WO2020049686A1 - Target tracking device and target tracking method - Google Patents

Target tracking device and target tracking method Download PDF

Info

Publication number
WO2020049686A1
WO2020049686A1 PCT/JP2018/033026 JP2018033026W WO2020049686A1 WO 2020049686 A1 WO2020049686 A1 WO 2020049686A1 JP 2018033026 W JP2018033026 W JP 2018033026W WO 2020049686 A1 WO2020049686 A1 WO 2020049686A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
unit
detection signal
doppler velocity
value
Prior art date
Application number
PCT/JP2018/033026
Other languages
French (fr)
Japanese (ja)
Inventor
洋志 亀田
洋介 勝又
立範 小林
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/033026 priority Critical patent/WO2020049686A1/en
Publication of WO2020049686A1 publication Critical patent/WO2020049686A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/66Radar-tracking systems; Analogous systems

Definitions

  • the present invention relates to a target tracking device and a target tracking method for tracking a target.
  • Patent Literature 1 describes a target tracking device that predicts the motion of a target based on a target state vector and a target motion model formed of a target position and a speed vector in a north reference rectangular coordinate system. ing.
  • the motion prediction of the target is such that when a reflected signal of a radio wave transmitted from the radar reflected by the target is received by the radar, a predicted value of the target Doppler frequency is calculated based on the received signal, and the newly obtained detection is performed.
  • the target is tracked based on the correlation between the signal and the predicted value.
  • the tracking filter processes a signal in the north reference rectangular coordinate system
  • the tracking filter includes a target velocity vector determined based on a change in target position included in detection signals obtained at two different observation times. Is set as the initial smoothed value.
  • the present invention has been made to solve the above problems, and has as its object to provide a target tracking device and a target tracking method that can reduce the time until the tracking of a target is established.
  • the target tracking device includes a prediction unit, a combination determination unit, a smoothing unit, and a determination unit.
  • the prediction unit calculates predicted values of the target distance and the Doppler velocity based on the smoothed values of the target distance and the Doppler velocity.
  • the combination determination unit is configured to determine, based on the predicted value calculated by the prediction unit, a detection signal including a target distance and a Doppler velocity obtained by performing signal processing on the radar reception signal and a target obtained by the detection signal. Determine the combination.
  • the smoothing unit sets the target distance and the Doppler velocity included in the detection signal having no correlation with the existing target to an initial smoothed value, and the target distance and the Doppler velocity included in the detection signal whose combination is determined by the combination determination unit. Is calculated.
  • the determination unit determines a target signal to be tracked from a sequence of detection signals having a time-series correlation.
  • the target distance and the Doppler velocity included in the detection signal having no correlation with the existing target with respect to the smoothing unit are set to the initial smoothed value. There is no need to set an initial smoothing value using the obtained detection signal. As a result, it is possible to shorten the time until the tracking of the target is established by the time for obtaining these detection signals.
  • FIG. 2 is a block diagram illustrating a configuration of a target tracking device according to Embodiment 1.
  • FIG. 3 is a diagram showing a flow of signal processing of a received signal of a radar handled by the target tracking device according to the first embodiment.
  • FIG. 3 is a diagram illustrating a spectrum space represented by a range and a Doppler velocity.
  • FIG. 4A is a block diagram illustrating a configuration of hardware that implements the function of the target tracking device according to the first embodiment.
  • FIG. 4B is a block diagram illustrating a configuration of hardware that executes software for realizing the function of the target tracking device according to Embodiment 1.
  • 5 is a flowchart illustrating a target tracking method according to the first embodiment.
  • FIG. 1 is a flowchart illustrating a target tracking method according to the first embodiment.
  • FIG. 9 is a block diagram illustrating a configuration of a target tracking device according to a second embodiment. 9 is a flowchart illustrating a target tracking method according to the second embodiment. It is an image figure showing the outline of the gate used for determining the combination of a detection signal and a temporary target.
  • FIG. 1 is a block diagram illustrating a configuration of a target tracking device 1 according to the first embodiment.
  • FIG. 2 is a diagram illustrating a flow of signal processing of a received signal of a radar handled by the target tracking device 1.
  • FIG. 3 is a diagram illustrating a spectrum space represented by a range and a Doppler velocity.
  • the target tracking device 1 tracks a target based on a detection signal obtained by performing signal processing on a radar reception signal as shown in FIG.
  • the detection signal has the coordinates of the range-Doppler velocity spectral space shown in FIG. 3, represented by the range and the Doppler velocity.
  • the radar receives, for example, a reflected signal of a transmitted radio wave reflected by a target by using n element antennas.
  • n is a positive natural number of 2 or more.
  • the signal processing device provided in the radar performs a first-order FFT (fast Fourier transform) on the reception signals from the reception CH (1) to the reception CH (n) for each element antenna.
  • FFT fast Fourier transform
  • data indicating the target distance is obtained by performing an FFT on the received signal by the signal processing device.
  • the signal processing apparatus performs DBF processing on data indicating a target distance from the reception CH (1) to the reception CH (n), thereby receiving beams (1) having different directions from each other. From the reception beam (m). m is a positive natural number of 2 or more.
  • the signal processor performs FFT on signals from the reception beam (1) to the reception beam (m), thereby obtaining a Doppler velocity for each target distance.
  • the signal processing device automatically detects a signal having a signal strength exceeding a certain threshold from the signal processed up to the second FFT.
  • the automatically detected detection signal includes, in addition to the target distance and the Doppler velocity, a reception beam number for identifying the reception beam of the reception signal from which the detection signal was obtained, and the signal strength of the reception signal.
  • the reception beam number is an identification number assigned to each reception beam.
  • the detection signals from the reception beam (1) to the reception beam (m) are input to the target tracking device 1 from the signal processing device.
  • the target tracking device 1 performs a target tracking process and an angle measurement process using the detection signal.
  • the signal indicating the track of the tracking target calculated by the target tracking device 1 is, for example, converted into a signal in the north reference rectangular coordinate system and presented to the user.
  • the target tracking device 1 does not convert the detection signal into a signal of the north reference rectangular coordinate system unlike the conventional target tracking device in the target tracking process and the angle measurement process, and thus the initial smoothing of the target speed is performed. There is no need for a two-sample detection signal for calculating the value. Thus, the target tracking device 1 can reduce the time required for the target tracking to be established by the time for detecting these detection signals.
  • the initial value of the target speed vector is determined based on the target position vector and the speed change included in the target detection signal obtained by one observation. Then, it is set as the initial value of the tracking filter. However, it is necessary to observe a detection signal including a target speed change at two or more receiving stations distributed. On the other hand, since the target tracking device 1 uses the Doppler speed included in the detection signal as the initial smoothed value of the target speed, the target tracking device 1 can track the target based on the detection signal obtained by one receiving station. It is possible. (Reference) M. Jabbarian, “Target Tracking in Pulse-Doppler MIMO Radar by Extended Kalman Filter Using Velocity Vector,” 20th Egyptian Conference on Electrical Engineering, (ICEE2012), May 15-17, 2012, Tehran, Iran.
  • the targets in the first embodiment include a provisional target and a tracking target.
  • the temporary target is a candidate for a tracking target that has not been determined by the determination unit 5 to be a tracking target, and is a sequence of detection signals automatically detected by the CFAR.
  • the detection signal sequence is a detection signal sequence having a time-series correlation.
  • the tracking target is a target of the tracking target for which the tracking has been established, and is a sequence of detection signals corresponding to the candidates determined to be the tracking targets by the determination unit 5 among the candidates of the tracking targets that are temporary targets.
  • the state in which tracking is established is a state in which the existence of a tracking target is determined in a track represented by a sequence of detection signals having a time-series correlation. Therefore, tracking is not established with the provisional target.
  • the target tracking device 1 includes a predicting unit 2, a combination determining unit 3, a smoothing unit 4, a determining unit 5, an angle measuring unit 6, and an angle smoothing unit 7, as shown in FIG.
  • the prediction unit 2 includes a provisional target prediction unit 21 and a tracking target prediction unit 22.
  • FIG. 1 shows a configuration in which the target tracking device 1 includes the angle measuring unit 6 and the angle smoothing unit 7, the angle measuring unit 6 and the angle smoothing unit 7 are provided separately from the target tracking device 1. It may be a component included in the device.
  • the signal processing device provided separately from the target tracking device 1 may include the angle measuring unit 6 and the angle smoothing unit 7.
  • the prediction unit 2 calculates a predicted value of the distance and the Doppler velocity for the target based on the smoothed values of the target distance and the Doppler velocity.
  • the provisional target predicting unit 21 calculates predicted values of the provisional target distance and the Doppler velocity based on the smoothed values of the provisional target distance and the Doppler velocity.
  • the tracking target predicting unit 22 calculates a predicted value of the tracking target distance and the Doppler velocity based on the smoothed values of the tracking target distance and the Doppler velocity.
  • the combination determining unit 3 determines a combination of the tentative target and the detection signal and a combination of the tracking target and the detection signal based on the predicted value calculated by the prediction unit 2. For example, the combination determination unit 3 sets a gate for the provisional target based on the prediction value of the distance and the Doppler velocity of the provisional target calculated by the provisional target prediction unit 21 and the error of the prediction value. Subsequently, the combination determining unit 3 determines whether or not the detection signal obtained by performing signal processing on the radar reception signal is included in the gate, and determines whether the detection signal included in the gate and the provisional target are included. Determine the combination.
  • the combination determining unit 3 determines the tracking target based on the distance and Doppler velocity predicted value of the tracking target calculated by the tracking target predicting unit 22, the predicted value of the center angle of the received beam, and an error between these predicted values. Set the gate. Subsequently, the combination determination unit 3 determines whether or not the detection signal obtained by performing signal processing on the radar reception signal is included in the gate, and determines whether the detection signal included in the gate and the tracking target are included. Determine the combination.
  • the detection signal obtained by performing signal processing on the radar received signal is not included in any of the provisional target gate and the tracking target gate, the detection signal is a detection signal having no correlation with the existing target.
  • the combination determining unit 3 sets the target distance and the Doppler velocity included in the detection signal in the smoothing unit 4 as an initial smoothed value.
  • the smoothing unit 4 sets the target distance and the Doppler velocity included in the detection signal having no correlation with the existing target to the initial smoothed values, and the combination determination unit 3 determines the combination.
  • a smoothed value of the target distance and the Doppler velocity included in the detected signal is calculated. For example, when the initial smoothing value is set, the smoothing unit 4 executes a smoothing process according to the process of the Kalman filter.
  • the determination unit 5 determines a sequence based on a tracking target from a sequence of detection signals having a time-series correlation. For example, the determination unit 5 determines, among a series of detection signals determined to be combined with the tentative target, a series of detection signals whose number of times of correlation with the detected signal determined to be combined with the tracking target exceeds a certain threshold value. Is determined to be based on the tracking target.
  • the angle measurement unit 6 performs angle measurement processing for each tracking target using the sequence of the detection signals determined by the determination unit 5 to be based on the tracking target. For example, the angle measurement unit 6 calculates an angle measurement value using a sequence of the detection signal based on the tracking target and accumulated data of the amplitude value of the reception beam related to the sequence of the detection signal.
  • the angle measurement value is, for example, the azimuth of the tracking target.
  • the amplitude value of the reception beam is adjacent to the reception beam corresponding to the detection signal determined to be correlated with the tracking target and has the same coordinates (in the spectrum space of the range-Doppler velocity) as the detection signal. (A distance and a Doppler velocity).
  • the angle measurement unit 6 calculates an initial value of an angular velocity of an azimuth angle (hereinafter, referred to as an azimuth angular velocity) that changes with movement of the tracking target.
  • the angle measurement value and the initial value of the azimuth angular velocity calculated by the angle measurement unit 6 are output to the angle smoothing unit 7.
  • the angle smoothing unit 7 calculates a smoothed value obtained by smoothing an angle measurement error of the angle measurement value based on the angle measurement value input from the angle measurement unit 6 and the initial value of the azimuth angular velocity. For example, when the initial value of the azimuth angular velocity is set, the angle smoothing unit 7 performs a smoothing process on the angle measurement value input from the angle measurement unit 6 according to the Kalman filter process. The smoothed value of the angle measurement value calculated by the angle smoothing unit 7 is output to the tracking target prediction unit 22.
  • the tracking target predicting unit 22 predicts the distance of the tracking target and the Doppler velocity based on the smoothed value of the detection signal calculated by the smoothing unit 4 and the smoothed value of the angle measurement value calculated by the angle smoothing unit 7. , And a predicted value of the center angle of the reception beam corresponding to the detection signal of the tracking target is calculated.
  • the predicted value of the distance and Doppler velocity of the tracking target and the predicted value of the center angle of the received beam are output from the tracking target predicting unit 22 to the combination determining unit 3.
  • the target tracking device 1 includes a processing circuit for executing processing from step ST101 to step ST108 described later with reference to FIG.
  • the processing circuit may be dedicated hardware, or may be a CPU (Central Processing Unit) that executes a program stored in the memory.
  • FIG. 4A is a block diagram showing a configuration of hardware for realizing the function of the target tracking device 1.
  • FIG. 4B is a block diagram illustrating a configuration of hardware that executes software for realizing the function of the target tracking device 1.
  • an interface 100 is an interface that relays signals exchanged with the radar that performs the signal processing illustrated in FIG.
  • the processing circuit 101 may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, or an ASIC (Application ⁇ Specific ⁇ Integrated). (Circuit), FPGA (Field-Programmable Gate Array), or a combination thereof.
  • the functions of the prediction unit 2, the combination determination unit 3, the smoothing unit 4, the determination unit 5, the angle measurement unit 6, and the angle smoothing unit 7 in the target tracking device 1 may be realized by separate processing circuits. May be realized by one processing circuit.
  • the processing circuit is the processor 102 illustrated in FIG. 4B, the functions of the prediction unit 2, the combination determination unit 3, the smoothing unit 4, the determination unit 5, the angle measurement unit 6, and the angle smoothing unit 7 in the target tracking device 1 , Software, firmware or a combination of software and firmware.
  • the software or firmware is described as a program and stored in the memory 103.
  • the processor 102 reads out and executes the program stored in the memory 103 to thereby execute the prediction unit 2, the combination determination unit 3, the smoothing unit 4, the determination unit 5, the angle measurement unit 6, and the angle smoothing unit in the target tracking device 1. 7 functions are realized. That is, the target tracking device 1 includes a memory 103 for storing a program that, when executed by the processor 102, results in steps ST101 to ST108 shown in FIG.
  • the memory 103 is a computer-readable storage medium storing a program for causing a computer to function as the prediction unit 2, the combination determination unit 3, the smoothing unit 4, the determination unit 5, the angle measurement unit 6, and the angle smoothing unit 7. Is also good.
  • the memory 103 includes, for example, a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Memory), a nonvolatile semiconductor memory such as an EEPROM (Electrically-EROM) or the like.
  • RAM Random Access Memory
  • ROM Read Only Memory
  • flash memory an EPROM (Erasable Programmable Read Only Memory)
  • nonvolatile semiconductor memory such as an EEPROM (Electrically-EROM) or the like.
  • a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, a DVD, and the like are applicable.
  • the prediction unit 2 the combination determination unit 3, the smoothing unit 4, the determination unit 5, the angle measurement unit 6, and the angle smoothing unit 7 are partially realized by dedicated hardware, and partly realized by software or firmware. Is also good.
  • the prediction unit 2, the combination determination unit 3, the smoothing unit 4, and the determination unit 5 realize their functions by a processing circuit 101 that is dedicated hardware, and the angle measurement unit 6 and the angle smoothing unit 7 A function is realized by reading and executing the program stored in the.
  • the processing circuit can realize the above functions by hardware, software, firmware, or a combination thereof.
  • FIG. 5 is a flowchart illustrating the target tracking method according to the first embodiment.
  • the smoothing unit 4 is tracking filter, the target state vector at the measurement time k and x k.
  • the state vector x k is a vector including the smoothed value rk of the distance from the radar to the target up to the observation time k and the smoothed value V k of the target Doppler velocity as elements as shown in the following equation (1).
  • Observation vector z k as shown in the following formula (2), in the observation time k, a distance r 0 from the radar to the target, k, the Doppler velocity V 0 which target, k, of the receive beam amplitude values v m, k , And the reception beam number b m, k as an element.
  • T represents transposition of a matrix.
  • the combination determination unit 3 inputs a detection signal from the signal processing device (step ST101).
