WO2021235008A1 - Method and apparatus for melting aluminum cutting chips - Google Patents

Method and apparatus for melting aluminum cutting chips Download PDF

Info

Publication number
WO2021235008A1
WO2021235008A1 PCT/JP2021/003027 JP2021003027W WO2021235008A1 WO 2021235008 A1 WO2021235008 A1 WO 2021235008A1 JP 2021003027 W JP2021003027 W JP 2021003027W WO 2021235008 A1 WO2021235008 A1 WO 2021235008A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
chips
molten metal
dry
melting
Prior art date
Application number
PCT/JP2021/003027
Other languages
French (fr)
Japanese (ja)
Inventor
洋二 青木
雅之 藤川
晶 中林
英之 川田
慎 山口
孝明 美濃
Original Assignee
株式会社広築
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社広築 filed Critical 株式会社広築
Publication of WO2021235008A1 publication Critical patent/WO2021235008A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/06Obtaining aluminium refining
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/08Details peculiar to crucible or pot furnaces
    • F27B14/0806Charging or discharging devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/08Details peculiar to crucible or pot furnaces
    • F27B14/14Arrangements of heating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D13/00Apparatus for preheating charges; Arrangements for preheating charges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/08Screw feeders; Screw dischargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/10Charging directly from hoppers or shoots
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining, or circulating atmospheres in heating chambers
    • F27D7/06Forming or maintaining special atmospheres or vacuum within heating chambers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to an aluminum chip melting method and a melting device, and more specifically, to obtain an aluminum molten metal by melting chips which are cutting chips of an aluminum metal or an alloy, the present invention produces an aluminum molten metal having good quality and a high yield. It also relates to a melting method and a melting device for aluminum chips that can achieve safe and stable operation while paying attention to environmental conservation.
  • Aluminum metal requires a large amount of electric power to manufacture, so its manufacturing cost is high. Therefore, as long as the scraps and scraps generated when processing aluminum products take the form of aluminum metal, their value is great considering the manufacturing cost. Therefore, aluminum scraps, cans, etc. are also recycled and melted to be used as raw materials for aluminum products. Cutting chips of aluminum-based metal, so-called aluminum chips, are treated in the same manner.
  • a water-containing cutting oil having a water-soluble cutting oil diluted with water having a content of 10% and a water content of about 90% is often used.
  • aluminum chips discharged from a cutting machine are accompanied by cutting oil of 10 to 30 wt% by weight. Aluminum chips in this state are called wet chips. Since the oil content of water-soluble cutting oil usually contains many oxygen atoms in the form of hydroxyl groups (OH) and carbonyl groups (COOH) to ensure compatibility with water, wet chips are used.
  • oxygen atoms in the cutting oil oxidize the molten aluminum to generate aluminum oxide, and scum mixed with the molten aluminum is generated.
  • the end of the aluminum chip is in the state of a thin blade, and when it is moved, the end is destroyed to generate fine metallic aluminum powder. Since cutting oil is adsorbed on the chips of ordinary aluminum chips, they do not scatter in the atmosphere. However, when the wet chips are dried, the fine metallic aluminum powder is released from the cutting oil and scattered in the atmosphere, which causes a fire or a dust explosion. In addition, when handling aluminum chips in a dry state after being dried, metal aluminum powder is generated and scattered in the atmosphere, which causes a fire or a dust explosion. Therefore, if dry aluminum chips are present, they should be handled with great care, such as by completely burning the fine metallic aluminum powder in the surrounding atmosphere to convert it into harmless aluminum oxide and then dissipating it into the atmosphere. You have to be careful. In the following, wet aluminum chips are referred to as dry chips, and aluminum chips that have been dry preheated to remove the chips and cutting oil are referred to as dry chips.
  • the chips are redissolved and recycled as aluminum.
  • the chips are calcined in a rotary kiln so that aluminum is not oxidized to volatilize and remove oil and water, and then the dry chips are made into briquettes and charged into an aluminum melting furnace. There is one that obtains molten aluminum.
  • This equipment is good in that the chips are reused, but the equipment is large-scale because it requires a wide variety of equipment, and dust collectors and ducts made of metallic aluminum powder generated from the rotary kiln during drying and calcination. There was a problem such as the danger of ignition and explosion.
  • the chips are pretreated to remove water in the cutting oil to leave only the oil content, and then melted in an aluminum melting furnace to obtain an aluminum molten metal, and the oil content is used.
  • a melting device and a melting method for the chips which are gasified in a melting furnace, attracted to a heating burner of the melting furnace and burned, and used as a substitute for fuel to save energy and prevent air pollution, are disclosed.
  • a heat pretreatment for drying the water content of the chips and decomposing and evaporating the oil content of the cutting oil was performed, and then the pretreatment was performed.
  • the essence of this chip is to dissolve aluminum chips (hereinafter referred to as dry chips) in a molten aluminum (hereinafter referred to as holding molten metal) to obtain a high-yield, high-quality aluminum molten metal.
  • molten aluminum hereinafter referred to as holding molten metal
  • the prior art is a region in which the dry chips are blocked from the atmosphere to prevent the dry chips provided in the holding molten metal from floating on the surface of the holding molten metal (hereinafter referred to as the floating prevention region). It is pushed in and melted.
  • the floating prevention region is provided with a region having a ceiling (Jinkasa ceiling) surrounding a downwardly inclined surface, and the dry cutting region is provided. The powder is pushed into the floating prevention region to prevent the dry chips from short-circuiting and floating, and a circulating molten metal flow is formed at a place corresponding to the apex of the floating prevention region, and the dry chips are formed.
  • a mechanical stirrer with blades was provided to destroy the oxide film covering the surface of the dry chips and disperse the molten aluminum inside the dry chips (hereinafter referred to as molten chips) into the holding molten metal to promote dissolution. It is a thing.
  • the prior art is that the dry chips are pushed into the floating prevention region and heated and melted in the holding molten metal, and the dry chips pushed into the floating prevention region float on the surface of the holding molten metal. It moves on the circulating molten metal flow generated by the stirring blade installed at the apex of the floating prevention region, and at that time, it destroys the oxide film covering the surface of the dry chips. Although it was an excellent technology in that respect, it had various drawbacks as shown below, and it was not possible to realize smooth and stable operation.
  • the first technical problem is that the dry chips pushed into the holding molten metal are deficient in the idea that they are heated and melted by the heat held by the holding molten metal. Since each of the dry chips moves freely in the holding molten metal according to the circulating molten metal flow, it has not been possible to regulate the individual residence time in the holding molten metal. Therefore, some of the dry chips were separated from the chip floating prevention region and floated on the surface of the holding molten metal in an undissolved state due to insufficient heat exchange. Not only did it reduce the melting yield, but it also generated the extra work of cleaning the surface of the retained molten metal.
  • the second technical problem was that in the pretreatment, it was considered that the dry chip temperature after the treatment should be higher.
  • the reason is that it is difficult to control the contact time between the dry chips pushed into the holding molten metal and the holding molten metal, and due to the anxiety, a higher dry chip temperature may be advantageous for melting. It was from an idea.
  • the higher the temperature of the dry chips after the pretreatment the thicker the oxide film formed on the surface of the dry chips, and the more difficult the oxide film is to be destroyed, so that the shape of the dry chips is maintained. Some of them surfaced on the surface of the retained molten metal. This not only reduced the melting yield, but also caused extra work of cleaning the surface of the holding molten metal.
  • the third technical problem is that it was difficult to form this with ceramics due to the shape of the chip floating prevention region, and since iron-based materials were used, iron was eroded by the holding molten metal and could not be maintained. The problem occurred.
  • the present invention solves these problems, and melts the pretreated dry chips in an aluminum melting furnace to obtain a high-yield, high-quality molten aluminum, and operates stably for a long time. It is an object of the present invention to provide a possible dissolution method and dissolution equipment for the chips.
  • the aluminum chip melting method according to claim 1 of the present invention is a method of dissolving the chips to which water-containing cutting oil is attached to obtain an aluminum molten metal.
  • the pretreated dry chips are partially immersed in the holding hot water in the depth direction with the lower end open, and are not eroded by the holding hot water.
  • the dry chips are transferred into a rotating cylindrical body made of ceramics, and the dry chips corresponding to the amount of melting at one time are charged into the holding molten metal by the push rod of the pushing device, and the dry chips are held.
  • the chip melt After heating to melt the aluminum inside the dry chips (hereinafter, the melted aluminum portion of the chips is referred to as the chip melt), the chip melt is poured from the tip of the rotating cylinder.
  • the oxide film covering the dry chips is finely destroyed, and the finely divided oxide film and the chip melt are discharged into the holding molten metal to ensure the dissolution of the dry chips. It is characterized by homogenizing the chip molten metal and the holding molten metal.
  • the prior art could not control the time of the dry chips in the holding molten metal in the chip floating prevention region in the holding molten metal, but in the present technology, as the chip floating prevention region.
  • the cylindrical tube manufactured of ceramics and rotating along the central axis of the cylinder, the lower part of the cylindrical tube is open and immersed in the holding molten metal.
  • An input port for the dry chips was provided on the upper part of the cylindrical tube, and the dry chips were modified so as to float and pile up on the surface of the molten metal inside the cylindrical tube.
  • the dry chips inside the cylindrical tube can be pushed into the molten metal by a required amount with a push rod, and can be held as it is for the time required for melting.
  • the dry chips cannot move freely in the holding molten metal, and can be restrained in the holding molten metal only for the time required for heating and melting by the holding molten metal.
  • This made it possible to completely dissolve 100% of the dry chips when they were discharged from the lower part of the cylindrical tube into the holding molten metal.
  • the holding molten metal temperature is made uniform, the holding molten metal component is made uniform, and the completely melted dry chips are held from the lower end of the cylindrical tube. It was possible to finely destroy the oxide film that covered the dry chips when they were discharged inside, and to discharge the molten metal inside.
  • the stirring power of the holding molten metal can be strengthened by making unevenness on the outer side wall of the region immersed in the holding molten metal of the cylindrical tube or by attaching a protrusion.
  • the temperature of the retained molten metal is made uniform, the components of the retained molten metal are made uniform, and the heat conduction from the retained molten metal to the inside of the cylindrical tube is promoted.
  • the oxide film covering the dry chips is destroyed, and what is dispersed in the retained molten metal aggregates and coalesces to increase the size and become oxide-based defects. It was possible to prevent it and obtain an extremely high quality molten aluminum.
  • a serrated protrusion is provided at the outlet of the cylindrical tube, or a rod-shaped ceramic that rotates integrally with the cylindrical tube is provided in the vicinity of the outlet of the cylindrical tube in the radial direction.
  • the oxide film covering the dry chips was destroyed, and it became possible to uniformly disperse the oxide as an extremely fine oxide in the holding molten metal.
  • extremely fine oxides are not recognized as oxide-based defects in the molten metal, so that the quality of the obtained molten metal is excellent.
  • the thermal weight of the chips accompanied by the water-soluble cutting oil-differential thermal analysis (TG-DTA analysis). ) was performed. As a result, it was found that the water was removed by heating to around 135 ° C., and the oil content was oxidized and generated heat in the range of 200 to 400 ° C. (see FIG. 7). Further, according to the thermal weight-differential thermal analysis (TG-DTA analysis) when the chips were heated in the atmosphere, the chips rapidly generated heat at around 580 ° C and exhibited an increase in weight.
  • TG-DTA analysis thermal weight-differential thermal analysis
  • the pretreatment conditions for the chips accompanied by the hydrous cutting oil were set. Further, after heating the chips accompanied by the hydrous cutting oil to 400 ° C. to 500 ° C., 550 ° C. and 570 ° C. in the atmosphere, the color tone of the surface of the chips was observed. It had a metallic luster at 500 ° C. or lower, but became gray at 550 ° C. and brown at 570 ° C. This indicates that the oxide film on the surface of the chips becomes thicker as the temperature rises.
  • the chip temperature after the treatment in the pretreatment complete removal of water is an essential condition in the pretreatment step, and complete decomposition of cutting oil is a preferable condition.
  • the following pretreatment conditions are set in order to prevent the formation of the dry chips having a thick oxide film. From the viewpoint of complete decomposition of cutting oil, 450 ° C or higher is preferable.
  • the chip temperature after the treatment exceeds 550 ° C., the surface of the chips is covered with a thick oxide film.
  • the chip temperature after the pretreatment is in the range of 400 ° C to 570 ° C, preferably in the range of 450 ° C to 550 ° C, and most preferably in the range of 490 ° C ⁇ 30 ° C. It was found from the dissolution experiments described below that it is optimal in terms of both reduction. That is, according to a melting experiment on an actual scale of 100 kg / hr, when the chip temperature was lower than 450 ° C., it became necessary to suspend and wait for the pushing operation in order to increase the pushing resistance of the pushing device. .. Further, when the temperature was 550 ° C.
  • the chips floated on the surface of the holding molten metal while partially maintaining the shape of the chips, and it was necessary to clean the surface of the molten metal.
  • the chips were controlled to 490 ° C., the pressing resistance of the pressing device did not increase, and there were no chips floating on the surface of the holding molten metal. Further, during the operation, the chip temperature fluctuated between 470 ° C and 510 ° C, but the melting operation was stable and no problem occurred during the operation for 6 hours.
  • the pretreatment apparatus by controlling the temperature of the gas for pretreatment to 550 ° C. or lower, the pretreatment apparatus can be used at all locations in the pretreatment apparatus. The possibility of exceeding the melting point of chips has been eliminated. As a result, the clogging accident in the pretreatment device was completely eliminated, and long-term operation was possible.
  • the ceramic tube can be used as a material by forming the chip floating prevention region into a cylindrical tube shape. As a result, the material forming the chip floating prevention region was not melted by the holding molten metal, and stable operation was realized.
  • the pushing rod when the dry chips are pushed into the holding molten metal, the pushing rod is operated so that the dry chips are always interposed between the holding molten metal in the rotating cylinder and the tip of the pushing rod.
  • the cylindrical tube rotates while holding the dry chips inside, and serves to supply the heat held by the external holding molten metal to the dry chips inside. Therefore, it is preferable that the material forming the cylindrical tube has high thermal conductivity. However, even when a material having low thermal conductivity is used, the inside and outside of the cylindrical tube can be provided by providing a plurality of through holes having a size that the dry chips cannot pass through on the side wall of the holding molten metal immersion region of the cylindrical tube. It became possible to promote heat conduction by directly contacting with the holding molten metal of No. 1 and realized smooth melting of the dry chips.
  • the holding molten metal temperature is maintained above the melting point of the chips in principle, it can be transmitted to the inside of the cylindrical tube over time to dissolve the dry chips inside.
  • the higher the temperature of the molten metal the shorter the time required to transfer the heat required for melting.
  • the retained molten metal is oxidized when the temperature of the retained molten metal is high. According to the experiment, when the temperature of the retained molten metal exceeds 900 ° C., the oxide film on the surface of the molten metal continues to grow and forms a huge alumina deposit generally called "ghost". Therefore, it is generally preferable to handle the molten aluminum at 800 ° C. or lower.
