the self-position estimation unit 130 has a moving direction and a moving distance of the moving body 1 based on the sensing result of an IMU (Inertial Measurement Unit) having a 3-axis gyro sensor and a 3-way accelerometer provided in the moving body 1. May be calculated to estimate the position of the moving body 1.
 さらに、自己位置推定部130は、GNSS(Global Navigation Satellite System)センサなどの他のセンサにて取得された情報に基づいて移動体1の位置を推定してもよい。 Further, the self-position estimation unit 130 may estimate the position of the moving body 1 based on the information acquired by another sensor such as a GNSS (Global Navigation Satellite System) sensor.
 駆動制御部31は、経路計画部120にて作成された経路計画に基づいて駆動部32を制御することで、移動体1の移動を制御する。例えば、駆動制御部31は、経路計画にて計画された経路に沿って移動体1が移動するように駆動部32を制御してもよい。 The drive control unit 31 controls the movement of the moving body 1 by controlling the drive unit 32 based on the route plan created by the route planning unit 120. For example, the drive control unit 31 may control the drive unit 32 so that the moving body 1 moves along the route planned in the route plan.
 駆動部32は、例えば、移動体1が備える移動機構を駆動させるモータ又はアクチュエータである。具体的には、駆動部32は、二輪又は四輪の車輪式の移動機構を駆動させるモータ、二脚又は四脚の脚式の移動機構を駆動させるアクチュエータ、又はプロペラ又は回転翼などの移動機構を駆動させるモータなどであってもよい。 The drive unit 32 is, for example, a motor or an actuator that drives a movement mechanism included in the moving body 1. Specifically, the drive unit 32 is a motor that drives a two-wheeled or four-wheeled wheel-type moving mechanism, an actuator that drives a two-legged or four-legged moving mechanism, or a moving mechanism such as a propeller or a rotary wing. It may be a motor or the like that drives the wheel.
 以上の構成を備える情報処理装置10は、点群データにて表現される環境地図において、参照点から最近傍となるクラスタをマハラノビス距離に基づいて決定し、参照点と最近傍のクラスタとのマハラノビス距離が十分に確保されるように移動体1の移動経路を計画することができる。したがって、情報処理装置10は、点群データに含まれる点群のばらつきを反映した移動経路を、複雑な演算を追加で行うことなく高効率で計画することが可能である。 The information processing apparatus 10 having the above configuration determines the cluster closest to the reference point based on the Mahalanobis distance in the environment map represented by the point cloud data, and the Mahalanobis between the reference point and the nearest cluster. The movement route of the moving body 1 can be planned so that a sufficient distance is secured. Therefore, the information processing apparatus 10 can plan a movement path reflecting the variation of the point cloud included in the point cloud data with high efficiency without performing additional complicated calculation.
 なお、上記実施形態では、分散度合いを考慮した距離としてマハラノビス距離を例示したが、本開示に係る技術は上記例示に限定されない。分散度合いを考慮した距離は、例えば、マハラノビス距離を変数として演算された距離であってもよい。また、分散度合いを考慮した距離は、点群のばらつき(例えば、点群に含まれる各点の座標の共分散など)を変数として定義された距離であれば、いかなる距離であってもよい。 In the above embodiment, the Mahalanobis distance is exemplified as the distance in consideration of the degree of dispersion, but the technique according to the present disclosure is not limited to the above example. The distance considering the degree of dispersion may be, for example, a distance calculated with the Mahalanobis distance as a variable. Further, the distance considering the degree of dispersion may be any distance as long as it is a distance defined with the variation of the point cloud (for example, the covariance of the coordinates of each point included in the point cloud) as a variable.
 (1.3.動作例)
 次に、図5を参照して、本実施形態に係る情報処理装置10の動作の一例について説明する。図5は、本実施形態に係る情報処理装置10の動作の流れを説明するフローチャート図である。
(1.3. Operation example)
Next, an example of the operation of the information processing apparatus 10 according to the present embodiment will be described with reference to FIG. FIG. 5 is a flowchart illustrating an operation flow of the information processing apparatus 10 according to the present embodiment.
 図5に示すように、まず、地図構築部110は、センサ部20から点群データを取得する(S101)。続いて、クラスタリング部111は、点群データに含まれる点群をクラスタリングする(S102)。次に、クラスタ抽出部112は、クラスタリングされた各クラスタに含まれる点群の座標の平均値及び共分散を演算することで、各クラスタの位置及び形状を抽出する(S103)。その後、地図生成部113は、抽出された位置及び形状の楕円体で各クラスタが表現された環境地図を構築する(S104)。これにより、地図構築部110は、移動体1の周囲の環境を表現する環境地図を構築することができる。 As shown in FIG. 5, first, the map construction unit 110 acquires point cloud data from the sensor unit 20 (S101). Subsequently, the clustering unit 111 clusters the point cloud included in the point cloud data (S102). Next, the cluster extraction unit 112 extracts the position and shape of each cluster by calculating the average value and covariance of the coordinates of the point cloud included in each clustered cluster (S103). After that, the map generation unit 113 constructs an environment map in which each cluster is represented by an ellipsoid of the extracted position and shape (S104). As a result, the map construction unit 110 can construct an environment map that expresses the environment around the moving body 1.
 続いて、経路計画部120は、構築された環境地図上に参照点を設定する(S111)。次に、最近傍クラスタ決定部121は、環境地図上の各クラスタと、参照点とのマハラノビス距離を演算することで、参照点から最近傍となるクラスタを決定する(S112)。続いて、距離演算部122は、参照点と、最近傍のクラスタとのマハラノビス距離、又はマハラノビス距離を変数とする関数を演算し、参照点における場の値を演算する(S113)。さらに、経路演算部123は、参照点と最近傍のクラスタとのマハラノビス距離に基づく上記場の値があらかじめ定義された閾値との比較条件を満たすように経路計画を作成する(S114)。その後、駆動制御部31は、作成された経路計画に基づく経路にて移動体1が移動するように駆動部32の駆動を制御する(S115)。 Subsequently, the route planning unit 120 sets a reference point on the constructed environment map (S111). Next, the nearest neighbor cluster determination unit 121 determines the nearest neighbor cluster from the reference point by calculating the Mahalanobis distance between each cluster on the environment map and the reference point (S112). Subsequently, the distance calculation unit 122 calculates a Mahalanobis distance between the reference point and the nearest cluster, or a function using the Mahalanobis distance as a variable, and calculates the field value at the reference point (S113). Further, the route calculation unit 123 creates a route plan so that the value of the field based on the Mahalanobis distance between the reference point and the nearest cluster satisfies the comparison condition with the predetermined threshold value (S114). After that, the drive control unit 31 controls the drive of the drive unit 32 so that the moving body 1 moves along the route based on the created route plan (S115).
 経路計画部120は、移動体1が目的地に到達するまで、参照点と最近傍のクラスタとのマハラノビス距離があらかじめ定義された閾値との比較条件を満たすような経路を逐次繰り返し演算することで、安全な経路にて移動体1を目的地まで移動させることができる。 The route planning unit 120 sequentially and repeatedly calculates a route such that the Mahalanobis distance between the reference point and the nearest cluster satisfies the comparison condition with the predetermined threshold value until the moving body 1 reaches the destination. , The moving body 1 can be moved to the destination by a safe route.
 以上の動作例によれば、本実施形態に係る情報処理装置10は、移動体1の周囲に存在するオブジェクトをセンシングした点群データをクラスタリングし、各クラスタの位置及び分散度合いに基づいた距離を用いて経路計画を作成することができる。これによれば、本実施形態に係る情報処理装置10は、点群データのセンシングばらつき等を考慮した経路計画を高効率で作成することが可能である。 According to the above operation example, the information processing apparatus 10 according to the present embodiment clusters the point cloud data obtained by sensing the objects existing around the moving body 1, and determines the distance based on the position and the degree of dispersion of each cluster. Can be used to create a route plan. According to this, the information processing apparatus 10 according to the present embodiment can create a route plan in consideration of the sensing variation of the point cloud data and the like with high efficiency.
 <2.変形例>
 以下では、図6~図11を参照して、本実施形態に係る情報処理装置10の第1~第6の変形例について説明する。
<2. Modification example>
Hereinafter, the first to sixth modifications of the information processing apparatus 10 according to the present embodiment will be described with reference to FIGS. 6 to 11.
 (第1の変形例)
 図6を参照して、第1の変形例に係る情報処理装置について説明する。図6は、第1の変形例に係る情報処理装置11の機能構成を示すブロック図である。
(First modification)
The information processing apparatus according to the first modification will be described with reference to FIG. FIG. 6 is a block diagram showing a functional configuration of the information processing apparatus 11 according to the first modification.