  • the detection signal includes a target distance and a Doppler velocity, a reception beam number, and a signal strength.
  • the prediction unit 2 calculates a predicted value of the distance and the Doppler velocity of the provisional target or the tracking target by performing a prediction process based on the smoothed value of the detection signal calculated by the smoothing unit 4 (step ST102). For example, the prediction unit 2 calculates a time difference ⁇ t between the acquisition time at which the combination determination unit 3 acquires the detection signal from the signal processing device and the smoothed time of the detection signal calculated by the smoothing unit 4 in step ST104. A predicted value of the target distance and the Doppler velocity at the time of acquisition of the detection signal is calculated.
  • the tentative target prediction unit 21 uses a smoothing value V k smoothed value r k and the Doppler velocity of the distance of the calculated target by the smoothing unit 4 at step ST 104, according to the following formula (3), the temporary target calculating a predicted value r k + 1 and the predicted values V k + 1 of the Doppler velocity of the distance.
  • the smoothed value used in the process of calculating the predicted value is a smoothed value of a detection signal including the same reception beam number.
  • the tracking target predicting unit 22 uses the smoothed value of the detection signal calculated by the smoothing unit 4 in step ST104 to calculate a predicted value of the tracking target distance and the Doppler velocity according to the above equation (3). Further, the tracking target predicting unit 22 calculates a predicted value of the center angle of the received beam according to the following equation (4) using the angle smoothed value calculated by the angle smoothing unit 7 in step ST107.
  • ⁇ k is the azimuth (angle measurement value) at the observation time k.
  • d ⁇ k is an initial smoothed value of the azimuth angular velocity in which the angle measurement error up to the observation time k has been smoothed, and is calculated by the angle smoothing unit 7 in step ST107.
  • ⁇ k + 1 is the predicted value of the azimuth angle at the observation time k + 1 one observation time after the observation time k
  • d ⁇ k + 1 is the predicted value of the azimuth angular velocity at the observation time k + 1.
  • the predicted value of the center angle of the reception beam is determined by the predicted value ⁇ k + 1 and the predicted value d ⁇ k + 1 .
  • step ST102 the processes after step ST103 are not executed, and the prediction unit 2 determines the smoothed value of the detection signal calculated by the smoothing unit 4 in step ST104 and the angle in step ST107.
  • the angle smoothing value calculated by the smoothing unit 7 cannot be obtained.
  • the prediction unit 2 does not perform the above-described prediction processing, and the processing of the target tracking device 1 proceeds to step ST103.
  • the combination determination unit 3 obtains a detection signal and the detection signal using the predicted value of the distance and the Doppler velocity of the provisional target or the tracking target calculated in step ST102 and the detection signal input in step ST101.
  • a combination with the provisional target or the tracking target is determined (step ST103).
  • different gates are set depending on whether the target is a provisional target or a tracking target.
  • the combination determination unit 3 sets a gate in the range-Doppler velocity spectrum space based on the predicted values of the distance and the Doppler velocity of the provisional target calculated by the provisional target prediction unit 21 and an error between these predicted values. Set. Subsequently, the combination determination unit 3 determines, among the detection signals obtained by performing signal processing on the radar reception signal, the detection signal included in the gate as having a correlation with the provisional target detection signal. The detection signal and the provisional target are combined.
  • the detection signals used in the combination determination processing are detection signals including the same reception beam number. That is, the combination is determined for each identical reception beam number.
  • the combination determination unit 3 calculates the distance and the Doppler velocity of the tracking target calculated by the tracking target prediction unit 22, the predicted value of the center angle of the received beam, and an error between these predicted values. Set a gate in the range-Doppler velocity spectral space. Subsequently, the combination determination unit 3 determines that the detection signal included in the gate has a correlation with the detection signal of the tracking target, and combines the detection signal with the tracking target. The combination determining unit 3 determines a combination of the detection signal corresponding to the predicted reception beam direction with the tracking target.
  • the combination determination unit 3 sets the value of the detection signal, which is not included in any of the two types of gates, from the detection signal to the smoothing unit 4 as an initial smoothed value. That is, in the smoothing unit 4, the target distance and the Doppler velocity included in the detection signal having no correlation with the provisional target and the tracking target detected up to the current observation time are set as the initial smoothed values.
  • the combination determination unit 3 specifies a detection signal closest to the predicted value of the distance and the Doppler speed of the provisional target or the tracking target from the target distance and the Doppler speed included in the detection signal, and specifies the detection signal and the provisional target or the tracking target. It may be combined with a goal.
  • the combination determining unit 3 compares the distance and the Doppler speed of the provisional target or the tracking target included in all the detection signals included in the gate with the target distance and the Doppler speed on a brute force basis, and the two are closest.
  • the detection signal and the provisional target or the tracking target may be combined.
  • the combination determining unit 3 sets the amplitude value of the reception beam for the information indicating the combination of the detection signal and the target.
  • the amplitude value of the reception beam is adjacent to the reception beam corresponding to the detection signal determined to be correlated with the tracking target and has the same coordinates (distance and Doppler) as the detection signal in the spectrum space of the range-Doppler velocity. (Velocity) of the received signal of the detection signal having the velocity.
  • the smoothing unit 4 calculates a smoothed value of the detection signal by executing a smoothing process based on the combination of the target and the detection signal determined by the combination determination unit 3 in step ST103 (step ST104).
  • the smoothing unit 4 is set with an initial smoothed value according to the following equation (5).
  • x 1 is the initial smoothed value of the target state vector
  • r 0, 1 is the distance of a target included in the tentative target and tracking target and the correlation is no detection signal, which is the initial smoothed value of the distance of the target.
  • V 0,1 is the target Doppler velocity included in the detection signal having no correlation with the provisional target and the tracking target, and is an initial smoothed value of the target Doppler velocity.
  • x 1 [r 0,1 V 0,1 ] T (5)
  • the smoothing unit 4 After the initial smoothing value is set, the smoothing unit 4 performs the smoothing process according to, for example, the process of the Kalman filter. For example, the smoothing unit 4 receives information on a combination of the detection signal and the provisional target or the tracking target from the combination determination unit 3. Information on the combination of the detection signal and the provisional target or the tracking target includes correlation determination information. The correlation determination information is information indicating a result of determining a correlation between the detection signal and the provisional target or the tracking target.
  • the smoothing unit 4 sequentially specifies detection signals having a correlation with the provisional target or the tracking target based on the correlation determination information.
  • the smoothing unit 4 performs a smoothing process using the specified detection signal sequence and the initial smoothed value, and calculates a smoothed value in which errors in the distance and the Doppler velocity of the tentative target or the tracking target are smoothed.
  • the correlation determination information includes the degree to which the correlation between the detection signal determined by the combination determination unit 3 and the temporary target or the tracking target has been established.
  • the degree to which the correlation is established is, for example, the number of times the detection signal is included in the gate of the provisional target or the tracking target set by the combination determination unit 3 or the hypothesis about the combination of the detection signal and the provisional target or the tracking target. Is the degree of reliability.
  • the smoothing unit 4 stores the amplitude value of the received beam in the storage unit for each detection signal for which the combination with the target is determined by the combination determination unit 3.
  • This storage unit is a storage unit in which information can be written by the smoothing unit 4 and information can be read by the angle measurement unit 6.
  • the amplitude value of the received beam is adjacent to the received beam corresponding to the detected signal determined to be correlated with the tracking target, and has the same coordinates (distance) as the detected signal in the spectrum space of the range-Doppler velocity. And the Doppler velocity) of the detection signal having the same amplitude.
  • the determination unit 5 determines, from the sequence of detection signals having a time-series correlation, one based on the tracking target (step ST105). For example, based on the correlation determination information input from the smoothing unit 4, the determination unit 5 determines, from the sequence of the detection signals combined with the tentative target by the combination determination unit 3, the correlation between the detection signal combined with the tracking target and the correlation. Judge something. The provisional target having a correlation with the sequence of the detection signal combined with the tracking target is determined as the tracking target for which the tracking has been established.
  • the angle measurement unit 6 performs angle measurement processing for each tracking target by using the sequence of the detection signals determined to be correlated with the tracking target by the determination unit 5 (step ST106).
  • FIG. 6 is a diagram illustrating an outline of the angle measurement processing.
  • a range-Doppler velocity spectrum space 200a includes a detection signal 201a of a reception beam (k) combined with a tracking target.
  • the range-Doppler velocity spectrum space 200b includes a detection signal 201b corresponding to the reception beam (k + 1) adjacent to the reception beam (k) and having the same coordinates as the detection signal 201a.
  • the angle measuring unit 6 calculates a difference signal ⁇ between the amplitude value of the reception beam (k) of the detection signal 201a and the amplitude value of the reception beam (k + 1) of the detection signal 201b, and further calculates the sum signal ⁇ of both. .
  • the angle measurement unit 6 calculates the angle measurement value ⁇ k of the tracking target according to the following equation (6).
  • the angle measurement value ⁇ k is the azimuth of the tracking target.
  • the angle measurement coefficient k dsc is a slope of the amplitude angle characteristic when the difference signal ⁇ is normalized by the sum signal ⁇ .
  • ⁇ 0 is the center angle of the reception beam (k).
  • ⁇ / ⁇ is a discrete curve.
  • ⁇ k sin ⁇ 1 ⁇ k dsc ( ⁇ / ⁇ ) + sin ⁇ 0 ⁇ (6)
  • the angle measurement unit 6 uses the accumulated data of the angle measurement values corresponding to the series of the detection signals for which the combination with the tracking target has been determined by the combination determination unit 3 before the current observation time, using the following equation (7).
  • the initial value d ⁇ k of the azimuth angular velocity of the tracking target is calculated.
  • the angle measurement value ⁇ k ⁇ 1 is the angle measurement value of the tracking target at the observation time k ⁇ 1 one observation time before the observation time k, and ⁇ t is obtained between the observation time k and the observation time k ⁇ 1. This is the time difference between the detected detection signal and the smoothed time.
  • d ⁇ k ( ⁇ k ⁇ k ⁇ 1 ) / ⁇ t (7)
  • the angle smoothing unit 7 smoothes the angle measurement value calculated in the angle measurement processing of the angle measurement unit 6 (step ST107). For example, after the initial value d ⁇ k of the azimuth angular velocity is set, the angle smoothing unit 7 performs a smoothing process on the angle measurement value ⁇ k input from the angle measurement unit 6 according to the process of the Kalman filter. The smoothed value of the angle measurement value calculated by the angle smoothing unit 7 is output to the tracking target prediction unit 22. The tracking target predicting unit 22 calculates a predicted value of the center angle of the reception beam corresponding to the tracking target based on the smoothed value calculated by the angle smoothing unit 7.
  • step ST108 the combination determination unit 3 checks whether the target tracking processing has been completed (step ST108). If the process has ended (step ST108; YES), a series of processes shown in FIG. 5 ends. If the processing has not ended (step ST108; NO), the process returns to step ST101, and a series of processing from step ST101 is repeated.
  • the target distance and the Doppler velocity included in the detection signal having no correlation with the existing target are set in the smoothing unit 4 as initial smoothed values. For this reason, the target tracking device 1 does not need to set the initial smoothed value using the detection signals obtained at two different observation times as in the conventional target tracking device, and only needs to obtain the detection signal of two samples. The time until the tracking of the target is established can be shortened.
  • the angle measurement process is performed before the tracking target is determined.
  • the angle measurement unit 6 uses a sequence of the detection signals determined by the determination unit 5 to be correlated with the tracking target. The angle measurement process is performed for each tracking target. Since the target for which the angle measurement value should be calculated is limited to the tracking target, the calculation amount of the angle measurement processing can be reduced, and the processing time can be shortened.
  • the angle smoothing unit 7 smoothes the angle measurement value calculated by the angle measurement processing of the angle measurement unit 6.
  • the tracking target predicting unit 22 calculates the distance of the tracking target based on the distance of the tracking target and the smoothed value of the Doppler velocity calculated by the smoothing unit 4 and the smoothed value of the angle measurement value calculated by the angle smoothing unit 7. Further, a predicted value of the Doppler velocity and a predicted value of the center angle of the reception beam corresponding to the tracking target are calculated. This makes it possible to predict the receiving beam direction from which the tracking target detection signal is obtained.
  • FIG. FIG. 7 is a block diagram showing a configuration of a target tracking device 1A according to Embodiment 2.
  • the target tracking device 1A includes a prediction unit 2, a combination determination unit 3A, a smoothing unit 4, a determination unit 5, an angle measurement unit 6, and an angle smoothing unit 7.
  • the prediction unit 2 includes a provisional target prediction unit 21 and a tracking target prediction unit 22.
  • the combination determining unit 3A determines a combination of the detection signal and the provisional target according to which of the first gate and the second gate has the detection signal in the range-Doppler velocity spectrum space. decide.
  • the first gate is a gate in which the predicted value of the distance of the temporary target is set at the center of the gate.
  • the second gate is a gate whose range in the range direction is set at a speed exceeding the observable speed range of the radar.
  • the functions of the prediction unit 2, the combination determination unit 3A, the smoothing unit 4, the determination unit 5, the angle measurement unit 6, and the angle smoothing unit 7 are realized by dedicated hardware. It may be realized by software or firmware. Some of the functions of the prediction unit 2, the combination determination unit 3A, the smoothing unit 4, the determination unit 5, the angle measurement unit 6, and the angle smoothing unit 7 are partially realized by dedicated hardware, and partly realized by software or firmware. May be. As described above, the processing circuit can realize the above functions by hardware, software, firmware, or a combination thereof.
  • FIG. 8 is a flowchart illustrating a target tracking method according to the second embodiment. Steps ST101, ST102, and steps ST104 to ST108 shown in FIG. 8 are the same as those in FIG.
  • the combination determination unit 3A determines a combination of the tentative target and the detection signal and a combination of the tracking target and the detection signal based on the prediction value calculated by the prediction unit 2 (step ST103A).
  • FIG. 9 is an image diagram showing an outline of a gate used for determining a combination of a detection signal and a provisional target.
  • the combination determining unit 3A sets a first gate 301 and a second gate 302 as shown in FIG. 9 when determining the combination of the detection signal and the provisional target.
  • the first gate 301 is a gate whose gate center is a predicted value of the distance from the radar to the temporary target in the range-Doppler velocity spectrum space.
  • the detection signal 300 including the predicted value of the distance to the temporary target is included in the first gate 301.
  • the second gate 302 is a gate in which the range in the range direction is set at a speed exceeding the observable speed range of the radar in the spectrum space of the range-Doppler speed, and the center of the gate is a predicted value of the distance of the temporary target.
  • the second gate 302 Is defined by V max ⁇ t as shown in FIG.
  • the combination determination unit 3A sets the detection signal included in the first gate 301 and the detection signal included in the second gate 302 as a combination candidate with the provisional target.
  • the second gate 302 includes a detection signal in which the target moving speed v satisfies the relationship shown in the following equation (8) with respect to the observable speed range of the radar.
  • the right side indicates the observable speed range of the radar
  • the transmission wavelength of the radio wave by the radar is ⁇
  • TPRI is the pulse repetition period of the radar.
  • the combination determination unit 3A determines a temporal change between the target distance r k ⁇ 1 (p) included in the detection signal in the second gate 302 and the predicted value r k of the distance of the temporary target that is the gate center.
  • the Doppler velocity V k tilde is calculated according to the following equation (9) using the distance change rate of The combination determination unit 3A calculates the coordinates of the Doppler velocity V k tilde calculated according to the following equation (9) in the spectrum space of the range-Doppler velocity and the target Doppler velocity included in the detection signal as a candidate for combination with the temporary target.
  • the combination determining unit 3A determines that the predicted value of the distance of the temporary target is set at the gate center in the spectral space represented by the range and the Doppler velocity.
  • the detection signal and the tentative target are determined according to which of the one gate 301 and the second gate 302 whose range in the range direction is set at a speed exceeding the observable speed range of the radar. To determine the combination.
  • the second gate 302 it is possible to track a target moving at a speed exceeding the observable speed range of the radar.
  • the target tracking device can shorten the time until the tracking of the target is established, so that it can be used for a radar for observing a moving target such as a ship or an aircraft.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Provided is a target tracking device (1) comprising a prediction unit (2), a combination decision unit (3), a smoothing unit (4), and a determination unit (5). With respect to the smoothing unit (4), which is a tracking filter, a target distance contained in a detected signal and Doppler velocity are set as initial smoothing values.