  • the cylindrical tube rotates stably, so it is important that the thickness of the molten metal surface oxide film is thin and does not hinder the rotation of the cylindrical tube.
  • An optimum holding molten metal temperature satisfying both of these conditions was found in the range of 680 ° C to 750 ° C, but most preferably in the range of 700 ° C to 720 ° C.
  • the feature of the present invention is that the heat held by the holding molten metal heats and melts the chips pushed into the holding molten metal, and further destroys the oxide film covering the surface of the melted chips to make them finer and hold them.
  • the time for heating the chips pushed into the holding molten metal can be controlled as much as necessary. What makes this possible is the use of a rotating cylindrical tube made of ceramics as a chip floating prevention region. Therefore, as a requirement for realizing the present invention, firstly, it is necessary to heat the holding molten metal.
  • the pretreatment for drying and preheating wet chips is essential.
  • the heat source at the time of the preheat treatment there are a method using a gas combustion flame and a method of electrically heating. In the method of using a gas combustion flame for heating the holding molten metal, the exhaust gas can be used.
  • the holding molten metal when the holding molten metal is electrically heated, there are a method of newly providing a gas combustion chamber in which a gas having a target temperature is generated and flowing to the pretreatment apparatus, and a method of electrically heating the pretreatment apparatus.
  • graphite, silicon carbide, silicon nitride, alumina, and aluminum nitride can be used as the material of the ceramic cylindrical tube. Since the thermal conductivity of graphite is higher than that of molten aluminum, the heat of the holding molten metal can be easily transferred to the inside of the cylindrical tube. From the viewpoint of thermal conductivity, sintered reaction silicon carbide is also good.
  • the aluminum chip melting device is an device for obtaining a molten aluminum by implementing the method for melting aluminum chips according to claims 1 to 9, wherein the hydrous cutting oil is attached.
  • a preheating device that shields the chips from the atmosphere and preheats the chips within a temperature range from the temperature at which the water content of the cutting oil containing water at least finishes evaporating to the temperature at which the oil decomposes and evaporates, and the dry chips are made of aluminum.
  • Holding of a chip melting furnace In an aluminum chip melting device consisting of a melting device that is pushed into a molten metal and melted to obtain an aluminum molten metal, the melting device comprises an aluminum melting furnace and the dry chips.
  • a preheating device removes oil and moisture from the chips containing hydrous cutting oil, and then a melting device holds the dry chips by a preheating chip pushing cylinder.
  • a rotating cylinder partially immersed in the molten metal. After heating and raising the temperature based on the atmospheric temperature of the upper part of the molten metal and the temperature of the retained molten metal in the rotating cylinder, the dry cutting is performed by diffusing and supplying from the tip of the rotating cylinder to a deep place in the retained molten metal.
  • the dissolution of the powder can be performed quickly and completely without reoxidation, and the quality of the molten aluminum can be maintained and the dissolution capacity can be improved.
  • the heat transfer area on the surface of the rotating cylinder is increased by providing the cylindrical portion of the rotating cylinder with irregularities along the axial direction or a plurality of protruding portions.
  • a plurality of rack-shaped tooth molds are provided at the tip discharge portion of the rotating cylinder, and the oxide film covering the molten aluminum in the dry chips is destroyed to be fine.
  • the quality of the retained molten metal is further improved by diffusing and discharging it as an oxide.
  • the dry chips containing molten aluminum are crushed from the tip of the rotating cylinder, discharged into the holding molten metal, and diffused well to promote the dissolution of the dry chips and completely dissolve them. Contribute to.
  • a single or a plurality of crossed ceramic rod-shaped portions are provided inside near the discharge end of the rotating cylinder, and aluminum melted inside the dry chips inside the cylinder is included. After breaking the oxide film and making it finer, it is charged into the holding molten metal to promote the dissolution in the holding molten metal and contribute to the improvement of the molten metal quality.
  • the holding molten metal comes into contact with or invades the dry chips inside the rotating cylinder through the through holes. It promotes heat exchange between the dry chips inside and the retained molten metal outside, and contributes to promoting the melting of aluminum in the dry chips.
  • the rotating cylinder can be made of graphite, silicon carbide, silicon nitride, alumina, or aluminum nitride, which is a material that is not eroded by the holding molten metal, and is a rotating cylinder. Since the life of the silicon is not eroded by the retained molten metal, it can be extended, which contributes to the improvement of the capacity and operating rate of the aluminum chip melting device. Further, in the case of graphite or silicon carbide as a material having high thermal conductivity, it contributes to rapid heating of the dry chips of the rotating cylinder. It was
  • the rotating cylinder immersed in the molten aluminum is used. It is a melting method that can obtain a high-quality molten aluminum with almost no alumina scum, and has a high yield of melting aluminum chips by charging the aluminum chips via the route.
  • the aluminum chip melting apparatus according to claims 10 to 15 of the present invention aluminum chips are melted by adopting a rotating cylindrical body of ceramics which is immersed in the molten aluminum and is not eroded by the molten aluminum. It is possible to improve the operating rate of the device and the processing capacity, improve the aluminum melting yield, and improve the quality of the molten aluminum. In this way, the present invention contributes to the utilization of resources and energy saving.
  • FIG. 1 is a schematic overall layout of an aluminum chip melting device according to the present invention.
  • FIG. 2 is a schematic state diagram in which the preheated aluminum chips according to the present invention are charged into the chip pushing device.
  • FIG. 3 is a schematic phase diagram of pushing the preheated aluminum chips according to the present invention into the molten metal from the chip pushing device.
  • FIG. 4 is a schematic phase diagram showing the behavior of the preheated aluminum chips according to the present invention in the chip pushing device.
  • FIG. 5 is a schematic perspective view of a rotating cylinder of the chip pushing device according to the present invention.
  • FIG. 6 is a flow chart showing a method for melting aluminum chips of the present invention.
  • FIG. 7 is a representative example of a thermal weight-differential thermal analysis chart of hydrous cutting oil of aluminum chips.
  • FIG. 8 is a representative example of a thermogravimetric-differential thermal analysis chart in which aluminum powder is heated in the atmosphere.
  • the process of the method for dissolving the chips accompanied by the water-containing cutting oil according to the present invention will be described with reference to the flow chart of FIG.
  • the chips accompanied by a water-containing cutting oil consisting of an emulsion state oil and water reduce the amount of the water-containing cutting oil via a centrifuge.
  • a sizing step for adjusting the particle size of the chips can be added (a).
  • the chips accompanied by the hydrous cutting oil go through the pretreatment step (b) for the purpose of complete removal of water, decomposition and evaporation of oil under the condition of air shutoff, and under the condition of air shutoff.
  • the chips are transferred to a storage space for storage and transfer, charged into the inside of a rotating cylindrical body made of ceramics by a pushing device under the condition of air shutoff, and pushed into the holding molten metal by the required amount to melt.
  • the state is maintained for the required time, and when the time to complete the dissolution elapses, the next required amount of the chips is pushed into the holding molten metal, and at the same time, the oxide film covering the chips at the lower end of the rotating cylinder.
  • It is composed of a chip indentation melting step (c) in which the powder is broken down into fine particles and then discharged into the holding molten metal.
  • a rutsubo furnace As the aluminum chip melting furnace used in the method for melting aluminum chips and the melting device of the present invention, a rutsubo furnace, a immersion heater type electric heating furnace, a gas combustion type radiant heating furnace and the like can be applied.
  • These aluminum chip melting furnaces include a rutsubo furnace for indirectly heating the molten aluminum, an electric heating furnace with a dip heater, and a gas combustion type radiant heating furnace for directly radiating and heating the molten aluminum from the surface of the molten metal.
  • the aluminum chip melting device 1 includes a drying preheating device 3 that removes water and oil in the cutting oil to which aluminum chips adhere, and a melting furnace combustion burner 2-for melting the preheated aluminum chips in the molten metal M.
  • the rutsubo-type aluminum chip melting furnace 2 having the third, the chip pushing-out device 5 for charging the preheated aluminum chips into the molten metal M of the rutsubo-type melting furnace 2, and the chip pushing-out device 5 are preheated aluminum. It is composed of a chip pushing charging device 4 for charging chips.
  • the chip pushing-in device 4 which is a feature of the present invention
  • a chip pushing / discharging device 5 is installed.
  • the chip intrusion device 4 and the chip intrusion / discharge device 5 have a cylindrical shape having substantially the same diameter, and the chip intrusion device 4 having the chip intrusion piston 4-2 is fixed, but the powder intrusion device 4 is fixed.
  • the discharge device 5 includes a rotary cylinder 5-1 that rotates around the axis, and a cylinder rotation drive device 5-6 is provided in the structure on the furnace lid 7-2.
  • graphite and silicon carbide are ceramics that are not eroded by the molten aluminum M. It can be selected from quality, silicon nitride, alumina, and aluminum nitride. Among them, graphite and silicon carbide are materials having high thermal conductivity and are suitable.
  • the rotating cylinder 5-1 is a relatively elongated cylinder having a total height: diameter of 4 to 2.5, and the outlet end forms a tooth-shaped discharge portion 5-2.
  • the inlet end 5-6 is connected to a rotation driving device 5-6 that rotationally drives the rotating cylinder.
  • a turbulent flow is generated in the molten metal M due to the rotation of the molten metal M, and the heat transfer from the molten metal M to the rotating cylinder 5-1 can be promoted and the molten metal M can be stirred and mixed.
  • a cylindrical body through hole 5-4 is provided at a position close to the surface of the molten metal M between the protruding portions 5-3 on the side of the cylindrical body, and the molten metal M and the molten metal M are provided. It promotes the melting of aluminum in the chips by allowing contact with the preheated aluminum chips inside to improve heat transfer.
  • a single or a plurality of stirring rods 5-5 are provided at positions near the discharge end of the rotating cylinder 5-1, and the preheated aluminum chips inside are covered with an oxide film of the outer capsule by stirring. Is crushed to promote the dissolution of chips in the molten metal M and the dispersion of the oxide film.
  • the tooth-shaped discharge portion 5-2 at the discharge end described above is a molten state in which the preheated aluminum chips are heated and heated by the molten metal M in the rotating cylinder 5-1 and covered with an oxide film of the chips. Aluminum can be crushed and diffused and discharged into the molten metal M to produce a high-quality molten aluminum.
  • the rotary cylinder 5-1 is preferably made of a material that does not erode the molten aluminum M, and graphite, silicon carbide, silicon nitride, alumina, or aluminum nitride can be used. Of these, graphite (110 W / M / K) and silicon carbide (155 W / M / K), which have high thermal conductivity, are preferable.
  • a chip pushing and discharging device 4 is mounted on the chip pushing and discharging device 5, and the preheated aluminum chips are pushed by the chip pushing and discharging device 4. It is sent to the discharge device 5 and supplied into the molten metal M.
  • the chip pushing piston loading device 4 the chip pushing piston 4-2 is inscribed inside the chip pushing cylinder cylinder 4-1 and the chip pushing piston rod from the upper chip pushing drive cylinder unit 4-4 is provided.
  • 4-3 is connected to the chip pushing piston inner cylinder 4-2b, and the fireproof piston head 4-2a fastened to the tip of the chip pushing piston inner cylinder 4-2b can be moved up and down.
  • an air-blocked storage space 4 composed of a discharge chute 3-2c and a chip inlet chute 4-5. -6 is provided.
  • the bulk specific gravity (0.3) of the preheated aluminum chips 6 is higher than that of the molten metal M (specific density 2.3). It is considered that buoyancy is generated with respect to the molten metal M even if it is low and filled and the specific gravity is high, and the inside of the rotating cylinder 5-1 is accumulated and clogged from the tip portion. Therefore, the preheated aluminum chips 6 are deposited from the vicinity of the lower part of the chip pushing cylinder cylinder 4-1 to the tip end of the rotary cylinder 5-1 via the discharge chute 3-2c from the preheated screw feeder (not shown). ing.
  • the chip pushing piston 4-2 intermittently moves up and down by the stroke ST, and accumulates in the air-blocked storage space 4-6 composed of the discharge chute 3-2c and the chip inlet chute 4-5.
  • the preheated aluminum chips 6 are pushed toward the preheated aluminum chips 6 deposited on the rotating cylinder 5-1 and the preheated aluminum chips 6 corresponding to the pushing amount are discharged from the tip of the rotating cylinder 5-1. It is diffused and discharged from 5-2 into the molten metal M and completely melted to generate the molten metal M. Therefore, the aluminum chips 6 supplied from the rotary cylinder 5-1 into the molten metal M are discharged with the intermittent pushing down of the chip pushing piston 4-2.
  • the aluminum chips 6 staying in the rotating cylinder 5-1 are short-circuited and rarely move up and down during the suspension of the pressing cycle, and are sufficiently heated and raised by the molten metal M through the wall surface of the rotating cylinder 5-1.
  • the aluminum portion covered with the oxide film on the surface of the hot chips 6 is considered to be melted.
  • the supply amount of the preheated aluminum chips 6 to the rotating cylinder 5-1 in other words, the dissolution amount can be adjusted by the pressing frequency of the chip pushing piston 4-2.
  • the rutsubo-type melting furnace 2 of the aluminum chip melting device 1 is surrounded by a furnace wall refractory 2-4, a furnace lid refractory 2-5, and a furnace bottom refractory 2-6. It is installed on the furnace mounting table 2-2 in the melting furnace combustion chamber 2-7.
  • the melting furnace combustion burner 2-3 is provided in the corner near the bottom of the melting furnace combustion chamber 2-7, and the combustion exhaust gas outlet is at the upper part of the melting furnace combustion chamber 2-7, with the combustion burner 2-3. Since the axis is offset, the flame of the combustion burner 2-3 becomes a swirling flow that licks the outer wall of the rutsubo-type melting furnace 2 from the bottom to the top, and heats the rutsubo-type melting furnace 2.
  • the crucible type melting furnace 2 is mainly formed of a carbon refractory material in the shape of a pot, holds an aluminum molten metal M having a melting point of about 660 ° C. inside, and swirls the outer wall from the bottom to the top of the melting furnace combustion burner 2-3. Since it is heated by the flow flame, the melting furnace 2 is indirectly heated by the combustion burner 2-3.
  • the combustion chamber temperature of the melting furnace is in the range of 700 ° C. to 1000 ° C.
  • Example 2 Using the method and equipment of the present invention, 700 kg of aluminum chips having an oil content of 2.2 to 3.0 is dried and preheated at 450 to 470 ° C. in a graphite crucible type melting furnace 2 (diameter 900 mm, height 1000 mm), and then dried and preheated. It was melted with a molten aluminum solution at 700 ° C. to obtain an aluminum ingot (Al purity 99.8%) of about 690 kg. The charge of aluminum chips was 200 kg / hr.
  • the graphite rotary cylinder 5-1 has an inner diameter of 300 mm, a height of 900 mm (immersion depth in molten metal 650 mm), a rotation speed of about 20 rpm, a chip pushing piston stroke of about 700 mm, a speed of about 700 mm, a speed of 20 sec, and a speed of 9 sec. It was operated in. The melting operation was stable, and the quality of the molten metal obtained the following results.
  • the quality of the ingot obtained in operation is equivalent to that of a commercially available ingot. Further, from the results in Table 2, the cleanliness is a clean molten metal having Rank A of A, which is a level at which casting is acceptable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • Furnace Details (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Abstract

[Problem] The present invention provides a method and an apparatus for melting aluminum cutting chips, in which the cutting chips that are dusts produced by cutting metal aluminum or an aluminum alloy are melted to produce an aluminum melt. [Solution] The method comprises: a preheating step for removing an oily water component from a cutting oil adhered to aluminum cutting chips by evaporation or decomposition; and a melting step for charging and diffusing the preheated cutting chips in an aluminum melt to melt the cutting chips. A melting apparatus is provided, which is configured such that the preheated aluminum cutting chips that are pushed and charged with a ceramic-made rotary cylindrical body arranged in the aluminum melt are diffused through a tip part while heating and melting the preheated aluminum cutting chips to melt the aluminum cutting chips.

Description

アルミニウム切粉の溶解方法と溶解装置Aluminum chip melting method and melting device
本発明は、アルミニウム切粉溶解方法と溶解装置に関し、詳しくはアルミニウム金属又は合金の切削屑である切粉を溶解してアルミニウム溶湯を得るにあたり、品質が良好で、高い歩留まりを有するアルミニウム溶湯を製造し、かつ、環境保全に留意し、安全で安定した操業を達成できるアルミニウム切粉の溶解方法と溶解装置に関するものである。 The present invention relates to an aluminum chip melting method and a melting device, and more specifically, to obtain an aluminum molten metal by melting chips which are cutting chips of an aluminum metal or an alloy, the present invention produces an aluminum molten metal having good quality and a high yield. It also relates to a melting method and a melting device for aluminum chips that can achieve safe and stable operation while paying attention to environmental conservation.
アルミニウム金属は、その製造の際に多大の電力を必要とするために、その製造原価は高い。よって、アルミニウム製品に加工する際に発生する屑、スクラップもアルミニウム金属の形態をとる限り、製造コストを考慮すると、その価値は大きい。従って、アルミニウム屑、缶などもリサイクルして溶解しアルミニウム製品の原料とされている。アルミニウム系金属の切削屑、いわゆるアルミニウム切粉も同様に処理される。 Aluminum metal requires a large amount of electric power to manufacture, so its manufacturing cost is high. Therefore, as long as the scraps and scraps generated when processing aluminum products take the form of aluminum metal, their value is great considering the manufacturing cost. Therefore, aluminum scraps, cans, etc. are also recycled and melted to be used as raw materials for aluminum products. Cutting chips of aluminum-based metal, so-called aluminum chips, are treated in the same manner.
アルミニウム系金属を切削加工する際に用いられる切削油は、一般的に水溶性切削油を水で希釈した油分が10%、水が90%程度の含水切削油を用いることが多い。一般的に、切削機から排出されたアルミニウム切粉は、重量比で10~30wt%の切削油を随伴している。この状態のアルミニウム切粉をウエット状切粉と称する。水溶性切削油の油分には、通常、水との親和性を確保するための水酸基(OH)やカルボニル基(COOH)の形態で多くの酸素原子が含まれているため、ウエット状切粉をアルミニウム溶湯中に装入して溶解する場合に、切削油中の酸素原子がアルミニウム溶湯を酸化し酸化アルミニウムを生成しアルミニウム溶湯とが混ざり合ったスカムを発生する。これにより溶解歩留まりが低下すると共に溶湯品質も劣化させ、さらにアルミニウム溶湯表面のスカム除去作業を必要とする、などの問題があった。また、水分が付着した該切粉を溶湯中へ侵入させると爆発を起こす。従って、最低限、水分は完全に除去せねばならない。 As the cutting oil used for cutting an aluminum-based metal, a water-containing cutting oil having a water-soluble cutting oil diluted with water having a content of 10% and a water content of about 90% is often used. Generally, aluminum chips discharged from a cutting machine are accompanied by cutting oil of 10 to 30 wt% by weight. Aluminum chips in this state are called wet chips. Since the oil content of water-soluble cutting oil usually contains many oxygen atoms in the form of hydroxyl groups (OH) and carbonyl groups (COOH) to ensure compatibility with water, wet chips are used. When charged into the molten aluminum and dissolved, oxygen atoms in the cutting oil oxidize the molten aluminum to generate aluminum oxide, and scum mixed with the molten aluminum is generated. As a result, there are problems that the melting yield is lowered, the quality of the molten metal is also deteriorated, and the scum removal work on the surface of the molten aluminum is required. Further, when the chips to which water is attached are allowed to enter the molten metal, an explosion occurs. Therefore, at a minimum, the water must be completely removed.
アルミニウム切粉は、その端部が薄い刃物状態であり、これを動かすと端部が破壊されて、微細な金属アルミニウム粉を発生する。通常のアルミニウム切粉は、切粉に切削油が吸着されているので大気中に飛散することはない。しかし、ウエット状態の切粉を乾燥させると、微細な金属アルミニウム粉が切削油から解放されて大気中に飛散するために火災や粉塵爆発の原因となる。また、乾燥処理された後のドライな状態のアルミニウム切粉をハンドリングする際にも、金属アルミニウム粉が発生して大気中に飛散するために火災や粉塵爆発の原因となる。従って、ドライ状態のアルミニウム切粉が存在する場合は、それを取り巻く雰囲気中の微細な金属アルミニウム粉を完全燃焼させて無害な酸化アルミニウムに変化させた後で大気放散する、など取り扱いには細心の注意を払わねばならない。以下において、ウエット状アルミニウム切粉を、該切粉、切削油を除去する乾燥予熱処理されたアルミニウム切粉を、該ドライ切粉、と区別して呼称する。 The end of the aluminum chip is in the state of a thin blade, and when it is moved, the end is destroyed to generate fine metallic aluminum powder. Since cutting oil is adsorbed on the chips of ordinary aluminum chips, they do not scatter in the atmosphere. However, when the wet chips are dried, the fine metallic aluminum powder is released from the cutting oil and scattered in the atmosphere, which causes a fire or a dust explosion. In addition, when handling aluminum chips in a dry state after being dried, metal aluminum powder is generated and scattered in the atmosphere, which causes a fire or a dust explosion. Therefore, if dry aluminum chips are present, they should be handled with great care, such as by completely burning the fine metallic aluminum powder in the surrounding atmosphere to convert it into harmless aluminum oxide and then dissipating it into the atmosphere. You have to be careful. In the following, wet aluminum chips are referred to as dry chips, and aluminum chips that have been dry preheated to remove the chips and cutting oil are referred to as dry chips.
該切粉は、再溶解してアルミニウムとしてリサイクルされるのが、省資源、省エネルギーの観点で望ましい。その一例として、該切粉をロータリキルンでアルミニウムが酸化しないように仮焼して油分・水分を揮発させて除去した後、該ドライ切粉をブリケットにし、それをアルミニウム溶解炉に装入してアルミニウム溶湯を得るものがある。この設備は、該切粉を再利用する点でよいが、設備が多種多様の装置を要する等、大掛かりになり、また乾燥、仮焼する時に、ロータリキルンから発生した金属アルミニウム粉による集塵機やダクトにおいて着火、爆発の危険性がある等の問題があった。 It is desirable from the viewpoint of resource saving and energy saving that the chips are redissolved and recycled as aluminum. As an example, the chips are calcined in a rotary kiln so that aluminum is not oxidized to volatilize and remove oil and water, and then the dry chips are made into briquettes and charged into an aluminum melting furnace. There is one that obtains molten aluminum. This equipment is good in that the chips are reused, but the equipment is large-scale because it requires a wide variety of equipment, and dust collectors and ducts made of metallic aluminum powder generated from the rotary kiln during drying and calcination. There was a problem such as the danger of ignition and explosion.
前述の課題を解決するために、該切粉を予備処理して切削油中の水分を除去して油分だけを残し、次いで、アルミニウム溶解炉で溶解してアルミニウム溶湯を得ると共に、該油分を該溶解炉でガス化して、溶解炉の加熱バーナに誘引して燃焼させ、燃料を代替補助して省エネルギーと大気汚染防止を図る該切粉の溶解装置と溶解方法が先行技術として開示されている。 In order to solve the above-mentioned problems, the chips are pretreated to remove water in the cutting oil to leave only the oil content, and then melted in an aluminum melting furnace to obtain an aluminum molten metal, and the oil content is used. As prior art, a melting device and a melting method for the chips, which are gasified in a melting furnace, attracted to a heating burner of the melting furnace and burned, and used as a substitute for fuel to save energy and prevent air pollution, are disclosed.
前記先行技術であるWO2017/051586公報(〔0008〕、〔0028-0029〕、〔図1〕)は、(0003)に記述した切削油が切粉と共に溶湯に装入されるために、切削油分から発生する煙と共に多量の酸化アルミニウム、いわゆるスカムを発生させ、溶解歩留まりを低下させると共に、アルミニウム溶湯の水素含有量が増えるために品質劣化を招き、溶湯表面のスカム除去作業を必要とする等の多くの問題を生じた。 According to WO2017 / 051586 ([0008], [0028-0029], [FIG. 1]), which is the prior art, the cutting oil described in (0003) is charged into the molten metal together with chips, so that the cutting oil is charged. A large amount of aluminum oxide, so-called scum, is generated together with the smoke generated from the minute, which lowers the melting yield and causes quality deterioration due to the increase in the hydrogen content of the molten aluminum, which requires scum removal work on the surface of the molten metal. It caused many problems.
これらの課題を解決するために、該切粉の水分を乾燥させ切削油の油分を分解、蒸発させるための加熱予備処理(以下、該予備処理、と称す)を施し、次いで、該予備処理したアルミニウム切粉(以下、該ドライ切粉、と称す)をアルミニウム溶湯(以下、保持溶湯、と称す)中で溶解して、高歩留りで品質良質なアルミニウム溶湯を得ることを骨子とする該切粉の溶解方法と溶解設備を提供した先行技術がある。 In order to solve these problems, a heat pretreatment (hereinafter referred to as the pretreatment) for drying the water content of the chips and decomposing and evaporating the oil content of the cutting oil was performed, and then the pretreatment was performed. The essence of this chip is to dissolve aluminum chips (hereinafter referred to as dry chips) in a molten aluminum (hereinafter referred to as holding molten metal) to obtain a high-yield, high-quality aluminum molten metal. There is a prior art that provided a melting method and melting equipment.
特開2019-183275(〔0006〕、〔0014-0018〕、〔0025-0032〕、〔図4〕、〔図5〕)JP-A-2019-183275 ([0006], [0014-0018], [0025-0032], [Fig. 4], [Fig. 5])
前記先行技術は、該ドライ切粉を、大気を遮断して保持溶湯中に設けられた該ドライ切粉が保持溶湯表面に浮上することを防止する領域(以下、該浮上防止領域、と称す)内に押込み溶解するものである。該浮上防止領域は、保持溶湯中に押込まれる該ドライ切粉の浮上を完全に阻止するために、周囲に下向き傾斜面をめぐらせた天井(陣笠天井)のある領域を設け、該ドライ切粉を該浮上防止領域内へ押込んで、該ドライ切粉が短絡して浮上することを防止すると共に、該浮上防止領域の頂点に当たる場所に、循環溶湯流を形成し、かつ、該ドライ切粉の表面を覆う酸化皮膜を破壊し、該ドライ切粉内部の溶融アルミニウム(以下、切粉溶湯、と称す)を保持溶湯中へ分散して溶解を促進するための羽根つき機械攪拌装置を設けたものである。 The prior art is a region in which the dry chips are blocked from the atmosphere to prevent the dry chips provided in the holding molten metal from floating on the surface of the holding molten metal (hereinafter referred to as the floating prevention region). It is pushed in and melted. In order to completely prevent the dry chips pushed into the holding molten metal, the floating prevention region is provided with a region having a ceiling (Jinkasa ceiling) surrounding a downwardly inclined surface, and the dry cutting region is provided. The powder is pushed into the floating prevention region to prevent the dry chips from short-circuiting and floating, and a circulating molten metal flow is formed at a place corresponding to the apex of the floating prevention region, and the dry chips are formed. A mechanical stirrer with blades was provided to destroy the oxide film covering the surface of the dry chips and disperse the molten aluminum inside the dry chips (hereinafter referred to as molten chips) into the holding molten metal to promote dissolution. It is a thing.
前記先行技術は、該ドライ切粉を該浮上防止領域中に押し込んで保持溶湯中で加熱・溶解するという点と、該浮上防止領域中に押し込まれた該ドライ切粉が保持溶湯表面へ浮上してロスすることが少ない点と、該浮上防止領域の頂点に設置された攪拌翼によって発生する循環溶湯流に乗って移動し、その際に該ドライ切粉表面を覆っている酸化皮膜を破壊するという点、において優れた技術であったが、下記に示すような諸欠点があり、円滑な安定操業を実現することができなかった。 The prior art is that the dry chips are pushed into the floating prevention region and heated and melted in the holding molten metal, and the dry chips pushed into the floating prevention region float on the surface of the holding molten metal. It moves on the circulating molten metal flow generated by the stirring blade installed at the apex of the floating prevention region, and at that time, it destroys the oxide film covering the surface of the dry chips. Although it was an excellent technology in that respect, it had various drawbacks as shown below, and it was not possible to realize smooth and stable operation.
技術的問題の第一は、保持溶湯中に押し込まれた該ドライ切粉は、保持溶湯の保有する熱で加熱されて溶解する、との考えに不備があったことである。該ドライ切粉は、一個一個が保持溶湯中で該循環溶湯流に従って自由に動くために、保持湯中における個々の滞留時間を規制することができていなかった。従って、一部の該ドライ切粉は、熱交換が不十分なために未溶解の状態で該切粉浮上防止領域から外れて保持溶湯表面に浮上した。それは、溶解歩留まりを低下させるのみならず、保持溶湯表面の掃除という余分な作業を発生させた。 The first technical problem is that the dry chips pushed into the holding molten metal are deficient in the idea that they are heated and melted by the heat held by the holding molten metal. Since each of the dry chips moves freely in the holding molten metal according to the circulating molten metal flow, it has not been possible to regulate the individual residence time in the holding molten metal. Therefore, some of the dry chips were separated from the chip floating prevention region and floated on the surface of the holding molten metal in an undissolved state due to insufficient heat exchange. Not only did it reduce the melting yield, but it also generated the extra work of cleaning the surface of the retained molten metal.
技術的問題の第二は、該予備処理において、処理後の該ドライ切粉温度は高い方が良い、と考えられた。その理由は、保持溶湯中に押し込まれる該ドライ切粉と保持溶湯との接触時間を制御することが困難で、その不安から該ドライ切粉温度が高い方が溶解に有利であろう、との考えからであった。しかし、該予備処理後の該ドライ切粉温度が高いほど、該ドライ切粉表面に形成される酸化皮膜の厚さが厚くなり、それだけ酸化皮膜が破壊され難く、該ドライ切粉の形状を維持したままで保持溶湯表面に浮上するものがあった。これも溶解歩留まりを低下させるのみならず、保持溶湯表面の掃除という余分な作業を発生させた。 The second technical problem was that in the pretreatment, it was considered that the dry chip temperature after the treatment should be higher. The reason is that it is difficult to control the contact time between the dry chips pushed into the holding molten metal and the holding molten metal, and due to the anxiety, a higher dry chip temperature may be advantageous for melting. It was from an idea. However, the higher the temperature of the dry chips after the pretreatment, the thicker the oxide film formed on the surface of the dry chips, and the more difficult the oxide film is to be destroyed, so that the shape of the dry chips is maintained. Some of them surfaced on the surface of the retained molten metal. This not only reduced the melting yield, but also caused extra work of cleaning the surface of the holding molten metal.
技術的問題の第三は、該切粉浮上防止領域の形状から、これをセラミックスで形成することが困難であったために、鉄系材料を使用したので、鉄が保持溶湯に侵食されて維持できないという問題が発生した。 The third technical problem is that it was difficult to form this with ceramics due to the shape of the chip floating prevention region, and since iron-based materials were used, iron was eroded by the holding molten metal and could not be maintained. The problem occurred.
本発明は、これらの課題を解決したものであって、該予備処理した該ドライ切粉をアルミニウム溶解炉で溶解して、高歩留りで良質なアルミニウム溶湯を得ることと、安定して長時間操業可能な該切粉の溶解方法と溶解設備を提供することを目的とするものである。 The present invention solves these problems, and melts the pretreated dry chips in an aluminum melting furnace to obtain a high-yield, high-quality molten aluminum, and operates stably for a long time. It is an object of the present invention to provide a possible dissolution method and dissolution equipment for the chips.
上記の目的を達成するために、本発明の請求項1に係るアルミニウム切粉溶解方法は、含水切削油が付着している該切粉を溶解してアルミニウム溶湯を得る方法であって、該切粉を少なくとも含水切削油の水分が蒸発し終える温度から、油分が分解・蒸発する温度までの温度範囲において、該切粉を大気遮断した状態で乾燥・予熱する該予備処理工程と、該予備処理後の該ドライ切粉を大気遮断した状態で貯留し次の工程へ移送するための貯留空間と、該ドライ切粉を保持溶湯中に押込み装入して溶解することでアルミニウム溶湯を得る溶解工程と、からなる該切粉の溶解方法において、該予備処理した該ドライ切粉を、下端が解放された状態で保持湯中の深さ方向に部分的に浸漬しており、保持溶湯に侵食されないセラミックスで形成された回転円筒体の中に移送し、一回当たりの溶解量に見合う該ドライ切粉を押込み装置の押し込み棒によって保持溶湯中へ装入して、該ドライ切粉を保持溶湯温度まで加熱して該ドライ切粉内部のアルミニウムを溶解した後(以下切粉のアルミニウム部分が溶解したものを、該切粉溶湯、と称す)、該回転円筒体の先端部から該切粉溶湯を排出する時に、該ドライ切粉を覆っていた酸化皮膜を微細に破壊して、微細化した酸化皮膜と該切粉溶湯を保持溶湯中へ排出することで、該ドライ切粉の溶解を確実に行い、該切粉溶湯と保持溶湯を均質化することを特徴とする。 In order to achieve the above object, the aluminum chip melting method according to claim 1 of the present invention is a method of dissolving the chips to which water-containing cutting oil is attached to obtain an aluminum molten metal. The pretreatment step of drying and preheating the powder in a temperature range from at least the temperature at which the water content of the water-containing cutting oil finishes evaporating to the temperature at which the oil content decomposes and evaporates, and the pretreatment. A storage space for storing the dry chips later in a state of being shut off from the atmosphere and transferring them to the next step, and a melting step of obtaining the aluminum molten metal by pushing the dry chips into the holding molten metal and charging them to dissolve them. In the method for dissolving the chips, the pretreated dry chips are partially immersed in the holding hot water in the depth direction with the lower end open, and are not eroded by the holding hot water. The dry chips are transferred into a rotating cylindrical body made of ceramics, and the dry chips corresponding to the amount of melting at one time are charged into the holding molten metal by the push rod of the pushing device, and the dry chips are held. After heating to melt the aluminum inside the dry chips (hereinafter, the melted aluminum portion of the chips is referred to as the chip melt), the chip melt is poured from the tip of the rotating cylinder. At the time of discharge, the oxide film covering the dry chips is finely destroyed, and the finely divided oxide film and the chip melt are discharged into the holding molten metal to ensure the dissolution of the dry chips. It is characterized by homogenizing the chip molten metal and the holding molten metal.
請求項1の構成により、先行技術では、保持溶湯中における切粉浮上防止領域における該ドライ切粉の保持溶湯中に存在する時間を制御できなかったが、本技術では、切粉浮上防止領域としてセラミックスで製造され、かつ、円筒の中心軸に沿って回転する円筒管(以下、該円筒管、と称す)を使用し、該円筒管の下方が解放された状態で保持溶湯中に浸漬し、該円筒管の上部に該ドライ切粉の投入口を設け、該ドライ切粉が該円筒管の内部の溶湯表面上に浮上し積み上がるように改変した。しかる後に、該円筒管内部の該ドライ切粉を押し込み棒で所要量だけ溶湯中に押し込んで、溶解に必要な時間に対して、そのままの状態で保持することが可能になった。こうすることで、該ドライ切粉は保持溶湯中を自由に移動することは不可能となり、保持溶湯によって加熱され溶解するに必要な時間だけ保持溶湯中に拘束することが可能となった。これにより該ドライ切粉が該円筒管の下部から保持溶湯中へ排出される時には、100%の該ドライ切粉を完全に溶解することが可能となった。さらに、該円筒管が該円筒の中心軸に沿って回転することで、保持溶湯温度の均一化、保持溶湯成分の均一化、完全に溶解した該ドライ切粉が該円筒管の下端から保持溶湯中に排出される時に該ドライ切粉を覆っていた酸化皮膜を微細に破壊して内部の溶湯を排出することを可能にした。 Due to the configuration of claim 1, the prior art could not control the time of the dry chips in the holding molten metal in the chip floating prevention region in the holding molten metal, but in the present technology, as the chip floating prevention region. Using a cylindrical tube (hereinafter referred to as the cylindrical tube) manufactured of ceramics and rotating along the central axis of the cylinder, the lower part of the cylindrical tube is open and immersed in the holding molten metal. An input port for the dry chips was provided on the upper part of the cylindrical tube, and the dry chips were modified so as to float and pile up on the surface of the molten metal inside the cylindrical tube. After that, the dry chips inside the cylindrical tube can be pushed into the molten metal by a required amount with a push rod, and can be held as it is for the time required for melting. By doing so, the dry chips cannot move freely in the holding molten metal, and can be restrained in the holding molten metal only for the time required for heating and melting by the holding molten metal. This made it possible to completely dissolve 100% of the dry chips when they were discharged from the lower part of the cylindrical tube into the holding molten metal. Further, by rotating the cylindrical tube along the central axis of the cylinder, the holding molten metal temperature is made uniform, the holding molten metal component is made uniform, and the completely melted dry chips are held from the lower end of the cylindrical tube. It was possible to finely destroy the oxide film that covered the dry chips when they were discharged inside, and to discharge the molten metal inside.
請求項2の構成により、該円筒管の保持溶湯中に浸漬している領域の外部側壁に凹凸を付ける、あるいは、突起物を付けることにより保持溶湯の攪拌力を強めることができる。これにより、保持溶湯温度の均一化、保持溶湯成分の均一化、保持溶湯から該円筒管内部への熱伝導が促進される。また、保持溶湯を攪拌することで、該ドライ切粉を覆っていた酸化皮膜が破壊されて保持溶湯中に分散しているものが凝集・合体して大型化し、酸化物系欠陥になることを防止でき、極めて品質の高いアルミニウム溶湯を得ることができた。 According to the second aspect, the stirring power of the holding molten metal can be strengthened by making unevenness on the outer side wall of the region immersed in the holding molten metal of the cylindrical tube or by attaching a protrusion. As a result, the temperature of the retained molten metal is made uniform, the components of the retained molten metal are made uniform, and the heat conduction from the retained molten metal to the inside of the cylindrical tube is promoted. In addition, by stirring the retained molten metal, the oxide film covering the dry chips is destroyed, and what is dispersed in the retained molten metal aggregates and coalesces to increase the size and become oxide-based defects. It was possible to prevent it and obtain an extremely high quality molten aluminum.
請求項3の構成により、該円筒管の出口に鋸歯状の突起を設けること、あるいは、該円筒管の出口近傍に該円筒管と一体となって回転する棒状のセラミックスを直径方向に設けることで、該ドライ切粉を覆う酸化皮膜を破壊し、極めて微細な酸化物として保持溶湯中に均一に分散することが可能となった。このように、極めて微細な酸化物は、溶湯中の酸化物系欠陥として認識されないので、得られた溶湯品質を優れたものとした。 According to the configuration of claim 3, a serrated protrusion is provided at the outlet of the cylindrical tube, or a rod-shaped ceramic that rotates integrally with the cylindrical tube is provided in the vicinity of the outlet of the cylindrical tube in the radial direction. The oxide film covering the dry chips was destroyed, and it became possible to uniformly disperse the oxide as an extremely fine oxide in the holding molten metal. As described above, extremely fine oxides are not recognized as oxide-based defects in the molten metal, so that the quality of the obtained molten metal is excellent.
また、前述したように、水溶性切削油の水分を蒸発させ、油分を分解・蒸発させることを目的として、水溶性切削油を随伴する該切粉の熱重量―示差熱分析(TG-DTA分析)を行った。その結果、135℃付近までの加熱で水分は除去され、200~400℃の領域で油分が酸化・発熱することが判明した(図7参照)。また、該切粉を大気中で加熱した場合の熱重量―示差熱分析(TG-DTA分析)によれば、該切粉が580℃付近で急激に発熱し重量増加を呈した。これは該切粉の金属アルミニウム部分が酸化反応を起こしたものと判断される。(図8参照)。これらの分析結果に基づいて、含水切削油を随伴する該切粉の該予備処理条件が設定された。また、含水切削油を随伴する該切粉を大気中で400℃~500℃、550℃、570℃に加熱した後で、該切粉の表面の色調を観察した。500℃以下では金属光沢を有していたが、550℃では灰色となり、570℃では褐色となっていた。これは、温度上昇と共に該切粉表面の酸化皮膜が厚くなることを示している。 Further, as described above, for the purpose of evaporating the water content of the water-soluble cutting oil and decomposing and evaporating the oil content, the thermal weight of the chips accompanied by the water-soluble cutting oil-differential thermal analysis (TG-DTA analysis). ) Was performed. As a result, it was found that the water was removed by heating to around 135 ° C., and the oil content was oxidized and generated heat in the range of 200 to 400 ° C. (see FIG. 7). Further, according to the thermal weight-differential thermal analysis (TG-DTA analysis) when the chips were heated in the atmosphere, the chips rapidly generated heat at around 580 ° C and exhibited an increase in weight. It is determined that this is because the metallic aluminum portion of the chips has undergone an oxidation reaction. (See FIG. 8). Based on these analysis results, the pretreatment conditions for the chips accompanied by the hydrous cutting oil were set. Further, after heating the chips accompanied by the hydrous cutting oil to 400 ° C. to 500 ° C., 550 ° C. and 570 ° C. in the atmosphere, the color tone of the surface of the chips was observed. It had a metallic luster at 500 ° C. or lower, but became gray at 550 ° C. and brown at 570 ° C. This indicates that the oxide film on the surface of the chips becomes thicker as the temperature rises.
請求項4の構成により、該予備処理における処理後の該切粉温度について、該予備処理工程では、水分の完全除去が必須条件であり、切削油の完全分解が好ましい条件である。本技術では(0019)、(0021)に述べたように、厚い酸化被膜を持つ該ドライ切粉の生成を防止すために、次の該予備処理条件を設定した。切削油の完全分解の観点から450℃以上が好ましい。一方、処理後の該切粉温度が550℃を超えると該切粉表面が厚い酸化皮膜に覆われる。そこで、該処予備処理後の該切粉温度として、400℃~570℃の範囲、好ましくは450℃~550℃の範囲、最も好ましくは490℃±30℃の範囲、が溶解し易さと酸化ロス低減の両面で最適であることを以下に説明する溶解実験から見出した。即ち、100kg/hrの実機規模の溶解実験によれば、該切粉温度が450℃よりも低い場合は、押込み装置の押込み抵抗力が高まるために押込み動作を一時停止して待つ必要が生じた。また、550℃以上の場合は、一部該切粉の形状を維持したまま、切粉が保持溶湯表面に浮上し、溶湯表面の掃除が必要であった。該切粉を490℃に制御すると、押込み装置の押込み抵抗力の増加は無く、また、保持溶湯表面にも浮上した該切粉は皆無であった。また、操業中に、該切粉温度が470℃から510℃の間で変動したが、溶解作業は安定し、6時間の操業中、何ら問題が生じなかった。 According to the configuration of claim 4, regarding the chip temperature after the treatment in the pretreatment, complete removal of water is an essential condition in the pretreatment step, and complete decomposition of cutting oil is a preferable condition. In the present technique, as described in (0019) and (0021), the following pretreatment conditions are set in order to prevent the formation of the dry chips having a thick oxide film. From the viewpoint of complete decomposition of cutting oil, 450 ° C or higher is preferable. On the other hand, when the chip temperature after the treatment exceeds 550 ° C., the surface of the chips is covered with a thick oxide film. Therefore, the chip temperature after the pretreatment is in the range of 400 ° C to 570 ° C, preferably in the range of 450 ° C to 550 ° C, and most preferably in the range of 490 ° C ± 30 ° C. It was found from the dissolution experiments described below that it is optimal in terms of both reduction. That is, according to a melting experiment on an actual scale of 100 kg / hr, when the chip temperature was lower than 450 ° C., it became necessary to suspend and wait for the pushing operation in order to increase the pushing resistance of the pushing device. .. Further, when the temperature was 550 ° C. or higher, the chips floated on the surface of the holding molten metal while partially maintaining the shape of the chips, and it was necessary to clean the surface of the molten metal. When the chips were controlled to 490 ° C., the pressing resistance of the pressing device did not increase, and there were no chips floating on the surface of the holding molten metal. Further, during the operation, the chip temperature fluctuated between 470 ° C and 510 ° C, but the melting operation was stable and no problem occurred during the operation for 6 hours.
請求項5の構成により、(0022)の溶解実験で述べているように、該予備処理用のガスの温度を550℃以下に制御することで、該予備処理装置内のすべての場所で、該切粉の融点を超える可能性をゼロにした。これによって該予備処理装置における詰まり事故は完全に解消され、長時間操業を可能にした。 According to the configuration of claim 5, as described in the dissolution experiment of (0022), by controlling the temperature of the gas for pretreatment to 550 ° C. or lower, the pretreatment apparatus can be used at all locations in the pretreatment apparatus. The possibility of exceeding the melting point of chips has been eliminated. As a result, the clogging accident in the pretreatment device was completely eliminated, and long-term operation was possible.
請求項6の構成により、切粉浮上防止領域を円筒管形状とすることで材料としてセラミックス管を使用することが可能となった。その結果、切粉浮上防止領域を形成する材料が保持溶湯によって溶解されることはなく、安定操業を実現した。 According to the sixth aspect, the ceramic tube can be used as a material by forming the chip floating prevention region into a cylindrical tube shape. As a result, the material forming the chip floating prevention region was not melted by the holding molten metal, and stable operation was realized.
請求項7の構成により、該ドライ切粉を保持溶湯中へ押し込む際に、回転円筒体内の保持溶湯と押し込み棒先端との間に、常に該ドライ切粉を介在させるように押し込み棒の動作を制御し、押し込み棒先端が絶対に保持溶湯と接触しないようにすることで、該ドライ切粉押し込み装置の詰まり事故を完全に防止することができ、安定操業を可能にした。 According to the configuration of claim 7, when the dry chips are pushed into the holding molten metal, the pushing rod is operated so that the dry chips are always interposed between the holding molten metal in the rotating cylinder and the tip of the pushing rod. By controlling and preventing the tip of the push rod from coming into contact with the holding molten metal, it was possible to completely prevent the dry chip pushing device from being clogged, and stable operation was made possible.
請求項8の構成により、該円筒管は、その内部に該ドライ切粉を保持しつつ回転し、外部の保持溶湯の保有する熱を内部の該ドライ切粉に供給する役目を果たす。従って、該円筒管を形成する材料は熱伝導度が高いものの方が好ましい。しかし、熱伝導度が低い材料を使用した場合でも、該円筒管の保持溶湯浸漬領域の側壁に該ドライ切粉が通過できない大きさの貫通孔を複数設けることで、該円筒管の内部と外の保持溶湯とを直接接触させることで熱伝導を促進することが可能になり、該ドライ切粉の円滑な溶解を実現した。 According to the configuration of claim 8, the cylindrical tube rotates while holding the dry chips inside, and serves to supply the heat held by the external holding molten metal to the dry chips inside. Therefore, it is preferable that the material forming the cylindrical tube has high thermal conductivity. However, even when a material having low thermal conductivity is used, the inside and outside of the cylindrical tube can be provided by providing a plurality of through holes having a size that the dry chips cannot pass through on the side wall of the holding molten metal immersion region of the cylindrical tube. It became possible to promote heat conduction by directly contacting with the holding molten metal of No. 1 and realized smooth melting of the dry chips.
請求項9の構成により、保持溶湯温度について、原理的には該切粉の融点以上に維持されていれば時間と共に該円筒管の内部に伝わって内部の該ドライ切粉を溶解することができるが保持溶湯温度が高いほど溶解に必要な熱が伝わる時間が短い。一方、保持溶湯温度が高いと保持溶湯が酸化される、という別の問題がある。実験によると保持溶湯温度が900℃を超えると溶湯表面酸化皮膜が成長し続けて一般に「オバケ」と称される巨大なアルミナの付着物を生成する。従って、一般的にアルミニウム溶湯としては800℃以下で扱うことが好ましい。本発明では、該円筒管が安定して回転することが重要であるので、溶湯表面酸化皮膜の厚さが薄くて該円筒管の回転を妨げないことが重要である。一方、切粉溶解炉の溶解能力の観点からはできるだけ短時間に所要量を溶解したい。この両方の条件を満足する最適保持溶湯温度として、680℃から750℃の範囲を見出したが、最も好ましくは700℃から720℃の範囲であった。 According to the configuration of claim 9, if the holding molten metal temperature is maintained above the melting point of the chips in principle, it can be transmitted to the inside of the cylindrical tube over time to dissolve the dry chips inside. However, the higher the temperature of the molten metal, the shorter the time required to transfer the heat required for melting. On the other hand, there is another problem that the retained molten metal is oxidized when the temperature of the retained molten metal is high. According to the experiment, when the temperature of the retained molten metal exceeds 900 ° C., the oxide film on the surface of the molten metal continues to grow and forms a huge alumina deposit generally called "ghost". Therefore, it is generally preferable to handle the molten aluminum at 800 ° C. or lower. In the present invention, it is important that the cylindrical tube rotates stably, so it is important that the thickness of the molten metal surface oxide film is thin and does not hinder the rotation of the cylindrical tube. On the other hand, from the viewpoint of the melting capacity of the chip melting furnace, we want to melt the required amount in the shortest possible time. An optimum holding molten metal temperature satisfying both of these conditions was found in the range of 680 ° C to 750 ° C, but most preferably in the range of 700 ° C to 720 ° C.
本発明の特徴は、保持溶湯が保持する熱によって、保持溶湯中に押し込まれた該切粉を加熱・溶解し、さらに、溶解した該切粉表面を覆う酸化皮膜を破壊して微細化し、保持溶湯中に分散する技術において、保持溶湯中に押し込まれた該切粉が加熱される時間を必要なだけ制御できる、という点にある。そして、それを可能にするのが、セラミックスで製造された回転円筒管を切粉浮上防止領域として使用した点にある。故に、本発明を実現する要件として、第一に、保持溶湯を加熱する必要がある。保持溶湯を加熱する方法として、ルツボのように外部から燃焼火炎で加熱する方法、保持溶湯を直接電気加熱する方法、保持溶湯を表面から輻射熱で加熱する方法、の三つの方法がある。第二の要件として、ウエット切粉を乾燥・予熱する該予備処理が必須である。この該予熱処理時の熱源について、ガス燃焼火炎を使用する方法、電気加熱する方法がある。保持溶湯加熱にガス燃焼火炎を使用する方法では、その排ガス利用できる。しかし、保持溶湯を電気加熱する場合は、新たにガス燃焼室を設けてそこで目標温度のガスを生成して該予備処理装置に流す方法、該予備処理装置を電気加熱する方法がある。第三の要件として、セラミックス円筒管の材質に関して、黒鉛質、炭化珪素質、窒化珪素質、アルミナ質、窒化アルミニウム質が使用可能である。黒鉛は、その熱伝導度が溶融アルミニウムの熱伝導度よりも高いために、保持溶湯の熱を該円筒管内部に伝え易い。熱伝導度の観点からは、焼結反応炭化珪素も良い。一方、黒鉛は高温度で酸化され易いので、特に、保持溶湯を燃焼ガスの輻射加熱する場合は、保持溶湯表面を800℃~900℃の高温度雰囲気の維持する必要があり、この領域の該黒鉛管表面の酸化防止策を適宜施す必要がある。窒化珪素質、アルミナ質セラミックスの熱伝導度は、溶融アルミニウムの熱伝導度よりも低いために、保持溶湯の熱を該円筒管内部へ伝達するには、請求項8で述べているように、強度を維持できる範囲で該円筒管の壁にスリットまたは穴をあけて、保持溶湯が該円筒管内部の溶湯と直接接触するようにして熱伝導性を改善する必要がある。 The feature of the present invention is that the heat held by the holding molten metal heats and melts the chips pushed into the holding molten metal, and further destroys the oxide film covering the surface of the melted chips to make them finer and hold them. In the technique of dispersing in the molten metal, the time for heating the chips pushed into the holding molten metal can be controlled as much as necessary. What makes this possible is the use of a rotating cylindrical tube made of ceramics as a chip floating prevention region. Therefore, as a requirement for realizing the present invention, firstly, it is necessary to heat the holding molten metal. There are three methods for heating the holding molten metal: a method of heating the holding molten metal from the outside with a combustion flame like a crucible, a method of directly heating the holding molten metal with electric heating, and a method of heating the holding molten metal with radiant heat from the surface. As a second requirement, the pretreatment for drying and preheating wet chips is essential. Regarding the heat source at the time of the preheat treatment, there are a method using a gas combustion flame and a method of electrically heating. In the method of using a gas combustion flame for heating the holding molten metal, the exhaust gas can be used. However, when the holding molten metal is electrically heated, there are a method of newly providing a gas combustion chamber in which a gas having a target temperature is generated and flowing to the pretreatment apparatus, and a method of electrically heating the pretreatment apparatus. As a third requirement, graphite, silicon carbide, silicon nitride, alumina, and aluminum nitride can be used as the material of the ceramic cylindrical tube. Since the thermal conductivity of graphite is higher than that of molten aluminum, the heat of the holding molten metal can be easily transferred to the inside of the cylindrical tube. From the viewpoint of thermal conductivity, sintered reaction silicon carbide is also good. On the other hand, since graphite is easily oxidized at a high temperature, it is necessary to maintain a high temperature atmosphere of 800 ° C. to 900 ° C. on the surface of the holding molten metal, especially when the holding molten metal is radiated and heated by combustion gas. It is necessary to take appropriate measures to prevent oxidation of the surface of the graphite tube. Since the thermal conductivity of silicon nitride and alumina ceramics is lower than that of molten aluminum, in order to transfer the heat of the holding molten metal into the cylindrical tube, as described in claim 8, as described in claim 8. It is necessary to make a slit or a hole in the wall of the cylindrical tube to the extent that the strength can be maintained so that the holding molten metal comes into direct contact with the molten metal inside the cylindrical tube to improve the thermal conductivity.
 また、請求項10に係るアルミニウム切粉の溶解装置は、請求項1から9記載のアルミニウム切粉の溶解方法を実施化してアルミニウム溶湯を得る装置であって、含水切削油が付着している該切粉を少なくとも含水切削油の水分が蒸発し終える温度から、油分が分解・蒸発する温度までの温度範囲に、該切粉を大気から遮断して予熱する予熱装置と、該ドライ切粉をアルミニウム切粉溶解炉の保持溶湯中に押込み装入して溶解してアルミニウム溶湯を得る溶解装置と、からなるアルミニウム切粉の溶解装置において、該溶解装置が、アルミニウム溶解炉と、該ドライ切粉を保持溶湯中に供給する深さ方向に部分的に浸漬し、且つ保持溶湯に侵食されないセラミックスからなる回転円筒体と、該ドライ切粉を該円筒体内部に供給する該ドライ切粉押込みシリンダと、から構成されることを特徴とする。 Further, the aluminum chip melting device according to claim 10 is an device for obtaining a molten aluminum by implementing the method for melting aluminum chips according to claims 1 to 9, wherein the hydrous cutting oil is attached. A preheating device that shields the chips from the atmosphere and preheats the chips within a temperature range from the temperature at which the water content of the cutting oil containing water at least finishes evaporating to the temperature at which the oil decomposes and evaporates, and the dry chips are made of aluminum. Holding of a chip melting furnace In an aluminum chip melting device consisting of a melting device that is pushed into a molten metal and melted to obtain an aluminum molten metal, the melting device comprises an aluminum melting furnace and the dry chips. A rotating cylinder made of ceramics that is partially immersed in the holding molten metal in the depth direction and is not eroded by the holding molten metal, and the dry chip pushing cylinder that supplies the dry chips into the inside of the cylinder. It is characterized by being composed of.
この構成により、予熱装置で含水切削油を含む該切粉から油水分を除去し、次いで、溶解装置で該ドライ切粉を予熱切粉押込みシリンダにより保持溶湯中に部分的に浸漬した回転円筒体へ供給し、該回転円筒体内で溶湯上部の雰囲気温度と保持溶湯温度に基づいて加熱、昇温した後、該回転円筒体の先端から保持溶湯中の深い所に拡散供給することにより該ドライ切粉の溶解を再酸化させることなく迅速に完全に行うことができ、アルミニウム溶湯の品質を維持すると共に溶解能力の向上を図ることができる。 With this configuration, a preheating device removes oil and moisture from the chips containing hydrous cutting oil, and then a melting device holds the dry chips by a preheating chip pushing cylinder. A rotating cylinder partially immersed in the molten metal. After heating and raising the temperature based on the atmospheric temperature of the upper part of the molten metal and the temperature of the retained molten metal in the rotating cylinder, the dry cutting is performed by diffusing and supplying from the tip of the rotating cylinder to a deep place in the retained molten metal. The dissolution of the powder can be performed quickly and completely without reoxidation, and the quality of the molten aluminum can be maintained and the dissolution capacity can be improved.
また、請求項11の構成により、前記回転円筒体の円筒部に、軸方向に沿った凹凸又は複数の突状部を設けたことにより、回転円筒体の表面の伝熱面積を増加させると共に、凹凸又は突状部により保持溶湯との接触面に乱流を生じさせ、保持溶湯からの熱伝達量を増加させることにより回転円筒体内の該ドライ切粉の温度上昇が達成されて、溶解量が増加できる。また、アルミナの発生量を抑制する効果がある。また、保持溶湯を攪拌して混合することで、溶解されないアルミナを均一に拡散して、保持溶湯の品質の均質化を図ることができる。 Further, according to the configuration of claim 11, the heat transfer area on the surface of the rotating cylinder is increased by providing the cylindrical portion of the rotating cylinder with irregularities along the axial direction or a plurality of protruding portions. By causing turbulence on the contact surface with the holding molten metal due to the unevenness or protruding part and increasing the amount of heat transfer from the holding molten metal, the temperature rise of the dry chips in the rotating cylinder is achieved, and the amount of dissolution is increased. Can be increased. It also has the effect of suppressing the amount of alumina generated. Further, by stirring and mixing the retained molten metal, undissolved alumina can be uniformly diffused, and the quality of the retained molten metal can be homogenized.
また、請求項12の構成により、前記回転円筒体の先端排出部に複数のラック形状の歯型を設けて、該ドライ切粉内の溶融したアルミニウムを覆っていた酸化皮膜を破壊して微細な酸化物にして拡散・排出することにより,保持溶湯の品質をさらに向上させる。また、回転円筒体の先端部から溶融したアルミニウムを含む該ドライ切粉を潰砕して、保持溶湯中に排出し、よく拡散することにより該ドライ切粉の溶解を促進して完全に溶解することに貢献する。 Further, according to the configuration of claim 12, a plurality of rack-shaped tooth molds are provided at the tip discharge portion of the rotating cylinder, and the oxide film covering the molten aluminum in the dry chips is destroyed to be fine. The quality of the retained molten metal is further improved by diffusing and discharging it as an oxide. In addition, the dry chips containing molten aluminum are crushed from the tip of the rotating cylinder, discharged into the holding molten metal, and diffused well to promote the dissolution of the dry chips and completely dissolve them. Contribute to.
 また、請求項13の構成により、前記回転円筒体の排出端近くの内部に単数又は複数個所に交差したセラミックスの棒状部を設け、該円筒体内部の該ドライ切粉の内部で溶融したアルミニウム包含をした酸化皮膜を破壊し微細化した後、保持溶湯中へ装入することにより保持溶湯中への溶解を促進し、且つ溶湯品質の向上を図ることに貢献する。 Further, according to the configuration of claim 13, a single or a plurality of crossed ceramic rod-shaped portions are provided inside near the discharge end of the rotating cylinder, and aluminum melted inside the dry chips inside the cylinder is included. After breaking the oxide film and making it finer, it is charged into the holding molten metal to promote the dissolution in the holding molten metal and contribute to the improvement of the molten metal quality.
 また、請求項14の構成により、前記回転円筒体の筒部に複数の貫通孔を設けることにより、保持溶湯が貫通孔を介して回転円筒体内部の該ドライ切粉と接触し、または侵入して内部の該ドライ切粉と外部の保持溶湯との熱交換を促進して該ドライ切粉内のアルミニウムの溶解を促進することに貢献する。 Further, according to the configuration of claim 14, by providing a plurality of through holes in the tubular portion of the rotating cylinder, the holding molten metal comes into contact with or invades the dry chips inside the rotating cylinder through the through holes. It promotes heat exchange between the dry chips inside and the retained molten metal outside, and contributes to promoting the melting of aluminum in the dry chips.
また、請求項15の構成により、前記回転円筒体が、保持溶湯に侵食されない材料である黒鉛質又は炭化珪素質又は窒化珪素質又はアルミナ質又は窒化アルミニウム質から構成することができ、回転円筒体の寿命が保持溶湯により侵食されないので延長でき、アルミニウム切粉溶解装置の能力と稼働率の向上に貢献する。また、高熱伝導率を有する材料の黒鉛質又は炭化珪素質の場合は、回転円筒体の該ドライ切粉の加熱を迅速に行うことに貢献する。  Further, according to the configuration of claim 15, the rotating cylinder can be made of graphite, silicon carbide, silicon nitride, alumina, or aluminum nitride, which is a material that is not eroded by the holding molten metal, and is a rotating cylinder. Since the life of the silicon is not eroded by the retained molten metal, it can be extended, which contributes to the improvement of the capacity and operating rate of the aluminum chip melting device. Further, in the case of graphite or silicon carbide as a material having high thermal conductivity, it contributes to rapid heating of the dry chips of the rotating cylinder. It was
 本発明に係る請求項1から9に記載のアルミニウム切粉溶解方法によれば、予熱したアルミニウム切粉をアルミニウム溶湯中に押込み装入して溶解するに当たり、アルミニウム溶湯中に浸漬した回転円筒体を経由して装入することにより、アルミニウム切粉のアルミニウム溶湯化の歩留まりが高く、また、アルミナスカムの含有がほとんど無い高品質のアルミニウム溶湯が得られる溶解方法である。また、本発明に係る請求項10から15に記載のアルミニウム切粉溶解装置によれば、アルミニウム溶湯中に浸漬し、アルミニウム溶湯に侵食されないセラミックスの回転円筒体を採用したことにより、アルミニウム切粉溶解装置の稼働率向上と処理能力の向上が図られ、また、アルミニウム溶解歩留りの向上、アルミニウム溶湯の品質の向上を図ることができる。このように本発明は資源の活用、省エネルギーに貢献する。 According to the aluminum chip melting method according to claims 1 to 9 of the present invention, when the preheated aluminum chips are pushed into the molten aluminum and melted, the rotating cylinder immersed in the molten aluminum is used. It is a melting method that can obtain a high-quality molten aluminum with almost no alumina scum, and has a high yield of melting aluminum chips by charging the aluminum chips via the route. Further, according to the aluminum chip melting apparatus according to claims 10 to 15 of the present invention, aluminum chips are melted by adopting a rotating cylindrical body of ceramics which is immersed in the molten aluminum and is not eroded by the molten aluminum. It is possible to improve the operating rate of the device and the processing capacity, improve the aluminum melting yield, and improve the quality of the molten aluminum. In this way, the present invention contributes to the utilization of resources and energy saving.
図1は、本発明に関わるアルミニウム切粉溶解装置の模式的全体配置図である。FIG. 1 is a schematic overall layout of an aluminum chip melting device according to the present invention. 図2は、本発明に関わる予熱アルミニウム切粉を切粉押込み装置に装入する模式的状態図である。FIG. 2 is a schematic state diagram in which the preheated aluminum chips according to the present invention are charged into the chip pushing device. 図3は、本発明に関わる予熱アルミニウム切粉を切粉押込み装置から溶湯中へ押し込みする模式的状態図である。FIG. 3 is a schematic phase diagram of pushing the preheated aluminum chips according to the present invention into the molten metal from the chip pushing device. 図4は、本発明に関わる予熱アルミニウム切粉が切粉押込み装置内での挙動を示す模式的状態図である。FIG. 4 is a schematic phase diagram showing the behavior of the preheated aluminum chips according to the present invention in the chip pushing device. 図5は、本発明に関わる切粉押込み装置の回転円筒体の模式的斜視図である。FIG. 5 is a schematic perspective view of a rotating cylinder of the chip pushing device according to the present invention. 図6は、本発明のアルミニウム切粉の溶解方法を示すフロー図である。FIG. 6 is a flow chart showing a method for melting aluminum chips of the present invention. 図7は、アルミニウム切粉の含水切削油の熱重量―示差熱分析チャートの代表例である。FIG. 7 is a representative example of a thermal weight-differential thermal analysis chart of hydrous cutting oil of aluminum chips. 図8は、アルミニウム粉末を大気中で加熱した熱重量―示差熱分析チャートの代表例である。FIG. 8 is a representative example of a thermogravimetric-differential thermal analysis chart in which aluminum powder is heated in the atmosphere.
本発明に係る含水切削油を随伴した該切粉の溶解方法の工程を図6のフロー図に基づいて説明する。エマルジョン状態の油と水から成る含水切削油を随伴した該切粉は、遠心分離機を経て含水切削油量を減少する。その後、該切粉の粒度を整える整粒工程を加えることができる(a)。次いで、含水切削油を随伴する該切粉は、大気遮断の条件下で水分の完全除去と油分の分解、蒸発を目的とする該予備処理工程(b)を経由し、大気遮断の条件下で該切粉の貯留・移送のための貯留空間に移送され、大気遮断の条件下で押し込み装置によってセラミックス製の回転円筒体の内部に装入され、所要量だけ保持溶湯中へ押し込まれて、溶解に必要な時間だけその状態を維持し、溶解が完了する時間が経過したら次の所要量の該切粉を保持溶湯中に押込み、それと同時に該回転円筒体の下端で該切粉を覆う酸化皮膜を破壊して微細化した後に保持溶湯中へ排出する、という切粉押込溶解工程(c)から構成される。 The process of the method for dissolving the chips accompanied by the water-containing cutting oil according to the present invention will be described with reference to the flow chart of FIG. The chips accompanied by a water-containing cutting oil consisting of an emulsion state oil and water reduce the amount of the water-containing cutting oil via a centrifuge. After that, a sizing step for adjusting the particle size of the chips can be added (a). Next, the chips accompanied by the hydrous cutting oil go through the pretreatment step (b) for the purpose of complete removal of water, decomposition and evaporation of oil under the condition of air shutoff, and under the condition of air shutoff. The chips are transferred to a storage space for storage and transfer, charged into the inside of a rotating cylindrical body made of ceramics by a pushing device under the condition of air shutoff, and pushed into the holding molten metal by the required amount to melt. The state is maintained for the required time, and when the time to complete the dissolution elapses, the next required amount of the chips is pushed into the holding molten metal, and at the same time, the oxide film covering the chips at the lower end of the rotating cylinder. It is composed of a chip indentation melting step (c) in which the powder is broken down into fine particles and then discharged into the holding molten metal.
本発明のアルミニウム切粉の溶解方法と溶解装置に用いられるアルミニウム切粉溶解炉としては、ルツボ炉、浸漬ヒータ式電気加熱炉、ガス燃焼式輻射加熱炉などが適用できる。これらのアルミニウム切粉溶解炉は、アルミニウム溶湯を間接加熱するルツボ炉、浸漬ヒータ式電気加熱炉と、アルミニウム溶湯を溶湯表面から直接輻射加熱するガス燃焼式輻射加熱炉とがある。 As the aluminum chip melting furnace used in the method for melting aluminum chips and the melting device of the present invention, a rutsubo furnace, a immersion heater type electric heating furnace, a gas combustion type radiant heating furnace and the like can be applied. These aluminum chip melting furnaces include a rutsubo furnace for indirectly heating the molten aluminum, an electric heating furnace with a dip heater, and a gas combustion type radiant heating furnace for directly radiating and heating the molten aluminum from the surface of the molten metal.
回転円筒体への伝熱を考えた場合、前者の場合は、溶湯のみが加熱され、溶湯からの伝熱が主となるが、後者の場合は、回転円筒体の上部の溶湯外の場所は、火炎からの輻射や雰囲気からの対流伝熱があり、溶湯中の部分は溶湯からの伝熱を受けることになる。このように回転円筒体内にある予熱アルミニウム切粉は、外気と遮断されて、効率的に加熱、昇温され、切粉の酸化被膜を増やすことなく内包された金属アルミニウム部分が溶融するに至る。 Considering the heat transfer to the rotating cylinder, in the former case, only the molten metal is heated and the heat transfer from the molten metal is the main, but in the latter case, the place outside the molten metal at the top of the rotating cylinder is , There is radiation from the flame and convection heat transfer from the atmosphere, and the part in the molten metal receives the heat transfer from the molten metal. In this way, the preheated aluminum chips in the rotating cylinder are shielded from the outside air, efficiently heated and heated, and the contained metallic aluminum portion melts without increasing the oxide film of the chips.
本発明方法を適用するアルミニウム切粉溶解装置1の一実施例としてルツボ型アルミニウム切粉溶解炉を用いた例を、図1を用いて説明する。アルミニウム切粉溶解装置1は、アルミニウム切粉の付着切削油中の水分と油分を除去する乾燥予熱装置3と、該予熱したアルミニウム切粉を溶湯M中で溶解するための溶解炉燃焼バーナ2-3を有するルツボ型アルミニウム切粉溶解炉2と、該予熱したアルミニウム切粉をルツボ型溶解炉2の溶湯M中に装入する切粉押込排出装置5と、切粉押込排出装置5に予熱アルミニウム切粉を装入する切粉押込装入装置4と、から構成される。 An example in which a rutsubo-type aluminum chip melting furnace is used as an embodiment of the aluminum chip melting apparatus 1 to which the method of the present invention is applied will be described with reference to FIG. The aluminum chip melting device 1 includes a drying preheating device 3 that removes water and oil in the cutting oil to which aluminum chips adhere, and a melting furnace combustion burner 2-for melting the preheated aluminum chips in the molten metal M. The rutsubo-type aluminum chip melting furnace 2 having the third, the chip pushing-out device 5 for charging the preheated aluminum chips into the molten metal M of the rutsubo-type melting furnace 2, and the chip pushing-out device 5 are preheated aluminum. It is composed of a chip pushing charging device 4 for charging chips.
また、図1、図2、図3、図4に示すように、乾燥予熱装置3とルツボ型アルミニウム切粉溶解炉2との間に、本発明の特徴である切粉押込装入装置4と切粉押込排出装置5が設置される。切粉押込装入装置4と切粉押込排出装置5は、ほぼ同径の円筒状であり、切粉押込みピストン4-2を有する切粉押込装入装置4は固定されているが、粉押込排出装置5は軸回転する回転円筒体5-1を備え、また炉蓋7-2上の構造物に円筒体回転駆動装置5-6を備えている。回転円筒体5-1は、全長の1/2から1/3がアルミニウム溶湯M中に浸漬して、アルミニウム溶湯Mから加熱されるので、アルミニウム溶湯Mに侵食されないセラミックスである黒鉛質、炭化珪素質、窒化珪素質、アルミナ質、窒化アルミニウムから選択使用できる。中でも黒鉛質、炭化珪素質は、熱伝導率の高い材料であり、好適である。 Further, as shown in FIGS. 1, 2, 3, and 4, between the drying preheating device 3 and the rutsubo-type aluminum chip melting furnace 2, the chip pushing-in device 4 which is a feature of the present invention A chip pushing / discharging device 5 is installed. The chip intrusion device 4 and the chip intrusion / discharge device 5 have a cylindrical shape having substantially the same diameter, and the chip intrusion device 4 having the chip intrusion piston 4-2 is fixed, but the powder intrusion device 4 is fixed. The discharge device 5 includes a rotary cylinder 5-1 that rotates around the axis, and a cylinder rotation drive device 5-6 is provided in the structure on the furnace lid 7-2. Since 1/2 to 1/3 of the total length of the rotating cylindrical body 5-1 is immersed in the molten aluminum M and heated from the molten aluminum M, graphite and silicon carbide are ceramics that are not eroded by the molten aluminum M. It can be selected from quality, silicon nitride, alumina, and aluminum nitride. Among them, graphite and silicon carbide are materials having high thermal conductivity and are suitable.
また、図5に示すように、回転円筒体5-1は、全高:直径が4~2.5の比細長い円筒体であって、出口端部は歯型状排出部5-2を形成し、入口端5-6は、回転円筒体を回転駆動する回転駆動装置5-6に繋がる。また、回転円筒体5-1の表面には、長さ方向に円筒体側部突状部5-3を歯型5-2の数だけ設けるのが好ましく、溶湯M中で突状部5-3が回転することにより溶湯Mに乱流が生じ、溶湯Mから回転円筒体5-1への熱伝達を促進すると共に溶湯Mを攪拌混合することができる。また、溶湯Mに循環流が生じるので、固体よりも熱伝導率が落ちるアルミニウム溶湯Mに対し、切粉溶解炉バーナ2-3の燃焼熱を炉壁から溶湯Mへの熱伝達も向上する。また、回転円筒体5-1の表面には、円筒体側部突状部5-3の間で、溶湯M表面に近い深さの位置に、円筒体貫通孔5-4を設け、溶湯Mと中の予熱アルミニウム切粉との接触を可能にして熱伝達の向上を図って、切粉中のアルミニウムの溶解を助長する。また、回転円筒体5-1の排出端近くの位置に単数または複数の攪拌棒5-5を設けており、中の予熱アルミニウム切粉を攪拌により外包の酸化被膜に覆われた溶融状のアルミニウムを潰砕して、溶湯Mへの切粉の溶解と酸化被膜の分散化を助長する。また、前述の排出端部の歯型状排出部5-2は、回転円筒体5-1で該予熱アルミニウム切粉が溶湯Mにより加熱昇温し、切粉の酸化被膜に覆われた溶融状のアルミニウムを潰砕して溶湯M中に拡散排出して高品質のアルミニウム溶湯を製造することができる。回転円筒体5-1には、アルミニウム溶湯Mに侵食ない材料がよく、黒鉛や炭化珪素や窒化珪素やアルミナ質や窒化アルミニウムを用いることができる。中でも、熱伝導率の高い黒鉛(110W/M/K)や炭化珪素(155W/M/K)がよい。 Further, as shown in FIG. 5, the rotating cylinder 5-1 is a relatively elongated cylinder having a total height: diameter of 4 to 2.5, and the outlet end forms a tooth-shaped discharge portion 5-2. The inlet end 5-6 is connected to a rotation driving device 5-6 that rotationally drives the rotating cylinder. Further, it is preferable to provide as many cylindrical body side projecting portions 5-3 as the number of tooth molds 5-2 on the surface of the rotating cylindrical body 5-1 in the length direction, and the projecting portions 5-3 in the molten metal M. A turbulent flow is generated in the molten metal M due to the rotation of the molten metal M, and the heat transfer from the molten metal M to the rotating cylinder 5-1 can be promoted and the molten metal M can be stirred and mixed. Further, since a circulating flow is generated in the molten metal M, the heat transfer of the combustion heat of the chip melting furnace burner 2-3 from the furnace wall to the molten metal M is also improved with respect to the aluminum molten metal M whose thermal conductivity is lower than that of the solid. Further, on the surface of the rotating cylindrical body 5-1, a cylindrical body through hole 5-4 is provided at a position close to the surface of the molten metal M between the protruding portions 5-3 on the side of the cylindrical body, and the molten metal M and the molten metal M are provided. It promotes the melting of aluminum in the chips by allowing contact with the preheated aluminum chips inside to improve heat transfer. Further, a single or a plurality of stirring rods 5-5 are provided at positions near the discharge end of the rotating cylinder 5-1, and the preheated aluminum chips inside are covered with an oxide film of the outer capsule by stirring. Is crushed to promote the dissolution of chips in the molten metal M and the dispersion of the oxide film. Further, the tooth-shaped discharge portion 5-2 at the discharge end described above is a molten state in which the preheated aluminum chips are heated and heated by the molten metal M in the rotating cylinder 5-1 and covered with an oxide film of the chips. Aluminum can be crushed and diffused and discharged into the molten metal M to produce a high-quality molten aluminum. The rotary cylinder 5-1 is preferably made of a material that does not erode the molten aluminum M, and graphite, silicon carbide, silicon nitride, alumina, or aluminum nitride can be used. Of these, graphite (110 W / M / K) and silicon carbide (155 W / M / K), which have high thermal conductivity, are preferable.
また、図4に示すように、切粉押込排出装置5の上に切粉押込装入装置4が載置されており、予熱されたアルミニウム切粉を切粉押込装入装置4により切粉押込排出装置5に送られて、溶湯M中に供給する。切粉押込装入装置4は、切粉押込シリンダ筒4-1の内部に切粉押込ピストン4-2が内接され、上部の切粉押込駆動シリンダユニット4-4からの切粉押込ピストンロッド4-3が切粉押込ピストン内筒4-2bに連結され、切粉押込ピストン内筒4-2b先端部に締結された耐火物製のピストンヘッド4-2aを上下動可能にしている。また、ピストンヘッド4-2aのストローク下端は、回転円筒体5-1内に在る溶融アルミニウムのレベルとは切粉を介在させて間隔を取っておりピストンヘッド4-2aの溶損を防止している。また、間欠的に回転円筒体5-1に装入される予熱アルミニウム切粉6の量的バッファとして排出シュート3-2cと切粉入り口シュート4-5で構成される大気遮断された貯留空間4-6を設けている。 Further, as shown in FIG. 4, a chip pushing and discharging device 4 is mounted on the chip pushing and discharging device 5, and the preheated aluminum chips are pushed by the chip pushing and discharging device 4. It is sent to the discharge device 5 and supplied into the molten metal M. In the chip pushing piston loading device 4, the chip pushing piston 4-2 is inscribed inside the chip pushing cylinder cylinder 4-1 and the chip pushing piston rod from the upper chip pushing drive cylinder unit 4-4 is provided. 4-3 is connected to the chip pushing piston inner cylinder 4-2b, and the fireproof piston head 4-2a fastened to the tip of the chip pushing piston inner cylinder 4-2b can be moved up and down. Further, the lower end of the stroke of the piston head 4-2a is spaced from the level of the molten aluminum in the rotating cylinder 5-1 with chips interposed therebetween to prevent melting damage of the piston head 4-2a. ing. In addition, as a quantitative buffer for the preheated aluminum chips 6 that are intermittently charged into the rotating cylinder 5-1, an air-blocked storage space 4 composed of a discharge chute 3-2c and a chip inlet chute 4-5. -6 is provided.
また、図2、図3、図4を用いて、予熱アルミニウム切粉6の挙動を説明すると、溶湯M(比重2.3)に比し予熱アルミニウム切粉6の嵩比重(0.3)は低く、充填されて比重が高くなっても、溶湯Mに対して浮力が生じ、回転円筒体5-1の内部は、先端部から堆積して詰まっていると考えられる。よって、予熱アルミニウム切粉6は、予熱スクリュフイーダ(図示しない)からの排出シュート3-2cを経て切粉押込シリンダ筒4-1の下部付近から回転円筒体5-1の先端部まで堆積している。一方、切粉押込ピストン4-2は、間歇的にストロークST分だけ上下動し、排出シュート3-2cと切粉入り口シュート4-5で構成される大気遮断された貯留空間4-6に溜まった予熱アルミニウム切粉6を回転円筒体5-1に堆積している予熱アルミニウム切粉6の方へ押込み、その押込み量に相当する予熱アルミニウム切粉6が回転円筒体5-1の先端排出部5-2から溶湯M中に拡散排出されて完全に溶融し溶湯Mが生成される。したがって、回転円筒体5-1から溶湯M中に供給されるアルミニウム切粉6は、切粉押込ピストン4-2の間欠的な押し下げに伴って排出される。また、回転円筒体5-1内に滞留するアルミニウム切粉6は、押下げサイクルの休止の間、短絡して上下に移動すること少なく回転円筒体5-1の壁面を通して溶湯Mにより十分加熱昇温し切粉6の表面の酸化被膜に覆われたアルミニウム部分は、溶融しているものと考えられる。また、予熱アルミニウム切粉6の回転円筒体5-1への供給量、言い換えると溶解量は、切粉押込ピストン4-2の押込み頻度で調整することができる。 Further, when the behavior of the preheated aluminum chips 6 is explained with reference to FIGS. 2, 3 and 4, the bulk specific gravity (0.3) of the preheated aluminum chips 6 is higher than that of the molten metal M (specific density 2.3). It is considered that buoyancy is generated with respect to the molten metal M even if it is low and filled and the specific gravity is high, and the inside of the rotating cylinder 5-1 is accumulated and clogged from the tip portion. Therefore, the preheated aluminum chips 6 are deposited from the vicinity of the lower part of the chip pushing cylinder cylinder 4-1 to the tip end of the rotary cylinder 5-1 via the discharge chute 3-2c from the preheated screw feeder (not shown). ing. On the other hand, the chip pushing piston 4-2 intermittently moves up and down by the stroke ST, and accumulates in the air-blocked storage space 4-6 composed of the discharge chute 3-2c and the chip inlet chute 4-5. The preheated aluminum chips 6 are pushed toward the preheated aluminum chips 6 deposited on the rotating cylinder 5-1 and the preheated aluminum chips 6 corresponding to the pushing amount are discharged from the tip of the rotating cylinder 5-1. It is diffused and discharged from 5-2 into the molten metal M and completely melted to generate the molten metal M. Therefore, the aluminum chips 6 supplied from the rotary cylinder 5-1 into the molten metal M are discharged with the intermittent pushing down of the chip pushing piston 4-2. Further, the aluminum chips 6 staying in the rotating cylinder 5-1 are short-circuited and rarely move up and down during the suspension of the pressing cycle, and are sufficiently heated and raised by the molten metal M through the wall surface of the rotating cylinder 5-1. The aluminum portion covered with the oxide film on the surface of the hot chips 6 is considered to be melted. Further, the supply amount of the preheated aluminum chips 6 to the rotating cylinder 5-1, in other words, the dissolution amount can be adjusted by the pressing frequency of the chip pushing piston 4-2.
また、図1に示すように、アルミニウム切粉溶解装置1のルツボ型溶解炉2は、炉壁耐火物2-4、と炉蓋耐火物2-5と炉底耐火物2-6によって取囲まれた溶解炉燃焼室2-7内の炉載置台2-2上に設置している。溶解炉燃焼バーナ2-3は、溶解炉燃焼室2-7の底部近くの隅部に設けられ、また燃焼排ガス出口は、溶解炉燃焼室2-7の上部で、燃焼バーナ2-3と、その軸線をずらして設けているので、燃焼バーナ2-3の火炎は下から上へのルツボ型溶解炉2の外壁を舐める旋回流となってルツボ型溶解炉2を加熱する。ルツボ型溶解炉2は、主として炭素質耐火物で壺状に形成され、内部に融点約660℃のアルミニウム溶湯Mを保持すると共に、外壁を溶解炉燃焼バーナ2-3の下から上への旋回流火炎で加熱されるから、溶解炉2は燃焼バーナ2-3により間接加熱される。通常、溶解炉の燃焼室温度は、700℃~1000℃の範囲である。 Further, as shown in FIG. 1, the rutsubo-type melting furnace 2 of the aluminum chip melting device 1 is surrounded by a furnace wall refractory 2-4, a furnace lid refractory 2-5, and a furnace bottom refractory 2-6. It is installed on the furnace mounting table 2-2 in the melting furnace combustion chamber 2-7. The melting furnace combustion burner 2-3 is provided in the corner near the bottom of the melting furnace combustion chamber 2-7, and the combustion exhaust gas outlet is at the upper part of the melting furnace combustion chamber 2-7, with the combustion burner 2-3. Since the axis is offset, the flame of the combustion burner 2-3 becomes a swirling flow that licks the outer wall of the rutsubo-type melting furnace 2 from the bottom to the top, and heats the rutsubo-type melting furnace 2. The crucible type melting furnace 2 is mainly formed of a carbon refractory material in the shape of a pot, holds an aluminum molten metal M having a melting point of about 660 ° C. inside, and swirls the outer wall from the bottom to the top of the melting furnace combustion burner 2-3. Since it is heated by the flow flame, the melting furnace 2 is indirectly heated by the combustion burner 2-3. Usually, the combustion chamber temperature of the melting furnace is in the range of 700 ° C. to 1000 ° C.
(実施例)
 本発明方法と設備を用いて、黒鉛ルツボ型溶解炉2(直径900mm、高さ1000mm)により、油水分量2.2~3.0のアルミニウム切粉700kgを450~470℃で乾燥予熱した後、700℃のアルミニウム溶湯で溶解処理し、約690kgのアルミニウムインゴット(Al純度99,8%)を得た。アルミニウム切粉の装入量は、200kg/hrであった。黒鉛製回転円筒体5-1は、内径300mm、高さ900mm(溶湯中浸漬深さ650mm)で、回転数約20rpmであり、切粉押込みピストンのストロークは約700mm、速度は下降20sec、上昇9secで運用した。溶解作業は安定し、溶湯の品質は下記の結果を得た。
(Example)
Using the method and equipment of the present invention, 700 kg of aluminum chips having an oil content of 2.2 to 3.0 is dried and preheated at 450 to 470 ° C. in a graphite crucible type melting furnace 2 (diameter 900 mm, height 1000 mm), and then dried and preheated. It was melted with a molten aluminum solution at 700 ° C. to obtain an aluminum ingot (Al purity 99.8%) of about 690 kg. The charge of aluminum chips was 200 kg / hr. The graphite rotary cylinder 5-1 has an inner diameter of 300 mm, a height of 900 mm (immersion depth in molten metal 650 mm), a rotation speed of about 20 rpm, a chip pushing piston stroke of about 700 mm, a speed of about 700 mm, a speed of 20 sec, and a speed of 9 sec. It was operated in. The melting operation was stable, and the quality of the molten metal obtained the following results.
 得られた溶湯の清浄度を調査するために、市販のADC12規格のインゴットと切粉連続操業の3時間と6時間経過時の溶湯から得られたインゴットを比較調査した。評価方法は、PoDFAによる評価とKモールド評価を行った。これらの評価は、専門評価機関に依頼した。その結果を表1、2に示す。 In order to investigate the cleanliness of the obtained molten metal, a comparative survey was conducted between a commercially available ADC12 standard ingot and an ingot obtained from the molten metal after 3 hours and 6 hours of continuous chip operation. As the evaluation method, evaluation by PoDFA and K mold evaluation were performed. These evaluations were requested from a specialized evaluation organization. The results are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記、表1の結果より、操業で得られたインゴットの品質は市販のインゴットと同等である。また、表2の結果より、清浄度はRankがAの清浄な溶湯であり、鋳造しても良いレベルである。 From the results in Table 1 above, the quality of the ingot obtained in operation is equivalent to that of a commercially available ingot. Further, from the results in Table 2, the cleanliness is a clean molten metal having Rank A of A, which is a level at which casting is acceptable.
アルミニウム切粉の処理分野で利用されるのみならず、亜鉛、マグネシウム金属及びそれらの合金切粉の処理分野で適用することができる。 Not only can it be used in the field of processing aluminum chips, but it can also be applied in the field of processing zinc, magnesium metals and their alloy chips.
1:アルミニウム切粉溶解装置  
2:アルミニウム切粉溶解炉  2-1:溶解炉本体  2-2:炉載置台 
2-3:溶解炉燃焼バーナ   2-4:炉室耐火物  2-5:炉蓋耐火物
2-6:炉底耐火物      2-7:燃焼室 
3:乾燥予熱装置 3-1:切粉ホッパー 3-2:スクリュコンベヤ
3-2a:スクリュー羽根 3-2b:コンベヤ外筒 
3-2c:排出部シュート 3-3:予熱ダクト 3-4:駆動モータ
4:切粉押込装入装置 4-1:切粉押込シリンダ筒
4-2:切粉押込ピストン 4-2a:ピストンヘッド 4-2b:ピストン内筒
4-3: 切粉押込ピストンロッド 4-4:切粉押込駆動シリンダユニット 4-5:切粉装入入口シュート   4-6:貯留空間
5:切粉押込排出装置  5-1:回転円筒体 5-2:円筒体歯型状排出部 5-3:円筒体側部突状部  5-4:円筒体貫通孔  5-5:攪拌棒 
5-6:回転円筒体回転駆動装置
6:予熱アルミニウム切粉
M:溶湯
1: Aluminum chip melting device
2: Aluminum chip melting furnace 2-1: Melting furnace body 2-2: Furnace mounting table
2-3: Melting furnace combustion burner 2-4: Furnace chamber refractory 2-5: Furnace lid refractory 2-6: Pot bottom refractory 2-7: Combustion chamber
3: Drying preheating device 3-1: Chip hopper 3-2: Screw conveyor 3-2a: Screw blade 3-2b: Conveyor outer cylinder
3-2c: Discharge part chute 3-3: Preheating duct 3-4: Drive motor 4: Chip pushing charging device 4-1: Chip pushing cylinder cylinder 4-2: Chip pushing piston 4-2a: Piston head 4-2b: Piston inner cylinder 4-3: Chip push-in piston rod 4-4: Chip push-in drive cylinder unit 4-5: Chip entry / exit chute 4-6: Storage space 5: Chip push-in / discharge device 5 -1: Rotating cylinder 5-2: Cylindrical tooth-shaped discharge part 5-3: Cylindrical side protruding part 5-4: Cylindrical through hole 5-5: Stirring rod
5-6: Rotary cylinder rotary drive device 6: Preheated aluminum chips M: molten metal

Claims (15)

  1. 含水切削油が付着しているアルミニウム切粉(以下、該切粉、と称す)を溶解してアルミニウム溶湯を得る方法であって、該切粉を少なくとも含水切削油の水分が蒸発し終える温度から、油分が分解・蒸発する温度までの温度範囲に、該切粉を大気から遮断して乾燥・予熱する予熱工程(以下、該予備処理、と称す)と、該予備処理後のアルミニウム切粉(以下、該ドライ切粉、と称す)を大気遮断された状態で次の工程へ移送するための貯留空間と、該ドライ切粉をアルミニウム切粉溶解炉のアルミニウム溶湯中(以下、保持溶湯、と称す)に押込み装入して溶解し、アルミニウム溶湯を得る溶解工程と、からなるアルミニウム切粉の溶解方法において、該ドライ切粉を、保持溶湯中の深さ方向に部分的に浸漬しており、保持溶湯に侵食されないセラミックスからなる回転円筒体内に押込み装入して、該ドライ切粉を保持溶湯温度まで加熱して該ドライ切粉内部のアルミニウムを溶解した後、該回転円筒体の先端部から該ドライ切粉を排出する時に、該ドライ切粉の表面を覆っている酸化皮膜を破壊して微細化した後で保持溶湯中へ排出することで、該ドライ切粉の溶解を促進し、保持溶湯を均質化し、得られたアルミニウム溶湯中の酸化物を無害化することで極めて高品質のアルミニウム溶湯を得ることを特徴とするアルミニウム切粉の溶解方法。 It is a method to obtain a molten aluminum by dissolving aluminum chips to which water-containing cutting oil is attached (hereinafter referred to as the chips), and the chips are at least from the temperature at which the water content of the water-containing cutting oil finishes evaporating. , A preheating step (hereinafter referred to as the pretreatment) in which the chips are shielded from the atmosphere to dry and preheat within a temperature range up to the temperature at which the oil decomposes and evaporates, and aluminum chips after the pretreatment (hereinafter referred to as the pretreatment). Hereinafter, the storage space for transferring the dry chips to the next step in a state of being shut off from the atmosphere, and the dry chips in the aluminum molten metal of the aluminum chip melting furnace (hereinafter referred to as holding molten metal). The dry chips are partially immersed in the holding molten metal in the depth direction in the melting step of pressing and charging into (referred to as) to melt and obtaining the molten aluminum, and the method of melting the aluminum chips. , It is pushed into a rotating cylinder made of ceramics that is not eroded by the holding molten metal, and the dry chips are heated to the holding molten metal temperature to melt the aluminum inside the dry chips, and then the tip of the rotating cylinder. When the dry chips are discharged from the aluminum, the oxide film covering the surface of the dry chips is destroyed and made finer, and then discharged into the holding molten metal to promote the dissolution of the dry chips. A method for melting aluminum chips, which comprises homogenizing a holding molten metal and detoxifying the oxides in the obtained molten aluminum to obtain an extremely high quality molten aluminum.
  2. 前記回転円筒体の保持溶湯浸漬領域の外側側壁に、軸方向に沿った凹凸、又は、複数の突状部を設けることによって、保持溶湯の攪拌力を強め、保持溶湯から回転円筒体内部への熱伝達を良好にすることで該回転円筒体内に押込まれた該ドライ切粉の溶解を促進し、保持溶湯の温度、成分を均一化し、該ドライ切粉表面を覆っていた酸化皮膜の凝集、合体を阻止して保持溶湯中に微細な状態で分散させることで保持溶湯の品質を高度に保つことを特徴とする請求項1に記載のアルミニウム切粉の溶解方法。 By providing unevenness along the axial direction or a plurality of projecting portions on the outer side wall of the holding molten metal immersion region of the rotating cylinder, the stirring force of the holding molten metal is strengthened, and the holding molten metal moves into the inside of the rotating cylinder. By improving heat transfer, the dissolution of the dry chips pushed into the rotating cylinder is promoted, the temperature and components of the holding molten metal are made uniform, and the oxide film covering the surface of the dry chips is aggregated. The method for dissolving aluminum chips according to claim 1, wherein the quality of the retained molten metal is maintained at a high level by preventing coalescence and dispersing the retained molten metal in a fine state.
  3. 前記回転円筒体の先端排出部に複数の鋸歯状の凹凸設ける、あるいは、該先端排出部近傍に直径方向にまたがってセラミックス棒を設置する、ことによって、該ドライ切粉を覆っていた酸化皮膜を破壊して微細な酸化物にして保持溶湯中へ排出することによって得られるアルミニウム溶湯の品質をさらに向上させることを特徴とする請求項1又は2に記載のアルミニウム切粉の溶解方法。 The oxide film covering the dry chips is formed by providing a plurality of serrated irregularities on the tip discharging portion of the rotating cylinder, or by installing a ceramic rod in the vicinity of the tip discharging portion in the radial direction. The method for dissolving aluminum chips according to claim 1 or 2, further improving the quality of the molten aluminum obtained by breaking it into fine oxides and discharging it into the holding molten metal.
  4. 請求項1から3のいずれかに記載のアルミニウム切粉の溶解方法において、該ドライ切粉の予熱温度を、400℃から570℃、好ましくは450℃から550℃、最も好ましくは490℃±20℃、に制御することを特徴とするアルミニウム切粉の溶解方法。 In the method for melting aluminum chips according to any one of claims 1 to 3, the preheating temperature of the dry chips is set to 400 ° C. to 570 ° C., preferably 450 ° C. to 550 ° C., most preferably 490 ° C. ± 20 ° C. A method for dissolving aluminum chips, which comprises controlling to.
  5. 該切粉の予熱処理において、該予備処理用のガス温度を550℃以下に規制することにより、該切粉の融点を超えないように加熱することを特徴とする請求項4記載のアルミニウム切粉の溶解方法。 The aluminum chip according to claim 4, wherein in the preheat treatment of the chip, the gas temperature for the pretreatment is regulated to 550 ° C. or lower so that the chip is heated so as not to exceed the melting point of the chip. Dissolution method.
  6. 前記回転円筒体が黒鉛質又は炭化珪素質又は窒化ケイ素質又はアルミナ質又は窒化アルミニウム質の保持溶湯に侵され難いセラミックスで構成されることを特徴とする請求項1から5のいずれかに記載のアルミニウム切粉の溶解方法。 The invention according to any one of claims 1 to 5, wherein the rotating cylinder is made of a ceramic that is not easily attacked by a holding molten metal of graphite, silicon carbide, silicon nitride, alumina, or aluminum nitride. How to dissolve aluminum chips.
  7. 前記回転円筒体から保持溶湯中へ該ドライ切粉を装入する際に、該回転円筒体内部を上下運動する該ドライ切粉の押込み器具の先端部が該回転円筒体内に在る保持溶湯に触れないように、該保持溶湯と押込み器具の先端部との間に該ドライ切粉の層を介在させた状態で該ドライ切粉を保持溶湯中に装入することを特徴とする請求項1から6のいずれかに記載のアルミニウム切粉の溶解方法。 When the dry chips are charged into the holding molten metal from the rotating cylinder, the tip of the dry chip pushing device that moves up and down inside the rotating cylinder is in the holding molten metal inside the rotating cylinder. Claim 1 is characterized in that the dry chips are charged into the holding molten metal with a layer of the dry chips interposed between the holding molten metal and the tip of the pressing device so as not to touch the holding molten metal. The method for dissolving aluminum chips according to any one of 1 to 6.
  8. 前記回転円筒体の保持溶湯浸漬領域の側壁に複数の貫通孔を設けて、該回転円筒体内部の該ドライ粉と外部の保持溶湯との熱交換を促進して該ドライ切粉の溶解を促進し得ることを特徴とする請求項1から7のいずれかに記載のアルミニウム切粉の溶解方法。 A plurality of through holes are provided in the side wall of the holding molten metal immersion region of the rotating cylinder to promote heat exchange between the dry powder inside the rotating cylinder and the external holding molten metal to promote the dissolution of the dry chips. The method for dissolving aluminum chips according to any one of claims 1 to 7, wherein the aluminum chips can be melted.
  9. 該切粉の溶解方法において使用する保持溶湯の温度が、650℃から800℃の範囲、好ましくは680℃から750℃の範囲、最も好ましくは700℃から720℃の範囲に制御することを特徴とする請求項1から8のいずれかに記載のアルミニウム切粉の溶解方法 The temperature of the holding molten metal used in the method for dissolving chips is controlled in the range of 650 ° C to 800 ° C, preferably in the range of 680 ° C to 750 ° C, and most preferably in the range of 700 ° C to 720 ° C. The method for dissolving aluminum chips according to any one of claims 1 to 8.
  10. 請求項1から9記載のアルミニウム切粉の溶解方法を実施してアルミニウム溶湯を得る装置であって、含水切削油が付着している該切粉を少なくとも含水切削油の水分が蒸発し終える温度から、油分が分解・蒸発する温度までの温度範囲に、該切粉を大気から遮断して予熱する予熱装置と、該ドライ切粉をアルミニウム切粉溶解炉の保持溶湯中に押込み装入して溶解してアルミニウム溶湯を得る溶解装置と、からなるアルミニウム切粉の溶解装置において、該溶解装置が、アルミニウム溶解炉と、該ドライ切粉を保持溶湯中に供給する深さ方向に部分的に浸漬し、且つ保持溶湯に侵食されないセラミックスからなる回転円筒体と、該ドライ切粉を該円筒体内部に供給する該ドライ切粉押込みシリンダと、から構成されることを特徴とするアルミニウム切粉の溶解装置。 A device for obtaining molten aluminum by carrying out the method for melting aluminum chips according to claims 1 to 9, wherein the chips to which water-containing cutting oil is attached are at least from a temperature at which the water content of the water-containing cutting oil finishes evaporating. A preheating device that shields the chips from the atmosphere and preheats them within the temperature range up to the temperature at which the oil decomposes and evaporates, and the dry chips are pushed into the holding molten metal of the aluminum chip melting furnace and melted. In a melting device for aluminum chips, which comprises a melting device for obtaining molten aluminum, the melting device partially immerses the aluminum melting furnace and the dry chips in the depth direction for supplying the dry chips into the holding molten metal. A device for melting aluminum chips, which comprises a rotating cylinder made of ceramics that is not eroded by the holding molten metal, and a dry chip pushing cylinder that supplies the dry chips to the inside of the cylinder. ..
  11. 前記回転円筒体の円筒部に、軸方向に沿った凹凸、又は複数の突状部を設けたことを特徴とする請求項10に記載のアルミニウム切粉の溶解装置。 The aluminum chip melting device according to claim 10, wherein the cylindrical portion of the rotating cylinder is provided with irregularities along the axial direction or a plurality of protruding portions.
  12. 前記回転円筒体の先端排出部に複数のラック形状の歯型を設けたことを特徴とする請求項10又は11に記載のアルミニウム切粉の溶解装置。 The aluminum chip melting device according to claim 10 or 11, wherein a plurality of rack-shaped tooth molds are provided at the tip discharging portion of the rotating cylinder.
  13. 前記回転円筒体の排出端近くの内部に単数又は複数個所に交差したセラミックスの棒状部を設けたことを特徴とする請求項10から12のいずれかに記載のアルミニウム切粉の溶解装置。 The aluminum chip melting apparatus according to any one of claims 10 to 12, wherein a rod-shaped portion of ceramics crossed at a single point or a plurality of places is provided inside near the discharge end of the rotating cylinder.
  14. 前記回転円筒体の筒部に複数の保持溶湯が接触又は侵入できる貫通孔を設けたことを特徴とする請求項10から13のいずれかに記載のアルミニウム切粉の溶解装置。 The aluminum chip melting device according to any one of claims 10 to 13, wherein the tubular portion of the rotating cylinder is provided with a through hole through which a plurality of holding molten metal can come into contact with or enter.
  15. 前記回転円筒体が黒鉛質又は炭化珪素質又は窒化ケイ素質又はアルミナ質又は窒化アルミニウム質の保持溶湯に侵され難いセラミックスで構成されることを特徴とする請求項10から14のいずれかに記載のアルミニウム切粉の溶解装置 13. Aluminum chip melting device
PCT/JP2021/003027 2020-05-22 2021-01-28 Method and apparatus for melting aluminum cutting chips WO2021235008A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-089369 2020-05-22
JP2020089369A JP6975289B1 (en) 2020-05-22 2020-05-22 Aluminum chip melting method and melting device

Publications (1)

Publication Number Publication Date
WO2021235008A1 true WO2021235008A1 (en) 2021-11-25

Family

ID=78708835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/003027 WO2021235008A1 (en) 2020-05-22 2021-01-28 Method and apparatus for melting aluminum cutting chips

Country Status (2)

Country Link
JP (1) JP6975289B1 (en)
WO (1) WO2021235008A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115652126A (en) * 2022-11-14 2023-01-31 日铭电脑配件(上海)有限公司 Aluminum-based silicon carbide composite material and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011231349A (en) * 2010-04-23 2011-11-17 Toyo Aluminium Kk Method and apparatus for dissolving aluminum powder
US20150368751A1 (en) * 2012-07-04 2015-12-24 ReMelt Scientific, Inc. System and method for melting metal chips
WO2017051586A1 (en) * 2015-09-26 2017-03-30 株式会社広築 Aluminum chip melting apparatus and melting method
JP2017524539A (en) * 2014-08-04 2017-08-31 パイロテック インコーポレイテッド Equipment for refining molten aluminum alloys

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011231349A (en) * 2010-04-23 2011-11-17 Toyo Aluminium Kk Method and apparatus for dissolving aluminum powder
US20150368751A1 (en) * 2012-07-04 2015-12-24 ReMelt Scientific, Inc. System and method for melting metal chips
JP2017524539A (en) * 2014-08-04 2017-08-31 パイロテック インコーポレイテッド Equipment for refining molten aluminum alloys
WO2017051586A1 (en) * 2015-09-26 2017-03-30 株式会社広築 Aluminum chip melting apparatus and melting method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115652126A (en) * 2022-11-14 2023-01-31 日铭电脑配件(上海)有限公司 Aluminum-based silicon carbide composite material and preparation method thereof
CN115652126B (en) * 2022-11-14 2024-01-23 日铭电脑配件(上海)有限公司 Aluminum-based silicon carbide composite material and preparation method thereof

Also Published As

Publication number Publication date
JP2021183712A (en) 2021-12-02
JP6975289B1 (en) 2021-12-01

Similar Documents

Publication Publication Date Title
US3917479A (en) Furnaces
JP6899407B2 (en) Aluminum chip melting method and melting device
JP2008082640A (en) Valuable metal recovering device
WO2021235008A1 (en) Method and apparatus for melting aluminum cutting chips
CN1087419A (en) METAL HEATING PROCESS and method of smelting and apparatus for melting metal
CN109642773B (en) Waste immersion device
US8900341B2 (en) Method and system for producing an aluminum—silicon alloy
JP4403452B2 (en) Method of melting the material to be melted
Tzonev et al. Recovering aluminum from aluminum dross in a DC electric-arc rotary furnace
EP3362755B1 (en) Furnace
JP2002146447A (en) Degassing apparatus for non-ferrous metal
CN1161481C (en) Filter for eliminating non-metallic foreign impurity in aluminium melt
CN108463680B (en) Metal melting device
JP3535727B2 (en) Plasma melting furnace and operating method thereof
JP4243711B2 (en) Crucible furnace
JP3505065B2 (en) Plasma melting furnace and operating method thereof
US20230055448A1 (en) Mechanical auger recirculation well
RU166321U1 (en) INSTALLATION OF ELECTRIC SLAG RELEASING OF METAL CHIP
JP2002013719A (en) Ash melting furnace and method of melting ashes
RU2246805C1 (en) Water-cooled and induction heated crucible
JP4174716B2 (en) Salt discharge method in ash melting furnace
RU2483128C2 (en) Method of removing impurities from aluminium and furnace to this end
JPH1030884A (en) Crucible furnace type aluminum melting equipment
CN1030792A (en) The recovery of vanadium oxide
JPH11211056A (en) Ash supplying apparatus for ash treating electric melting furnace of refuse treating facility

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21809754

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21809754

Country of ref document: EP

Kind code of ref document: A1