 図6に示すように、第1の変形例に係る情報処理装置11は、データベース構築部140をさらに備える。なお、その他の構成については、図2を参照して説明した情報処理装置10と実質的に同様であるため、ここでの説明は省略する。 As shown in FIG. 6, the information processing apparatus 11 according to the first modification further includes a database construction unit 140. Since the other configurations are substantially the same as those of the information processing apparatus 10 described with reference to FIG. 2, the description thereof is omitted here.
 データベース構築部140は、最近傍クラスタ決定部121にて参照点から最近傍となるクラスタを決定する際に参照される探索用データベースを構築する。探索用データベースは、kd木、四分木、又は八分木などの所定の空間に存在する点を分類するためのツリー状の空間分割データ構造を備えるデータベースである。データベース構築部140は、例えば、三次元座標系に存在する各クラスタの位置を上述したような空間分割データ構造にて分類することで、探索用データベースを構築してもよい。 The database construction unit 140 constructs a search database that is referred to when the nearest neighbor cluster determination unit 121 determines the nearest neighbor cluster from the reference point. The search database is a database having a tree-shaped spatially divided data structure for classifying points existing in a predetermined space such as a kd tree, a quadtree, or an ocree. The database construction unit 140 may construct a search database by, for example, classifying the positions of each cluster existing in the three-dimensional coordinate system according to the spatial division data structure as described above.
 これによれば、最近傍クラスタ決定部121は、探索用データベースの空間分割データ構造を探索することで、参照点から最近傍となるクラスタをより効率的に決定することができる。したがって、第1の変形例に係る情報処理装置11は、より効率的に移動経路を計画することが可能である。 According to this, the nearest cluster determination unit 121 can more efficiently determine the cluster closest to the reference point by searching the spatially divided data structure of the search database. Therefore, the information processing apparatus 11 according to the first modification can plan the movement route more efficiently.
 (第2の変形例)
 図7を参照して、第2の変形例に係る情報処理装置について説明する。図7は、第2の変形例に係る情報処理装置の経路計画方法について説明する説明図である。
(Second modification)
The information processing apparatus according to the second modification will be described with reference to FIG. 7. FIG. 7 is an explanatory diagram illustrating a route planning method of the information processing apparatus according to the second modification.
 経路演算部123は、図7に示すようなポテンシャルフィールドPFを定義し、ポテンシャルフィールドPFの微分勾配に沿った経路を移動体1の移動経路として計画してもよい。具体的には、経路演算部123は、環境地図上に以下の数式2で表されるポテンシャルフィールドPFを定義し、ポテンシャルフィールドPFの各点における微分勾配を演算することで、移動体1の移動経路を計画してもよい。 The route calculation unit 123 may define the potential field PF as shown in FIG. 7 and plan a route along the differential gradient of the potential field PF as the movement route of the moving body 1. Specifically, the path calculation unit 123 defines the potential field PF represented by the following mathematical formula 2 on the environment map, and calculates the differential gradient at each point of the potential field PF to move the moving body 1. You may plan a route.
 数式3及び数式4に示すように、Vは、参照点と、最近傍のクラスタとのマハラノビス距離に基づくポテンシャルである。数式5に示すように、Vは、現在位置Aと目的地Bとのユークリッド距離に基づくポテンシャルである。また、α及びβは、重み付け変数である。したがって、ポテンシャルフィールドPFは、例えば、移動体1の周囲の環境に存在するオブジェクトに対応する最近傍のクラスタからの斥力、及び目的地Bへの引力を重み付けして重ね合わせたフィールドとなる。 As shown in Equations 3 and 4, V m is a potential based on the Mahalanobis distance between the reference point and the nearest cluster. As shown in Equation 5, V w is a potential based on the Euclidean distance between the current position A and the destination B. Further, α and β are weighting variables. Therefore, the potential field PF is, for example, a field in which the repulsive force from the nearest cluster corresponding to the object existing in the environment around the moving body 1 and the attractive force to the destination B are weighted and superimposed.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 これによれば、経路演算部123は、移動体1の現在位置AにおけるポテンシャルフィールドPFの微分勾配を逐次演算することで、微分勾配に従った移動経路を計画することができる。ポテンシャルフィールドPFの微分勾配の演算は、演算量が少なく高速で実行することが可能であるため、第2の変形例に係る情報処理装置10は、より効率的に移動経路を計画することが可能である。 According to this, the path calculation unit 123 can plan a movement path according to the differential gradient by sequentially calculating the differential gradient of the potential field PF at the current position A of the moving body 1. Since the calculation of the differential gradient of the potential field PF can be executed at high speed with a small amount of calculation, the information processing apparatus 10 according to the second modification can plan the movement path more efficiently. Is.
 (第3の変形例)
 図8を参照して、第3の変形例に係る情報処理装置について説明する。図8は、第3の変形例に係る情報処理装置の経路計画方法について説明する説明図である。
(Third modification example)
The information processing apparatus according to the third modification will be described with reference to FIG. FIG. 8 is an explanatory diagram illustrating a route planning method of the information processing apparatus according to the third modification.
 経路演算部123は、図8に示すような環境地図TMをボロノイ分割したトポロジカル地図を作成し、トポロロジカル地図に基づいて移動体1の移動経路を計画してもよい。 The route calculation unit 123 may create a topological map obtained by dividing the environmental map TM as shown in FIG. 8 by Voronoi, and plan the movement route of the moving body 1 based on the topological map.
 具体的には、経路演算部123は、まず、マハラノビス距離にてオブジェクトObのいずれと最も近いのかによって、環境地図TMを複数の領域に分割(ボロノイ分割)する。すなわち、環境地図TMを複数の領域に分割するボロノイ分割線BBは、互いに対向するオブジェクトObの表面のクラスタの各々からマハラノビス距離にて等距離となるように設けられる。次に、経路演算部123は、ボロノイ分割線BBの上に複数のノードndを設け、ノードnd同士の接続関係をトポロジカル地図として表現する。 Specifically, the route calculation unit 123 first divides the environment map TM into a plurality of areas (Voronoi division) depending on which of the objects Ob is closest to the Mahalanobis distance. That is, the Voronoi division line BB that divides the environment map TM into a plurality of regions is provided so as to be equidistant from each of the clusters on the surface of the objects Ob facing each other at the Mahalanobis distance. Next, the route calculation unit 123 provides a plurality of nodes nd on the Voronoi partition line BB, and expresses the connection relationship between the nodes nd as a topological map.
 これによれば、経路演算部123は、環境地図TM上での移動体1の移動経路の計画をトポロジカル地図でのノードnd間の接続計画として演算することができる。このような場合、移動体1は、トポロジカル地図にて計画されたノードnd間の接続に基づいて、環境地図TMのボロノイ分割線BB上を移動することになる。したがって、第3の変形例に係る情報処理装置10は、点群データに含まれる点群のばらつきをより考慮した経路計画を行うことができるため、よりロバスト性が高い移動経路を計画することができる。 According to this, the route calculation unit 123 can calculate the plan of the movement route of the moving body 1 on the environment map TM as the connection plan between the nodes nd on the topological map. In such a case, the mobile body 1 moves on the Voronoi partition line BB of the environment map TM based on the connection between the nodes nd planned in the topological map. Therefore, since the information processing apparatus 10 according to the third modification can perform route planning in consideration of the variation of the point cloud included in the point cloud data, it is possible to plan a movement route with higher robustness. can.
 (第4の変形例)
 図9を参照して、第4の変形例に係る情報処理装置について説明する。図9は、第4の変形例に係る情報処理装置14の機能構成を示すブロック図である。
(Fourth modification)
The information processing apparatus according to the fourth modification will be described with reference to FIG. 9. FIG. 9 is a block diagram showing a functional configuration of the information processing apparatus 14 according to the fourth modification.
 図9に示すように、第4の変形例に係る情報処理装置14は、N個の第1センサ部20-1~第Nセンサ部20-Nを備える。なお、その他の構成については、図2を参照して説明した情報処理装置10と実質的に同様であるため、ここでの説明は省略する。 As shown in FIG. 9, the information processing apparatus 14 according to the fourth modification includes N first sensor units 20-1 to Nth sensor units 20-N. Since the other configurations are substantially the same as those of the information processing apparatus 10 described with reference to FIG. 2, the description thereof is omitted here.
 第1センサ部20-1~第Nセンサ部20-Nは、同種又は異種のセンサを含み、移動体1の周囲の環境のセンシング結果を点群データとして出力する。例えば、第1センサ部20-1~第Nセンサ部20-Nは、ステレオカメラ、超音波センサ、ToFセンサ、又はLiDARセンサなどの測距センサを含んでもよく、単眼カメラ、カラーカメラ、赤外線カメラ、又は偏光カメラなどの撮像装置を含んでもよい。 The first sensor unit 20-1 to the Nth sensor unit 20-N include sensors of the same type or different types, and output the sensing result of the environment around the moving body 1 as point cloud data. For example, the first sensor unit 20-1 to the Nth sensor unit 20-N may include a distance measuring sensor such as a stereo camera, an ultrasonic sensor, a ToF sensor, or a LiDAR sensor, and may include a monocular camera, a color camera, and an infrared camera. , Or an image pickup device such as a polarized camera may be included.
 複数の第1センサ部20-1~第Nセンサ部20-Nにて取得された点群データは、クラスタリング部111にてそれぞれ個別にクラスタリングされ、クラスタ抽出部112にてそれぞれ個別に各クラスタの位置及び形状の抽出が行われる。その後、複数の第1センサ部20-1~第Nセンサ部20-Nにて取得された点群データは、地図生成部113にて統合され、移動体1の周囲の環境地図の生成に用いられる。 The point cloud data acquired by the plurality of first sensor units 20-1 to Nth sensor unit 20-N are individually clustered by the clustering unit 111, and individually by the cluster extraction unit 112 of each cluster. The position and shape are extracted. After that, the point cloud data acquired by the plurality of first sensor units 20-1 to Nth sensor unit 20-N are integrated by the map generation unit 113 and used to generate the environment map around the moving body 1. Will be.
 情報処理装置14は、複数の第1センサ部20-1~第Nセンサ部20-Nの各々で取得される点群データのばらつきが異なる場合でも、点群の分散度合いをクラスタの楕円体の形状として環境地図に反映することができる。したがって、情報処理装置14は、異なるばらつきの点群データであっても同様の処理にて環境地図の生成に用いることが可能であり、該環境地図を用いて経路計画の作成を行うことが可能である。 The information processing apparatus 14 determines the degree of dispersion of the point cloud of the ellipsoid of the cluster even when the variation of the point cloud data acquired by each of the plurality of first sensor units 20-1 to Nth sensor unit 20-N is different. It can be reflected in the environmental map as a shape. Therefore, the information processing apparatus 14 can be used to generate an environmental map by the same processing even if the point cloud data has different variations, and it is possible to create a route plan using the environmental map. Is.
 (第5の変形例)
 図10を参照して、第5の変形例に係る情報処理装置について説明する。図10は、第5の変形例に係る情報処理装置15の機能構成を示すブロック図である。
(Fifth variant)
The information processing apparatus according to the fifth modification will be described with reference to FIG. 10. FIG. 10 is a block diagram showing a functional configuration of the information processing apparatus 15 according to the fifth modification.
 図10に示すように、第5の変形例に係る情報処理装置15は、クラスタリング部111及びクラスタ抽出部112に替えてばらつき推定部114を備え、最近傍クラスタ決定部121に替えて最近傍点決定部124を備える。なお、その他の構成については、図2を参照して説明した情報処理装置10と実質的に同様であるため、ここでの説明は省略する。 As shown in FIG. 10, the information processing apparatus 15 according to the fifth modification includes a variation estimation unit 114 in place of the clustering unit 111 and the cluster extraction unit 112, and determines the nearest neighbor point in place of the nearest neighbor cluster determination unit 121. A unit 124 is provided. Since the other configurations are substantially the same as those of the information processing apparatus 10 described with reference to FIG. 2, the description thereof is omitted here.
 第5の変形例に係る情報処理装置15は、点群のクラスタリングに替えて、他の方法を用いて点群のばらつきを推定する変形例である。 The information processing device 15 according to the fifth modification is a modification in which the variation of the point cloud is estimated by using another method instead of the clustering of the point cloud.
 例えば、センサ部20に含まれるセンサの種類によっては、センシングの原理等から測定結果のばらつきモデルを構築することができる場合がある。このような場合、ばらつき推定部114は、点群データを取得するセンサ部20のばらつきモデルに基づいて、点群データに含まれる各点のばらつきを推定してもよい。 For example, depending on the type of sensor included in the sensor unit 20, it may be possible to construct a variation model of measurement results from the principle of sensing or the like. In such a case, the variation estimation unit 114 may estimate the variation of each point included in the point cloud data based on the variation model of the sensor unit 20 that acquires the point cloud data.
 これによれば、センサ部20にて取得された点群データに含まれる点群の数が少なく、クラスタリングが困難となる場合でも適切なばらつきモデルを構築することで、同様に地図生成部113にて環境地図を構築することが可能となる。 According to this, even if the number of point clouds included in the point cloud data acquired by the sensor unit 20 is small and clustering becomes difficult, by constructing an appropriate variation model, the map generation unit 113 can be similarly used. It becomes possible to construct an environmental map.
 また、センサ部20に含まれるセンサの種類によっては、測定結果の信頼度を算出することができる場合がある。このような場合、ばらつき推定部114は、点群データを取得するセンサ部20から提供される測定結果の信頼度に基づいて、点群データに含まれる各点のばらつきを推定してもよい。 Further, depending on the type of sensor included in the sensor unit 20, it may be possible to calculate the reliability of the measurement result. In such a case, the variation estimation unit 114 may estimate the variation of each point included in the point cloud data based on the reliability of the measurement result provided by the sensor unit 20 that acquires the point cloud data.
 例えば、ステレオカメラでは、左右のカメラで撮像された物体が同一であることをスコア計算によって判断している。したがって、点群データを取得するセンサがステレオカメラである場合、左右のカメラで撮像された物体が同一であることを評価するスコアを測定結果の信頼度として用いることができる。また、例えば、ToFセンサでは、オブジェクトからの反射光の強度によって測定結果の確からしさを評価することができる。したがって、点群データを取得するセンサがToFセンサである場合、反射光の強度を測定結果の信頼度として用いることができる。 For example, in a stereo camera, it is determined by score calculation that the objects captured by the left and right cameras are the same. Therefore, when the sensor that acquires the point cloud data is a stereo camera, the score for evaluating that the objects captured by the left and right cameras are the same can be used as the reliability of the measurement result. Further, for example, in the ToF sensor, the certainty of the measurement result can be evaluated by the intensity of the reflected light from the object. Therefore, when the sensor that acquires the point cloud data is a ToF sensor, the intensity of the reflected light can be used as the reliability of the measurement result.
 これによれば、情報処理装置15は、センサ部20にて取得された点群データに含まれる点群の数が少なく、クラスタリングが困難となる場合でも、同様に地図生成部113にて環境地図を構築することが可能となる。また、情報処理装置15は、センサ部20によるセンシングの状況に基づいて点群データに含まれる各点のばらつきを推定することで、比較的確度の高いばらつき推定を行うことが可能である。 According to this, even if the number of point clouds included in the point cloud data acquired by the sensor unit 20 is small and clustering becomes difficult, the information processing apparatus 15 similarly uses the map generation unit 113 to map the environment. Can be constructed. Further, the information processing apparatus 15 can estimate the variation with relatively high accuracy by estimating the variation of each point included in the point cloud data based on the state of sensing by the sensor unit 20.
 したがって、第5の変形例に係る情報処理装置15では、地図生成部113は、図2を参照して説明した情報処理装置10と同様に、点群データに含まれる各点の座標及びばらつきに基づいて、環境地図を構築することができる。すなわち、地図生成部113は、点群データに含まれる各点をばらつきに応じた大きさの球体として表現することで、移動体1の周囲に存在するオブジェクトの表面を表現することができる。 Therefore, in the information processing apparatus 15 according to the fifth modification, the map generation unit 113 determines the coordinates and variations of each point included in the point group data, similarly to the information processing apparatus 10 described with reference to FIG. Based on this, an environmental map can be constructed. That is, the map generation unit 113 can express the surface of the object existing around the moving body 1 by expressing each point included in the point cloud data as a sphere having a size corresponding to the variation.
 このような場合、経路計画部120では、最近傍クラスタ決定部121にて参照点に対して環境地図上で最近傍となるクラスタを決定するのではなく、最近傍点決定部124にて参照点に対して環境地図上で最近傍となる点を決定することになる。よって、最近傍点決定部124は、最近傍クラスタ決定部121と同様に、マハラノビス距離に基づいて、参照点に対して環境地図上で最近傍となる点を決定することができる。 In such a case, in the route planning unit 120, the nearest neighbor cluster determination unit 121 does not determine the cluster that is the closest to the reference point on the environment map, but the nearest neighbor point determination unit 124 determines the reference point. On the other hand, the nearest point on the environmental map will be determined. Therefore, the nearest neighbor point determination unit 124 can determine the point closest to the reference point on the environmental map based on the Mahalanobis distance, similarly to the nearest neighbor cluster determination unit 121.