Description

目標追尾装置および目標追尾方法Target tracking device and target tracking method
 本発明は、目標を追尾する目標追尾装置および目標追尾方法に関する。 The present invention relates to a target tracking device and a target tracking method for tracking a target.
 例えば、特許文献1には、北基準直交座標系における目標の位置および速度ベクトルで構成される目標の状態ベクトルと目標の運動モデルとに基づいて、目標の運動予測を行う目標追尾装置が記載されている。目標の運動予測は、レーダから送信された電波が目標で反射された反射信号がレーダによって受信されると、受信信号に基づいて目標のドップラ周波数の予測値が算出され、新たに得られた検出信号と予測値との相関に基づいて目標が追尾される。 For example, Patent Literature 1 describes a target tracking device that predicts the motion of a target based on a target state vector and a target motion model formed of a target position and a speed vector in a north reference rectangular coordinate system. ing. The motion prediction of the target is such that when a reflected signal of a radio wave transmitted from the radar reflected by the target is received by the radar, a predicted value of the target Doppler frequency is calculated based on the received signal, and the newly obtained detection is performed. The target is tracked based on the correlation between the signal and the predicted value.
 目標のドップラ周波数の予測値の算出には、追尾フィルタによって算出された検出信号の平滑値が必要である。追尾フィルタが北基準直交座標系の信号を処理対象とする場合、追尾フィルタには、異なる2つの観測時刻に得られた検出信号に含まれる目標の位置変化に基づいて決定された目標の速度ベクトルが、初期平滑値として設定される。 算出 The calculation of the predicted value of the target Doppler frequency requires a smoothed value of the detection signal calculated by the tracking filter. When the tracking filter processes a signal in the north reference rectangular coordinate system, the tracking filter includes a target velocity vector determined based on a change in target position included in detection signals obtained at two different observation times. Is set as the initial smoothed value.
特開2014-153088号公報JP-A-2014-153088
 特許文献1に記載された目標追尾装置では、異なる2つの観測時刻に得られた検出信号の目標の位置変化から決定された目標の速度ベクトルが、初期平滑値として追尾フィルタに設定されるまで、目標の追尾を確立できないという課題があった。 In the target tracking device described in Patent Literature 1, a target velocity vector determined from a target position change of a detection signal obtained at two different observation times is set as an initial smoothed value in the tracking filter. There was a problem that tracking of the target could not be established.
 本発明は上記課題を解決するものであって、目標の追尾が確立されるまでの時間を短縮することができる目標追尾装置および目標追尾方法を得ることを目的とする。 The present invention has been made to solve the above problems, and has as its object to provide a target tracking device and a target tracking method that can reduce the time until the tracking of a target is established.
 本発明に係る目標追尾装置は、予測部、組み合わせ決定部、平滑部および判定部を備える。予測部は、目標の距離およびドップラ速度の平滑値に基づいて、目標の距離およびドップラ速度の予測値を算出する。組み合わせ決定部は、予測部によって算出された予測値に基づいて、レーダの受信信号が信号処理されて得られた目標の距離およびドップラ速度を含む検出信号とこの検出信号が得られた目標との組み合わせを決定する。平滑部は、既存の目標と相関がない検出信号に含まれる目標の距離およびドップラ速度が初期平滑値に設定され、組み合わせ決定部によって組み合わせが決定された検出信号に含まれる目標の距離およびドップラ速度の平滑値を算出する。判定部は、時系列で相関がある検出信号の系列のうち、追尾対象の目標によるものを判定する。 目標 The target tracking device according to the present invention includes a prediction unit, a combination determination unit, a smoothing unit, and a determination unit. The prediction unit calculates predicted values of the target distance and the Doppler velocity based on the smoothed values of the target distance and the Doppler velocity. The combination determination unit is configured to determine, based on the predicted value calculated by the prediction unit, a detection signal including a target distance and a Doppler velocity obtained by performing signal processing on the radar reception signal and a target obtained by the detection signal. Determine the combination. The smoothing unit sets the target distance and the Doppler velocity included in the detection signal having no correlation with the existing target to an initial smoothed value, and the target distance and the Doppler velocity included in the detection signal whose combination is determined by the combination determination unit. Is calculated. The determination unit determines a target signal to be tracked from a sequence of detection signals having a time-series correlation.
 本発明によれば、平滑部に対して既存の目標と相関がない検出信号に含まれる目標の距離およびドップラ速度が初期平滑値に設定されるので、従来のように、異なる2つの観測時刻に得られた検出信号を用いて初期平滑値を設定する必要がない。これにより、これらの検出信号を得る時間だけ目標の追尾が確立されるまでの時間を短縮することができる。 According to the present invention, the target distance and the Doppler velocity included in the detection signal having no correlation with the existing target with respect to the smoothing unit are set to the initial smoothed value. There is no need to set an initial smoothing value using the obtained detection signal. As a result, it is possible to shorten the time until the tracking of the target is established by the time for obtaining these detection signals.
実施の形態1に係る目標追尾装置の構成を示すブロック図である。FIG. 2 is a block diagram illustrating a configuration of a target tracking device according to Embodiment 1. 実施の形態1に係る目標追尾装置で扱われるレーダの受信信号の信号処理の流れを示す図である。FIG. 3 is a diagram showing a flow of signal processing of a received signal of a radar handled by the target tracking device according to the first embodiment. レンジとドップラ速度とで表されるスペクトル空間を示す図である。FIG. 3 is a diagram illustrating a spectrum space represented by a range and a Doppler velocity. 図4Aは、実施の形態1に係る目標追尾装置の機能を実現するハードウェアの構成を示すブロック図である。図4Bは、実施の形態1に係る目標追尾装置の機能を実現するソフトウェアを実行するハードウェアの構成を示すブロック図である。FIG. 4A is a block diagram illustrating a configuration of hardware that implements the function of the target tracking device according to the first embodiment. FIG. 4B is a block diagram illustrating a configuration of hardware that executes software for realizing the function of the target tracking device according to Embodiment 1. 実施の形態1に係る目標追尾方法を示すフローチャートである。5 is a flowchart illustrating a target tracking method according to the first embodiment. 実施の形態1における測角処理の概要を示す図である。FIG. 3 is a diagram illustrating an outline of angle measurement processing according to the first embodiment. 実施の形態2に係る目標追尾装置の構成を示すブロック図である。FIG. 9 is a block diagram illustrating a configuration of a target tracking device according to a second embodiment. 実施の形態2に係る目標追尾方法を示すフローチャートである。9 is a flowchart illustrating a target tracking method according to the second embodiment. 検出信号と仮目標との組み合わせの決定に使用されるゲートの概要を示すイメージ図である。It is an image figure showing the outline of the gate used for determining the combination of a detection signal and a temporary target.
実施の形態1.
 図1は、実施の形態1に係る目標追尾装置1の構成を示すブロック図である。図2は、目標追尾装置1で扱われるレーダの受信信号の信号処理の流れを示す図である。図3は、レンジとドップラ速度とで表されるスペクトル空間を示す図である。目標追尾装置1は、図2に示すようにレーダの受信信号を信号処理して得られた検出信号に基づいて、目標を追尾する。上記検出信号は、レンジとドップラ速度によって表される、図3に示すレンジ-ドップラ速度のスペクトル空間の座標を有する。
Embodiment 1 FIG.
FIG. 1 is a block diagram illustrating a configuration of a target tracking device 1 according to the first embodiment. FIG. 2 is a diagram illustrating a flow of signal processing of a received signal of a radar handled by the target tracking device 1. FIG. 3 is a diagram illustrating a spectrum space represented by a range and a Doppler velocity. The target tracking device 1 tracks a target based on a detection signal obtained by performing signal processing on a radar reception signal as shown in FIG. The detection signal has the coordinates of the range-Doppler velocity spectral space shown in FIG. 3, represented by the range and the Doppler velocity.
 図2において、レーダは、例えば、送信した電波が目標で反射された反射信号をn個の素子アンテナで受信する。nは2以上の正の自然数である。レーダに設けられた信号処理装置は、素子アンテナごとの受信CH(1)から受信CH(n)までの受信信号に対して1次FFT(高速フーリエ変換)を行う。1次FFT処理において、上記信号処理装置が受信信号をFFTすることで、目標の距離を示すデータが求められる。 In FIG. 2, the radar receives, for example, a reflected signal of a transmitted radio wave reflected by a target by using n element antennas. n is a positive natural number of 2 or more. The signal processing device provided in the radar performs a first-order FFT (fast Fourier transform) on the reception signals from the reception CH (1) to the reception CH (n) for each element antenna. In the primary FFT processing, data indicating the target distance is obtained by performing an FFT on the received signal by the signal processing device.
 DBF(デジタルビーム形成)において、上記信号処理装置が受信CH(1)から受信CH(n)の目標の距離を示すデータに対してDBF処理を行うことにより、互いに方位が異なる受信ビーム(1)から受信ビーム(m)が形成される。mは2以上の正の自然数である。2次FFT処理において、上記信号処理装置が受信ビーム(1)から受信ビーム(m)までの信号をFFTすることで、目標の距離ごとのドップラ速度が求められる。 In DBF (Digital Beam Forming), the signal processing apparatus performs DBF processing on data indicating a target distance from the reception CH (1) to the reception CH (n), thereby receiving beams (1) having different directions from each other. From the reception beam (m). m is a positive natural number of 2 or more. In the second-order FFT processing, the signal processor performs FFT on signals from the reception beam (1) to the reception beam (m), thereby obtaining a Doppler velocity for each target distance.
 CFAR(Constant False Alarm Rate)処理において、上記信号処理装置は、2次FFTまでの信号処理を行った信号から、信号強度が一定の閾値を超える信号を自動検出する。自動検出された検出信号には、目標の距離およびドップラ速度に加えて、この検出信号が得られた受信信号の受信ビームを識別する受信ビーム番号と、この受信信号の信号強度が含まれる。なお、受信ビーム番号は、受信ビームごとに付与された識別番号である。 In the CFAR (Constant False Alarm Rate) process, the signal processing device automatically detects a signal having a signal strength exceeding a certain threshold from the signal processed up to the second FFT. The automatically detected detection signal includes, in addition to the target distance and the Doppler velocity, a reception beam number for identifying the reception beam of the reception signal from which the detection signal was obtained, and the signal strength of the reception signal. The reception beam number is an identification number assigned to each reception beam.
 受信ビーム(1)から受信ビーム(m)までの検出信号は、上記信号処理装置から目標追尾装置1に入力される。目標追尾装置1では、検出信号を用いて目標の追尾処理および測角処理が行われる。目標追尾装置1によって算出された追尾目標の航跡を示す信号は、例えば、北基準直交座標系の信号に変換されてユーザに提示される。 The detection signals from the reception beam (1) to the reception beam (m) are input to the target tracking device 1 from the signal processing device. The target tracking device 1 performs a target tracking process and an angle measurement process using the detection signal. The signal indicating the track of the tracking target calculated by the target tracking device 1 is, for example, converted into a signal in the north reference rectangular coordinate system and presented to the user.
 このように、目標追尾装置1は、目標の追尾処理および測角処理において、従来の目標追尾装置のように、検出信号を北基準直交座標系の信号に変換しないので、目標の速度の初期平滑値を算出するための2サンプルの検出信号が不要である。これにより、目標追尾装置1では、これらの検出信号を検出する時間だけ目標の追尾が確立されるまでの時間を短縮することができる。 As described above, the target tracking device 1 does not convert the detection signal into a signal of the north reference rectangular coordinate system unlike the conventional target tracking device in the target tracking process and the angle measurement process, and thus the initial smoothing of the target speed is performed. There is no need for a two-sample detection signal for calculating the value. Thus, the target tracking device 1 can reduce the time required for the target tracking to be established by the time for detecting these detection signals.
 なお、下記参考文献に記載される従来の目標追尾装置では、一度の観測で得られた目標の検出信号に含まれる目標の位置ベクトルと速度変化に基づいて、目標の速度ベクトルの初期値を決定し、追尾フィルタの初期値として設定している。しかしながら、目標の速度変化を含む検出信号を、分散配置された2局以上の受信局で観測する必要がある。
 これに対して、目標追尾装置1は、目標の速度の初期平滑値として検出信号に含まれるドップラ速度を利用するので、一つの受信局によって得られた検出信号に基づいて目標を追尾することが可能である。
(参考文献)M. Jabbarian, “Target Tracking in Pulse-Doppler MIMO Radar by Extended Kalman Filter Using Velocity Vector,” 20th Iranian Conference on Electrical Engineering, (ICEE2012), May 15-17, 2012, Tehran, Iran.
In the conventional target tracking device described in the following reference, the initial value of the target speed vector is determined based on the target position vector and the speed change included in the target detection signal obtained by one observation. Then, it is set as the initial value of the tracking filter. However, it is necessary to observe a detection signal including a target speed change at two or more receiving stations distributed.
On the other hand, since the target tracking device 1 uses the Doppler speed included in the detection signal as the initial smoothed value of the target speed, the target tracking device 1 can track the target based on the detection signal obtained by one receiving station. It is possible.
(Reference) M. Jabbarian, “Target Tracking in Pulse-Doppler MIMO Radar by Extended Kalman Filter Using Velocity Vector,” 20th Iranian Conference on Electrical Engineering, (ICEE2012), May 15-17, 2012, Tehran, Iran.
 以降の説明において、実施の形態1における目標には、仮目標および追尾目標がある。仮目標は、判定部5によって追尾目標であると判定されていない追尾目標の候補であり、CFARで自動検出された検出信号の系列である。検出信号の系列は、時系列で相関がある検出信号の系列である。追尾目標は、追尾が確立した追尾対象の目標であり、仮目標である追尾目標の候補のうち、判定部5によって追尾目標であると判定された候補に対応する検出信号の系列である。追尾が確立した状態とは、時系列で相関がある検出信号の系列で表される航跡に追尾目標の存在が確定された状態である。従って、仮目標では、追尾が確立していない。 In the following description, the targets in the first embodiment include a provisional target and a tracking target. The temporary target is a candidate for a tracking target that has not been determined by the determination unit 5 to be a tracking target, and is a sequence of detection signals automatically detected by the CFAR. The detection signal sequence is a detection signal sequence having a time-series correlation. The tracking target is a target of the tracking target for which the tracking has been established, and is a sequence of detection signals corresponding to the candidates determined to be the tracking targets by the determination unit 5 among the candidates of the tracking targets that are temporary targets. The state in which tracking is established is a state in which the existence of a tracking target is determined in a track represented by a sequence of detection signals having a time-series correlation. Therefore, tracking is not established with the provisional target.
 目標追尾装置1は、図1に示すように、予測部2、組み合わせ決定部3、平滑部4、判定部5、測角部6および角度平滑部7を備える。予測部2は、仮目標用予測部21および追尾目標用予測部22を備える。なお、図1には、目標追尾装置1が測角部6および角度平滑部7を備える構成を示したが、測角部6および角度平滑部7は、目標追尾装置1とは別に設けられた装置が備える構成要素であってもよい。例えば、目標追尾装置1とは別に設けられた上記信号処理装置が、測角部6および角度平滑部7を備えてもよい。 The target tracking device 1 includes a predicting unit 2, a combination determining unit 3, a smoothing unit 4, a determining unit 5, an angle measuring unit 6, and an angle smoothing unit 7, as shown in FIG. The prediction unit 2 includes a provisional target prediction unit 21 and a tracking target prediction unit 22. Although FIG. 1 shows a configuration in which the target tracking device 1 includes the angle measuring unit 6 and the angle smoothing unit 7, the angle measuring unit 6 and the angle smoothing unit 7 are provided separately from the target tracking device 1. It may be a component included in the device. For example, the signal processing device provided separately from the target tracking device 1 may include the angle measuring unit 6 and the angle smoothing unit 7.
 予測部2は、目標の距離およびドップラ速度の平滑値に基づいて、目標についての距離およびドップラ速度の予測値を算出する。仮目標用予測部21は、仮目標の距離およびドップラ速度の平滑値に基づいて、仮目標の距離およびドップラ速度の予測値を算出する。追尾目標用予測部22は、追尾目標の距離およびドップラ速度の平滑値に基づいて、追尾目標の距離およびドップラ速度の予測値を算出する。 The prediction unit 2 calculates a predicted value of the distance and the Doppler velocity for the target based on the smoothed values of the target distance and the Doppler velocity. The provisional target predicting unit 21 calculates predicted values of the provisional target distance and the Doppler velocity based on the smoothed values of the provisional target distance and the Doppler velocity. The tracking target predicting unit 22 calculates a predicted value of the tracking target distance and the Doppler velocity based on the smoothed values of the tracking target distance and the Doppler velocity.
