WO2021234906A1 - Radar image processing device, radar image processing method, and radar image processing program - Google Patents

Radar image processing device, radar image processing method, and radar image processing program Download PDF

Info

Publication number
WO2021234906A1
WO2021234906A1 PCT/JP2020/020111 JP2020020111W WO2021234906A1 WO 2021234906 A1 WO2021234906 A1 WO 2021234906A1 JP 2020020111 W JP2020020111 W JP 2020020111W WO 2021234906 A1 WO2021234906 A1 WO 2021234906A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
true
radar
virtual
candidate
Prior art date
Application number
PCT/JP2020/020111
Other languages
French (fr)
Japanese (ja)
Inventor
亮吾 堀内
昇 大石
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/020111 priority Critical patent/WO2021234906A1/en
Priority to JP2022524562A priority patent/JP7143550B2/en
Publication of WO2021234906A1 publication Critical patent/WO2021234906A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques

Definitions

  • This disclosure relates to a radar image processing device, a radar image processing method, and a radar image processing program.
  • the radar image obtained from the synthetic aperture radar (Synthetic Aperture Radar) mounted on an artificial satellite or a moving object such as an aircraft is orthogonal to the range axis representing the distance from the synthetic aperture radar to the observation target. It is an image showing the space with the azimuth axis which is the direction.
  • the synthetic aperture radar can obtain a radar image in a wider range as the repetition frequency (PRF: Pulse repetition frequency) of the transmission pulse is lower.
  • PRF Pulse repetition frequency
  • low PRF can cause aliasing.
  • aliasing By the occurrence of aliasing, a virtual image called azimuth ambiguity is generated on the radar image.
  • the detection accuracy of the target reflected in the radar image is deteriorated.
  • Non-Patent Document 1 discloses a radar image processing device that calculates a signal spectrum of a true image candidate included in a radar image by Fourier transforming the radar image in the azimuth axis direction.
  • the radar image processing device identifies whether the true image candidate is a true image indicating a target or a virtual image based on the shape of the signal spectrum.
  • Non-Patent Document 1 when a radar image contains a noise component, the shape of the calculated signal spectrum may differ from the correct shape due to the influence of the noise component. .. There is a problem that if the shape of the signal spectrum is different from the correct shape, an error may occur in the discrimination result of whether the true image candidate is a true image or a virtual image.
  • the present disclosure has been made to solve the above-mentioned problems, and it is possible to identify whether the true image candidate is a true image or a virtual image even if the radar image contains a noise component.
  • the purpose is to obtain a radar image processing device, a radar image processing method, and a radar image processing program that can be used.
  • the radar image processing apparatus captures a virtual image suppression unit that suppresses a virtual image contained in the radar image by performing compression sensing processing on the radar image, and a radar image after the virtual image suppression by the virtual image suppression unit.
  • a virtual image suppression unit that suppresses a virtual image contained in the radar image by performing compression sensing processing on the radar image
  • a radar image after the virtual image suppression by the virtual image suppression unit By Fourier transforming the radar image in the azimuth axis direction, the signal spectrum of the true image candidate included in the radar image after virtual image suppression is calculated, and the angle of the signal spectrum with respect to the Doppler frequency axis in the radar image after virtual image suppression. Is smaller than the first threshold value, it is determined that the true image candidate is a true image, and if the angle of the signal spectrum is equal to or larger than the first threshold value, the true image candidate is determined to be a virtual image. It is equipped with.
  • the radar image contains a noise component, it is possible to identify whether the true image candidate is a true image or a virtual image.
  • FIG. It is a block diagram which shows the radar image processing apparatus which concerns on Embodiment 1.
  • FIG. It is a hardware block diagram which shows the hardware of the radar image processing apparatus which concerns on Embodiment 1.
  • FIG. It is a hardware block diagram of the computer when the radar image processing apparatus 2 is realized by software, firmware and the like.
  • It is a flowchart which shows the radar image processing method which is the processing procedure of the radar image processing apparatus 2 which concerns on Embodiment 1.
  • FIG. It is a flowchart which shows the processing procedure of the image identification processing unit 16.
  • FIG. 6B is an explanatory diagram showing a radar image after the virtual image suppression by the virtual image suppression unit 11.
  • FIG. 8A is an explanatory diagram showing a binarized image including four pseudo-true image candidates (1) to (4)
  • FIG. 8B is an explanatory diagram showing four pseudo-true image candidates (1) to (4), respectively.
  • FIG. 8C is a pseudo-true image candidate (1) to remaining without being discarded by the pseudo-true image candidate selection unit 14.
  • FIG. 9A is an explanatory diagram showing an example of a true image included in the radar image after the virtual image suppression by the virtual image suppression unit 11, and FIG.
  • FIG. 9B is a virtual image included in the radar image after the virtual image suppression by the virtual image suppression unit 11. It is explanatory drawing which shows an example.
  • FIG. 10A is an explanatory diagram showing an example of the signal spectrum of the true image calculated by Fourier transforming the true image in the azimuth axis direction
  • FIG. 10B is calculated by Fourier transforming the virtual image in the azimuth axis direction.
  • FIG. 11A is an explanatory diagram showing a true image included in the radar image stored by the radar image storage unit 1
  • FIG. 11B is a virtual image included in the radar image stored by the radar image storage unit 1.
  • FIG. 11C is an explanatory diagram showing a true image included in the radar image after the virtual image suppression by the virtual image suppression unit 11, and FIG. 11D is included in the radar image after the virtual image suppression by the virtual image suppression unit 11.
  • FIG. 12A is an explanatory diagram showing a signal spectrum of a true image included in a radar image (radar image shown in FIG. 11A) in which the virtual image suppression process is not performed by the virtual image suppression unit 11, and
  • FIG. 12B is a virtual image suppression unit.
  • FIG. 12C is a radar image after the virtual image suppression by the virtual image suppression unit 11.
  • FIG. 1 is a configuration diagram showing a radar image processing device 2 according to the first embodiment.
  • FIG. 2 is a hardware configuration diagram showing the hardware of the radar image processing device 2 according to the first embodiment.
  • the radar image storage unit 1 is realized by, for example, a first storage circuit.
  • the radar image storage unit 1 stores the radar image output from the synthetic aperture radar.
  • the radar image storage unit 1 is provided outside the radar image processing device 2.
  • the radar image storage unit 1 may be provided inside the radar image processing device 2.
  • a synthetic aperture radar is mounted on a moving body, and a radar image storage unit 1, a radar image processing device 2, and a processed image storage unit 3 are mounted on a ground station for synthesis. It is assumed that the radar image is transferred from the aperture radar to the radar image storage unit 1. However, this is only an example, and the radar image storage unit 1 and the radar image processing device 2 are also mounted on the moving body, and the radar image after removing the virtual image from the radar image processing device 2 is the processed image storage unit 3. It may be transferred to.
  • the radar image processing device 2 includes a virtual image suppression unit 11 and an image identification unit 12.
  • the radar image processing device 2 identifies whether the image reflected in the radar image stored by the radar image storage unit 1 is a true image or a virtual image.
  • the radar image processing device 2 removes a virtual image reflected in the radar image, and outputs the radar image after removing the virtual image to the processed image storage unit 3.
  • the processed image storage unit 3 is realized by, for example, a second storage circuit.
  • the processed image storage unit 3 stores the radar image after removing the virtual image output from the radar image processing device 2.
  • the processed image storage unit 3 is provided outside the radar image processing device 2.
  • the post-processing image storage unit 3 may be provided inside the radar image processing device 2.
  • the first storage circuit and the second storage circuit are, for example, RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Project Online Memory), EPROM (Electric) Non-volatile or volatile semiconductor memory such as, magnetic disk, flexible disk, optical disk, compact disk, mini disk, or DVD (Digital Versaille Disc) corresponds to this.
  • RAM Random Access Memory
  • ROM Read Only Memory
  • flash memory EPROM (Erasable Project Online Memory)
  • EPROM Electrically Non-volatile or volatile semiconductor memory such as, magnetic disk, flexible disk, optical disk, compact disk, mini disk, or DVD (Digital Versaille Disc) corresponds to this.
  • the virtual image suppression unit 11 is realized by, for example, the virtual image suppression circuit 21 shown in FIG.
  • the virtual image suppression unit 11 acquires a radar image stored by the radar image storage unit 1.
  • the virtual image suppression unit 11 suppresses the virtual image contained in the radar image by performing compressed sensing processing on the radar image.
  • the virtual image suppression unit 11 outputs the radar image after the virtual image suppression to the image identification unit 12.
  • the image identification unit 12 includes an image conversion unit 13, a tentative true image candidate selection unit 14, a true image candidate extraction unit 15, and an image identification processing unit 16.
  • the image identification unit 12 Fourier transforms the radar image after the virtual image suppression by the virtual image suppression unit 11 in the azimuth axis direction of the radar image, so that the signal spectrum of the true image candidate included in the radar image after the virtual image suppression Is calculated. If the angle of the signal spectrum with respect to the Doppler frequency axis in the radar image after suppressing the virtual image is smaller than the first threshold value, the image identification unit 12 determines that the true image candidate is a true image. If the angle of the signal spectrum is equal to or greater than the first threshold value, the image identification unit 12 determines that the true image candidate is a virtual image.
  • the image conversion unit 13 is realized by, for example, the image conversion circuit 22 shown in FIG.
  • the image conversion unit 13 acquires a radar image after the virtual image is suppressed by the virtual image suppression unit 11.
  • the image conversion unit 13 converts the radar image after suppressing the virtual image into a binarized image, and outputs the binarized image to the pseudo-true image candidate selection unit 14.
  • the pseudo-true image candidate selection unit 14 is realized by, for example, the pseudo-true image candidate selection circuit 23 shown in FIG.
  • the pseudo-true image candidate selection unit 14 selects each of one or more pixel groups in which pixels having a pixel value of 1 are gathered in the binarized image output from the image conversion unit 13. Specify as.
  • the pseudo-true image candidate selection unit 14 discards the pseudo-true image candidates whose number of pixels included is smaller than the second threshold value among the identified pseudo-true image candidates.
  • the second threshold value may be stored in the internal memory of the pseudo-true image candidate selection unit 14, or may be given from the outside of the radar image processing device 2.
  • the tentative true image candidate selection unit 14 outputs the tentative true image candidates that remain without being discarded to the true image candidate extraction unit 15.
  • the true image candidate extraction unit 15 is realized by, for example, the true image candidate extraction circuit 24 shown in FIG.
  • the true image candidate extraction unit 15 acquires a radar image after the virtual image is suppressed by the virtual image suppression unit 11.
  • the true image candidate extraction unit 15 extracts from the radar image after the virtual image suppression a pixel group having the same pixel position as the false true image candidate that remains without being discarded by the pseudo true image candidate selection unit 14 as a true image candidate.
  • the image identification processing unit 16 is realized by, for example, the image identification processing circuit 25 shown in FIG.
  • the image identification processing unit 16 calculates the signal spectrum of the true image candidate by Fourier transforming the true image candidate extracted by the true image candidate extraction unit 15 in the azimuth axis direction.
  • the image identification processing unit 16 calculates the angle of the signal spectrum with respect to the Doppler frequency axis in the radar image after the virtual image is suppressed by Hough transforming the signal spectrum of the true image candidate. If the angle of the signal spectrum is smaller than the first threshold value, the image identification processing unit 16 determines that the true image candidate is a true image. If the angle of the signal spectrum is equal to or greater than the first threshold value, the image identification processing unit 16 determines that the true image candidate is a virtual image.
  • the first threshold value may be stored in the internal memory of the image identification processing unit 16 or may be given from the outside of the radar image processing device 2.
  • the image identification processing unit 16 removes the virtual image reflected in the radar image after suppressing the virtual image, and outputs the radar image after removing the virtual image to the processed image storage unit 3.
  • each of the virtual image suppression unit 11, the image conversion unit 13, the pseudo-true image candidate selection unit 14, the true image candidate extraction unit 15, and the image identification processing unit 16, which are the components of the radar image processing device 2 is shown in FIG. It is assumed that it will be realized by dedicated hardware as shown in. That is, it is assumed that the radar image processing device 2 is realized by the virtual image suppression circuit 21, the image conversion circuit 22, the pseudo-true image candidate selection circuit 23, the true image candidate extraction circuit 24, and the image identification processing circuit 25.
  • Each of the imaginary image suppression circuit 21, the image conversion circuit 22, the pseudo-true image candidate selection circuit 23, the true image candidate extraction circuit 24, and the image identification processing circuit 25 is, for example, a single circuit, a composite circuit, a programmed processor, or a parallel program.
  • An ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • the components of the radar image processing device 2 are not limited to those realized by dedicated hardware, but the radar image processing device 2 is realized by software, firmware, or a combination of software and firmware. There may be.
  • the software or firmware is stored as a program in the memory of the computer.
  • a computer means hardware that executes a program, and corresponds to, for example, a CPU (Central Processing Unit), a central processing unit, a processing unit, a computing device, a microprocessor, a microcomputer, a processor, or a DSP (Digital Signal Processor). do.
  • FIG. 3 is a hardware configuration diagram of a computer when the radar image processing device 2 is realized by software, firmware, or the like.
  • a program for causing the computer to execute the processing procedure is stored in the memory 31.
  • the processor 32 of the computer executes the program stored in the memory 31.
  • FIG. 2 shows an example in which each of the components of the radar image processing device 2 is realized by dedicated hardware
  • FIG. 3 shows an example in which the radar image processing device 2 is realized by software, firmware, or the like. ing.
  • this is only an example, and some components in the radar image processing device 2 may be realized by dedicated hardware, and the remaining components may be realized by software, firmware, or the like.
  • FIG. 4 is a flowchart showing a radar image processing method which is a processing procedure of the radar image processing device 2 according to the first embodiment.
  • FIG. 5 is a flowchart showing a processing procedure of the image identification processing unit 16.
  • the virtual image suppression unit 11 acquires a radar image stored by the radar image storage unit 1.
  • the radar image stored by the radar image storage unit 1 shows a true image of an in-focus target and a defocused virtual image.
  • FIG. 6A is an explanatory diagram showing a radar image stored by the radar image storage unit 1.
  • the radar image shown in FIG. 6A is an image showing the space between the azimuth axis and the range axis.
  • the virtual image suppression unit 11 suppresses the virtual image contained in the radar image by performing a compressed sensing process on the radar image shown in FIG. 6A (step ST1 in FIG. 4).
  • the compressed sensing process assumes that the radar image is sparse, and restores the received signal of the synthetic aperture radar when it is imaged with a normal PRF from the received signal of the synthetic aperture radar when it is imaged with a low PRF.
  • the radar image calculated from the received signal of the synthetic aperture radar restored by the compressed sensing process corresponds to the radar image after the virtual image is suppressed.
  • a low PRF is a frequency lower than the target Doppler frequency
  • a normal PRF is a frequency higher than the target Doppler frequency.
  • a sparse radar image means that the radar image contains pixels with zero power.
  • the virtual image suppression unit 11 outputs the radar image after the virtual image suppression to the image identification unit 12.
  • FIG. 6B is an explanatory diagram showing a radar image after the virtual image is suppressed by the virtual image suppressing unit 11. As shown in FIG. 6B, the radar image after the virtual image suppression shows the virtual image in which the power is suppressed. The amount of suppression for each virtual image varies, and as shown in FIG. 6B, in the radar image after the virtual image is suppressed, in addition to the virtual image in which the power is sufficiently suppressed, the power remains unsuppressed. There is a virtual image. The noise component included in the radar image is also suppressed by the virtual image suppression process by the virtual image suppression unit 11.
  • the image conversion unit 13 of the image identification unit 12 acquires a radar image after the virtual image is suppressed by the virtual image suppression unit 11.
  • the image conversion unit 13 converts the radar image after suppressing the virtual image into a binarized image, and outputs the binarized image to the pseudo-true image candidate selection unit 14 (step ST2 in FIG. 4). That is, the image conversion unit 13 calculates a threshold matrix having a matrix element corresponding to each pixel included in the radar image by performing CFAR (Constant False Allarm Rate) processing on the radar image after the virtual image is suppressed. do.
  • the value of each matrix element included in the threshold matrix is 1, if the power of the pixel corresponding to the matrix element among the plurality of pixels included in the radar image is larger than the power threshold value 1.
  • the image conversion unit 13 outputs the threshold matrix as a binarized image to the pseudo-true image candidate selection unit 14.
  • the binarized image is also an image showing the space between the azimuth axis and the range axis, similar to the radar image.
  • the virtual image included in the radar image is suppressed by the virtual image suppressing unit 11.
  • an image different from each of the true image and the virtual image (hereinafter, referred to as “false detection image”) may be generated.
  • the erroneous detection image Due to the occurrence of the erroneous detection image, the erroneous detection image is also included in the binarized image.
  • the size of the false positive image is smaller than the size of the true image.
  • the pseudo-true image candidate selection unit 14 performs a process of removing the false detection image included in the binarized image.
  • the pseudo-true image candidate selection unit 14 selects each of one or more pixel groups in which pixels having a pixel value of 1 are gathered in the binarized image output from the image conversion unit 13. (Step ST3 in FIG. 4).
  • the pseudo-true image candidate selection unit 14 counts the number of pixels included in each pseudo-true image candidate. As shown in FIG. 7, if the number of pixels included in the pseudo-true image candidate is less than the second threshold value, the pseudo-true image candidate selection unit 14 determines that the pseudo-true image candidate is a false detection image. Judgment is made, and the pseudo-true image candidate is discarded (step ST4 in FIG. 4). As shown in FIG. 7, if the number of pixels included in the pseudo-true image candidate is equal to or greater than the second threshold value, the pseudo-true image candidate selection unit 14 does not indicate that the pseudo-true image candidate is a false detection image. Judgment is made and the pseudo-true image candidate is not discarded.
  • FIG. 7 is an explanatory diagram showing a process of discarding an erroneous detection image by the false true image candidate selection unit 14.
  • the binarized image on the left side is the binarized image before the false detection image is discarded
  • the binarized image on the right side is the binarized image after the false positive image is discarded. It is a binarized image.
  • the pseudo-true image candidates that remain without being discarded by the pseudo-true image candidate selection unit 14 may include two pseudo-true image candidates for one target. That is, one tentative image candidate originally appears in one goal.
  • the pseudo-true image candidate for one target may be divided into two. Therefore, it is necessary to discard one of the pseudo-true image candidates that has been divided into two.
  • the two pseudo-true image candidates adjacent to each other have a pseudo-true image candidate for one target. It is highly possible that it is divided into two parts.
  • the pseudo-true image candidate selection unit 14 calculates the distance between two pseudo-true image candidates that are adjacent to each other among the remaining pseudo-true image candidates. Since the process itself for calculating the distance between the two pseudo-true image candidates is a known technique, detailed description thereof will be omitted.
  • the pseudo-true image candidate selection unit 14 determines the two pseudo-true image candidates. Of these, one of the pseudo-true image candidates is discarded.
  • the third threshold value may be stored in the internal memory of the pseudo-true image candidate selection unit 14, or may be given from the outside of the radar image processing device 2. Hereinafter, the process of discarding any of the pseudo-true image candidates by the pseudo-true image candidate selection unit 14 will be specifically described.
  • the pseudo-true image candidate selection unit 14 acquires a radar image after the virtual image is suppressed by the virtual image suppression unit 11.
  • the pseudo-true image candidate selection unit 14 extracts a pixel group having the same pixel position as one of the two pseudo-true image candidates from the radar image after the virtual image is suppressed.
  • the pseudo-true image candidate selection unit 14 identifies the largest power P 1, max by comparing the power P 1 of a plurality of pixels constituting the extracted pixel group with each other. Further, the pseudo-true image candidate selection unit 14 extracts a pixel group having the same pixel position as the other pseudo-true image candidate among the two pseudo-true image candidates from the radar image after the virtual image is suppressed.
  • the pseudo-true image candidate selection unit 14 identifies the largest power P 2, max by comparing the power P 2 of a plurality of pixels constituting the extracted pixel group with each other.
  • the tentative image candidate selection unit 14 compares the specified power P 1, max with the specified power P 2, max, and if the power P 1, max is the power P 2, max or more, one of the tentative truths.
  • the other pseudo-true image candidate is discarded, leaving the image candidate. If the power P 1, max is smaller than the power P 2, max , the pseudo-true image candidate selection unit 14 leaves the other pseudo-true image candidate and discards one pseudo-true image candidate.
  • the tentative true image candidate selection unit 14 outputs the tentative true image candidates that remain without being discarded to the true image candidate extraction unit 15.
  • FIG. 8 is an explanatory diagram showing a process of discarding any of the pseudo-true image candidates by the pseudo-true image candidate selection unit 14.
  • FIG. 8A shows a binarized image including four pseudo-true image candidates (1) to (4).
  • the distance between the pseudo-true image candidate (1) and the pseudo-true image candidate (2) is L 1-2
  • the pseudo-true image candidate (1) and the pseudo-true image candidate (3) is L 1-3
  • the distance between the pseudo-true image candidate (1) and the pseudo-true image candidate (4) is L 1-4 .
  • the distance between the pseudo-true image candidate (2) and the pseudo-true image candidate (3) is L 2-3
  • the distance between the pseudo-true image candidate (2) and the pseudo-true image candidate (4) is L 2-4
  • the distance between the pseudo-true image candidate (3) and the pseudo-true image candidate (4) is L 3-4 .
  • all of the distance L 1-2 , the distance L 1-3, and the distance L 1-4 are equal to or higher than the third threshold value.
  • both the distance L 2-3 and the distance L 2-4 are equal to or higher than the third threshold value.
  • the distance L 3-4 is shorter than the third threshold.
  • FIG. 8B shows the pixel having the largest power among the plurality of pixels included in each of the four pseudo-true image candidates (1) to (4).
  • FIG. 8C shows the pseudo-true image candidates (1) to (3) that remain without being discarded by the pseudo-true image candidate selection unit 14.
  • the distance L 3-4 is shorter than the third threshold value, and the maximum power of the pixel possessed by the pseudo-true image candidate (4) is larger than the maximum power of the pixel possessed by the pseudo-true image candidate (3). Due to its small size, the tentative true image candidate (4) is discarded.
  • the true image candidate extraction unit 15 acquires a radar image after the virtual image is suppressed by the virtual image suppression unit 11.
  • the true image candidate extraction unit 15 extracts from the radar image after the virtual image suppression a pixel group having the same pixel position as the false true image candidate that remains without being discarded by the pseudo true image candidate selection unit 14 as a true image candidate (FIG. FIG. Step 4 ST5).
  • the true image candidate extraction unit 15 extracts a pixel group having the same pixel position as the false true image candidate as a true image candidate from the radar image after the virtual image is suppressed.
  • the true image candidate extraction unit 15 identifies the pixel having the maximum power among the plurality of pixels included in the pseudo true image candidate, and from the radar image after the virtual image is suppressed.
  • a pixel group having the same pixel position as the peripheral region including the specified pixel may be extracted as a true image candidate.
  • the peripheral area including the pixel is assumed to be an area including all of the pseudo-true image candidates.
  • the image identification processing unit 16 calculates the signal spectrum of the true image candidate by Fourier transforming the true image candidate extracted by the true image candidate extraction unit 15 in the azimuth axis direction (step ST11 in FIG. 5).
  • Synthetic aperture radars generally integrate the received signal to increase directional resolution. If the range migration R, which is a change in the distance between the radar device and the target, exceeds the distance resolution of the synthetic aperture radar within the integration time of the received signal, the radar image is deteriorated. Therefore, the radar image processing device 2 performs signal processing for correcting the range migration R, for example, when reproducing the radar image.
  • the range migration R is expressed by the following equation (1).
  • R 0 is the distance between the target existing in the observation area of the synthetic aperture radar and the synthetic aperture radar at the time of closest approach.
  • is the wavelength of the radio wave is a radar signal emitted from a synthetic aperture radar, is f eta, Doppler frequency, V r is the effective speed of the synthetic aperture radar body.
  • the true image is corrected for range migration R (R 0 , f ⁇ ). Therefore, in the space obtained by Fourier transforming the radar image in the azimuth axis direction, that is, in the space represented by the Doppler frequency axis and the range axis, the signal spectra of the true image are arranged in the same range bin.
  • the range migration R (R 0 , f ⁇ ) is corrected, the range migration R residual (f ⁇ ) shown in the following equation (2) remains in the virtual image.
  • Ra is the range migration of the virtual image itself.
  • R '0 is the distance at the time of closest approach between the reflection point and the synthetic aperture radar according to the observation area outside the virtual image of the synthetic aperture radar.
  • n is the number of virtual image aliasings
  • f PRF is PRF.
  • ⁇ n is the angle formed by the true image and the virtual image of the target centered on the main body of the synthetic aperture radar, and is based on the relationship between the Doppler frequency corresponding to the observation region width of the synthetic aperture radar and the PRF. I want it.
  • the range migration R residual (f ⁇ ) represented by the equation (2) does not remain in the true image shown in FIG. 9A. Therefore, the signal spectrum of the true image shown in FIG. 9A is parallel to the Doppler frequency axis as shown in FIG. 10A. Even after the correction of the range migration R (R 0 , f ⁇ ), for example, the range migration R residual (f ⁇ ) represented by the equation (2) remains in the virtual image shown in FIG. 9B. Therefore, the signal spectrum of the virtual image shown in FIG. 9B becomes slanted with respect to the Doppler frequency axis as shown in FIG. 10B.
  • FIG. 9A is an explanatory diagram showing an example of a true image included in the radar image after the virtual image is suppressed by the virtual image suppressing unit 11.
  • FIG. 9B is an explanatory diagram showing an example of a virtual image included in the radar image after the virtual image is suppressed by the virtual image suppressing unit 11.
  • FIG. 10A is an explanatory diagram showing an example of the signal spectrum of the true image calculated by Fourier transforming the true image in the azimuth axis direction.
  • FIG. 10B is an explanatory diagram showing an example of the signal spectrum of the virtual image calculated by Fourier transforming the virtual image in the azimuth axis direction.
  • the shape of the signal spectrum of the true image and the shape of the signal spectrum of the virtual image are different. Even if the virtual image suppression unit 11 performs suppression processing of the virtual image contained in the radar image captured at a low PRF, as shown in FIG. 10A, the shape characteristics related to the signal spectrum of the true image are not lost. .. Further, as shown in FIG. 10B, the shape characteristics of the virtual image with respect to the signal spectrum are not lost.
  • the image identification processing unit 16 smoothes the signal spectrum by moving averaging the signal spectra of the true image candidates.
  • the image identification processing unit 16 detects the cell in the azimuth axis direction having the lowest power in the smoothed signal spectrum. Then, the image identification processing unit 16 cyclically shifts the pixels included in the smoothed signal spectrum in the azimuth direction in order to move the detected cell to the position at the end of the signal spectrum (step ST12 in FIG. 5). ).
  • the image identification processing unit 16 cyclically shifts the pixels of the smoothed signal spectrum in the azimuth direction, thereby reducing the influence of the target shape, spatial distribution, and the like.
  • the image identification processing unit 16 calculates the angle ⁇ of the signal spectrum with respect to the Doppler frequency axis of the radar image by Hough transforming the signal spectrum of the true image candidate after the circular shift (step ST13 in FIG. 5). Since the process of calculating the angle ⁇ by Hough transforming the signal spectrum itself is a known technique, detailed description thereof will be omitted. Since the noise component contained in the radar image is also suppressed by the virtual image suppression processing by the virtual image suppression unit 11, the image identification processing unit is compared with the case where the virtual image suppression processing by the virtual image suppression unit 11 is not performed. The accuracy of calculating the angle of the signal spectrum according to 16 is improved. Further, since the pixels of the signal spectrum are cyclically shifted, the angle calculation accuracy of the signal spectrum by the image identification processing unit 16 is improved as compared with the case where the cyclic shift is not performed.
  • FIG. 11A is an explanatory diagram showing a true image included in the radar image stored by the radar image storage unit 1.
  • FIG. 11B is an explanatory diagram showing a virtual image included in the radar image stored by the radar image storage unit 1.
  • the radar image shown in FIG. 11A contains a noise component in addition to the true image.
  • the radar image shown in FIG. 11B contains a noise component in addition to the virtual image.
  • FIG. 11C is an explanatory diagram showing a true image included in the radar image after the virtual image is suppressed by the virtual image suppressing unit 11.
  • FIG. 11D is an explanatory diagram showing a virtual image included in the radar image after the virtual image is suppressed by the virtual image suppressing unit 11.
  • the radar image shown in FIG. 11C has a noise component contained in the radar image as compared with the radar image shown in FIG. 11A. Is decreasing. Further, the radar image shown in FIG. 11D has a reduced noise component contained in the radar image as compared with the radar image shown in FIG. 11B.
  • FIG. 12A is an explanatory diagram showing a signal spectrum of a true image included in a radar image (radar image shown in FIG. 11A) in which the virtual image suppression process is not performed by the virtual image suppression unit 11.
  • FIG. 12B is an explanatory diagram showing a signal spectrum of a virtual image included in a radar image (radar image shown in FIG. 11B) in which the virtual image suppression process is not performed by the virtual image suppression unit 11.
  • FIG. 12C is an explanatory diagram showing a signal spectrum of a true image included in a radar image (radar image shown in FIG. 11C) after the virtual image is suppressed by the virtual image suppressing unit 11.
  • FIG. 12A is an explanatory diagram showing a signal spectrum of a true image included in a radar image (radar image shown in FIG. 11A) in which the virtual image suppression process is not performed by the virtual image suppression unit 11.
  • FIG. 12B is an explanatory diagram showing a signal spectrum of a virtual image included in a radar image (radar image shown
  • FIG. 12D is an explanatory diagram showing a signal spectrum of a virtual image included in a radar image (radar image shown in FIG. 11D) after the virtual image is suppressed by the virtual image suppression unit 11. Since the noise component contained in the radar image is also suppressed by the virtual image suppression process by the virtual image suppression unit 11, the signal spectrum of the true image included in the radar image shown in FIG. 12C is shown in FIG. 12A. The shape of the signal spectrum is calculated with higher accuracy than the signal spectrum of the true image included in the radar image. Further, the signal spectrum of the virtual image included in the radar image shown in FIG. 12D is calculated with higher accuracy than the signal spectrum of the virtual image included in the radar image shown in FIG. 12B. There is.
  • the image identification processing unit 16 compares the angle ⁇ of the signal spectrum with the first threshold value Th 1. If the angle ⁇ of the signal spectrum is smaller than the first threshold value Th 1 (in the case of step ST14: YES in FIG. 5), the image identification processing unit 16 determines that the true image candidate is a true image (FIG. 5). Step ST15). If the angle ⁇ of the signal spectrum is equal to or greater than the first threshold value Th 1 (step ST14 in FIG. 5: NO), the image identification processing unit 16 determines that the true image candidate is a virtual image (step 5 in FIG. 5). ST16). By repeating the processes of steps ST11 to ST16 in FIG.
  • the image identification processing unit 16 discriminates whether all the true image candidates extracted by the true image candidate extraction unit 15 are true images or virtual images. (Step ST6 in FIG. 4).
  • the image identification processing unit 16 removes the identified virtual image from the radar image after the virtual image suppression by the virtual image suppression unit 11, and outputs the radar image after the virtual image removal to the processed image storage unit 3.
  • the virtual image suppression unit 11 that suppresses the virtual image contained in the radar image by performing the compression sensing process on the radar image, and the radar image after the virtual image suppression by the virtual image suppression unit 11 are obtained.
  • the signal spectrum of the true image candidate included in the radar image after virtual image suppression is calculated, and the angle of the signal spectrum with respect to the Doppler frequency axis in the radar image after virtual image suppression. Is smaller than the first threshold value, it is determined that the true image candidate is a true image, and if the angle of the signal spectrum is equal to or larger than the first threshold value, the true image candidate is determined to be a virtual image.
  • the radar image processing device 2 is configured to include the above. Therefore, the radar image processing device 2 can identify whether the true image candidate is a true image or a virtual image even if the radar image contains a noise component.
  • Embodiment 2 In the second embodiment, even if the angle ⁇ of the signal spectrum is smaller than the first threshold value Th 1 , the image identification unit 12 has a true image if the length Len of the signal spectrum is shorter than the fourth threshold value Th 4.
  • the radar image processing device 2 that determines that the candidate is a virtual image will be described.
  • FIG. 13 is a configuration diagram showing a radar image processing device 2 according to the second embodiment.
  • the same reference numerals as those in FIG. 1 indicate the same or corresponding parts, and thus the description thereof will be omitted.
  • FIG. 14 is a hardware configuration diagram showing the hardware of the radar image processing device 2 according to the second embodiment.
  • the same reference numerals as those in FIG. 2 indicate the same or corresponding parts, and thus the description thereof will be omitted.
  • the image identification unit 17 includes an image conversion unit 13, a tentative true image candidate selection unit 14, a true image candidate extraction unit 15, and an image identification processing unit 18.
  • the image identification unit 17 Fourier-converts the radar image after the virtual image suppression by the virtual image suppression unit 11 in the azimuth axis direction of the radar image, so that the signal spectrum of the true image candidate included in the radar image after the virtual image suppression Is calculated.
  • the angle ⁇ of the signal spectrum with respect to the Doppler frequency axis in the radar image after suppressing the virtual image is smaller than the first threshold value Th 1 , and the length Len of the signal spectrum is 4 or more the fourth threshold value Th 4. If so, it is determined that the true image candidate is a true image. If the angle ⁇ of the signal spectrum is equal to or greater than the first threshold value Th 1 or the length Len of the signal spectrum is shorter than the fourth threshold value Th 4 , the image identification unit 17 determines that the true image candidate is a virtual image. ..
  • the image identification processing unit 18 is realized by, for example, the image identification processing circuit 26 shown in FIG. Similar to the image identification processing unit 16 shown in FIG. 1, the image identification processing unit 18 Fourier transforms the true image candidate extracted by the true image candidate extraction unit 15 in the azimuth axis direction to obtain a signal spectrum of the true image candidate. Is calculated. The image identification processing unit 18 calculates the angle ⁇ of the signal spectrum with respect to the Doppler frequency axis and the length Len of the signal spectrum in the radar image after the virtual image suppression by Hough transforming the signal spectrum of the true image candidate.
  • the image identification processing unit 18 determines that the true image candidate is a virtual image. do.
  • Each of the first threshold value Th 1 and the fourth threshold value Th 4 may be stored in the internal memory of the image identification processing unit 18 or may be given from the outside of the radar image processing device 2. .. Similar to the image identification processing unit 16 shown in FIG. 1, the image identification processing unit 18 removes the virtual image reflected in the radar image after suppressing the virtual image, and outputs the radar image after removing the virtual image to the processed image storage unit 3. do.
  • each of the virtual image suppression unit 11, the image conversion unit 13, the pseudo-true image candidate selection unit 14, the true image candidate extraction unit 15, and the image identification processing unit 18, which are the components of the radar image processing device 2 is shown in FIG. It is assumed that it will be realized by dedicated hardware as shown in. That is, it is assumed that the radar image processing device 2 is realized by the virtual image suppression circuit 21, the image conversion circuit 22, the pseudo-true image candidate selection circuit 23, the true image candidate extraction circuit 24, and the image identification processing circuit 26.
  • Each of the imaginary image suppression circuit 21, the image conversion circuit 22, the pseudo-true image candidate selection circuit 23, the true image candidate extraction circuit 24, and the image identification processing circuit 26 is, for example, a single circuit, a composite circuit, a programmed processor, or a parallel program. The processor, ASIC, FPGA, or a combination thereof is applicable.
  • the components of the radar image processing device 2 are not limited to those realized by dedicated hardware, but the radar image processing device 2 is realized by software, firmware, or a combination of software and firmware. There may be.
  • a program for causing the computer to execute the processing procedure is stored in the memory 31. Then, the processor 32 of the computer executes the program stored in the memory 31.
  • FIG. 14 shows an example in which each of the components of the radar image processing device 2 is realized by dedicated hardware
  • FIG. 3 shows an example in which the radar image processing device 2 is realized by software, firmware, or the like. ing.
  • this is only an example, and some components in the radar image processing device 2 may be realized by dedicated hardware, and the remaining components may be realized by software, firmware, or the like.
  • the image identification processing unit 18 receives a true image candidate from the true image candidate extraction unit 15, the image identification processing unit 18 performs a Fourier transform on the true image candidate in the azimuth axis direction in the same manner as the image identification processing unit 16 shown in FIG. Calculate the candidate signal spectrum.
  • the image identification processing unit 18 calculates the angle ⁇ of the signal spectrum with respect to the Doppler frequency axis and the length Len of the signal spectrum in the radar image after the virtual image suppression by Hough transforming the signal spectrum of the true image candidate. do. Since the angle ⁇ calculation process and the length Len calculation process itself by Hough transforming the signal spectrum are known techniques, detailed description thereof will be omitted.
  • the image identification processing unit 18 compares the angle ⁇ of the signal spectrum with the first threshold value Th 1 , and compares the length Len of the signal spectrum with the fourth threshold value Th 4 .
  • the fourth threshold Th 4 is set to a length between the assumed true image signal spectrum length Len and the assumed virtual image signal spectrum length Len. In the image identification processing unit 18, if the angle ⁇ of the signal spectrum is smaller than the first threshold value Th 1 and the length Len of the signal spectrum is 4 or more of the fourth threshold value Th 4, the true image candidate is a true image. Judge that there is.
  • the image identification processing unit 18 determines that the true image candidate is a virtual image. do.
  • the image identification processing unit 18 removes the identified virtual image from the radar image after the virtual image is suppressed, and outputs the radar image after removing the virtual image to the processed image storage unit 3.
  • the true image candidate is a virtual image.
  • the radar image processing device 2 shown in FIG. 13 was configured so as to determine that there is. Therefore, in the radar image processing device 2 shown in FIG. 13, similarly to the radar image processing device 2 shown in FIG. 1, even if the radar image contains a noise component, whether the true image candidate is a true image or a virtual image. It is possible to identify whether it is. Further, the radar image processing device 2 shown in FIG. 13 has improved discrimination accuracy between a true image and a virtual image as compared with the radar image processing device 2 shown in FIG.
  • any combination of the embodiments can be freely combined, any component of the embodiment can be modified, or any component can be omitted in each embodiment.
  • This disclosure is suitable for radar image processing devices, radar image processing methods, and radar image processing programs.
  • 1 Radar image storage unit 1 Radar image storage unit, 2 Radar image processing device, 3 Post-processing image storage unit, 11 Virtual image suppression unit, 12, 17 Image identification unit, 13 Image conversion unit, 14 Pseudo-true image candidate selection unit, 15 True image candidate extraction unit , 16, 18 image identification processing unit, 21 virtual image suppression circuit, 22 image conversion circuit, 23 pseudo-true image candidate selection circuit, 24 true image candidate extraction circuit, 25, 26 image identification processing circuit, 31 memory, 32 processor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

A radar image processing device (2) is configured so as to comprise: a virtual image suppression unit (11) which suppresses a virtual image included in a radar image by performing compression sensing processing on the radar image; and an image identification unit (12) that performs a Fourier transform on the radar image, for which the virtual image has been suppressed by the virtual suppression unit (11), in the azimuth axis direction of the radar image to thereby calculate a signal spectrum of a true image candidate included in the virtual image-suppressed radar image, and if the angle of the signal spectrum with respect to the Doppler frequency axis in the virtual image-suppressed radar image is less than a first threshold, the image identification unit determines that the true image candidate is a true image, and if the angle of the signal spectrum is the first threshold or greater, the image identification unit determines that the true image candidate is a virtual image.

Description

レーダ画像処理装置、レーダ画像処理方法及びレーダ画像処理プログラムRadar image processing device, radar image processing method and radar image processing program
 本開示は、レーダ画像処理装置、レーダ画像処理方法及びレーダ画像処理プログラムに関するものである。 This disclosure relates to a radar image processing device, a radar image processing method, and a radar image processing program.
 人工衛星、又は、航空機等の移動体に搭載されている合成開口レーダ(Synthetic Aperture Radar)から得られるレーダ画像は、合成開口レーダから観測対象までの距離を表すレンジ軸と、レンジ軸と直交する方向であるアジマス軸との空間を表す画像である。合成開口レーダは、送信パルスの繰り返し周波数(PRF:Pulse Repetition Frequency)が低いほど、より広域のレーダ画像を得ることができる。しかし、PRFが低いために、エイリアシングを生じることがある。エイリアシングが生じることによって、アジマスアンビギュイティと呼ばれる虚像がレーダ画像上に発生する。虚像がレーダ画像上に発生することによって、レーダ画像に映っている目標の検出精度が劣化する。 The radar image obtained from the synthetic aperture radar (Synthetic Aperture Radar) mounted on an artificial satellite or a moving object such as an aircraft is orthogonal to the range axis representing the distance from the synthetic aperture radar to the observation target. It is an image showing the space with the azimuth axis which is the direction. The synthetic aperture radar can obtain a radar image in a wider range as the repetition frequency (PRF: Pulse repetition frequency) of the transmission pulse is lower. However, low PRF can cause aliasing. By the occurrence of aliasing, a virtual image called azimuth ambiguity is generated on the radar image. When a virtual image is generated on the radar image, the detection accuracy of the target reflected in the radar image is deteriorated.
 以下の非特許文献1には、レーダ画像をアジマス軸方向にフーリエ変換することによって、レーダ画像に含まれている真像候補の信号スペクトルを算出するレーダ画像処理装置が開示されている。当該レーダ画像処理装置は、信号スペクトルの形状に基づいて、真像候補が、目標を示す真像であるのか、虚像であるのかを識別している。 The following Non-Patent Document 1 discloses a radar image processing device that calculates a signal spectrum of a true image candidate included in a radar image by Fourier transforming the radar image in the azimuth axis direction. The radar image processing device identifies whether the true image candidate is a true image indicating a target or a virtual image based on the shape of the signal spectrum.
 非特許文献1に開示されているレーダ画像処理装置では、レーダ画像に雑音成分が含まれている場合、雑音成分の影響で、算出した信号スペクトルの形状が、正しい形状と異なってしまうことがある。信号スペクトルの形状が、正しい形状と異なることによって、真像候補が、真像であるのか、虚像であるのかの識別結果に誤りが生じてしまうことがあるという課題があった。 In the radar image processing apparatus disclosed in Non-Patent Document 1, when a radar image contains a noise component, the shape of the calculated signal spectrum may differ from the correct shape due to the influence of the noise component. .. There is a problem that if the shape of the signal spectrum is different from the correct shape, an error may occur in the discrimination result of whether the true image candidate is a true image or a virtual image.
 本開示は、上記のような課題を解決するためになされたもので、レーダ画像に雑音成分が含まれていても、真像候補が、真像であるのか、虚像であるのかを識別することができるレーダ画像処理装置、レーダ画像処理方法及びレーダ画像処理プログラムを得ることを目的とする。 The present disclosure has been made to solve the above-mentioned problems, and it is possible to identify whether the true image candidate is a true image or a virtual image even if the radar image contains a noise component. The purpose is to obtain a radar image processing device, a radar image processing method, and a radar image processing program that can be used.
 本開示に係るレーダ画像処理装置は、レーダ画像に対する圧縮センシング処理を実施することによって、レーダ画像に含まれている虚像を抑圧する虚像抑圧部と、虚像抑圧部による虚像抑圧後のレーダ画像を、当該レーダ画像のアジマス軸方向にフーリエ変換することによって、虚像抑圧後のレーダ画像に含まれている真像候補の信号スペクトルを算出し、虚像抑圧後のレーダ画像におけるドップラ周波数軸に対する信号スペクトルの角度が第1の閾値よりも小さければ、真像候補が真像であると判定し、信号スペクトルの角度が第1の閾値以上であれば、真像候補が虚像であると判定する像識別部とを備えているものである。 The radar image processing apparatus according to the present disclosure captures a virtual image suppression unit that suppresses a virtual image contained in the radar image by performing compression sensing processing on the radar image, and a radar image after the virtual image suppression by the virtual image suppression unit. By Fourier transforming the radar image in the azimuth axis direction, the signal spectrum of the true image candidate included in the radar image after virtual image suppression is calculated, and the angle of the signal spectrum with respect to the Doppler frequency axis in the radar image after virtual image suppression. Is smaller than the first threshold value, it is determined that the true image candidate is a true image, and if the angle of the signal spectrum is equal to or larger than the first threshold value, the true image candidate is determined to be a virtual image. It is equipped with.
 本開示によれば、レーダ画像に雑音成分が含まれていても、真像候補が、真像であるのか、虚像であるのかを識別することができる。 According to the present disclosure, even if the radar image contains a noise component, it is possible to identify whether the true image candidate is a true image or a virtual image.
実施の形態1に係るレーダ画像処理装置を示す構成図である。It is a block diagram which shows the radar image processing apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係るレーダ画像処理装置のハードウェアを示すハードウェア構成図である。It is a hardware block diagram which shows the hardware of the radar image processing apparatus which concerns on Embodiment 1. FIG. レーダ画像処理装置2が、ソフトウェア又はファームウェア等によって実現される場合のコンピュータのハードウェア構成図である。It is a hardware block diagram of the computer when the radar image processing apparatus 2 is realized by software, firmware and the like. 実施の形態1に係るレーダ画像処理装置2の処理手順であるレーダ画像処理方法を示すフローチャートである。It is a flowchart which shows the radar image processing method which is the processing procedure of the radar image processing apparatus 2 which concerns on Embodiment 1. FIG. 像識別処理部16の処理手順を示すフローチャートである。It is a flowchart which shows the processing procedure of the image identification processing unit 16. レーダ画像格納部1により記憶されているレーダ画像を示す説明図、図6Bは、虚像抑圧部11による虚像抑圧後のレーダ画像を示す説明図である。An explanatory diagram showing a radar image stored by the radar image storage unit 1, FIG. 6B is an explanatory diagram showing a radar image after the virtual image suppression by the virtual image suppression unit 11. 仮真像候補選別部14による誤検出像の破棄処理を示す説明図である。It is explanatory drawing which shows the discard process of the erroneous detection image by the tentative true image candidate selection unit 14. 図8Aは、4つの仮真像候補(1)~(4)が含まれている2値化画像を示す説明図、図8Bは、4つの仮真像候補(1)~(4)のそれぞれに含まれている複数の画素の中で、最も大きな電力を有する画素を示す説明図、図8Cは、仮真像候補選別部14により破棄されずに残っている仮真像候補(1)~(3)を示す説明図である。FIG. 8A is an explanatory diagram showing a binarized image including four pseudo-true image candidates (1) to (4), and FIG. 8B is an explanatory diagram showing four pseudo-true image candidates (1) to (4), respectively. An explanatory diagram showing a pixel having the largest power among the plurality of pixels included in the above, FIG. 8C is a pseudo-true image candidate (1) to remaining without being discarded by the pseudo-true image candidate selection unit 14. It is explanatory drawing which shows (3). 図9Aは、虚像抑圧部11による虚像抑圧後のレーダ画像に含まれている真像の一例を示す説明図、図9Bは、虚像抑圧部11による虚像抑圧後のレーダ画像に含まれている虚像の一例を示す説明図である。FIG. 9A is an explanatory diagram showing an example of a true image included in the radar image after the virtual image suppression by the virtual image suppression unit 11, and FIG. 9B is a virtual image included in the radar image after the virtual image suppression by the virtual image suppression unit 11. It is explanatory drawing which shows an example. 図10Aは、真像がアジマス軸方向にフーリエ変換されることによって算出された真像の信号スペクトルの一例を示す説明図、図10Bは、虚像がアジマス軸方向にフーリエ変換されることによって算出された虚像の信号スペクトルの一例を示す説明図である。FIG. 10A is an explanatory diagram showing an example of the signal spectrum of the true image calculated by Fourier transforming the true image in the azimuth axis direction, and FIG. 10B is calculated by Fourier transforming the virtual image in the azimuth axis direction. It is explanatory drawing which shows an example of the signal spectrum of a virtual image. 図11Aは、レーダ画像格納部1により記憶されているレーダ画像に含まれている真像を示す説明図、図11Bは、レーダ画像格納部1により記憶されているレーダ画像に含まれている虚像を示す説明図、図11Cは、虚像抑圧部11による虚像抑圧後のレーダ画像に含まれている真像を示す説明図、図11Dは、虚像抑圧部11による虚像抑圧後のレーダ画像に含まれている虚像を示す説明図である。FIG. 11A is an explanatory diagram showing a true image included in the radar image stored by the radar image storage unit 1, and FIG. 11B is a virtual image included in the radar image stored by the radar image storage unit 1. 11C is an explanatory diagram showing a true image included in the radar image after the virtual image suppression by the virtual image suppression unit 11, and FIG. 11D is included in the radar image after the virtual image suppression by the virtual image suppression unit 11. It is explanatory drawing which shows the virtual image. 図12Aは、虚像抑圧部11による虚像の抑圧処理が行われていないレーダ画像(図11Aに示すレーダ画像)に含まれている真像の信号スペクトルを示す説明図、図12Bは、虚像抑圧部11による虚像の抑圧処理が行われていないレーダ画像(図11Bに示すレーダ画像)に含まれている虚像の信号スペクトルを示す説明図、図12Cは、虚像抑圧部11による虚像抑圧後のレーダ画像(図11Cに示すレーダ画像)に含まれている真像の信号スペクトルを示す説明図、図12Dは、虚像抑圧部11による虚像抑圧後のレーダ画像(図11Dに示すレーダ画像)に含まれている虚像の信号スペクトルを示す説明図である。FIG. 12A is an explanatory diagram showing a signal spectrum of a true image included in a radar image (radar image shown in FIG. 11A) in which the virtual image suppression process is not performed by the virtual image suppression unit 11, and FIG. 12B is a virtual image suppression unit. An explanatory diagram showing the signal spectrum of the virtual image included in the radar image (radar image shown in FIG. 11B) in which the virtual image suppression process by No. 11 is not performed, FIG. 12C is a radar image after the virtual image suppression by the virtual image suppression unit 11. An explanatory diagram showing the signal spectrum of the true image included in (the radar image shown in FIG. 11C), FIG. 12D is included in the radar image (radar image shown in FIG. 11D) after the virtual image is suppressed by the virtual image suppressing unit 11. It is explanatory drawing which shows the signal spectrum of a virtual image. 実施の形態2に係るレーダ画像処理装置を示す構成図である。It is a block diagram which shows the radar image processing apparatus which concerns on Embodiment 2. 実施の形態2に係るレーダ画像処理装置のハードウェアを示すハードウェア構成図である。It is a hardware block diagram which shows the hardware of the radar image processing apparatus which concerns on Embodiment 2. FIG.
 以下、本開示をより詳細に説明するために、本開示を実施するための形態について、添付の図面に従って説明する。 Hereinafter, in order to explain the present disclosure in more detail, a mode for carrying out the present disclosure will be described in accordance with the attached drawings.
実施の形態1.
 図1は、実施の形態1に係るレーダ画像処理装置2を示す構成図である。
 図2は、実施の形態1に係るレーダ画像処理装置2のハードウェアを示すハードウェア構成図である。
 レーダ画像格納部1は、例えば、第1の記憶回路によって実現される。
 レーダ画像格納部1は、合成開口レーダから出力されたレーダ画像を記憶している。
 図1に示すレーダ画像処理装置2では、レーダ画像格納部1が、レーダ画像処理装置2の外部に設けられている。しかし、これは一例に過ぎず、レーダ画像格納部1が、レーダ画像処理装置2の内部に設けられていてもよい。
 図1に示すレーダ画像処理装置2では、合成開口レーダが移動体に搭載され、レーダ画像格納部1、レーダ画像処理装置2及び処理後画像格納部3が、地上局に搭載されており、合成開口レーダからレーダ画像がレーダ画像格納部1に転送されることを想定している。しかし、これは一例に過ぎず、レーダ画像格納部1及びレーダ画像処理装置2についても、移動体に搭載されており、レーダ画像処理装置2から虚像除去後のレーダ画像が処理後画像格納部3に転送されるものであってもよい。
Embodiment 1.
FIG. 1 is a configuration diagram showing a radar image processing device 2 according to the first embodiment.
FIG. 2 is a hardware configuration diagram showing the hardware of the radar image processing device 2 according to the first embodiment.
The radar image storage unit 1 is realized by, for example, a first storage circuit.
The radar image storage unit 1 stores the radar image output from the synthetic aperture radar.
In the radar image processing device 2 shown in FIG. 1, the radar image storage unit 1 is provided outside the radar image processing device 2. However, this is only an example, and the radar image storage unit 1 may be provided inside the radar image processing device 2.
In the radar image processing device 2 shown in FIG. 1, a synthetic aperture radar is mounted on a moving body, and a radar image storage unit 1, a radar image processing device 2, and a processed image storage unit 3 are mounted on a ground station for synthesis. It is assumed that the radar image is transferred from the aperture radar to the radar image storage unit 1. However, this is only an example, and the radar image storage unit 1 and the radar image processing device 2 are also mounted on the moving body, and the radar image after removing the virtual image from the radar image processing device 2 is the processed image storage unit 3. It may be transferred to.
 レーダ画像処理装置2は、虚像抑圧部11及び像識別部12を備えている。
 レーダ画像処理装置2は、レーダ画像格納部1により記憶されているレーダ画像に映っている像が、真像であるのか、虚像であるのかを識別する。
 レーダ画像処理装置2は、レーダ画像に映っている虚像を除去し、虚像除去後のレーダ画像を処理後画像格納部3に出力する。
The radar image processing device 2 includes a virtual image suppression unit 11 and an image identification unit 12.
The radar image processing device 2 identifies whether the image reflected in the radar image stored by the radar image storage unit 1 is a true image or a virtual image.
The radar image processing device 2 removes a virtual image reflected in the radar image, and outputs the radar image after removing the virtual image to the processed image storage unit 3.
 処理後画像格納部3は、例えば、第2の記憶回路によって実現される。
 処理後画像格納部3は、レーダ画像処理装置2から出力された虚像除去後のレーダ画像を格納する。
 図1に示すレーダ画像処理装置2では、処理後画像格納部3が、レーダ画像処理装置2の外部に設けられている。しかし、これは一例に過ぎず、処理後画像格納部3が、レーダ画像処理装置2の内部に設けられていてもよい。
The processed image storage unit 3 is realized by, for example, a second storage circuit.
The processed image storage unit 3 stores the radar image after removing the virtual image output from the radar image processing device 2.
In the radar image processing device 2 shown in FIG. 1, the processed image storage unit 3 is provided outside the radar image processing device 2. However, this is only an example, and the post-processing image storage unit 3 may be provided inside the radar image processing device 2.
 第1の記憶回路及び第2の記憶回路は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)等の不揮発性又は揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、あるいは、DVD(Digital Versatile Disc)が該当する。 The first storage circuit and the second storage circuit are, for example, RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Project Online Memory), EPROM (Electric) Non-volatile or volatile semiconductor memory such as, magnetic disk, flexible disk, optical disk, compact disk, mini disk, or DVD (Digital Versaille Disc) corresponds to this.
 虚像抑圧部11は、例えば、図2に示す虚像抑圧回路21によって実現される。
 虚像抑圧部11は、レーダ画像格納部1により記憶されているレーダ画像を取得する。
 虚像抑圧部11は、レーダ画像に対する圧縮センシング処理を実施することによって、レーダ画像に含まれている虚像を抑圧する。
 虚像抑圧部11は、虚像抑圧後のレーダ画像を像識別部12に出力する。
The virtual image suppression unit 11 is realized by, for example, the virtual image suppression circuit 21 shown in FIG.
The virtual image suppression unit 11 acquires a radar image stored by the radar image storage unit 1.
The virtual image suppression unit 11 suppresses the virtual image contained in the radar image by performing compressed sensing processing on the radar image.
The virtual image suppression unit 11 outputs the radar image after the virtual image suppression to the image identification unit 12.
 像識別部12は、画像変換部13、仮真像候補選別部14、真像候補抽出部15及び像識別処理部16を備えている。
 像識別部12は、虚像抑圧部11による虚像抑圧後のレーダ画像を、当該レーダ画像のアジマス軸方向にフーリエ変換することによって、虚像抑圧後のレーダ画像に含まれている真像候補の信号スペクトルを算出する。
 像識別部12は、虚像抑圧後のレーダ画像におけるドップラ周波数軸に対する信号スペクトルの角度が第1の閾値よりも小さければ、真像候補が真像であると判定する。
 像識別部12は、信号スペクトルの角度が第1の閾値以上であれば、真像候補が虚像であると判定する。
The image identification unit 12 includes an image conversion unit 13, a tentative true image candidate selection unit 14, a true image candidate extraction unit 15, and an image identification processing unit 16.
The image identification unit 12 Fourier transforms the radar image after the virtual image suppression by the virtual image suppression unit 11 in the azimuth axis direction of the radar image, so that the signal spectrum of the true image candidate included in the radar image after the virtual image suppression Is calculated.
If the angle of the signal spectrum with respect to the Doppler frequency axis in the radar image after suppressing the virtual image is smaller than the first threshold value, the image identification unit 12 determines that the true image candidate is a true image.
If the angle of the signal spectrum is equal to or greater than the first threshold value, the image identification unit 12 determines that the true image candidate is a virtual image.
 画像変換部13は、例えば、図2に示す画像変換回路22によって実現される。
 画像変換部13は、虚像抑圧部11による虚像抑圧後のレーダ画像を取得する。
 画像変換部13は、虚像抑圧後のレーダ画像を2値化画像に変換し、2値化画像を仮真像候補選別部14に出力する。
The image conversion unit 13 is realized by, for example, the image conversion circuit 22 shown in FIG.
The image conversion unit 13 acquires a radar image after the virtual image is suppressed by the virtual image suppression unit 11.
The image conversion unit 13 converts the radar image after suppressing the virtual image into a binarized image, and outputs the binarized image to the pseudo-true image candidate selection unit 14.
 仮真像候補選別部14は、例えば、図2に示す仮真像候補選別回路23によって実現される。
 仮真像候補選別部14は、画像変換部13から出力された2値化画像の中で、1の画素値を有する画素が集まっている、1つ以上の画素群のそれぞれを仮真像候補として特定する。
 仮真像候補選別部14は、特定した仮真像候補のうち、含んでいる画素の数が第2の閾値よりも少ない仮真像候補を破棄する。第2の閾値は、仮真像候補選別部14の内部メモリに格納されていてもよいし、レーダ画像処理装置2の外部から与えられるものであってもよい。
 仮真像候補選別部14は、破棄せずに残っている仮真像候補を真像候補抽出部15に出力する。
The pseudo-true image candidate selection unit 14 is realized by, for example, the pseudo-true image candidate selection circuit 23 shown in FIG.
The pseudo-true image candidate selection unit 14 selects each of one or more pixel groups in which pixels having a pixel value of 1 are gathered in the binarized image output from the image conversion unit 13. Specify as.
The pseudo-true image candidate selection unit 14 discards the pseudo-true image candidates whose number of pixels included is smaller than the second threshold value among the identified pseudo-true image candidates. The second threshold value may be stored in the internal memory of the pseudo-true image candidate selection unit 14, or may be given from the outside of the radar image processing device 2.
The tentative true image candidate selection unit 14 outputs the tentative true image candidates that remain without being discarded to the true image candidate extraction unit 15.
 真像候補抽出部15は、例えば、図2に示す真像候補抽出回路24によって実現される。
 真像候補抽出部15は、虚像抑圧部11による虚像抑圧後のレーダ画像を取得する。
 真像候補抽出部15は、虚像抑圧後のレーダ画像から、仮真像候補選別部14により破棄されないで残っている仮真像候補と画素位置が同じ画素群を真像候補として抽出する。
The true image candidate extraction unit 15 is realized by, for example, the true image candidate extraction circuit 24 shown in FIG.
The true image candidate extraction unit 15 acquires a radar image after the virtual image is suppressed by the virtual image suppression unit 11.
The true image candidate extraction unit 15 extracts from the radar image after the virtual image suppression a pixel group having the same pixel position as the false true image candidate that remains without being discarded by the pseudo true image candidate selection unit 14 as a true image candidate.
 像識別処理部16は、例えば、図2に示す像識別処理回路25によって実現される。
 像識別処理部16は、真像候補抽出部15により抽出された真像候補をアジマス軸方向にフーリエ変換することによって、真像候補の信号スペクトルを算出する。
 像識別処理部16は、真像候補の信号スペクトルをハフ変換することによって、虚像抑圧後のレーダ画像におけるドップラ周波数軸に対する信号スペクトルの角度を算出する。
 像識別処理部16は、信号スペクトルの角度が第1の閾値よりも小さければ、真像候補が真像であると判定する。
 像識別処理部16は、信号スペクトルの角度が第1の閾値以上であれば、真像候補が虚像であると判定する。第1の閾値は、像識別処理部16の内部メモリに格納されていてもよいし、レーダ画像処理装置2の外部から与えられるものであってもよい。
 像識別処理部16は、虚像抑圧後のレーダ画像に映っている虚像を除去し、虚像除去後のレーダ画像を処理後画像格納部3に出力する。
The image identification processing unit 16 is realized by, for example, the image identification processing circuit 25 shown in FIG.
The image identification processing unit 16 calculates the signal spectrum of the true image candidate by Fourier transforming the true image candidate extracted by the true image candidate extraction unit 15 in the azimuth axis direction.
The image identification processing unit 16 calculates the angle of the signal spectrum with respect to the Doppler frequency axis in the radar image after the virtual image is suppressed by Hough transforming the signal spectrum of the true image candidate.
If the angle of the signal spectrum is smaller than the first threshold value, the image identification processing unit 16 determines that the true image candidate is a true image.
If the angle of the signal spectrum is equal to or greater than the first threshold value, the image identification processing unit 16 determines that the true image candidate is a virtual image. The first threshold value may be stored in the internal memory of the image identification processing unit 16 or may be given from the outside of the radar image processing device 2.
The image identification processing unit 16 removes the virtual image reflected in the radar image after suppressing the virtual image, and outputs the radar image after removing the virtual image to the processed image storage unit 3.
 図1では、レーダ画像処理装置2の構成要素である虚像抑圧部11、画像変換部13、仮真像候補選別部14、真像候補抽出部15及び像識別処理部16のそれぞれが、図2に示すような専用のハードウェアによって実現されるものを想定している。即ち、レーダ画像処理装置2が、虚像抑圧回路21、画像変換回路22、仮真像候補選別回路23、真像候補抽出回路24及び像識別処理回路25によって実現されるものを想定している。
 虚像抑圧回路21、画像変換回路22、仮真像候補選別回路23、真像候補抽出回路24及び像識別処理回路25のそれぞれは、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又は、これらを組み合わせたものが該当する。
In FIG. 1, each of the virtual image suppression unit 11, the image conversion unit 13, the pseudo-true image candidate selection unit 14, the true image candidate extraction unit 15, and the image identification processing unit 16, which are the components of the radar image processing device 2, is shown in FIG. It is assumed that it will be realized by dedicated hardware as shown in. That is, it is assumed that the radar image processing device 2 is realized by the virtual image suppression circuit 21, the image conversion circuit 22, the pseudo-true image candidate selection circuit 23, the true image candidate extraction circuit 24, and the image identification processing circuit 25.
Each of the imaginary image suppression circuit 21, the image conversion circuit 22, the pseudo-true image candidate selection circuit 23, the true image candidate extraction circuit 24, and the image identification processing circuit 25 is, for example, a single circuit, a composite circuit, a programmed processor, or a parallel program. An ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof is applicable.
 レーダ画像処理装置2の構成要素は、専用のハードウェアによって実現されるものに限るものではなく、レーダ画像処理装置2が、ソフトウェア、ファームウェア、又は、ソフトウェアとファームウェアとの組み合わせによって実現されるものであってもよい。
 ソフトウェア又はファームウェアは、プログラムとして、コンピュータのメモリに格納される。コンピュータは、プログラムを実行するハードウェアを意味し、例えば、CPU(Central Processing Unit)、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、あるいは、DSP(Digital Signal Processor)が該当する。
The components of the radar image processing device 2 are not limited to those realized by dedicated hardware, but the radar image processing device 2 is realized by software, firmware, or a combination of software and firmware. There may be.
The software or firmware is stored as a program in the memory of the computer. A computer means hardware that executes a program, and corresponds to, for example, a CPU (Central Processing Unit), a central processing unit, a processing unit, a computing device, a microprocessor, a microcomputer, a processor, or a DSP (Digital Signal Processor). do.
 図3は、レーダ画像処理装置2が、ソフトウェア又はファームウェア等によって実現される場合のコンピュータのハードウェア構成図である。
 レーダ画像処理装置2が、ソフトウェア又はファームウェア等によって実現される場合、虚像抑圧部11、画像変換部13、仮真像候補選別部14、真像候補抽出部15及び像識別処理部16におけるそれぞれの処理手順をコンピュータに実行させるためのプログラムがメモリ31に格納される。そして、コンピュータのプロセッサ32がメモリ31に格納されているプログラムを実行する。
FIG. 3 is a hardware configuration diagram of a computer when the radar image processing device 2 is realized by software, firmware, or the like.
When the radar image processing device 2 is realized by software, firmware, or the like, each of the virtual image suppressing unit 11, the image conversion unit 13, the pseudo-true image candidate selection unit 14, the true image candidate extraction unit 15, and the image identification processing unit 16. A program for causing the computer to execute the processing procedure is stored in the memory 31. Then, the processor 32 of the computer executes the program stored in the memory 31.
 また、図2では、レーダ画像処理装置2の構成要素のそれぞれが専用のハードウェアによって実現される例を示し、図3では、レーダ画像処理装置2がソフトウェア又はファームウェア等によって実現される例を示している。しかし、これは一例に過ぎず、レーダ画像処理装置2における一部の構成要素が専用のハードウェアによって実現され、残りの構成要素がソフトウェア又はファームウェア等によって実現されるものであってもよい。 Further, FIG. 2 shows an example in which each of the components of the radar image processing device 2 is realized by dedicated hardware, and FIG. 3 shows an example in which the radar image processing device 2 is realized by software, firmware, or the like. ing. However, this is only an example, and some components in the radar image processing device 2 may be realized by dedicated hardware, and the remaining components may be realized by software, firmware, or the like.
 次に、図1に示すレーダ画像処理装置2の動作について説明する。
 図4は、実施の形態1に係るレーダ画像処理装置2の処理手順であるレーダ画像処理方法を示すフローチャートである。
 図5は、像識別処理部16の処理手順を示すフローチャートである。
Next, the operation of the radar image processing device 2 shown in FIG. 1 will be described.
FIG. 4 is a flowchart showing a radar image processing method which is a processing procedure of the radar image processing device 2 according to the first embodiment.
FIG. 5 is a flowchart showing a processing procedure of the image identification processing unit 16.
 虚像抑圧部11は、レーダ画像格納部1により記憶されているレーダ画像を取得する。
 レーダ画像格納部1により記憶されているレーダ画像には、図6Aに示すように、焦点の合っている目標の真像と、焦点が合わずにぼけている虚像とが映っている。
 図6Aは、レーダ画像格納部1により記憶されているレーダ画像を示す説明図である。
 図6Aに示すレーダ画像は、アジマス軸とレンジ軸との空間を表す画像である。
The virtual image suppression unit 11 acquires a radar image stored by the radar image storage unit 1.
As shown in FIG. 6A, the radar image stored by the radar image storage unit 1 shows a true image of an in-focus target and a defocused virtual image.
FIG. 6A is an explanatory diagram showing a radar image stored by the radar image storage unit 1.
The radar image shown in FIG. 6A is an image showing the space between the azimuth axis and the range axis.
 虚像抑圧部11は、図6Aに示すレーダ画像に対する圧縮センシング処理を実施することによって、レーダ画像に含まれている虚像を抑圧する(図4のステップST1)。
 圧縮センシング処理は、レーダ画像が疎であると仮定し、低PRFで撮像された際の合成開口レーダの受信信号から、通常のPRFで撮像された際の合成開口レーダの受信信号を復元する処理である。圧縮センシング処理によって復元された合成開口レーダの受信信号から算出されるレーダ画像は、虚像抑圧後のレーダ画像に相当する。
 低PRFは、目標のドップラ周波数よりも低い周波数であり、通常のPRFは、目標のドップラ周波数よりも高い周波数である。レーダ画像が疎とは、レーダ画像が、電力がゼロの画素を含んでいることを意味する。
 虚像抑圧部11は、虚像抑圧後のレーダ画像を像識別部12に出力する。
 図6Bは、虚像抑圧部11による虚像抑圧後のレーダ画像を示す説明図である。
 虚像抑圧後のレーダ画像には、図6Bに示すように、電力が抑圧された虚像が映っている。それぞれの虚像に対する抑圧量は、様々であり、虚像抑圧後のレーダ画像には、図6Bに示すように、電力が十分に抑圧されている虚像のほか、電力が十分に抑圧されずに残っている虚像がある。
 なお、虚像抑圧部11による虚像の抑圧処理により、レーダ画像に含まれている雑音成分も抑圧される。
The virtual image suppression unit 11 suppresses the virtual image contained in the radar image by performing a compressed sensing process on the radar image shown in FIG. 6A (step ST1 in FIG. 4).
The compressed sensing process assumes that the radar image is sparse, and restores the received signal of the synthetic aperture radar when it is imaged with a normal PRF from the received signal of the synthetic aperture radar when it is imaged with a low PRF. Is. The radar image calculated from the received signal of the synthetic aperture radar restored by the compressed sensing process corresponds to the radar image after the virtual image is suppressed.
A low PRF is a frequency lower than the target Doppler frequency, and a normal PRF is a frequency higher than the target Doppler frequency. A sparse radar image means that the radar image contains pixels with zero power.
The virtual image suppression unit 11 outputs the radar image after the virtual image suppression to the image identification unit 12.
FIG. 6B is an explanatory diagram showing a radar image after the virtual image is suppressed by the virtual image suppressing unit 11.
As shown in FIG. 6B, the radar image after the virtual image suppression shows the virtual image in which the power is suppressed. The amount of suppression for each virtual image varies, and as shown in FIG. 6B, in the radar image after the virtual image is suppressed, in addition to the virtual image in which the power is sufficiently suppressed, the power remains unsuppressed. There is a virtual image.
The noise component included in the radar image is also suppressed by the virtual image suppression process by the virtual image suppression unit 11.
 像識別部12の画像変換部13は、虚像抑圧部11による虚像抑圧後のレーダ画像を取得する。
 画像変換部13は、虚像抑圧後のレーダ画像を2値化画像に変換し、2値化画像を仮真像候補選別部14に出力する(図4のステップST2)。
 即ち、画像変換部13は、虚像抑圧後のレーダ画像に対するCFAR(Constant False Alarm Rate)処理を実施することにより、レーダ画像に含まれているそれぞれの画素に対応する行列要素を有する閾値行列を算出する。
 閾値行列に含まれているそれぞれの行列要素の値は、レーダ画像に含まれている複数の画素のうち、当該行列要素と対応している画素の電力が、電力閾値よりも大きければ1、電力閾値以下であれば0である。CFAR処理自体は、公知の技術であるため詳細な説明を省略する。
 画像変換部13は、閾値行列を2値化画像として、仮真像候補選別部14に出力する。2値化画像についても、レーダ画像と同様に、アジマス軸とレンジ軸との空間を表す画像である。
The image conversion unit 13 of the image identification unit 12 acquires a radar image after the virtual image is suppressed by the virtual image suppression unit 11.
The image conversion unit 13 converts the radar image after suppressing the virtual image into a binarized image, and outputs the binarized image to the pseudo-true image candidate selection unit 14 (step ST2 in FIG. 4).
That is, the image conversion unit 13 calculates a threshold matrix having a matrix element corresponding to each pixel included in the radar image by performing CFAR (Constant False Allarm Rate) processing on the radar image after the virtual image is suppressed. do.
The value of each matrix element included in the threshold matrix is 1, if the power of the pixel corresponding to the matrix element among the plurality of pixels included in the radar image is larger than the power threshold value 1. If it is below the threshold value, it is 0. Since the CFAR treatment itself is a known technique, detailed description thereof will be omitted.
The image conversion unit 13 outputs the threshold matrix as a binarized image to the pseudo-true image candidate selection unit 14. The binarized image is also an image showing the space between the azimuth axis and the range axis, similar to the radar image.
 虚像抑圧部11によって、レーダ画像に含まれている虚像が抑圧されている。しかし、虚像抑圧部11による虚像の抑圧処理が原因で、真像及び虚像のそれぞれと異なる像(以下、「誤検出像」と称する)が発生することがある。誤検出像が発生することによって、2値化画像にも誤検出像が含まれる。誤検出像の大きさは、真像の大きさと比べて微小である。
 仮真像候補選別部14は、以下に示すように、2値化画像に含まれている誤検出像を除去する処理を行う。
The virtual image included in the radar image is suppressed by the virtual image suppressing unit 11. However, due to the virtual image suppression process by the virtual image suppression unit 11, an image different from each of the true image and the virtual image (hereinafter, referred to as “false detection image”) may be generated. Due to the occurrence of the erroneous detection image, the erroneous detection image is also included in the binarized image. The size of the false positive image is smaller than the size of the true image.
As shown below, the pseudo-true image candidate selection unit 14 performs a process of removing the false detection image included in the binarized image.
 仮真像候補選別部14は、画像変換部13から出力された2値化画像の中で、1の画素値を有する画素が集まっている、1つ以上の画素群のそれぞれを仮真像候補として特定する(図4のステップST3)。 The pseudo-true image candidate selection unit 14 selects each of one or more pixel groups in which pixels having a pixel value of 1 are gathered in the binarized image output from the image conversion unit 13. (Step ST3 in FIG. 4).
 仮真像候補選別部14は、それぞれの仮真像候補に含まれている画素の数を計数する。
 仮真像候補選別部14は、図7に示すように、仮真像候補に含まれている画素の数が第2の閾値よりも少なければ、当該仮真像候補が誤検出像であると判定して、当該仮真像候補を破棄する(図4のステップST4)。
 仮真像候補選別部14は、図7に示すように、仮真像候補に含まれている画素の数が第2の閾値以上であれば、当該仮真像候補が誤検出像ではないと判定して、当該仮真像候補を破棄しない。
 第2の閾値としては、例えば、レーダ画像に映る可能性がある目標の中で、想定される最小の目標の真像に含まれる画素の数が設定される。
 図7は、仮真像候補選別部14による誤検出像の破棄処理を示す説明図である。
 図7において、左側の2値化画像は、誤検出像の破棄が行われる前の2値化画像であり、右側の2値化画像は、誤検出像の破棄が行われた後の2値化画像である。
The pseudo-true image candidate selection unit 14 counts the number of pixels included in each pseudo-true image candidate.
As shown in FIG. 7, if the number of pixels included in the pseudo-true image candidate is less than the second threshold value, the pseudo-true image candidate selection unit 14 determines that the pseudo-true image candidate is a false detection image. Judgment is made, and the pseudo-true image candidate is discarded (step ST4 in FIG. 4).
As shown in FIG. 7, if the number of pixels included in the pseudo-true image candidate is equal to or greater than the second threshold value, the pseudo-true image candidate selection unit 14 does not indicate that the pseudo-true image candidate is a false detection image. Judgment is made and the pseudo-true image candidate is not discarded.
As the second threshold value, for example, the number of pixels included in the true image of the minimum assumed target among the targets that may be reflected in the radar image is set.
FIG. 7 is an explanatory diagram showing a process of discarding an erroneous detection image by the false true image candidate selection unit 14.
In FIG. 7, the binarized image on the left side is the binarized image before the false detection image is discarded, and the binarized image on the right side is the binarized image after the false positive image is discarded. It is a binarized image.
 仮真像候補選別部14により破棄されずに残っている仮真像候補の中には、1つの目標についての仮真像候補が2つ含まれてしまっていることがある。即ち、1つの目標には、本来、1つの仮真像候補が現れる。しかし、画像変換部13でのCFAR処理によって、1つの目標についての仮真像候補が、2つに分かれてしまっていることがある。したがって、2つに分かれてしまっている仮真像候補のうち、一方の仮真像候補は、破棄する必要がある。
 残っている仮真像候補のうち、互いに隣り合っている2つの仮真像候補の距離が近い場合、互いに隣り合っている2つの仮真像候補は、1つの目標についての仮真像候補が、2つに分かれてしまっているものである可能性が高い。
 仮真像候補選別部14は、残っている仮真像候補の中で、互いに隣り合っている2つの仮真像候補の距離を算出する。2つの仮真像候補の距離を算出する処理自体は、公知の技術であるため詳細な説明を省略する。
The pseudo-true image candidates that remain without being discarded by the pseudo-true image candidate selection unit 14 may include two pseudo-true image candidates for one target. That is, one tentative image candidate originally appears in one goal. However, due to the CFAR processing in the image conversion unit 13, the pseudo-true image candidate for one target may be divided into two. Therefore, it is necessary to discard one of the pseudo-true image candidates that has been divided into two.
Of the remaining pseudo-true image candidates, if the distance between the two pseudo-true image candidates adjacent to each other is short, the two pseudo-true image candidates adjacent to each other have a pseudo-true image candidate for one target. It is highly possible that it is divided into two parts.
The pseudo-true image candidate selection unit 14 calculates the distance between two pseudo-true image candidates that are adjacent to each other among the remaining pseudo-true image candidates. Since the process itself for calculating the distance between the two pseudo-true image candidates is a known technique, detailed description thereof will be omitted.
 仮真像候補選別部14は、残っている仮真像候補の中で、互いに隣り合っている2つの仮真像候補の距離Lが第3の閾値よりも短ければ、2つの仮真像候補のうち、いずれかの仮真像候補を破棄する。第3の閾値は、仮真像候補選別部14の内部メモリに格納されていてもよいし、レーダ画像処理装置2の外部から与えられるものであってもよい。
 以下、仮真像候補選別部14によるいずれかの仮真像候補の破棄処理を具体的に説明する。
If the distance L between the two adjacent pseudo-true image candidates among the remaining pseudo-true image candidates is shorter than the third threshold value, the pseudo-true image candidate selection unit 14 determines the two pseudo-true image candidates. Of these, one of the pseudo-true image candidates is discarded. The third threshold value may be stored in the internal memory of the pseudo-true image candidate selection unit 14, or may be given from the outside of the radar image processing device 2.
Hereinafter, the process of discarding any of the pseudo-true image candidates by the pseudo-true image candidate selection unit 14 will be specifically described.
 仮真像候補選別部14は、虚像抑圧部11による虚像抑圧後のレーダ画像を取得する。
 仮真像候補選別部14は、虚像抑圧後のレーダ画像から、2つの仮真像候補のうち、一方の仮真像候補と画素位置が同じ画素群を抽出する。
 仮真像候補選別部14は、抽出した画素群を構成している複数の画素の電力Pを互いに比較することによって、最も大きな電力P1,maxを特定する。
 また、仮真像候補選別部14は、虚像抑圧後のレーダ画像から、2つの仮真像候補のうち、他方の仮真像候補と画素位置が同じ画素群を抽出する。
The pseudo-true image candidate selection unit 14 acquires a radar image after the virtual image is suppressed by the virtual image suppression unit 11.
The pseudo-true image candidate selection unit 14 extracts a pixel group having the same pixel position as one of the two pseudo-true image candidates from the radar image after the virtual image is suppressed.
The pseudo-true image candidate selection unit 14 identifies the largest power P 1, max by comparing the power P 1 of a plurality of pixels constituting the extracted pixel group with each other.
Further, the pseudo-true image candidate selection unit 14 extracts a pixel group having the same pixel position as the other pseudo-true image candidate among the two pseudo-true image candidates from the radar image after the virtual image is suppressed.
 仮真像候補選別部14は、抽出した画素群を構成している複数の画素の電力Pを互いに比較することによって、最も大きな電力P2,maxを特定する。
 仮真像候補選別部14は、特定した電力P1,maxと、特定した電力P2,maxとを比較し、電力P1,maxが電力P2,max以上であれば、一方の仮真像候補を残して、他方の仮真像候補を破棄する。
 仮真像候補選別部14は、電力P1,maxが電力P2,maxよりも小さければ、他方の仮真像候補を残して、一方の仮真像候補を破棄する。
 仮真像候補選別部14は、破棄せずに残っている仮真像候補を真像候補抽出部15に出力する。
The pseudo-true image candidate selection unit 14 identifies the largest power P 2, max by comparing the power P 2 of a plurality of pixels constituting the extracted pixel group with each other.
The tentative image candidate selection unit 14 compares the specified power P 1, max with the specified power P 2, max, and if the power P 1, max is the power P 2, max or more, one of the tentative truths. The other pseudo-true image candidate is discarded, leaving the image candidate.
If the power P 1, max is smaller than the power P 2, max , the pseudo-true image candidate selection unit 14 leaves the other pseudo-true image candidate and discards one pseudo-true image candidate.
The tentative true image candidate selection unit 14 outputs the tentative true image candidates that remain without being discarded to the true image candidate extraction unit 15.
 図8は、仮真像候補選別部14によるいずれかの仮真像候補の破棄処理を示す説明図である。
 図8Aは、4つの仮真像候補(1)~(4)が含まれている2値化画像を示している。
 図8Aに示す2値化画像では、仮真像候補(1)と仮真像候補(2)との距離がL1-2、仮真像候補(1)と仮真像候補(3)との距離がL1-3、仮真像候補(1)と仮真像候補(4)との距離がL1-4である。
 仮真像候補(2)と仮真像候補(3)との距離がL2-3、仮真像候補(2)と仮真像候補(4)との距離がL2-4である。仮真像候補(3)と仮真像候補(4)との距離がL3-4である。
 図8Aに示す2値化画像では、距離L1-2、距離L1-3及び距離L1-4のいずれも、第3の閾値以上である。また、距離L2-3及び距離L2-4のいずれも、第3の閾値以上である。距離L3-4は、第3の閾値よりも短い。
FIG. 8 is an explanatory diagram showing a process of discarding any of the pseudo-true image candidates by the pseudo-true image candidate selection unit 14.
FIG. 8A shows a binarized image including four pseudo-true image candidates (1) to (4).
In the binarized image shown in FIG. 8A, the distance between the pseudo-true image candidate (1) and the pseudo-true image candidate (2) is L 1-2 , and the pseudo-true image candidate (1) and the pseudo-true image candidate (3). The distance is L 1-3 , and the distance between the pseudo-true image candidate (1) and the pseudo-true image candidate (4) is L 1-4 .
The distance between the pseudo-true image candidate (2) and the pseudo-true image candidate (3) is L 2-3 , and the distance between the pseudo-true image candidate (2) and the pseudo-true image candidate (4) is L 2-4 . The distance between the pseudo-true image candidate (3) and the pseudo-true image candidate (4) is L 3-4 .
In the binarized image shown in FIG. 8A, all of the distance L 1-2 , the distance L 1-3, and the distance L 1-4 are equal to or higher than the third threshold value. Further, both the distance L 2-3 and the distance L 2-4 are equal to or higher than the third threshold value. The distance L 3-4 is shorter than the third threshold.
 図8Bは、4つの仮真像候補(1)~(4)のそれぞれに含まれている複数の画素の中で、最も大きな電力を有する画素を示している。
 図8Cは、仮真像候補選別部14により破棄されずに残っている仮真像候補(1)~(3)を示している。
 図8Cの例では、距離L3-4が第3の閾値よりも短く、仮真像候補(4)が有する画素の最大電力が、仮真像候補(3)が有する画素の最大電力よりも小さいために、仮真像候補(4)が破棄されている。
FIG. 8B shows the pixel having the largest power among the plurality of pixels included in each of the four pseudo-true image candidates (1) to (4).
FIG. 8C shows the pseudo-true image candidates (1) to (3) that remain without being discarded by the pseudo-true image candidate selection unit 14.
In the example of FIG. 8C, the distance L 3-4 is shorter than the third threshold value, and the maximum power of the pixel possessed by the pseudo-true image candidate (4) is larger than the maximum power of the pixel possessed by the pseudo-true image candidate (3). Due to its small size, the tentative true image candidate (4) is discarded.
 真像候補抽出部15は、虚像抑圧部11による虚像抑圧後のレーダ画像を取得する。
 真像候補抽出部15は、虚像抑圧後のレーダ画像から、仮真像候補選別部14により破棄されないで残っている仮真像候補と画素位置が同じ画素群を真像候補として抽出する(図4のステップST5)。
 図1に示すレーダ画像処理装置2では、真像候補抽出部15が、虚像抑圧後のレーダ画像から、仮真像候補と画素位置が同じ画素群を真像候補として抽出している。しかし、これは一例に過ぎず、真像候補抽出部15は、仮真像候補に含まれている複数の画素の中で、最大の電力を有する画素を特定し、虚像抑圧後のレーダ画像から、特定した画素を含む周辺領域と画素位置が同じ画素群を真像候補として抽出するようにしてもよい。ただし、当該画素を含む周辺領域は、仮真像候補の全てを含む領域であるものとする。
The true image candidate extraction unit 15 acquires a radar image after the virtual image is suppressed by the virtual image suppression unit 11.
The true image candidate extraction unit 15 extracts from the radar image after the virtual image suppression a pixel group having the same pixel position as the false true image candidate that remains without being discarded by the pseudo true image candidate selection unit 14 as a true image candidate (FIG. FIG. Step 4 ST5).
In the radar image processing device 2 shown in FIG. 1, the true image candidate extraction unit 15 extracts a pixel group having the same pixel position as the false true image candidate as a true image candidate from the radar image after the virtual image is suppressed. However, this is only an example, and the true image candidate extraction unit 15 identifies the pixel having the maximum power among the plurality of pixels included in the pseudo true image candidate, and from the radar image after the virtual image is suppressed. , A pixel group having the same pixel position as the peripheral region including the specified pixel may be extracted as a true image candidate. However, the peripheral area including the pixel is assumed to be an area including all of the pseudo-true image candidates.
 像識別処理部16は、真像候補抽出部15により抽出された真像候補をアジマス軸方向にフーリエ変換することによって、真像候補の信号スペクトルを算出する(図5のステップST11)。
 合成開口レーダでは、一般的に、方位分解能を高めるため、受信信号を積分する。受信信号の積分時間内に、レーダ装置と目標との距離変化であるレンジマイグレーションRが合成開口レーダの距離分解能を超えると、レーダ画像が劣化する。したがって、レーダ画像処理装置2が、例えば、レーダ画像を再生する際に、レンジマイグレーションRを補正する信号処理を行う。
 レンジマイグレーションRは、以下の式(1)のように表される。
The image identification processing unit 16 calculates the signal spectrum of the true image candidate by Fourier transforming the true image candidate extracted by the true image candidate extraction unit 15 in the azimuth axis direction (step ST11 in FIG. 5).
Synthetic aperture radars generally integrate the received signal to increase directional resolution. If the range migration R, which is a change in the distance between the radar device and the target, exceeds the distance resolution of the synthetic aperture radar within the integration time of the received signal, the radar image is deteriorated. Therefore, the radar image processing device 2 performs signal processing for correcting the range migration R, for example, when reproducing the radar image.
The range migration R is expressed by the following equation (1).

Figure JPOXMLDOC01-appb-I000001
 式(1)において、Rは、合成開口レーダの観測領域に存在している目標と合成開口レーダとの最接近時の距離である。
 λは、合成開口レーダから放射されるレーダ信号である電波の波長、fηは、ドップラ周波数、Vは、合成開口レーダ本体の実効速度である。

Figure JPOXMLDOC01-appb-I000001
In equation (1), R 0 is the distance between the target existing in the observation area of the synthetic aperture radar and the synthetic aperture radar at the time of closest approach.
λ is the wavelength of the radio wave is a radar signal emitted from a synthetic aperture radar, is f eta, Doppler frequency, V r is the effective speed of the synthetic aperture radar body.
 真像は、レンジマイグレーションR(R,fη)が補正されている。このため、レーダ画像をアジマス軸方向にフーリエ変換することによって得られる空間、即ち、ドップラ周波数軸とレンジ軸とよって表される空間において、真像の信号スペクトルは、同一のレンジビンに並ぶ。
 一方、虚像は、レンジマイグレーションR(R,fη)が補正されても、虚像には、以下の式(2)に示すレンジマイグレーションRresidual(fη)が残存する。

Figure JPOXMLDOC01-appb-I000002
 式(2)において、Rは、虚像自体が有するレンジマイグレーションである。
 R’は、合成開口レーダの観測領域外の虚像となる反射点と合成開口レーダとの最接近時の距離である。
 nは、虚像のエイリアシングの回数、fPRFは、PRFである。
The true image is corrected for range migration R (R 0 , f η). Therefore, in the space obtained by Fourier transforming the radar image in the azimuth axis direction, that is, in the space represented by the Doppler frequency axis and the range axis, the signal spectra of the true image are arranged in the same range bin.
On the other hand, in the virtual image, even if the range migration R (R 0 , f η ) is corrected, the range migration R residual (f η ) shown in the following equation (2) remains in the virtual image.

Figure JPOXMLDOC01-appb-I000002
In equation (2), Ra is the range migration of the virtual image itself.
R '0 is the distance at the time of closest approach between the reflection point and the synthetic aperture radar according to the observation area outside the virtual image of the synthetic aperture radar.
n is the number of virtual image aliasings, and f PRF is PRF.
 距離R’については、正確に計算することができないが、以下の式(3)のように近似することができる。

Figure JPOXMLDOC01-appb-I000003
 式(3)において、θは、合成開口レーダの本体を中心とする、目標の真像と虚像がなす角度であり、合成開口レーダの観測領域幅に相当するドップラ周波数とPRFとの関係から求まる。
The distance R '0, can not be calculated accurately, it can be approximated by the following expression (3).

Figure JPOXMLDOC01-appb-I000003
In equation (3), θ n is the angle formed by the true image and the virtual image of the target centered on the main body of the synthetic aperture radar, and is based on the relationship between the Doppler frequency corresponding to the observation region width of the synthetic aperture radar and the PRF. I want it.
 レンジマイグレーションR(R,fη)が補正されることによって、例えば、図9Aに示す真像には、式(2)で表されるレンジマイグレーションRresidual(fη)が残存しない。このため、図9Aに示す真像の信号スペクトルは、図10Aに示すように、ドップラ周波数軸と平行になる。
 レンジマイグレーションR(R,fη)の補正後であっても、例えば、図9Bに示す虚像には、式(2)で表されるレンジマイグレーションRresidual(fη)が残存する。このため、図9Bに示す虚像の信号スペクトルは、図10Bに示すように、ドップラ周波数軸に対して斜めになる。
By correcting the range migration R (R 0 , f η ), for example, the range migration R residual (f η ) represented by the equation (2) does not remain in the true image shown in FIG. 9A. Therefore, the signal spectrum of the true image shown in FIG. 9A is parallel to the Doppler frequency axis as shown in FIG. 10A.
Even after the correction of the range migration R (R 0 , f η ), for example, the range migration R residual (f η ) represented by the equation (2) remains in the virtual image shown in FIG. 9B. Therefore, the signal spectrum of the virtual image shown in FIG. 9B becomes slanted with respect to the Doppler frequency axis as shown in FIG. 10B.
 図9Aは、虚像抑圧部11による虚像抑圧後のレーダ画像に含まれている真像の一例を示す説明図である。
 図9Bは、虚像抑圧部11による虚像抑圧後のレーダ画像に含まれている虚像の一例を示す説明図である。
 図10Aは、真像がアジマス軸方向にフーリエ変換されることによって算出された真像の信号スペクトルの一例を示す説明図である。
 図10Bは、虚像がアジマス軸方向にフーリエ変換されることによって算出された虚像の信号スペクトルの一例を示す説明図である。
 図10A及び図10Bから明らかなように、真像の信号スペクトルの形状と、虚像の信号スペクトルの形状とが異なっている。
 虚像抑圧部11によって、低PRFで撮像されたレーダ画像に含まれている虚像の抑圧処理が行われても、図10Aに示すように、真像の信号スペクトルに関する形状の特徴は失われていない。また、図10Bに示すように、虚像の信号スペクトルに関する形状の特徴は失われていない。
FIG. 9A is an explanatory diagram showing an example of a true image included in the radar image after the virtual image is suppressed by the virtual image suppressing unit 11.
FIG. 9B is an explanatory diagram showing an example of a virtual image included in the radar image after the virtual image is suppressed by the virtual image suppressing unit 11.
FIG. 10A is an explanatory diagram showing an example of the signal spectrum of the true image calculated by Fourier transforming the true image in the azimuth axis direction.
FIG. 10B is an explanatory diagram showing an example of the signal spectrum of the virtual image calculated by Fourier transforming the virtual image in the azimuth axis direction.
As is clear from FIGS. 10A and 10B, the shape of the signal spectrum of the true image and the shape of the signal spectrum of the virtual image are different.
Even if the virtual image suppression unit 11 performs suppression processing of the virtual image contained in the radar image captured at a low PRF, as shown in FIG. 10A, the shape characteristics related to the signal spectrum of the true image are not lost. .. Further, as shown in FIG. 10B, the shape characteristics of the virtual image with respect to the signal spectrum are not lost.
 次に、像識別処理部16は、真像候補の信号スペクトルを移動平均することによって、信号スペクトルを平滑化する。
 像識別処理部16は、真像候補の信号スペクトルを同一画像内に収めるため、平滑化後の信号スペクトルの中で、電力が最も低いアジマス軸方向のセルを検出する。そして、像識別処理部16は、検出したセルを、信号スペクトルの端の位置に移動させるため、平滑化後の信号スペクトルに含まれている画素をアジマス方向に循環シフトする(図5のステップST12)。
 像識別処理部16が、平滑化後の信号スペクトルの画素をアジマス方向に循環シフトすることにより、目標の形状又は空間分布等の影響が軽減される。
Next, the image identification processing unit 16 smoothes the signal spectrum by moving averaging the signal spectra of the true image candidates.
In order to accommodate the signal spectrum of the true image candidate in the same image, the image identification processing unit 16 detects the cell in the azimuth axis direction having the lowest power in the smoothed signal spectrum. Then, the image identification processing unit 16 cyclically shifts the pixels included in the smoothed signal spectrum in the azimuth direction in order to move the detected cell to the position at the end of the signal spectrum (step ST12 in FIG. 5). ).
The image identification processing unit 16 cyclically shifts the pixels of the smoothed signal spectrum in the azimuth direction, thereby reducing the influence of the target shape, spatial distribution, and the like.
 次に、像識別処理部16は、循環シフト後の真像候補の信号スペクトルをハフ変換することによって、レーダ画像のドップラ周波数軸に対する信号スペクトルの角度αを算出する(図5のステップST13)。信号スペクトルをハフ変換することによる角度αの算出処理自体は、公知の技術であるため詳細な説明を省略する。
 虚像抑圧部11による虚像の抑圧処理によって、レーダ画像に含まれている雑音成分も抑圧されているため、虚像抑圧部11による虚像の抑圧処理が行われていない場合と比べて、像識別処理部16による信号スペクトルの角度算出精度が向上する。
 また、信号スペクトルの画素を循環シフトしているため、循環シフトしていない場合と比べて、像識別処理部16による信号スペクトルの角度算出精度が向上する。
Next, the image identification processing unit 16 calculates the angle α of the signal spectrum with respect to the Doppler frequency axis of the radar image by Hough transforming the signal spectrum of the true image candidate after the circular shift (step ST13 in FIG. 5). Since the process of calculating the angle α by Hough transforming the signal spectrum itself is a known technique, detailed description thereof will be omitted.
Since the noise component contained in the radar image is also suppressed by the virtual image suppression processing by the virtual image suppression unit 11, the image identification processing unit is compared with the case where the virtual image suppression processing by the virtual image suppression unit 11 is not performed. The accuracy of calculating the angle of the signal spectrum according to 16 is improved.
Further, since the pixels of the signal spectrum are cyclically shifted, the angle calculation accuracy of the signal spectrum by the image identification processing unit 16 is improved as compared with the case where the cyclic shift is not performed.
 図11Aは、レーダ画像格納部1により記憶されているレーダ画像に含まれている真像を示す説明図である。
 図11Bは、レーダ画像格納部1により記憶されているレーダ画像に含まれている虚像を示す説明図である。
 図11Aに示すレーダ画像には、真像のほかに、雑音成分が含まれている。また、図11Bに示すレーダ画像には、虚像のほかに、雑音成分が含まれている。
 図11Cは、虚像抑圧部11による虚像抑圧後のレーダ画像に含まれている真像を示す説明図である。
 図11Dは、虚像抑圧部11による虚像抑圧後のレーダ画像に含まれている虚像を示す説明図である。
 虚像抑圧部11による虚像の抑圧処理によって、レーダ画像に含まれている雑音成分も抑圧されるため、図11Cに示すレーダ画像は、図11Aに示すレーダ画像と比べて、含まれている雑音成分が減少している。また、図11Dに示すレーダ画像は、図11Bに示すレーダ画像と比べて、含まれている雑音成分が減少している。
FIG. 11A is an explanatory diagram showing a true image included in the radar image stored by the radar image storage unit 1.
FIG. 11B is an explanatory diagram showing a virtual image included in the radar image stored by the radar image storage unit 1.
The radar image shown in FIG. 11A contains a noise component in addition to the true image. Further, the radar image shown in FIG. 11B contains a noise component in addition to the virtual image.
FIG. 11C is an explanatory diagram showing a true image included in the radar image after the virtual image is suppressed by the virtual image suppressing unit 11.
FIG. 11D is an explanatory diagram showing a virtual image included in the radar image after the virtual image is suppressed by the virtual image suppressing unit 11.
Since the noise component contained in the radar image is also suppressed by the virtual image suppression process by the virtual image suppression unit 11, the radar image shown in FIG. 11C has a noise component contained in the radar image as compared with the radar image shown in FIG. 11A. Is decreasing. Further, the radar image shown in FIG. 11D has a reduced noise component contained in the radar image as compared with the radar image shown in FIG. 11B.
 図12Aは、虚像抑圧部11による虚像の抑圧処理が行われていないレーダ画像(図11Aに示すレーダ画像)に含まれている真像の信号スペクトルを示す説明図である。
 図12Bは、虚像抑圧部11による虚像の抑圧処理が行われていないレーダ画像(図11Bに示すレーダ画像)に含まれている虚像の信号スペクトルを示す説明図である。
 図12Cは、虚像抑圧部11による虚像抑圧後のレーダ画像(図11Cに示すレーダ画像)に含まれている真像の信号スペクトルを示す説明図である。
 図12Dは、虚像抑圧部11による虚像抑圧後のレーダ画像(図11Dに示すレーダ画像)に含まれている虚像の信号スペクトルを示す説明図である。
 虚像抑圧部11による虚像の抑圧処理によって、レーダ画像に含まれている雑音成分も抑圧されるため、図12Cに示すレーダ画像に含まれている真像の信号スペクトルの方が、図12Aに示すレーダ画像に含まれている真像の信号スペクトルよりも、信号スペクトルの形状が高精度に算出されている。また、図12Dに示すレーダ画像に含まれている虚像の信号スペクトルの方が、図12Bに示すレーダ画像に含まれている虚像の信号スペクトルよりも、信号スペクトルの形状が高精度に算出されている。
FIG. 12A is an explanatory diagram showing a signal spectrum of a true image included in a radar image (radar image shown in FIG. 11A) in which the virtual image suppression process is not performed by the virtual image suppression unit 11.
FIG. 12B is an explanatory diagram showing a signal spectrum of a virtual image included in a radar image (radar image shown in FIG. 11B) in which the virtual image suppression process is not performed by the virtual image suppression unit 11.
FIG. 12C is an explanatory diagram showing a signal spectrum of a true image included in a radar image (radar image shown in FIG. 11C) after the virtual image is suppressed by the virtual image suppressing unit 11.
FIG. 12D is an explanatory diagram showing a signal spectrum of a virtual image included in a radar image (radar image shown in FIG. 11D) after the virtual image is suppressed by the virtual image suppression unit 11.
Since the noise component contained in the radar image is also suppressed by the virtual image suppression process by the virtual image suppression unit 11, the signal spectrum of the true image included in the radar image shown in FIG. 12C is shown in FIG. 12A. The shape of the signal spectrum is calculated with higher accuracy than the signal spectrum of the true image included in the radar image. Further, the signal spectrum of the virtual image included in the radar image shown in FIG. 12D is calculated with higher accuracy than the signal spectrum of the virtual image included in the radar image shown in FIG. 12B. There is.
 次に、像識別処理部16は、信号スペクトルの角度αと第1の閾値Thとを比較する。
 像識別処理部16は、信号スペクトルの角度αが第1の閾値Thよりも小さければ(図5のステップST14:YESの場合)、真像候補が真像であると判定する(図5のステップST15)。
 像識別処理部16は、信号スペクトルの角度αが第1の閾値Th以上であれば(図5のステップST14:NOの場合)、真像候補が虚像であると判定する(図5のステップST16)。
 像識別処理部16は、図5のステップST11~ST16の処理を繰り返すことによって、真像候補抽出部15により抽出された真像候補の全てが、真像であるのか、虚像であるのかを識別する(図4のステップST6)。
 像識別処理部16は、虚像抑圧部11による虚像抑圧後のレーダ画像から、識別した虚像を除去し、虚像除去後のレーダ画像を処理後画像格納部3に出力する。
Next, the image identification processing unit 16 compares the angle α of the signal spectrum with the first threshold value Th 1.
If the angle α of the signal spectrum is smaller than the first threshold value Th 1 (in the case of step ST14: YES in FIG. 5), the image identification processing unit 16 determines that the true image candidate is a true image (FIG. 5). Step ST15).
If the angle α of the signal spectrum is equal to or greater than the first threshold value Th 1 (step ST14 in FIG. 5: NO), the image identification processing unit 16 determines that the true image candidate is a virtual image (step 5 in FIG. 5). ST16).
By repeating the processes of steps ST11 to ST16 in FIG. 5, the image identification processing unit 16 discriminates whether all the true image candidates extracted by the true image candidate extraction unit 15 are true images or virtual images. (Step ST6 in FIG. 4).
The image identification processing unit 16 removes the identified virtual image from the radar image after the virtual image suppression by the virtual image suppression unit 11, and outputs the radar image after the virtual image removal to the processed image storage unit 3.
 以上の実施の形態1では、レーダ画像に対する圧縮センシング処理を実施することによって、レーダ画像に含まれている虚像を抑圧する虚像抑圧部11と、虚像抑圧部11による虚像抑圧後のレーダ画像を、当該レーダ画像のアジマス軸方向にフーリエ変換することによって、虚像抑圧後のレーダ画像に含まれている真像候補の信号スペクトルを算出し、虚像抑圧後のレーダ画像におけるドップラ周波数軸に対する信号スペクトルの角度が第1の閾値よりも小さければ、真像候補が真像であると判定し、信号スペクトルの角度が第1の閾値以上であれば、真像候補が虚像であると判定する像識別部12とを備えるように、レーダ画像処理装置2を構成した。したがって、レーダ画像処理装置2は、レーダ画像に雑音成分が含まれていても、真像候補が、真像であるのか、虚像であるのかを識別することができる。 In the above-described first embodiment, the virtual image suppression unit 11 that suppresses the virtual image contained in the radar image by performing the compression sensing process on the radar image, and the radar image after the virtual image suppression by the virtual image suppression unit 11 are obtained. By Fourier transforming the radar image in the azimuth axis direction, the signal spectrum of the true image candidate included in the radar image after virtual image suppression is calculated, and the angle of the signal spectrum with respect to the Doppler frequency axis in the radar image after virtual image suppression. Is smaller than the first threshold value, it is determined that the true image candidate is a true image, and if the angle of the signal spectrum is equal to or larger than the first threshold value, the true image candidate is determined to be a virtual image. The radar image processing device 2 is configured to include the above. Therefore, the radar image processing device 2 can identify whether the true image candidate is a true image or a virtual image even if the radar image contains a noise component.
実施の形態2.
 実施の形態2では、像識別部12が、信号スペクトルの角度αが第1の閾値Thよりも小さくても、信号スペクトルの長さLenが第4の閾値Thよりも短ければ、真像候補が虚像であると判定するレーダ画像処理装置2について説明する。
Embodiment 2.
In the second embodiment, even if the angle α of the signal spectrum is smaller than the first threshold value Th 1 , the image identification unit 12 has a true image if the length Len of the signal spectrum is shorter than the fourth threshold value Th 4. The radar image processing device 2 that determines that the candidate is a virtual image will be described.
 図13は、実施の形態2に係るレーダ画像処理装置2を示す構成図である。図13において、図1と同一符号は同一又は相当部分を示すので説明を省略する。
 図14は、実施の形態2に係るレーダ画像処理装置2のハードウェアを示すハードウェア構成図である。図14において、図2と同一符号は同一又は相当部分を示すので説明を省略する。
FIG. 13 is a configuration diagram showing a radar image processing device 2 according to the second embodiment. In FIG. 13, the same reference numerals as those in FIG. 1 indicate the same or corresponding parts, and thus the description thereof will be omitted.
FIG. 14 is a hardware configuration diagram showing the hardware of the radar image processing device 2 according to the second embodiment. In FIG. 14, the same reference numerals as those in FIG. 2 indicate the same or corresponding parts, and thus the description thereof will be omitted.
 像識別部17は、画像変換部13、仮真像候補選別部14、真像候補抽出部15及び像識別処理部18を備えている。
 像識別部17は、虚像抑圧部11による虚像抑圧後のレーダ画像を、当該レーダ画像のアジマス軸方向にフーリエ変換することによって、虚像抑圧後のレーダ画像に含まれている真像候補の信号スペクトルを算出する。
 像識別部17は、虚像抑圧後のレーダ画像におけるドップラ周波数軸に対する信号スペクトルの角度αが第1の閾値Thよりも小さく、かつ、信号スペクトルの長さLenが第4の閾値Th以上であれば、真像候補が真像であると判定する。
 像識別部17は、信号スペクトルの角度αが第1の閾値Th以上、又は、信号スペクトルの長さLenが第4の閾値Thよりも短ければ、真像候補が虚像であると判定する。
The image identification unit 17 includes an image conversion unit 13, a tentative true image candidate selection unit 14, a true image candidate extraction unit 15, and an image identification processing unit 18.
The image identification unit 17 Fourier-converts the radar image after the virtual image suppression by the virtual image suppression unit 11 in the azimuth axis direction of the radar image, so that the signal spectrum of the true image candidate included in the radar image after the virtual image suppression Is calculated.
In the image identification unit 17, the angle α of the signal spectrum with respect to the Doppler frequency axis in the radar image after suppressing the virtual image is smaller than the first threshold value Th 1 , and the length Len of the signal spectrum is 4 or more the fourth threshold value Th 4. If so, it is determined that the true image candidate is a true image.
If the angle α of the signal spectrum is equal to or greater than the first threshold value Th 1 or the length Len of the signal spectrum is shorter than the fourth threshold value Th 4 , the image identification unit 17 determines that the true image candidate is a virtual image. ..
 像識別処理部18は、例えば、図14に示す像識別処理回路26によって実現される。
 像識別処理部18は、図1に示す像識別処理部16と同様に、真像候補抽出部15により抽出された真像候補をアジマス軸方向にフーリエ変換することによって、真像候補の信号スペクトルを算出する。
 像識別処理部18は、真像候補の信号スペクトルをハフ変換することによって、虚像抑圧後のレーダ画像におけるドップラ周波数軸に対する信号スペクトルの角度α及び信号スペクトルの長さLenのそれぞれを算出する。
 像識別処理部18は、信号スペクトルの角度αが第1の閾値Thよりも小さく、かつ、信号スペクトルの長さLenが第4の閾値Th以上であれば、真像候補が真像であると判定する。
 像識別処理部18は、信号スペクトルの角度αが第1の閾値Th以上、又は、信号スペクトルの長さLenが第4の閾値Thよりも短ければ、真像候補が虚像であると判定する。第1の閾値Th及び第4の閾値Thのそれぞれは、像識別処理部18の内部メモリに格納されていてもよいし、レーダ画像処理装置2の外部から与えられるものであってもよい。
 像識別処理部18は、図1に示す像識別処理部16と同様に、虚像抑圧後のレーダ画像に映っている虚像を除去し、虚像除去後のレーダ画像を処理後画像格納部3に出力する。
The image identification processing unit 18 is realized by, for example, the image identification processing circuit 26 shown in FIG.
Similar to the image identification processing unit 16 shown in FIG. 1, the image identification processing unit 18 Fourier transforms the true image candidate extracted by the true image candidate extraction unit 15 in the azimuth axis direction to obtain a signal spectrum of the true image candidate. Is calculated.
The image identification processing unit 18 calculates the angle α of the signal spectrum with respect to the Doppler frequency axis and the length Len of the signal spectrum in the radar image after the virtual image suppression by Hough transforming the signal spectrum of the true image candidate.
In the image identification processing unit 18, if the angle α of the signal spectrum is smaller than the first threshold value Th 1 and the length Len of the signal spectrum is 4 or more of the fourth threshold value Th 4, the true image candidate is a true image. Judge that there is.
If the angle α of the signal spectrum is equal to or greater than the first threshold value Th 1 or the length Len of the signal spectrum is shorter than the fourth threshold value Th 4, the image identification processing unit 18 determines that the true image candidate is a virtual image. do. Each of the first threshold value Th 1 and the fourth threshold value Th 4 may be stored in the internal memory of the image identification processing unit 18 or may be given from the outside of the radar image processing device 2. ..
Similar to the image identification processing unit 16 shown in FIG. 1, the image identification processing unit 18 removes the virtual image reflected in the radar image after suppressing the virtual image, and outputs the radar image after removing the virtual image to the processed image storage unit 3. do.
 図13では、レーダ画像処理装置2の構成要素である虚像抑圧部11、画像変換部13、仮真像候補選別部14、真像候補抽出部15及び像識別処理部18のそれぞれが、図14に示すような専用のハードウェアによって実現されるものを想定している。即ち、レーダ画像処理装置2が、虚像抑圧回路21、画像変換回路22、仮真像候補選別回路23、真像候補抽出回路24及び像識別処理回路26によって実現されるものを想定している。
 虚像抑圧回路21、画像変換回路22、仮真像候補選別回路23、真像候補抽出回路24及び像識別処理回路26のそれぞれは、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGA、又は、これらを組み合わせたものが該当する。
In FIG. 13, each of the virtual image suppression unit 11, the image conversion unit 13, the pseudo-true image candidate selection unit 14, the true image candidate extraction unit 15, and the image identification processing unit 18, which are the components of the radar image processing device 2, is shown in FIG. It is assumed that it will be realized by dedicated hardware as shown in. That is, it is assumed that the radar image processing device 2 is realized by the virtual image suppression circuit 21, the image conversion circuit 22, the pseudo-true image candidate selection circuit 23, the true image candidate extraction circuit 24, and the image identification processing circuit 26.
Each of the imaginary image suppression circuit 21, the image conversion circuit 22, the pseudo-true image candidate selection circuit 23, the true image candidate extraction circuit 24, and the image identification processing circuit 26 is, for example, a single circuit, a composite circuit, a programmed processor, or a parallel program. The processor, ASIC, FPGA, or a combination thereof is applicable.
 レーダ画像処理装置2の構成要素は、専用のハードウェアによって実現されるものに限るものではなく、レーダ画像処理装置2が、ソフトウェア、ファームウェア、又は、ソフトウェアとファームウェアとの組み合わせによって実現されるものであってもよい。
 レーダ画像処理装置2が、ソフトウェア又はファームウェア等によって実現される場合、虚像抑圧部11、画像変換部13、仮真像候補選別部14、真像候補抽出部15及び像識別処理部18におけるそれぞれの処理手順をコンピュータに実行させるためのプログラムがメモリ31に格納される。そして、コンピュータのプロセッサ32がメモリ31に格納されているプログラムを実行する。
The components of the radar image processing device 2 are not limited to those realized by dedicated hardware, but the radar image processing device 2 is realized by software, firmware, or a combination of software and firmware. There may be.
When the radar image processing device 2 is realized by software, firmware, or the like, each of the virtual image suppressing unit 11, the image conversion unit 13, the pseudo-true image candidate selection unit 14, the true image candidate extraction unit 15, and the image identification processing unit 18. A program for causing the computer to execute the processing procedure is stored in the memory 31. Then, the processor 32 of the computer executes the program stored in the memory 31.
 また、図14では、レーダ画像処理装置2の構成要素のそれぞれが専用のハードウェアによって実現される例を示し、図3では、レーダ画像処理装置2がソフトウェア又はファームウェア等によって実現される例を示している。しかし、これは一例に過ぎず、レーダ画像処理装置2における一部の構成要素が専用のハードウェアによって実現され、残りの構成要素がソフトウェア又はファームウェア等によって実現されるものであってもよい。 Further, FIG. 14 shows an example in which each of the components of the radar image processing device 2 is realized by dedicated hardware, and FIG. 3 shows an example in which the radar image processing device 2 is realized by software, firmware, or the like. ing. However, this is only an example, and some components in the radar image processing device 2 may be realized by dedicated hardware, and the remaining components may be realized by software, firmware, or the like.
 次に、図13に示すレーダ画像処理装置2の動作について説明する。ただし、像識別処理部18以外は、図1に示すレーダ画像処理装置2と同様であるため、ここでは、像識別処理部18の動作のみを説明する。
 像識別処理部18は、真像候補抽出部15から真像候補を受けると、図1に示す像識別処理部16と同様に、真像候補をアジマス軸方向にフーリエ変換することによって、真像候補の信号スペクトルを算出する。
Next, the operation of the radar image processing device 2 shown in FIG. 13 will be described. However, since the parts other than the image identification processing unit 18 are the same as the radar image processing device 2 shown in FIG. 1, only the operation of the image identification processing unit 18 will be described here.
When the image identification processing unit 18 receives a true image candidate from the true image candidate extraction unit 15, the image identification processing unit 18 performs a Fourier transform on the true image candidate in the azimuth axis direction in the same manner as the image identification processing unit 16 shown in FIG. Calculate the candidate signal spectrum.
 次に、像識別処理部18は、真像候補の信号スペクトルをハフ変換することによって、虚像抑圧後のレーダ画像におけるドップラ周波数軸に対する信号スペクトルの角度α及び信号スペクトルの長さLenのそれぞれを算出する。信号スペクトルをハフ変換することによる角度αの算出処理及び長さLenの算出処理自体は、公知の技術であるため詳細な説明を省略する。 Next, the image identification processing unit 18 calculates the angle α of the signal spectrum with respect to the Doppler frequency axis and the length Len of the signal spectrum in the radar image after the virtual image suppression by Hough transforming the signal spectrum of the true image candidate. do. Since the angle α calculation process and the length Len calculation process itself by Hough transforming the signal spectrum are known techniques, detailed description thereof will be omitted.
 次に、像識別処理部18は、信号スペクトルの角度αと第1の閾値Thとを比較し、信号スペクトルの長さLenと第4の閾値Thとを比較する。第4の閾値Thは、想定される真像の信号スペクトルの長さLenと、想定される虚像の信号スペクトルの長さLenとの間の長さに設定される。
 像識別処理部18は、信号スペクトルの角度αが第1の閾値Thよりも小さく、かつ、信号スペクトルの長さLenが第4の閾値Th以上であれば、真像候補が真像であると判定する。
 像識別処理部18は、信号スペクトルの角度αが第1の閾値Th以上、又は、信号スペクトルの長さLenが第4の閾値Thよりも短ければ、真像候補が虚像であると判定する。
 像識別処理部18は、虚像抑圧後のレーダ画像から、識別した虚像を除去し、虚像除去後のレーダ画像を処理後画像格納部3に出力する。
Next, the image identification processing unit 18 compares the angle α of the signal spectrum with the first threshold value Th 1 , and compares the length Len of the signal spectrum with the fourth threshold value Th 4 . The fourth threshold Th 4 is set to a length between the assumed true image signal spectrum length Len and the assumed virtual image signal spectrum length Len.
In the image identification processing unit 18, if the angle α of the signal spectrum is smaller than the first threshold value Th 1 and the length Len of the signal spectrum is 4 or more of the fourth threshold value Th 4, the true image candidate is a true image. Judge that there is.
If the angle α of the signal spectrum is equal to or greater than the first threshold value Th 1 or the length Len of the signal spectrum is shorter than the fourth threshold value Th 4, the image identification processing unit 18 determines that the true image candidate is a virtual image. do.
The image identification processing unit 18 removes the identified virtual image from the radar image after the virtual image is suppressed, and outputs the radar image after removing the virtual image to the processed image storage unit 3.
 以上の実施の形態2では、像識別部17が、信号スペクトルの角度が第1の閾値よりも小さくても、信号スペクトルの長さが第4の閾値よりも短ければ、真像候補が虚像であると判定するように、図13に示すレーダ画像処理装置2を構成した。したがって、図13に示すレーダ画像処理装置2は、図1に示すレーダ画像処理装置2と同様に、レーダ画像に雑音成分が含まれていても、真像候補が、真像であるのか、虚像であるのかを識別することができる。また、図13に示すレーダ画像処理装置2は、図1に示すレーダ画像処理装置2よりも、真像と虚像との識別精度が向上する。 In the second embodiment described above, even if the angle of the signal spectrum is smaller than the first threshold value, if the length of the signal spectrum is shorter than the fourth threshold value, the true image candidate is a virtual image. The radar image processing device 2 shown in FIG. 13 was configured so as to determine that there is. Therefore, in the radar image processing device 2 shown in FIG. 13, similarly to the radar image processing device 2 shown in FIG. 1, even if the radar image contains a noise component, whether the true image candidate is a true image or a virtual image. It is possible to identify whether it is. Further, the radar image processing device 2 shown in FIG. 13 has improved discrimination accuracy between a true image and a virtual image as compared with the radar image processing device 2 shown in FIG.
 なお、本開示は、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 In the present disclosure, any combination of the embodiments can be freely combined, any component of the embodiment can be modified, or any component can be omitted in each embodiment.
 本開示は、レーダ画像処理装置、レーダ画像処理方法及びレーダ画像処理プログラムに適している。 This disclosure is suitable for radar image processing devices, radar image processing methods, and radar image processing programs.
 1 レーダ画像格納部、2 レーダ画像処理装置、3 処理後画像格納部、11 虚像抑圧部、12,17 像識別部、13 画像変換部、14 仮真像候補選別部、15 真像候補抽出部、16,18 像識別処理部、21 虚像抑圧回路、22 画像変換回路、23 仮真像候補選別回路、24 真像候補抽出回路、25,26 像識別処理回路、31 メモリ、32 プロセッサ。 1 Radar image storage unit, 2 Radar image processing device, 3 Post-processing image storage unit, 11 Virtual image suppression unit, 12, 17 Image identification unit, 13 Image conversion unit, 14 Pseudo-true image candidate selection unit, 15 True image candidate extraction unit , 16, 18 image identification processing unit, 21 virtual image suppression circuit, 22 image conversion circuit, 23 pseudo-true image candidate selection circuit, 24 true image candidate extraction circuit, 25, 26 image identification processing circuit, 31 memory, 32 processor.

Claims (7)

  1.  レーダ画像に対する圧縮センシング処理を実施することによって、前記レーダ画像に含まれている虚像を抑圧する虚像抑圧部と、
     前記虚像抑圧部による虚像抑圧後のレーダ画像を、当該レーダ画像のアジマス軸方向にフーリエ変換することによって、虚像抑圧後のレーダ画像に含まれている真像候補の信号スペクトルを算出し、虚像抑圧後のレーダ画像におけるドップラ周波数軸に対する前記信号スペクトルの角度が第1の閾値よりも小さければ、前記真像候補が真像であると判定し、前記信号スペクトルの角度が前記第1の閾値以上であれば、前記真像候補が虚像であると判定する像識別部と
     を備えたレーダ画像処理装置。
    A virtual image suppression unit that suppresses the virtual image contained in the radar image by performing compressed sensing processing on the radar image,
    By Fourier-converting the radar image after the virtual image suppression by the virtual image suppression unit in the azimuth axis direction of the radar image, the signal spectrum of the true image candidate included in the radar image after the virtual image suppression is calculated and the virtual image is suppressed. If the angle of the signal spectrum with respect to the Doppler frequency axis in the later radar image is smaller than the first threshold value, it is determined that the true image candidate is a true image, and the angle of the signal spectrum is equal to or larger than the first threshold value. If there is, a radar image processing device including an image identification unit that determines that the true image candidate is a virtual image.
  2.  前記像識別部は、
     前記虚像抑圧部による虚像抑圧後のレーダ画像を2値化画像に変換し、前記2値化画像を出力する画像変換部と、
     前記画像変換部から出力された2値化画像の中で、1の画素値を有する画素が集まっている、1つ以上の画素群のそれぞれを仮真像候補として特定し、特定した仮真像候補のうち、含んでいる画素の数が第2の閾値よりも少ない仮真像候補を破棄する仮真像候補選別部と、
     前記虚像抑圧部による虚像抑圧後のレーダ画像から、前記仮真像候補選別部により破棄されないで残っている仮真像候補と画素位置が同じ画素群を真像候補として抽出する真像候補抽出部と、
     前記真像候補抽出部により抽出された真像候補を前記アジマス軸方向にフーリエ変換することによって、前記真像候補の信号スペクトルを算出し、虚像抑圧後のレーダ画像におけるドップラ周波数軸に対する前記信号スペクトルの角度が前記第1の閾値よりも小さければ、前記真像候補が真像であると判定し、前記信号スペクトルの角度が前記第1の閾値以上であれば、前記真像候補が虚像であると判定する像識別処理部とを備えていることを特徴とする請求項1記載のレーダ画像処理装置。
    The image identification unit is
    An image conversion unit that converts the radar image after the virtual image suppression by the virtual image suppression unit into a binarized image and outputs the binarized image, and the image conversion unit.
    In the binarized image output from the image conversion unit, each of one or more pixel groups in which pixels having a pixel value of 1 are gathered is specified as a pseudo-true image candidate, and the specified pseudo-true image is specified. Among the candidates, a pseudo-true image candidate selection unit that discards pseudo-true image candidates whose number of pixels included is less than the second threshold value, and
    A true image candidate extraction unit that extracts a pixel group having the same pixel position as a false true image candidate that remains without being discarded by the false true image candidate selection unit from the radar image after the virtual image suppression by the virtual image suppression unit. When,
    The signal spectrum of the true image candidate is calculated by Fourier transforming the true image candidate extracted by the true image candidate extraction unit in the direction of the azimuth axis, and the signal spectrum with respect to the Doppler frequency axis in the radar image after suppressing the virtual image. If the angle of is smaller than the first threshold value, it is determined that the true image candidate is a true image, and if the angle of the signal spectrum is equal to or larger than the first threshold value, the true image candidate is a virtual image. The radar image processing apparatus according to claim 1, further comprising an image identification processing unit for determining.
  3.  前記仮真像候補選別部は、残っている仮真像候補の中で、互いに隣り合っている2つの仮真像候補の距離が第3の閾値よりも短ければ、前記2つの仮真像候補のうち、いずれかの仮真像候補を破棄することを特徴とする請求項2記載のレーダ画像処理装置。 If the distance between the two adjacent pseudo-true image candidates among the remaining pseudo-true image candidates is shorter than the third threshold value, the pseudo-true image candidate selection unit may use the two pseudo-true image candidates. The radar image processing apparatus according to claim 2, wherein any one of the pseudo-true image candidates is discarded.
  4.  前記像識別処理部は、前記真像候補の信号スペクトルをハフ変換することによって、前記信号スペクトルの角度を算出することを特徴とする請求項2記載のレーダ画像処理装置。 The radar image processing device according to claim 2, wherein the image identification processing unit calculates an angle of the signal spectrum by Hough transforming the signal spectrum of the true image candidate.
  5.  前記像識別部は、前記信号スペクトルの角度が前記第1の閾値よりも小さくても、前記信号スペクトルの長さが第4の閾値よりも短ければ、前記真像候補が虚像であると判定することを特徴とする請求項1記載のレーダ画像処理装置。 The image identification unit determines that the true image candidate is a virtual image if the angle of the signal spectrum is smaller than the first threshold value but the length of the signal spectrum is shorter than the fourth threshold value. The radar image processing apparatus according to claim 1, wherein the radar image processing apparatus is characterized by the above.
  6.  虚像抑圧部が、レーダ画像に対する圧縮センシング処理を実施することによって、前記レーダ画像に含まれている虚像を抑圧し、
     像識別部が、前記虚像抑圧部による虚像抑圧後のレーダ画像を、当該レーダ画像のアジマス軸方向にフーリエ変換することによって、虚像抑圧後のレーダ画像に含まれている真像候補の信号スペクトルを算出し、虚像抑圧後のレーダ画像におけるドップラ周波数軸に対する前記信号スペクトルの角度が第1の閾値よりも小さければ、前記真像候補が真像であると判定し、前記信号スペクトルの角度が前記第1の閾値以上であれば、前記真像候補が虚像であると判定する
     レーダ画像処理方法。
    The virtual image suppression unit suppresses the virtual image contained in the radar image by performing compressed sensing processing on the radar image.
    The image identification unit Fourier-converts the radar image after the virtual image suppression by the virtual image suppression unit in the azimuth axis direction of the radar image to obtain the signal spectrum of the true image candidate included in the radar image after the virtual image suppression. If the angle of the signal spectrum with respect to the Doppler frequency axis in the radar image after suppressing the virtual image is smaller than the first threshold value, it is determined that the true image candidate is a true image, and the angle of the signal spectrum is the first. A radar image processing method for determining that the true image candidate is a virtual image if it is equal to or higher than the threshold value of 1.
  7.  虚像抑圧部が、レーダ画像に対する圧縮センシング処理を実施することによって、前記レーダ画像に含まれている虚像を抑圧する処理手順と、
     像識別部が、前記虚像抑圧部による虚像抑圧後のレーダ画像を、当該レーダ画像のアジマス軸方向にフーリエ変換することによって、虚像抑圧後のレーダ画像に含まれている真像候補の信号スペクトルを算出し、虚像抑圧後のレーダ画像におけるドップラ周波数軸に対する前記信号スペクトルの角度が第1の閾値よりも小さければ、前記真像候補が真像であると判定し、前記信号スペクトルの角度が前記第1の閾値以上であれば、前記真像候補が虚像であると判定する処理手順と
     をコンピュータに実行させるためのレーダ画像処理プログラム。
    A processing procedure for suppressing a virtual image contained in the radar image by performing a compressed sensing process on the radar image by the virtual image suppressing unit, and a processing procedure for suppressing the virtual image included in the radar image.
    The image identification unit Fourier-converts the radar image after the virtual image suppression by the virtual image suppression unit in the azimuth axis direction of the radar image to obtain the signal spectrum of the true image candidate included in the radar image after the virtual image suppression. If the angle of the signal spectrum with respect to the Doppler frequency axis in the radar image after suppressing the virtual image is smaller than the first threshold value, it is determined that the true image candidate is a true image, and the angle of the signal spectrum is the first. A radar image processing program for causing a computer to execute a processing procedure for determining that the true image candidate is a virtual image if it is equal to or higher than a threshold value of 1.
PCT/JP2020/020111 2020-05-21 2020-05-21 Radar image processing device, radar image processing method, and radar image processing program WO2021234906A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/020111 WO2021234906A1 (en) 2020-05-21 2020-05-21 Radar image processing device, radar image processing method, and radar image processing program
JP2022524562A JP7143550B2 (en) 2020-05-21 2020-05-21 Radar image processing device, radar image processing method and radar image processing program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/020111 WO2021234906A1 (en) 2020-05-21 2020-05-21 Radar image processing device, radar image processing method, and radar image processing program

Publications (1)

Publication Number Publication Date
WO2021234906A1 true WO2021234906A1 (en) 2021-11-25

Family

ID=78707909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/020111 WO2021234906A1 (en) 2020-05-21 2020-05-21 Radar image processing device, radar image processing method, and radar image processing program

Country Status (2)

Country Link
JP (1) JP7143550B2 (en)
WO (1) WO2021234906A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023186385A1 (en) * 2022-03-31 2023-10-05 Iceye Oy Detecting and suppressing ambiguities in synthetic aperture radar data and images
WO2023186386A1 (en) * 2022-03-31 2023-10-05 Iceye Oy Detecting and suppressing ambiguities in synthetic aperture radar data and images

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140009324A1 (en) * 2011-06-10 2014-01-09 U.S. Government As Represented By The Secretary Of The Army Autofocus-based compensation (abc) system and method for a hovering ground moving target indication (gmti) sensor
JP2015230285A (en) * 2014-06-06 2015-12-21 株式会社東芝 Radar apparatus and radar signal processing method of the same
JP2017015495A (en) * 2015-06-30 2017-01-19 三菱電機株式会社 Radar
WO2019176016A1 (en) * 2018-03-14 2019-09-19 三菱電機株式会社 Radar image processing device and radar image processing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5787805B2 (en) 2011-03-31 2015-09-30 ミツビシ・エレクトリック・リサーチ・ラボラトリーズ・インコーポレイテッド High resolution SAR imaging using non-uniform pulse timing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140009324A1 (en) * 2011-06-10 2014-01-09 U.S. Government As Represented By The Secretary Of The Army Autofocus-based compensation (abc) system and method for a hovering ground moving target indication (gmti) sensor
JP2015230285A (en) * 2014-06-06 2015-12-21 株式会社東芝 Radar apparatus and radar signal processing method of the same
JP2017015495A (en) * 2015-06-30 2017-01-19 三菱電機株式会社 Radar
WO2019176016A1 (en) * 2018-03-14 2019-09-19 三菱電機株式会社 Radar image processing device and radar image processing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023186385A1 (en) * 2022-03-31 2023-10-05 Iceye Oy Detecting and suppressing ambiguities in synthetic aperture radar data and images
WO2023186386A1 (en) * 2022-03-31 2023-10-05 Iceye Oy Detecting and suppressing ambiguities in synthetic aperture radar data and images

Also Published As

Publication number Publication date
JP7143550B2 (en) 2022-09-28
JPWO2021234906A1 (en) 2021-11-25

Similar Documents

Publication Publication Date Title
JP6490104B2 (en) Radar system with optimized storage of intermediate data
US11531098B2 (en) Radar image processing device and radar image processing method
US10908260B2 (en) Mounting angle error detection method and apparatus for onboard radar apparatus, and onboard radar apparatus
WO2021234906A1 (en) Radar image processing device, radar image processing method, and radar image processing program
JP2017524898A5 (en)
WO2015142418A1 (en) High-availability isar image formation
CN110806577B (en) Focusing imaging method and device of synthetic aperture radar, equipment and storage medium
CN112130142B (en) Method and system for extracting micro Doppler features of complex moving target
CN113219432B (en) Moving object detection method based on knowledge assistance and sparse Bayesian learning
CN112241003A (en) Method and system for object detection
JP2009236720A (en) Moving target detector
KR101854573B1 (en) Apparatus for cross-range scaling of isar image usnig radon transform and projection and method thereof
JP2015059808A (en) Object monitoring device and object monitoring system
CN113167856A (en) Interference suppression method and signal restoration method
KR102451961B1 (en) Side lobe reduction method and apparatus for improving target identification
WO2020049686A1 (en) Target tracking device and target tracking method
JP3750860B2 (en) Image radar device
KR102169874B1 (en) Vehicle radar using azimuth high resolution processing algorithm and operating method thereof
JP2005140687A (en) Target discriminating device
JP6031269B2 (en) Noise suppression device, noise suppression method, and noise suppression program
US20200408880A1 (en) Method and apparatus for radar signal processing using convolutional neural network
JP4110896B2 (en) Radar equipment
KR102186352B1 (en) Vehicle radar using azimuth high resolution processing algorithm and operating method thereof
CN113567959B (en) Detection method and device of repetition frequency signal, processing equipment and storage medium
CN111161341B (en) Target size extraction method based on ISAR image

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20936978

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022524562

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20936978

Country of ref document: EP

Kind code of ref document: A1