 したがって、第5の変形例に係る情報処理装置15は、センサ部20にて取得された点群データに含まれる点群の数が少ない場合でも、同様に地図生成部113にて環境地図を構築することが可能である。 Therefore, the information processing apparatus 15 according to the fifth modification builds an environmental map in the map generation unit 113 in the same manner even when the number of point clouds included in the point cloud data acquired by the sensor unit 20 is small. It is possible to do.
 (第6の変形例)
 図11を参照して、第6の変形例に係る情報処理装置について説明する。図11は、第6の変形例に係る情報処理装置16の機能構成を示すブロック図である。
(Sixth modification)
The information processing apparatus according to the sixth modification will be described with reference to FIG. FIG. 11 is a block diagram showing a functional configuration of the information processing apparatus 16 according to the sixth modification.
 図11に示すように、第6の変形例に係る情報処理装置16は、不確かさ抽出部150をさらに備える。なお、その他の構成については、図2を参照して説明した情報処理装置10と実質的に同様であるため、ここでの説明は省略する。 As shown in FIG. 11, the information processing apparatus 16 according to the sixth modification further includes an uncertainty extraction unit 150. Since the other configurations are substantially the same as those of the information processing apparatus 10 described with reference to FIG. 2, the description thereof is omitted here.
 不確かさ抽出部150は、自己位置推定部130にて推定した移動体1の自己位置の不確かさを抽出する。具体的には、不確かさ抽出部150は、移動体1の自己位置の不確かさを自己位置の座標の共分散として抽出してもよい。マハラノビス距離は、共分散を考慮した距離指標であるため、他の要素の不確かさ又はばらつきを共分散として容易に取り込むことが可能である。例えば、地図生成部113は、各クラスタに含まれる点群の座標の共分散に、移動体1の自己位置の座標の共分散をさらに加算することで、移動体1の自己位置の不確かさを環境地図に反映してもよい。 The uncertainty extraction unit 150 extracts the uncertainty of the self-position of the moving body 1 estimated by the self-position estimation unit 130. Specifically, the uncertainty extraction unit 150 may extract the uncertainty of the self-position of the moving body 1 as the covariance of the coordinates of the self-position. Since the Mahalanobis distance is a distance index considering the covariance, it is possible to easily incorporate the uncertainty or variation of other factors as the covariance. For example, the map generation unit 113 further adds the covariance of the coordinates of the self-position of the moving body 1 to the covariance of the coordinates of the point cloud included in each cluster to increase the uncertainty of the self-position of the moving body 1. It may be reflected in the environmental map.
 これによれば、第6の変形例に係る情報処理装置16は、移動体1の自己位置の不確かさを環境地図に反映することができるため、より安全な移動経路を計画することが可能である。 According to this, the information processing apparatus 16 according to the sixth modification can reflect the uncertainty of the self-position of the moving body 1 on the environmental map, so that it is possible to plan a safer moving route. be.
 <3.ハードウェア構成例>
 さらに、図12を参照して、本実施形態に係る情報処理装置10のハードウェア構成について説明する。図12は、本実施形態に係る情報処理装置10のハードウェア構成例を示すブロック図である。
<3. Hardware configuration example>
Further, with reference to FIG. 12, the hardware configuration of the information processing apparatus 10 according to the present embodiment will be described. FIG. 12 is a block diagram showing a hardware configuration example of the information processing apparatus 10 according to the present embodiment.
 本実施形態に係る情報処理装置10の機能は、ソフトウェアと、以下で説明するハードウェアとの協働によって実現される。例えば、上述した地図構築部110、110A、経路計画部120、120A、自己位置推定部130、データベース構築部140、及び不確かさ抽出部150の機能は、CPU901により実行されてもよい。 The function of the information processing apparatus 10 according to the present embodiment is realized by the cooperation between the software and the hardware described below. For example, the functions of the map construction unit 110, 110A, the route planning unit 120, 120A, the self-position estimation unit 130, the database construction unit 140, and the uncertainty extraction unit 150 described above may be executed by the CPU 901.
 図12に示すように、情報処理装置10は、CPU(Central Processing Unit)901、ROM(Read Only Memory)903、及びRAM(Random Access Memory)905を含む。 As shown in FIG. 12, the information processing device 10 includes a CPU (Central Processing Unit) 901, a ROM (Read Only Memory) 903, and a RAM (Random Access Memory) 905.
 また、情報処理装置10は、ホストバス907、ブリッジ909、外部バス911、インターフェース913、入力装置915、出力装置917、ストレージ装置919、ドライブ921、接続ポート923、及び通信装置925をさらに含んでもよい。さらに、情報処理装置10は、CPU901に替えて、又はCPU901と共に、DSP(Digital Signal Processor)、又はASIC(Application Specific Integrated Circuit)などの他の処理回路を有してもよい。 Further, the information processing device 10 may further include a host bus 907, a bridge 909, an external bus 911, an interface 913, an input device 915, an output device 917, a storage device 919, a drive 921, a connection port 923, and a communication device 925. .. Further, the information processing apparatus 10 may have another processing circuit such as a DSP (Digital Signal Processor) or an ASIC (Application Specific Integrated Circuit) in place of the CPU 901 or together with the CPU 901.
 CPU901は、演算処理装置又は制御装置として機能し、ROM903、RAM905、ストレージ装置919、又はリムーバブル記録媒体927に記録された各種プログラムに従って、情報処理装置10の動作全般を制御する。ROM903は、CPU901が使用するプログラム、及び演算パラメータなどを記憶する。RAM905は、CPU901の実行において使用するプログラム、及びその実行の際に使用するパラメータなどを一時的に記憶する。 The CPU 901 functions as an arithmetic processing device or a control device, and controls the overall operation of the information processing device 10 according to various programs recorded in the ROM 903, the RAM 905, the storage device 919, or the removable recording medium 927. The ROM 903 stores programs used by the CPU 901, calculation parameters, and the like. The RAM 905 temporarily stores a program used in the execution of the CPU 901, a parameter used in the execution, and the like.
 CPU901、ROM903、及びRAM905は、CPUバスなどの内部バスにて構成されるホストバス907により相互に接続される。さらに、ホストバス907は、ブリッジ909を介して、PCI(Peripheral Component Interconnect/Interface)バスなどの外部バス911に接続される。 The CPU 901, ROM 903, and RAM 905 are connected to each other by a host bus 907 composed of an internal bus such as a CPU bus. Further, the host bus 907 is connected to an external bus 911 such as a PCI (Peripheral Component Interconnect / Interface) bus via a bridge 909.
 入力装置915は、例えば、マウス、キーボード、タッチパネル、ボタン、スイッチ、又はレバーなどのユーザからの入力を受け付ける装置である。入力装置915は、ユーザの音声を検出するマイクロフォンなどであってもよい。また、入力装置915は、例えば、赤外線、又はその他の電波を利用したリモートコントロール装置であってもよく、情報処理装置10の操作に対応した外部接続機器929であってもよい。 The input device 915 is a device that receives input from a user such as a mouse, a keyboard, a touch panel, a button, a switch, or a lever. The input device 915 may be a microphone or the like that detects a user's voice. Further, the input device 915 may be, for example, a remote control device using infrared rays or other radio waves, or an externally connected device 929 corresponding to the operation of the information processing device 10.
 入力装置915は、ユーザが入力した情報に基づいて生成した入力信号をCPU901に出力する入力制御回路をさらに含む。ユーザは、入力装置915を操作することによって、情報処理装置10に対して各種データの入力、又は処理動作の指示を行うことができる。 The input device 915 further includes an input control circuit that outputs an input signal generated based on the information input by the user to the CPU 901. By operating the input device 915, the user can input various data to the information processing device 10 or instruct the processing operation.
 出力装置917は、情報処理装置10にて取得又は生成された情報をユーザに対して視覚的又は聴覚的に提示することが可能な装置である。出力装置917は、例えば、LCD(Liquid Crystal Display)、PDP(Plasma Display Panel)、OLED(Organic Light Emitting Diode)ディスプレイ、ホログラム、又はプロジェクタなどの表示装置であってもよい。また、出力装置917は、スピーカ又はヘッドホンなどの音出力装置であってもよく、プリンタ装置などの印刷装置であってもよい。出力装置917は、情報処理装置10の処理により得られた情報をテキスト若しくは画像などの映像、又は音声若しくは音響などの音として出力してもよい。 The output device 917 is a device capable of visually or audibly presenting the information acquired or generated by the information processing device 10 to the user. The output device 917 may be, for example, a display device such as an LCD (Liquid Crystal Display), a PDP (Plasma Display Panel), an OLED (Organic Light Emitting Display) display, a hologram, or a projector. Further, the output device 917 may be a sound output device such as a speaker or headphones, or may be a printing device such as a printer device. The output device 917 may output the information obtained by the processing of the information processing device 10 as a video such as a text or an image, or a sound such as voice or sound.
 ストレージ装置919は、情報処理装置10の記憶部の一例として構成されたデータ格納装置である。ストレージ装置919は、例えば、HDD(Hard Disk Drive)などの磁気記憶デバイス、半導体記憶デバイス、光記憶デバイス、又は光磁気記憶デバイスなどにより構成されてもよい。ストレージ装置919は、CPU901が実行するプログラム、各種データ、又は外部から取得した各種データなどを格納することができる。 The storage device 919 is a data storage device configured as an example of the storage unit of the information processing device 10. The storage device 919 may be configured by, for example, a magnetic storage device such as an HDD (Hard Disk Drive), a semiconductor storage device, an optical storage device, an optical magnetic storage device, or the like. The storage device 919 can store a program executed by the CPU 901, various data, various data acquired from the outside, and the like.
 ドライブ921は、磁気ディスク、光ディスク、光磁気ディスク、又は半導体メモリなどのリムーバブル記録媒体927の読み取り又は書き込み装置であり、情報処理装置10に内蔵又は外付けされる。例えば、ドライブ921は、装着されているリムーバブル記録媒体927に記録されている情報を読み出してRAM905に出力することができる。また、ドライブ921は、装着されているリムーバブル記録媒体927に記録を書き込むことができる。 The drive 921 is a read or write device for a removable recording medium 927 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory, and is built in or externally attached to the information processing device 10. For example, the drive 921 can read the information recorded in the attached removable recording medium 927 and output it to the RAM 905. Further, the drive 921 can write a record on the removable recording medium 927 mounted on the drive 921.
 接続ポート923は、外部接続機器929を情報処理装置10に直接接続するためのポートである。接続ポート923は、例えば、USB(Universal Serial Bus)ポート、IEEE1394ポート、又はSCSI(Small Computer System Interface)ポートなどであってもよい。また、接続ポート923は、RS-232Cポート、光オーディオ端子、又はHDMI(登録商標)(High-Definition Multimedia Interface)ポートなどであってもよい。接続ポート923は、外部接続機器929と接続されることで、情報処理装置10と外部接続機器929との間で各種データの送受信を行うことができる。 The connection port 923 is a port for directly connecting the external connection device 929 to the information processing device 10. The connection port 923 may be, for example, a USB (Universal Serial Bus) port, an IEEE1394 port, a SCSI (Small Computer System Interface) port, or the like. Further, the connection port 923 may be an RS-232C port, an optical audio terminal, an HDMI (registered trademark) (High-Definition Multidimedia Interface) port, or the like. By connecting the connection port 923 to the externally connected device 929, various data can be transmitted and received between the information processing device 10 and the externally connected device 929.
 通信装置925は、例えば、通信ネットワーク931に接続するための通信デバイスなどで構成された通信インターフェースである。通信装置925は、例えば、有線又は無線LAN(Local Area Network)、Bluetooth(登録商標)、又はWUSB(Wireless USB)用の通信カードなどであってもよい。また、通信装置925は、光通信用のルータ、ADSL(Asymmetric Digital Subscriber Line)用のルータ、又は各種通信用のモデムなどであってもよい。 The communication device 925 is, for example, a communication interface composed of a communication device for connecting to the communication network 931. The communication device 925 may be, for example, a communication card for a wired or wireless LAN (Local Area Network), Bluetooth (registered trademark), WUSB (Wireless USB), or the like. Further, the communication device 925 may be a router for optical communication, a router for ADSL (Asymmetric Digital Subscriber Line), a modem for various communications, or the like.
 通信装置925は、例えば、インターネット、又は他の通信機器との間で、TCP/IPなどの所定のプロトコルを用いて信号などを送受信することができる。通信装置925に接続される通信ネットワーク931は、有線又は無線によって接続されたネットワークであり、例えば、インターネット通信網、家庭内LAN、赤外線通信網、ラジオ波通信網、又は衛星通信網などであってもよい。 The communication device 925 can send and receive signals and the like to and from the Internet or other communication devices using a predetermined protocol such as TCP / IP. The communication network 931 connected to the communication device 925 is a network connected by wire or wirelessly, and is, for example, an Internet communication network, a home LAN, an infrared communication network, a radio wave communication network, a satellite communication network, or the like. May be good.
 なお、コンピュータに内蔵されるCPU901、ROM903、及びRAM905などのハードウェアに上記の情報処理装置10と同等の機能を発揮させるためのプログラムも作成可能である。また、該プログラムを記録したコンピュータに読み取り可能な記録媒体も提供可能である。 It is also possible to create a program for making hardware such as the CPU 901, ROM 903, and RAM 905 built in the computer exhibit the same functions as the above information processing device 10. It is also possible to provide a recording medium that can be read by a computer that records the program.
 以上、実施形態及び変形例を挙げて、本開示にかかる技術を説明した。ただし、本開示にかかる技術は、上記実施の形態等に限定されるわけではなく、種々の変形が可能である。例えば、本開示に係る技術は、三次元空間の環境地図における経路計画だけでなく、二次元平面の環境地図における経路計画にも適用することが可能である。 The techniques related to the present disclosure have been described above with reference to embodiments and modifications. However, the technique according to the present disclosure is not limited to the above-described embodiment and the like, and various modifications can be made. For example, the technique according to the present disclosure can be applied not only to a route plan in an environmental map of a three-dimensional space but also to a route plan in an environmental map of a two-dimensional plane.
 さらに、各実施形態で説明した構成および動作の全てが本開示の構成および動作として必須であるとは限らない。たとえば、各実施形態における構成要素のうち、本開示の最上位概念を示す独立請求項に記載されていない構成要素は、任意の構成要素として理解されるべきである。 Furthermore, not all of the configurations and operations described in each embodiment are essential as the configurations and operations of the present disclosure. For example, among the components in each embodiment, the components not described in the independent claims indicating the top-level concept of the present disclosure should be understood as arbitrary components.
 本明細書および添付の特許請求の範囲全体で使用される用語は、「限定的でない」用語と解釈されるべきである。例えば、「含む」又は「含まれる」という用語は、「含まれるとして記載された様態に限定されない」と解釈されるべきである。「有する」という用語は、「有するとして記載された様態に限定されない」と解釈されるべきである。 The terms used throughout this specification and the appended claims should be construed as "non-limiting" terms. For example, the term "contains" or "contains" should be construed as "not limited to the mode described as being included." The term "have" should be construed as "not limited to the mode described as having".
 本明細書で使用した用語には、単に説明の便宜のために用いており、構成及び動作を限定する目的で使用したわけではない用語が含まれる。たとえば、「右」、「左」、「上」、「下」などの用語は、参照している図面上での方向を示しているにすぎない。また、「内側」、「外側」という用語は、それぞれ、注目要素の中心に向かう方向、注目要素の中心から離れる方向を示しているにすぎない。これらに類似する用語や同様の趣旨の用語についても同様である。 The terms used herein include terms that are used solely for convenience of explanation and are not used for the purpose of limiting configuration and operation. For example, terms such as "right," "left," "top," and "bottom" only indicate the direction on the referenced drawing. Further, the terms "inside" and "outside" merely indicate the direction toward the center of the attention element and the direction away from the center of the attention element, respectively. The same applies to terms similar to these and terms having a similar purpose.
 なお、本開示にかかる技術は、以下のような構成を取ることも可能である。以下の構成を備える本開示にかかる技術によれば、点群データにて表現される環境地図上にて、点群の分散度合いを反映した距離に基づいて、環境地図上での移動体の移動経路が計画されるようになる。よって、本開示にかかる技術によれば、移動体の安全な経路計画をより高効率で作成させることが可能となる。本開示にかかる技術が奏する効果は、ここに記載された効果に必ずしも限定されるわけではなく、本開示中に記載されたいずれの効果であってもよい。
(1)
 点群データにて表現される環境地図上にて参照点を用いて移動経路を計画する経路計画部を備え、
 前記経路計画部は、前記点群データに含まれる点群の各々の位置及び分散度合いに基づいて前記参照点から最近傍となる点群を決定し、前記最近傍の点群の前記位置及び前記分散度合いに基づいて前記参照点と前記最近傍の点群との距離を演算し、前記距離に基づいて前記移動経路を計画する、情報処理装置。
(2)
 前記点群データは、センサにて取得された点群をさらにクラスタリングしたデータである、上記(1)に記載の情報処理装置。
(3)
 前記経路計画部は、クラスタリングにより生成されたクラスタの各々に含まれる前記点群の平均値及び共分散に基づいて前記参照点から最近傍となる前記クラスタを決定する、上記(2)に記載の情報処理装置。
(4)