 組み合わせ決定部3は、予測部2によって算出された予測値に基づいて、仮目標と検出信号との組み合わせと、追尾目標と検出信号との組み合わせとを決定する。
 例えば、組み合わせ決定部3は、仮目標用予測部21によって算出された仮目標の距離およびドップラ速度の予測値と当該予測値の誤差とに基づいて、仮目標についてのゲートを設定する。続いて、組み合わせ決定部3は、レーダの受信信号を信号処理して得られた検出信号が上記ゲート内に含まれるか否かを判定し、上記ゲート内に含まれる検出信号と仮目標との組み合わせを決定する。
The combination determining unit 3 determines a combination of the tentative target and the detection signal and a combination of the tracking target and the detection signal based on the predicted value calculated by the prediction unit 2.
For example, the combination determination unit 3 sets a gate for the provisional target based on the prediction value of the distance and the Doppler velocity of the provisional target calculated by the provisional target prediction unit 21 and the error of the prediction value. Subsequently, the combination determining unit 3 determines whether or not the detection signal obtained by performing signal processing on the radar reception signal is included in the gate, and determines whether the detection signal included in the gate and the provisional target are included. Determine the combination.
 組み合わせ決定部3は、追尾目標用予測部22によって算出された追尾目標の距離およびドップラ速度の予測値と受信ビームの中心角度の予測値とこれらの予測値の誤差とに基づいて、追尾目標についてのゲートを設定する。続いて、組み合わせ決定部3は、レーダの受信信号を信号処理して得られた検出信号が上記ゲート内に含まれるか否かを判定し、上記ゲート内に含まれる検出信号と追尾目標との組み合わせを決定する。 The combination determining unit 3 determines the tracking target based on the distance and Doppler velocity predicted value of the tracking target calculated by the tracking target predicting unit 22, the predicted value of the center angle of the received beam, and an error between these predicted values. Set the gate. Subsequently, the combination determination unit 3 determines whether or not the detection signal obtained by performing signal processing on the radar reception signal is included in the gate, and determines whether the detection signal included in the gate and the tracking target are included. Determine the combination.
 レーダの受信信号を信号処理して得られた検出信号が仮目標のゲートおよび追尾目標のゲートのいずれにも含まれない場合、この検出信号は、既存の目標と相関がない検出信号である。組み合わせ決定部3は、この検出信号に含まれる目標の距離およびドップラ速度を、初期平滑値として平滑部4に設定する。 If the detection signal obtained by performing signal processing on the radar received signal is not included in any of the provisional target gate and the tracking target gate, the detection signal is a detection signal having no correlation with the existing target. The combination determining unit 3 sets the target distance and the Doppler velocity included in the detection signal in the smoothing unit 4 as an initial smoothed value.
 平滑部4は、検出信号の平滑処理を開始するときに、既存の目標と相関がない検出信号に含まれる目標の距離およびドップラ速度が初期平滑値に設定され、組み合わせ決定部3によって組み合わせが決定された検出信号に含まれる、目標の距離およびドップラ速度の平滑値を算出する。例えば、平滑部4は、初期平滑値が設定されると、カルマンフィルタの処理に従った平滑処理を実行する。 When starting the smoothing processing of the detection signal, the smoothing unit 4 sets the target distance and the Doppler velocity included in the detection signal having no correlation with the existing target to the initial smoothed values, and the combination determination unit 3 determines the combination. A smoothed value of the target distance and the Doppler velocity included in the detected signal is calculated. For example, when the initial smoothing value is set, the smoothing unit 4 executes a smoothing process according to the process of the Kalman filter.
 判定部5は、時系列で相関がある検出信号の系列のうち、追尾目標によるものを判定する。例えば、判定部5は、仮目標との組み合わせが決定された検出信号の系列のうち、追尾目標との組み合わせが決定された検出信号との相関が成立した回数が一定閾値を超える検出信号の系列を、追尾目標によるものと判定する。 The determination unit 5 determines a sequence based on a tracking target from a sequence of detection signals having a time-series correlation. For example, the determination unit 5 determines, among a series of detection signals determined to be combined with the tentative target, a series of detection signals whose number of times of correlation with the detected signal determined to be combined with the tracking target exceeds a certain threshold value. Is determined to be based on the tracking target.
 測角部6は、判定部5によって追尾目標によるものと判定された検出信号の系列を用いて追尾目標ごとに測角処理を行う。例えば、測角部6は、追尾目標による検出信号の系列と検出信号の系列に関連する受信ビームの振幅値の蓄積データとを用いて、測角値を算出する。なお、測角値は、例えば、追尾目標の方位角である。 The angle measurement unit 6 performs angle measurement processing for each tracking target using the sequence of the detection signals determined by the determination unit 5 to be based on the tracking target. For example, the angle measurement unit 6 calculates an angle measurement value using a sequence of the detection signal based on the tracking target and accumulated data of the amplitude value of the reception beam related to the sequence of the detection signal. The angle measurement value is, for example, the azimuth of the tracking target.
 なお、上記受信ビームの振幅値は、追尾目標と相関があると判定された検出信号に対応する受信ビームに隣接し、かつ、レンジ-ドップラ速度のスペクトル空間において、上記検出信号と同一の座標(距離およびドップラ速度)を有した検出信号の受信ビームの振幅値である。 Note that the amplitude value of the reception beam is adjacent to the reception beam corresponding to the detection signal determined to be correlated with the tracking target and has the same coordinates (in the spectrum space of the range-Doppler velocity) as the detection signal. (A distance and a Doppler velocity).
 さらに、測角部6は、追尾目標の移動によって変化する方位角の角速度(以下、方位角速度と記載する)の初期値を算出する。測角部6によって算出された測角値および方位角速度の初期値は、角度平滑部7に出力される。 角 Furthermore, the angle measurement unit 6 calculates an initial value of an angular velocity of an azimuth angle (hereinafter, referred to as an azimuth angular velocity) that changes with movement of the tracking target. The angle measurement value and the initial value of the azimuth angular velocity calculated by the angle measurement unit 6 are output to the angle smoothing unit 7.
 角度平滑部7は、測角部6から入力した測角値および方位角速度の初期値に基づいて、測角値の測角誤差を平滑した平滑値を算出する。例えば、角度平滑部7は、方位角速度の初期値が設定されると、測角部6から入力した測角値に対し、カルマンフィルタの処理に従った平滑処理を行う。角度平滑部7によって算出された測角値の平滑値は、追尾目標用予測部22に出力される。 The angle smoothing unit 7 calculates a smoothed value obtained by smoothing an angle measurement error of the angle measurement value based on the angle measurement value input from the angle measurement unit 6 and the initial value of the azimuth angular velocity. For example, when the initial value of the azimuth angular velocity is set, the angle smoothing unit 7 performs a smoothing process on the angle measurement value input from the angle measurement unit 6 according to the Kalman filter process. The smoothed value of the angle measurement value calculated by the angle smoothing unit 7 is output to the tracking target prediction unit 22.
 追尾目標用予測部22は、平滑部4によって算出された検出信号の平滑値と角度平滑部7によって算出された測角値の平滑値とに基づいて、追尾目標の距離およびドップラ速度の予測値を算出し、さらに、追尾目標の検出信号に対応する受信ビームの中心角度の予測値を算出する。追尾目標の距離およびドップラ速度の予測値と、受信ビームの中心角度の予測値とは、追尾目標用予測部22から組み合わせ決定部3に出力される。 The tracking target predicting unit 22 predicts the distance of the tracking target and the Doppler velocity based on the smoothed value of the detection signal calculated by the smoothing unit 4 and the smoothed value of the angle measurement value calculated by the angle smoothing unit 7. , And a predicted value of the center angle of the reception beam corresponding to the detection signal of the tracking target is calculated. The predicted value of the distance and Doppler velocity of the tracking target and the predicted value of the center angle of the received beam are output from the tracking target predicting unit 22 to the combination determining unit 3.
 次に、目標追尾装置1の機能を実現するハードウェア構成について説明する。
 目標追尾装置1における、予測部2、組み合わせ決定部3、平滑部4、判定部5、測角部6および角度平滑部7の機能は、処理回路によって実現される。すなわち、目標追尾装置1は、図5を用いて後述するステップST101からステップST108までの処理を実行するための処理回路を備える。処理回路は、専用のハードウェアであってもよいが、メモリに記憶されたプログラムを実行するCPU(Central Processing Unit)であってもよい。
Next, a hardware configuration for realizing the function of the target tracking device 1 will be described.
The functions of the prediction unit 2, the combination determination unit 3, the smoothing unit 4, the determination unit 5, the angle measurement unit 6, and the angle smoothing unit 7 in the target tracking device 1 are realized by a processing circuit. That is, the target tracking device 1 includes a processing circuit for executing processing from step ST101 to step ST108 described later with reference to FIG. The processing circuit may be dedicated hardware, or may be a CPU (Central Processing Unit) that executes a program stored in the memory.
 図4Aは、目標追尾装置1の機能を実現するハードウェアの構成を示すブロック図である。図4Bは、目標追尾装置1の機能を実現するソフトウェアを実行するハードウェアの構成を示すブロック図である。図4Aおよび図4Bにおいて、インタフェース100は、図2に示した信号処理を行うレーダとの間でやり取りされる信号を中継するインタフェースである。 FIG. 4A is a block diagram showing a configuration of hardware for realizing the function of the target tracking device 1. FIG. 4B is a block diagram illustrating a configuration of hardware that executes software for realizing the function of the target tracking device 1. 4A and 4B, an interface 100 is an interface that relays signals exchanged with the radar that performs the signal processing illustrated in FIG.
 処理回路が、図4Aに示す専用のハードウェアの処理回路101である場合、処理回路101は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、または、これらを組み合わせたものが該当する。目標追尾装置1における、予測部2、組み合わせ決定部3、平滑部4、判定部5、測角部6および角度平滑部7の機能を、別々の処理回路で実現してもよく、これらの機能をまとめて1つの処理回路で実現してもよい。 When the processing circuit is the processing circuit 101 of dedicated hardware illustrated in FIG. 4A, the processing circuit 101 may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, or an ASIC (Application \ Specific \ Integrated). (Circuit), FPGA (Field-Programmable Gate Array), or a combination thereof. The functions of the prediction unit 2, the combination determination unit 3, the smoothing unit 4, the determination unit 5, the angle measurement unit 6, and the angle smoothing unit 7 in the target tracking device 1 may be realized by separate processing circuits. May be realized by one processing circuit.
 処理回路が、図4Bに示すプロセッサ102である場合に、目標追尾装置1における、予測部2、組み合わせ決定部3、平滑部4、判定部5、測角部6および角度平滑部7の機能は、ソフトウェア、ファームウェアまたはソフトウェアとファームウェアとの組み合わせによって実現される。なお、ソフトウェアまたはファームウェアは、プログラムとして記述されてメモリ103に記憶される。 When the processing circuit is the processor 102 illustrated in FIG. 4B, the functions of the prediction unit 2, the combination determination unit 3, the smoothing unit 4, the determination unit 5, the angle measurement unit 6, and the angle smoothing unit 7 in the target tracking device 1 , Software, firmware or a combination of software and firmware. The software or firmware is described as a program and stored in the memory 103.
 プロセッサ102は、メモリ103に記憶されたプログラムを読み出して実行することによって、目標追尾装置1における、予測部2、組み合わせ決定部3、平滑部4、判定部5、測角部6および角度平滑部7の機能を実現する。すなわち、目標追尾装置1は、プロセッサ102によって実行されるときに後述する図5に示すステップST101からステップST108までの処理が結果的に実行されるプログラムを記憶するためのメモリ103を備える。 The processor 102 reads out and executes the program stored in the memory 103 to thereby execute the prediction unit 2, the combination determination unit 3, the smoothing unit 4, the determination unit 5, the angle measurement unit 6, and the angle smoothing unit in the target tracking device 1. 7 functions are realized. That is, the target tracking device 1 includes a memory 103 for storing a program that, when executed by the processor 102, results in steps ST101 to ST108 shown in FIG.
 これらのプログラムは、予測部2、組み合わせ決定部3、平滑部4、判定部5、測角部6および角度平滑部7の手順または方法をコンピュータに実行させる。メモリ103は、コンピュータを、予測部2、組み合わせ決定部3、平滑部4、判定部5、測角部6および角度平滑部7として機能させるためのプログラムが記憶されたコンピュータ可読記憶媒体であってもよい。 These programs cause the computer to execute the procedures or methods of the prediction unit 2, the combination determination unit 3, the smoothing unit 4, the determination unit 5, the angle measurement unit 6, and the angle smoothing unit 7. The memory 103 is a computer-readable storage medium storing a program for causing a computer to function as the prediction unit 2, the combination determination unit 3, the smoothing unit 4, the determination unit 5, the angle measurement unit 6, and the angle smoothing unit 7. Is also good.
 メモリ103には、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically-EPROM)などの不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVDなどが該当する。 The memory 103 includes, for example, a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Memory), a nonvolatile semiconductor memory such as an EEPROM (Electrically-EROM) or the like. A magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, a DVD, and the like are applicable.
 予測部2、組み合わせ決定部3、平滑部4、判定部5、測角部6および角度平滑部7の機能について一部を専用のハードウェアで実現し、一部をソフトウェアまたはファームウェアで実現してもよい。例えば、予測部2、組み合わせ決定部3、平滑部4および判定部5は専用のハードウェアである処理回路101で機能を実現し、測角部6および角度平滑部7は、プロセッサ102がメモリ103に記憶されたプログラムを読み出して実行することによって機能を実現する。このように、処理回路は、ハードウェア、ソフトウェア、ファームウェアまたはこれらの組み合わせにより上記機能を実現することができる。 Some of the functions of the prediction unit 2, the combination determination unit 3, the smoothing unit 4, the determination unit 5, the angle measurement unit 6, and the angle smoothing unit 7 are partially realized by dedicated hardware, and partly realized by software or firmware. Is also good. For example, the prediction unit 2, the combination determination unit 3, the smoothing unit 4, and the determination unit 5 realize their functions by a processing circuit 101 that is dedicated hardware, and the angle measurement unit 6 and the angle smoothing unit 7 A function is realized by reading and executing the program stored in the. As described above, the processing circuit can realize the above functions by hardware, software, firmware, or a combination thereof.
 次に動作について説明する。
 図5は、実施の形態1に係る目標追尾方法を示すフローチャートである。
 以降の説明において、追尾フィルタである平滑部4によって推定される、観測時刻kにおける目標の状態ベクトルをxとする。状態ベクトルxは、下記式(1)に示すように、観測時刻kまでのレーダから目標までの距離の平滑値rおよび目標のドップラ速度の平滑値Vを要素として含むベクトルである。観測時刻kの検出信号の観測値ベクトルをzとする。観測ベクトルzは、下記式(2)に示すように、観測時刻kにおける、レーダから目標までの距離r0,k、目標のドップラ速度V0,k、受信ビームの振幅値vm,k、および受信ビーム番号bm,kを、要素として含むベクトルである。下記式(1)および(2)において、Tは、行列の転置を表している。
=[r V              ・・・(1)
=[r0,k V0,k vm,k bm,k    ・・・(2)
Next, the operation will be described.
FIG. 5 is a flowchart illustrating the target tracking method according to the first embodiment.
In the following description, are estimated by the smoothing unit 4 is tracking filter, the target state vector at the measurement time k and x k. The state vector x k is a vector including the smoothed value rk of the distance from the radar to the target up to the observation time k and the smoothed value V k of the target Doppler velocity as elements as shown in the following equation (1). Let the observation value vector of the detection signal at the observation time k be z k . Observation vector z k, as shown in the following formula (2), in the observation time k, a distance r 0 from the radar to the target, k, the Doppler velocity V 0 which target, k, of the receive beam amplitude values v m, k , And the reception beam number b m, k as an element. In the following equations (1) and (2), T represents transposition of a matrix.
x k = [r k V k ] T (1)
z k = [r 0, k V 0, k v m, k b m, k ] T (2)
 組み合わせ決定部3は、上記信号処理装置から検出信号を入力する(ステップST101)。検出信号には、目標の距離およびドップラ速度と、受信ビーム番号と、信号強度とが含まれる。予測部2は、平滑部4によって算出された検出信号の平滑値に基づいた予測処理を行うことで、仮目標または追尾目標の距離およびドップラ速度の予測値を算出する(ステップST102)。例えば、予測部2は、組み合わせ決定部3が上記信号処理装置から検出信号を取得した取得時刻と、ステップST104において平滑部4によって算出された検出信号の平滑時刻との時刻差Δtに基づいて、上記検出信号の取得時刻における目標の距離およびドップラ速度の予測値を算出する。 (4) The combination determination unit 3 inputs a detection signal from the signal processing device (step ST101). The detection signal includes a target distance and a Doppler velocity, a reception beam number, and a signal strength. The prediction unit 2 calculates a predicted value of the distance and the Doppler velocity of the provisional target or the tracking target by performing a prediction process based on the smoothed value of the detection signal calculated by the smoothing unit 4 (step ST102). For example, the prediction unit 2 calculates a time difference Δt between the acquisition time at which the combination determination unit 3 acquires the detection signal from the signal processing device and the smoothed time of the detection signal calculated by the smoothing unit 4 in step ST104. A predicted value of the target distance and the Doppler velocity at the time of acquisition of the detection signal is calculated.
 予測値の算出処理において、目標が仮目標または追尾目標であるかに応じて異なる内容の処理が行われる。例えば、仮目標用予測部21は、ステップST104において平滑部4によって算出された目標の距離の平滑値rとドップラ速度の平滑値Vとを用いて、下記式(3)に従い、仮目標の距離の予測値rk+1およびドップラ速度の予測値Vk+1を算出する。なお、予測値の算出処理で使用される平滑値は、同一の受信ビーム番号を含む検出信号の平滑値である。
Figure JPOXMLDOC01-appb-I000001
In the process of calculating the predicted value, processing having different contents is performed depending on whether the target is a provisional target or a tracking target. For example, for the tentative target prediction unit 21 uses a smoothing value V k smoothed value r k and the Doppler velocity of the distance of the calculated target by the smoothing unit 4 at step ST 104, according to the following formula (3), the temporary target calculating a predicted value r k + 1 and the predicted values V k + 1 of the Doppler velocity of the distance. The smoothed value used in the process of calculating the predicted value is a smoothed value of a detection signal including the same reception beam number.
Figure JPOXMLDOC01-appb-I000001
 追尾目標用予測部22は、ステップST104において平滑部4により算出された検出信号の平滑値を用いて、上記式(3)に従い、追尾目標の距離およびドップラ速度の予測値を算出する。さらに、追尾目標用予測部22は、ステップST107において角度平滑部7により算出された角度平滑値を用いて、下記式(4)に従い、受信ビームの中心角度の予測値を算出する。下記式(4)において、θは、観測時刻kにおける方位角(測角値)である。dθは、観測時刻kまでの測角誤差が平滑された方位角速度の初期平滑値であり、ステップST107において角度平滑部7によって算出される。θk+1は、観測時刻kよりも1観測時刻経過した後の観測時刻k+1における、方位角の予測値であり、dθk+1は、観測時刻k+1における方位角速度の予測値である。受信ビームの中心角度の予測値は、予測値θk+1と予測値dθk+1によって決定される。
Figure JPOXMLDOC01-appb-I000002
Using the smoothed value of the detection signal calculated by the smoothing unit 4 in step ST104, the tracking target predicting unit 22 calculates a predicted value of the tracking target distance and the Doppler velocity according to the above equation (3). Further, the tracking target predicting unit 22 calculates a predicted value of the center angle of the received beam according to the following equation (4) using the angle smoothed value calculated by the angle smoothing unit 7 in step ST107. In the following equation (4), θ k is the azimuth (angle measurement value) at the observation time k. dθ k is an initial smoothed value of the azimuth angular velocity in which the angle measurement error up to the observation time k has been smoothed, and is calculated by the angle smoothing unit 7 in step ST107. θ k + 1 is the predicted value of the azimuth angle at the observation time k + 1 one observation time after the observation time k, and dθ k + 1 is the predicted value of the azimuth angular velocity at the observation time k + 1. The predicted value of the center angle of the reception beam is determined by the predicted value θ k + 1 and the predicted value dθ k + 1 .
Figure JPOXMLDOC01-appb-I000002
 なお、ステップST102に最初に移行した段階では、ステップST103以降の処理が実行されておらず、予測部2は、ステップST104において平滑部4によって算出される検出信号の平滑値と、ステップST107において角度平滑部7によって算出される角度平滑値が得られない。このとき、予測部2は、前述したような予測処理を実行せず、目標追尾装置1の処理は、ステップST103に移行する。 Note that at the stage where the process first proceeds to step ST102, the processes after step ST103 are not executed, and the prediction unit 2 determines the smoothed value of the detection signal calculated by the smoothing unit 4 in step ST104 and the angle in step ST107. The angle smoothing value calculated by the smoothing unit 7 cannot be obtained. At this time, the prediction unit 2 does not perform the above-described prediction processing, and the processing of the target tracking device 1 proceeds to step ST103.
 組み合わせ決定部3は、ステップST102において算出された仮目標または追尾目標の距離およびドップラ速度の予測値と、ステップST101において入力された検出信号とを用いて、検出信号とこの検出信号が得られた仮目標または追尾目標との組み合わせを決定する(ステップST103)。組み合わせの決定処理において、目標が仮目標または追尾目標であるかに応じて異なるゲートが設定される。 The combination determination unit 3 obtains a detection signal and the detection signal using the predicted value of the distance and the Doppler velocity of the provisional target or the tracking target calculated in step ST102 and the detection signal input in step ST101. A combination with the provisional target or the tracking target is determined (step ST103). In the combination determination process, different gates are set depending on whether the target is a provisional target or a tracking target.
 例えば、組み合わせ決定部3は、仮目標用予測部21によって算出された仮目標の距離およびドップラ速度の予測値とこれらの予測値の誤差とに基づいて、レンジ-ドップラ速度のスペクトル空間にゲートを設定する。続いて、組み合わせ決定部3は、レーダの受信信号を信号処理して得られた検出信号のうち、上記ゲート内に含まれる検出信号を、仮目標の検出信号と相関があると判定し、この検出信号と仮目標とを組み合わせる。
 組み合わせの決定処理で使用される検出信号は、同一の受信ビーム番号を含む検出信号である。すなわち、組み合わせは、同一の受信ビーム番号ごとに決定される。
For example, the combination determination unit 3 sets a gate in the range-Doppler velocity spectrum space based on the predicted values of the distance and the Doppler velocity of the provisional target calculated by the provisional target prediction unit 21 and an error between these predicted values. Set. Subsequently, the combination determination unit 3 determines, among the detection signals obtained by performing signal processing on the radar reception signal, the detection signal included in the gate as having a correlation with the provisional target detection signal. The detection signal and the provisional target are combined.
The detection signals used in the combination determination processing are detection signals including the same reception beam number. That is, the combination is determined for each identical reception beam number.
 さらに、組み合わせ決定部3は、追尾目標用予測部22によって算出された追尾目標の距離およびドップラ速度の予測値と受信ビームの中心角度の予測値と、これらの予測値の誤差とに基づいて、レンジ-ドップラ速度のスペクトル空間にゲートを設定する。続いて、組み合わせ決定部3は、上記ゲート内に含まれる検出信号を追尾目標の検出信号と相関があると判定し、この検出信号と追尾目標とを組み合わせる。組み合わせ決定部3は、予測された受信ビーム方向に対応する検出信号について追尾目標との組み合わせを決定する。 Further, the combination determination unit 3 calculates the distance and the Doppler velocity of the tracking target calculated by the tracking target prediction unit 22, the predicted value of the center angle of the received beam, and an error between these predicted values. Set a gate in the range-Doppler velocity spectral space. Subsequently, the combination determination unit 3 determines that the detection signal included in the gate has a correlation with the detection signal of the tracking target, and combines the detection signal with the tracking target. The combination determining unit 3 determines a combination of the detection signal corresponding to the predicted reception beam direction with the tracking target.
 組み合わせ決定部3は、上記検出信号から、前述した2種類のゲートのいずれにも含まれない検出信号の値を初期平滑値として平滑部4に設定する。すなわち、平滑部4には、今回の観測時刻までに検出された仮目標および追尾目標と相関がない検出信号に含まれる目標の距離およびドップラ速度が、初期平滑値として設定される。 The combination determination unit 3 sets the value of the detection signal, which is not included in any of the two types of gates, from the detection signal to the smoothing unit 4 as an initial smoothed value. That is, in the smoothing unit 4, the target distance and the Doppler velocity included in the detection signal having no correlation with the provisional target and the tracking target detected up to the current observation time are set as the initial smoothed values.
 組み合わせ決定部3は、検出信号に含まれる目標の距離およびドップラ速度から、仮目標または追尾目標の距離およびドップラ速度の予測値に最も近い検出信号を特定し、特定した検出信号と仮目標または追尾目標とを組み合わせてもよい。また、組み合わせ決定部3は、ゲート内に含まれる全ての検出信号に含まれる仮目標または追尾目標の距離およびドップラ速度と、目標の距離およびドップラ速度とを総当たりで比較し、両者が最も近い検出信号と仮目標または追尾目標とを組み合わせてもよい。 The combination determination unit 3 specifies a detection signal closest to the predicted value of the distance and the Doppler speed of the provisional target or the tracking target from the target distance and the Doppler speed included in the detection signal, and specifies the detection signal and the provisional target or the tracking target. It may be combined with a goal. The combination determining unit 3 compares the distance and the Doppler speed of the provisional target or the tracking target included in all the detection signals included in the gate with the target distance and the Doppler speed on a brute force basis, and the two are closest. The detection signal and the provisional target or the tracking target may be combined.
 さらに、組み合わせ決定部3は、検出信号と目標との組み合わせを示す情報に対して、受信ビームの振幅値を設定する。受信ビームの振幅値は、追尾目標と相関があると判定された検出信号に対応する受信ビームに隣接し、かつ、レンジ-ドップラ速度のスペクトル空間において、上記検出信号と同一の座標(距離およびドップラ速度)を有した検出信号の受信ビームの振幅値である。 Furthermore, the combination determining unit 3 sets the amplitude value of the reception beam for the information indicating the combination of the detection signal and the target. The amplitude value of the reception beam is adjacent to the reception beam corresponding to the detection signal determined to be correlated with the tracking target and has the same coordinates (distance and Doppler) as the detection signal in the spectrum space of the range-Doppler velocity. (Velocity) of the received signal of the detection signal having the velocity.
 平滑部4は、ステップST103において組み合わせ決定部3によって決定された目標と検出信号との組み合わせに基づいて、平滑処理を実行して検出信号の平滑値を算出する(ステップST104)。なお、平滑部4には、下記式(5)に従った初期平滑値が設定される。xは目標の状態ベクトルの初期平滑値であり、r0,1は、仮目標および追尾目標と相関がない検出信号に含まれる目標の距離であり、目標の距離の初期平滑値である。V0,1は、仮目標および追尾目標と相関がない検出信号に含まれる目標のドップラ速度であり、目標のドップラ速度の初期平滑値である。
=[r0,1 V0,1           ・・・(5)
The smoothing unit 4 calculates a smoothed value of the detection signal by executing a smoothing process based on the combination of the target and the detection signal determined by the combination determination unit 3 in step ST103 (step ST104). The smoothing unit 4 is set with an initial smoothed value according to the following equation (5). x 1 is the initial smoothed value of the target state vector, r 0, 1 is the distance of a target included in the tentative target and tracking target and the correlation is no detection signal, which is the initial smoothed value of the distance of the target. V 0,1 is the target Doppler velocity included in the detection signal having no correlation with the provisional target and the tracking target, and is an initial smoothed value of the target Doppler velocity.
x 1 = [r 0,1 V 0,1 ] T (5)
 初期平滑値が設定された後に、平滑部4は、例えば、カルマンフィルタの処理に従って平滑処理を行う。例えば、平滑部4は、検出信号と仮目標または追尾目標との組み合わせに関する情報を、組み合わせ決定部3から入力する。検出信号と仮目標または追尾目標との組み合わせに関する情報には、相関判定情報が含まれる。相関判定情報は、検出信号と仮目標または追尾目標との相関を判定した結果を示す情報である。 After the initial smoothing value is set, the smoothing unit 4 performs the smoothing process according to, for example, the process of the Kalman filter. For example, the smoothing unit 4 receives information on a combination of the detection signal and the provisional target or the tracking target from the combination determination unit 3. Information on the combination of the detection signal and the provisional target or the tracking target includes correlation determination information. The correlation determination information is information indicating a result of determining a correlation between the detection signal and the provisional target or the tracking target.
 平滑部4は、相関判定情報に基づいて、仮目標または追尾目標と相関がある検出信号を順次特定する。平滑部4は、特定した検出信号の系列および初期平滑値を用いて平滑処理を実行し、仮目標または追尾目標の距離およびドップラ速度の誤差が平滑された平滑値を算出する。なお、相関判定情報には、組み合わせ決定部3によって判定された検出信号と仮目標または追尾目標との相関が成立した度合いが含まれる。相関が成立した度合いは、例えば、組み合わせ決定部3によって設定された仮目標または追尾目標のゲート内に検出信号が含まれた回数、または、検出信号と仮目標または追尾目標との組み合わせについての仮説の信頼度である。 The smoothing unit 4 sequentially specifies detection signals having a correlation with the provisional target or the tracking target based on the correlation determination information. The smoothing unit 4 performs a smoothing process using the specified detection signal sequence and the initial smoothed value, and calculates a smoothed value in which errors in the distance and the Doppler velocity of the tentative target or the tracking target are smoothed. The correlation determination information includes the degree to which the correlation between the detection signal determined by the combination determination unit 3 and the temporary target or the tracking target has been established. The degree to which the correlation is established is, for example, the number of times the detection signal is included in the gate of the provisional target or the tracking target set by the combination determination unit 3 or the hypothesis about the combination of the detection signal and the provisional target or the tracking target. Is the degree of reliability.
 さらに、平滑部4は、組み合わせ決定部3によって目標との組み合わせが決定された検出信号ごとに、受信ビームの振幅値を記憶部に記憶する。なお、この記憶部は、平滑部4によって情報の書き込みが可能でかつ測角部6によって情報の読み出しが可能な記憶部である。また、受信ビームの振幅値は、追尾目標と相関があると判定された検出信号に対応する受信ビームに隣接し、かつ、レンジ-ドップラ速度のスペクトル空間において、上記検出信号と同一の座標(距離およびドップラ速度)を有した検出信号の受信ビームの振幅値である。 {Furthermore, the smoothing unit 4 stores the amplitude value of the received beam in the storage unit for each detection signal for which the combination with the target is determined by the combination determination unit 3. This storage unit is a storage unit in which information can be written by the smoothing unit 4 and information can be read by the angle measurement unit 6. Further, the amplitude value of the received beam is adjacent to the received beam corresponding to the detected signal determined to be correlated with the tracking target, and has the same coordinates (distance) as the detected signal in the spectrum space of the range-Doppler velocity. And the Doppler velocity) of the detection signal having the same amplitude.
 次に、判定部5は、時系列で相関がある検出信号の系列のうち、追尾目標によるものを判定する(ステップST105)。例えば、判定部5は、平滑部4から入力した上記相関判定情報に基づいて、組み合わせ決定部3によって仮目標との組み合わせられた検出信号の系列から、追尾目標と組み合わせられた検出信号と相関があるものを判定する。追尾目標と組み合わせられた検出信号の系列と相関がある仮目標は、追尾が確立した追尾目標と判定される。 Next, the determination unit 5 determines, from the sequence of detection signals having a time-series correlation, one based on the tracking target (step ST105). For example, based on the correlation determination information input from the smoothing unit 4, the determination unit 5 determines, from the sequence of the detection signals combined with the tentative target by the combination determination unit 3, the correlation between the detection signal combined with the tracking target and the correlation. Judge something. The provisional target having a correlation with the sequence of the detection signal combined with the tracking target is determined as the tracking target for which the tracking has been established.
 測角部6は、判定部5によって追尾目標と相関があると判定された検出信号の系列を用いて、追尾目標ごとに測角処理を行う(ステップST106)。図6は、測角処理の概要を示す図である。図6において、レンジ-ドップラ速度のスペクトル空間200aには、追尾目標と組み合わせられた、受信ビーム(k)の検出信号201aが含まれる。また、レンジ-ドップラ速度のスペクトル空間200bには、受信ビーム(k)に隣接する受信ビーム(k+1)に対応する、検出信号201aと同一の座標を有する検出信号201bが含まれる。 The angle measurement unit 6 performs angle measurement processing for each tracking target by using the sequence of the detection signals determined to be correlated with the tracking target by the determination unit 5 (step ST106). FIG. 6 is a diagram illustrating an outline of the angle measurement processing. In FIG. 6, a range-Doppler velocity spectrum space 200a includes a detection signal 201a of a reception beam (k) combined with a tracking target. The range-Doppler velocity spectrum space 200b includes a detection signal 201b corresponding to the reception beam (k + 1) adjacent to the reception beam (k) and having the same coordinates as the detection signal 201a.
 測角部6は、検出信号201aの受信ビーム(k)の振幅値と検出信号201bの受信ビーム(k+1)の振幅値との差信号Δを算出し、さらに、両者の和信号Σを算出する。次に、測角部6は、下記式(6)に従い、追尾目標の測角値θを算出する。測角値θは追尾目標の方位角である。測角用係数kdscは、差信号Δを和信号Σで正規化したときの振幅角度特性の傾きである。θは、受信ビーム(k)の中心角度である。Δ/Σは、ディスクリートカーブである。
θ=sin-1{kdsc(Δ/Σ)+sinθ}  ・・・(6)
The angle measuring unit 6 calculates a difference signal Δ between the amplitude value of the reception beam (k) of the detection signal 201a and the amplitude value of the reception beam (k + 1) of the detection signal 201b, and further calculates the sum signal Σ of both. . Next, the angle measurement unit 6 calculates the angle measurement value θ k of the tracking target according to the following equation (6). The angle measurement value θ k is the azimuth of the tracking target. The angle measurement coefficient k dsc is a slope of the amplitude angle characteristic when the difference signal Δ is normalized by the sum signal Σ. θ 0 is the center angle of the reception beam (k). Δ / Σ is a discrete curve.
θ k = sin −1 {k dsc (Δ / Σ) + sin θ 0 } (6)
 さらに、測角部6は、組み合わせ決定部3によって今回の観測時刻以前に追尾目標との組み合わせが決定された検出信号の系列に対応する測角値の蓄積データを用いて、下記式(7)に従い、追尾目標の方位角速度の初期値dθを算出する。測角値θk-1は、観測時刻kよりも1観測時刻前の観測時刻k-1における追尾目標の測角値であり、Δtは、観測時刻kと、観測時刻k-1までに得られた検出信号の平滑時刻との時刻差である。
dθ=(θ-θk-1)/Δt          ・・・(7)
Further, the angle measurement unit 6 uses the accumulated data of the angle measurement values corresponding to the series of the detection signals for which the combination with the tracking target has been determined by the combination determination unit 3 before the current observation time, using the following equation (7). , The initial value dθ k of the azimuth angular velocity of the tracking target is calculated. The angle measurement value θ k−1 is the angle measurement value of the tracking target at the observation time k−1 one observation time before the observation time k, and Δt is obtained between the observation time k and the observation time k−1. This is the time difference between the detected detection signal and the smoothed time.
k = (θ k −θ k−1 ) / Δt (7)
 次に、角度平滑部7は、測角部6の測角処理で算出された測角値を平滑する(ステップST107)。例えば、角度平滑部7は、方位角速度の初期値dθが設定された後に、測角部6から入力した測角値θについて、カルマンフィルタの処理に従った平滑処理を行う。角度平滑部7によって算出された測角値の平滑値は、追尾目標用予測部22に出力される。追尾目標用予測部22は、角度平滑部7によって算出された平滑値に基づいて、追尾目標に対応する受信ビームの中心角度の予測値を算出する。 Next, the angle smoothing unit 7 smoothes the angle measurement value calculated in the angle measurement processing of the angle measurement unit 6 (step ST107). For example, after the initial value dθ k of the azimuth angular velocity is set, the angle smoothing unit 7 performs a smoothing process on the angle measurement value θ k input from the angle measurement unit 6 according to the process of the Kalman filter. The smoothed value of the angle measurement value calculated by the angle smoothing unit 7 is output to the tracking target prediction unit 22. The tracking target predicting unit 22 calculates a predicted value of the center angle of the reception beam corresponding to the tracking target based on the smoothed value calculated by the angle smoothing unit 7.
 続いて、組み合わせ決定部3は、目標追尾処理が終了か否かを確認する(ステップST108)。処理終了である場合(ステップST108;YES)、図5に示す一連の処理が終了する。処理終了ではない場合(ステップST108;NO)、ステップST101に戻り、ステップST101からの一連の処理が繰り返される。 Next, the combination determination unit 3 checks whether the target tracking processing has been completed (step ST108). If the process has ended (step ST108; YES), a series of processes shown in FIG. 5 ends. If the processing has not ended (step ST108; NO), the process returns to step ST101, and a series of processing from step ST101 is repeated.
 以上のように、実施の形態1に係る目標追尾装置1では、既存の目標と相関がない検出信号に含まれる目標の距離およびドップラ速度が、初期平滑値として平滑部4に設定される。このため、目標追尾装置1では、従来の目標追尾装置のように異なる2つの観測時刻に得られた検出信号を用いて初期平滑値を設定する必要がなく、2サンプルの検出信号を得る時間だけ目標の追尾が確立されるまでの時間を短縮することができる。 As described above, in the target tracking device 1 according to the first embodiment, the target distance and the Doppler velocity included in the detection signal having no correlation with the existing target are set in the smoothing unit 4 as initial smoothed values. For this reason, the target tracking device 1 does not need to set the initial smoothed value using the detection signals obtained at two different observation times as in the conventional target tracking device, and only needs to obtain the detection signal of two samples. The time until the tracking of the target is established can be shortened.
 従来の目標追尾装置では追尾目標が判定される前に測角処理を行っていたが、測角部6は、判定部5によって追尾目標と相関があると判定された検出信号の系列を用いて、追尾目標ごとに測角処理を行う。測角値を算出すべき目標が追尾目標に限定されるので、測角処理の演算量が削減され、処理時間も短縮することができる。 In the conventional target tracking device, the angle measurement process is performed before the tracking target is determined. However, the angle measurement unit 6 uses a sequence of the detection signals determined by the determination unit 5 to be correlated with the tracking target. The angle measurement process is performed for each tracking target. Since the target for which the angle measurement value should be calculated is limited to the tracking target, the calculation amount of the angle measurement processing can be reduced, and the processing time can be shortened.
 さらに、実施の形態1に係る目標追尾装置1において、角度平滑部7が、測角部6の測角処理で算出された測角値を平滑する。追尾目標用予測部22が、平滑部4によって算出された追尾目標の距離およびドップラ速度の平滑値と、角度平滑部7によって算出された測角値の平滑値とに基づいて、追尾目標の距離およびドップラ速度の予測値と追尾目標に対応する受信ビームの中心角度の予測値とを算出する。これにより、追尾目標の検出信号が得られる受信ビーム方向を予測することができる。 Furthermore, in the target tracking device 1 according to the first embodiment, the angle smoothing unit 7 smoothes the angle measurement value calculated by the angle measurement processing of the angle measurement unit 6. The tracking target predicting unit 22 calculates the distance of the tracking target based on the distance of the tracking target and the smoothed value of the Doppler velocity calculated by the smoothing unit 4 and the smoothed value of the angle measurement value calculated by the angle smoothing unit 7. Further, a predicted value of the Doppler velocity and a predicted value of the center angle of the reception beam corresponding to the tracking target are calculated. This makes it possible to predict the receiving beam direction from which the tracking target detection signal is obtained.
実施の形態2.
 図7は、実施の形態2に係る目標追尾装置1Aの構成を示すブロック図であり、図1と同一の構成要素には、同一の符号を付して説明を省略する。図1に示すように、目標追尾装置1Aは、予測部2、組み合わせ決定部3A、平滑部4、判定部5、測角部6、および角度平滑部7を備える。予測部2は、仮目標用予測部21および追尾目標用予測部22を備えている。
Embodiment 2 FIG.
FIG. 7 is a block diagram showing a configuration of a target tracking device 1A according to Embodiment 2. The same components as those in FIG. 1 are denoted by the same reference numerals, and description thereof is omitted. As shown in FIG. 1, the target tracking device 1A includes a prediction unit 2, a combination determination unit 3A, a smoothing unit 4, a determination unit 5, an angle measurement unit 6, and an angle smoothing unit 7. The prediction unit 2 includes a provisional target prediction unit 21 and a tracking target prediction unit 22.
 組み合わせ決定部3Aは、レンジ-ドップラ速度のスペクトル空間において、第一のゲートと第二のゲートとのうち、いずれのゲート内に検出信号があるかに応じて検出信号と仮目標との組み合わせを決定する。第一のゲートは、仮目標の距離の予測値がゲート中心に設定されたゲートである。第二のゲートは、レーダの観測可能速度範囲を超える速度でレンジ方向範囲が設定されたゲートである。 The combination determining unit 3A determines a combination of the detection signal and the provisional target according to which of the first gate and the second gate has the detection signal in the range-Doppler velocity spectrum space. decide. The first gate is a gate in which the predicted value of the distance of the temporary target is set at the center of the gate. The second gate is a gate whose range in the range direction is set at a speed exceeding the observable speed range of the radar.
 図4Aおよび図4Bに示したように、予測部2、組み合わせ決定部3A、平滑部4、判定部5、測角部6および角度平滑部7の機能について専用のハードウェアで実現しても、ソフトウェアまたはファームウェアで実現してもよい。また、予測部2、組み合わせ決定部3A、平滑部4、判定部5、測角部6および角度平滑部7の機能について一部を専用のハードウェアで実現し、一部をソフトウェアまたはファームウェアで実現してもよい。
 このように、処理回路は、ハードウェア、ソフトウェア、ファームウェアまたはこれらの組み合わせにより上記機能を実現することができる。
As shown in FIGS. 4A and 4B, the functions of the prediction unit 2, the combination determination unit 3A, the smoothing unit 4, the determination unit 5, the angle measurement unit 6, and the angle smoothing unit 7 are realized by dedicated hardware. It may be realized by software or firmware. Some of the functions of the prediction unit 2, the combination determination unit 3A, the smoothing unit 4, the determination unit 5, the angle measurement unit 6, and the angle smoothing unit 7 are partially realized by dedicated hardware, and partly realized by software or firmware. May be.
As described above, the processing circuit can realize the above functions by hardware, software, firmware, or a combination thereof.
 次に動作について説明する。
 図8は、実施の形態2に係る目標追尾方法を示すフローチャートである。図8に示したステップST101、ステップST102,ステップST104からステップST108までの処理は図5と同一の処理であるので説明を省略する。
 組み合わせ決定部3Aは、予測部2によって算出された予測値に基づいて、仮目標と検出信号との組み合わせ、および追尾目標と検出信号との組み合わせとを決定する(ステップST103A)。図9は、検出信号と仮目標との組み合わせの決定に使用されるゲートの概要を示すイメージ図である。組み合わせ決定部3Aは、検出信号と仮目標との組み合わせを決定するときに、図9に示すような第一のゲート301と第二のゲート302とを設定する。
Next, the operation will be described.
FIG. 8 is a flowchart illustrating a target tracking method according to the second embodiment. Steps ST101, ST102, and steps ST104 to ST108 shown in FIG. 8 are the same as those in FIG.
The combination determination unit 3A determines a combination of the tentative target and the detection signal and a combination of the tracking target and the detection signal based on the prediction value calculated by the prediction unit 2 (step ST103A). FIG. 9 is an image diagram showing an outline of a gate used for determining a combination of a detection signal and a provisional target. The combination determining unit 3A sets a first gate 301 and a second gate 302 as shown in FIG. 9 when determining the combination of the detection signal and the provisional target.
 第一のゲート301は、レンジ-ドップラ速度のスペクトル空間において、レーダから仮目標までの距離の予測値がゲート中心となるゲートである。仮目標までの距離の予測値を含む検出信号300は、第一のゲート301に含まれる。第二のゲート302は、レンジ-ドップラ速度のスペクトル空間において、レーダの観測可能速度範囲を超える速度でレンジ方向範囲が設定されたゲートであり、ゲート中心は仮目標の距離の予測値である。目標の最大移動速度がVmaxであり、目標の観測時刻kと観測時刻k-1までに得られた目標の検出信号の平滑時刻との時刻差がΔtである場合に、第二のゲート302のレンジ方向範囲は、図9に示すように、VmaxΔtで規定される。 The first gate 301 is a gate whose gate center is a predicted value of the distance from the radar to the temporary target in the range-Doppler velocity spectrum space. The detection signal 300 including the predicted value of the distance to the temporary target is included in the first gate 301. The second gate 302 is a gate in which the range in the range direction is set at a speed exceeding the observable speed range of the radar in the spectrum space of the range-Doppler speed, and the center of the gate is a predicted value of the distance of the temporary target. When the maximum moving speed of the target is V max and the time difference between the target observation time k and the smoothed time of the target detection signal obtained up to the observation time k−1 is Δt, the second gate 302 Is defined by V max Δt as shown in FIG.
 組み合わせ決定部3Aは、第一のゲート301に含まれる検出信号および第二のゲート302に含まれる検出信号を、仮目標との組み合わせ候補とする。目標の移動速度vが、レーダの観測可能速度範囲に対して下記式(8)に示す関係が成立する検出信号が、第二のゲート302に含まれる。下記式(8)において、右辺がレーダの観測可能速度範囲を示しており、レーダによる電波の送信波長がλであり、TPRIはレーダのパルス繰り返し周期である。
v>λ/(4TPRI)            ・・・(8)
The combination determination unit 3A sets the detection signal included in the first gate 301 and the detection signal included in the second gate 302 as a combination candidate with the provisional target. The second gate 302 includes a detection signal in which the target moving speed v satisfies the relationship shown in the following equation (8) with respect to the observable speed range of the radar. In the following equation (8), the right side indicates the observable speed range of the radar, the transmission wavelength of the radio wave by the radar is λ, and TPRI is the pulse repetition period of the radar.
v> λ / (4T PRI ) (8)
 続いて、組み合わせ決定部3Aは、第二のゲート302内の検出信号に含まれる目標の距離rk-1 (p)と、ゲート中心である仮目標の距離の予測値rとの時間変化である距離変化率を用いて、下記式(9)に従い、ドップラ速度Vチルダを算出する。組み合わせ決定部3Aは、レンジ-ドップラ速度のスペクトル空間において、下記式(9)に従って算出されたドップラ速度Vチルダの座標と、仮目標との組み合わせ候補とした検出信号に含まれる目標のドップラ速度Vの座標との差が、下記式(10)に示すように一定値ε以下であれば、この検出信号を仮目標と組み合わせる。このようにして、第一のゲート301内の検出信号および第二のゲート302内の検出信号のうちのいずれかが仮目標と組み合わせられる。下記式(9)において、mod{ }はモジュロ演算関数であり、(r-rk-1 (p))/Δtは距離変化率である。
Figure JPOXMLDOC01-appb-I000003
Subsequently, the combination determination unit 3A determines a temporal change between the target distance r k−1 (p) included in the detection signal in the second gate 302 and the predicted value r k of the distance of the temporary target that is the gate center. The Doppler velocity V k tilde is calculated according to the following equation (9) using the distance change rate of The combination determination unit 3A calculates the coordinates of the Doppler velocity V k tilde calculated according to the following equation (9) in the spectrum space of the range-Doppler velocity and the target Doppler velocity included in the detection signal as a candidate for combination with the temporary target. the difference between V k coordinates, if the predetermined value or less ε as shown in the following formula (10), combining the detection signal and the tentative target. In this way, one of the detection signal in the first gate 301 and the detection signal in the second gate 302 is combined with the provisional target. In the following equation (9), mod {} is a modulo operation function, and (r k −r k−1 (p) ) / Δt is a distance change rate.
Figure JPOXMLDOC01-appb-I000003
 以上のように、実施の形態2に係る目標追尾装置1Aにおいて、組み合わせ決定部3Aは、レンジとドップラ速度で表されるスペクトル空間において、仮目標の距離の予測値がゲート中心に設定された第一のゲート301と、レーダの観測可能速度範囲を超える速度でレンジ方向範囲が設定された第二のゲート302とのうち、いずれのゲート内に検出信号があるかに応じて検出信号と仮目標との組み合わせを決定する。第二のゲート302を設定することで、レーダの観測可能速度範囲を超える速度で移動する目標の追尾が可能である。 As described above, in the target tracking device 1A according to the second embodiment, the combination determining unit 3A determines that the predicted value of the distance of the temporary target is set at the gate center in the spectral space represented by the range and the Doppler velocity. The detection signal and the tentative target are determined according to which of the one gate 301 and the second gate 302 whose range in the range direction is set at a speed exceeding the observable speed range of the radar. To determine the combination. By setting the second gate 302, it is possible to track a target moving at a speed exceeding the observable speed range of the radar.
 なお、本発明は上記実施の形態に限定されるものではなく、本発明の範囲内において、実施の形態のそれぞれの自由な組み合わせまたは実施の形態のそれぞれの任意の構成要素の変形もしくは実施の形態のそれぞれにおいて任意の構成要素の省略が可能である。 Note that the present invention is not limited to the above embodiments, and within the scope of the present invention, each free combination of the embodiments or the modification of any of the constituent elements of the embodiments or the embodiments. In each of the above, arbitrary components can be omitted.
 本発明に係る目標追尾装置では、目標の追尾が確立されるまでの時間を短縮することができるので、例えば、船舶または航空機といった移動目標を観測するレーダに利用可能である。 目標 The target tracking device according to the present invention can shorten the time until the tracking of the target is established, so that it can be used for a radar for observing a moving target such as a ship or an aircraft.
 1,1A 目標追尾装置、2 予測部、3,3A 組み合わせ決定部、4 平滑部、5 判定部、6 測角部、7 角度平滑部、21 仮目標用予測部、22 追尾目標用予測部、100 インタフェース、101 処理回路、102 プロセッサ、103 メモリ、200a,200b スペクトル空間、201a,201b,300 検出信号、301 第一のゲート、302 第二のゲート。 1, 1A target tracking device, 2 prediction unit, 3, 3A combination determination unit, 4 smoothing unit, 5 determination unit, 6 angle measurement unit, 7 angle smoothing unit, 21 temporary target prediction unit, 22 tracking target prediction unit, 100 interface, 101 processing circuit, 102 processor, 103 memory, 200a, 200b spectral space, 201a, 201b, 300 detection signal, 301 first gate, 302 second gate.

Claims (5)

  1.  目標の距離およびドップラ速度の平滑値に基づいて、目標の距離およびドップラ速度の予測値を算出する予測部と、
     前記予測部によって算出された予測値に基づいて、レーダの受信信号が信号処理されて得られた目標の距離およびドップラ速度を含む検出信号とこの検出信号が得られた目標との組み合わせを決定する組み合わせ決定部と、
     既存の目標と相関がない前記検出信号に含まれる目標の距離およびドップラ速度が初期平滑値に設定され、前記組み合わせ決定部によって組み合わせが決定された前記検出信号に含まれる目標の距離およびドップラ速度の平滑値を算出する平滑部と、
     時系列で相関がある前記検出信号の系列のうち、追尾対象の目標によるものを判定する判定部とを備えたこと
     を特徴とする目標追尾装置。
    A prediction unit that calculates a predicted value of the target distance and the Doppler velocity based on the smoothed value of the target distance and the Doppler velocity;
    Based on the prediction value calculated by the prediction unit, a combination of a detection signal including a target distance and a Doppler velocity obtained by signal processing of a radar reception signal and a target from which the detection signal is obtained is determined. A combination determining unit;
    The target distance and the Doppler velocity included in the detection signal having no correlation with the existing target are set to the initial smoothed value, and the target distance and the Doppler velocity included in the detection signal whose combination is determined by the combination determination unit are determined. A smoothing unit for calculating a smoothed value;
    A target tracking device, comprising: a determination unit that determines, based on a target to be tracked, a sequence of the detection signals having a correlation in a time series.
  2.  前記判定部によって追尾対象の目標によるものと判定された前記検出信号の系列を用いて、追尾対象の目標ごとに測角処理を行う測角部を備えたこと
     を特徴とする請求項1記載の目標追尾装置。
    The method according to claim 1, further comprising: an angle measurement unit that performs an angle measurement process for each of the targets to be tracked using the sequence of the detection signals determined to be based on the target to be tracked by the determination unit. Target tracking device.
  3.  前記測角部の測角処理で算出された測角値を平滑する角度平滑部を備え、
     前記予測部は、前記平滑部によって算出された目標の距離およびドップラ速度の平滑値と、前記角度平滑部によって算出された測角値の平滑値とに基づいて、追尾対象の目標の距離およびドップラ速度の予測値と、追尾対象の目標に対応する受信ビームの中心角度の予測値とを算出すること
     を特徴とする請求項2記載の目標追尾装置。
    An angle smoothing unit that smoothes the angle measurement value calculated in the angle measurement processing of the angle measurement unit,
    The prediction unit is configured to calculate the distance and the Doppler of the target to be tracked based on the smoothed value of the target distance and the Doppler velocity calculated by the smoothing unit and the smoothed value of the angle measurement value calculated by the angle smoothing unit. The target tracking device according to claim 2, wherein a predicted value of the speed and a predicted value of a center angle of the reception beam corresponding to the target to be tracked are calculated.
  4.  前記組み合わせ決定部は、レンジとドップラ速度で表されるスペクトル空間において、目標の距離の予測値がゲート中心に設定された第一のゲートと前記レーダの観測可能速度範囲を超える速度でレンジ方向範囲が設定された第二のゲートとのうち、いずれのゲート内に前記検出信号があるかに応じて前記検出信号と目標との組み合わせを決定すること
     を特徴とする請求項1記載の目標追尾装置。
    In the spectral space represented by the range and the Doppler velocity, the combination determiner includes a first gate in which the predicted value of the target distance is set at the center of the gate and a range direction range at a speed exceeding the observable speed range of the radar. The target tracking device according to claim 1, wherein a combination of the detection signal and the target is determined according to which of the second gates set with the detection signal has the detection signal. .
  5.  予測部が、目標の距離およびドップラ速度の平滑値に基づいて、目標の距離およびドップラ速度の予測値を算出するステップと、
     組み合わせ決定部が、前記予測部によって算出された予測値に基づいて、レーダの受信信号が信号処理されて得られた目標の距離およびドップラ速度を含む検出信号とこの検出信号が得られた目標との組み合わせを決定するステップと、
     平滑部が、既存の目標と相関がない前記検出信号に含まれる目標の距離およびドップラ速度が初期平滑値に設定され、前記組み合わせ決定部によって組み合わせが決定された前記検出信号に含まれる目標の距離およびドップラ速度の平滑値を算出するステップと、
     判定部が、時系列で相関がある前記検出信号の系列のうち、追尾対象の目標によるものを判定するステップとを備えたこと
     を特徴とする目標追尾方法。
    A prediction unit that calculates a predicted value of the target distance and the Doppler velocity based on the smoothed values of the target distance and the Doppler velocity;
    The combination determining unit, based on the predicted value calculated by the prediction unit, a detection signal including the target distance and Doppler velocity obtained by signal processing of the radar received signal and the target from which the detection signal is obtained Determining a combination of
    The smoothing unit sets the target distance and the Doppler velocity included in the detection signal having no correlation with the existing target to an initial smoothed value, and the target distance included in the detection signal whose combination is determined by the combination determination unit. Calculating a smoothed value of the Doppler velocity and
    A determination unit for determining, from the sequence of the detection signals having a time-series correlation, the sequence based on the target to be tracked.
PCT/JP2018/033026 2018-09-06 2018-09-06 Target tracking device and target tracking method WO2020049686A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/033026 WO2020049686A1 (en) 2018-09-06 2018-09-06 Target tracking device and target tracking method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/033026 WO2020049686A1 (en) 2018-09-06 2018-09-06 Target tracking device and target tracking method

Publications (1)

Publication Number Publication Date
WO2020049686A1 true WO2020049686A1 (en) 2020-03-12

Family

ID=69722436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033026 WO2020049686A1 (en) 2018-09-06 2018-09-06 Target tracking device and target tracking method

Country Status (1)

Country Link
WO (1) WO2020049686A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111830508A (en) * 2020-06-23 2020-10-27 北京航空航天大学 Barrier gate anti-smashing system and method adopting millimeter wave radar
JP7395079B1 (en) 2023-03-30 2023-12-08 三菱電機株式会社 Target tracking device and target tracking method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005083867A (en) * 2003-09-08 2005-03-31 Mitsubishi Electric Corp Target-pursuing system
US9194947B1 (en) * 2012-10-31 2015-11-24 Raytheon Company Radar system using matched filter bank
JP2018084522A (en) * 2016-11-25 2018-05-31 三菱電機株式会社 Object detector and object detection method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005083867A (en) * 2003-09-08 2005-03-31 Mitsubishi Electric Corp Target-pursuing system
US9194947B1 (en) * 2012-10-31 2015-11-24 Raytheon Company Radar system using matched filter bank
JP2018084522A (en) * 2016-11-25 2018-05-31 三菱電機株式会社 Object detector and object detection method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111830508A (en) * 2020-06-23 2020-10-27 北京航空航天大学 Barrier gate anti-smashing system and method adopting millimeter wave radar
CN111830508B (en) * 2020-06-23 2023-05-16 北京航空航天大学 Road gate anti-smashing system and method adopting millimeter wave radar
JP7395079B1 (en) 2023-03-30 2023-12-08 三菱電機株式会社 Target tracking device and target tracking method

Similar Documents

Publication Publication Date Title
JP5709476B2 (en) Radar equipment
US10908260B2 (en) Mounting angle error detection method and apparatus for onboard radar apparatus, and onboard radar apparatus
US10429500B2 (en) Tracking apparatus, tracking method, and computer-readable storage medium
JP6415288B2 (en) Radar equipment
JP4348535B2 (en) Target tracking device
US11531098B2 (en) Radar image processing device and radar image processing method
US20100315904A1 (en) Direction-finding method and installation for detection and tracking of successive bearing angles
WO2011092569A1 (en) Radar system and direction detecting method
JP4972852B2 (en) Radar equipment
CN113777564A (en) Method and apparatus for processing radar signals by correcting phase distortion
US9075142B2 (en) Device and method for selecting signal, and radar apparatus
US11486966B2 (en) Method and apparatus for tracking target from radar signal using artificial intelligence
WO2020049686A1 (en) Target tracking device and target tracking method
JP5390264B2 (en) Target tracking device and target tracking method
JP6440912B2 (en) Radar equipment
CN111665482A (en) Target distinguishing method based on digital beam forming, storage medium and electronic equipment
JP5737831B2 (en) Moving target detection device
JP4186744B2 (en) Radar equipment
KR102099388B1 (en) Method of estimating direction of arrival of radar signal based on antenna array extrapolation and apparatus for the same
JP2009204501A (en) Wavenumber estimating device
JP2010139486A (en) Angle measurement processing device
CN115220002A (en) Multi-target data association tracking method and related device for fixed single station
KR20170054168A (en) Method and apparatus for processing signal based CFAR in radar system
JP5023029B2 (en) Radar equipment
JP2008032435A (en) Weight calculation method, weight calculator, adaptive array antenna, and radar system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18932806

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18932806

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP