WO2021234995A1 - Optical unit - Google Patents

Optical unit Download PDF

Info

Publication number
WO2021234995A1
WO2021234995A1 PCT/JP2020/048421 JP2020048421W WO2021234995A1 WO 2021234995 A1 WO2021234995 A1 WO 2021234995A1 JP 2020048421 W JP2020048421 W JP 2020048421W WO 2021234995 A1 WO2021234995 A1 WO 2021234995A1
Authority
WO
WIPO (PCT)
Prior art keywords
case
holder
convex portion
optical unit
axis direction
Prior art date
Application number
PCT/JP2020/048421
Other languages
French (fr)
Japanese (ja)
Inventor
敬之 岩瀬
智浩 江川
京史 大坪
一宏 佐齋
元紀 田中
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to JP2022524874A priority Critical patent/JPWO2021234995A1/ja
Publication of WO2021234995A1 publication Critical patent/WO2021234995A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules

Definitions

  • the present invention relates to an optical unit.
  • Image blur may occur due to camera shake when shooting still images or moving images with the camera. For this reason, an image stabilization device has been put into practical use to enable clear shooting with image blur prevention.
  • the image stabilization device can solve the problem caused by the camera shake by correcting the position and posture of the camera module according to the camera shake.
  • Patent Document 1 describes a vibration isolation mechanism that rotates a prism by rotating an X-axis member and a Y-axis member using a motor and a gear, respectively.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an optical unit that stabilizes the driving behavior of rotating an optical element.
  • the optical unit from the first aspect of the present invention includes an optical element, a holder, a case, a first swing mechanism, a second swing mechanism, a first convex portion including a first elastic portion, and a first. It is provided with a second convex portion including two elastic portions.
  • the optical element has a reflecting surface that reflects light in the first axis direction.
  • the holder holds the optical element.
  • the case swingably supports the holder.
  • the first swing mechanism swings the holder around the first swing axis with respect to the case.
  • the second swing mechanism swings the holder around a second swing axis orthogonal to the first swing axis with respect to the case.
  • the holder has a first accommodating portion and a second accommodating portion.
  • the first accommodating portion is provided on the surface facing the first case facing the case, and accommodates at least a part of the first convex portion.
  • the second accommodating portion is provided on the surface facing the second case facing the case, and accommodates at least a part of the second convex portion.
  • the case has a first recess and a second recess.
  • the first concave portion is provided on the first holder facing surface facing the first case facing surface of the holder, and accommodates at least a part of the first convex portion.
  • the second concave portion is provided on the second holder facing surface facing the second case facing surface of the holder, and accommodates at least a part of the second convex portion.
  • the first elastic portion is provided in at least one of the first accommodating portion and the first recess.
  • the second elastic portion is provided in at least one of the second accommodating portion and the second recess.
  • the first convex portion is in contact with the first accommodating portion and the first concave portion.
  • the second convex portion is in contact with the second accommodating portion and the second concave portion.
  • the optical unit of the present invention can, for example, stabilize the driving behavior of rotating an optical element.
  • FIG. 1 is a schematic perspective view of a smartphone provided with the optical unit of the present embodiment.
  • FIG. 2a is a schematic perspective view of the optical unit of the present embodiment.
  • FIG. 2b is a schematic perspective view of the optical unit, the corresponding lens module, and the image pickup device of the present embodiment.
  • FIG. 3a is a schematic exploded perspective view of an optical element, a holder, and a case in the optical unit of the present embodiment.
  • FIG. 3b is a schematic exploded perspective view of an optical element, a holder, and a case in the optical unit of the present embodiment.
  • FIG. 4a is a schematic perspective view of the case, the first swing mechanism, and the second swing mechanism in the optical unit of the present embodiment.
  • FIG. 4b is a schematic perspective view of the case, the first swing mechanism, and the second swing mechanism in the optical unit of the present embodiment.
  • FIG. 5a is a schematic diagram for explaining the engagement between the first convex portion of the holder and the first concave portion of the case in the optical unit of the present embodiment.
  • FIG. 5b is a schematic diagram for explaining the engagement between the second convex portion of the holder and the second concave portion of the case in the optical unit of the present embodiment.
  • FIG. 6a is a cross-sectional view taken along the line VIa-VIa of FIG. 2a.
  • FIG. 6b is a cross-sectional view taken along the line VIb-VIb of FIG. 2a.
  • FIG. 7a is a partially enlarged view of the dotted line portion C1 illustrated in FIG. 6a.
  • FIG. 7b is a partially enlarged view of the dotted line portion C2 shown in FIG. 6a.
  • FIG. 8a is a diagram showing a second embodiment of FIG. 7a.
  • FIG. 8b is a diagram showing a second embodiment of FIG. 7b.
  • FIG. 9a is a diagram showing a third embodiment of FIG. 7a.
  • FIG. 9b is a diagram showing a third embodiment of FIG. 7b.
  • FIG. 10a is a schematic diagram for explaining the swing by the first swing mechanism in the optical unit of the present embodiment.
  • FIG. 10b is a schematic diagram for explaining the swing by the second swing mechanism in the optical unit of the present embodiment.
  • FIG. 10a is a schematic diagram for explaining the swing by the first swing mechanism in the optical unit of the present embodiment.
  • FIG. 10b is a schematic diagram for explaining the swing by the second swing mechanism in the optical unit of the present embodiment.
  • FIG. 11a is a schematic diagram for explaining the swing by the first swing mechanism in the optical unit of the present embodiment.
  • FIG. 11b is a schematic diagram for explaining the swing by the first swing mechanism in the optical unit of the present embodiment.
  • FIG. 11c is a schematic diagram for explaining the swing by the first swing mechanism in the optical unit of the present embodiment.
  • FIG. 12a is a schematic diagram for explaining the swing by the second swing mechanism in the optical unit of the present embodiment.
  • FIG. 12b is a schematic diagram for explaining the swing by the second swing mechanism in the optical unit of the present embodiment.
  • FIG. 12c is a schematic diagram for explaining the swing by the second swing mechanism in the optical unit of the present embodiment.
  • FIG. 13 is a schematic perspective view of the optical unit of the present embodiment.
  • FIG. 14 is a schematic perspective view of the optical unit of the present embodiment.
  • FIG. 15a is a schematic exploded perspective view of an optical element, a holder, and a case in the optical unit of the second embodiment.
  • FIG. 15b is a schematic exploded perspective view of an optical element, a holder, and a case in the optical unit of the second embodiment.
  • FIG. 16a is a schematic perspective view of the case, the first swing mechanism, and the second swing mechanism in the optical unit of the second embodiment.
  • FIG. 16b is a schematic perspective view of the case, the first swing mechanism, and the second swing mechanism in the optical unit of the second embodiment.
  • FIG. 17a is a schematic diagram for explaining the swing by the first swing mechanism in the optical unit of the second embodiment.
  • FIG. 17b is a schematic diagram for explaining the swing by the second swing mechanism in the optical unit of the second embodiment.
  • FIG. 18a is a schematic perspective view of a smartphone provided with the optical unit of the present embodiment.
  • FIG. 18b is a schematic perspective view of an optical module including the optical unit of the present embodiment.
  • the optical unit 100 reflects the incident light in a specific direction.
  • the optical unit 100 is suitably used, for example, as an optical component of a smartphone.
  • FIG. 1 is a schematic perspective view of a smartphone 200 provided with the optical unit 100 of the present embodiment.
  • the optical unit 100 can be configured to be thin. As a result, the length (thickness) of the smartphone 200 along the z-axis direction can be made thin.
  • the application of the optical unit 100 is not limited to the smartphone 200, and can be used for various devices such as cameras and videos without particular limitation.
  • the smartphone 200 includes a lens 202 into which light is incident.
  • the optical unit 100 is arranged inside the lens 202.
  • Light L is incident on the smartphone 200 from the outside through the lens 202 in the incident direction, and a subject image is imaged based on the light that has passed through the optical unit 100.
  • FIG. 2a is a schematic perspective view of the optical unit 100 of the present embodiment
  • FIG. 2b is a schematic perspective view of the optical unit 100 of the present embodiment and the corresponding lens module 210 and the image pickup element 220.
  • the optical unit 100 reflects incident light La incident along the z-axis direction as reflected light Lb in the x-axis direction.
  • the x-axis direction, the y-axis direction, and the z-axis direction may be described as the first axis direction, the second axis direction, and the third axis direction, respectively.
  • the shafts that are the reference of the swing of the optical unit 100 may be referred to as a first swing shaft and a second swing shaft.
  • the first swing axis is an axis perpendicular to the incident light La and the reflected light Lb (that is, parallel to the y-axis direction), and the second swing axis is parallel to either the incident light La or the reflected light Lb (that is, parallel to the y-axis direction). That is, it is parallel to the x-axis direction or the z-axis direction).
  • the second swing axis is parallel to the reflected light Lb (that is, parallel to the z-axis direction).
  • the optical unit 100 includes an optical element 110, a holder 120, a case 130, a first swing mechanism 140, and a second swing mechanism 150.
  • the second swing mechanism 150 is located on the ⁇ x direction side of the optical element 110, but the first swing mechanism 140 cannot be visually recognized from the outside of the optical unit 100. ..
  • the first swing mechanism 140 is located on the ⁇ z direction side with respect to the optical element 110 and the holder 120.
  • the optical element 110 has a reflecting surface 110r that reflects light in the x-axis direction.
  • the reflection surface 110r is arranged obliquely with respect to each of the xy plane and the yz plane.
  • the reflecting surface 110r reflects the incident light La incident along the ⁇ z axis direction as the reflected light Lb in the + x axis direction.
  • the optical element 110 includes a prism.
  • the prism is made of a substantially single transparent material with a higher refractive index than air. Since the optical element 110 includes a prism, the length of the optical path passing through the optical unit 100 can be shortened.
  • the holder 120 holds the optical element 110.
  • the holder 120 holds the optical element 110 from the surfaces located on both sides of the optical element 110 along the y-axis direction and the surfaces located on the ⁇ z axis direction side.
  • the holder 120 is made of resin.
  • the case 130 supports the holder 120 so as to be swingable.
  • the case 130 supports the holder 120 from both end portions in the y-axis direction.
  • the holder 120 swings with respect to the case 130.
  • the holder 120 swings with respect to the case 130 with respect to the y-axis.
  • the y-axis is also called the pitching axis.
  • the holder 120 swings with respect to the case 130 with respect to the z-axis.
  • the z-axis is also called the yawing axis.
  • the case 130 is made of resin or metal.
  • the first swing mechanism 140 is located on the ⁇ z direction side of the holder 120.
  • the first swing mechanism 140 swings the holder 120 with respect to the case 130 with respect to the y-axis direction.
  • the second swing mechanism 150 is located on the ⁇ x direction side of the holder 120.
  • the second swing mechanism 150 swings the holder 120 with respect to the case 130 with respect to the z-axis direction.
  • the optical unit 100 reflects the incident light La incident along the z-axis direction as reflected light Lb in the x-axis direction. After that, the reflected light Lb is received by the image pickup device 220 via the lens module 210 of the smartphone 200.
  • the lens module 210 may include various lenses depending on the application.
  • the holder 120 is swingably supported with respect to the case 130.
  • the holder 120 can swing with respect to the case 130 with reference to the y-axis and the z-axis, but swing with respect to the x-axis is suppressed.
  • FIGS. 3a and 3b are exploded perspective views of the optical element 110, the holder 120, and the case 130 in the optical unit 100 of the present embodiment.
  • the optical element 110 is mounted on the holder 120. Further, the holder 120 is mounted on the case 130 together with the optical element 110.
  • the optical element 110 has a substantially triangular prism shape.
  • the optical element 110 has a surface 110a, a surface 110b, a surface 110c, a surface 110d, and a surface 110e.
  • the normal of the surface 110a is parallel to the z-axis direction and faces the + z direction.
  • the surface 110b is connected to the surface 110a and is orthogonal to the surface 110a.
  • the normal of the surface 110b is parallel to the y-axis direction and faces the + y direction.
  • the surface 110c is connected to the surface 110a and is orthogonal to the surface 110a.
  • the normal of the surface 110c is parallel to the y-axis direction and faces the ⁇ y direction.
  • the surface 110d is connected to the surface 110a, the surface 110b and the surface 110c.
  • the surface 110d intersects the xy plane diagonally.
  • the surface 110d is the reflection surface 110r of FIG. 2a.
  • the surface 110e is connected to the surface 110a, the surface 110b, the surface 110c and the surface 110d, and is orthogonal to the surface 110a, the surface 110b and the surface 110c.
  • the normal of the surface 110e is parallel to the x-axis direction and faces the + x direction.
  • the holder 120 has a substantially rectangular parallelepiped shape with a part of the central portion removed.
  • the holder 120 has a surface 120a, a surface 120b, a surface 120c, a surface 120d, a surface 120e, a surface 120f, a surface 120g, a surface 120h and a surface 120i.
  • the surface 120a intersects the xy plane diagonally.
  • the length of the surface 120a in the y direction is substantially equal to the length of the optical element 110 in the y direction, but the length of the surface 120a in the y direction is slightly larger than the length of the optical element 110 in the y direction.
  • the surface 120b is connected to the surface 120a and is orthogonal to the surface 120a.
  • the normal of the surface 120b is parallel to the y-axis direction and faces the ⁇ y direction.
  • the surface 120c faces the surface 120b.
  • the surface 120c is connected to the surface 120a and is orthogonal to the surface 120a.
  • the normal of the surface 120c is parallel to the y-axis direction and faces the + y direction.
  • the optical element 110 is mounted on the surfaces 120a, 120b and 120c of the holder 120.
  • the surfaces 120a, 120b and 120c form the inner peripheral surface of the holder 120.
  • the optical element 110 is attached to the surface 120a of the holder 120.
  • the surface 120a of the holder 120 may be referred to as an optical element mounting surface.
  • the normal of the surface 120d is parallel to the z-axis direction and faces the + z direction.
  • the surface 120d is divided into a surface 120d1 and a surface 120d2 by the surface 120a.
  • the surface 120d1 is located on the + y direction side with respect to the surface 120a, and the surface 120d2 is located on the ⁇ y direction side with respect to the surface 120a.
  • the surface 120e is connected to the surface 120d1 and is orthogonal to the surface 120d1.
  • the normal of the surface 120e is parallel to the y-axis direction and faces the + y direction.
  • the surface 120e of the holder 120 faces the case 130.
  • the surface 120e of the holder 120 may be referred to as a first case facing surface.
  • the surface 120f is connected to the surface 120d2 and is orthogonal to the surface 120d2.
  • the normal of the surface 120f is parallel to the y-axis direction and faces the ⁇ y direction.
  • the surface 120f of the holder 120 faces the case 130.
  • the surface 120f of the holder 120 may be referred to as a second case facing surface.
  • the surface 120g is connected to the surface 120a, the surface 120d1, the surface 120d2, the surface 120e and the surface 120f, and is orthogonal to the surface 120d1, the surface 120d2, the surface 120e and the surface 120f.
  • the normal of the surface 120g is parallel to the x-axis direction and faces the ⁇ x direction.
  • the surface 120h is connected to the surface 120e, the surface 120f and the surface 120g, and is orthogonal to the surface 120e, the surface 120f and the surface 120g.
  • the normal of the surface 120h is parallel to the z-axis direction and faces the ⁇ z direction.
  • the normal of the surface 120i is parallel to the x-axis direction and faces the + x direction.
  • the surface 120i is connected to the surface 120d, the surface 120e, the surface 120f and the surface 120h, and is orthogonal to the surface 120d, the surface 120e, the surface 120f and the surface 120h.
  • the surface 120i is divided into a surface 120i1 and a surface 120i2 by the surface 120a.
  • the surface 120i1 is located on the + y direction side with respect to the surface 120a, and the surface 120i2 is located on the ⁇ y direction side with respect to the surface 120a.
  • the holder 120 has a mounting portion 121, a first end portion 122a, a second end portion 122b, a first convex portion 125, and a second convex portion 126.
  • An optical element 110 is attached to the attachment portion 121.
  • the first end portion 122a is located on the + y direction side with respect to the mounting portion 121.
  • the second end portion 122b is located on the ⁇ y direction side with respect to the mounting portion 121.
  • the mounting portion 121 is located between the first end portion 122a and the second end portion 122b.
  • the surface 120e is the outer surface of the first end portion 122a on the + y direction side. As described above, the surface 120e is the first case facing surface facing the case 130.
  • the first convex portion 125 is provided on the first case facing surface (surface 120e) facing the case 130. Here, the first convex portion 125 is located at the center of the first case facing surface (plane 120e). When the holder 120 is attached to the case 130, the first convex portion 125 projects toward the case 130.
  • the surface 120f is the outer surface of the second end portion 122b on the ⁇ y direction side. As described above, the surface 120f is a second case facing surface facing the case 130.
  • the second convex portion 126 is provided on a second case facing surface (surface 120f) facing the case 130. Here, the second convex portion 126 is located at the center of the second case facing surface (plane 120f). When the holder 120 is attached to the case 130, the second convex portion 126 projects toward the case 130.
  • the case 130 is a substantially rectangular parallelepiped shape in which a smaller rectangular parallelepiped shape is partially removed from two adjacent surfaces.
  • the case 130 has an inner peripheral surface 132 and an outer peripheral surface 134.
  • the inner peripheral surface 132 has a surface 132a, a surface 132b, a surface 132c, and a surface 132d.
  • the normal of surface 132a is parallel to the x-axis direction and points in the + x direction.
  • the surface 132b is connected to the surface 132a and is orthogonal to the surface 132a.
  • the normal of the surface 132b is parallel to the y-axis direction and faces the ⁇ y direction.
  • the surface 132c connects to the surface 132a and is orthogonal to the surface 132a.
  • the normal of the surface 132c is parallel to the y-axis direction and faces the + y direction.
  • the surface 132d is connected to the surface 132a, the surface 132b and the surface 132c, and is orthogonal to the surface 132a, the surface 132b and the surface 132c.
  • the normal of the surface 132d is parallel to the z-axis direction and faces the + y direction.
  • the holder 120 is mounted on the inner peripheral surface 132 of the case 130.
  • the surface 120g, the surface 120e, the surface 120f and the surface 120h of the holder 120 face the surface 132a, the surface 132b, the surface 132c and the surface 132d of the case 130, respectively. ..
  • the surface 120e of the holder 120 may be described as the first case facing surface, and the surface 120f of the holder 120 may be described as the second case facing surface.
  • the surface 132b corresponding to the surface 120e of the holder 120 may be described as the first holder facing surface, and the surface 132c corresponding to the surface 120f of the holder 120 may be referred to as the second holder facing surface. May be described as a face.
  • the outer peripheral surface 134 has a surface 134a, a surface 134b, a surface 134c, a surface 134d, a surface 134e, and a surface 134f.
  • the normal of surface 134a is parallel to the z-axis direction and points in the + z direction.
  • the surface 134a is connected to each of the surface 132a, the surface 132b and the surface 132c, and is orthogonal to the surface 132a, the surface 132b and the surface 132c.
  • the surface 134b is connected to the surface 134a and is orthogonal to the surface 134a.
  • the normal of the surface 134b is parallel to the y-axis direction and faces the + y direction.
  • the surface 134c connects to the surface 134a and is orthogonal to the surface 134a.
  • the normal of the surface 134c is parallel to the y-axis direction and faces the ⁇ y direction.
  • the surface 134d is connected to the surface 134a, the surface 134b and the surface 134c, and is orthogonal to the surface 134a, the surface 134b and the surface 134c.
  • the normal of the surface 134d is parallel to the x-axis direction and points in the ⁇ x direction.
  • the surface 134e connects to the surface 134b, the surface 134c and the surface 134d and is orthogonal to the surface 134b, the surface 134c and the surface 134d.
  • the normal of the surface 134e is parallel to the z-axis direction and faces the ⁇ z direction.
  • the surface 134f is connected to the surface 134b, the surface 134c and the surface 134e, and is orthogonal to the surface 134b, the surface 134c and the surface 134e. Further, the surface 134f is connected to each of the surface 132a, the surface 132b and the surface 132c, and is orthogonal to the surface 132a, the surface 132b and the surface 132c. The normal of the surface 134f is parallel to the x-axis direction and faces the + x direction.
  • the case 130 has a first recess 135.
  • the first recess 135 is provided on the first holder facing surface (132b) facing the first case facing surface (120e) of the holder 120.
  • the first concave portion 135 accommodates at least a part of the first convex portion 125.
  • the first recess 135 extends in the x-axis direction.
  • the length of the first concave portion 135 in the x-axis direction is larger than the length of the first convex portion 125 in the x-axis direction.
  • the case 130 has a second recess 136.
  • the second recess 136 is provided on the second holder facing surface (132c) facing the second case facing surface (120f) of the holder 120.
  • the second concave portion 136 accommodates at least a part of the second convex portion 126.
  • the second recess 136 extends in the x-axis direction.
  • the length of the second concave portion 136 in the x-axis direction is larger than the length of the second convex portion 126 in the x-axis direction.
  • the first convex portion 125 projects from the first end portion 122a toward the case 130. Further, the first case facing surface (surface 120e) provided with the first convex portion 125 faces the first holder facing surface (surface 132b) provided with the first concave portion 135, and the first concave portion 135 is the first. Contains at least a portion of one convex portion 125. Therefore, the first convex portion 125 is movable in the housed first concave portion 135.
  • the second convex portion 126 projects from the second end portion 122b toward the case 130. Further, the second case facing surface (surface 120f) provided with the second convex portion 126 faces the second holder facing surface (surface 132c) provided with the second concave portion 136, and the second concave portion 136 faces the second holder facing surface (surface 132c). 2 Contain at least a part of the convex portion 126. Therefore, the second convex portion 126 is movable within the housed second concave portion 136.
  • FIGS. 3a to 4b are schematic perspective views of the holder 120, the first swing mechanism 140, and the second swing mechanism 150 in the optical unit 100 of the present embodiment.
  • the case 130 is omitted except for the first coil 144 and the second coil 154.
  • the first swing mechanism 140 includes a first magnet 142 and a first coil 144.
  • the first magnet 142 is provided on one of the holder 120 and the case 130, and the first coil 144 is provided on the other of the holder 120 and the case 130 with respect to the first magnet 142.
  • one of the first magnet 142 and the first coil 144 is provided on the surface 120h of the holder 120, and the other of the first magnet 142 and the first coil 144 faces the surface 132d or the surface 132d of the case 130. It is arranged inside the case 130.
  • the surface 120h of the holder 120 may be referred to as a first rocking mechanism mounting surface.
  • the first magnet 142 is attached to the holder 120. Specifically, the first magnet 142 is attached to the surface 120h of the holder 120.
  • the first magnet 142 has an N pole 142n and an S pole 142s.
  • the north pole 142n and the south pole 142s each extend in the y direction and are arranged side by side in the x direction.
  • the first coil 144 is provided in the case 130. By switching the direction of the current flowing through the first coil 144, the first magnet 142 receives a force along the x-axis direction.
  • the second swing mechanism 150 includes a second magnet 152 and a second coil 154.
  • the second magnet 152 is provided on one of the holder 120 and the case 130, and the second coil 154 is provided on the other of the holder 120 and the case 130 with respect to the second magnet 152.
  • one of the second magnet 152 and the second coil 154 is provided on the surface 120g of the holder 120, and the other of the second magnet 152 and the second coil 154 faces the surface 132a or the surface 132a of the case 130. It is arranged inside the case 130.
  • the surface 120 g of the holder 120 may be referred to as a second rocking mechanism mounting surface.
  • the second magnet 152 is attached to the holder 120. Specifically, the second magnet 152 is attached to the surface 120 g of the holder 120.
  • the second magnet 152 has an N pole 152n and an S pole 152s.
  • the N pole 152n and the S pole 152s each extend in the z direction and are arranged side by side in the y direction.
  • the second coil 154 is provided in the case 130. By switching the direction of the current flowing through the second coil 154, the second magnet 152 receives a force along the y-axis direction.
  • the holder 120 includes the first magnet 142 and the second magnet 152
  • the case 130 includes the first coil 144 and the second coil 154.
  • the swing of the holder 120 with respect to the case 130 can be easily controlled by passing a current through the first coil 144 and / or the second coil 154 of the case 130.
  • first swing mechanism mounting surface (surface 120h) is connected to the first case facing surface (surface 120e) and the second case facing surface (surface 120f). Further, the first rocking mechanism mounting surface (surface 120h) has a normal line parallel to the z-axis direction. Further, the second swing mechanism mounting surface (surface 120g) is connected to the first case facing surface (surface 120e) and the second case facing surface (surface 120f). The second rocking mechanism mounting surface (surface 120 g) has a normal line parallel to the x-axis direction.
  • first magnet 142 and the first coil 144 of the first swing mechanism 140 is mounted on the first swing mechanism mounting surface (surface 120h).
  • second magnet 152 and the second coil 154 of the second swing mechanism 150 is mounted on the second swing mechanism mounting surface (surface 120 g). Since the first swing mechanism 140 and the second swing mechanism 150 are mounted on mounting surfaces (surfaces 120h, 120g) having normals parallel to the x-axis direction and the y-axis direction, the holder 120 is attached to the case 130. Can swing efficiently.
  • the optical element 110 is located on the optical element mounting surface (surface 120a) of the holder 120.
  • the optical element mounting surface (surface 120a) is located between the first case facing surface (surface 120e) and the second case facing surface (surface 120f). Further, the optical element mounting surface (surface 120a) is arranged obliquely with respect to the first rocking mechanism mounting surface (surface 120h) and the second rocking mechanism mounting surface (surface 120g). Therefore, it is possible to effectively suppress the optical axis of the reflected light from being displaced by the optical element 110 mounted on the optical element mounting surface (surface 120a).
  • the first convex portion 125 of the holder 120 is housed in the first concave portion 135 of the case 130, and the second convex portion 126 of the holder 120 is housed in the second concave portion 136 of the case 130.
  • FIG. 5a is a schematic diagram for explaining the engagement between the first convex portion 125 of the holder 120 and the first concave portion 135 of the case 130 in the optical unit 100 of the present embodiment.
  • the first convex portion 125 projects from the surface 120e of the holder 120.
  • the first convex portion 125 has a partially spherical shape.
  • the first convex portion 125 has a hemispherical shape.
  • the first convex portion 125 does not have to have a hemispherical shape.
  • the first convex portion 125 preferably has a curved surface shape.
  • the first convex portion 125 may have a shape in which an R surface is provided around a rectangular plane.
  • the first concave portion 135 accommodates at least a part of the first convex portion 125.
  • the first recess 135 has a first side surface 135a, a second side surface 135b, and a bottom surface 135c.
  • the first side surface 135a is located on one side in the z-axis direction with respect to the first convex portion 125.
  • the second side surface 135b is located on the other side in the z-axis direction with respect to the first convex portion 125.
  • the bottom surface 135c connects the first side surface 135a of the first recess 135 and the second side surface 135b of the first recess 135.
  • “connection” simply indicates a connected state. Therefore, the operation of connecting is not required in the manufacturing process.
  • the first side surface 135a and the second side surface 135b may be connected without a boundary line that clearly distinguishes them.
  • the first side surface 135a extends parallel to the x-axis direction.
  • the second side surface 135b extends in parallel with the x-axis direction.
  • the first side surface 135a and the second side surface 135b are parallel to each other.
  • the first side surface 135a and the second side surface 135b do not have to be parallel.
  • the first recess 135 may be V-shaped with the bottom surface 135c as a valley and the first side surface 135a and the second side surface 135b connected to each other. That is, the first side surface 135a may be inclined downward from one side in the z-axis direction from the first holder facing surface (132b) toward the connection point 135c with a constant inclination. Further, the second side surface 135b may be inclined upward from the other side in the z-axis direction from the first holder facing surface (132b) toward the connection point 135c with a constant inclination.
  • connection portion 135c of the first recess 135 may extend in the z-axis direction.
  • the first side surface 135a and the first side surface 135b have gentle slopes with respect to the z-axis direction, as compared with the form having no surface extending in the z-axis direction.
  • the first side surface 135a or the second side surface 135b may include a curved surface.
  • the cross-sectional shape is a part of a circle, and the boundary between the first side surface 135a and the second side surface 135b does not have to be clear.
  • the boundary between the first side surface 135a and the bottom surface 135c is arcuate, and the boundary between the second side surface 135b and the bottom surface 135c is also arcuate. Therefore, the depth of the bottom surface 135c (distance to the bottom surface 135c with respect to the surface 132b) changes depending on the position in the x direction.
  • the bottom surface 135c is the deepest in the center of the first side surface 135a in the x direction.
  • the bottom surface 135c has a partially spherical shape.
  • the bottom surface 135c has a curved surface shape when viewed from the front from the z-axis direction.
  • the curved surface of the bottom surface 135c may be defined by a constant radius of curvature.
  • the curved surface of the bottom surface 135c matches the shape of the first convex portion 125.
  • FIG. 5b is a schematic diagram for explaining the engagement between the second convex portion 126 of the holder 120 and the second concave portion 136 of the case 130 in the optical unit 100 of the present embodiment.
  • the second convex portion 126 projects from the surface 120f of the holder 120.
  • the second convex portion 126 has a partially spherical shape.
  • the second convex portion 126 has a hemispherical shape.
  • the second convex portion 126 has a hemispherical shape.
  • the second convex portion 126 does not have to have a hemispherical shape.
  • the second convex portion 126 preferably has a curved surface shape.
  • the second convex portion 126 may have a shape in which an R surface is provided around a rectangular plane.
  • the second concave portion 136 accommodates at least a part of the second convex portion 126.
  • the second recess 136 has a first side surface 136a, a second side surface 136b, and a bottom surface 136c.
  • the first side surface 136a is located on one side in the z-axis direction with respect to the second convex portion 126.
  • the second side surface 136b is located on the other side in the z-axis direction with respect to the second convex portion 126.
  • the bottom surface 136c connects the first side surface 136a of the second recess 136 and the second side surface 136b of the second recess 136.
  • “connection" simply indicates a connected state. Therefore, the operation of connecting is not required in the manufacturing process.
  • the first side surface 136a and the second side surface 136b may be connected without a boundary line that clearly distinguishes them.
  • the first side surface 136a extends parallel to the x-axis direction.
  • the second side surface 136b extends in parallel with the x-axis direction.
  • the first side surface 136a and the second side surface 136b are parallel to each other.
  • the first side surface 136a and the second side surface 136b do not have to be parallel.
  • the first recess 136 may be V-shaped with the bottom surface 136c as a valley and the first side surface 136a and the second side surface 136b connected to each other. That is, the first side surface 136a may be inclined downward from one side in the z-axis direction from the first holder facing surface (132c) toward the connection point 136c with a constant inclination. Further, the second side surface 136b may be inclined upward from the other side in the z-axis direction from the first holder facing surface (132c) toward the connection point 136c with a constant inclination.
  • connection portion 136c of the first recess 136 may extend in the z-axis direction.
  • the first side surface 136a and the first side surface 136b have gentle slopes with respect to the z-axis direction, as compared with the form having no surface extending in the z-axis direction.
  • the first side surface 136a or the second side surface 136b may include a curved surface.
  • the cross-sectional shape is a part of a circle, and the boundary between the first side surface 136a and the second side surface 136b does not have to be clear.
  • the boundary between the first side surface 136a and the bottom surface 136c is arcuate, and the boundary between the second side surface 136b and the bottom surface 136c is also arcuate. Therefore, the depth of the bottom surface 136c (the distance to the bottom surface 136c with respect to the surface 132c) changes depending on the position in the x direction.
  • the bottom surface 136c is the deepest in the center of the first side surface 136a in the x direction.
  • the bottom surface 136c has a partially spherical shape.
  • the bottom surface 136c has a curved surface shape when viewed from the front from the z-axis direction.
  • the curved surface of the bottom surface 136c may be defined by a constant radius of curvature.
  • the curved surface of the bottom surface 136c matches the shape of the second convex portion 126.
  • the first recess 135 supports the first convex portion 125.
  • the first convex portion 125 can swing with respect to the first concave portion 135 with reference to the y-axis direction and the z-axis direction, but the swing with respect to the x-axis direction is suppressed.
  • the second recess 136 supports the second convex portion 126.
  • the second convex portion 126 can swing with respect to the second concave portion 136 with reference to the y-axis direction and the z-axis direction, but the swing with respect to the x-axis direction is suppressed.
  • the optical unit 100 can swing with respect to two of the three axial directions orthogonal to each other (for example, the y-axis direction and the z-axis direction), and the remaining one. Swinging with respect to the axial direction (for example, the x-axis direction) is regulated. As a result, it is possible to suppress the deviation of the optical axis of the reflected light with a simple configuration.
  • the first convex portion 125 has a partially spherical shape
  • the bottom surface 135c of the first concave portion 135 accommodating the first convex portion 125 has a partially spherical shape
  • the second convex portion 126 has a partially spherical shape
  • the bottom surface 135c of the second concave portion 136 accommodating the second convex portion 126 has a partially spherical shape. Therefore, the optical unit 100 can swing smoothly with reference to the y-axis direction and the z-axis direction.
  • FIGS. 6a to 7b an engaged configuration of the convex portion of the holder 120 and the concave portion of the case 130 in the optical unit 100 of the present embodiment will be described.
  • the first convex portion 125 and the second convex portion 126 of the holder 120 in the optical unit 100 of the present embodiment engage with the first concave portion 135 and the second concave portion 136 of the case 130, respectively.
  • the combined configuration will be described.
  • 6a is a cross-sectional view taken along the line VIa-VIa of FIG. 2a
  • FIG. 6b is a cross-sectional view taken along the line VIb-VIb of FIG. 2a
  • 7a is a partially enlarged view of the dotted line portion C1 shown in FIG. 6a
  • FIG. 7b is a partially enlarged view of the dotted line portion C2 shown in FIG. 6a.
  • the first convex portion 125 is housed in the first concave portion 135, and the second convex portion 126 is housed in the second concave portion 136.
  • the first convex portion 125 is a first sphere
  • the second convex portion 126 is a second sphere.
  • the first convex portion 125 is accommodated in the first accommodating portion 127
  • the second convex portion 126 is accommodated in the second accommodating portion 128.
  • half of the length of the first convex portion 125 and the second convex portion 126 along the y-axis direction is accommodated in the first accommodating portion 127 and the second accommodating portion 128.
  • first convex portion 125 and the second convex portion 126 may be accommodated in the first accommodating portion 127 and the second accommodating portion 128.
  • first convex portion 125 and the second convex portion 126 are stably accommodated in the first accommodating portion 127 and the second accommodating portion 128.
  • the first elastic portion 305 is provided in the first accommodating portion 127, and the second elastic portion 306 is provided in the second accommodating portion 128.
  • the first convex portion 125 and the first elastic portion 305 are separate members, and the second convex portion 126 and the second elastic portion 306 are separate members.
  • the first elastic portion 305 is formed of rubber, a leaf spring, a coil spring, a gel, or the like.
  • the width Wz1 of the first concave portion 135 along the z-axis direction is substantially equal to or slightly larger than the length Lz1 of the first convex portion 125 along the z-axis direction.
  • the first recess 135 extends in the x-axis direction with the width Wz1.
  • the width Wz2 of the second concave portion 136 along the z-axis direction is substantially equal to or slightly larger than the length Lz2 of the second convex portion 126 along the z-axis direction.
  • the second recess 136 extends in the x-axis direction with the width Wz2.
  • the width Wz2 of the second recess 136 is substantially equal to the width Wz1 of the first recess 135.
  • the position of the second recess 136 on the surface 132c of the case 130 is substantially equal to the position of the first recess 135 on the surface 132b of the case 130.
  • the first convex portion 125 and the second convex portion 126 are rotatable with respect to the y-axis direction.
  • the holder 120 can smoothly rotate with respect to the y-axis direction together with the first convex portion 125 and the second convex portion 126.
  • the first convex portion 125 and the second convex portion 126 are separate members from the first elastic portion 305 and the second elastic portion 306.
  • the first convex portion 125 and the second convex portion 126 can roll when rotating with respect to the y-axis direction. By rolling the first convex portion 125 and the second convex portion 126, the frictional resistance between the first concave portion 135 and the second concave portion 136 can be lowered.
  • the width Wz1 of the first concave portion 135 is substantially equal to or slightly larger than the length Lz1 of the first convex portion 125.
  • the width Wz2 of the second concave portion 136 is substantially equal to or slightly larger than the length Lz2 of the second convex portion 126. Therefore, the holder 120 cannot swing with respect to the x-axis direction. Even if the holder 120 receives a force that rotates clockwise with respect to the x-axis direction, the first convex portion 125 comes into contact with the second side surface 135b of the first concave portion 135, and the second convex portion 126 is the second.
  • the holder 120 cannot rotate clockwise because it comes into contact with the first side surface 136a of the recess 136. Similarly, even if the holder 120 receives a force that rotates counterclockwise with respect to the x-axis direction, the first convex portion 125 comes into contact with the first side surface 135a of the first concave portion 135, and the second convex portion 126 Contact the second side surface 135b of the second recess 136, so that the holder 120 cannot rotate counterclockwise.
  • the first convex portion 125 comes into contact with the first concave portion 135.
  • the first convex portion 125 comes into contact with the first elastic portion 305 provided in the first accommodating portion 127.
  • the length 305y of the first elastic portion 305 in the y-axis direction is longer than the length 127y accommodating the first elastic portion 305 of the first accommodating portion 127.
  • the first elastic portion 305 presses the first convex portion 125 toward the first concave portion 135.
  • the gap between the first concave portion 135 and the first convex portion 125 can be reduced. Therefore, it is possible to stabilize the driving behavior of rotating with reference to the y-axis direction.
  • the first convex portion 125 is housed in the first concave portion 135, and the second convex portion 126 is housed in the second concave portion 136. Further, the first convex portion 125 is accommodated in the first accommodating portion 127, and the second convex portion 126 is accommodated in the second accommodating portion 128.
  • the first elastic portion 305 is provided in the first accommodating portion 127, and the second elastic portion 306 is provided in the second accommodating portion 128.
  • the bottom surface 135c of the first recess 135 is arcuate when viewed from the z direction.
  • the radius of curvature ⁇ Rc1 of the bottom surface 135c is the radius when the length Lm of the straight line D connecting the end of the first convex portion 125 and the end of the second convex portion 126 is the diameter and the center of the straight line D is the center. It is approximately equal to R (length Lm / 2) or slightly larger than the radius R.
  • the length Lm of the straight line D is the length of the holder 120 along the y direction
  • the length Ly1 of the first convex portion 125 protruding from the holder 120 and the length of the second convex portion 126 protruding from the holder 120. It is almost equal to the sum with Ly2.
  • the bottom surface 136c of the second recess 136 is arcuate.
  • the radius of curvature ⁇ Rc2 of the bottom surface 136c is approximately equal to or slightly larger than the radius R (length Lm / 2) when the length Lm of the straight line D is the diameter and the center point of the straight line D is the center. big.
  • the radius of curvature ⁇ Rc1 and the radius of curvature ⁇ Rc2 are substantially equal to or slightly larger than the radius R based on the straight line D connecting the end of the first convex portion 125 and the end of the second convex portion 126, respectively. Therefore, the bottom surface 135c of the first recess 135 and the bottom surface 136c of the second recess 136 form a part of the same circle Cm. Therefore, the holder 120 can smoothly rotate with respect to the z-axis direction together with the first convex portion 125 and the second convex portion 126.
  • the first recess 135 has an ⁇ x-axis end 1351c of the first recess 135 and a + x-axis end 1352c of the first recess 135.
  • the second recess 136 has an ⁇ x axis direction end 1361c of the second recess 136 and a + x axis direction end 1362c of the second recess 136.
  • the first elastic portion 305 is provided in a region connecting C with the end portion 1351c in the ⁇ x axis direction of the first recess 135 and the end portion 1352c in the + x axis direction of the first recess 135.
  • the second elastic portion 306 is provided in a region connecting C with the end portion 1361c of the second recess 136 in the ⁇ x axis direction and the end portion 1362c of the second recess 136 in the + x axis direction.
  • connecting the end portion 1351c in the ⁇ x axis direction of the first recess 135 and the end portion 1352c in the + x axis direction of the first recess 135 means connecting them in an arc along the bottom surface 135c of the first recess 135. ..
  • Connecting the end 1361c in the ⁇ x-axis direction of the second recess 136 and the end 1362c in the + x-axis direction of the second recess 136 means connecting them in an arc along the bottom surface 136c of the second recess 136.
  • the region connecting C with the end portion 1351c in the ⁇ x axis direction of the first recess 135 and the end portion 1352c in the + x axis direction of the first recess 135 indicates a fan-shaped region.
  • the region connecting C with the ⁇ x-axis end 1361c of the second recess 136 and the + x-axis end 1362c of the second recess 136 indicates a fan-shaped region.
  • the first elastic portion 305 and the second elastic portion 306 effectively press the first recess 135 and the second recess 136 against the first recess 135 and the second recess 136 in the rotation with respect to the z-axis direction. be able to.
  • the second convex portion 126 comes into contact with the second concave portion 136.
  • the second convex portion 126 comes into contact with the second elastic portion 306 provided in the second accommodating portion 128.
  • the length 306y of the second elastic portion 306 in the y-axis direction is longer than the length 128y accommodating the second elastic portion 306 of the second accommodating portion 128.
  • the second elastic portion 306 presses the second convex portion 126 toward the second concave portion 136.
  • the gap between the second concave portion 136 and the second convex portion 126 can be reduced. Therefore, it is possible to stabilize the driving behavior of rotating with reference to the z-axis direction.
  • the optical unit 100 in the exemplary embodiment of the present invention includes an optical element 110, a holder 120, a case 130, a first swing mechanism 140, a second swing mechanism 150, and a second swing mechanism. It includes a first convex portion 125 including one elastic portion 305 and a second convex portion 126 including a second elastic portion 306.
  • the optical element 110 has a reflecting surface 110r that reflects light in the first axis direction.
  • the holder 120 holds the optical element 110.
  • the case 130 swingably supports the holder 120.
  • the first swing mechanism 140 swings the holder 120 around the first swing axis with respect to the case 130.
  • the second swing mechanism 150 swings the holder 120 around the second swing axis orthogonal to the first swing axis with respect to the case 130.
  • the first swing axis is the y-axis and the second swing axis is the z-axis.
  • the holder 120 has a first accommodating portion 127 and a second accommodating portion 128.
  • the first accommodating portion 127 is provided on the first case facing surface (120e) facing the case 130, and accommodates at least a part of the first convex portion 125.
  • the second accommodating portion 128 is provided on the second case facing surface (120f) facing the case 130, and accommodates at least a part of the second convex portion 126.
  • the case 130 has a first recess 135 and a second recess 136.
  • the first concave portion 135 is provided on the first holder facing surface (132b) facing the first case facing surface (120e) of the holder 120, and accommodates at least a part of the first convex portion 125.
  • the second recess 136 is provided on the second holder facing surface (132c) facing the second case facing surface (120f) of the holder 120, and accommodates at least a part of the second convex portion 126.
  • the first elastic portion 305 is provided in at least one of the first accommodating portion 127 and the first recess 135.
  • the second elastic portion 306 is provided in at least one of the second accommodating portion 128 and the second recess 136.
  • the first convex portion 125 is in contact with the first accommodating portion 127 and the first concave portion 135.
  • the second convex portion 126 is in contact with the second accommodating portion 128 and the second concave portion 136.
  • the first convex portion 125 may include a first elastic portion 305.
  • the first convex portion 125 may be a member having an elastic force.
  • the first convex portion 125 may be hemispherical, and the first elastic portion 305 may be adhered to the first convex portion 125 to be integrated.
  • One side of the first convex portion 125 may be hemispherical, the other side may be cylindrical, and the first elastic portion 305 may be provided in a part of the cylindrical portion to be integrated. The same applies to the second convex portion.
  • FIGS. 7a and 7b are diagram showing a second embodiment of FIG. 7a
  • FIG. 8b is a diagram showing a second embodiment of FIG. 7b.
  • the first elastic portion 305 has a first region 305a on one side adjacent to the first convex portion 125 and a second region 305b on the other side.
  • the first region 305a includes an end portion of the first elastic portion 305 on the side of the first convex portion 125.
  • the first region 305a is in contact with the first convex portion 125.
  • the coefficient of friction of the first region 305a is lower than the coefficient of friction of the second region 305b. Thereby, the frictional force between the first convex portion 125 and the first region 305a can be reduced. Therefore, when the first convex portion 125 moves along the first concave portion 135, the frictional force between the first convex portion 125 and the first elastic portion 305 becomes small. The first convex portion 125 can rotate smoothly as it moves along the first concave portion 135.
  • the first region 305a can be made of a different material from the second region 305b.
  • a lubricant may be applied to the first region 305a to lower the friction coefficient, or the first region 305a may be surface-treated to lower the friction coefficient.
  • the second elastic portion 306 has a first region 306a on one side adjacent to the second convex portion 126 and a second region 306b on the other side.
  • the first region 306a includes an end portion of the second elastic portion 306 on the side of the second convex portion 126.
  • the first region 306a is in contact with the second convex portion 126.
  • the coefficient of friction of the first region 306a is lower than the coefficient of friction of the second region 306b. As a result, the frictional force between the second convex portion 126 and the first region 306a can be reduced. Therefore, when the second convex portion 126 moves along the second concave portion 136, the frictional force between the second convex portion 126 and the second elastic portion 306 becomes small. The second convex portion 126 can rotate smoothly as it moves along the second concave portion 136.
  • the first region 306a can be made of a material different from that of the second region 306b.
  • a lubricant may be applied to the first region 306a to lower the friction coefficient, or the first region 306a may be surface-treated to lower the friction coefficient.
  • FIGS. 9a and 9b are diagram showing a third embodiment of FIG. 7a
  • FIG. 9b is a diagram showing a third embodiment of FIG. 7b.
  • a first cushioning portion 405 is provided between the first elastic portion 305 and the first convex portion 125.
  • the first cushioning portion 405 has a higher hardness than the first elastic portion 305.
  • the first convex portion 125 comes into contact with the first buffer portion 405 as it moves through the first concave portion 135. As a result, it is possible to prevent the first elastic portion 305 from rubbing against the first convex portion 125 and deteriorating.
  • a second cushioning portion 406 is provided between the second elastic portion 306 and the second convex portion 126.
  • the second cushioning portion 406 has a higher hardness than the second elastic portion 306.
  • the second convex portion 126 comes into contact with the second cushioning portion 406 as it moves through the second concave portion 136. As a result, it is possible to prevent the second elastic portion 306 from rubbing against the second convex portion 126 and deteriorating.
  • first cushioning portion 405 and the second cushioning portion 406 can be made of different materials from the first elastic portion 305 and the second elastic portion 306.
  • the first elastic portion 305 and the second elastic portion 306 may be surface-treated to form the first buffer portion 405 and the second cushion portion 406.
  • the first elastic portion 305 is provided in the first accommodating portion 127, and the second elastic portion 306 is provided in the second accommodating portion 128, but the present embodiment is not limited thereto. ..
  • the first elastic portion 305 may be provided in the first recess 135, and the second elastic portion 306 may be provided in the second recess 128.
  • the first convex portion 125 and the second convex portion 126 do not have to be spherical.
  • the portions of the first convex portion 125 and the second convex portion 126 that are accommodated in the first accommodating portion 127 and the second accommodating portion 128 may be cylindrical or rectangular.
  • FIG. 10a is a schematic diagram for explaining the swing by the first swing mechanism 140 in the optical unit 100 of the present embodiment
  • FIG. 10b is the second swing mechanism 150 in the optical unit 100 of the present embodiment. It is a schematic diagram for demonstrating the swing.
  • the first swing mechanism 140 includes a first magnet 142 and a first coil 144.
  • the first magnet 142 is provided in the holder 120, and the first coil 144 is provided in the case 130.
  • the second swing mechanism 150 includes a second magnet 152 and a second coil 154.
  • the second magnet 152 is provided in the holder 120, and the second coil 154 is provided in the case 130.
  • the first magnet 142 By switching the direction of the current flowing through the first coil 144, the first magnet 142 receives a force along the x-axis direction. In this case, the first magnet 142 will move along the x-axis direction. Therefore, the holder 120 to which the first magnet 142 is attached swings (pitches) with respect to the case 130 with respect to the y-axis direction.
  • the second magnet 152 receives a force along the y-axis direction by switching the direction of the current flowing through the second coil 154.
  • the second magnet 152 moves along the y-axis direction. Therefore, the holder 120 to which the second magnet 152 is attached swings (yaws) with respect to the case 130 with respect to the z-axis direction.
  • the holder 120 swings with respect to the case 130 by switching the direction of the current flowing through the first coil 144 and the second coil 154.
  • the current value required for rocking can be reduced.
  • FIGS. 11a to 11c are schematic views for explaining the swing by the first swing mechanism 140 in the optical unit 100 of the present embodiment.
  • the holder 120 in the optical unit 100 is located at the reference position, and in FIGS. 11b and 11c, the holder 120 swings in either direction with respect to the reference position.
  • the holder 120 when a clockwise swing occurs with respect to the case 130 with respect to the + y-axis direction, the holder 120 can swing counterclockwise with respect to the case 130 with respect to the + y-axis direction. Further, as shown in FIG. 11c, when a counterclockwise swing occurs with respect to the case 130 with respect to the + y-axis direction, the holder 120 swings clockwise with respect to the case 130 with respect to the + y-axis direction. can.
  • FIGS. 12a to 12c are schematic views for explaining the swing by the second swing mechanism 150 in the optical unit 100 of the present embodiment.
  • 12a shows the holder 120 in the optical unit 100 located at the reference position
  • FIGS. 12b and 12c show that the holder 120 swings in either direction with respect to the reference position.
  • the case 130 When the case 130 is made of resin, the resin is typically formed by integral molding.
  • the case 130 may be composed of one component.
  • the case 130 may be composed of a plurality of parts.
  • the parts of the case 130 may be assembled after the holder 120 is attached.
  • the first convex portion 125 and the second convex portion 126 are each hemispherical, but the present embodiment is not limited to this.
  • the first convex portion 125 and the second convex portion 126 have a cylindrical base portion, and the tip of the base portion may be hemispherical.
  • the reference position of the holder 120 with respect to the case 130 is not constantly defined. There is. However, it is preferable that the reference position of the holder 120 with respect to the case 130 is defined to be constant.
  • FIG. 13 is a schematic perspective view of the optical unit 100 of the present embodiment.
  • the case 130 has a case body 130a and a metal member 138a, and the case 130 has a flexible printed circuit board (FPC) FP inserted into the case 130, except that the case 130 has a case body 130a and a metal member 138a.
  • FPC flexible printed circuit board
  • It has the same configuration as the optical unit 100 shown in FIG. 2b, and duplicate description is omitted in order to avoid redundancy.
  • the outer edge of the case 130 is shown by a two-dot chain line.
  • the case 130 has a case body 130a and a metal member 138a.
  • the metal member 138a faces the first magnet 142.
  • the metal member 138a is arranged inside the case body 130a. Further, the metal member 138a is arranged in the vicinity of the first coil 144 located inside the case main body 130a.
  • the metal member 138a allows the holder 120 including the first magnet 142 and the first magnet 142 to be positioned at a predetermined position when no current flows through the first coil 144.
  • the magnetic force generated between the metal member 138a and the first magnet 142 is weaker than the magnetic force generated when a current flows through the first coil 144, even if the metal member 138a is provided, the first coil 144 has a magnetic force. By passing an electric current, the holder 120 swings with respect to the case 130.
  • the metal member 138a is arranged in the vicinity of the first coil 144 of the first swing mechanism 140, but the present embodiment is not limited to this.
  • the metal member 138a may be arranged so as to face the second magnet 152 and in the vicinity of the second coil 154 of the second swing mechanism 150.
  • the metal member 138a is arranged symmetrically with respect to the center of the first coil 144.
  • the metal member 138a extends in the y direction like the N pole 142n and the S pole 142s of the first magnet 142, and the center of the metal member 138a along the x direction is the N pole 142n and the S pole. It is located between 142s.
  • the metal member 138a is preferably arranged symmetrically with respect to the center of the second coil 154.
  • the second magnet 152 is attracted to the metal member 138a arranged symmetrically with respect to the center of the second coil 154, so that the position of the holder 120 with respect to the case 130 can be appropriately controlled.
  • the flexible printed circuit board FP is inserted into the case 130.
  • the first coil 144 and the metal member 138a are mounted on the flexible printed circuit board FP.
  • the first coil 144 and the metal member 138a can be arranged at predetermined positions with respect to the first magnet 142 of the holder 120.
  • the first coil 144 is preferably arranged inside the flexible printed circuit board FP.
  • the metal member 138a may be arranged inside the flexible printed substrate FP, or may be arranged on the outer surface of the flexible printed substrate FP (for example, the outer surface on the ⁇ z axis direction side).
  • the gyro sensor in the smartphone detects the posture of the smartphone, and the first swing mechanism 140 and the second swing mechanism 150 are in the posture of the smartphone. It is controlled accordingly.
  • the posture of the holder 120 with respect to the case 130 can be detected. As a result, the posture of the holder 120 with respect to the case 130 can be controlled with high accuracy.
  • FIG. 14 is a schematic perspective view of the optical unit 100 of the present embodiment.
  • the optical unit 100 of FIG. 14 has the same configuration as the optical unit 100 shown in FIG. 13, except that the case 130 has a Hall element 138b instead of the metal member 138a, in order to avoid redundancy. The description that overlaps with is omitted. Again, the outer edge of the case 130 is shown as a dashed line to avoid over-complicated drawings.
  • the case 130 has a case body 130a and a Hall element 138b.
  • the Hall element 138b is arranged inside the case body 130a.
  • the Hall element 138b is arranged near the center of the first coil 144 located inside the case body 130a. The Hall element 138b can acquire the position of the holder 120 with respect to the case 130.
  • the Hall element 138b is arranged in the vicinity of the first coil 144 of the first swing mechanism 140, but the present embodiment is not limited to this.
  • the Hall element 138b may be arranged in the vicinity of the second coil 154 of the second swing mechanism 150.
  • the Hall element 138b is preferably arranged at the center of the first coil 144. As a result, the Hall element 138b can appropriately detect the magnetic force from the first magnet 142. Similarly, the Hall element 138b is preferably arranged in the center of the second coil 154. As a result, the Hall element 138b can appropriately detect the magnetic force from the second magnet 152.
  • the optical unit 100 shown in FIG. 13 has a metal member 138a, and the optical unit 100 shown in FIG. 14 has a Hall element 138b, but the optical unit 100 has both the metal member 138a and the Hall element 138b. Needless to say, you may have it.
  • the first swing mechanism 140 has the first magnet 142 and the first coil 144
  • the second swing mechanism 150 has the second magnet 152 and the second coil. It had 154, but the present embodiment is not limited to this.
  • the first swing mechanism 140 and the second swing mechanism 150 may have different configurations.
  • the first swing mechanism 140 and the second swing mechanism 150 may be mechanisms having a shape memory alloy.
  • the reflective surface 110r is formed on the surface of the prism, but the present embodiment is not limited to this.
  • the optical element 110 may not include a prism, and the reflective surface 110r may not be formed on the surface of the prism.
  • a thin plate-shaped reflective member for example, a mirror
  • the optical element 110 includes a prism. By including the prism, the optical element 110 can shorten the optical path.
  • Such an optical unit 100 is suitably used as a telephoto image sensor.
  • the optical unit includes an optical element 110 that changes the path of light by reflection, but the present embodiment is not limited to this.
  • the optical unit may include an optical element that does not change the path of light.
  • the second swing axis is parallel to the incident light Lb (that is, parallel to the x-axis direction).
  • Lb incident light
  • FIGS. 15a to 18b a schematic configuration of a second embodiment of the present invention will be shown with reference to FIGS. 15a to 18b.
  • the same components as those in the first embodiment will be designated by the same reference numerals, and the description thereof will be omitted, and only the parts different from those in the first embodiment will be described.
  • the 15a and 15b are schematic exploded perspective views of the optical element 110, the holder 120, and the case 130 in the optical unit of the second embodiment.
  • the case 130 swingably supports the holder 120.
  • the case 130 supports the holder 120 from both end portions in the y-axis direction.
  • the holder 120 swings with respect to the case 130.
  • the holder 120 swings with respect to the case 130 with respect to the y-axis. Further, the holder 120 swings with respect to the case 130 with reference to the x-axis.
  • the swing of the holder 120 with respect to the z-axis is suppressed with respect to the case 130.
  • the first swing mechanism 140 is located on the ⁇ x direction side of the holder 120.
  • the first swing mechanism 140 swings the holder 120 with respect to the case 130 with respect to the y-axis direction.
  • the second swing mechanism 150 is located on the ⁇ z direction side of the holder 120.
  • the second swing mechanism 150 swings the holder 120 with respect to the case 130 with respect to the x-axis direction.
  • the case 130 has a first recess 135.
  • the first recess 135 is provided on the first holder facing surface (132b) facing the first case facing surface (120e) of the holder 120.
  • the first concave portion 135 accommodates at least a part of the first convex portion 125.
  • the first recess 135 extends in the z-axis direction.
  • the length of the first concave portion 135 in the z-axis direction is larger than the length of the first convex portion 125 in the z-axis direction.
  • the case 130 has a second recess 136.
  • the second recess 136 is provided on the second holder facing surface (132c) facing the second case facing surface (120f) of the holder 120.
  • the second concave portion 136 accommodates at least a part of the second convex portion 126.
  • the second recess 136 extends in the z-axis direction.
  • the length of the second concave portion 136 in the z-axis direction is larger than the length of the second convex portion 126 in the z-axis direction.
  • FIGS. 16a and 16b are schematic perspective views of the first swing mechanism 140 and the second swing mechanism 150 in the optical unit of the second embodiment.
  • the case 130 is omitted except for the first coil 144 and the second coil 154.
  • the first swing mechanism 140 includes a first magnet 142 and a first coil 144.
  • the first magnet 142 is provided on one of the holder 120 and the case 130, and the first coil 144 is provided on the other of the holder 120 and the case 130 with respect to the first magnet 142.
  • one of the first magnet 142 and the first coil 144 is provided on the surface 120g of the holder 120, and the other of the first magnet 142 and the first coil 144 faces the surface 132a or the surface 132a of the case 130. It is arranged inside the case 130.
  • the first magnet 142 is attached to the holder 120. Specifically, the first magnet 142 is attached to the surface 120 g of the holder 120.
  • the first magnet 142 has an N pole 142n and an S pole 142s.
  • the N pole 142n and the S pole 142s each extend in the y direction and are arranged side by side in the z direction.
  • the first coil 144 is provided in the case 130. By switching the direction of the current flowing through the first coil 144, the first magnet 142 receives a force along the z-axis direction.
  • the second swing mechanism 150 includes a second magnet 152 and a second coil 154.
  • the second magnet 152 is provided on one of the holder 120 and the case 130, and the second coil 154 is provided on the other of the holder 120 and the case 130 with respect to the second magnet 152.
  • one of the second magnet 152 and the second coil 154 is provided on the surface 120h of the holder 120, and the other of the second magnet 152 and the second coil 154 faces the surface 132d or the surface 132d of the case 130. It is arranged inside the case 130.
  • the second magnet 152 is attached to the holder 120. Specifically, the second magnet 152 is attached to the surface 120h of the holder 120.
  • the second magnet 152 has an N pole 152n and an S pole 152s.
  • the N pole 152n and the S pole 152s each extend in the x direction and are arranged side by side in the y direction.
  • the second coil 154 is provided in the case 130. By switching the direction of the current flowing through the second coil 154, the second magnet 152 receives a force along the y-axis direction.
  • the holder 120 includes the first magnet 142 and the second magnet 152
  • the case 130 includes the first coil 144 and the second coil 154.
  • the swing of the holder 120 with respect to the case 130 can be easily controlled by passing a current through the first coil 144 and / or the second coil 154 of the case 130.
  • FIG. 17a is a schematic diagram for explaining the swing by the first swing mechanism 140 in the optical unit 100 of the second embodiment
  • FIG. 17b is a second swing mechanism in the optical unit 100 of the present embodiment. It is a schematic diagram for demonstrating the swing by 150.
  • the first swing mechanism 140 includes a first magnet 142 and a first coil 144.
  • the first magnet 142 is provided in the holder 120, and the first coil 144 is provided in the case 130.
  • the second swing mechanism 150 includes a second magnet 152 and a second coil 154.
  • the second magnet 152 is provided in the holder 120, and the second coil 154 is provided in the case 130.
  • the first magnet 142 By switching the direction of the current flowing through the first coil 144, the first magnet 142 receives a force along the z-axis direction. In this case, the first magnet 142 will move along the z-axis direction. Therefore, the holder 120 to which the first magnet 142 is attached swings with respect to the case 130 with respect to the x-axis direction.
  • the second magnet 152 receives a force along the y-axis direction by switching the direction of the current flowing through the second coil 154.
  • the second magnet 152 moves along the y-axis direction. Therefore, the holder 120 to which the second magnet 152 is attached swings with respect to the case 130 with respect to the x-axis direction.
  • FIG. 18a is a schematic perspective view of a smartphone 200 including an optical module 100A including an optical unit 100 of the present embodiment and another optical unit 101.
  • the smartphone 200 can perform two types of imaging.
  • the smartphone 200 includes a lens 202 and a lens 204 on which light is incident.
  • the optical module 100A is arranged inside the lens 202 and the lens 204.
  • the lens 202 is arranged corresponding to the optical unit 100
  • the lens 204 is arranged corresponding to the optical unit 101.
  • Light L is incident on the smartphone 200 from the outside in the incident direction via the lens 202, and a subject image is imaged based on the light that has passed through the optical unit 100.
  • the light L is incident from the outside through the lens 204 in the incident direction, and the subject image is imaged based on the light that has passed through the optical unit 101.
  • FIG. 18b is a schematic perspective view of the optical module 100A of the present embodiment.
  • the optical module 100A of FIGS. 18a and 18b includes an optical unit 100 having the same configuration as described above with reference to FIGS. 1 to 14, and another optical unit 101.
  • the optical unit 100 reflects the optical axis of the incident light La1 incident along the z-axis direction as reflected light Lb in the x-axis direction. After that, the reflected light Lb is received by the image pickup device 220 via the lens module 210 of the smartphone 200.
  • the lens module 210 includes various lenses depending on the application.
  • the optical unit 101 receives the incident light La2 incident along the z-axis direction.
  • the optical unit 101 receives light from the image sensor 221 via the lens module 211 without changing the direction of the optical axis from the z-axis direction.
  • the lens module 211 includes various lenses depending on the application.
  • FIGS. 1 and 18a show a smartphone as an example of the use of the optical unit 100 of the present embodiment, but the use of the optical unit 100 is not limited to this.
  • the optical unit 100 is suitably used as a digital camera or a video camera.
  • the optical unit 100 may be used as part of a drive recorder.
  • the optical unit 100 may be mounted on a camera for a flying object (eg, a drone).
  • optical unit 110 optics 120 holder 125 First convex part 126 Second convex part 127 1st containment 128 Second containment 130 cases 135 1st recess 136 Second recess 305 1st elastic part 306 Second elastic part

Abstract

[Problem] To be able to stabilize drive behavior for rotating an optical element. [Solution] An optical unit (100), wherein a first swinging mechanism swings a holder (120) around a first swinging axis, and a second swinging mechanism swings the holder (120) around a second swinging axis orthogonal to the first swinging axis. The holder has a first accommodation section (127) that accommodates at least a part of a first projecting part (125), and a second accommodation section (128) that accommodates at least a part of a second projecting part (126). A case (130) has a first recessed section (135) that accommodates at least a part of the first projecting part (125), and a second recessed section (136) that accommodates at least a part of the second projecting part (126). The first projecting part (125) includes a first elastic part (305), and the second projecting part (126) includes a second elastic part (306). The first elastic part (305) is provided to the first accommodation section (127) and/or the first recessed section (135), and the second elastic part (306) is provided to the second accommodation section (128) and/or the second recessed section (136). The first projecting part (125) contacts the first accommodation section (127) and the first recessed section (135), and the second projecting part (126) contacts the second accommodation section (128) and the second recessed section (136).

Description

光学ユニットOptical unit
 本発明は、光学ユニットに関する。 The present invention relates to an optical unit.
 カメラによって静止画または動画を撮影する際に手振れに起因して像ブレが生じることがある。このため、像ブレを防いだ鮮明な撮影を可能にするための手振れ補正装置が実用化されている。手振れ補正装置は、カメラが手振れした場合に、手振れに応じてカメラモジュールの位置および姿勢を補正することによって手振れによる不具合を解消できる。 Image blur may occur due to camera shake when shooting still images or moving images with the camera. For this reason, an image stabilization device has been put into practical use to enable clear shooting with image blur prevention. When the camera shakes, the image stabilization device can solve the problem caused by the camera shake by correcting the position and posture of the camera module according to the camera shake.
 また、カメラモジュールの小型化のために、種々のレンズ群およびプリズムを備えた屈曲式ズーム方式のカメラモジュールが知られており、屈曲式ズーム方式のカメラモジュールの手振れによる不具合を解消することも検討されている(例えば、特許文献1参照)。特許文献1には、モータおよびギヤを用いてX軸部材およびY軸部材をそれぞれ回動させることにより、プリズムを回転させる防振機構が記載されている。 Further, in order to reduce the size of the camera module, a bending zoom type camera module equipped with various lens groups and prisms is known, and it is also considered to solve the problem caused by the camera shake of the bending type zoom type camera module. (See, for example, Patent Document 1). Patent Document 1 describes a vibration isolation mechanism that rotates a prism by rotating an X-axis member and a Y-axis member using a motor and a gear, respectively.
日本国公開公報:特開2012-118336号公報Japanese Publication: Japanese Patent Application Laid-Open No. 2012-118336
 しかしながら、特許文献1の防振機構では、モータおよびギヤによって2つの回転軸を回転させることによってプリズムを回転させており、ギヤ同士のギャップが存在する。このギャップが駆動時の回転中心ズレ等の要因となり、駆動挙動を安定させることができなかった。 However, in the anti-vibration mechanism of Patent Document 1, the prism is rotated by rotating the two rotating shafts by the motor and the gear, and there is a gap between the gears. This gap causes a shift in the center of rotation during driving, and the driving behavior cannot be stabilized.
 本発明は、上記課題に鑑みてなされたものであり、その目的は、光学素子を回転させる駆動挙動を安定させる光学ユニットを提供することである。 The present invention has been made in view of the above problems, and an object of the present invention is to provide an optical unit that stabilizes the driving behavior of rotating an optical element.
 本発明の第1の観点からの光学ユニットは、光学素子と、ホルダと、ケースと、第1揺動機構と、第2揺動機構と、第1弾性部を含む第1凸部と、第2弾性部を含む第2凸部とを備える。前記光学素子は、第1軸方向に光を反射する反射面を有する。前記ホルダは、前記光学素子を保持する。前記ケースは、前記ホルダを揺動可能に支持する。前記第1揺動機構は、前記ケースに対して第1揺動軸周りに前記ホルダを揺動する。前記第2揺動機構は、前記ケースに対して前記第1揺動軸と直交する第2揺動軸周りに前記ホルダを揺動する。前記ホルダは、第1収容部と、第2収容部を有する。前記第1収容部は、前記ケースと対向する第1ケース対向面に設けられ、前記第1凸部の少なくとも一部を収容する。第2収容部は、前記ケースと対向する第2ケース対向面に設けられ、前記第2凸部の少なくとも一部を収容する。前記ケースは、第1凹部と、第2凹部とを有する。前記第1凹部は、前記ホルダの前記第1ケース対向面と対向する第1ホルダ対向面に設けられ、前記第1凸部の少なくとも一部を収容する。前記第2凹部は、前記ホルダの前記第2ケース対向
面と対向する第2ホルダ対向面に設けられ、前記第2凸部の少なくとも一部を収容する。前記第1弾性部は、前記第1収容部と前記第1凹部の少なくとも一方に設けられる。前記第2弾性部は、前記第2収容部と前記第2凹部の少なくとも一方に設けられる。前記第1凸部は、前記第1収容部および前記第1凹部と接する。前記第2凸部は、前記第2収容部および前記第2凹部と接する。
The optical unit from the first aspect of the present invention includes an optical element, a holder, a case, a first swing mechanism, a second swing mechanism, a first convex portion including a first elastic portion, and a first. It is provided with a second convex portion including two elastic portions. The optical element has a reflecting surface that reflects light in the first axis direction. The holder holds the optical element. The case swingably supports the holder. The first swing mechanism swings the holder around the first swing axis with respect to the case. The second swing mechanism swings the holder around a second swing axis orthogonal to the first swing axis with respect to the case. The holder has a first accommodating portion and a second accommodating portion. The first accommodating portion is provided on the surface facing the first case facing the case, and accommodates at least a part of the first convex portion. The second accommodating portion is provided on the surface facing the second case facing the case, and accommodates at least a part of the second convex portion. The case has a first recess and a second recess. The first concave portion is provided on the first holder facing surface facing the first case facing surface of the holder, and accommodates at least a part of the first convex portion. The second concave portion is provided on the second holder facing surface facing the second case facing surface of the holder, and accommodates at least a part of the second convex portion. The first elastic portion is provided in at least one of the first accommodating portion and the first recess. The second elastic portion is provided in at least one of the second accommodating portion and the second recess. The first convex portion is in contact with the first accommodating portion and the first concave portion. The second convex portion is in contact with the second accommodating portion and the second concave portion.
 本発明の光学ユニットは、例えば、光学素子を回転させる駆動挙動を安定させることができる。 The optical unit of the present invention can, for example, stabilize the driving behavior of rotating an optical element.
図1は、本実施形態の光学ユニットを備えたスマートフォンの模式的な斜視図である。FIG. 1 is a schematic perspective view of a smartphone provided with the optical unit of the present embodiment. 図2aは、本実施形態の光学ユニットの模式的な斜視図である。FIG. 2a is a schematic perspective view of the optical unit of the present embodiment. 図2bは、本実施形態の光学ユニット、対応するレンズモジュールおよび撮像素子の模式的な斜視図である。FIG. 2b is a schematic perspective view of the optical unit, the corresponding lens module, and the image pickup device of the present embodiment. 図3aは、本実施形態の光学ユニットにおける光学素子、ホルダおよびケースの模式的な分解斜視図である。FIG. 3a is a schematic exploded perspective view of an optical element, a holder, and a case in the optical unit of the present embodiment. 図3bは、本実施形態の光学ユニットにおける光学素子、ホルダおよびケースの模式的な分解斜視図である。FIG. 3b is a schematic exploded perspective view of an optical element, a holder, and a case in the optical unit of the present embodiment. 図4aは、本実施形態の光学ユニットにおけるケース、第1揺動機構および第2揺動機構の模式的な斜視図である。FIG. 4a is a schematic perspective view of the case, the first swing mechanism, and the second swing mechanism in the optical unit of the present embodiment. 図4bは、本実施形態の光学ユニットにおけるケース、第1揺動機構および第2揺動機構の模式的な斜視図である。FIG. 4b is a schematic perspective view of the case, the first swing mechanism, and the second swing mechanism in the optical unit of the present embodiment. 図5aは、本実施形態の光学ユニットにおけるホルダの第1凸部およびケースの第1凹部の係合を説明するための模式図である。FIG. 5a is a schematic diagram for explaining the engagement between the first convex portion of the holder and the first concave portion of the case in the optical unit of the present embodiment. 図5bは、本実施形態の光学ユニットにおけるホルダの第2凸部およびケースの第2凹部の係合を説明するための模式図である。FIG. 5b is a schematic diagram for explaining the engagement between the second convex portion of the holder and the second concave portion of the case in the optical unit of the present embodiment. 図6aは、図2aのVIa-VIa線に沿った断面図である。FIG. 6a is a cross-sectional view taken along the line VIa-VIa of FIG. 2a. 図6bは、図2aのVIb-VIb線に沿った断面図である。FIG. 6b is a cross-sectional view taken along the line VIb-VIb of FIG. 2a. 図7aは、図6aに図示した点線部分C1の部分拡大図である。FIG. 7a is a partially enlarged view of the dotted line portion C1 illustrated in FIG. 6a. 図7bは、図6aに図示した点線部分C2の部分拡大図である。FIG. 7b is a partially enlarged view of the dotted line portion C2 shown in FIG. 6a. 図8aは、図7aの第2の実施形態を示す図である。FIG. 8a is a diagram showing a second embodiment of FIG. 7a. 図8bは、図7bの第2の実施形態を示す図である。FIG. 8b is a diagram showing a second embodiment of FIG. 7b. 図9aは、図7aの第3の実施形態を示す図である。FIG. 9a is a diagram showing a third embodiment of FIG. 7a. 図9bは、図7bの第3の実施形態を示す図である。FIG. 9b is a diagram showing a third embodiment of FIG. 7b. 図10aは、本実施形態の光学ユニットにおける第1揺動機構による揺動を説明するための模式図である。FIG. 10a is a schematic diagram for explaining the swing by the first swing mechanism in the optical unit of the present embodiment. 図10bは、本実施形態の光学ユニットにおける第2揺動機構による揺動を説明するための模式図である。FIG. 10b is a schematic diagram for explaining the swing by the second swing mechanism in the optical unit of the present embodiment. 図11aは、本実施形態の光学ユニットにおける第1揺動機構による揺動を説明するための模式図である。FIG. 11a is a schematic diagram for explaining the swing by the first swing mechanism in the optical unit of the present embodiment. 図11bは、本実施形態の光学ユニットにおける第1揺動機構による揺動を説明するための模式図である。FIG. 11b is a schematic diagram for explaining the swing by the first swing mechanism in the optical unit of the present embodiment. 図11cは、本実施形態の光学ユニットにおける第1揺動機構による揺動を説明するための模式図である。FIG. 11c is a schematic diagram for explaining the swing by the first swing mechanism in the optical unit of the present embodiment. 図12aは、本実施形態の光学ユニットにおける第2揺動機構による揺動を説明するための模式図である。FIG. 12a is a schematic diagram for explaining the swing by the second swing mechanism in the optical unit of the present embodiment. 図12bは、本実施形態の光学ユニットにおける第2揺動機構による揺動を説明するための模式図である。FIG. 12b is a schematic diagram for explaining the swing by the second swing mechanism in the optical unit of the present embodiment. 図12cは、本実施形態の光学ユニットにおける第2揺動機構による揺動を説明するための模式図である。FIG. 12c is a schematic diagram for explaining the swing by the second swing mechanism in the optical unit of the present embodiment. 図13は、本実施形態の光学ユニットの模式的な斜視図である。FIG. 13 is a schematic perspective view of the optical unit of the present embodiment. 図14は、本実施形態の光学ユニットの模式的な斜視図である。FIG. 14 is a schematic perspective view of the optical unit of the present embodiment. 図15aは、第2の実施形態の光学ユニットにおける光学素子、ホルダおよびケースの模式的な分解斜視図である。FIG. 15a is a schematic exploded perspective view of an optical element, a holder, and a case in the optical unit of the second embodiment. 図15bは、第2の実施形態の光学ユニットにおける光学素子、ホルダおよびケースの模式的な分解斜視図である。FIG. 15b is a schematic exploded perspective view of an optical element, a holder, and a case in the optical unit of the second embodiment. 図16aは、第2の実施形態の光学ユニットにおけるケース、第1揺動機構および第2揺動機構の模式的な斜視図である。FIG. 16a is a schematic perspective view of the case, the first swing mechanism, and the second swing mechanism in the optical unit of the second embodiment. 図16bは、第2の実施形態の光学ユニットにおけるケース、第1揺動機構および第2揺動機構の模式的な斜視図である。FIG. 16b is a schematic perspective view of the case, the first swing mechanism, and the second swing mechanism in the optical unit of the second embodiment. 図17aは、第2の実施形態の光学ユニットにおける第1揺動機構による揺動を説明するための模式図である。FIG. 17a is a schematic diagram for explaining the swing by the first swing mechanism in the optical unit of the second embodiment. 図17bは、第2の実施形態の光学ユニットにおける第2揺動機構による揺動を説明するための模式図である。FIG. 17b is a schematic diagram for explaining the swing by the second swing mechanism in the optical unit of the second embodiment. 図18aは、本実施形態の光学ユニットを備えたスマートフォンの模式的な斜視図である。FIG. 18a is a schematic perspective view of a smartphone provided with the optical unit of the present embodiment. 図18bは、本実施形態の光学ユニットを備えた光学モジュールの模式的な斜視図である。FIG. 18b is a schematic perspective view of an optical module including the optical unit of the present embodiment.
 以下、図面を参照して本発明による光学ユニットの例示的な実施形態を説明する。なお、図中、同一または相当部分については同一の参照符号を付して説明を繰り返さない。なお、本願明細書では、発明の理解を容易にするため、互いに直交するx軸、y軸およびz軸を記載することがある。 Hereinafter, an exemplary embodiment of the optical unit according to the present invention will be described with reference to the drawings. In the figure, the same or corresponding parts are designated by the same reference numerals and the description is not repeated. In addition, in the present specification, in order to facilitate understanding of the invention, x-axis, y-axis and z-axis which are orthogonal to each other may be described.
<光学ユニット100の用途>
 光学ユニット100は、入射した光を特定の方向に反射する。光学ユニット100は、例えば、スマートフォンの光学部品として好適に用いられる。
<Use of optical unit 100>
The optical unit 100 reflects the incident light in a specific direction. The optical unit 100 is suitably used, for example, as an optical component of a smartphone.
 まず、図1を参照して、本実施形態の光学ユニット100を備えたスマートフォン200を説明する。図1は、本実施形態の光学ユニット100を備えたスマートフォン200の模式的な斜視図である。 First, the smartphone 200 provided with the optical unit 100 of the present embodiment will be described with reference to FIG. FIG. 1 is a schematic perspective view of a smartphone 200 provided with the optical unit 100 of the present embodiment.
 光学ユニット100は、薄型に構成できる。これにより、スマートフォン200におけるz軸方向に沿った長さ(厚さ)を薄く構成できる。なお、光学ユニット100の用途は、スマートフォン200に限定されず、カメラおよびビデオなど、特に限定なく様々な装置に使用できる。 The optical unit 100 can be configured to be thin. As a result, the length (thickness) of the smartphone 200 along the z-axis direction can be made thin. The application of the optical unit 100 is not limited to the smartphone 200, and can be used for various devices such as cameras and videos without particular limitation.
 図1に示すように、スマートフォン200は、光の入射するレンズ202を備える。スマートフォン200では、光学ユニット100は、レンズ202よりも内側に配置される。スマートフォン200には、レンズ202を介して外部から入射方向に光Lが入射し、光学ユニット100を通過した光に基づいて被写体像が撮像される。 As shown in FIG. 1, the smartphone 200 includes a lens 202 into which light is incident. In the smartphone 200, the optical unit 100 is arranged inside the lens 202. Light L is incident on the smartphone 200 from the outside through the lens 202 in the incident direction, and a subject image is imaged based on the light that has passed through the optical unit 100.
 <光学ユニット100の全体構成>
 次に、図2aおよび図2bを参照して、本実施形態の光学ユニット100の構成を説明する。図2aは、本実施形態の光学ユニット100の模式的な斜視図であり、図2bは、本実施形態の光学ユニット100および対応するレンズモジュール210および撮像素子220の模式的な斜視図である。
<Overall configuration of optical unit 100>
Next, the configuration of the optical unit 100 of the present embodiment will be described with reference to FIGS. 2a and 2b. FIG. 2a is a schematic perspective view of the optical unit 100 of the present embodiment, and FIG. 2b is a schematic perspective view of the optical unit 100 of the present embodiment and the corresponding lens module 210 and the image pickup element 220.
 図2aおよび図2bに示すように、光学ユニット100は、z軸方向に沿って入射する入射光Laをx軸方向に反射光Lbとして反射する。なお、本明細書において、x軸方向、y軸方向およびz軸方向をそれぞれ第1軸方向、第2軸方向、第3軸方向と記載することがある。また、本明細書において光学ユニット100の揺動の基準となる軸を第1揺動軸、第2揺動軸と記すことがある。ここで第1揺動軸とは入射光Laおよび反射光Lbに垂直な軸(すなわちy軸方向に平行)であり、第2揺動軸は入射光Laと反射光Lbのいずれかに平行(すなわちx軸方向またはz軸方向に平行)である。 As shown in FIGS. 2a and 2b, the optical unit 100 reflects incident light La incident along the z-axis direction as reflected light Lb in the x-axis direction. In this specification, the x-axis direction, the y-axis direction, and the z-axis direction may be described as the first axis direction, the second axis direction, and the third axis direction, respectively. Further, in the present specification, the shafts that are the reference of the swing of the optical unit 100 may be referred to as a first swing shaft and a second swing shaft. Here, the first swing axis is an axis perpendicular to the incident light La and the reflected light Lb (that is, parallel to the y-axis direction), and the second swing axis is parallel to either the incident light La or the reflected light Lb (that is, parallel to the y-axis direction). That is, it is parallel to the x-axis direction or the z-axis direction).
<第1の実施形態> 本発明の第1の実施形態においては、第2揺動軸は反射光Lbに平行(すなわちz軸方向に平行)である。光学ユニット100は、光学素子110と、ホルダ120と、ケース130と、第1揺動機構140と、第2揺動機構150とを備える。なお、図2aおよび図2bに示されるように、第2揺動機構150は、光学素子110の-x方向側に位置するが、第1揺動機構140は、光学ユニット100の外部から視認できない。第1揺動機構140は、光学素子110およびホルダ120に対して-z方向側に位置する。 <First Embodiment> In the first embodiment of the present invention, the second swing axis is parallel to the reflected light Lb (that is, parallel to the z-axis direction). The optical unit 100 includes an optical element 110, a holder 120, a case 130, a first swing mechanism 140, and a second swing mechanism 150. As shown in FIGS. 2a and 2b, the second swing mechanism 150 is located on the −x direction side of the optical element 110, but the first swing mechanism 140 cannot be visually recognized from the outside of the optical unit 100. .. The first swing mechanism 140 is located on the −z direction side with respect to the optical element 110 and the holder 120.
 光学素子110は、x軸方向に光を反射する反射面110rを有する。反射面110rは、xy平面およびyz平面のそれぞれに対して斜めに配置される。反射面110rは、-z軸方向に沿って入射する入射光Laを反射光Lbとして+x軸方向に反射する。 The optical element 110 has a reflecting surface 110r that reflects light in the x-axis direction. The reflection surface 110r is arranged obliquely with respect to each of the xy plane and the yz plane. The reflecting surface 110r reflects the incident light La incident along the −z axis direction as the reflected light Lb in the + x axis direction.
 例えば、光学素子110は、プリズムを含む。プリズムは、空気よりも屈折率の高い略単一の透明材料から形成される。光学素子110がプリズムを含むことにより、光学ユニット100内を通過する光経路の長さを短縮できる。 For example, the optical element 110 includes a prism. The prism is made of a substantially single transparent material with a higher refractive index than air. Since the optical element 110 includes a prism, the length of the optical path passing through the optical unit 100 can be shortened.
 ホルダ120は、光学素子110を保持する。ホルダ120は、光学素子110のy軸方向に沿って両側に位置する面、および、-z軸方向側に位置する面から光学素子110を保持する。典型的には、ホルダ120は、樹脂から形成される。 The holder 120 holds the optical element 110. The holder 120 holds the optical element 110 from the surfaces located on both sides of the optical element 110 along the y-axis direction and the surfaces located on the −z axis direction side. Typically, the holder 120 is made of resin.
 ケース130は、ホルダ120を揺動可能に支持する。ケース130は、y軸方向の両側端部からホルダ120を支持する。ホルダ120は、ケース130に対して揺動する。ホルダ120は、ケース130に対してy軸を基準として揺動する。y軸は、ピッチング軸とも呼ばれる。また、ホルダ120は、ケース130に対してz軸を基準として揺動する。z軸は、ヨーイング軸とも呼ばれる。一方、光学ユニット100では、ケース130に対してx軸を基準としたホルダ120の揺動は抑制される。典型的には、ケース130は、樹脂または金属から形成される。 The case 130 supports the holder 120 so as to be swingable. The case 130 supports the holder 120 from both end portions in the y-axis direction. The holder 120 swings with respect to the case 130. The holder 120 swings with respect to the case 130 with respect to the y-axis. The y-axis is also called the pitching axis. Further, the holder 120 swings with respect to the case 130 with respect to the z-axis. The z-axis is also called the yawing axis. On the other hand, in the optical unit 100, the swing of the holder 120 with respect to the x-axis is suppressed with respect to the case 130. Typically, the case 130 is made of resin or metal.
 第1揺動機構140は、ホルダ120の-z方向側に位置する。第1揺動機構140は、y軸方向を基準にケース130に対してホルダ120を揺動する。 The first swing mechanism 140 is located on the −z direction side of the holder 120. The first swing mechanism 140 swings the holder 120 with respect to the case 130 with respect to the y-axis direction.
 また、第2揺動機構150は、ホルダ120の-x方向側に位置する。第2揺動機構150は、z軸方向を基準にケース130に対してホルダ120を揺動する。 Further, the second swing mechanism 150 is located on the −x direction side of the holder 120. The second swing mechanism 150 swings the holder 120 with respect to the case 130 with respect to the z-axis direction.
 図2bに示すように、光学ユニット100は、z軸方向に沿って入射する入射光Laをx軸方向に反射光Lbとして反射する。その後、反射光Lbは、スマートフォン200のレンズモジュール210を介して撮像素子220にて受光される。レンズモジュール210は、用途に応じた種々のレンズを含んでもよい。 As shown in FIG. 2b, the optical unit 100 reflects the incident light La incident along the z-axis direction as reflected light Lb in the x-axis direction. After that, the reflected light Lb is received by the image pickup device 220 via the lens module 210 of the smartphone 200. The lens module 210 may include various lenses depending on the application.
 本実施形態の光学ユニット100において、ホルダ120は、ケース130に対して揺動可能に支持される。ホルダ120は、ケース130に対してy軸およびz軸を基準として揺動可能であるが、x軸を基準とした揺動は抑制される。 In the optical unit 100 of this embodiment, the holder 120 is swingably supported with respect to the case 130. The holder 120 can swing with respect to the case 130 with reference to the y-axis and the z-axis, but swing with respect to the x-axis is suppressed.
 次に、図3aおよび図3bを参照して、本実施形態の光学ユニット100の構成を説明する。図3aおよび図3bは、本実施形態の光学ユニット100における光学素子110、ホルダ120およびケース130の分解斜視図である。 Next, the configuration of the optical unit 100 of the present embodiment will be described with reference to FIGS. 3a and 3b. 3a and 3b are exploded perspective views of the optical element 110, the holder 120, and the case 130 in the optical unit 100 of the present embodiment.
 図3aから理解されるように、光学素子110は、ホルダ120に装着される。また、ホルダ120は、光学素子110とともにケース130に装着される。 As can be seen from FIG. 3a, the optical element 110 is mounted on the holder 120. Further, the holder 120 is mounted on the case 130 together with the optical element 110.
 図3aおよび図3bに示すように、光学素子110は、略三角柱形状である。光学素子110は、面110a、面110b、面110c、面110dおよび面110eを有する。面110aの法線は、z軸方向に平行であり、+z方向を向く。 As shown in FIGS. 3a and 3b, the optical element 110 has a substantially triangular prism shape. The optical element 110 has a surface 110a, a surface 110b, a surface 110c, a surface 110d, and a surface 110e. The normal of the surface 110a is parallel to the z-axis direction and faces the + z direction.
 面110bは、面110aと接続し、面110aに対して直交する。面110bの法線は、y軸方向に平行であり、+y方向を向く。面110cは、面110aと接続し、面110aに対して直交する。面110cの法線は、y軸方向に平行であり、-y方向を向く。 The surface 110b is connected to the surface 110a and is orthogonal to the surface 110a. The normal of the surface 110b is parallel to the y-axis direction and faces the + y direction. The surface 110c is connected to the surface 110a and is orthogonal to the surface 110a. The normal of the surface 110c is parallel to the y-axis direction and faces the −y direction.
 面110dは、面110a、面110bおよび面110cと接続する。面110dは、xy平面に対して斜めに交差する。ここでは、面110dが、図2aの反射面110rとなる。面110eは、面110a、面110b、面110cおよび面110dと接続し、面110a、面110b、面110cに対して直交する。面110eの法線は、x軸方向に平行であり、+x方向を向く。 The surface 110d is connected to the surface 110a, the surface 110b and the surface 110c. The surface 110d intersects the xy plane diagonally. Here, the surface 110d is the reflection surface 110r of FIG. 2a. The surface 110e is connected to the surface 110a, the surface 110b, the surface 110c and the surface 110d, and is orthogonal to the surface 110a, the surface 110b and the surface 110c. The normal of the surface 110e is parallel to the x-axis direction and faces the + x direction.
 ホルダ120は、中央部分の一部が除去された略直方体形状である。ホルダ120は、面120a、面120b、面120c、面120d、面120e、面120f、面120g、面120hおよび面120iを有する。 The holder 120 has a substantially rectangular parallelepiped shape with a part of the central portion removed. The holder 120 has a surface 120a, a surface 120b, a surface 120c, a surface 120d, a surface 120e, a surface 120f, a surface 120g, a surface 120h and a surface 120i.
 面120aは、xy平面に対して斜めに交差する。面120aのy方向の長さは、光学素子110のy方向の長さとほぼ等しいが、面120aのy方向の長さは、光学素子110のy方向の長さよりもわずかに大きい。 The surface 120a intersects the xy plane diagonally. The length of the surface 120a in the y direction is substantially equal to the length of the optical element 110 in the y direction, but the length of the surface 120a in the y direction is slightly larger than the length of the optical element 110 in the y direction.
 面120bは、面120aと接続し、面120aに対して直交する。面120bの法線は、y軸方向に平行であり、-y方向を向く。面120cは、面120bに対向する。面120cは、面120aと接続し、面120aに対して直交する。面120cの法線は、y軸方向に平行であり、+y方向を向く。 The surface 120b is connected to the surface 120a and is orthogonal to the surface 120a. The normal of the surface 120b is parallel to the y-axis direction and faces the −y direction. The surface 120c faces the surface 120b. The surface 120c is connected to the surface 120a and is orthogonal to the surface 120a. The normal of the surface 120c is parallel to the y-axis direction and faces the + y direction.
 光学素子110は、ホルダ120の面120a、面120bおよび面120cに装着される。面120a、面120bおよび面120cは、ホルダ120の内周面を構成する。また、ホルダ120の面120aには光学素子110が取り付けられる。本明細書において、ホルダ120の面120aを光学素子取付面と記載することがある。 The optical element 110 is mounted on the surfaces 120a, 120b and 120c of the holder 120. The surfaces 120a, 120b and 120c form the inner peripheral surface of the holder 120. Further, the optical element 110 is attached to the surface 120a of the holder 120. In the present specification, the surface 120a of the holder 120 may be referred to as an optical element mounting surface.
 面120dの法線は、z軸方向に平行であり、+z方向を向く。面120dは、面120aによって面120d1および面120d2に分かれる。面120d1は、面120aに対して+y方向側に位置し、面120d2は、面120aに対して-y方向側に位置する。 The normal of the surface 120d is parallel to the z-axis direction and faces the + z direction. The surface 120d is divided into a surface 120d1 and a surface 120d2 by the surface 120a. The surface 120d1 is located on the + y direction side with respect to the surface 120a, and the surface 120d2 is located on the −y direction side with respect to the surface 120a.
 面120eは、面120d1に接続し、面120d1に対して直交する。面120eの法線は、y軸方向に平行であり、+y方向を向く。ホルダ120がケース130に装着されると、ホルダ120の面120eは、ケース130と対向する。本明細書において、ホルダ120の面120eを第1ケース対向面と記載することがある。 The surface 120e is connected to the surface 120d1 and is orthogonal to the surface 120d1. The normal of the surface 120e is parallel to the y-axis direction and faces the + y direction. When the holder 120 is attached to the case 130, the surface 120e of the holder 120 faces the case 130. In the present specification, the surface 120e of the holder 120 may be referred to as a first case facing surface.
 面120fは、面120d2に接続し、面120d2に対して直交する。面120fの法線は、y軸方向に平行であり、-y方向を向く。ホルダ120がケース130に装着されると、ホルダ120の面120fは、ケース130と対向する。本明細書において、ホルダ120の面120fを第2ケース対向面と記載することがある。 The surface 120f is connected to the surface 120d2 and is orthogonal to the surface 120d2. The normal of the surface 120f is parallel to the y-axis direction and faces the −y direction. When the holder 120 is mounted on the case 130, the surface 120f of the holder 120 faces the case 130. In the present specification, the surface 120f of the holder 120 may be referred to as a second case facing surface.
 面120gは、面120a、面120d1、面120d2、面120eおよび面120fに接続し、面120d1、面120d2、面120eおよび面120fに対して直交する。面120gの法線は、x軸方向に平行であり、-x方向を向く。面120hは、面120e、面120fおよび面120gに接続し、面120e、面120fおよび面120gに対して直交する。面120hの法線は、z軸方向に平行であり、-z方向を向く。 The surface 120g is connected to the surface 120a, the surface 120d1, the surface 120d2, the surface 120e and the surface 120f, and is orthogonal to the surface 120d1, the surface 120d2, the surface 120e and the surface 120f. The normal of the surface 120g is parallel to the x-axis direction and faces the −x direction. The surface 120h is connected to the surface 120e, the surface 120f and the surface 120g, and is orthogonal to the surface 120e, the surface 120f and the surface 120g. The normal of the surface 120h is parallel to the z-axis direction and faces the −z direction.
 面120iの法線は、x軸方向に平行であり、+x方向を向く。面120iは、面120d、面120e、面120fおよび面120hに接続し、面120d、面120e、面120fおよび面120hに対して直交する。面120iは、面120aによって面120i1および面120i2に分かれる。面120i1は、面120aに対して+y方向側に位置し、面120i2は、面120aに対して-y方向側に位置する。 The normal of the surface 120i is parallel to the x-axis direction and faces the + x direction. The surface 120i is connected to the surface 120d, the surface 120e, the surface 120f and the surface 120h, and is orthogonal to the surface 120d, the surface 120e, the surface 120f and the surface 120h. The surface 120i is divided into a surface 120i1 and a surface 120i2 by the surface 120a. The surface 120i1 is located on the + y direction side with respect to the surface 120a, and the surface 120i2 is located on the −y direction side with respect to the surface 120a.
 図3aおよび図3bに示すように、ホルダ120は、取付部121と、第1端部122aと、第2端部122bと、第1凸部125と、第2凸部126とを有する。取付部121には、光学素子110が取り付けられる。第1端部122aは、取付部121に対して+y方向側に位置する。第2端部122bは、取付部121に対して-y方向側に位置する。取付部121は、第1端部122aと、第2端部122bとの間に位置する。 As shown in FIGS. 3a and 3b, the holder 120 has a mounting portion 121, a first end portion 122a, a second end portion 122b, a first convex portion 125, and a second convex portion 126. An optical element 110 is attached to the attachment portion 121. The first end portion 122a is located on the + y direction side with respect to the mounting portion 121. The second end portion 122b is located on the −y direction side with respect to the mounting portion 121. The mounting portion 121 is located between the first end portion 122a and the second end portion 122b.
 面120eは、第1端部122aの+y方向側の外面である。上述したように、面120eは、ケース130と対向する第1ケース対向面となる。第1凸部125は、ケース130と対向する第1ケース対向面(面120e)に設けられる。ここでは、第1凸部125は、第1ケース対向面(面120e)の中心に位置する。ホルダ120がケース130に装着された場合、第1凸部125は、ケース130に向かって突出する。 The surface 120e is the outer surface of the first end portion 122a on the + y direction side. As described above, the surface 120e is the first case facing surface facing the case 130. The first convex portion 125 is provided on the first case facing surface (surface 120e) facing the case 130. Here, the first convex portion 125 is located at the center of the first case facing surface (plane 120e). When the holder 120 is attached to the case 130, the first convex portion 125 projects toward the case 130.
 面120fは、第2端部122bの-y方向側の外面である。上述したように、面120fは、ケース130と対向する第2ケース対向面となる。第2凸部126は、ケース130と対向する第2ケース対向面(面120f)に設けられる。ここでは、第2凸部126は、第2ケース対向面(面120f)の中心に位置する。ホルダ120がケース130に装着された場合、第2凸部126は、ケース130に向かって突出する。 The surface 120f is the outer surface of the second end portion 122b on the −y direction side. As described above, the surface 120f is a second case facing surface facing the case 130. The second convex portion 126 is provided on a second case facing surface (surface 120f) facing the case 130. Here, the second convex portion 126 is located at the center of the second case facing surface (plane 120f). When the holder 120 is attached to the case 130, the second convex portion 126 projects toward the case 130.
 ケース130は、隣接する2つの面からより小さい略直方体形状を部分的に除去した略直方体形状である。ケース130は、内周面132と、外周面134とを有する。内周面132は、面132a、面132b、面132cおよび面132dを有する。面132aの法線は、x軸方向に平行であり、+x方向を向く。 The case 130 is a substantially rectangular parallelepiped shape in which a smaller rectangular parallelepiped shape is partially removed from two adjacent surfaces. The case 130 has an inner peripheral surface 132 and an outer peripheral surface 134. The inner peripheral surface 132 has a surface 132a, a surface 132b, a surface 132c, and a surface 132d. The normal of surface 132a is parallel to the x-axis direction and points in the + x direction.
 面132bは、面132aに接続し、面132aに対して直交する。面132bの法線は、y軸方向に平行であり、-y方向を向く。面132cは、面132aに接続し、面132aに対して直交する。面132cの法線は、y軸方向に平行であり、+y方向を向く。 The surface 132b is connected to the surface 132a and is orthogonal to the surface 132a. The normal of the surface 132b is parallel to the y-axis direction and faces the −y direction. The surface 132c connects to the surface 132a and is orthogonal to the surface 132a. The normal of the surface 132c is parallel to the y-axis direction and faces the + y direction.
 面132dは、面132a、面132bおよび面132cに接続し、面132a、面132bおよび面132cに対して直交する。面132dの法線は、z軸方向に平行であり、+y方向を向く。 The surface 132d is connected to the surface 132a, the surface 132b and the surface 132c, and is orthogonal to the surface 132a, the surface 132b and the surface 132c. The normal of the surface 132d is parallel to the z-axis direction and faces the + y direction.
 ケース130の内周面132には、ホルダ120が装着される。ケース130の内周面132にホルダ120が装着された場合、ホルダ120の面120g、面120e、面120fおよび面120hが、ケース130の面132a、面132b、面132cおよび面132dにそれぞれ対向する。 The holder 120 is mounted on the inner peripheral surface 132 of the case 130. When the holder 120 is mounted on the inner peripheral surface 132 of the case 130, the surface 120g, the surface 120e, the surface 120f and the surface 120h of the holder 120 face the surface 132a, the surface 132b, the surface 132c and the surface 132d of the case 130, respectively. ..
 上述したように、本明細書において、ホルダ120の面120eを第1ケース対向面と記載し、ホルダ120の面120fを第2ケース対向面と記載することがある。なお、本明細書において、ケース130のうち、ホルダ120の面120eと対応する面132bを第1ホルダ対向面と記載することがあり、ホルダ120の面120fと対応する面132cを第2ホルダ対向面と記載することがある。 As described above, in the present specification, the surface 120e of the holder 120 may be described as the first case facing surface, and the surface 120f of the holder 120 may be described as the second case facing surface. In the present specification, in the case 130, the surface 132b corresponding to the surface 120e of the holder 120 may be described as the first holder facing surface, and the surface 132c corresponding to the surface 120f of the holder 120 may be referred to as the second holder facing surface. May be described as a face.
 外周面134は、面134a、面134b、面134c、面134d、面134eおよび面134fを有する。面134aの法線は、z軸方向に平行であり、+z方向を向く。面134aは、面132a、面132bおよび面132cのそれぞれと接続し、面132a、面132bおよび面132cに対して直交する。 The outer peripheral surface 134 has a surface 134a, a surface 134b, a surface 134c, a surface 134d, a surface 134e, and a surface 134f. The normal of surface 134a is parallel to the z-axis direction and points in the + z direction. The surface 134a is connected to each of the surface 132a, the surface 132b and the surface 132c, and is orthogonal to the surface 132a, the surface 132b and the surface 132c.
 面134bは、面134aに接続し、面134aに対して直交する。面134bの法線は、y軸方向に平行であり、+y方向を向く。面134cは、面134aに接続し、面134aに対して直交する。面134cの法線は、y軸方向に平行であり、-y方向を向く。 The surface 134b is connected to the surface 134a and is orthogonal to the surface 134a. The normal of the surface 134b is parallel to the y-axis direction and faces the + y direction. The surface 134c connects to the surface 134a and is orthogonal to the surface 134a. The normal of the surface 134c is parallel to the y-axis direction and faces the −y direction.
 面134dは、面134a、面134bおよび面134cに接続し、面134a、面134bおよび面134cに対して直交する。面134dの法線は、x軸方向に平行であり、-x方向を向く。面134eは、面134b、面134cおよび面134dに接続し、面134b、面134cおよび面134dに対して直交する。面134eの法線は、z軸方向に平行であり、-z方向を向く。 The surface 134d is connected to the surface 134a, the surface 134b and the surface 134c, and is orthogonal to the surface 134a, the surface 134b and the surface 134c. The normal of the surface 134d is parallel to the x-axis direction and points in the −x direction. The surface 134e connects to the surface 134b, the surface 134c and the surface 134d and is orthogonal to the surface 134b, the surface 134c and the surface 134d. The normal of the surface 134e is parallel to the z-axis direction and faces the −z direction.
 面134fは、面134b、面134cおよび面134eに接続し、面134b、面134cおよび面134eに対して直交する。また、面134fは、面132a、面132bおよび面132cのそれぞれと接続し、面132a、面132bおよび面132cに対して直交する。面134fの法線は、x軸方向に平行であり、+x方向を向く。 The surface 134f is connected to the surface 134b, the surface 134c and the surface 134e, and is orthogonal to the surface 134b, the surface 134c and the surface 134e. Further, the surface 134f is connected to each of the surface 132a, the surface 132b and the surface 132c, and is orthogonal to the surface 132a, the surface 132b and the surface 132c. The normal of the surface 134f is parallel to the x-axis direction and faces the + x direction.
 ケース130は、第1凹部135を有する。第1凹部135は、ホルダ120の第1ケース対向面(120e)と対向する第1ホルダ対向面(132b)に設けられる。第1凹部135は、第1凸部125の少なくとも一部を収容する。ここでは、第1凹部135は、x軸方向に延びる。第1凹部135のx軸方向の長さは、第1凸部125のx軸方向の長さよりも大きい。 The case 130 has a first recess 135. The first recess 135 is provided on the first holder facing surface (132b) facing the first case facing surface (120e) of the holder 120. The first concave portion 135 accommodates at least a part of the first convex portion 125. Here, the first recess 135 extends in the x-axis direction. The length of the first concave portion 135 in the x-axis direction is larger than the length of the first convex portion 125 in the x-axis direction.
 ケース130は、第2凹部136を有する。第2凹部136は、ホルダ120の第2ケース対向面(120f)と対向する第2ホルダ対向面(132c)に設けられる。第2凹部136は、第2凸部126の少なくとも一部を収容する。ここでは、第2凹部136は、x軸方向に延びる。第2凹部136のx軸方向の長さは、第2凸部126のx軸方向の長さよりも大きい。 The case 130 has a second recess 136. The second recess 136 is provided on the second holder facing surface (132c) facing the second case facing surface (120f) of the holder 120. The second concave portion 136 accommodates at least a part of the second convex portion 126. Here, the second recess 136 extends in the x-axis direction. The length of the second concave portion 136 in the x-axis direction is larger than the length of the second convex portion 126 in the x-axis direction.
 本実施形態の光学ユニット100によれば、ホルダ120がケース130に装着される場合、第1凸部125は、第1端部122aからケース130に向かって突出する。また、第1凸部125の設けられた第1ケース対向面(面120e)は、第1凹部135の設けられた第1ホルダ対向面(面132b)と対向し、第1凹部135は、第1凸部125の少なくとも一部を収容する。このため、第1凸部125は、収容された第1凹部135内で移動可能である。 According to the optical unit 100 of the present embodiment, when the holder 120 is mounted on the case 130, the first convex portion 125 projects from the first end portion 122a toward the case 130. Further, the first case facing surface (surface 120e) provided with the first convex portion 125 faces the first holder facing surface (surface 132b) provided with the first concave portion 135, and the first concave portion 135 is the first. Contains at least a portion of one convex portion 125. Therefore, the first convex portion 125 is movable in the housed first concave portion 135.
 同様に、第2凸部126は、第2端部122bからケース130に向かって突出する。また、第2凸部126の設けられた第2ケース対向面(面120f)は、第2凹部136の設けられた第2ホルダ対向面(面132c)と対向し、第2凹部136は、第2凸部126の少なくとも一部を収容する。このため、第2凸部126は、収容された第2凹部136内で移動可能である。 Similarly, the second convex portion 126 projects from the second end portion 122b toward the case 130. Further, the second case facing surface (surface 120f) provided with the second convex portion 126 faces the second holder facing surface (surface 132c) provided with the second concave portion 136, and the second concave portion 136 faces the second holder facing surface (surface 132c). 2 Contain at least a part of the convex portion 126. Therefore, the second convex portion 126 is movable within the housed second concave portion 136.
 次に、図3a~図4bを参照して、本実施形態の光学ユニット100におけるホルダ120、第1揺動機構140および第2揺動機構150を説明する。図4aおよび図4bは、本実施形態の光学ユニット100におけるホルダ120、第1揺動機構140および第2揺動機構150の模式的な斜視図である。なお、図4aおよび図4bでは、第1コイル144および第2コイル154を除き、ケース130を省略して示している。 Next, the holder 120, the first swing mechanism 140, and the second swing mechanism 150 in the optical unit 100 of the present embodiment will be described with reference to FIGS. 3a to 4b. 4a and 4b are schematic perspective views of the holder 120, the first swing mechanism 140, and the second swing mechanism 150 in the optical unit 100 of the present embodiment. In FIGS. 4a and 4b, the case 130 is omitted except for the first coil 144 and the second coil 154.
 第1揺動機構140は、第1磁石142と、第1コイル144とを含む。第1磁石142は、ホルダ120およびケース130の一方に設けられ、第1コイル144は、第1磁石142に対して、ホルダ120およびケース130の他方に設けられる。詳細には、第1磁石142および第1コイル144の一方は、ホルダ120の面120hに設けられ、第1磁石142および第1コイル144の他方は、ケース130の面132d上または面132dに対向するケース130内部に配置される。本明細書において、ホルダ120の面120hを第1揺動機構取付面と記載することがある。 The first swing mechanism 140 includes a first magnet 142 and a first coil 144. The first magnet 142 is provided on one of the holder 120 and the case 130, and the first coil 144 is provided on the other of the holder 120 and the case 130 with respect to the first magnet 142. Specifically, one of the first magnet 142 and the first coil 144 is provided on the surface 120h of the holder 120, and the other of the first magnet 142 and the first coil 144 faces the surface 132d or the surface 132d of the case 130. It is arranged inside the case 130. In the present specification, the surface 120h of the holder 120 may be referred to as a first rocking mechanism mounting surface.
 ここでは、第1磁石142は、ホルダ120に取り付けられる。詳細には、第1磁石142は、ホルダ120の面120hに取り付けられる。第1磁石142は、N極142nと、S極142sとを有する。N極142nおよびS極142sは、それぞれy方向に延びており、x方向に並んで配列される。 Here, the first magnet 142 is attached to the holder 120. Specifically, the first magnet 142 is attached to the surface 120h of the holder 120. The first magnet 142 has an N pole 142n and an S pole 142s. The north pole 142n and the south pole 142s each extend in the y direction and are arranged side by side in the x direction.
 第1コイル144はケース130に設けられる。第1コイル144に流れる電流の向きを切り換えることにより、第1磁石142はx軸方向に沿った力を受ける。 The first coil 144 is provided in the case 130. By switching the direction of the current flowing through the first coil 144, the first magnet 142 receives a force along the x-axis direction.
 第2揺動機構150は、第2磁石152と、第2コイル154とを含む。第2磁石152は、ホルダ120およびケース130の一方に設けられ、第2コイル154は、第2磁石152に対して、ホルダ120およびケース130の他方に設けられる。詳細には、第2磁石152および第2コイル154の一方は、ホルダ120の面120gに設けられ、第2磁石152および第2コイル154の他方は、ケース130の面132a上または面132aに対向するケース130内部に配置される。本明細書において、ホルダ120の面120gを第2揺動機構取付面と記載することがある。 The second swing mechanism 150 includes a second magnet 152 and a second coil 154. The second magnet 152 is provided on one of the holder 120 and the case 130, and the second coil 154 is provided on the other of the holder 120 and the case 130 with respect to the second magnet 152. Specifically, one of the second magnet 152 and the second coil 154 is provided on the surface 120g of the holder 120, and the other of the second magnet 152 and the second coil 154 faces the surface 132a or the surface 132a of the case 130. It is arranged inside the case 130. In the present specification, the surface 120 g of the holder 120 may be referred to as a second rocking mechanism mounting surface.
 ここでは、第2磁石152は、ホルダ120に取り付けられる。詳細には、第2磁石152は、ホルダ120の面120gに取り付けられる。第2磁石152は、N極152nと、S極152sとを有する。N極152nおよびS極152sは、それぞれz方向に延びており、y方向に並んで配列される。 Here, the second magnet 152 is attached to the holder 120. Specifically, the second magnet 152 is attached to the surface 120 g of the holder 120. The second magnet 152 has an N pole 152n and an S pole 152s. The N pole 152n and the S pole 152s each extend in the z direction and are arranged side by side in the y direction.
 第2コイル154はケース130に設けられる。第2コイル154に流れる電流の向きを切り換えることにより、第2磁石152はy軸方向に沿った力を受ける。 The second coil 154 is provided in the case 130. By switching the direction of the current flowing through the second coil 154, the second magnet 152 receives a force along the y-axis direction.
 図4aおよび図4bに示すように、ホルダ120が第1磁石142および第2磁石152を含み、ケース130が第1コイル144および第2コイル154を含むことが好ましい。これにより、ケース130の第1コイル144および/または第2コイル154に電流を流すことにより、ケース130を基準としたホルダ120の揺動を簡便に制御できる。 As shown in FIGS. 4a and 4b, it is preferable that the holder 120 includes the first magnet 142 and the second magnet 152, and the case 130 includes the first coil 144 and the second coil 154. As a result, the swing of the holder 120 with respect to the case 130 can be easily controlled by passing a current through the first coil 144 and / or the second coil 154 of the case 130.
 上述したように、第1揺動機構取付面(面120h)は、第1ケース対向面(面120e)および第2ケース対向面(面120f)に接続される。また、第1揺動機構取付面(面120h)は、z軸方向に平行な法線を有する。また、第2揺動機構取付面(面120g)は、第1ケース対向面(面120e)および第2ケース対向面(面120f)に接続される。第2揺動機構取付面(面120g)は、x軸方向に平行な法線を有する。 As described above, the first swing mechanism mounting surface (surface 120h) is connected to the first case facing surface (surface 120e) and the second case facing surface (surface 120f). Further, the first rocking mechanism mounting surface (surface 120h) has a normal line parallel to the z-axis direction. Further, the second swing mechanism mounting surface (surface 120g) is connected to the first case facing surface (surface 120e) and the second case facing surface (surface 120f). The second rocking mechanism mounting surface (surface 120 g) has a normal line parallel to the x-axis direction.
 第1揺動機構取付面(面120h)には、第1揺動機構140の第1磁石142および第1コイル144の一方が取り付けられる。同様に、第2揺動機構取付面(面120g)には、第2揺動機構150の第2磁石152および第2コイル154の一方が取り付けられる。第1揺動機構140および第2揺動機構150は、x軸方向およびy軸方向に平行な法線を有する取付面(面120h、120g)に取り付けられるため、ケース130に対してホルダ120を効率的に揺動できる。 One of the first magnet 142 and the first coil 144 of the first swing mechanism 140 is mounted on the first swing mechanism mounting surface (surface 120h). Similarly, one of the second magnet 152 and the second coil 154 of the second swing mechanism 150 is mounted on the second swing mechanism mounting surface (surface 120 g). Since the first swing mechanism 140 and the second swing mechanism 150 are mounted on mounting surfaces ( surfaces 120h, 120g) having normals parallel to the x-axis direction and the y-axis direction, the holder 120 is attached to the case 130. Can swing efficiently.
 また、上述したように、光学素子110は、ホルダ120の光学素子取付面(面120a)に位置する。光学素子取付面(面120a)は、第1ケース対向面(面120e)と第2ケース対向面(面120f)との間に位置する。また、光学素子取付面(面120a)は、第1揺動機構取付面(面120h)および第2揺動機構取付面(面120g)に対して斜めに配置される。このため、光学素子取付面(面120a)に取り付けられる光学素子110によって反射光の光軸がずれることを効果的に抑制できる。 Further, as described above, the optical element 110 is located on the optical element mounting surface (surface 120a) of the holder 120. The optical element mounting surface (surface 120a) is located between the first case facing surface (surface 120e) and the second case facing surface (surface 120f). Further, the optical element mounting surface (surface 120a) is arranged obliquely with respect to the first rocking mechanism mounting surface (surface 120h) and the second rocking mechanism mounting surface (surface 120g). Therefore, it is possible to effectively suppress the optical axis of the reflected light from being displaced by the optical element 110 mounted on the optical element mounting surface (surface 120a).
 上述したように、ホルダ120の第1凸部125は、ケース130の第1凹部135に収容され、ホルダ120の第2凸部126は、ケース130の第2凹部136に収容される。 As described above, the first convex portion 125 of the holder 120 is housed in the first concave portion 135 of the case 130, and the second convex portion 126 of the holder 120 is housed in the second concave portion 136 of the case 130.
 ここで、図5aおよび図5bを参照して、本実施形態の光学ユニット100におけるホルダ120の凸部およびケース130の凹部の係合を説明する。まず、光学ユニット100におけるホルダ120の第1凸部125およびケース130の第1凹部135の係合を説明する。図5aは、本実施形態の光学ユニット100におけるホルダ120の第1凸部125およびケース130の第1凹部135の係合を説明するための模式図である。 Here, with reference to FIGS. 5a and 5b, the engagement between the convex portion of the holder 120 and the concave portion of the case 130 in the optical unit 100 of the present embodiment will be described. First, the engagement of the first convex portion 125 of the holder 120 and the first concave portion 135 of the case 130 in the optical unit 100 will be described. FIG. 5a is a schematic diagram for explaining the engagement between the first convex portion 125 of the holder 120 and the first concave portion 135 of the case 130 in the optical unit 100 of the present embodiment.
 図5aに示すように、第1凸部125は、ホルダ120の面120eから突出する。第1凸部125は、一部球面形状を有する。ここでは、第1凸部125は、半球形状である。ただし、第1凸部125は半球形状でなくてもよい。第1凸部125は曲面形状を有することが好ましい。一例では、第1凸部125は、矩形状の平面の周囲にR面が設けられた形状であってもよい。 As shown in FIG. 5a, the first convex portion 125 projects from the surface 120e of the holder 120. The first convex portion 125 has a partially spherical shape. Here, the first convex portion 125 has a hemispherical shape. However, the first convex portion 125 does not have to have a hemispherical shape. The first convex portion 125 preferably has a curved surface shape. In one example, the first convex portion 125 may have a shape in which an R surface is provided around a rectangular plane.
 上述したように、第1凹部135は、第1凸部125の少なくとも一部を収容する。第1凹部135は、第1側面135aと、第2側面135bと、底面135cとを有する。第1側面135aは、第1凸部125に対してz軸方向一方側に位置する。第2側面135bは、第1凸部125に対してz軸方向他方側に位置する。底面135cは、第1凹部135の第1側面135aと第1凹部135の第2側面135bとを接続する。ここで「接続」とは単に繋がっている状態を示している。よって製造過程において接続する動作を必要とするわけではない。加えて、第1側面135aと第2側面135bとを明確に区別するような境界線がなく繋がっていてもよい。 As described above, the first concave portion 135 accommodates at least a part of the first convex portion 125. The first recess 135 has a first side surface 135a, a second side surface 135b, and a bottom surface 135c. The first side surface 135a is located on one side in the z-axis direction with respect to the first convex portion 125. The second side surface 135b is located on the other side in the z-axis direction with respect to the first convex portion 125. The bottom surface 135c connects the first side surface 135a of the first recess 135 and the second side surface 135b of the first recess 135. Here, "connection" simply indicates a connected state. Therefore, the operation of connecting is not required in the manufacturing process. In addition, the first side surface 135a and the second side surface 135b may be connected without a boundary line that clearly distinguishes them.
 ここでは、第1側面135aは、x軸方向と平行に延びる。また、第2側面135bは、x軸方向と平行に延びる。第1側面135aおよび第2側面135bは互いに平行である。ただし、第1側面135aおよび第2側面135bは平行でなくてもよい。例えば、第1凹部135は、底面135cを谷として第1側面135aおよび第2側面135bを接続したV字型としてもよい。つまり、第1側面135aは、第1ホルダ対向面(132b)から接続箇所135cに向かって、z軸方向一方側から一定の傾きで下り傾斜してもよい。また、第2側面135bは、第1ホルダ対向面(132b)から接続箇所135cに向かって、z軸方向他方側から一定の傾きで上り傾斜してもよい。 Here, the first side surface 135a extends parallel to the x-axis direction. Further, the second side surface 135b extends in parallel with the x-axis direction. The first side surface 135a and the second side surface 135b are parallel to each other. However, the first side surface 135a and the second side surface 135b do not have to be parallel. For example, the first recess 135 may be V-shaped with the bottom surface 135c as a valley and the first side surface 135a and the second side surface 135b connected to each other. That is, the first side surface 135a may be inclined downward from one side in the z-axis direction from the first holder facing surface (132b) toward the connection point 135c with a constant inclination. Further, the second side surface 135b may be inclined upward from the other side in the z-axis direction from the first holder facing surface (132b) toward the connection point 135c with a constant inclination.
さらに、第1凹部135の接続箇所135cはz軸方向に延びていてもよい。この場合、z軸方向に延びる面を有さない形態と比較して、第1側面135aおよび第1側面135bはz軸方向に対して緩やかな斜面となる。第1側面135aまたは第2側面135bは曲面を含んでいてもよい。加えて断面形状が円の一部であり、第1側面135aと第2側面135bとの境界が明確でなくてもよい。 Further, the connection portion 135c of the first recess 135 may extend in the z-axis direction. In this case, the first side surface 135a and the first side surface 135b have gentle slopes with respect to the z-axis direction, as compared with the form having no surface extending in the z-axis direction. The first side surface 135a or the second side surface 135b may include a curved surface. In addition, the cross-sectional shape is a part of a circle, and the boundary between the first side surface 135a and the second side surface 135b does not have to be clear.
 また、第1側面135aと底面135cとの境界は円弧状であり、第2側面135bと底面135cとの境界も円弧状である。このため、底面135cの深さ(面132bに対する底面135cまでの距離)は、x方向の位置に応じて変化する。第1側面135aのうちのx方向中央において底面135cは最も深い。 Further, the boundary between the first side surface 135a and the bottom surface 135c is arcuate, and the boundary between the second side surface 135b and the bottom surface 135c is also arcuate. Therefore, the depth of the bottom surface 135c (distance to the bottom surface 135c with respect to the surface 132b) changes depending on the position in the x direction. The bottom surface 135c is the deepest in the center of the first side surface 135a in the x direction.
 底面135cは、一部球面形状を有することが好ましい。ここでは、底面135cは、z軸方向から正面視した場合に曲面形状を有する。底面135cの曲面は、一定の曲率半径で規定されてもよい。底面135cの曲面は、第1凸部125の形状と整合する。 It is preferable that the bottom surface 135c has a partially spherical shape. Here, the bottom surface 135c has a curved surface shape when viewed from the front from the z-axis direction. The curved surface of the bottom surface 135c may be defined by a constant radius of curvature. The curved surface of the bottom surface 135c matches the shape of the first convex portion 125.
 次に、光学ユニット100におけるホルダ120の第2凸部126およびケース130の第2凹部136の係合を説明する。図5bは、本実施形態の光学ユニット100におけるホルダ120の第2凸部126およびケース130の第2凹部136の係合を説明するための模式図である。 Next, the engagement of the second convex portion 126 of the holder 120 and the second concave portion 136 of the case 130 in the optical unit 100 will be described. FIG. 5b is a schematic diagram for explaining the engagement between the second convex portion 126 of the holder 120 and the second concave portion 136 of the case 130 in the optical unit 100 of the present embodiment.
 図5bに示すように、第2凸部126は、ホルダ120の面120fから突出する。第2凸部126は、一部球面形状を有する。ここでは、第2凸部126は、半球形状である。ここでは、第2凸部126は、半球形状である。ただし、第2凸部126は半球形状でなくてもよい。第2凸部126は曲面形状を有することが好ましい。一例では、第2凸部126は、矩形状の平面の周囲にR面が設けられた形状であってもよい。 As shown in FIG. 5b, the second convex portion 126 projects from the surface 120f of the holder 120. The second convex portion 126 has a partially spherical shape. Here, the second convex portion 126 has a hemispherical shape. Here, the second convex portion 126 has a hemispherical shape. However, the second convex portion 126 does not have to have a hemispherical shape. The second convex portion 126 preferably has a curved surface shape. In one example, the second convex portion 126 may have a shape in which an R surface is provided around a rectangular plane.
 上述したように、第2凹部136は、第2凸部126の少なくとも一部を収容する。第2凹部136は、第1側面136aと、第2側面136bと、底面136cとを有する。第1側面136aは、第2凸部126に対してz軸方向一方側に位置する。第2側面136bは、第2凸部126に対してz軸方向他方側に位置する。底面136cは、第2凹部136の第1側面136aと第2凹部136の第2側面136bとを接続する。前述の通り、「接続」とは単に繋がっている状態を示している。よって製造過程において接続する動作を必要とするわけではない。加えて、第1側面136aと第2側面136bとを明確に区別するような境界線がなく繋がっていてもよい。 As described above, the second concave portion 136 accommodates at least a part of the second convex portion 126. The second recess 136 has a first side surface 136a, a second side surface 136b, and a bottom surface 136c. The first side surface 136a is located on one side in the z-axis direction with respect to the second convex portion 126. The second side surface 136b is located on the other side in the z-axis direction with respect to the second convex portion 126. The bottom surface 136c connects the first side surface 136a of the second recess 136 and the second side surface 136b of the second recess 136. As mentioned above, "connection" simply indicates a connected state. Therefore, the operation of connecting is not required in the manufacturing process. In addition, the first side surface 136a and the second side surface 136b may be connected without a boundary line that clearly distinguishes them.
 ここでは、第1側面136aは、x軸方向と平行に延びる。また、第2側面136bは、x軸方向と平行に延びる。第1側面136aおよび第2側面136bは互いに平行である。ただし、第1側面136aおよび第2側面136bは平行でなくてもよい。例えば、第1凹部136は、底面136cを谷として第1側面136aおよび第2側面136bを接続したV字型としてもよい。つまり、第1側面136aは、第1ホルダ対向面(132c)から接続箇所136cに向かって、z軸方向一方側から一定の傾きで下り傾斜してもよい。また、第2側面136bは、第1ホルダ対向面(132c)から接続箇所136cに向かって、z軸方向他方側から一定の傾きで上り傾斜してもよい。 Here, the first side surface 136a extends parallel to the x-axis direction. Further, the second side surface 136b extends in parallel with the x-axis direction. The first side surface 136a and the second side surface 136b are parallel to each other. However, the first side surface 136a and the second side surface 136b do not have to be parallel. For example, the first recess 136 may be V-shaped with the bottom surface 136c as a valley and the first side surface 136a and the second side surface 136b connected to each other. That is, the first side surface 136a may be inclined downward from one side in the z-axis direction from the first holder facing surface (132c) toward the connection point 136c with a constant inclination. Further, the second side surface 136b may be inclined upward from the other side in the z-axis direction from the first holder facing surface (132c) toward the connection point 136c with a constant inclination.
さらに、第1凹部136の接続箇所136cはz軸方向に延びていてもよい。この場合、z軸方向に延びる面を有さない形態と比較して、第1側面136aおよび第1側面136bはz軸方向に対して緩やかな斜面となる。第1側面136aまたは第2側面136bは曲面を含んでいてもよい。加えて断面形状が円の一部であり、第1側面136aと第2側面136bとの境界が明確でなくてもよい。 Further, the connection portion 136c of the first recess 136 may extend in the z-axis direction. In this case, the first side surface 136a and the first side surface 136b have gentle slopes with respect to the z-axis direction, as compared with the form having no surface extending in the z-axis direction. The first side surface 136a or the second side surface 136b may include a curved surface. In addition, the cross-sectional shape is a part of a circle, and the boundary between the first side surface 136a and the second side surface 136b does not have to be clear.
 また、第1側面136aと底面136cとの境界は円弧状であり、第2側面136bと底面136cとの境界も円弧状である。このため、底面136cの深さ(面132cに対する底面136cまでの距離)は、x方向の位置に応じて変化する。第1側面136aのうちのx方向中央において底面136cは最も深い。 Further, the boundary between the first side surface 136a and the bottom surface 136c is arcuate, and the boundary between the second side surface 136b and the bottom surface 136c is also arcuate. Therefore, the depth of the bottom surface 136c (the distance to the bottom surface 136c with respect to the surface 132c) changes depending on the position in the x direction. The bottom surface 136c is the deepest in the center of the first side surface 136a in the x direction.
 底面136cは、一部球面形状を有することが好ましい。ここでは、底面136cは、z軸方向から正面視した場合に曲面形状を有する。底面136cの曲面は、一定の曲率半径で規定されてもよい。底面136cの曲面は、第2凸部126の形状と整合する。 It is preferable that the bottom surface 136c has a partially spherical shape. Here, the bottom surface 136c has a curved surface shape when viewed from the front from the z-axis direction. The curved surface of the bottom surface 136c may be defined by a constant radius of curvature. The curved surface of the bottom surface 136c matches the shape of the second convex portion 126.
 図5aおよび図5bから理解されるように、第1凹部135は第1凸部125を支持する。このとき、第1凸部125は、第1凹部135に対してy軸方向およびz軸方向を基準として揺動可能であるが、x軸方向を基準とした揺動は抑制される。同様に、第2凹部136は第2凸部126を支持する。このとき、第2凸部126は、第2凹部136に対してy軸方向およびz軸方向を基準として揺動可能であるが、x軸方向を基準とした揺動は抑制される。 As can be seen from FIGS. 5a and 5b, the first recess 135 supports the first convex portion 125. At this time, the first convex portion 125 can swing with respect to the first concave portion 135 with reference to the y-axis direction and the z-axis direction, but the swing with respect to the x-axis direction is suppressed. Similarly, the second recess 136 supports the second convex portion 126. At this time, the second convex portion 126 can swing with respect to the second concave portion 136 with reference to the y-axis direction and the z-axis direction, but the swing with respect to the x-axis direction is suppressed.
 本実施形態によれば、光学ユニット100は、互いに直交する3つの軸方向のうちの2つの軸方向(例えば、y軸方向およびz軸方向)を基準として揺動可能であるとともに、残り1つの軸方向(例えば、x軸方向)を基準とした揺動を規制する。これにより、簡易な構成で反射光の光軸のずれを抑制できる。 According to the present embodiment, the optical unit 100 can swing with respect to two of the three axial directions orthogonal to each other (for example, the y-axis direction and the z-axis direction), and the remaining one. Swinging with respect to the axial direction (for example, the x-axis direction) is regulated. As a result, it is possible to suppress the deviation of the optical axis of the reflected light with a simple configuration.
 さらに、上述したように、第1凸部125は一部球面形状を有し、第1凸部125を収容する第1凹部135の底面135cは一部球面形状を有する。同様に、第2凸部126は一部球面形状を有し、第2凸部126を収容する第2凹部136の底面135cは一部球面形状を有する。このため、光学ユニット100は、y軸方向およびz軸方向を基準として滑らかに揺動可能である。 Further, as described above, the first convex portion 125 has a partially spherical shape, and the bottom surface 135c of the first concave portion 135 accommodating the first convex portion 125 has a partially spherical shape. Similarly, the second convex portion 126 has a partially spherical shape, and the bottom surface 135c of the second concave portion 136 accommodating the second convex portion 126 has a partially spherical shape. Therefore, the optical unit 100 can swing smoothly with reference to the y-axis direction and the z-axis direction.
 次に、図6a~図7bを参照して、本実施形態の光学ユニット100におけるホルダ120の凸部およびケース130の凹部の係合した構成を説明する。まず、図6aと図7aを参照して、本実施形態の光学ユニット100におけるホルダ120の第1凸部125および第2凸部126がケース130の第1凹部135および第2凹部136とそれぞれ係合した構成を説明する。図6aは、図2aのVIa-VIa線に沿った断面図であり、図6bは、図2aのVIb-VIb線に沿った断面図である。図7aは、図6aに図示した点線部分C1の部分拡大図であり、図7bは、図6aに図示した点線部分C2の部分拡大
図である。
Next, with reference to FIGS. 6a to 7b, an engaged configuration of the convex portion of the holder 120 and the concave portion of the case 130 in the optical unit 100 of the present embodiment will be described. First, with reference to FIGS. 6a and 7a, the first convex portion 125 and the second convex portion 126 of the holder 120 in the optical unit 100 of the present embodiment engage with the first concave portion 135 and the second concave portion 136 of the case 130, respectively. The combined configuration will be described. 6a is a cross-sectional view taken along the line VIa-VIa of FIG. 2a, and FIG. 6b is a cross-sectional view taken along the line VIb-VIb of FIG. 2a. 7a is a partially enlarged view of the dotted line portion C1 shown in FIG. 6a, and FIG. 7b is a partially enlarged view of the dotted line portion C2 shown in FIG. 6a.
 図6aに示すように、第1凸部125は第1凹部135に収容され、第2凸部126は第2凹部136に収容される。ここでは第1凸部125は第1球体であり、第2凸部126は第2球体である。また、第1凸部125は第1収容部127に収容され、第2凸部126は第2収容部128に収容される。ここでは第1凸部125および第2凸部126は、y軸方向に沿った長さの半分が第1収容部127および第2収容部128に収容される。ただし、第1凸部125および第2凸部126は、y軸方向に沿った長さの半分以上が第1収容部127および第2収容部128に収容されてもよい。これにより、第1凸部125および第2凸部126が第1収容部127および第2収容部128に安定して収容される。 As shown in FIG. 6a, the first convex portion 125 is housed in the first concave portion 135, and the second convex portion 126 is housed in the second concave portion 136. Here, the first convex portion 125 is a first sphere, and the second convex portion 126 is a second sphere. Further, the first convex portion 125 is accommodated in the first accommodating portion 127, and the second convex portion 126 is accommodated in the second accommodating portion 128. Here, half of the length of the first convex portion 125 and the second convex portion 126 along the y-axis direction is accommodated in the first accommodating portion 127 and the second accommodating portion 128. However, half or more of the length of the first convex portion 125 and the second convex portion 126 along the y-axis direction may be accommodated in the first accommodating portion 127 and the second accommodating portion 128. As a result, the first convex portion 125 and the second convex portion 126 are stably accommodated in the first accommodating portion 127 and the second accommodating portion 128.
第1弾性部305は第1収容部127に設けられ、第2弾性部306は第2収容部128に設けられる。第1凸部125と第1弾性部305とは別部材であり、第2凸部126と第2弾性部306とは別部材である。第1弾性部305はゴムや板バネ、コイルスプリング、ゲル等などから形成される。 The first elastic portion 305 is provided in the first accommodating portion 127, and the second elastic portion 306 is provided in the second accommodating portion 128. The first convex portion 125 and the first elastic portion 305 are separate members, and the second convex portion 126 and the second elastic portion 306 are separate members. The first elastic portion 305 is formed of rubber, a leaf spring, a coil spring, a gel, or the like.
 第1凹部135のz軸方向に沿った幅Wz1は、第1凸部125のz軸方向に沿った長さLz1とほぼ等しいか、若干大きい。第1凹部135は、幅Wz1のままx軸方向に延びる。 The width Wz1 of the first concave portion 135 along the z-axis direction is substantially equal to or slightly larger than the length Lz1 of the first convex portion 125 along the z-axis direction. The first recess 135 extends in the x-axis direction with the width Wz1.
 同様に、第2凹部136のz軸方向に沿った幅Wz2は、第2凸部126のz軸方向に沿った長さLz2とほぼ等しいか、若干大きい。第2凹部136は、幅Wz2のままx軸方向に延びる。 Similarly, the width Wz2 of the second concave portion 136 along the z-axis direction is substantially equal to or slightly larger than the length Lz2 of the second convex portion 126 along the z-axis direction. The second recess 136 extends in the x-axis direction with the width Wz2.
 ここでは、第2凹部136の幅Wz2は、第1凹部135の幅Wz1とほぼ等しい。また、ケース130の面132cにおける第2凹部136の位置は、ケース130の面132bにおける第1凹部135の位置とほぼ等しい。 Here, the width Wz2 of the second recess 136 is substantially equal to the width Wz1 of the first recess 135. Further, the position of the second recess 136 on the surface 132c of the case 130 is substantially equal to the position of the first recess 135 on the surface 132b of the case 130.
第1凸部125および第2凸部126は、y軸方向を基準として回転可能である。ここでは、第1凸部125および第2凸部126は、いずれも球体であるため、第1凸部125および第2凸部126とともに、ホルダ120はy軸方向を基準として滑らかに回転できる。また、第1凸部125および第2凸部126は、第1弾性部305および第2弾性部306とは別部材である。これにより、y軸方向を基準とした回転時に第1凸部125および第2凸部126が転がることができる。第1凸部125および第2凸部126が転がることで、第1凹部135および第2凹部136との摩擦抵抗を低くすることができる。 The first convex portion 125 and the second convex portion 126 are rotatable with respect to the y-axis direction. Here, since the first convex portion 125 and the second convex portion 126 are both spherical, the holder 120 can smoothly rotate with respect to the y-axis direction together with the first convex portion 125 and the second convex portion 126. Further, the first convex portion 125 and the second convex portion 126 are separate members from the first elastic portion 305 and the second elastic portion 306. As a result, the first convex portion 125 and the second convex portion 126 can roll when rotating with respect to the y-axis direction. By rolling the first convex portion 125 and the second convex portion 126, the frictional resistance between the first concave portion 135 and the second concave portion 136 can be lowered.
 一方で、第1凹部135の幅Wz1は、第1凸部125の長さLz1とほぼ等しいか、若干大きい。また、第2凹部136の幅Wz2は、第2凸部126の長さLz2とほぼ等しいか、若干大きい。このため、ホルダ120はx軸方向を基準として揺動できない。仮に、ホルダ120がx軸方向を基準とした時計回りに回転する力を受けたとしても、第1凸部125が第1凹部135の第2側面135bと接触し、第2凸部126が第2凹部136の第1側面136aと接触するため、ホルダ120は時計回りに回転できない。同様に、ホルダ120がx軸方向を基準とした反時計回りに回転する力を受けたとしても、第1凸部125が第1凹部135の第1側面135aと接触し、第2凸部126が第2凹部136の第2側面135bと接触するため、ホルダ120は反時計回りに回転できない。 On the other hand, the width Wz1 of the first concave portion 135 is substantially equal to or slightly larger than the length Lz1 of the first convex portion 125. Further, the width Wz2 of the second concave portion 136 is substantially equal to or slightly larger than the length Lz2 of the second convex portion 126. Therefore, the holder 120 cannot swing with respect to the x-axis direction. Even if the holder 120 receives a force that rotates clockwise with respect to the x-axis direction, the first convex portion 125 comes into contact with the second side surface 135b of the first concave portion 135, and the second convex portion 126 is the second. 2 The holder 120 cannot rotate clockwise because it comes into contact with the first side surface 136a of the recess 136. Similarly, even if the holder 120 receives a force that rotates counterclockwise with respect to the x-axis direction, the first convex portion 125 comes into contact with the first side surface 135a of the first concave portion 135, and the second convex portion 126 Contact the second side surface 135b of the second recess 136, so that the holder 120 cannot rotate counterclockwise.
図7aに示すように、第1凸部125は第1凹部135と接触する。第1凸部125は第1収容部127に設けられた第1弾性部305と接触する。ここで、第1弾性部305のy軸方向の長さ305yは、第1収容部127の第1弾性部305を収容する長さ127yより長い。第1弾性部305は、第1凸部125を第1凹部135側へ押圧する。これにより、第1凹部135と第1凸部125のギャップを小さくすることができる。したがって、y軸方向を基準として回転させる駆動挙動を安定させることができる。 As shown in FIG. 7a, the first convex portion 125 comes into contact with the first concave portion 135. The first convex portion 125 comes into contact with the first elastic portion 305 provided in the first accommodating portion 127. Here, the length 305y of the first elastic portion 305 in the y-axis direction is longer than the length 127y accommodating the first elastic portion 305 of the first accommodating portion 127. The first elastic portion 305 presses the first convex portion 125 toward the first concave portion 135. As a result, the gap between the first concave portion 135 and the first convex portion 125 can be reduced. Therefore, it is possible to stabilize the driving behavior of rotating with reference to the y-axis direction.
 また、図6bに示すように、第1凸部125は第1凹部135に収容され、第2凸部126は第2凹部136に収容される。また、第1凸部125は第1収容部127に収容され、第2凸部126は第2収容部128に収容される。第1弾性部305は第1収容部127に設けられ、第2弾性部306は第2収容部128に設けられる。 Further, as shown in FIG. 6b, the first convex portion 125 is housed in the first concave portion 135, and the second convex portion 126 is housed in the second concave portion 136. Further, the first convex portion 125 is accommodated in the first accommodating portion 127, and the second convex portion 126 is accommodated in the second accommodating portion 128. The first elastic portion 305 is provided in the first accommodating portion 127, and the second elastic portion 306 is provided in the second accommodating portion 128.
 第1凹部135の底面135cはz方向から見たときに円弧状である。底面135cの曲率半径φRc1は、第1凸部125の端部と第2凸部126の端部とを結ぶ直線Dの長さLmを直径とし、直線Dの中点を中心とした場合の半径R(長さLm/2)とほぼ等しいか、または、半径Rよりも若干大きい。ここで、直線Dの長さLmは、ホルダ120のy方向に沿った長さと、ホルダ120から突出する第1凸部125の長さLy1と、ホルダ120から突出する第2凸部126の長さLy2との和にほぼ等しい。 The bottom surface 135c of the first recess 135 is arcuate when viewed from the z direction. The radius of curvature φRc1 of the bottom surface 135c is the radius when the length Lm of the straight line D connecting the end of the first convex portion 125 and the end of the second convex portion 126 is the diameter and the center of the straight line D is the center. It is approximately equal to R (length Lm / 2) or slightly larger than the radius R. Here, the length Lm of the straight line D is the length of the holder 120 along the y direction, the length Ly1 of the first convex portion 125 protruding from the holder 120, and the length of the second convex portion 126 protruding from the holder 120. It is almost equal to the sum with Ly2.
 同様に、第2凹部136の底面136cは円弧状である。底面136cの曲率半径φRc2は、直線Dの長さLmを直径とし、直線Dの中点を中心とした場合の半径R(長さLm/2)とほぼ等しいか、または、半径Rよりも若干大きい。 Similarly, the bottom surface 136c of the second recess 136 is arcuate. The radius of curvature φRc2 of the bottom surface 136c is approximately equal to or slightly larger than the radius R (length Lm / 2) when the length Lm of the straight line D is the diameter and the center point of the straight line D is the center. big.
 ここでは、曲率半径φRc1および曲率半径φRc2は、それぞれ第1凸部125の端部と第2凸部126の端部とを結ぶ直線Dに基づく半径Rとほぼ等しいか、若干大きい。したがって、第1凹部135の底面135cおよび第2凹部136の底面136cは、同一円Cmの一部を構成する。このため、第1凸部125および第2凸部126とともに、ホルダ120はz軸方向を基準として滑らかに回転できる。 Here, the radius of curvature φRc1 and the radius of curvature φRc2 are substantially equal to or slightly larger than the radius R based on the straight line D connecting the end of the first convex portion 125 and the end of the second convex portion 126, respectively. Therefore, the bottom surface 135c of the first recess 135 and the bottom surface 136c of the second recess 136 form a part of the same circle Cm. Therefore, the holder 120 can smoothly rotate with respect to the z-axis direction together with the first convex portion 125 and the second convex portion 126.
 Cは、z軸方向を基準とした回転の回転中心を示している。第1凹部135は、第1凹部135の-x軸方向の端部1351cおよび第1凹部135の+x軸方向の端部1352cを有する。第2凹部136は、第2凹部136の-x軸方向の端部1361cおよび第2凹部136の+x軸方向の端部1362cを有する。第1弾性部305は、Cと第1凹部135の-x軸方向の端部1351cおよび第1凹部135の+x軸方向の端部1352cを結ぶ領域に設けられる。第2弾性部306は、Cと第2凹部136の-x軸方向の端部1361cおよび第2凹部136の+x軸方向の端部1362cを結ぶ領域に設けられる。 C indicates the rotation center of rotation with respect to the z-axis direction. The first recess 135 has an −x-axis end 1351c of the first recess 135 and a + x-axis end 1352c of the first recess 135. The second recess 136 has an −x axis direction end 1361c of the second recess 136 and a + x axis direction end 1362c of the second recess 136. The first elastic portion 305 is provided in a region connecting C with the end portion 1351c in the −x axis direction of the first recess 135 and the end portion 1352c in the + x axis direction of the first recess 135. The second elastic portion 306 is provided in a region connecting C with the end portion 1361c of the second recess 136 in the −x axis direction and the end portion 1362c of the second recess 136 in the + x axis direction.
なお、第1凹部135の-x軸方向の端部1351cおよび第1凹部135の+x軸方向の端部1352cを結ぶとは、第1凹部135の底面135cに沿って円弧上に結ぶことを示す。第2凹部136の-x軸方向の端部1361cおよび第2凹部136の+x軸方向の端部1362cを結ぶとは、第2凹部136の底面136cに沿って円弧上に結ぶことを示す。つまり、Cと第1凹部135の-x軸方向の端部1351cおよび第1凹部135の+x軸方向の端部1352cを結ぶ領域は扇形の領域を示す。Cと第2凹部136の-x軸方向の端部1361cおよび第2凹部136の+x軸方向の端部1362cを結ぶ領域は扇形の領域を示す。これにより、第1弾性部305および第2弾性部306はz軸方向を基準とした回転において、第1凹部135および第2凹部136を第1凹部135および第2凹部136へ効果的に押圧することができる。 In addition, connecting the end portion 1351c in the −x axis direction of the first recess 135 and the end portion 1352c in the + x axis direction of the first recess 135 means connecting them in an arc along the bottom surface 135c of the first recess 135. .. Connecting the end 1361c in the −x-axis direction of the second recess 136 and the end 1362c in the + x-axis direction of the second recess 136 means connecting them in an arc along the bottom surface 136c of the second recess 136. That is, the region connecting C with the end portion 1351c in the −x axis direction of the first recess 135 and the end portion 1352c in the + x axis direction of the first recess 135 indicates a fan-shaped region. The region connecting C with the −x-axis end 1361c of the second recess 136 and the + x-axis end 1362c of the second recess 136 indicates a fan-shaped region. As a result, the first elastic portion 305 and the second elastic portion 306 effectively press the first recess 135 and the second recess 136 against the first recess 135 and the second recess 136 in the rotation with respect to the z-axis direction. be able to.
図7bに示すように、第2凸部126は第2凹部136と接触する。第2凸部126は第2収容部128に設けられた第2弾性部306と接触する。ここで、第2弾性部306のy軸方向の長さ306yは、第2収容部128の第2弾性部306を収容する長さ128yより長い。第2弾性部306は、第2凸部126を第2凹部136側へ押圧する。これにより、第2凹部136と第2凸部126のギャップ小さくすることができる。したがって、z軸方向を基準として回転させる駆動挙動を安定させることができる。 As shown in FIG. 7b, the second convex portion 126 comes into contact with the second concave portion 136. The second convex portion 126 comes into contact with the second elastic portion 306 provided in the second accommodating portion 128. Here, the length 306y of the second elastic portion 306 in the y-axis direction is longer than the length 128y accommodating the second elastic portion 306 of the second accommodating portion 128. The second elastic portion 306 presses the second convex portion 126 toward the second concave portion 136. As a result, the gap between the second concave portion 136 and the second convex portion 126 can be reduced. Therefore, it is possible to stabilize the driving behavior of rotating with reference to the z-axis direction.
以上説明したように、本発明の例示的な実施形態における光学ユニット100は、光学素子110と、ホルダ120と、ケース130と、第1揺動機構140と、第2揺動機構150と、第1弾性部305を含む第1凸部125と、第2弾性部306を含む第2凸部126とを備える。光学素子110は、第1軸方向に光を反射する反射面110rを有する。ホルダ120は、光学素子110を保持する。ケース130は、ホルダ120を揺動可能に支持する。第1揺動機構140は、ケース130に対して第1揺動軸周りにホルダ120を揺動する。第2揺動機構150は、ケース130に対して第1揺動軸と直交する第
2揺動軸周りにホルダ120を揺動する。ここで第1揺動軸はy軸であり、第2揺動軸はz軸である。
As described above, the optical unit 100 in the exemplary embodiment of the present invention includes an optical element 110, a holder 120, a case 130, a first swing mechanism 140, a second swing mechanism 150, and a second swing mechanism. It includes a first convex portion 125 including one elastic portion 305 and a second convex portion 126 including a second elastic portion 306. The optical element 110 has a reflecting surface 110r that reflects light in the first axis direction. The holder 120 holds the optical element 110. The case 130 swingably supports the holder 120. The first swing mechanism 140 swings the holder 120 around the first swing axis with respect to the case 130. The second swing mechanism 150 swings the holder 120 around the second swing axis orthogonal to the first swing axis with respect to the case 130. Here, the first swing axis is the y-axis and the second swing axis is the z-axis.
ホルダ120は、第1収容部127と、第2収容部128を有する。第1収容部127は、ケース130と対向する第1ケース対向面(120e)に設けられ、第1凸部125の少なくとも一部を収容する。第2収容部128は、ケース130と対向する第2ケース対向面(120f)に設けられ、第2凸部126の少なくとも一部を収容する。ケース130は、第1凹部135と、第2凹部136とを有する。第1凹部135は、ホルダ120の第1ケース対向面(120e)と対向する第1ホルダ対向面(132b)に設けられ、第1凸部125の少なくとも一部を収容する。第2凹部136は、ホルダ120の第2ケース対向面(120f)と対向する第2ホルダ対向面(132c)に設けられ、第2凸部126の少なくとも一部を収容する。 The holder 120 has a first accommodating portion 127 and a second accommodating portion 128. The first accommodating portion 127 is provided on the first case facing surface (120e) facing the case 130, and accommodates at least a part of the first convex portion 125. The second accommodating portion 128 is provided on the second case facing surface (120f) facing the case 130, and accommodates at least a part of the second convex portion 126. The case 130 has a first recess 135 and a second recess 136. The first concave portion 135 is provided on the first holder facing surface (132b) facing the first case facing surface (120e) of the holder 120, and accommodates at least a part of the first convex portion 125. The second recess 136 is provided on the second holder facing surface (132c) facing the second case facing surface (120f) of the holder 120, and accommodates at least a part of the second convex portion 126.
第1弾性部305は、第1収容部127と第1凹部135の少なくとも一方に設けられる。第2弾性部306は、第2収容部128と第2凹部136の少なくとも一方に設けられる。第1凸部125は、第1収容部127および第1凹部135と接する。第2凸部126は、第2収容部128および第2凹部136と接する。これにより、第1凹部135と第1凸部125のギャップを小さくすることができる。したがって、y軸方向を基準として回転させる駆動挙動を安定させることができる。 The first elastic portion 305 is provided in at least one of the first accommodating portion 127 and the first recess 135. The second elastic portion 306 is provided in at least one of the second accommodating portion 128 and the second recess 136. The first convex portion 125 is in contact with the first accommodating portion 127 and the first concave portion 135. The second convex portion 126 is in contact with the second accommodating portion 128 and the second concave portion 136. As a result, the gap between the first concave portion 135 and the first convex portion 125 can be reduced. Therefore, it is possible to stabilize the driving behavior of rotating with reference to the y-axis direction.
 さらに、図6a~図7bでは、第1凸部125および第2凸部126は、第1弾性部305および第2弾性部306とは別部材である構成を説明したが、一体とすることもできる。第1凸部125は第1弾性部305を含んでもよい。例えば、第1凸部125は、弾性力を有する部材としてもよい。また、第1凸部125を半球状とし、第1凸部125に第1弾性部305を接着して一体としてもよい。第1凸部125の一方側を半球状とし、他方側を円筒状にして、円筒部分の一部に第1弾性部305を設けて一体としてもよい。第2凸部についても同様である。 Further, in FIGS. 6a to 7b, the configuration in which the first convex portion 125 and the second convex portion 126 are separate members from the first elastic portion 305 and the second elastic portion 306 has been described, but they may be integrated. can. The first convex portion 125 may include a first elastic portion 305. For example, the first convex portion 125 may be a member having an elastic force. Further, the first convex portion 125 may be hemispherical, and the first elastic portion 305 may be adhered to the first convex portion 125 to be integrated. One side of the first convex portion 125 may be hemispherical, the other side may be cylindrical, and the first elastic portion 305 may be provided in a part of the cylindrical portion to be integrated. The same applies to the second convex portion.
 次に、図8aおよび図8bを参照して、図7aおよび図7bの第2の実施形態の構成を説明する。図8aは、図7aの第2の実施形態を示す図であり、図8bは、図7bの第2の実施形態を示す図である。 Next, the configuration of the second embodiment of FIGS. 7a and 7b will be described with reference to FIGS. 8a and 8b. 8a is a diagram showing a second embodiment of FIG. 7a, and FIG. 8b is a diagram showing a second embodiment of FIG. 7b.
図8aに示すように、第1弾性部305は、第1凸部125と隣接する一方側の第1領域305aと、他方側の第2領域305bを有する。第1領域305aは、第1弾性部305の第1凸部125側の端部を含む。第1領域305aは第1凸部125と接する。 As shown in FIG. 8a, the first elastic portion 305 has a first region 305a on one side adjacent to the first convex portion 125 and a second region 305b on the other side. The first region 305a includes an end portion of the first elastic portion 305 on the side of the first convex portion 125. The first region 305a is in contact with the first convex portion 125.
第1領域305aの摩擦係数は第2領域305bの摩擦係数より低い。これにより、第1凸部125と第1領域305aの間の摩擦力を低減することができる。したがって、第1凸部125が第1凹部135に沿って動くときに第1凸部125と第1弾性部305の間の摩擦力が小さくなる。第1凸部125は第1凹部135に沿って動くときに滑らかに回転できる。 The coefficient of friction of the first region 305a is lower than the coefficient of friction of the second region 305b. Thereby, the frictional force between the first convex portion 125 and the first region 305a can be reduced. Therefore, when the first convex portion 125 moves along the first concave portion 135, the frictional force between the first convex portion 125 and the first elastic portion 305 becomes small. The first convex portion 125 can rotate smoothly as it moves along the first concave portion 135.
例えば第1領域305aは第2領域305bとは別の材質にすることができる。なお、第1領域305aに潤滑剤を塗布して摩擦係数を低くしてもよく、第1領域305aに表面処理を行って摩擦係数を低くしてもよい。 For example, the first region 305a can be made of a different material from the second region 305b. A lubricant may be applied to the first region 305a to lower the friction coefficient, or the first region 305a may be surface-treated to lower the friction coefficient.
図8bに示すように、第2弾性部306は、第2凸部126と隣接する一方側の第1領域306aと、他方側の第2領域306bを有する。第1領域306aは第2弾性部306の第2凸部126側の端部を含む。第1領域306aは第2凸部126と接する。 As shown in FIG. 8b, the second elastic portion 306 has a first region 306a on one side adjacent to the second convex portion 126 and a second region 306b on the other side. The first region 306a includes an end portion of the second elastic portion 306 on the side of the second convex portion 126. The first region 306a is in contact with the second convex portion 126.
第1領域306aの摩擦係数は第2領域306bの摩擦係数より低い。これにより、第2凸部126と第1領域306aの間の摩擦力を低減することができる。したがって、第2凸部126が第2凹部136に沿って動くときに第2凸部126と第2弾性部306の間の摩擦力が小さくなる。第2凸部126は第2凹部136に沿って動くときに滑らかに回転できる。 The coefficient of friction of the first region 306a is lower than the coefficient of friction of the second region 306b. As a result, the frictional force between the second convex portion 126 and the first region 306a can be reduced. Therefore, when the second convex portion 126 moves along the second concave portion 136, the frictional force between the second convex portion 126 and the second elastic portion 306 becomes small. The second convex portion 126 can rotate smoothly as it moves along the second concave portion 136.
例えば第1領域306aは第2領域306bとは別の材質にすることができる。なお、第1領域306aに潤滑剤を塗布して摩擦係数を低くしてもよく、第1領域306aに表面処理を行って摩擦係数を低くしてもよい。 For example, the first region 306a can be made of a material different from that of the second region 306b. A lubricant may be applied to the first region 306a to lower the friction coefficient, or the first region 306a may be surface-treated to lower the friction coefficient.
 次に、図9aおよび図9bを参照して、図7aおよび図7bの第3の実施形態の構成を説明する。図9aは、図7aの第3の実施形態を示す図であり、図9bは、図7bの第3の実施形態を示す図である。 Next, the configuration of the third embodiment of FIGS. 7a and 7b will be described with reference to FIGS. 9a and 9b. 9a is a diagram showing a third embodiment of FIG. 7a, and FIG. 9b is a diagram showing a third embodiment of FIG. 7b.
図9aに示すように、第1弾性部305と第1凸部125との間に第1緩衝部405を備える。第1緩衝部405は第1弾性部305より硬度が高い。第1凸部125は第1凹部135を動くときに第1緩衝部405と接触する。これにより、第1弾性部305が第1凸部125と擦れて劣化することを抑制することができる。 As shown in FIG. 9a, a first cushioning portion 405 is provided between the first elastic portion 305 and the first convex portion 125. The first cushioning portion 405 has a higher hardness than the first elastic portion 305. The first convex portion 125 comes into contact with the first buffer portion 405 as it moves through the first concave portion 135. As a result, it is possible to prevent the first elastic portion 305 from rubbing against the first convex portion 125 and deteriorating.
図9bに示すように、第2弾性部306と第2凸部126との間に第2緩衝部406を備える。第2緩衝部406は第2弾性部306より硬度が高い。第2凸部126は第2凹部136を動くときに第2緩衝部406と接触する。これにより、第2弾性部306が第2凸部126と擦れて劣化することを抑制することができる。 As shown in FIG. 9b, a second cushioning portion 406 is provided between the second elastic portion 306 and the second convex portion 126. The second cushioning portion 406 has a higher hardness than the second elastic portion 306. The second convex portion 126 comes into contact with the second cushioning portion 406 as it moves through the second concave portion 136. As a result, it is possible to prevent the second elastic portion 306 from rubbing against the second convex portion 126 and deteriorating.
例えば第1緩衝部405および第2緩衝部406は、第1弾性部305および第2弾性部306と別の材質にすることができる。なお、第1弾性部305と第2弾性部306に表面処理を行って第1緩衝部405および第2緩衝部406を形成してもよい。 For example, the first cushioning portion 405 and the second cushioning portion 406 can be made of different materials from the first elastic portion 305 and the second elastic portion 306. The first elastic portion 305 and the second elastic portion 306 may be surface-treated to form the first buffer portion 405 and the second cushion portion 406.
図6a~図9bを参照した説明では、第1弾性部305は第1収容部127に設けられ、第2弾性部306は第2収容部128に設けられるが、本実施形態はこれに限定されない。第1弾性部305は第1凹部135に設けられ、第2弾性部306は第2凹部128に設けられてもよい。また、第1凸部125および第2凸部126は球体でなくてもよい。例えば、第1凸部125および第2凸部126の第1収容部127および第2収容部128に収容される部分は円筒状や矩形でもよい。 In the description with reference to FIGS. 6a to 9b, the first elastic portion 305 is provided in the first accommodating portion 127, and the second elastic portion 306 is provided in the second accommodating portion 128, but the present embodiment is not limited thereto. .. The first elastic portion 305 may be provided in the first recess 135, and the second elastic portion 306 may be provided in the second recess 128. Further, the first convex portion 125 and the second convex portion 126 do not have to be spherical. For example, the portions of the first convex portion 125 and the second convex portion 126 that are accommodated in the first accommodating portion 127 and the second accommodating portion 128 may be cylindrical or rectangular.
 次に、図10aおよび図10bを参照して、本実施形態の光学ユニット100における揺動を説明する。図10aは、本実施形態の光学ユニット100における第1揺動機構140による揺動を説明するための模式図であり、図10bは、本実施形態の光学ユニット100における第2揺動機構150による揺動を説明するための模式図である。 Next, the swing in the optical unit 100 of the present embodiment will be described with reference to FIGS. 10a and 10b. 10a is a schematic diagram for explaining the swing by the first swing mechanism 140 in the optical unit 100 of the present embodiment, and FIG. 10b is the second swing mechanism 150 in the optical unit 100 of the present embodiment. It is a schematic diagram for demonstrating the swing.
 図10aに示すように、第1揺動機構140は、第1磁石142と、第1コイル144とを含む。第1磁石142は、ホルダ120に設けられ、第1コイル144は、ケース130に設けられる。また、第2揺動機構150は、第2磁石152と、第2コイル154とを含む。第2磁石152は、ホルダ120に設けられ、第2コイル154は、ケース130設けられる。 As shown in FIG. 10a, the first swing mechanism 140 includes a first magnet 142 and a first coil 144. The first magnet 142 is provided in the holder 120, and the first coil 144 is provided in the case 130. Further, the second swing mechanism 150 includes a second magnet 152 and a second coil 154. The second magnet 152 is provided in the holder 120, and the second coil 154 is provided in the case 130.
 第1コイル144に流れる電流の向きを切り換えることにより、第1磁石142はx軸方向に沿った力を受ける。この場合、第1磁石142は、x軸方向に沿って移動することになる。このため、第1磁石142の取り付けられたホルダ120は、ケース130に対して、y軸方向を基準として揺動(ピッチング)する。 By switching the direction of the current flowing through the first coil 144, the first magnet 142 receives a force along the x-axis direction. In this case, the first magnet 142 will move along the x-axis direction. Therefore, the holder 120 to which the first magnet 142 is attached swings (pitches) with respect to the case 130 with respect to the y-axis direction.
 図10bに示すように、第2コイル154に流れる電流の向きを切り換えることにより、第2磁石152はy軸方向に沿った力を受ける。この場合、第2磁石152は、y軸方向に沿って移動することになる。このため、第2磁石152の取り付けられたホルダ120は、ケース130に対して、z軸方向を基準として揺動(ヨーイング)する。 As shown in FIG. 10b, the second magnet 152 receives a force along the y-axis direction by switching the direction of the current flowing through the second coil 154. In this case, the second magnet 152 moves along the y-axis direction. Therefore, the holder 120 to which the second magnet 152 is attached swings (yaws) with respect to the case 130 with respect to the z-axis direction.
図7aおよび図7bで説明したように、第1コイル144および第2コイル154に流れる電流の向きを切り換えることにより、ホルダ120は、ケース130に対して揺動する。ホルダ120が、ケース130に対して滑らかに回転すると、揺動に必要な電流値を小さくすることができる。 As described with reference to FIGS. 7a and 7b, the holder 120 swings with respect to the case 130 by switching the direction of the current flowing through the first coil 144 and the second coil 154. When the holder 120 rotates smoothly with respect to the case 130, the current value required for rocking can be reduced.
 次に、図11a~図11cを参照して、本実施形態の光学ユニット100における第1揺動機構140による揺動を説明する。図11a~図11cは、本実施形態の光学ユニット100における第1揺動機構140によって揺動を説明するための模式図である。図11aは、光学ユニット100におけるホルダ120が基準位置に位置しており、図11bおよび図11cは、ホルダ120が基準位置に対していずれかの方向に揺動する。 Next, with reference to FIGS. 11a to 11c, the swing by the first swing mechanism 140 in the optical unit 100 of the present embodiment will be described. 11a to 11c are schematic views for explaining the swing by the first swing mechanism 140 in the optical unit 100 of the present embodiment. In FIG. 11a, the holder 120 in the optical unit 100 is located at the reference position, and in FIGS. 11b and 11c, the holder 120 swings in either direction with respect to the reference position.
 図11aに示すように、ホルダ120がケース130に対して基準位置である場合、光学素子110の面110eの法線はx軸方向を向いており、反射光Lbはx軸方向に沿って進行する。 As shown in FIG. 11a, when the holder 120 is in the reference position with respect to the case 130, the normal line of the surface 110e of the optical element 110 points in the x-axis direction, and the reflected light Lb travels along the x-axis direction. do.
 図11bに示すように、ケース130に対して+y軸方向を基準として時計回りの揺れが生じた場合、ホルダ120は、ケース130に対して+y軸方向を基準として反時計回りに揺動できる。また、図11cに示すように、ケース130に対して+y軸方向を基準として反時計回りの揺れが生じた場合、ホルダ120は、ケース130に対して+y軸方向を基準として時計回りに揺動できる。 As shown in FIG. 11b, when a clockwise swing occurs with respect to the case 130 with respect to the + y-axis direction, the holder 120 can swing counterclockwise with respect to the case 130 with respect to the + y-axis direction. Further, as shown in FIG. 11c, when a counterclockwise swing occurs with respect to the case 130 with respect to the + y-axis direction, the holder 120 swings clockwise with respect to the case 130 with respect to the + y-axis direction. can.
 次に、図12a~図12cを参照して、本実施形態の光学ユニット100における第2揺動機構150による揺動を説明する。図12a~図12cは、本実施形態の光学ユニット100における第2揺動機構150によって揺動を説明するための模式図である。図12aは、光学ユニット100におけるホルダ120が基準位置に位置しており、図12bおよび図12cは、ホルダ120が基準位置に対していずれかの方向に揺動している。 Next, with reference to FIGS. 12a to 12c, the swing by the second swing mechanism 150 in the optical unit 100 of the present embodiment will be described. 12a to 12c are schematic views for explaining the swing by the second swing mechanism 150 in the optical unit 100 of the present embodiment. 12a shows the holder 120 in the optical unit 100 located at the reference position, and FIGS. 12b and 12c show that the holder 120 swings in either direction with respect to the reference position.
 図12aに示すように、ホルダ120がケース130に対して基準位置である場合、光学素子110の面110eの法線はx軸方向を向いており、反射光Lbはx軸方向に沿って進行する。 As shown in FIG. 12a, when the holder 120 is in the reference position with respect to the case 130, the normal line of the surface 110e of the optical element 110 points in the x-axis direction, and the reflected light Lb travels along the x-axis direction. do.
 図12bに示すように、ケース130に対して-z軸方向を基準として反時計回りの揺れが生じた場合、ホルダ120は、ケース130に対して-z軸方向を基準として時計回りに揺動できる。また、図12cに示すように、ケース130に対して-z軸方向を基準として時計回りの揺れが生じた場合、ホルダ120は、ケース130に対して-z軸方向を基準として反時計回りに揺動できる。 As shown in FIG. 12b, when a counterclockwise swing occurs with respect to the case 130 with respect to the −z axis direction, the holder 120 swings clockwise with respect to the case 130 with respect to the −z axis direction. can. Further, as shown in FIG. 12c, when a clockwise swing occurs with respect to the case 130 with respect to the −z axis direction, the holder 120 counterclockwise with respect to the case 130 with respect to the −z axis direction. Can swing.
 なお、ケース130を樹脂で形成する場合、典型的には、樹脂は一体成型で形成される。この場合、ケース130は、1部品から構成されてもよい。ただし、ケース130は、複数の部品から構成されてもよい。例えば、ケース130が複数の部品から構成される場合、ケース130の部品は、ホルダ120が装着された後で組み立てられてもよい。 When the case 130 is made of resin, the resin is typically formed by integral molding. In this case, the case 130 may be composed of one component. However, the case 130 may be composed of a plurality of parts. For example, if the case 130 is composed of a plurality of parts, the parts of the case 130 may be assembled after the holder 120 is attached.
 なお、図2a~図12cに示した光学ユニット100では、第1凸部125および第2凸部126はそれぞれ半球形状であったが、本実施形態はこれに限定されない。第1凸部125および第2凸部126は、円柱形状の基台部を有し、基台部の先端が半球形状であってもよい。 In the optical unit 100 shown in FIGS. 2a to 12c, the first convex portion 125 and the second convex portion 126 are each hemispherical, but the present embodiment is not limited to this. The first convex portion 125 and the second convex portion 126 have a cylindrical base portion, and the tip of the base portion may be hemispherical.
 また、図2a~図12cを参照して説明した光学ユニット100では、ホルダ120は、ケース130に対して揺動可能に支持されるため、ケース130に対するホルダ120の基準位置が一定に規定されないことがある。しかしながら、ケース130に対するホルダ120の基準位置は一定に規定されることが好ましい。 Further, in the optical unit 100 described with reference to FIGS. 2a to 12c, since the holder 120 is swingably supported with respect to the case 130, the reference position of the holder 120 with respect to the case 130 is not constantly defined. There is. However, it is preferable that the reference position of the holder 120 with respect to the case 130 is defined to be constant.
 次に、図13を参照して本実施形態の光学ユニット100を説明する。図13は、本実施形態の光学ユニット100の模式的な斜視図である。図13の光学ユニット100は、ケース130がケース本体130aと金属部材138aとを有し、ケース130にレキシブルプリント基板(Flexible Printed Circuit:FPC)FPが挿入されている点を除いて、図2aおよび図2bに示した光学ユニット100と同様の構成を有しており、冗長を避けるために重複する記載を省略する。なお、ここでは、図面が過度に複雑になることを避けるために、ケース130の外縁を2点鎖線で示している。 Next, the optical unit 100 of the present embodiment will be described with reference to FIG. FIG. 13 is a schematic perspective view of the optical unit 100 of the present embodiment. In the optical unit 100 of FIG. 13, the case 130 has a case body 130a and a metal member 138a, and the case 130 has a flexible printed circuit board (FPC) FP inserted into the case 130, except that the case 130 has a case body 130a and a metal member 138a. It has the same configuration as the optical unit 100 shown in FIG. 2b, and duplicate description is omitted in order to avoid redundancy. Here, in order to avoid overly complicated drawings, the outer edge of the case 130 is shown by a two-dot chain line.
 図13に示すように、光学ユニット100において、ケース130は、ケース本体130aおよび金属部材138aを有する。金属部材138aは、第1磁石142に対向する。 As shown in FIG. 13, in the optical unit 100, the case 130 has a case body 130a and a metal member 138a. The metal member 138a faces the first magnet 142.
 ここでは、金属部材138aはケース本体130aの内部に配置される。また、金属部材138aは、ケース本体130aの内部に位置する第1コイル144の近傍に配置される。金属部材138aにより、第1コイル144に電流が流れない場合に、第1磁石142および第1磁石142を備えるホルダ120を、所定の位置に位置づけることができる。金属部材138aを第1揺動機構140に対して配置することにより、第1コイル144に電流を流さないときのケース130に対するホルダ120の位置を規定できる。なお、金属部材138aと第1磁石142との間で生じる磁力は、第1コイル144に電流が流れたときに生じる磁力よりも弱いため、金属部材138aが設けられても、第1コイル144に電流を流すことにより、ホルダ120をケース130に対して揺動する。 Here, the metal member 138a is arranged inside the case body 130a. Further, the metal member 138a is arranged in the vicinity of the first coil 144 located inside the case main body 130a. The metal member 138a allows the holder 120 including the first magnet 142 and the first magnet 142 to be positioned at a predetermined position when no current flows through the first coil 144. By arranging the metal member 138a with respect to the first swing mechanism 140, the position of the holder 120 with respect to the case 130 when no current is passed through the first coil 144 can be defined. Since the magnetic force generated between the metal member 138a and the first magnet 142 is weaker than the magnetic force generated when a current flows through the first coil 144, even if the metal member 138a is provided, the first coil 144 has a magnetic force. By passing an electric current, the holder 120 swings with respect to the case 130.
 なお、図13では、金属部材138aは第1揺動機構140の第1コイル144の近傍に配置されたが、本実施形態はこれに限定されない。金属部材138aは、第2磁石152に対向し、第2揺動機構150の第2コイル154の近傍に配置されてもよい。 Note that, in FIG. 13, the metal member 138a is arranged in the vicinity of the first coil 144 of the first swing mechanism 140, but the present embodiment is not limited to this. The metal member 138a may be arranged so as to face the second magnet 152 and in the vicinity of the second coil 154 of the second swing mechanism 150.
 金属部材138aは、第1コイル144の中心に対して対称に配置されることが好ましい。図13では、金属部材138aは、第1磁石142のN極142nおよびS極142sと同様に、y方向に延びており、金属部材138aのx方向に沿った中心は、N極142nとS極142sとの間に位置する。この場合、第1磁石142は、第1コイル144の中心に対して対称に配置された金属部材138aに引き付けられるため、ケース130に対するホルダ120の位置を適切に制御できる。同様に、金属部材138aは、第2コイル154の中心に対して対称に配置されることが好ましい。これにより、第2磁石152は、第2コイル154の中心に対して対称に配置された金属部材138aに引き付けられるため、ケース130に対するホルダ120の位置を適切に制御できる。 It is preferable that the metal member 138a is arranged symmetrically with respect to the center of the first coil 144. In FIG. 13, the metal member 138a extends in the y direction like the N pole 142n and the S pole 142s of the first magnet 142, and the center of the metal member 138a along the x direction is the N pole 142n and the S pole. It is located between 142s. In this case, since the first magnet 142 is attracted to the metal member 138a arranged symmetrically with respect to the center of the first coil 144, the position of the holder 120 with respect to the case 130 can be appropriately controlled. Similarly, the metal member 138a is preferably arranged symmetrically with respect to the center of the second coil 154. As a result, the second magnet 152 is attracted to the metal member 138a arranged symmetrically with respect to the center of the second coil 154, so that the position of the holder 120 with respect to the case 130 can be appropriately controlled.
 さらに、図13では、ケース130にフレキシブルプリント基板FPが挿入される。フレキシブルプリント基板FPには、第1コイル144および金属部材138aが実装されている。フレキシブルプリント基板FPをケース130に挿入することにより、ホルダ120の第1磁石142に対して、第1コイル144および金属部材138aを所定の位置に配置できる。なお、第1コイル144は、フレキシブルプリント基板FPの内部に配置されることが好ましい。一方、金属部材138aは、フレキシブルプリント基板FPの内部に配置されてもよく、フレキシブルプリント基板FPの外表面(例えば、-z軸方向側の外表面)に配置されてもよい。 Further, in FIG. 13, the flexible printed circuit board FP is inserted into the case 130. The first coil 144 and the metal member 138a are mounted on the flexible printed circuit board FP. By inserting the flexible printed circuit board FP into the case 130, the first coil 144 and the metal member 138a can be arranged at predetermined positions with respect to the first magnet 142 of the holder 120. The first coil 144 is preferably arranged inside the flexible printed circuit board FP. On the other hand, the metal member 138a may be arranged inside the flexible printed substrate FP, or may be arranged on the outer surface of the flexible printed substrate FP (for example, the outer surface on the −z axis direction side).
 なお、図1に示したように光学ユニット100をスマートフォンに用いる場合、スマートフォン内のジャイロセンサーがスマートフォンの姿勢を検知し、第1揺動機構140および第2揺動機構150は、スマートフォンの姿勢に応じて制御される。一方、ケース130に対するホルダ120の姿勢を検知可能であることが好ましい。これにより、ケース130に対するホルダ120の姿勢を高精度に制御できる。 As shown in FIG. 1, when the optical unit 100 is used for a smartphone, the gyro sensor in the smartphone detects the posture of the smartphone, and the first swing mechanism 140 and the second swing mechanism 150 are in the posture of the smartphone. It is controlled accordingly. On the other hand, it is preferable that the posture of the holder 120 with respect to the case 130 can be detected. As a result, the posture of the holder 120 with respect to the case 130 can be controlled with high accuracy.
 次に、図14を参照して本実施形態の光学ユニット100を説明する。図14は、本実施形態の光学ユニット100の模式的な斜視図である。図14の光学ユニット100は、ケース130が、金属部材138aに代えてホール素子138bを有する点を除いて、図13に示した光学ユニット100と同様の構成を有しており、冗長を避けるために重複する記載を省略する。ここでも、図面が過度に複雑になることを避けるために、ケース130の外縁を2点鎖線で示している。 Next, the optical unit 100 of the present embodiment will be described with reference to FIG. FIG. 14 is a schematic perspective view of the optical unit 100 of the present embodiment. The optical unit 100 of FIG. 14 has the same configuration as the optical unit 100 shown in FIG. 13, except that the case 130 has a Hall element 138b instead of the metal member 138a, in order to avoid redundancy. The description that overlaps with is omitted. Again, the outer edge of the case 130 is shown as a dashed line to avoid over-complicated drawings.
 図14に示すように、光学ユニット100において、ケース130は、ケース本体130aおよびホール素子138bを有する。ここでは、ホール素子138bはケース本体130aの内部に配置される。また、ホール素子138bは、ケース本体130aの内部に位置する第1コイル144の中心近傍に配置される。ホール素子138bにより、ケース130に対するホルダ120の位置を取得できる。 As shown in FIG. 14, in the optical unit 100, the case 130 has a case body 130a and a Hall element 138b. Here, the Hall element 138b is arranged inside the case body 130a. Further, the Hall element 138b is arranged near the center of the first coil 144 located inside the case body 130a. The Hall element 138b can acquire the position of the holder 120 with respect to the case 130.
 なお、図14では、ホール素子138bは第1揺動機構140の第1コイル144の近傍に配置されたが、本実施形態はこれに限定されない。ホール素子138bは第2揺動機構150の第2コイル154の近傍に配置されてもよい。 Note that, in FIG. 14, the Hall element 138b is arranged in the vicinity of the first coil 144 of the first swing mechanism 140, but the present embodiment is not limited to this. The Hall element 138b may be arranged in the vicinity of the second coil 154 of the second swing mechanism 150.
 なお、ホール素子138bは、第1コイル144の中心に配置されることが好ましい。これにより、ホール素子138bは、第1磁石142からの磁力を適切に検出できる。同様に、ホール素子138bは、第2コイル154の中心に配置されることが好ましい。これにより、ホール素子138bは、第2磁石152からの磁力を適切に検出できる。 The Hall element 138b is preferably arranged at the center of the first coil 144. As a result, the Hall element 138b can appropriately detect the magnetic force from the first magnet 142. Similarly, the Hall element 138b is preferably arranged in the center of the second coil 154. As a result, the Hall element 138b can appropriately detect the magnetic force from the second magnet 152.
 なお、図13に示した光学ユニット100は金属部材138aを有し、図14に示した光学ユニット100はホール素子138bを有したが、光学ユニット100が、金属部材138aおよびホール素子138bの両方を有してもよいことは言うまでもない。 The optical unit 100 shown in FIG. 13 has a metal member 138a, and the optical unit 100 shown in FIG. 14 has a Hall element 138b, but the optical unit 100 has both the metal member 138a and the Hall element 138b. Needless to say, you may have it.
 なお、図2a~図14を参照した説明では、第1揺動機構140は、第1磁石142および第1コイル144を有し、第2揺動機構150は、第2磁石152および第2コイル154を有したが、本実施形態はこれに限定されない。第1揺動機構140および第2揺動機構150は、それぞれ別の構成であってもよい。例えば、第1揺動機構140および第2揺動機構150は、形状記憶合金を有する機構であってもよい。 In the description with reference to FIGS. 2a to 14, the first swing mechanism 140 has the first magnet 142 and the first coil 144, and the second swing mechanism 150 has the second magnet 152 and the second coil. It had 154, but the present embodiment is not limited to this. The first swing mechanism 140 and the second swing mechanism 150 may have different configurations. For example, the first swing mechanism 140 and the second swing mechanism 150 may be mechanisms having a shape memory alloy.
 なお、図1を参照して上述した説明では、光学素子110において、反射面110rは、プリズムの表面に形成されたが、本実施形態はこれに限定されない。光学素子110はプリズムを含まなくてもよく、反射面110rは、プリズムの表面に形成されなくてもよい。例えば、光学素子110として薄板形状の反射部材(例えば、ミラー)をホルダ120の取付部121に取り付けてもよい。 In the above description with reference to FIG. 1, in the optical element 110, the reflective surface 110r is formed on the surface of the prism, but the present embodiment is not limited to this. The optical element 110 may not include a prism, and the reflective surface 110r may not be formed on the surface of the prism. For example, as the optical element 110, a thin plate-shaped reflective member (for example, a mirror) may be attached to the attachment portion 121 of the holder 120.
 ただし、光学素子110はプリズムを含むことが好ましい。光学素子110はプリズムを含むことにより、光学経路を短縮できる。このような光学ユニット100は、望遠用の撮像素子として好適に用いられる。 However, it is preferable that the optical element 110 includes a prism. By including the prism, the optical element 110 can shorten the optical path. Such an optical unit 100 is suitably used as a telephoto image sensor.
 なお、図2a~図14を参照して上述した説明では、光学ユニットは、反射によって光の経路を変更する光学素子110を備えたが、本実施形態はこれに限定されない。光学ユニットは、光の経路を変更しない光学素子を備えてもよい。 In the above description with reference to FIGS. 2a to 14, the optical unit includes an optical element 110 that changes the path of light by reflection, but the present embodiment is not limited to this. The optical unit may include an optical element that does not change the path of light.
<第2の実施形態>
本発明に係る第2の実施形態では第2揺動軸は入射光Lbに平行(すなわちx軸方向に平行)である。以下、図15a~図18bを参照して、本発明の第2の実施形態の概略構成を示す。第1の実施形態と第2の実施形態では第1凹部135および第2凹部136向きと第1揺動機構140および第2揺動機構150に関する構成のみが異なる。よって、以下では、第1の実施形態と同様の構成については同一の符号を付して説明を省略し、実施形態1と異なる部分についてのみ説明する。
<Second embodiment>
In the second embodiment of the present invention, the second swing axis is parallel to the incident light Lb (that is, parallel to the x-axis direction). Hereinafter, a schematic configuration of a second embodiment of the present invention will be shown with reference to FIGS. 15a to 18b. In the first embodiment and the second embodiment, only the configurations relating to the first recess 135 and the second recess 136 and the first swing mechanism 140 and the second swing mechanism 150 are different. Therefore, in the following, the same components as those in the first embodiment will be designated by the same reference numerals, and the description thereof will be omitted, and only the parts different from those in the first embodiment will be described.
図15aおよび図15bは、第2の実施形態の光学ユニットにおける光学素子110、ホルダ120およびケース130の模式的な分解斜視図である。ケース130は、ホルダ120を揺動可能に支持する。ケース130は、y軸方向の両側端部からホルダ120を支持する。ホルダ120は、ケース130に対して揺動する。ホルダ120は、ケース130に対してy軸を基準として揺動する。また、ホルダ120は、ケース130に対してx軸を基準として揺動する。一方、光学ユニット100では、ケース130に対してz軸を基準としたホルダ120の揺動は抑制される。 15a and 15b are schematic exploded perspective views of the optical element 110, the holder 120, and the case 130 in the optical unit of the second embodiment. The case 130 swingably supports the holder 120. The case 130 supports the holder 120 from both end portions in the y-axis direction. The holder 120 swings with respect to the case 130. The holder 120 swings with respect to the case 130 with respect to the y-axis. Further, the holder 120 swings with respect to the case 130 with reference to the x-axis. On the other hand, in the optical unit 100, the swing of the holder 120 with respect to the z-axis is suppressed with respect to the case 130.
 第1揺動機構140は、ホルダ120の-x方向側に位置する。第1揺動機構140は、y軸方向を基準にケース130に対してホルダ120を揺動する。 The first swing mechanism 140 is located on the −x direction side of the holder 120. The first swing mechanism 140 swings the holder 120 with respect to the case 130 with respect to the y-axis direction.
 また、第2揺動機構150は、ホルダ120の-z方向側に位置する。第2揺動機構150は、x軸方向を基準にケース130に対してホルダ120を揺動する。 Further, the second swing mechanism 150 is located on the −z direction side of the holder 120. The second swing mechanism 150 swings the holder 120 with respect to the case 130 with respect to the x-axis direction.
 ケース130は、第1凹部135を有する。第1凹部135は、ホルダ120の第1ケース対向面(120e)と対向する第1ホルダ対向面(132b)に設けられる。第1凹部135は、第1凸部125の少なくとも一部を収容する。ここでは、第1凹部135は、z軸方向に延びる。第1凹部135のz軸方向の長さは、第1凸部125のz軸方向の長さよりも大きい。 The case 130 has a first recess 135. The first recess 135 is provided on the first holder facing surface (132b) facing the first case facing surface (120e) of the holder 120. The first concave portion 135 accommodates at least a part of the first convex portion 125. Here, the first recess 135 extends in the z-axis direction. The length of the first concave portion 135 in the z-axis direction is larger than the length of the first convex portion 125 in the z-axis direction.
 ケース130は、第2凹部136を有する。第2凹部136は、ホルダ120の第2ケース対向面(120f)と対向する第2ホルダ対向面(132c)に設けられる。第2凹部136は、第2凸部126の少なくとも一部を収容する。ここでは、第2凹部136は、z軸方向に延びる。第2凹部136のz軸方向の長さは、第2凸部126のz軸方向の長さよりも大きい。 The case 130 has a second recess 136. The second recess 136 is provided on the second holder facing surface (132c) facing the second case facing surface (120f) of the holder 120. The second concave portion 136 accommodates at least a part of the second convex portion 126. Here, the second recess 136 extends in the z-axis direction. The length of the second concave portion 136 in the z-axis direction is larger than the length of the second convex portion 126 in the z-axis direction.
 次に、図16aおよび図16bを参照して、第2の実施形態の光学ユニット100におけるホルダ120、第1揺動機構140および第2揺動機構150を説明する。図16aおよび図16bは、第2の実施形態の光学ユニットにおける第1揺動機構140および第2揺動機構150の模式的な斜視図である。なお、図16aおよび図16bでは、第1コイル144および第2コイル154を除き、ケース130を省略して示している。 Next, the holder 120, the first swing mechanism 140, and the second swing mechanism 150 in the optical unit 100 of the second embodiment will be described with reference to FIGS. 16a and 16b. 16a and 16b are schematic perspective views of the first swing mechanism 140 and the second swing mechanism 150 in the optical unit of the second embodiment. In FIGS. 16a and 16b, the case 130 is omitted except for the first coil 144 and the second coil 154.
 第1揺動機構140は、第1磁石142と、第1コイル144とを含む。第1磁石142は、ホルダ120およびケース130の一方に設けられ、第1コイル144は、第1磁石142に対して、ホルダ120およびケース130の他方に設けられる。詳細には、第1磁石142および第1コイル144の一方は、ホルダ120の面120gに設けられ、第1磁石142および第1コイル144の他方は、ケース130の面132a上または面132aに対向するケース130内部に配置される。 The first swing mechanism 140 includes a first magnet 142 and a first coil 144. The first magnet 142 is provided on one of the holder 120 and the case 130, and the first coil 144 is provided on the other of the holder 120 and the case 130 with respect to the first magnet 142. Specifically, one of the first magnet 142 and the first coil 144 is provided on the surface 120g of the holder 120, and the other of the first magnet 142 and the first coil 144 faces the surface 132a or the surface 132a of the case 130. It is arranged inside the case 130.
 ここでは、第1磁石142は、ホルダ120に取り付けられる。詳細には、第1磁石142は、ホルダ120の面120gに取り付けられる。第1磁石142は、N極142nと、S極142sとを有する。N極142nおよびS極142sは、それぞれy方向に延びており、z方向に並んで配列される。 Here, the first magnet 142 is attached to the holder 120. Specifically, the first magnet 142 is attached to the surface 120 g of the holder 120. The first magnet 142 has an N pole 142n and an S pole 142s. The N pole 142n and the S pole 142s each extend in the y direction and are arranged side by side in the z direction.
 第1コイル144はケース130に設けられる。第1コイル144に流れる電流の向きを切り換えることにより、第1磁石142はz軸方向に沿った力を受ける。 The first coil 144 is provided in the case 130. By switching the direction of the current flowing through the first coil 144, the first magnet 142 receives a force along the z-axis direction.
 第2揺動機構150は、第2磁石152と、第2コイル154とを含む。第2磁石152は、ホルダ120およびケース130の一方に設けられ、第2コイル154は、第2磁石152に対して、ホルダ120およびケース130の他方に設けられる。詳細には、第2磁石152および第2コイル154の一方は、ホルダ120の面120hに設けられ、第2磁石152および第2コイル154の他方は、ケース130の面132d上または面132dに対向するケース130内部に配置される。 The second swing mechanism 150 includes a second magnet 152 and a second coil 154. The second magnet 152 is provided on one of the holder 120 and the case 130, and the second coil 154 is provided on the other of the holder 120 and the case 130 with respect to the second magnet 152. Specifically, one of the second magnet 152 and the second coil 154 is provided on the surface 120h of the holder 120, and the other of the second magnet 152 and the second coil 154 faces the surface 132d or the surface 132d of the case 130. It is arranged inside the case 130.
 ここでは、第2磁石152は、ホルダ120に取り付けられる。詳細には、第2磁石152は、ホルダ120の面120hに取り付けられる。第2磁石152は、N極152nと、S極152sとを有する。N極152nおよびS極152sは、それぞれx方向に延びており、y方向に並んで配列される。 Here, the second magnet 152 is attached to the holder 120. Specifically, the second magnet 152 is attached to the surface 120h of the holder 120. The second magnet 152 has an N pole 152n and an S pole 152s. The N pole 152n and the S pole 152s each extend in the x direction and are arranged side by side in the y direction.
 第2コイル154はケース130に設けられる。第2コイル154に流れる電流の向きを切り換えることにより、第2磁石152はy軸方向に沿った力を受ける。 The second coil 154 is provided in the case 130. By switching the direction of the current flowing through the second coil 154, the second magnet 152 receives a force along the y-axis direction.
 第1の実施形態と同様に、ホルダ120が第1磁石142および第2磁石152を含み、ケース130が第1コイル144および第2コイル154を含むことが好ましい。これにより、ケース130の第1コイル144および/または第2コイル154に電流を流すことにより、ケース130を基準としたホルダ120の揺動を簡便に制御できる。 As in the first embodiment, it is preferable that the holder 120 includes the first magnet 142 and the second magnet 152, and the case 130 includes the first coil 144 and the second coil 154. As a result, the swing of the holder 120 with respect to the case 130 can be easily controlled by passing a current through the first coil 144 and / or the second coil 154 of the case 130.
 次に、図17aおよび図17bを参照して、第2の実施形態の光学ユニット100における揺動を説明する。図17aは、第2の実施形態の光学ユニット100における第1揺動機構140による揺動を説明するための模式図であり、図17bは、本実施形態の光学ユニット100における第2揺動機構150による揺動を説明するための模式図である。 Next, the swing in the optical unit 100 of the second embodiment will be described with reference to FIGS. 17a and 17b. FIG. 17a is a schematic diagram for explaining the swing by the first swing mechanism 140 in the optical unit 100 of the second embodiment, and FIG. 17b is a second swing mechanism in the optical unit 100 of the present embodiment. It is a schematic diagram for demonstrating the swing by 150.
 図17aに示すように、第1揺動機構140は、第1磁石142と、第1コイル144とを含む。第1磁石142は、ホルダ120に設けられ、第1コイル144は、ケース130に設けられる。また、第2揺動機構150は、第2磁石152と、第2コイル154とを含む。第2磁石152は、ホルダ120に設けられ、第2コイル154は、ケース130設けられる。 As shown in FIG. 17a, the first swing mechanism 140 includes a first magnet 142 and a first coil 144. The first magnet 142 is provided in the holder 120, and the first coil 144 is provided in the case 130. Further, the second swing mechanism 150 includes a second magnet 152 and a second coil 154. The second magnet 152 is provided in the holder 120, and the second coil 154 is provided in the case 130.
 第1コイル144に流れる電流の向きを切り換えることにより、第1磁石142はz軸方向に沿った力を受ける。この場合、第1磁石142は、z軸方向に沿って移動することになる。このため、第1磁石142の取り付けられたホルダ120は、ケース130に対して、x軸方向を基準として揺動する。 By switching the direction of the current flowing through the first coil 144, the first magnet 142 receives a force along the z-axis direction. In this case, the first magnet 142 will move along the z-axis direction. Therefore, the holder 120 to which the first magnet 142 is attached swings with respect to the case 130 with respect to the x-axis direction.
 図17bに示すように、第2コイル154に流れる電流の向きを切り換えることにより、第2磁石152はy軸方向に沿った力を受ける。この場合、第2磁石152は、y軸方向に沿って移動することになる。このため、第2磁石152の取り付けられたホルダ120は、ケース130に対して、x軸方向を基準として揺動する。 As shown in FIG. 17b, the second magnet 152 receives a force along the y-axis direction by switching the direction of the current flowing through the second coil 154. In this case, the second magnet 152 moves along the y-axis direction. Therefore, the holder 120 to which the second magnet 152 is attached swings with respect to the case 130 with respect to the x-axis direction.
 次に、図18aおよび図18bを参照して、本実施形態の光学ユニット100を備えた光学モジュール100Aを説明する。図18aは、本実施形態の光学ユニット100と別の光学ユニット101とを含む光学モジュール100Aを備えたスマートフォン200の模式的な斜視図である。 Next, the optical module 100A provided with the optical unit 100 of the present embodiment will be described with reference to FIGS. 18a and 18b. FIG. 18a is a schematic perspective view of a smartphone 200 including an optical module 100A including an optical unit 100 of the present embodiment and another optical unit 101.
 図18aに示すように、スマートフォン200は、2種類の撮像ができる。スマートフォン200は、光の入射するレンズ202およびレンズ204を備える。スマートフォン200では、光学モジュール100Aは、レンズ202およびレンズ204よりも内側に配置される。詳細には、レンズ202は、光学ユニット100に対応して配置されており、レンズ204は、光学ユニット101に対応して配置される。 As shown in FIG. 18a, the smartphone 200 can perform two types of imaging. The smartphone 200 includes a lens 202 and a lens 204 on which light is incident. In the smartphone 200, the optical module 100A is arranged inside the lens 202 and the lens 204. Specifically, the lens 202 is arranged corresponding to the optical unit 100, and the lens 204 is arranged corresponding to the optical unit 101.
 スマートフォン200には、レンズ202を介して外部から入射方向に光Lが入射し、光学ユニット100を通過した光に基づいて被写体像が撮像される。同様に、レンズ204を介して外部から入射方向に光Lが入射し、光学ユニット101を通過した光に基づいて被写体像が撮像される。 Light L is incident on the smartphone 200 from the outside in the incident direction via the lens 202, and a subject image is imaged based on the light that has passed through the optical unit 100. Similarly, the light L is incident from the outside through the lens 204 in the incident direction, and the subject image is imaged based on the light that has passed through the optical unit 101.
 図18bは、本実施形態の光学モジュール100Aの模式的な斜視図である。図18aおよび図18bの光学モジュール100Aは、図1~図14を参照して上述したのと同様の構成を有する光学ユニット100と、別の光学ユニット101とを備える。 FIG. 18b is a schematic perspective view of the optical module 100A of the present embodiment. The optical module 100A of FIGS. 18a and 18b includes an optical unit 100 having the same configuration as described above with reference to FIGS. 1 to 14, and another optical unit 101.
 図18bに示すように、光学ユニット100は、z軸方向に沿って入射する入射光La1の光軸をx軸方向に反射光Lbとして反射する。その後、反射光Lbは、スマートフォン200のレンズモジュール210を介して撮像素子220にて受光される。レンズモジュール210は、用途に応じた種々のレンズを含む。 As shown in FIG. 18b, the optical unit 100 reflects the optical axis of the incident light La1 incident along the z-axis direction as reflected light Lb in the x-axis direction. After that, the reflected light Lb is received by the image pickup device 220 via the lens module 210 of the smartphone 200. The lens module 210 includes various lenses depending on the application.
 光学ユニット101は、z軸方向に沿って入射する入射光La2を受光する。光学ユニット101は、光軸の方向をz軸方向から変更することなくレンズモジュール211を介して撮像素子221にて受光する。レンズモジュール211は、用途に応じた種々のレンズを含む。 The optical unit 101 receives the incident light La2 incident along the z-axis direction. The optical unit 101 receives light from the image sensor 221 via the lens module 211 without changing the direction of the optical axis from the z-axis direction. The lens module 211 includes various lenses depending on the application.
 なお、図1および図18aには、本実施形態の光学ユニット100の用途の一例としてスマートフォンを示したが、光学ユニット100の用途はこれに限定されない。光学ユニット100は、デジタルカメラまたはビデオカメラとして好適に用いられる。例えば、光学ユニット100は、ドライブレコーダの一部として用いられてもよい。あるいは、光学ユニット100は、飛行物体(例えば、ドローン)のための撮影機に搭載されてもよい。 Note that FIGS. 1 and 18a show a smartphone as an example of the use of the optical unit 100 of the present embodiment, but the use of the optical unit 100 is not limited to this. The optical unit 100 is suitably used as a digital camera or a video camera. For example, the optical unit 100 may be used as part of a drive recorder. Alternatively, the optical unit 100 may be mounted on a camera for a flying object (eg, a drone).
 以上、図面を参照して本発明の実施形態を説明した。ただし、本発明は、上記の実施形態に限られるものではなく、その要旨を逸脱しない範囲で種々の態様において実施することが可能である。また、上記の実施形態に開示される複数の構成要素を適宜組み合わせることによって、種々の発明の形成が可能である。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。図面は、理解しやすくするために、それぞれの構成要素を主体に模式的に示しており、図示された各構成要素の厚み、長さ、個数、間隔等は、図面作成の都合上から実際とは異なる場合もある。また、上記の実施形態で示す各構成要素の材質、形状、寸法等は一例であって、特に限定されるものではなく、本発明の効果から実質的に逸脱しない範囲で種々の変更が可能である。 The embodiment of the present invention has been described above with reference to the drawings. However, the present invention is not limited to the above embodiment, and can be implemented in various embodiments without departing from the gist thereof. In addition, various inventions can be formed by appropriately combining the plurality of components disclosed in the above embodiments. For example, some components may be removed from all the components shown in the embodiments. In addition, components across different embodiments may be combined as appropriate. In order to make it easier to understand, the drawings are schematically shown with each component as the main component, and the thickness, length, number, spacing, etc. of each of the illustrated components are actual for the convenience of drawing creation. May be different. Further, the material, shape, dimensions, etc. of each component shown in the above embodiment are merely examples, and are not particularly limited, and various changes can be made without substantially deviating from the effects of the present invention. be.
 100  光学ユニット

 110  光学素子

 120  ホルダ

 125  第1凸部

 126  第2凸部

 127  第1収容部

 128  第2収容部

 130  ケース

 135  第1凹部

 136  第2凹部

 305  第1弾性部

 306  第2弾性部
 
100 optical unit

110 optics

120 holder

125 First convex part

126 Second convex part

127 1st containment

128 Second containment

130 cases

135 1st recess

136 Second recess

305 1st elastic part

306 Second elastic part

Claims (18)

  1.  第1軸方向に光を反射する反射面を有する光学素子と、

     前記光学素子を保持するホルダと、

     前記ホルダを揺動可能に支持するケースと、

    前記ケースに対して第1揺動軸周りに前記ホルダを揺動する第1揺動機構と、

    前記ケースに対して前記第1揺動軸と直交する第2揺動軸周りに前記ホルダを揺動する第2揺動機構と、

    第1弾性部を含む第1凸部と、

    第2弾性部を含む第2凸部と、

    を備え、

     前記ホルダは、

     前記ケースと対向する第1ケース対向面に設けられ、前記第1凸部の少なくとも一部を収容する第1収容部と、

     前記ケースと対向する第2ケース対向面に設けられ、前記第2凸部の少なくとも一部を収容する第2収容部と、

    を有し、

     前記ケースは、

     前記ホルダの前記第1ケース対向面と対向する第1ホルダ対向面に設けられ、前記第1凸部の少なくとも一部を収容する第1凹部と、

     前記ホルダの前記第2ケース対向面と対向する第2ホルダ対向面に設けられ、前記第2凸部の少なくとも一部を収容する第2凹部と

    を有し、

    前記第1弾性部は、前記第1収容部と前記第1凹部の少なくとも一方に設けられ、

    前記第2弾性部は、前記第2収容部と前記第2凹部の少なくとも一方に設けられ、

     前記第1凸部は、前記第1収容部および前記第1凹部と接し、

     前記第2凸部は、前記第2収容部および前記第2凹部と接する、光学ユニット。
    An optical element having a reflecting surface that reflects light in the first axis direction,

    A holder that holds the optical element and

    A case that swingably supports the holder and

    A first swing mechanism that swings the holder around the first swing axis with respect to the case,

    A second swing mechanism that swings the holder around a second swing axis that is orthogonal to the first swing axis with respect to the case.

    The first convex portion including the first elastic portion and the first convex portion,

    The second convex portion including the second elastic portion and the second convex portion,

    Equipped with

    The holder is

    A first accommodating portion provided on a surface facing the first case facing the case and accommodating at least a part of the first convex portion.

    A second accommodating portion provided on the surface facing the second case facing the case and accommodating at least a part of the second convex portion.

    Have,

    The case is

    A first concave portion provided on the first holder facing surface facing the first case facing surface of the holder and accommodating at least a part of the first convex portion.

    With a second concave portion provided on the second holder facing surface facing the second case facing surface of the holder and accommodating at least a part of the second convex portion.

    Have,

    The first elastic portion is provided in at least one of the first accommodating portion and the first recess.

    The second elastic portion is provided in at least one of the second accommodating portion and the second recess.

    The first convex portion is in contact with the first accommodating portion and the first concave portion.

    The second convex portion is an optical unit that is in contact with the second accommodating portion and the second concave portion.
  2. 前記第1弾性部および前記第2弾性部は、

    前記第1揺動軸および前記第2揺動軸に対して直交する軸を第3軸としたとき、

    前記第1凹部の前記第3軸端部と前記第2揺動軸とを結ぶ領域に設けられる、請求項1に記載の光学ユニット。
    The first elastic portion and the second elastic portion are

    When the axis orthogonal to the first swing axis and the second swing axis is the third axis,

    The optical unit according to claim 1, which is provided in a region connecting the third shaft end of the first recess and the second swing shaft.
  3.  前記第1凸部は、一部球面形状を有し、

    前記第2凸部は、一部球面形状を有する、請求項1または2に記載の光学ユニット。
    The first convex portion has a partially spherical shape and has a spherical shape.

    The optical unit according to claim 1 or 2, wherein the second convex portion has a partially spherical shape.
  4.  前記第1揺動機構は、

    前記第1軸方向に対して直交する第2軸方向を揺動軸とし、

     前記第2揺動機構は、

     前記第1軸方向および前記第2軸方向に対してそれぞれ直交する第3軸方向を揺動軸とし、

    前記第1凹部は、

    前記第1凸部に対して前記第3軸方向一方側に位置する第1側面と、

    前記第1凸部に対して前記第3軸方向他方側に位置する第2側面と、

    前記第1凹部の前記第1側面と前記第1凹部の前記第2側面とを接続する底面とを有し、

    前記第2凹部は、

    前記第2凸部に対して前記第3軸方向一方側に位置する第1側面と、

    前記第2凸部に対して前記第3軸方向他方側に位置する第2側面と、

    前記第2凹部の前記第1側面と前記第2凹部の前記第2側面とを接続する底面とを有する、請求項1から3のいずれかに記載の光学ユニット。
    The first swing mechanism is

    The swing axis is defined as the second axis direction orthogonal to the first axis direction.

    The second swing mechanism is

    The swing axis is defined as the third axis direction orthogonal to the first axis direction and the second axis direction, respectively.

    The first recess is

    A first side surface located on one side in the third axial direction with respect to the first convex portion,

    A second side surface located on the other side in the third axial direction with respect to the first convex portion,

    It has a bottom surface connecting the first side surface of the first recess and the second side surface of the first recess.

    The second recess is

    A first side surface located on one side in the third axial direction with respect to the second convex portion,

    A second side surface located on the other side in the third axial direction with respect to the second convex portion,

    The optical unit according to any one of claims 1 to 3, further comprising a bottom surface connecting the first side surface of the second recess and the second side surface of the second recess.
  5.  前記第1凹部の前記底面および前記第2凹部の前記底面は、同一円の一部を構成する、請求項4に記載の光学ユニット。 The optical unit according to claim 4, wherein the bottom surface of the first recess and the bottom surface of the second recess form a part of the same circle.
  6.  前記第1弾性部は前記第1収容部に設けられ、

     前記第2弾性部は前記第2収容部に設けられる、請求項1から5のいずれかに記載の光学ユニット。
    The first elastic portion is provided in the first accommodating portion.

    The optical unit according to any one of claims 1 to 5, wherein the second elastic portion is provided in the second accommodating portion.
  7.  前記第1凸部と前記第1弾性部とは別部材であり、

     前記第2凸部と前記第2弾性部とは別部材である、請求項1から6のいずれかに記載の光学ユニット。
    The first convex portion and the first elastic portion are separate members.

    The optical unit according to any one of claims 1 to 6, wherein the second convex portion and the second elastic portion are separate members.
  8.  前記第1凸部は第1球体であり、

    前記第2凸部は第2球体である、請求項7に記載の光学ユニット。
    The first convex portion is a first sphere and is

    The optical unit according to claim 7, wherein the second convex portion is a second sphere.
  9.  前記第1弾性部は、

    前記第1凸部と隣接する一方側の第1領域と、他方側の第2領域を有し、

    前記第1領域は前記第1凸部側の端部を含み、

    前記第1領域は前記第2領域より摩擦係数が低く、

    前記第2弾性部は、

    前記第2凸部と隣接する一方側の第1領域と、他方側の第2領域を有し、

    前記第1領域は前記第2凸部側の端部を含み、

    前記第1領域は前記第2領域より摩擦係数が低い、請求項7または8に記載の光学ユニット。
    The first elastic portion is

    It has a first region on one side adjacent to the first convex portion and a second region on the other side.

    The first region includes the end on the first convex side.

    The first region has a lower coefficient of friction than the second region.

    The second elastic portion is

    It has a first region on one side adjacent to the second convex portion and a second region on the other side.

    The first region includes the end on the second convex side.

    The optical unit according to claim 7 or 8, wherein the first region has a lower coefficient of friction than the second region.
  10.  前記第1弾性部と前記第1凸部との間に第1緩衝部を備え、

     前記第1緩衝部は前記第1弾性部より硬度が高く、

     前記第2弾性部と前記第2凸部との間に第2緩衝部を備え、

    前記第2緩衝部は前記第2弾性部より硬度が高い、請求項7または8に記載の光学ユニット。
    A first cushioning portion is provided between the first elastic portion and the first convex portion.

    The first cushioning portion has a higher hardness than the first elastic portion and has a hardness higher than that of the first elastic portion.

    A second cushioning portion is provided between the second elastic portion and the second convex portion.

    The optical unit according to claim 7 or 8, wherein the second cushioning portion has a hardness higher than that of the second elastic portion.
  11.  前記光学素子は、プリズムを含む、請求項1から10のいずれかに記載の光学ユニット。 The optical unit according to any one of claims 1 to 10, wherein the optical element includes a prism.
  12.  前記第1揺動機構は、

     前記ホルダおよび前記ケースの一方に設けられた第1磁石と、

     前記第1磁石に対して、前記ホルダおよび前記ケースの他方に設けられた第1コイルとを含み、

     前記第2揺動機構は、

     前記ホルダおよび前記ケースの一方に設けられた第2磁石と、

     前記第2磁石に対して、前記ホルダおよび前記ケースの他方に設けられた第2コイルとを含み、

     前記ホルダは、前記第1磁石および前記第2磁石を含み、

     前記ケースは、前記第1コイルおよび前記第2コイルを含む、請求項1から11のいずれかに記載の光学ユニット。
    The first swing mechanism is

    A first magnet provided on one of the holder and the case,

    The first magnet includes the holder and the first coil provided on the other side of the case.

    The second swing mechanism is

    A second magnet provided on one of the holder and the case,

    The second magnet includes the holder and the second coil provided on the other side of the case.

    The holder includes the first magnet and the second magnet.

    The optical unit according to any one of claims 1 to 11, wherein the case includes the first coil and the second coil.
  13.  前記ホルダは、

     前記第1ケース対向面および前記第2ケース対向面に接続され、前記第1軸方向および第1揺動軸と直交する第3軸方向に平行に延びる法線を有する第1揺動機構取付面と、

     前記第1ケース対向面および前記第2ケース対向面に接続され、前記第1軸方向に平行に延びる法線を有する第2揺動機構取付面と

    をさらに有し、

     前記第1揺動機構取付面には、前記第1揺動機構の前記第1磁石および前記第1コイルの一方が取り付けられ、

     前記第2揺動機構取付面には、前記第2揺動機構の前記第2磁石および前記第2コイルの一方が取り付けられる、請求項12に記載の光学ユニット。
    The holder is

    A first swing mechanism mounting surface connected to the first case facing surface and the second case facing surface and having a normal extending parallel to the first axial direction and the third axial direction orthogonal to the first swing axis. When,

    With a second swing mechanism mounting surface connected to the first case facing surface and the second case facing surface and having a normal extending parallel to the first axial direction.

    Have more

    One of the first magnet and the first coil of the first rocking mechanism is mounted on the mounting surface of the first rocking mechanism.

    The optical unit according to claim 12, wherein one of the second magnet and the second coil of the second rocking mechanism is mounted on the mounting surface of the second rocking mechanism.
  14.  前記ホルダは、前記第1ケース対向面と前記第2ケース対向面との間に位置し、前記第1揺動機構取付面および前記第2揺動機構取付面に対して斜めに配置された光学素子取付面をさらに有し、

     前記光学素子は、前記ホルダの前記光学素子取付面に位置する、請求項13に記載の光学ユニット。
    The holder is located between the first case facing surface and the second case facing surface, and is optically arranged obliquely with respect to the first swing mechanism mounting surface and the second swing mechanism mounting surface. It also has an element mounting surface,

    The optical unit according to claim 13, wherein the optical element is located on the optical element mounting surface of the holder.
  15.  前記ケースは、ケース本体と、ホール素子をさらに備え、

    前記ホール素子は、前記第1コイルおよび前記第2コイルの少なくとも一方の中心に配置される、請求項12から14のいずれかに記載の光学ユニット。
    The case further includes a case body and a Hall element.

    The optical unit according to any one of claims 12 to 14, wherein the Hall element is arranged at the center of at least one of the first coil and the second coil.
  16.  前記ケースは、ケース本体と、金属部材とを備え、

     前記金属部材は、前記第1磁石および前記第2磁石の少なくとも一方と対向し、

    前記金属部材は、前記第1コイルおよび前記第2コイルの少なくとも一方の中心に対して対称に配置される、

    請求項12から15のいずれかに記載の光学ユニット。
    The case includes a case body and a metal member.

    The metal member faces at least one of the first magnet and the second magnet.

    The metal member is arranged symmetrically with respect to the center of at least one of the first coil and the second coil.

    The optical unit according to any one of claims 12 to 15.
  17.  前記弾性部は板バネである、請求項7から10のいずれかに記載の光学ユニット。 The optical unit according to any one of claims 7 to 10, wherein the elastic portion is a leaf spring.
  18.  前記弾性部はコイルである、請求項7から10のいずれかに記載の光学ユニット。
     
    The optical unit according to any one of claims 7 to 10, wherein the elastic portion is a coil.
PCT/JP2020/048421 2020-05-22 2020-12-24 Optical unit WO2021234995A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022524874A JPWO2021234995A1 (en) 2020-05-22 2020-12-24

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-089972 2020-05-22
JP2020089972 2020-05-22

Publications (1)

Publication Number Publication Date
WO2021234995A1 true WO2021234995A1 (en) 2021-11-25

Family

ID=78707914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/048421 WO2021234995A1 (en) 2020-05-22 2020-12-24 Optical unit

Country Status (2)

Country Link
JP (1) JPWO2021234995A1 (en)
WO (1) WO2021234995A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008197323A (en) * 2007-02-13 2008-08-28 Nikon Corp Optical apparatus
JP2016085347A (en) * 2014-10-27 2016-05-19 Hoya株式会社 Imaging device
WO2018216778A1 (en) * 2017-05-25 2018-11-29 ミツミ電機株式会社 Camera actuator, camera module, and camera mounted device
WO2019156004A1 (en) * 2018-02-06 2019-08-15 ミツミ電機株式会社 Camera actuator, camera module, and camera mount device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008197323A (en) * 2007-02-13 2008-08-28 Nikon Corp Optical apparatus
JP2016085347A (en) * 2014-10-27 2016-05-19 Hoya株式会社 Imaging device
WO2018216778A1 (en) * 2017-05-25 2018-11-29 ミツミ電機株式会社 Camera actuator, camera module, and camera mounted device
WO2019156004A1 (en) * 2018-02-06 2019-08-15 ミツミ電機株式会社 Camera actuator, camera module, and camera mount device

Also Published As

Publication number Publication date
JPWO2021234995A1 (en) 2021-11-25

Similar Documents

Publication Publication Date Title
CN112230366B (en) Reflection module and camera module
KR102072810B1 (en) Camera module and portable electronic device including the same
KR20200086482A (en) Camera module
US20090122406A1 (en) Optical Image Stabilizer Using Gimballed Prism
US11747642B2 (en) Optical unit
CN112394599B (en) Optical unit
CN115118872B (en) Optical unit with jitter correction function
US11523040B2 (en) Optical unit
US20220317415A1 (en) Optical unit and smartphone
WO2021234995A1 (en) Optical unit
JP3306128B2 (en) Lens frame support mechanism
US10261336B2 (en) Anti-vibration optical system, telephoto optical system, binocle, and anti-vibration unit
JP2006317547A (en) Catoptric system assembling unit and imaging apparatus using same
US11892705B2 (en) Optical unit, smartphone, and manufacturing method of optical unit
KR102505438B1 (en) Optical path change module and camera module having the same
KR102442834B1 (en) Camera module
WO2022004008A1 (en) Optical unit
KR102260376B1 (en) Folded module and portable electronic device including the same
CN114185226A (en) Optical unit
CN113900215B (en) Optical unit
CN114647126B (en) Optical unit with jitter correction function
WO2022004010A1 (en) Optical unit
CN117666238A (en) Optical unit with jitter correction function
WO2022004011A1 (en) Optical unit
CN115701558A (en) Optical unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20936524

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022524874

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20936524

Country of ref document: EP

Kind code of ref document: A1