 前記分散度合いは、前記点群データを取得したセンサの測定ばらつきのモデルに基づいて演算される、上記(1)に記載の情報処理装置。
(5)
 前記分散度合いは、前記点群データを取得したセンサから提供される前記点群データの信頼度に基づいて演算される、上記(1)に記載の情報処理装置。
(6)
 前記分散度合いは、計画された前記移動経路に基づいて移動する移動体の自己位置の不確かさにさらに基づいて演算される、上記(1)~(5)のいずれか一項に記載の情報処理装置。
(7)
 前記経路計画部にて演算される前記距離は、マハラノビス距離に基づく距離である、上記(1)~(6)のいずれか一項に記載の情報処理装置。
(8)
 前記経路計画部は、前記参照点と前記最近傍の点群との前記マハラノビス距離があらかじめ定義された閾値との比較条件を満たすように前記移動経路を計画する、上記(7)に記載の情報処理装置。
(9)
 前記経路計画部は、前記参照点と前記最近傍の点群との前記マハラノビス距離が最大化されるように前記移動経路を計画する、上記(8)に記載の情報処理装置。
(10)
 前記経路計画部は、前記移動経路における目的地までの距離、及び前記参照点と前記最近傍の点群との前記マハラノビス距離に基づくポテンシャルフィールドを用いて前記移動経路を計画する、上記(7)~(9)のいずれか一項に記載の情報処理装置。
(11)
 前記経路計画部は、前記マハラノビス距離に基づいて前記環境地図をボロノイ分割したトポロジカル地図を生成し、前記トポロジカル地図に基づいて前記移動経路を計画する、上記(7)~(9)のいずれか一項に記載の情報処理装置。
(12)
 前記点群データに含まれる前記点群の各々の相互関係を示す地図データベースを構築するデータベース構築部をさらに備え、
 前記経路計画部は、前記地図データベースを用いて前記最近傍の点群を決定する、上記(1)~(11)のいずれか一項に記載の情報処理装置。
(13)
 前記点群データは、2以上のセンサにてそれぞれ取得された点群データを含む、上記(1)~(12)のいずれか一項に記載の情報処理装置。
(14)
 前記2以上のセンサは、異種又は同種のセンサを含む、上記(13)に記載の情報処理装置。
(15)
 前記環境地図は、三次元空間の地図である、上記(1)~(14)のいずれか一項に記載の情報処理装置。
(16)
 演算処理装置によって、
 点群データで表現される環境地図上にて、前記点群データに含まれる点群の各々の位置及び分散度合いに基づいて参照点から最近傍となる点群を決定することと、
 前記最近傍の点群の前記位置及び前記分散度合いに基づいて前記最近傍の点群と前記参照点との距離を演算することと、
 前記距離に基づいて前記環境地図上での移動経路を計画することと
を含む、情報処理方法。
(17)
 コンピュータを、
 点群データで表現される環境地図上にて参照点を用いて移動経路を計画する経路計画部として機能させ、
 前記経路計画部に、前記点群データに含まれる点群の各々の位置及び分散度合いに基づいて前記参照点から最近傍となる点群を決定させ、前記最近傍の点群の前記位置及び前記分散度合いに基づいて前記最近傍の点群と前記参照点との距離を演算させ、前記距離に基づいて前記移動経路を計画させる、プログラム。
The technology according to the present disclosure may have the following configuration. According to the technique according to the present disclosure having the following configuration, the movement of a moving object on the environmental map based on the distance reflecting the degree of dispersion of the point cloud on the environmental map represented by the point cloud data. The route will be planned. Therefore, according to the technique according to the present disclosure, it is possible to create a safe route plan for a moving object with higher efficiency. The effects exerted by the techniques according to the present disclosure are not necessarily limited to the effects described herein, and may be any of the effects described in the present disclosure.
(1)
It is equipped with a route planning unit that plans a movement route using reference points on an environmental map represented by point cloud data.
The route planning unit determines a point cloud closest to the reference point based on the position and degree of dispersion of each point cloud included in the point cloud data, and the position of the nearest point cloud and the said An information processing device that calculates the distance between the reference point and the nearest point cloud based on the degree of dispersion, and plans the movement path based on the distance.
(2)
The information processing apparatus according to (1) above, wherein the point cloud data is data obtained by further clustering the point clouds acquired by the sensor.
(3)
The above (2), wherein the route planning unit determines the cluster closest to the reference point based on the average value and covariance of the point cloud included in each of the clusters generated by the clustering. Information processing device.
(4)
The information processing apparatus according to (1) above, wherein the degree of dispersion is calculated based on a model of measurement variation of a sensor that has acquired the point cloud data.
(5)
The information processing apparatus according to (1) above, wherein the degree of dispersion is calculated based on the reliability of the point cloud data provided by the sensor that acquired the point cloud data.
(6)
The information processing according to any one of (1) to (5) above, wherein the degree of dispersion is further calculated based on the uncertainty of the self-position of the moving body moving based on the planned movement path. Device.
(7)
The information processing apparatus according to any one of (1) to (6) above, wherein the distance calculated by the route planning unit is a distance based on the Mahalanobis distance.
(8)
The information according to (7) above, wherein the route planning unit plans the movement route so that the Mahalanobis distance between the reference point and the nearest point cloud satisfies a comparison condition with a predetermined threshold value. Processing equipment.
(9)
The information processing apparatus according to (8) above, wherein the route planning unit plans the movement route so that the Mahalanobis distance between the reference point and the nearest point cloud is maximized.
(10)
The route planning unit plans the travel route using a potential field based on the distance to the destination in the travel route and the Mahalanobis distance between the reference point and the nearest point cloud (7). The information processing apparatus according to any one of (9).
(11)
The route planning unit generates a topological map obtained by dividing the environmental map into Voronoi diagrams based on the Mahalanobis distance, and plans the movement route based on the topological map, any one of the above (7) to (9). The information processing device described in the section.
(12)
Further provided with a database construction unit for constructing a map database showing the interrelationship of each of the point clouds included in the point cloud data.
The information processing apparatus according to any one of (1) to (11) above, wherein the route planning unit determines a point cloud in the nearest neighbor using the map database.
(13)
The information processing apparatus according to any one of (1) to (12) above, wherein the point cloud data includes point cloud data acquired by two or more sensors.
(14)
The information processing apparatus according to (13) above, wherein the two or more sensors include sensors of different types or the same type.
(15)
The information processing apparatus according to any one of (1) to (14) above, wherein the environment map is a map of a three-dimensional space.
(16)
Depending on the arithmetic processing unit
On the environment map represented by the point cloud data, the point cloud closest to the reference point is determined based on the position and the degree of dispersion of each point cloud included in the point cloud data.
To calculate the distance between the nearest point cloud and the reference point based on the position of the nearest point cloud and the degree of dispersion.
An information processing method comprising planning a travel route on the environmental map based on the distance.
(17)
Computer,
It functions as a route planning unit that plans a movement route using reference points on an environmental map represented by point cloud data.
The route planning unit is made to determine the point cloud closest to the reference point based on the position and the degree of dispersion of each point cloud included in the point cloud data, and the position of the nearest point cloud and the said A program that calculates the distance between the nearest point cloud and the reference point based on the degree of dispersion, and plans the movement route based on the distance.
 本出願は、日本国特許庁において2020年5月20日に出願された日本特許出願番号2020-088487号を基礎として優先権を主張するものであり、この出願の全ての内容を参照によって本出願に援用する。 This application claims priority on the basis of Japanese Patent Application No. 2020-08487 filed on May 20, 2020 at the Japan Patent Office, and this application is made by reference to all the contents of this application. Invite to.
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。 Those skilled in the art may conceive various modifications, combinations, sub-combinations, and changes, depending on design requirements and other factors, which are included in the claims and their equivalents. It is understood that it is a person skilled in the art.

Claims (17)

  1.  点群データにて表現される環境地図上にて参照点を用いて移動経路を計画する経路計画部を備え、
     前記経路計画部は、前記点群データに含まれる点群の各々の位置及び分散度合いに基づいて前記参照点から最近傍となる点群を決定し、前記最近傍の点群の前記位置及び前記分散度合いに基づいて前記参照点と前記最近傍の点群との距離を演算し、前記距離に基づいて前記移動経路を計画する、情報処理装置。
    It is equipped with a route planning unit that plans a movement route using reference points on an environmental map represented by point cloud data.
    The route planning unit determines a point cloud closest to the reference point based on the position and degree of dispersion of each point cloud included in the point cloud data, and the position of the nearest point cloud and the said An information processing device that calculates the distance between the reference point and the nearest point cloud based on the degree of dispersion, and plans the movement path based on the distance.
  2.  前記点群データは、センサにて取得された点群をさらにクラスタリングしたデータである、請求項1に記載の情報処理装置。 The information processing device according to claim 1, wherein the point cloud data is data obtained by further clustering the point clouds acquired by the sensor.
  3.  前記経路計画部は、クラスタリングにより生成されたクラスタの各々に含まれる前記点群の平均値及び共分散に基づいて前記参照点から最近傍となる前記クラスタを決定する、請求項2に記載の情報処理装置。 The information according to claim 2, wherein the route planning unit determines the cluster closest to the reference point based on the average value and covariance of the point cloud included in each of the clusters generated by the clustering. Processing equipment.
  4.  前記分散度合いは、前記点群データを取得したセンサの測定ばらつきのモデルに基づいて演算される、請求項1に記載の情報処理装置。 The information processing device according to claim 1, wherein the degree of dispersion is calculated based on a model of measurement variation of a sensor that has acquired the point cloud data.
  5.  前記分散度合いは、前記点群データを取得したセンサから提供される前記点群データの信頼度に基づいて演算される、請求項1に記載の情報処理装置。 The information processing apparatus according to claim 1, wherein the degree of dispersion is calculated based on the reliability of the point cloud data provided by the sensor that acquired the point cloud data.
  6.  前記分散度合いは、計画された前記移動経路に基づいて移動する移動体の自己位置の不確かさにさらに基づいて演算される、請求項1に記載の情報処理装置。 The information processing apparatus according to claim 1, wherein the degree of dispersion is further calculated based on the uncertainty of the self-position of the moving body that moves based on the planned movement path.
  7.  前記経路計画部にて演算される前記距離は、マハラノビス距離に基づく距離である、請求項1に記載の情報処理装置。 The information processing device according to claim 1, wherein the distance calculated by the route planning unit is a distance based on the Mahalanobis distance.
  8.  前記経路計画部は、前記参照点と前記最近傍の点群との前記マハラノビス距離があらかじめ定義された閾値との比較条件を満たすように前記移動経路を計画する、請求項7に記載の情報処理装置。 The information processing according to claim 7, wherein the route planning unit plans the movement route so that the Mahalanobis distance between the reference point and the nearest point cloud satisfies a comparison condition with a predetermined threshold value. Device.
  9.  前記経路計画部は、前記参照点と前記最近傍の点群との前記マハラノビス距離が最大化されるように前記移動経路を計画する、請求項8に記載の情報処理装置。 The information processing apparatus according to claim 8, wherein the route planning unit plans the movement route so that the Mahalanobis distance between the reference point and the nearest point cloud is maximized.
  10.  前記経路計画部は、前記移動経路における目的地までの距離、及び前記参照点と前記最近傍の点群との前記マハラノビス距離に基づくポテンシャルフィールドを用いて前記移動経路を計画する、請求項7に記載の情報処理装置。 The route planning unit plans the travel route using a potential field based on the distance to the destination in the travel route and the Mahalanobis distance between the reference point and the nearest point cloud, according to claim 7. The information processing device described.
  11.  前記経路計画部は、前記マハラノビス距離に基づいて前記環境地図をボロノイ分割したトポロジカル地図を生成し、前記トポロジカル地図に基づいて前記移動経路を計画する、請求項7に記載の情報処理装置。 The information processing device according to claim 7, wherein the route planning unit generates a topological map obtained by dividing the environmental map into Voronoi diagrams based on the Mahalanobis distance, and plans the movement route based on the topological map.
  12.  前記点群データに含まれる前記点群の各々の相互関係を示す地図データベースを構築するデータベース構築部をさらに備え、
     前記経路計画部は、前記地図データベースを用いて前記最近傍の点群を決定する、請求項1に記載の情報処理装置。
    Further provided with a database construction unit for constructing a map database showing the interrelationship of each of the point clouds included in the point cloud data.
    The information processing device according to claim 1, wherein the route planning unit determines the nearest point cloud using the map database.
  13.  前記点群データは、2以上のセンサにてそれぞれ取得された点群データを含む、請求項1に記載の情報処理装置。 The information processing device according to claim 1, wherein the point cloud data includes point cloud data acquired by two or more sensors.
  14.  前記2以上のセンサは、異種又は同種のセンサを含む、請求項13に記載の情報処理装置。 The information processing device according to claim 13, wherein the two or more sensors include sensors of different types or the same type.
  15.  前記環境地図は、三次元空間の地図である、請求項1に記載の情報処理装置。 The information processing device according to claim 1, wherein the environmental map is a map of a three-dimensional space.
  16.  演算処理装置によって、
     点群データで表現される環境地図上にて、前記点群データに含まれる点群の各々の位置及び分散度合いに基づいて参照点から最近傍となる点群を決定することと、
     前記最近傍の点群の前記位置及び前記分散度合いに基づいて前記最近傍の点群と前記参照点との距離を演算することと、
     前記距離に基づいて前記環境地図上での移動経路を計画することと
    を含む、情報処理方法。
    Depending on the arithmetic processing unit
    On the environment map represented by the point cloud data, the point cloud closest to the reference point is determined based on the position and the degree of dispersion of each point cloud included in the point cloud data.
    To calculate the distance between the nearest point cloud and the reference point based on the position of the nearest point cloud and the degree of dispersion.
    An information processing method comprising planning a travel route on the environmental map based on the distance.
  17.  コンピュータを、
     点群データで表現される環境地図上にて参照点を用いて移動経路を計画する経路計画部として機能させ、
     前記経路計画部に、前記点群データに含まれる点群の各々の位置及び分散度合いに基づいて前記参照点から最近傍となる点群を決定させ、前記最近傍の点群の前記位置及び前記分散度合いに基づいて前記最近傍の点群と前記参照点との距離を演算させ、前記距離に基づいて前記移動経路を計画させる、プログラム。
    Computer,
    It functions as a route planning unit that plans a movement route using reference points on an environmental map represented by point cloud data.
    The route planning unit is made to determine the point cloud closest to the reference point based on the position and the degree of dispersion of each point cloud included in the point cloud data, and the position of the nearest point cloud and the said A program that calculates the distance between the nearest point cloud and the reference point based on the degree of dispersion, and plans the movement route based on the distance.
PCT/JP2021/013352 2020-05-20 2021-03-29 Information processing device, information processing method, and program WO2021235100A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-088487 2020-05-20
JP2020088487 2020-05-20

Publications (1)

Publication Number Publication Date
WO2021235100A1 true WO2021235100A1 (en) 2021-11-25

Family

ID=78708499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/013352 WO2021235100A1 (en) 2020-05-20 2021-03-29 Information processing device, information processing method, and program

Country Status (1)

Country Link
WO (1) WO2021235100A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115793652A (en) * 2022-11-30 2023-03-14 上海木蚁机器人科技有限公司 Driving control method and device and electronic equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0559372U (en) * 1992-01-23 1993-08-06 三菱電機株式会社 Target identification device
JPH0764634A (en) * 1993-08-27 1995-03-10 Nissan Motor Co Ltd Path deciding method for unmanned mobile investigating machine
US20110211731A1 (en) * 2006-07-05 2011-09-01 Samsung Electronics Co., Ltd. Apparatus, method, and medium for dividing regions by using feature points and mobile robot using the same
JP2016057660A (en) * 2014-09-05 2016-04-21 株式会社Ihi Moving body route planning method and moving body route planning device
JP2016149090A (en) * 2015-02-13 2016-08-18 株式会社リコー Autonomous mobile device, autonomous mobile system, autonomous mobile method and program
US20200103915A1 (en) * 2018-09-28 2020-04-02 X Development Llc Determining Changes in Marker Setups for Robot Localization

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0559372U (en) * 1992-01-23 1993-08-06 三菱電機株式会社 Target identification device
JPH0764634A (en) * 1993-08-27 1995-03-10 Nissan Motor Co Ltd Path deciding method for unmanned mobile investigating machine
US20110211731A1 (en) * 2006-07-05 2011-09-01 Samsung Electronics Co., Ltd. Apparatus, method, and medium for dividing regions by using feature points and mobile robot using the same
JP2016057660A (en) * 2014-09-05 2016-04-21 株式会社Ihi Moving body route planning method and moving body route planning device
JP2016149090A (en) * 2015-02-13 2016-08-18 株式会社リコー Autonomous mobile device, autonomous mobile system, autonomous mobile method and program
US20200103915A1 (en) * 2018-09-28 2020-04-02 X Development Llc Determining Changes in Marker Setups for Robot Localization

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAZAKI, YUICHI: "Mobile Robot Navigation using Topological Map Representations", JOURNAL OF THE ROBOTICS SOCIETY OF JAPAN, vol. 33, no. 10, 2015, pages 773 - 778, XP055875073, ISSN: 0289-1824 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115793652A (en) * 2022-11-30 2023-03-14 上海木蚁机器人科技有限公司 Driving control method and device and electronic equipment

Similar Documents

Publication Publication Date Title
US11592845B2 (en) Image space motion planning of an autonomous vehicle
JP7356567B2 (en) Mobile robot and its control method
CN107206592B (en) Special robot motion planning hardware and manufacturing and using method thereof
KR101203897B1 (en) Apparatus and method of cell-based path planning for a mobile body
KR102068216B1 (en) Interfacing with a mobile telepresence robot
KR102577785B1 (en) Cleaning robot and Method of performing task thereof
JP7356566B2 (en) Mobile robot and its control method
CN111260751B (en) Mapping method based on multi-sensor mobile robot
JP2011048706A (en) Device, method, and program for automatically generating map by sensor fusion and moving mobile body by using the map automatically generated
JP2021531524A (en) User pose estimation method and device using 3D virtual space model
WO2021235100A1 (en) Information processing device, information processing method, and program
JP2019504418A (en) Method and system for determining the position of a moving object
KR20230134109A (en) Cleaning robot and Method of performing task thereof
JP7351609B2 (en) Route searching device and program
Chikhalikar et al. An object-oriented navigation strategy for service robots leveraging semantic information
KR102504719B1 (en) Method for constructing input data for deep neural network (DNN) based on Light Detection and Ranging (LiDAR) and Radio Azimuth Direction and Ranging (RADAR) signal
WO2022009602A1 (en) Information processing device, information processing method, and program
Norouzi et al. Object based navigation of mobile robot with obstacle avoidance using fuzzy controller
WO2021176997A1 (en) Information processing device, information processing method, and program
US20230347923A1 (en) Location-based autonomous navigation using a virtual world system
Santoro Design and implementation of a Sensory System for an Autonomous Mobile Robot in a Connected Industrial Environment
Makhal et al. Path planning through maze routing for a mobile robot with nonholonomic constraints
Kangutkar Obstacle avoidance and path planning for smart indoor agents
Lladrovci Indoor navigation with motion tracking and depth perception sensors
Cai et al. Intelligent Systems in Motion: A Comprehensive Review on Multi-Sensor Fusion and Information Processing From Sensing to Navigation in Path Planning

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21808480

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21808480

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP