WO2021234833A1 - Multiunit type ozone generator - Google Patents

Multiunit type ozone generator Download PDF

Info

Publication number
WO2021234833A1
WO2021234833A1 PCT/JP2020/019865 JP2020019865W WO2021234833A1 WO 2021234833 A1 WO2021234833 A1 WO 2021234833A1 JP 2020019865 W JP2020019865 W JP 2020019865W WO 2021234833 A1 WO2021234833 A1 WO 2021234833A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
discharge
ozone generator
current
power supply
Prior art date
Application number
PCT/JP2020/019865
Other languages
French (fr)
Japanese (ja)
Inventor
皓貴 内藤
幸治 太田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/019865 priority Critical patent/WO2021234833A1/en
Priority to JP2020546184A priority patent/JP6818958B1/en
Publication of WO2021234833A1 publication Critical patent/WO2021234833A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/10Preparation of ozone
    • C01B13/11Preparation of ozone by electric discharge
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy

Definitions

  • This application relates to a multi-unit ozone generator.
  • a multi-unit ozone generator provided with a plurality of discharge units having discharge voids.
  • the conventional multi-unit ozone generator includes a plurality of discharge units and one high-voltage power supply, and each discharge unit is connected in parallel to the high-voltage power supply via a fuse which is a breaking element. Even if one discharge unit fails, the fuse is blown and the failed discharge unit is disconnected from the circuit, so that ozone generation can be continued without stopping the other discharge units (for example, Patent Document). 1).
  • the present application has been made to solve the above-mentioned problems, and the change in impedance when the discharge unit fails and the breaking element is cut off is small, and the decrease in power efficiency or the failure of the discharge unit is suppressed. It is an object of the present invention to provide a multi-unit ozone generator.
  • the multi-unit type ozone generator disclosed in the present application includes a plurality of discharge units that generate ozone by discharge and are connected in parallel to each other, a high voltage power supply that applies an AC high voltage to each discharge unit, and each discharge unit.
  • Each discharge unit is individually connected to a high-voltage power supply, and when a current exceeding the rating flows for a certain period of time, the circuit is cut off and the current is cut off. It is equipped with a capacitance compensating element having a capacitance.
  • the multi-unit type ozone generator disclosed in the present application includes a plurality of discharge units that generate ozone by discharge and are connected in parallel to each other, a high voltage power supply that applies an AC high voltage to each discharge unit, and each discharge unit.
  • Each discharge unit is individually connected to a high-voltage power supply, and when a current exceeding the rating flows for a certain period of time, the circuit is cut off and the current is cut off. Since it is provided with a capacitance compensating element having a capacitance, a change in the impedance of the load is suppressed, and a decrease in power efficiency or a failure of the discharge unit is suppressed.
  • FIG. 3 is an equivalent circuit diagram of a multi-unit ozone generator according to the first embodiment. It is an equivalent circuit diagram of a comparative example.
  • FIG. 5 is an equivalent circuit diagram when one of the breaking elements cuts the circuit in the multi-unit ozone generator according to the first embodiment. It is an equivalent circuit diagram when one of the breaking elements in a comparative example cuts a circuit. It is a schematic diagram which shows the structure of the multi-unit type ozone generator by Embodiment 2.
  • FIG. 3 is an equivalent circuit diagram of a multi-unit ozone generator according to the first embodiment. It is an equivalent circuit diagram of a comparative example.
  • FIG. 5 is an equivalent circuit diagram when one of the breaking elements cuts the circuit in the multi-unit ozone generator according to the first embodiment. It is an equivalent circuit diagram when one of the breaking elements in a comparative example cuts a circuit.
  • FIG. 2 shows the structure of the multi-unit type ozone generator by Embodiment 2.
  • FIG. 1 It is a figure which showed the relationship between the frequency and electric power in the multi-unit ozone generator according to Embodiment 1 and Embodiment 2. It is a schematic diagram which shows the structure of the multi-unit type ozone generator by Embodiment 3. FIG. It is a schematic diagram which shows the structure of the multi-unit type ozone generator by Embodiment 4. FIG.
  • FIG. 1 is a schematic diagram showing a configuration of a multi-unit ozone generator according to the first embodiment.
  • the multi-unit ozone generator 100 according to the first embodiment includes a discharge unit 1, a radiator 2, a high voltage power supply 3, a breaking element 4, a capacitance compensating element 5, a feeder line 6, and headers 14 and 15. And have.
  • the header 14 and the header 15 are not shown.
  • the multi-unit ozone generator 100 includes a plurality of discharge units 1, each discharge unit 1 is connected to a high voltage power supply 3 via an individual cutoff element 4, and capacity compensation is performed in parallel with the cutoff element 4.
  • the element 5 is connected.
  • the breaking element 4 is, for example, a fuse, and when a current below the rating flows through the discharge unit 1, the current is passed through, and when a current exceeding the rating flows for a certain period of time, the circuit is cut off to cut off the current. do.
  • Capacitive compensation element 5 is, for example, a capacitor, the DC are electrically insulated, the AC electric current corresponding to the capacitance C C.
  • FIG. 2 is a cross-sectional view showing a cross section taken along the line AA in FIG.
  • the discharge unit 1 includes a ground electrode 10 which is an outer electrode, a dielectric cylinder 11, a high voltage electrode 12 which is an inner electrode, a feeding terminal 13, headers 14 and 15, a spacer 16, and an introduction terminal 17. ing.
  • the raw material gas 200 containing oxygen is introduced into the discharge unit 1 through the header 14, and the ozone-containing gas 201 containing ozone is taken out from the discharge unit 1 and discharged from the header 15.
  • the ground electrode 10 is a cylindrical conductive member. Inside the ground electrode 10, the insulating dielectric cylinder 11 is arranged concentrically so that the central axes of the ground electrode 10 and the dielectric cylinder 11 coincide with each other. The dielectric cylinder 11 is supported inside the ground electrode 10 by a spacer 16, and a discharge gap 18 is formed between the ground electrode 10 and the dielectric cylinder 11.
  • the high-voltage electrode 12 is a thin-film conductive member formed on the inner surface of the dielectric cylinder 11. One end of the dielectric cylinder 11 is closed so that gas does not pass through the inside of the dielectric cylinder 11. The other end of the dielectric tube 11 is open for feeding high voltage.
  • a header 14 for introducing the raw material gas 200 containing oxygen into the discharge unit is provided at one end of the ground electrode 10, and the ozone-containing gas 201 containing ozone is discharged at the other end of the ground electrode 10.
  • a header 15 taken out from the unit 1 is provided. The discharge unit 1 is sealed by the header 14 and the header 15.
  • a feeding terminal 13 is inserted at the end of the dielectric cylinder 11 on the released side, and the feeding terminal 13 is electrically connected to the high voltage electrode 12.
  • the power feeding terminal 13 is electrically connected to the high voltage power supply 3 via the introduction terminal 17 provided in the header 14, and the breaking element 4 and the capacitance compensating element 5 connected in parallel, whereby the high voltage terminal 13 is electrically connected.
  • a high AC voltage is applied from the voltage power source 3 to the high voltage electrode 12 via the power supply terminal 13.
  • the ground terminal of the high voltage power supply 3 is electrically connected to the ground electrode 10. With the above connection, a discharge is generated in the discharge gap 18 between the ground electrode 10 and the dielectric cylinder 11.
  • a radiator 2 is provided on the outside of the discharge unit 1 in contact with the ground electrode 10 of the discharge unit 1.
  • the radiator 2 dissipates the heat generated by the discharge and suppresses the temperature rise of the ground electrode 10.
  • the raw material gas 200 is introduced into the header 14 from the outside.
  • the raw material gas 200 introduced into the header 14 passes through the discharge gap 18 formed between the ground electrode 10 and the dielectric cylinder 11.
  • a discharge is formed in the discharge gap 18.
  • the electric discharge is uniformly formed in the circumferential direction and the axial direction between the ground electrode 10 and the dielectric cylinder 11.
  • the raw material gas 200 While the raw material gas 200 passes through the discharge void 18 from the header 14 toward the header 15, the raw material gas 200 repeatedly contacts the discharge to generate a large amount of ozone.
  • the ozone-containing gas 201 containing a large amount of ozone is discharged to the outside from the header 15.
  • the time when the discharge unit 1 of the multi-unit ozone generator 100 fails will be described.
  • the dielectric cylinder 11 loses its insulating property due to damage due to deterioration over time, damage due to electrical, thermal or mechanical damage, and the like.
  • the insulating property of the dielectric cylinder 11 disappears, the ground electrode 10 and the high voltage electrode 12 come into contact with each other, or a discharge occurs between the ground electrode 10 and the high voltage electrode 12, and a current higher than the rating flows.
  • a current higher than the rating flows through the breaking element 4, and the breaking element 4 cuts the circuit to cut off the current.
  • FIG. 3 is an equivalent circuit diagram of the multi-unit ozone generator 100 according to the first embodiment, and is for explaining the operation of the multi-unit ozone generator 100 in comparison with a comparative example.
  • FIG. 4 is an equivalent circuit diagram of the multi-unit ozone generator of the comparative example, in which the capacitance compensating element 5 is removed from the multi-unit ozone generator 100 according to the first embodiment.
  • FIG. 5 is an equivalent circuit of the multi-unit ozone generator 100 when one of the breaking elements 4 cuts the circuit
  • FIG. 6 is an equivalent circuit of a comparative example when one of the breaking elements 4 cuts the circuit. ..
  • the high-voltage power supply 3 is composed of an inverter 31 that generates an AC low voltage, a transformer 32 that boosts the AC low voltage, and a reactor 33 that adjusts the electrical matching of the plurality of discharge units 1 and the high-voltage power supply 3. It is composed.
  • the frequency is high near the resonance frequency ⁇ represented by the circuit equation (1) determined by the inductance L of the reactor 33 and the capacitance C per one discharge unit 1.
  • the power supply efficiency can be improved. The closer the frequency of the high voltage power supply 3 is to the resonance frequency ⁇ of the circuit, the better the power supply efficiency.
  • the frequency of the high voltage power supply 3 is brought closer to the resonance frequency ⁇ , control becomes difficult and the operation becomes unstable.
  • the frequency of 3 is set higher than the resonance frequency ⁇ .
  • the power supply efficiency decreases. Further, when the difference between the frequency of ⁇ 'and the frequency of the high voltage power supply 3 becomes smaller than the difference between the frequency of ⁇ and the frequency of the high voltage power supply 3, more power than the rating is input to the discharge unit 1, and the discharge unit 1 Will break down.
  • the high-voltage power supply 3 may be a non-resonant type circuit as long as it can stably supply an AC high voltage.
  • the waveform of the AC high voltage is not limited to a sine wave, but may be a square wave, a triangular wave, a pulse, or the like.
  • the magnitude and duty ratio of the AC high voltage may be determined according to conditions such as the width of the discharge gap 18 or the thickness of the dielectric cylinder 11 and the structure of the discharge unit 1 and the composition of the raw material gas 200.
  • the magnitude of the AC high voltage is preferably 1 kV to 20 kV. If it is less than 1 kV, a stable discharge is not formed. If it is larger than 50 kV, the power supply unit becomes large, and large-sized and high-voltage electrical insulation is required, which increases the manufacturing and maintenance costs.
  • the ground electrode 10 is made of a conductive material, and it is particularly desirable to use a metal material having excellent corrosion resistance such as stainless steel or titanium.
  • the ground electrode 10 may be thin as long as the mechanical strength can be maintained, or may be formed as a thin film on the inner surface of the radiator 2. By thinning the ground electrode 10 or forming it as a thin film, the thermal conductivity in the thickness direction of the ground electrode 10 is improved, and the cooling performance of the discharge unit 1 is improved. Further, the range where the ground electrode 10 faces the discharge gap 18 may be covered with an insulating material having excellent corrosion resistance.
  • the ground electrode 10 By covering the ground electrode 10 with an insulating material having excellent corrosion resistance, it is possible to use a general-purpose conductive material for the ground electrode 10 regardless of the corrosion resistance, and it is possible to reduce the manufacturing cost of the discharge unit. Further, by applying thermal paste or conductive grease between the ground electrode 10 and the radiator 2, it is possible to suppress the formation of a minute space between the ground electrode 10 and the radiator 2, and to dissipate heat between the ground electrode 10 and the radiator 2. The thermal conductivity with the vessel 2 can be increased.
  • the dielectric cylinder 11 is made of an insulating material, and for example, quartz, borosilicate glass, or ceramics having excellent corrosion resistance such as alumina may be used.
  • the high-voltage electrode 12 is made of a conductive material, and is particularly a conductive thin film formed on the inner surface of the dielectric cylinder 11 by a method such as wet coating, plating, thermal spraying, vacuum vapor deposition, or sputtering. Is desirable.
  • a method such as wet coating, plating, thermal spraying, vacuum vapor deposition, or sputtering. Is desirable.
  • the dielectric cylinder 11 and the high-voltage electrode 12 can be brought into close contact with each other, and the occurrence of abnormal discharge between the dielectric cylinder 11 and the high-voltage electrode 12 can be suppressed. can.
  • the high-voltage electrode 12 can be realized with a light weight, and the mechanical strength condition required for the dielectric cylinder 11 or the spacer 16 can be relaxed.
  • the power feeding terminal 13 is made of a conductive material, and it is particularly desirable to use a metal material having excellent corrosion resistance such as stainless steel or titanium.
  • the power feeding terminal 13 is electrically connected to the high voltage electrode 12 by a method such as crimping terminal, soldering, or mechanical contact.
  • crimping terminal soldering
  • mechanical contact by forming the tip of the feeding terminal 13 into a brush shape having a plurality of bristles, when the feeding terminal 13 is inserted into the dielectric cylinder 11, it comes into contact with the high voltage electrode 12 at a plurality of places, and an electrical connection is surely made. realizable.
  • the spacer 16 is made of a conductive material or an insulating material having excellent corrosion resistance, and is inside the ground electrode 10 so that the width of the discharge gap 18 in the circumferential direction of the discharge unit 1 is substantially constant. It is provided to hold the dielectric cylinder 11.
  • the spacer 16 has, for example, a tape shape, or a plurality of springs having elasticity in the direction perpendicular to the axis of the discharge unit 1 are arranged at positions symmetrical with respect to the circumferential direction of the dielectric cylinder 11, so that the discharge gap is formed. The variation in the width of 18 can be suppressed.
  • the width of the discharge unit 1 of the discharge gap 18 in the circumferential direction is 0.1 mm to 10 mm. If it is smaller than 0.1 mm, it becomes difficult to keep the width of the discharge gap 18 uniform in the circumferential direction of the discharge unit 1, and the manufacturing cost of the discharge unit 1 increases. If it is larger than 10 mm, a high voltage is required to form a discharge.
  • the width of the discharge gap 18 is particularly preferably 0.2 mm to 0.6 mm. By making the width of the discharge gap 18 smaller than 0.6 mm, the specific surface area of the space of the discharge gap 18 formed between the ground electrode 10 and the dielectric cylinder 11 becomes large, and the cooling efficiency of the discharge unit 1 is improved. be able to.
  • the raw material gas 200 may contain at least oxygen, and oxygen, air, or a mixed gas of oxygen and an inert gas such as a rare gas or carbon dioxide is used.
  • the pressure of the raw material gas 200 supplied to the discharge void 18 is preferably 0.05 MPaG to 0.2 MPaG. When it is smaller than 0.05 MPaG, the amount of ozone generated is low because the number of oxygen molecules is small. Further, when it is larger than 0.2 MPaG, the discharge pressure required for the supply device of the raw material gas 200 becomes high, and the cost required for ozone generation becomes high. Therefore, by changing the pressure of the raw material gas 200 from 0.05 MPaG to 0.2 MPaG, the economical ozone generation efficiency can be improved.
  • the pressure of the raw material gas 200 supplied to the discharge void 18 is made smaller than 0.2 MPaG, so that the multi-unit ozone generator is defined as a type 2 pressure vessel. Is no longer applicable, restrictions are reduced, and handling becomes easier.
  • the header 14 and the header 15 are made of a conductive material or an insulating material having excellent corrosion resistance. Since it is necessary to seal the discharge unit 1 with the header 14 and the header 15, it is desirable to use stainless steel or fluororesin having excellent workability for the header 14 and the header 15. When a conductive material such as stainless steel is used for the header 14 and the header 15, the high-voltage electrode 12 and the header are prevented from generating an electric discharge between the high-voltage electrode 12 and the header 14 and between the high-voltage electrode 12 and the header 15. An insulation distance is secured between the 14 and the high voltage electrode 12 and the header 15.
  • the introduction terminal 17 is a terminal that electrically connects the high voltage power supply 3 and the power supply terminal 13 while maintaining the airtightness inside the header 14.
  • a voltage introduction terminal made of a general conductive material, an insulator, packing, or the like can be used.
  • the ozone generated in the discharge void 18 always flows toward the header 15. .. Therefore, by always supplying the raw material gas 200 to the inside of the discharge unit 1 when ozone is present inside the discharge unit 1, it is possible to prevent the header 14 and the introduction terminal 17 from being corroded by ozone. Further, by always supplying the raw material gas 200 to the inside of the discharge unit 1 when ozone is present inside the discharge unit 1, it is not necessary to use a material having excellent corrosion resistance for the header 14 and the introduction terminal 17. , Header 14 and introduction terminal 17 can be manufactured at low cost.
  • radiator 2 It is desirable to use a conductive material with excellent thermal conductivity such as aluminum for the radiator 2. In particular, by using aluminum which is inexpensive and has excellent workability, the manufacturing cost of the radiator 2 can be reduced.
  • the radiator 2 is made of a conductive material, the ground electrode 10 and the radiator 2 are electrically connected, and the ground terminal of the high voltage power supply 3 and the radiator 2 are electrically connected. Since the ground terminal of the high voltage power supply 3 and the ground electrode 10 are electrically connected, there is no need for electrical wiring that directly connects the ground terminal of the high voltage power supply 3 and the ground electrode 10.
  • the radiator 2 may be naturally cooled, or may be forcibly cooled by sending a refrigerant from a cooler (not shown).
  • a refrigerant flow path may be provided inside the radiator 2 to allow the refrigerant to flow through the refrigerant flow path.
  • the ground electrode 10 can be maintained at a low temperature and the ozone generation efficiency can be improved.
  • black coating or black alumite processing to the surface of the radiator 2, heat radiation on the surface of the radiator 2 can be promoted and the cooling performance of the discharge unit 1 can be improved.
  • the radiator 2 and the ground electrode 10 may be used as one member.
  • the radiator 2 and the ground electrode 10 are covered with an insulating material having excellent corrosion resistance in the range where the radiator 2 is in contact with the discharge void 18. Can also be used.
  • a high voltage capacitor such as a vacuum capacitor, an oil capacitor, a ceramic capacitor, a film capacitor, a mica capacitor or a tantalum capacitor can be used.
  • a ceramic capacitor or a mica capacitor is used, the charging energy density can be increased and the multi-unit ozone generator can be made smaller.
  • the capacitance compensating element 5 is indicated by one symbol in the drawings of the present specification, a plurality of capacitors connected in series or in parallel may be used.
  • the breaking element 4 may be a fuse, as long as it allows the current to pass through a low resistance when a current below the rating flows through the discharge unit 1 and cuts off the current when a current exceeding the rating flows for a certain period of time.
  • a circuit breaker for distribution, a thermostat, a resettable fuse, or the like may be used. By using a blown fuse as the cutoff element 4, the current can be reliably cut off when the discharge unit 1 fails.
  • a power distribution circuit breaker, a thermostat, or a resettable fuse is used as the breaking element 4, it can be used again even after the current is cut off.
  • the multi-unit type ozone generator has a plurality of discharge units 1 that generate ozone by discharge and are connected in parallel to each other, and a high voltage that applies an AC high voltage to each discharge unit 1.
  • the power supply 3 and each discharge unit 1 provided for each discharge unit 1 are individually connected to the high voltage power supply 3, and when a current exceeding the rating flows for a certain period of time, the circuit is cut off to cut off the current. Since the element 4 and the capacitance compensating element 5 which is connected in parallel to each of the breaking elements 4 and has a capacitance are provided, the capacitance change of the load is suppressed by the capacitance compensating element 5 even when the breaking element 4 operates. The decrease in power efficiency or the failure of the discharge unit 1 is suppressed.
  • FIG. 7 is a schematic diagram showing the configuration of the multi-unit ozone generator according to the second embodiment.
  • the multi-unit ozone generator 100a in FIG. 7 is different from the multi-unit ozone generator 100 according to the first embodiment in that the capacitance compensating element 5a is composed of a capacitor 51 and a resistor 52 connected in series. ..
  • FIG. 8 is a diagram showing the relationship between frequency and electric power in a multi-unit ozone generator. The curve shown by the solid line shows the characteristics of the multi-unit ozone generator 100 according to the first embodiment.
  • the Q value is high, and the operating range in which the power becomes equal to or higher than the rated power is narrow.
  • the curve shown by the broken line shows the characteristics of the multi-unit ozone generator 100a according to the second embodiment.
  • the Q value is low, and the operating range in which the power becomes equal to or higher than the rated power is widened.
  • a general resistance element may be used, and for example, a carbon film resistance, a metal film resistance, a foil resistance, a winding resistance, a cement resistance or an enamel resistance may be used.
  • a non-inductive resistor having a small internal inductance is used as the resistor 52, the effect of the capacitance compensation element 5a is not reduced, and resonance with the stray capacitance is less likely to occur.
  • a non-inductive resistor having a large internal inductance is used as the resistor 52, the momentary pulse current flowing when the breaking element 4 operates can be suppressed to protect the capacitance compensating element 5a.
  • FIG. 9 is a schematic diagram showing the configuration of the multi-unit ozone generator according to the third embodiment.
  • the multi-unit ozone generator 100b in FIG. 9 is the multi-unit ozone generator 100 according to the first embodiment, wherein the capacity compensating element 5b is composed of a capacitor 51 and a second breaking element 53 connected in series. It's different.
  • the second breaking element 53 is provided in the capacitance compensating element 5b, the second breaking element 53 cuts the circuit when the capacitor 51 is short-circuited due to a failure. Ozone generation can be continued without stopping the unit type ozone generator 100b.
  • FIG. 10 is a schematic diagram showing the configuration of the multi-unit ozone generator according to the fourth embodiment.
  • the multi-unit ozone generator 100c in FIG. 10 is different from the multi-unit ozone generator 100 according to the first embodiment in that the multi-unit ozone generator 100c includes a current detector 7 that detects a current flowing through the capacitance compensating element 5.
  • the current detector 7 includes a current detection unit 71 and a current value display unit 72.
  • the current detection unit 71 outputs a signal corresponding to the magnitude of the current flowing through the capacitance compensating element 5 to the current value display unit 72.
  • the current value display unit 72 displays the magnitude of the current flowing through the capacitance compensating element 5 based on the signal acquired from the current detection unit 71.
  • the multi-unit ozone generator 100c since the current detector 7 is provided, it is possible to detect that the breaking element 4 has operated without stopping the multi-unit ozone generator 100c.
  • the life of the multi-unit ozone generator 100c can be extended by repairing the discharged unit 1 that has failed when it is detected that the breaking element 4 has operated at an early stage.
  • the current detection unit 71 can use a general current detection method.
  • the current detection unit 71 may detect a magnetic field generated by a current flowing through the capacitance compensation element 5, and detects a voltage drop generated by the capacitance compensation element 5. You may.
  • the current can be detected without contacting the capacitance compensating element 5 or the feeder line 6, so that the insulation design becomes easy.
  • the current detector 7 is supposed to detect the current flowing through the capacitance compensating element 5, it may detect the current flowing through the capacitance compensating element 5a shown in FIG. 7 of the second embodiment, and FIG. 9 of the third embodiment may be detected.
  • the current flowing through the capacitance compensating element 5b shown in the above may be detected.
  • the effect shown in the second embodiment or the effect shown in the third embodiment can be obtained, and it is possible to detect that the blocking element 4 has operated without stopping the multi-unit ozone generator. It is possible to extend the life of the multi-unit ozone generator by repairing the discharged unit 1 that has failed when it is detected that the breaking element 4 has operated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

A multiunit type ozone generator capable of suppressing a decrease in power efficiency or a fault in a discharge unit. This multiunit type ozone generator is provided with: a plurality of discharge units (1) that generate ozone by discharge and that are connected in parallel to each other; a high-voltage power supply (3) that applies an alternating current high voltage to each discharge unit (1); interrupting elements (4) that are provided for the respective discharge units (1) and connect the individual discharge units (1) separately to the high-voltage power supply (3), when a current exceeding a rated current value flows for a certain period of time, said interrupting elements cutting off the circuit and thus interrupting the current; and capacitive compensation elements (5) that are connected in parallel to the respective interrupting elements (4) and have a capacitance.

Description

マルチユニット式オゾン発生器Multi-unit ozone generator
 本願は、マルチユニット式オゾン発生器に関するものである。 This application relates to a multi-unit ozone generator.
 オゾン発生器においてオゾンの発生量を調整するために、放電空隙を有する放電ユニットを複数設けたマルチユニット式オゾン発生器が用いられる。従来のマルチユニット式オゾン発生器では、複数の放電ユニットと1つの高電圧電源とを備え、それぞれの放電ユニットが遮断素子であるヒューズを介して高電圧電源に並列に接続されることにより、1つの放電ユニットが故障して場合でも、ヒューズが切断されて故障した放電ユニットが回路から切り離されることで、他の放電ユニットを停止することなくオゾン発生を継続することができた(例えば、特許文献1参照)。 In order to adjust the amount of ozone generated in the ozone generator, a multi-unit ozone generator provided with a plurality of discharge units having discharge voids is used. The conventional multi-unit ozone generator includes a plurality of discharge units and one high-voltage power supply, and each discharge unit is connected in parallel to the high-voltage power supply via a fuse which is a breaking element. Even if one discharge unit fails, the fuse is blown and the failed discharge unit is disconnected from the circuit, so that ozone generation can be continued without stopping the other discharge units (for example, Patent Document). 1).
特開平8-133706号公報Japanese Unexamined Patent Publication No. 8-133706
 従来のマルチユニット式オゾン発生器では、放電ユニットが故障して遮断素子であるヒューズが切断されると、高電圧電源に接続されていた放電ユニット全体のインピーダンスが変化するため、電源効率が低下するあるいは放電ユニットが故障するという課題があった。 In the conventional multi-unit ozone generator, when the discharge unit fails and the fuse, which is the breaking element, is blown, the impedance of the entire discharge unit connected to the high-voltage power supply changes, and the power supply efficiency drops. Alternatively, there is a problem that the discharge unit breaks down.
 本願は、上述の課題を解決するためになされたものであり、放電ユニットが故障して遮断素子が切断されたときのインピーダンスの変化が少なく、電源効率の低下あるいは放電ユニットの故障が抑制されるマルチユニット式オゾン発生器を提供することを目的とする。 The present application has been made to solve the above-mentioned problems, and the change in impedance when the discharge unit fails and the breaking element is cut off is small, and the decrease in power efficiency or the failure of the discharge unit is suppressed. It is an object of the present invention to provide a multi-unit ozone generator.
 本願に開示されるマルチユニット式オゾン発生器は、放電によってオゾンを発生させ互いに並列接続された複数の放電ユニットと、それぞれの放電ユニットに交流高電圧を印加する高電圧電源と、放電ユニットごとに設けられそれぞれの放電ユニットを高電圧電源に個別に接続し、定格を超える電流が一定の時間にわたって流れたときに回路を切断して電流を遮断する遮断素子と、それぞれの遮断素子に並列に接続され、キャパシタンスを持った容量補償素子とを備える。 The multi-unit type ozone generator disclosed in the present application includes a plurality of discharge units that generate ozone by discharge and are connected in parallel to each other, a high voltage power supply that applies an AC high voltage to each discharge unit, and each discharge unit. Each discharge unit is individually connected to a high-voltage power supply, and when a current exceeding the rating flows for a certain period of time, the circuit is cut off and the current is cut off. It is equipped with a capacitance compensating element having a capacitance.
 本願に開示されるマルチユニット式オゾン発生器は、放電によってオゾンを発生させ互いに並列接続された複数の放電ユニットと、それぞれの放電ユニットに交流高電圧を印加する高電圧電源と、放電ユニットごとに設けられそれぞれの放電ユニットを高電圧電源に個別に接続し、定格を超える電流が一定の時間にわたって流れたときに回路を切断して電流を遮断する遮断素子と、それぞれの遮断素子に並列に接続され、キャパシタンスを持った容量補償素子とを備えたので、負荷のインピーダンス変化が抑制され、電源効率の低下あるいは放電ユニットの故障が抑制される。 The multi-unit type ozone generator disclosed in the present application includes a plurality of discharge units that generate ozone by discharge and are connected in parallel to each other, a high voltage power supply that applies an AC high voltage to each discharge unit, and each discharge unit. Each discharge unit is individually connected to a high-voltage power supply, and when a current exceeding the rating flows for a certain period of time, the circuit is cut off and the current is cut off. Since it is provided with a capacitance compensating element having a capacitance, a change in the impedance of the load is suppressed, and a decrease in power efficiency or a failure of the discharge unit is suppressed.
実施の形態1によるマルチユニット式オゾン発生器の構成を示す模式図である。It is a schematic diagram which shows the structure of the multi-unit type ozone generator by Embodiment 1. FIG. 実施の形態1によるマルチユニット式オゾン発生器の断面図である。It is sectional drawing of the multi-unit type ozone generator by Embodiment 1. FIG. 実施の形態1によるマルチユニット式オゾン発生器の等価回路図である。FIG. 3 is an equivalent circuit diagram of a multi-unit ozone generator according to the first embodiment. 比較例の等価回路図である。It is an equivalent circuit diagram of a comparative example. 実施の形態1によるマルチユニット式オゾン発生器において遮断素子の一つが回路を切断したときの等価回路図である。FIG. 5 is an equivalent circuit diagram when one of the breaking elements cuts the circuit in the multi-unit ozone generator according to the first embodiment. 比較例において遮断素子の一つが回路を切断したときの等価回路図である。It is an equivalent circuit diagram when one of the breaking elements in a comparative example cuts a circuit. 実施の形態2によるマルチユニット式オゾン発生器の構成を示す模式図である。It is a schematic diagram which shows the structure of the multi-unit type ozone generator by Embodiment 2. FIG. 実施の形態1および実施の形態2によるマルチユニット式オゾン発生器における周波数と電力との関係を示した図である。It is a figure which showed the relationship between the frequency and electric power in the multi-unit ozone generator according to Embodiment 1 and Embodiment 2. 実施の形態3によるマルチユニット式オゾン発生器の構成を示す模式図である。It is a schematic diagram which shows the structure of the multi-unit type ozone generator by Embodiment 3. FIG. 実施の形態4によるマルチユニット式オゾン発生器の構成を示す模式図である。It is a schematic diagram which shows the structure of the multi-unit type ozone generator by Embodiment 4. FIG.
 以下、本願を実施するための実施の形態に係るマルチユニット式オゾン発生器について、図面を参照して詳細に説明する。なお、各図において同一符号は同一もしくは相当部分を示している。 Hereinafter, the multi-unit ozone generator according to the embodiment for carrying out the present application will be described in detail with reference to the drawings. In each figure, the same reference numerals indicate the same or corresponding parts.
実施の形態1.
 図1は、実施の形態1によるマルチユニット式オゾン発生器の構成を示す模式図である。実施の形態1によるマルチユニット式オゾン発生器100は、放電ユニット1と、放熱器2と、高電圧電源3と、遮断素子4と、容量補償素子5と、給電線6と、ヘッダ14、15とを備えている。図1では、ヘッダ14およびヘッダ15は示していない。マルチユニット式オゾン発生器100は複数の放電ユニット1を備えており、それぞれの放電ユニット1は個別の遮断素子4を介して高電圧電源3に接続されており、遮断素子4と並列に容量補償素子5が接続されている。遮断素子4は、例えばヒューズであり、放電ユニット1に定格以下の電流が流れる場合には電流を通過させ、定格を超える電流が一定の時間にわたって流れた場合には回路を切断して電流を遮断する。容量補償素子5は、例えばコンデンサであり、直流的には電気的に絶縁されており、交流的にはキャパシタンスCに応じた電流を流す。
Embodiment 1.
FIG. 1 is a schematic diagram showing a configuration of a multi-unit ozone generator according to the first embodiment. The multi-unit ozone generator 100 according to the first embodiment includes a discharge unit 1, a radiator 2, a high voltage power supply 3, a breaking element 4, a capacitance compensating element 5, a feeder line 6, and headers 14 and 15. And have. In FIG. 1, the header 14 and the header 15 are not shown. The multi-unit ozone generator 100 includes a plurality of discharge units 1, each discharge unit 1 is connected to a high voltage power supply 3 via an individual cutoff element 4, and capacity compensation is performed in parallel with the cutoff element 4. The element 5 is connected. The breaking element 4 is, for example, a fuse, and when a current below the rating flows through the discharge unit 1, the current is passed through, and when a current exceeding the rating flows for a certain period of time, the circuit is cut off to cut off the current. do. Capacitive compensation element 5 is, for example, a capacitor, the DC are electrically insulated, the AC electric current corresponding to the capacitance C C.
 図2は、図1におけるA-A断面を示す断面図である。図2では、図1の模式図では示していなかったヘッダ14およびヘッダ15が示されている。放電ユニット1は、外側電極である接地電極10と、誘電体筒11と、内側電極である高圧電極12と、給電端子13と、ヘッダ14、15と、スペーサ16と、導入端子17とを備えている。酸素を含む原料ガス200がヘッダ14を通して放電ユニット1に導入され、オゾンを含んだオゾン含有ガス201が放電ユニット1から取り出されてヘッダ15から放出される。 FIG. 2 is a cross-sectional view showing a cross section taken along the line AA in FIG. In FIG. 2, a header 14 and a header 15 which are not shown in the schematic diagram of FIG. 1 are shown. The discharge unit 1 includes a ground electrode 10 which is an outer electrode, a dielectric cylinder 11, a high voltage electrode 12 which is an inner electrode, a feeding terminal 13, headers 14 and 15, a spacer 16, and an introduction terminal 17. ing. The raw material gas 200 containing oxygen is introduced into the discharge unit 1 through the header 14, and the ozone-containing gas 201 containing ozone is taken out from the discharge unit 1 and discharged from the header 15.
 接地電極10は、円筒状の導電部材である。接地電極10の内部には、絶縁性の誘電体筒11が、接地電極10と誘電体筒11の中心軸が一致するように同心円状に配置されている。誘電体筒11はスペーサ16によって接地電極10の内部に支持されており、接地電極10と誘電体筒11との間に放電空隙18が形成されている。高圧電極12は、誘電体筒11の内面に形成された薄膜状の導電部材である。誘電体筒11の一方の端は、誘電体筒11の内部にガスが通らないように閉じられている。誘電体筒11の他方の端は、高電圧を給電するために開放されている。 The ground electrode 10 is a cylindrical conductive member. Inside the ground electrode 10, the insulating dielectric cylinder 11 is arranged concentrically so that the central axes of the ground electrode 10 and the dielectric cylinder 11 coincide with each other. The dielectric cylinder 11 is supported inside the ground electrode 10 by a spacer 16, and a discharge gap 18 is formed between the ground electrode 10 and the dielectric cylinder 11. The high-voltage electrode 12 is a thin-film conductive member formed on the inner surface of the dielectric cylinder 11. One end of the dielectric cylinder 11 is closed so that gas does not pass through the inside of the dielectric cylinder 11. The other end of the dielectric tube 11 is open for feeding high voltage.
 接地電極10の一方の端には、酸素を含む原料ガス200を放電ユニットに導入するヘッダ14が設けられており、接地電極10の他方の端には、オゾンを含んだオゾン含有ガス201を放電ユニット1から取り出すヘッダ15が設けられている。ヘッダ14およびヘッダ15によって、放電ユニット1は密閉されている。 A header 14 for introducing the raw material gas 200 containing oxygen into the discharge unit is provided at one end of the ground electrode 10, and the ozone-containing gas 201 containing ozone is discharged at the other end of the ground electrode 10. A header 15 taken out from the unit 1 is provided. The discharge unit 1 is sealed by the header 14 and the header 15.
 誘電体筒11の解放された側の端部には給電端子13が挿入されており、給電端子13は高圧電極12と電気的に接続されている。給電端子13は、ヘッダ14に設けられた導入端子17と、並列に接続された遮断素子4および容量補償素子5とを介して、高電圧電源3に電気的に接続されており、これによって高電圧電源3から給電端子13を介して高圧電極12に交流高電圧が印加される。高電圧電源3の接地端子は、接地電極10と電気的に接続されている。以上の接続により、接地電極10と誘電体筒11との間の放電空隙18に放電が発生する。 A feeding terminal 13 is inserted at the end of the dielectric cylinder 11 on the released side, and the feeding terminal 13 is electrically connected to the high voltage electrode 12. The power feeding terminal 13 is electrically connected to the high voltage power supply 3 via the introduction terminal 17 provided in the header 14, and the breaking element 4 and the capacitance compensating element 5 connected in parallel, whereby the high voltage terminal 13 is electrically connected. A high AC voltage is applied from the voltage power source 3 to the high voltage electrode 12 via the power supply terminal 13. The ground terminal of the high voltage power supply 3 is electrically connected to the ground electrode 10. With the above connection, a discharge is generated in the discharge gap 18 between the ground electrode 10 and the dielectric cylinder 11.
 放電ユニット1の外側には、放電ユニット1の接地電極10に接して放熱器2が設けられている。放熱器2は、放電で発生した熱を放熱し、接地電極10の温度上昇を抑制する。 A radiator 2 is provided on the outside of the discharge unit 1 in contact with the ground electrode 10 of the discharge unit 1. The radiator 2 dissipates the heat generated by the discharge and suppresses the temperature rise of the ground electrode 10.
 次に、マルチユニット式オゾン発生器100において原料ガス200からオゾン含有ガス201を生成する様子について説明する。マルチユニット式オゾン発生器100では、原料ガス200が外部からヘッダ14に導入される。ヘッダ14に導入された原料ガス200は、接地電極10と誘電体筒11との間に形成された放電空隙18を通過する。接地電極10と高圧電極12との間に交流高電圧が印加されると、放電空隙18に放電が形成される。放電は、接地電極10と誘電体筒11との間で周方向および軸方向に均一に形成される。原料ガス200が放電空隙18を通過するときに、原料ガス200の中の酸素が放電と接触しオゾンが発生する。原料ガス200がヘッダ14からヘッダ15に向かって放電空隙18を通過する間に、原料ガス200は放電に繰り返し接触し多量のオゾンが発生する。大量のオゾンを含んだオゾン含有ガス201は、ヘッダ15から外部に放出される。 Next, a state in which the ozone-containing gas 201 is generated from the raw material gas 200 in the multi-unit ozone generator 100 will be described. In the multi-unit ozone generator 100, the raw material gas 200 is introduced into the header 14 from the outside. The raw material gas 200 introduced into the header 14 passes through the discharge gap 18 formed between the ground electrode 10 and the dielectric cylinder 11. When an AC high voltage is applied between the ground electrode 10 and the high voltage electrode 12, a discharge is formed in the discharge gap 18. The electric discharge is uniformly formed in the circumferential direction and the axial direction between the ground electrode 10 and the dielectric cylinder 11. When the raw material gas 200 passes through the discharge void 18, oxygen in the raw material gas 200 comes into contact with the discharge to generate ozone. While the raw material gas 200 passes through the discharge void 18 from the header 14 toward the header 15, the raw material gas 200 repeatedly contacts the discharge to generate a large amount of ozone. The ozone-containing gas 201 containing a large amount of ozone is discharged to the outside from the header 15.
 マルチユニット式オゾン発生器100の定格動作時において、電流が一定値に制限される様子について説明する。高電圧電源3によって接地電極10と高圧電極12との間に電圧が印加されて電流が流れると、放電が発生するとともに、絶縁性の誘電体筒11の表面に電荷が蓄積される。一定時間にわたって電流が流れると、誘電体筒11の表面に蓄積された電荷によって、高電圧電源3による電圧と逆方向の電界が放電空隙18に形成され、放電が停止する。その後、高電圧電源3の交流高電圧の極性が反転すると、蓄積された電荷による電界と高電圧電源3による交流高電圧の極性が一致し、再び放電空隙18に放電が形成される。以上のように、誘電体筒11の絶縁性が保たれている定格動作時においては、一定時間にわたって電流が流れると、放電が停止し、その結果として電流が停止するため、電流が一定値に制限される。 The state in which the current is limited to a constant value during the rated operation of the multi-unit ozone generator 100 will be described. When a voltage is applied between the ground electrode 10 and the high-voltage electrode 12 by the high-voltage power supply 3 and a current flows, an electric discharge is generated and an electric charge is accumulated on the surface of the insulating dielectric cylinder 11. When a current flows for a certain period of time, the electric charge accumulated on the surface of the dielectric cylinder 11 forms an electric field in the direction opposite to the voltage of the high voltage power supply 3 in the discharge gap 18, and the discharge is stopped. After that, when the polarity of the AC high voltage of the high voltage power supply 3 is reversed, the electric charge due to the accumulated charge and the polarity of the AC high voltage due to the high voltage power supply 3 match, and a discharge is formed again in the discharge gap 18. As described above, in the rated operation in which the insulating property of the dielectric cylinder 11 is maintained, when the current flows for a certain period of time, the discharge is stopped, and as a result, the current is stopped, so that the current becomes a constant value. Be restricted.
 次に、マルチユニット式オゾン発生器100の放電ユニット1の故障時について説明する。放電ユニット1の故障にはいくつかの種類があるが、その一つとして誘電体筒11の絶縁性の消失がある。誘電体筒11は、経年劣化による破損、電気的、熱的あるいは機械的なダメージによる破損などにより、絶縁性が消失する。誘電体筒11の絶縁性が消失すると、接地電極10と高圧電極12とが接触する、あるいは、接地電極10と高圧電極12との間での放電が発生し、定格よりも高い電流が流れる。このときに、遮断素子4に定格よりも高い電流が流れ、遮断素子4が回路を切断して電流を遮断する。 Next, the time when the discharge unit 1 of the multi-unit ozone generator 100 fails will be described. There are several types of failures in the discharge unit 1, one of which is the loss of the insulating property of the dielectric cylinder 11. The dielectric cylinder 11 loses its insulating property due to damage due to deterioration over time, damage due to electrical, thermal or mechanical damage, and the like. When the insulating property of the dielectric cylinder 11 disappears, the ground electrode 10 and the high voltage electrode 12 come into contact with each other, or a discharge occurs between the ground electrode 10 and the high voltage electrode 12, and a current higher than the rating flows. At this time, a current higher than the rating flows through the breaking element 4, and the breaking element 4 cuts the circuit to cut off the current.
 図3は、実施の形態1によるマルチユニット式オゾン発生器100の等価回路図であり、マルチユニット式オゾン発生器100の動作を比較例と対比して説明するためものである。図4は比較例のマルチユニット式オゾン発生器の等価回路図であり、実施の形態1によるマルチユニット式オゾン発生器100から容量補償素子5を取り除いたものである。図5は遮断素子4の一つが回路を切断したときのマルチユニット式オゾン発生器100の等価回路であり、図6は遮断素子4の一つが回路を切断したときの比較例の等価回路である。 FIG. 3 is an equivalent circuit diagram of the multi-unit ozone generator 100 according to the first embodiment, and is for explaining the operation of the multi-unit ozone generator 100 in comparison with a comparative example. FIG. 4 is an equivalent circuit diagram of the multi-unit ozone generator of the comparative example, in which the capacitance compensating element 5 is removed from the multi-unit ozone generator 100 according to the first embodiment. FIG. 5 is an equivalent circuit of the multi-unit ozone generator 100 when one of the breaking elements 4 cuts the circuit, and FIG. 6 is an equivalent circuit of a comparative example when one of the breaking elements 4 cuts the circuit. ..
 図3において、高電圧電源3は、交流低電圧を発生するインバーター31と、交流低電圧を昇圧するトランス32と、複数の放電ユニット1および高電圧電源3の電気整合を調整するリアクトル33とから構成される。図3に示されるような共振型の回路構成の場合、リアクトル33のインダクタンスLと一つの放電ユニット1あたりのキャパシタンスCから決まる回路の式(1)で示される共振周波数ωの付近の周波数で高電圧電源3を駆動することで、電源効率を高めることができる。高電圧電源3の周波数が回路の共振周波数ωに近いほど電源効率は良くなるが、高電圧電源3の周波数を共振周波数ωに近づけると制御が困難となり動作が不安定となるため、高電圧電源3の周波数は共振周波数ωよりも高く設定される。なお、共振周波数ωは、図4に示される比較例のマルチユニット式オゾン発生器においても同じである。
ω=1/√(3LC)   (1)
In FIG. 3, the high-voltage power supply 3 is composed of an inverter 31 that generates an AC low voltage, a transformer 32 that boosts the AC low voltage, and a reactor 33 that adjusts the electrical matching of the plurality of discharge units 1 and the high-voltage power supply 3. It is composed. In the case of the resonance type circuit configuration as shown in FIG. 3, the frequency is high near the resonance frequency ω represented by the circuit equation (1) determined by the inductance L of the reactor 33 and the capacitance C per one discharge unit 1. By driving the voltage power supply 3, the power supply efficiency can be improved. The closer the frequency of the high voltage power supply 3 is to the resonance frequency ω of the circuit, the better the power supply efficiency. However, if the frequency of the high voltage power supply 3 is brought closer to the resonance frequency ω, control becomes difficult and the operation becomes unstable. The frequency of 3 is set higher than the resonance frequency ω. The resonance frequency ω is the same in the multi-unit ozone generator of the comparative example shown in FIG.
ω = 1 / √ (3LC) (1)
 図4に示される比較例のマルチユニット式オゾン発生器において放電ユニット1の一つが故障し、故障した放電ユニット1に接続された遮断素子4が切断された場合、図6に示すような等価回路となり、回路の共振周波数は、式(1)に示されたωから式(2)に示されたω’に急激に変化する。
ω’=1/√(2LC)   (2)
In the multi-unit ozone generator of the comparative example shown in FIG. 4, when one of the discharge units 1 fails and the breaking element 4 connected to the failed discharge unit 1 is disconnected, an equivalent circuit as shown in FIG. Then, the resonance frequency of the circuit suddenly changes from ω shown in the equation (1) to ω'expressed in the equation (2).
ω'= 1 / √ (2LC) (2)
 ここで、ω’と高電圧電源3の周波数との差がωと高電圧電源3の周波数との差よりも大きくなった場合、電源効率が低下する。また、ω’と高電圧電源3の周波数との差がωと高電圧電源3の周波数との差よりも小さくなった場合、放電ユニット1に定格以上の電力が入力されてしまい、放電ユニット1を故障させてしまう。 Here, if the difference between the frequency of ω'and the frequency of the high voltage power supply 3 becomes larger than the difference between the frequency of ω and the frequency of the high voltage power supply 3, the power supply efficiency decreases. Further, when the difference between the frequency of ω'and the frequency of the high voltage power supply 3 becomes smaller than the difference between the frequency of ω and the frequency of the high voltage power supply 3, more power than the rating is input to the discharge unit 1, and the discharge unit 1 Will break down.
 一方、図5に示すように、実施の形態1によるマルチユニット式オゾン発生器100の放電ユニット1の一つが故障し、故障した放電ユニット1に接続された遮断素子4が切断された場合、容量補償素子5を介して電流が流れるため、回路の共振周波数は式(1)に示されたωから式(3)に示されたω’’となる。そのため、容量補償素子5のキャパシタンスCを放電ユニット1のキャパシタンスCに近い値に設定すると、容量補償素子5が無い比較例のマルチユニット式オゾン発生器と比べて共振周波数の変化が小さくなるため、電源効率の低下あるいは放電ユニットの故障を抑制することができる。
ω’’=1/√{L(2C+C)}   (3)
On the other hand, as shown in FIG. 5, when one of the discharge units 1 of the multi-unit ozone generator 100 according to the first embodiment fails and the breaking element 4 connected to the failed discharge unit 1 is cut off, the capacitance Since the current flows through the compensating element 5, the resonance frequency of the circuit changes from ω shown in the equation (1) to ω'' shown in the equation (3). Therefore, by setting the capacitance C C of the capacitive compensation element 5 to a value close to the capacitance C of the discharge unit 1, since the change in the resonant frequency is reduced as compared with the multi-unit type ozone generator of the comparative example has no capacitive compensating elements 5 , It is possible to suppress a decrease in power efficiency or a failure of the discharge unit.
ω'' = 1 / √ {L (2C + CC )} (3)
 なお、高電圧電源3はリアクトル33を備えた共振型として説明したが、高電圧電源3は安定して交流高電圧を供給できるものであればよく、例えば非共振型の回路であってもかまわない。また、交流高電圧の波形は、正弦波に限らず、矩形波、三角派、パルスなどでもよい。交流高電圧の大きさおよびデューティ比は、放電空隙18の幅あるいは誘電体筒11の厚さなどの放電ユニット1の構造、原料ガス200の組成などの条件に応じて、決めればよい。交流高電圧の大きさは、1kVから20kVが望ましい。1kVより小さい場合は、安定した放電が形成されない。50kVより大きい場合は、電源装置が大きくなり、さらに大型および高電圧の電気絶縁が必要となるため、製造および保守のコストが増大する。 Although the high-voltage power supply 3 has been described as a resonance type equipped with a reactor 33, the high-voltage power supply 3 may be a non-resonant type circuit as long as it can stably supply an AC high voltage. No. Further, the waveform of the AC high voltage is not limited to a sine wave, but may be a square wave, a triangular wave, a pulse, or the like. The magnitude and duty ratio of the AC high voltage may be determined according to conditions such as the width of the discharge gap 18 or the thickness of the dielectric cylinder 11 and the structure of the discharge unit 1 and the composition of the raw material gas 200. The magnitude of the AC high voltage is preferably 1 kV to 20 kV. If it is less than 1 kV, a stable discharge is not formed. If it is larger than 50 kV, the power supply unit becomes large, and large-sized and high-voltage electrical insulation is required, which increases the manufacturing and maintenance costs.
 接地電極10は、導電性材料で構成され、特にステンレス鋼あるいはチタンなどの耐腐食性に優れた金属材料を用いることが望ましい。接地電極10は、機械強度が維持できる範囲で薄くしてもよく、放熱器2の内面に薄膜として形成しても良い。接地電極10を薄くするあるいは薄膜として形成することにより、接地電極10の厚さ方向の熱伝導性が向上し、放電ユニット1の冷却性能が向上する。また、接地電極10が放電空隙18と面している範囲を、耐腐食性に優れた絶縁材料で覆ってもよい。接地電極10を耐腐食性に優れた絶縁材料で覆うことにより、接地電極10に耐腐食性よらず汎用の導電性材料を使用することが可能となり、放電ユニットの製造コストを下げることができる。さらに、接地電極10と放熱器2との間に放熱グリースあるいは伝導性グリースなどを塗ることにより、接地電極10と放熱器2との間に微小な空間ができることを抑制し、接地電極10と放熱器2との間の熱伝導性を高めることができる。 The ground electrode 10 is made of a conductive material, and it is particularly desirable to use a metal material having excellent corrosion resistance such as stainless steel or titanium. The ground electrode 10 may be thin as long as the mechanical strength can be maintained, or may be formed as a thin film on the inner surface of the radiator 2. By thinning the ground electrode 10 or forming it as a thin film, the thermal conductivity in the thickness direction of the ground electrode 10 is improved, and the cooling performance of the discharge unit 1 is improved. Further, the range where the ground electrode 10 faces the discharge gap 18 may be covered with an insulating material having excellent corrosion resistance. By covering the ground electrode 10 with an insulating material having excellent corrosion resistance, it is possible to use a general-purpose conductive material for the ground electrode 10 regardless of the corrosion resistance, and it is possible to reduce the manufacturing cost of the discharge unit. Further, by applying thermal paste or conductive grease between the ground electrode 10 and the radiator 2, it is possible to suppress the formation of a minute space between the ground electrode 10 and the radiator 2, and to dissipate heat between the ground electrode 10 and the radiator 2. The thermal conductivity with the vessel 2 can be increased.
 誘電体筒11は、絶縁材料で構成されるものであり、例えば、石英、ホウ珪酸ガラス、あるいは、アルミナなどの耐腐食性に優れたセラミックスなどを用いればよい。 The dielectric cylinder 11 is made of an insulating material, and for example, quartz, borosilicate glass, or ceramics having excellent corrosion resistance such as alumina may be used.
 高圧電極12は、導電性材料で構成されるものであり、特に、誘電体筒11の内面に湿式のコーティング、メッキ、溶射、真空蒸着あるいはスパッタリングなどの方法で形成された導電性薄膜であることが望ましい。これらの方法で高圧電極12を形成することにより、誘電体筒11と高圧電極12を密着させることができ、誘電体筒11と高圧電極12との間での異常放電の発生を抑制することができる。また、高圧電極12を薄膜にすることにより、高圧電極12を軽量で実現することができ、誘電体筒11あるいはスペーサ16に求められる機械強度の条件を緩和することができる。 The high-voltage electrode 12 is made of a conductive material, and is particularly a conductive thin film formed on the inner surface of the dielectric cylinder 11 by a method such as wet coating, plating, thermal spraying, vacuum vapor deposition, or sputtering. Is desirable. By forming the high-voltage electrode 12 by these methods, the dielectric cylinder 11 and the high-voltage electrode 12 can be brought into close contact with each other, and the occurrence of abnormal discharge between the dielectric cylinder 11 and the high-voltage electrode 12 can be suppressed. can. Further, by making the high-voltage electrode 12 a thin film, the high-voltage electrode 12 can be realized with a light weight, and the mechanical strength condition required for the dielectric cylinder 11 or the spacer 16 can be relaxed.
 給電端子13は、導電性材料で構成されるものであり、特に、ステンレス鋼あるいはチタンなどの耐腐食性に優れた金属材料を用いることが望ましい。給電端子13は、圧着端子、はんだ付け、機械的に接触させるなどの方法によって、高圧電極12に電気的に接続されている。特に、給電端子13の先端を複数の毛を有するブラシ形状とすることで、給電端子13を誘電体筒11に挿入するときに複数個所で高圧電極12と接触し、確実に電気的な接続が実現できる。 The power feeding terminal 13 is made of a conductive material, and it is particularly desirable to use a metal material having excellent corrosion resistance such as stainless steel or titanium. The power feeding terminal 13 is electrically connected to the high voltage electrode 12 by a method such as crimping terminal, soldering, or mechanical contact. In particular, by forming the tip of the feeding terminal 13 into a brush shape having a plurality of bristles, when the feeding terminal 13 is inserted into the dielectric cylinder 11, it comes into contact with the high voltage electrode 12 at a plurality of places, and an electrical connection is surely made. realizable.
 スペーサ16は、耐腐食性に優れた導電性材料あるいは絶縁材料で構成されるものであり、放電ユニット1の周方向の放電空隙18の幅がおおよそ一定となるように、接地電極10の内側で誘電体筒11を保持するように設けられている。スペーサ16は、例えば、テープ形状とする、あるいは、放電ユニット1の軸に垂直な方向に弾性を有するばねを誘電体筒11の周方向に対称な位置に複数個を配置することにより、放電空隙18の幅のばらつきを抑制することができる。 The spacer 16 is made of a conductive material or an insulating material having excellent corrosion resistance, and is inside the ground electrode 10 so that the width of the discharge gap 18 in the circumferential direction of the discharge unit 1 is substantially constant. It is provided to hold the dielectric cylinder 11. The spacer 16 has, for example, a tape shape, or a plurality of springs having elasticity in the direction perpendicular to the axis of the discharge unit 1 are arranged at positions symmetrical with respect to the circumferential direction of the dielectric cylinder 11, so that the discharge gap is formed. The variation in the width of 18 can be suppressed.
 放電空隙18の放電ユニット1の周方向の幅は、0.1mmから10mmとすることが望ましい。0.1mmより小さい場合は、放電ユニット1の周方向に放電空隙18の幅を均一に保つことが困難となり、放電ユニット1の製造コストが増加する。また、10mmより大きい場合は、放電を形成するために高い電圧が必要となる。放電空隙18の幅は、特に、0.2mmから0.6mmとすることが望ましい。放電空隙18の幅を0.6mmより小さくすることにより、接地電極10と誘電体筒11との間に形成される放電空隙18の空間の比表面積が大きくなり、放電ユニット1の冷却効率を高めることができる。 It is desirable that the width of the discharge unit 1 of the discharge gap 18 in the circumferential direction is 0.1 mm to 10 mm. If it is smaller than 0.1 mm, it becomes difficult to keep the width of the discharge gap 18 uniform in the circumferential direction of the discharge unit 1, and the manufacturing cost of the discharge unit 1 increases. If it is larger than 10 mm, a high voltage is required to form a discharge. The width of the discharge gap 18 is particularly preferably 0.2 mm to 0.6 mm. By making the width of the discharge gap 18 smaller than 0.6 mm, the specific surface area of the space of the discharge gap 18 formed between the ground electrode 10 and the dielectric cylinder 11 becomes large, and the cooling efficiency of the discharge unit 1 is improved. be able to.
 原料ガス200は、少なくとも酸素を含んでいればよく、酸素、空気、あるいは、酸素と希ガスあるいは二酸化炭素などの不活性ガスとの混合ガスなどを用いる。放電空隙18に供給する原料ガス200の圧力は、0.05MPaGから0.2MPaGとすることが望ましい。0.05MPaGより小さい場合、酸素分子の数が少ないためにオゾン発生量が低くなる。また、0.2MPaGより大きい場合、原料ガス200の供給装置に求められる吐出圧が高くなり、オゾン発生に必要なコストが高くなる。よって、原料ガス200の圧力を0.05MPaGから0.2MPaGとすることにより、経済的なオゾン発生効率を高めることができる。また、マルチユニット式オゾン発生器を大型化したときに、放電空隙18に供給する原料ガス200の圧力を0.2MPaGよりも小さくすることにより、マルチユニット式オゾン発生器が第二種圧力容器規定に該当しなくなり、制約が軽減されて取り扱いが容易になる。 The raw material gas 200 may contain at least oxygen, and oxygen, air, or a mixed gas of oxygen and an inert gas such as a rare gas or carbon dioxide is used. The pressure of the raw material gas 200 supplied to the discharge void 18 is preferably 0.05 MPaG to 0.2 MPaG. When it is smaller than 0.05 MPaG, the amount of ozone generated is low because the number of oxygen molecules is small. Further, when it is larger than 0.2 MPaG, the discharge pressure required for the supply device of the raw material gas 200 becomes high, and the cost required for ozone generation becomes high. Therefore, by changing the pressure of the raw material gas 200 from 0.05 MPaG to 0.2 MPaG, the economical ozone generation efficiency can be improved. Further, when the size of the multi-unit ozone generator is increased, the pressure of the raw material gas 200 supplied to the discharge void 18 is made smaller than 0.2 MPaG, so that the multi-unit ozone generator is defined as a type 2 pressure vessel. Is no longer applicable, restrictions are reduced, and handling becomes easier.
 ヘッダ14およびヘッダ15は、耐腐食性に優れた導電性材料あるいは絶縁材料で構成される。ヘッダ14およびヘッダ15によって放電ユニット1を密閉する必要があるため、ヘッダ14およびヘッダ15は加工性に優れたステンレス鋼あるいはフッ素樹脂などを使用することが望ましい。ヘッダ14およびヘッダ15にステンレス鋼などの導電性材料を用いる場合は、高圧電極12とヘッダ14との間および高圧電極12とヘッダ15との間に放電が発生しないように、高圧電極12とヘッダ14との間および高圧電極12とヘッダ15との間に絶縁距離を確保する。ヘッダ14およびヘッダ15にフッ素樹脂などの絶縁材料を用いる場合は、高圧電極12とヘッダ14との間および高圧電極12とヘッダ15との間に放電は発生しないので、ヘッダ14およびヘッダ15をコンパクトにすることができる。 The header 14 and the header 15 are made of a conductive material or an insulating material having excellent corrosion resistance. Since it is necessary to seal the discharge unit 1 with the header 14 and the header 15, it is desirable to use stainless steel or fluororesin having excellent workability for the header 14 and the header 15. When a conductive material such as stainless steel is used for the header 14 and the header 15, the high-voltage electrode 12 and the header are prevented from generating an electric discharge between the high-voltage electrode 12 and the header 14 and between the high-voltage electrode 12 and the header 15. An insulation distance is secured between the 14 and the high voltage electrode 12 and the header 15. When an insulating material such as a fluororesin is used for the header 14 and the header 15, no discharge is generated between the high-voltage electrode 12 and the header 14 and between the high-voltage electrode 12 and the header 15, so that the header 14 and the header 15 are compact. Can be.
 導入端子17は、ヘッダ14の内部の気密性を保ちつつ、高電圧電源3と給電端子13とを電気的に接続する端子である。導入端子17は、一般的な導電性材料、碍子およびパッキンなどで構成される電圧導入端子を用いることができる。 The introduction terminal 17 is a terminal that electrically connects the high voltage power supply 3 and the power supply terminal 13 while maintaining the airtightness inside the header 14. As the introduction terminal 17, a voltage introduction terminal made of a general conductive material, an insulator, packing, or the like can be used.
 実施の形態1によるマルチユニット式オゾン発生器100においては、ヘッダ14からヘッダ15に向かって一方向に原料ガス200を流しているため、放電空隙18で発生したオゾンは常にヘッダ15に向かって流れる。したがって、放電ユニット1の内部にオゾンが存在するときに常に原料ガス200を放電ユニット1の内部に供給することにより、ヘッダ14および導入端子17のオゾンによる腐食を防ぐことができる。また、放電ユニット1の内部にオゾンが存在するときに常に原料ガス200を放電ユニット1の内部に供給することにより、ヘッダ14および導入端子17に耐腐食性に優れた材料を用いる必要がなくなるため、ヘッダ14および導入端子17を低いコストで作ることができる。 In the multi-unit ozone generator 100 according to the first embodiment, since the raw material gas 200 flows in one direction from the header 14 toward the header 15, the ozone generated in the discharge void 18 always flows toward the header 15. .. Therefore, by always supplying the raw material gas 200 to the inside of the discharge unit 1 when ozone is present inside the discharge unit 1, it is possible to prevent the header 14 and the introduction terminal 17 from being corroded by ozone. Further, by always supplying the raw material gas 200 to the inside of the discharge unit 1 when ozone is present inside the discharge unit 1, it is not necessary to use a material having excellent corrosion resistance for the header 14 and the introduction terminal 17. , Header 14 and introduction terminal 17 can be manufactured at low cost.
 放熱器2は、アルミニウムなどの熱伝導性に優れた導電性材料を用いることが望ましい。特に、安価で加工性に優れたアルミニウムを用いることにより、放熱器2の製造コストを低くすることができる。また、放熱器2を導電性材料で構成した場合、接地電極10と放熱器2とを電気的に接続し、高電圧電源3の接地端子と放熱器2とを電気的に接続することにより、高電圧電源3の接地端子と接地電極10とが電気的に接続されるため、高電圧電源3の接地端子と接地電極10とを直接に接続する電気配線が不要となる。放熱器2は、自然冷却でもよく、図示しない冷却器から冷媒を送出することによって強制冷却してもよい。放熱器2の内部に冷媒の流路を設けて、冷媒の流路に冷媒を流してもよい。冷媒を用いて放熱器2を強制的に冷却した場合、接地電極10を低温に維持しオゾン発生効率を向上させることができる。また、放熱器2の表面に黒色の塗装あるいは黒アルマイト加工などの処理を行うことにより、放熱器2の表面の熱輻射を促進し放電ユニット1の冷却性能を向上させることができる。 It is desirable to use a conductive material with excellent thermal conductivity such as aluminum for the radiator 2. In particular, by using aluminum which is inexpensive and has excellent workability, the manufacturing cost of the radiator 2 can be reduced. When the radiator 2 is made of a conductive material, the ground electrode 10 and the radiator 2 are electrically connected, and the ground terminal of the high voltage power supply 3 and the radiator 2 are electrically connected. Since the ground terminal of the high voltage power supply 3 and the ground electrode 10 are electrically connected, there is no need for electrical wiring that directly connects the ground terminal of the high voltage power supply 3 and the ground electrode 10. The radiator 2 may be naturally cooled, or may be forcibly cooled by sending a refrigerant from a cooler (not shown). A refrigerant flow path may be provided inside the radiator 2 to allow the refrigerant to flow through the refrigerant flow path. When the radiator 2 is forcibly cooled by using a refrigerant, the ground electrode 10 can be maintained at a low temperature and the ozone generation efficiency can be improved. Further, by applying black coating or black alumite processing to the surface of the radiator 2, heat radiation on the surface of the radiator 2 can be promoted and the cooling performance of the discharge unit 1 can be improved.
 また、放熱器2を耐腐食性に優れた導電性材料で構成することにより、放熱器2と接地電極10とを兼用する一つの部材としてもよい。放熱器2と接地電極10とを兼用する一つの部材とすることにより、高い熱伝導性を実現できるとともに、マルチユニット式オゾン発生器の部品点数が削減され製造コストを低くすることができる。放熱器2を一般的な導電性材料で構成する場合は、放熱器2が放電空隙18と接する範囲に耐腐食性に優れた絶縁材料で被覆することにより、放熱器2と接地電極10とを兼用することができる。 Further, by forming the radiator 2 with a conductive material having excellent corrosion resistance, the radiator 2 and the ground electrode 10 may be used as one member. By using one member that also serves as the radiator 2 and the ground electrode 10, high thermal conductivity can be realized, the number of parts of the multi-unit ozone generator can be reduced, and the manufacturing cost can be reduced. When the radiator 2 is made of a general conductive material, the radiator 2 and the ground electrode 10 are covered with an insulating material having excellent corrosion resistance in the range where the radiator 2 is in contact with the discharge void 18. Can also be used.
 容量補償素子5は、真空コンデンサ、オイルコンデンサ、セラミックコンデンサ、フィルムコンデンサ、マイカコンデンサまたはタンタルコンデンサなどの高電圧コンデンサを用いることができる。特に、セラミックコンデンサあるいはマイカコンデンサを使用すると、充電エネルギー密度を高めることができ、マルチユニット式オゾン発生器を小さくすることができる。また、本明細書の図面において容量補償素子5を一つの記号で示しているが、複数のコンデンサを直列あるは並列に接続したものを用いてもよい。 As the capacitance compensation element 5, a high voltage capacitor such as a vacuum capacitor, an oil capacitor, a ceramic capacitor, a film capacitor, a mica capacitor or a tantalum capacitor can be used. In particular, if a ceramic capacitor or a mica capacitor is used, the charging energy density can be increased and the multi-unit ozone generator can be made smaller. Further, although the capacitance compensating element 5 is indicated by one symbol in the drawings of the present specification, a plurality of capacitors connected in series or in parallel may be used.
 遮断素子4は、放電ユニット1に定格以下の電流が流れる場合は低抵抗に電流を通過させ、定格を超える電流が一定の時間にわたって流れた場合は電流を遮断するものであればよく、ヒューズ、配電用遮断器、サーモスタットあるいはリセッタブルヒューズなどを用いればよい。遮断素子4として溶断式のヒューズを用いることにより、放電ユニット1が故障した場合に確実に電流を遮断することができる。遮断素子4として、配電用遮断器、サーモスタットあるいはリセッタブルヒューズを用いた場合は、電流を遮断した後であっても再び使用することができる。 The breaking element 4 may be a fuse, as long as it allows the current to pass through a low resistance when a current below the rating flows through the discharge unit 1 and cuts off the current when a current exceeding the rating flows for a certain period of time. A circuit breaker for distribution, a thermostat, a resettable fuse, or the like may be used. By using a blown fuse as the cutoff element 4, the current can be reliably cut off when the discharge unit 1 fails. When a power distribution circuit breaker, a thermostat, or a resettable fuse is used as the breaking element 4, it can be used again even after the current is cut off.
 以上のように、実施の形態1によるマルチユニット式オゾン発生器は、放電によってオゾンを発生させ互いに並列接続された複数の放電ユニット1と、それぞれの放電ユニット1に交流高電圧を印加する高電圧電源3と、放電ユニット1ごとに設けられそれぞれの放電ユニット1を高電圧電源3に個別に接続し、定格を超える電流が一定の時間にわたって流れたときに回路を切断して電流を遮断する遮断素子4と、それぞれの遮断素子4に並列に接続され、キャパシタンスを持った容量補償素子5とを備えたので、遮断素子4が動作した場合でも容量補償素子5によって負荷のインピーダンス変化が抑制され、電源効率の低下あるいは放電ユニット1の故障が抑制される。 As described above, the multi-unit type ozone generator according to the first embodiment has a plurality of discharge units 1 that generate ozone by discharge and are connected in parallel to each other, and a high voltage that applies an AC high voltage to each discharge unit 1. The power supply 3 and each discharge unit 1 provided for each discharge unit 1 are individually connected to the high voltage power supply 3, and when a current exceeding the rating flows for a certain period of time, the circuit is cut off to cut off the current. Since the element 4 and the capacitance compensating element 5 which is connected in parallel to each of the breaking elements 4 and has a capacitance are provided, the capacitance change of the load is suppressed by the capacitance compensating element 5 even when the breaking element 4 operates. The decrease in power efficiency or the failure of the discharge unit 1 is suppressed.
実施の形態2.
 図7は、実施の形態2によるマルチユニット式オゾン発生器の構成を示す模式図である。図7におけるマルチユニット式オゾン発生器100aは、容量補償素子5aが直列に接続されたコンデンサ51および抵抗52で構成されていることが実施の形態1によるマルチユニット式オゾン発生器100と異なっている。図8は、マルチユニット式オゾン発生器における周波数と電力の関係を示した図である。実線で示した曲線は、実施の形態1によるマルチユニット式オゾン発生器100の特性を示している。実施の形態1によるマルチユニット式オゾン発生器100では、容量補償素子5に抵抗を設けていないためQ値が高く、電力が定格電力以上となる周波数の幅である動作範囲が狭い。一方、破線で示した曲線は、実施の形態2によるマルチユニット式オゾン発生器100aの特性を示している。実施の形態2によるマルチユニット式オゾン発生器100aでは、容量補償素子5aに抵抗52を設けたためにQ値が低く、電力が定格電力以上となる周波数の幅である動作範囲が広くなる。その結果、実施の形態2によるマルチユニット式オゾン発生器100aにおいて遮断素子4が動作した場合に高電圧電源3の動作を安定させることができる。
Embodiment 2.
FIG. 7 is a schematic diagram showing the configuration of the multi-unit ozone generator according to the second embodiment. The multi-unit ozone generator 100a in FIG. 7 is different from the multi-unit ozone generator 100 according to the first embodiment in that the capacitance compensating element 5a is composed of a capacitor 51 and a resistor 52 connected in series. .. FIG. 8 is a diagram showing the relationship between frequency and electric power in a multi-unit ozone generator. The curve shown by the solid line shows the characteristics of the multi-unit ozone generator 100 according to the first embodiment. In the multi-unit ozone generator 100 according to the first embodiment, since the capacitance compensating element 5 is not provided with a resistor, the Q value is high, and the operating range in which the power becomes equal to or higher than the rated power is narrow. On the other hand, the curve shown by the broken line shows the characteristics of the multi-unit ozone generator 100a according to the second embodiment. In the multi-unit ozone generator 100a according to the second embodiment, since the resistance 52 is provided in the capacitance compensating element 5a, the Q value is low, and the operating range in which the power becomes equal to or higher than the rated power is widened. As a result, when the breaking element 4 operates in the multi-unit ozone generator 100a according to the second embodiment, the operation of the high voltage power supply 3 can be stabilized.
 抵抗52は、一般的な抵抗素子を用いればよく、例えば、炭素被膜抵抗、金属皮膜抵抗、箔抵抗、巻き線抵抗、セメント抵抗あるいはホーロー抵抗を用いればよい。また、抵抗52として内部インダクタンスの小さい無誘導抵抗を用いると、容量補償素子5aによる効果を低下させることがなく、浮遊容量との共振も起こりにくくなる。一方、抵抗52として内部インダクタンスの大きい無誘導抵抗を用いると、遮断素子4が動作したときに流れる瞬間的なパルス電流を抑制して容量補償素子5aを保護することができる。 As the resistance 52, a general resistance element may be used, and for example, a carbon film resistance, a metal film resistance, a foil resistance, a winding resistance, a cement resistance or an enamel resistance may be used. Further, when a non-inductive resistor having a small internal inductance is used as the resistor 52, the effect of the capacitance compensation element 5a is not reduced, and resonance with the stray capacitance is less likely to occur. On the other hand, if a non-inductive resistor having a large internal inductance is used as the resistor 52, the momentary pulse current flowing when the breaking element 4 operates can be suppressed to protect the capacitance compensating element 5a.
実施の形態3.
 図9は、実施の形態3によるマルチユニット式オゾン発生器の構成を示す模式図である。図9におけるマルチユニット式オゾン発生器100bは、容量補償素子5bが直列に接続されたコンデンサ51および第2遮断素子53で構成されていることが実施の形態1によるマルチユニット式オゾン発生器100と異なっている。実施の形態3によるマルチユニット式オゾン発生器100bでは、容量補償素子5bに第2遮断素子53を設けたため、コンデンサ51が故障によって短絡した場合に第2遮断素子53が回路を遮断するため、マルチユニット式オゾン発生器100bを停止することなくオゾン発生を継続することができる。
Embodiment 3.
FIG. 9 is a schematic diagram showing the configuration of the multi-unit ozone generator according to the third embodiment. The multi-unit ozone generator 100b in FIG. 9 is the multi-unit ozone generator 100 according to the first embodiment, wherein the capacity compensating element 5b is composed of a capacitor 51 and a second breaking element 53 connected in series. It's different. In the multi-unit ozone generator 100b according to the third embodiment, since the second breaking element 53 is provided in the capacitance compensating element 5b, the second breaking element 53 cuts the circuit when the capacitor 51 is short-circuited due to a failure. Ozone generation can be continued without stopping the unit type ozone generator 100b.
実施の形態4.
 図10は、実施の形態4によるマルチユニット式オゾン発生器の構成を示す模式図である。図10におけるマルチユニット式オゾン発生器100cは、容量補償素子5を流れる電流を検出する電流検知器7を備えていることが実施の形態1によるマルチユニット式オゾン発生器100と異なっている。電流検知器7は、電流検知部71および電流値表示部72を備えている。電流検知部71は、容量補償素子5を流れる電流の大きさに応じた信号を電流値表示部72に出力する。電流値表示部72は、電流検知部71から取得した信号をもとに、容量補償素子5を流れる電流の大きさを表示する。実施の形態4によるマルチユニット式オゾン発生器100cでは、電流検知器7を設けたため、マルチユニット式オゾン発生器100cを停止させることなく遮断素子4が動作したことを検知することができる。遮断素子4が動作したことを検知したときに故障した放電ユニット1を早期に修理することにより、マルチユニット式オゾン発生器100cの寿命を延ばすことができる。
Embodiment 4.
FIG. 10 is a schematic diagram showing the configuration of the multi-unit ozone generator according to the fourth embodiment. The multi-unit ozone generator 100c in FIG. 10 is different from the multi-unit ozone generator 100 according to the first embodiment in that the multi-unit ozone generator 100c includes a current detector 7 that detects a current flowing through the capacitance compensating element 5. The current detector 7 includes a current detection unit 71 and a current value display unit 72. The current detection unit 71 outputs a signal corresponding to the magnitude of the current flowing through the capacitance compensating element 5 to the current value display unit 72. The current value display unit 72 displays the magnitude of the current flowing through the capacitance compensating element 5 based on the signal acquired from the current detection unit 71. In the multi-unit ozone generator 100c according to the fourth embodiment, since the current detector 7 is provided, it is possible to detect that the breaking element 4 has operated without stopping the multi-unit ozone generator 100c. The life of the multi-unit ozone generator 100c can be extended by repairing the discharged unit 1 that has failed when it is detected that the breaking element 4 has operated at an early stage.
 電流検知部71は、一般的な電流検知方式を用いることができ、例えば、容量補償素子5に電流が流れることによって発生する磁界を検出してもよく、容量補償素子5で生じる電圧降下を検出してもよい。特に、容量補償素子5に電流が流れることによって発生する磁界を検出する場合は、容量補償素子5あるいは給電線6に接することなく電流を検出できるため、絶縁設計が容易となる。 The current detection unit 71 can use a general current detection method. For example, the current detection unit 71 may detect a magnetic field generated by a current flowing through the capacitance compensation element 5, and detects a voltage drop generated by the capacitance compensation element 5. You may. In particular, when the magnetic field generated by the current flowing through the capacitance compensating element 5 is detected, the current can be detected without contacting the capacitance compensating element 5 or the feeder line 6, so that the insulation design becomes easy.
 なお、電流検知器7は容量補償素子5を流れる電流を検出するとしたが、実施の形態2の図7に示す容量補償素子5aを流れる電流を検出しても良く、実施の形態3の図9に示す容量補償素子5bを流れる電流を検出しても良い。これらの場合は、実施の形態2に示した効果あるいは実施の形態3に示した効果が得られるとともに、マルチユニット式オゾン発生器を停止させることなく遮断素子4が動作したことを検知することができ、遮断素子4が動作したことを検知したときに故障した放電ユニット1を早期に修理することによりマルチユニット式オゾン発生器の寿命を延ばすことができる。 Although the current detector 7 is supposed to detect the current flowing through the capacitance compensating element 5, it may detect the current flowing through the capacitance compensating element 5a shown in FIG. 7 of the second embodiment, and FIG. 9 of the third embodiment may be detected. The current flowing through the capacitance compensating element 5b shown in the above may be detected. In these cases, the effect shown in the second embodiment or the effect shown in the third embodiment can be obtained, and it is possible to detect that the blocking element 4 has operated without stopping the multi-unit ozone generator. It is possible to extend the life of the multi-unit ozone generator by repairing the discharged unit 1 that has failed when it is detected that the breaking element 4 has operated.
 本願は、様々な例示的な実施の形態が記載されているが、1つまたは複数の実施の形態に記載された様々な特徴、態様、および機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
 したがって、例示されていない無数の変形例が、本願に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
Although the present application describes various exemplary embodiments, the various features, embodiments, and functions described in one or more embodiments are limited to the application of the particular embodiment. Rather, it can be applied to embodiments alone or in various combinations.
Therefore, innumerable variations not exemplified are envisioned within the scope of the techniques disclosed in the present application. For example, it is assumed that at least one component is modified, added or omitted, and further, at least one component is extracted and combined with the components of other embodiments.
 1 放電ユニット、2 放熱器、3 高電圧電源、4 遮断素子、5、5a、5b 容量補償素子、6 給電線、7 電流検知器、10 接地電極、11 誘電体筒、12 高圧電極、13 給電端子、14、15 ヘッダ、16 スペーサ、17 導入端子、18 放電空隙、51 コンデンサ、52 抵抗、71 電流検知部、72 電流値表示部、100、100a、100b、100c マルチユニット式オゾン発生器、200 原料ガス、201 オゾン含有ガス。 1 discharge unit, 2 radiator, 3 high voltage power supply, 4 cutoff element, 5, 5a, 5b capacity compensation element, 6 power supply line, 7 current detector, 10 ground electrode, 11 dielectric cylinder, 12 high voltage electrode, 13 power supply Terminals, 14, 15 headers, 16 spacers, 17 introduction terminals, 18 discharge voids, 51 capacitors, 52 resistors, 71 current detectors, 72 current value display units, 100, 100a, 100b, 100c multi-unit type ozone generators, 200 Raw material gas, 201 ozone-containing gas.

Claims (5)

  1.  放電によってオゾンを発生させ互いに並列接続された複数の放電ユニットと、
     それぞれの前記放電ユニットに交流高電圧を印加する高電圧電源と、
     前記放電ユニットごとに設けられそれぞれの前記放電ユニットを前記高電圧電源に個別に接続し、定格を超える電流が一定の時間にわたって流れたときに回路を切断して電流を遮断する遮断素子と、
     それぞれの前記遮断素子に並列に接続され、キャパシタンスを持った容量補償素子とを備えたことを特徴とするマルチユニット式オゾン発生器。
    With multiple discharge units that generate ozone by discharge and are connected in parallel with each other,
    A high-voltage power supply that applies an AC high voltage to each of the discharge units,
    A cutoff element provided for each discharge unit, in which each discharge unit is individually connected to the high voltage power supply, and the circuit is cut off to cut off the current when a current exceeding the rating flows for a certain period of time.
    A multi-unit ozone generator characterized by being connected in parallel to each of the breaking elements and provided with a capacitance compensating element having a capacitance.
  2.  前記容量補償素子はコンデンサであることを特徴とする請求項1に記載のマルチユニット式オゾン発生器。 The multi-unit ozone generator according to claim 1, wherein the capacitance compensating element is a capacitor.
  3.  前記容量補償素子は直列に接続されたコンデンサと抵抗であることを特徴とする請求項1に記載のマルチユニット式オゾン発生器。 The multi-unit ozone generator according to claim 1, wherein the capacitance compensating element is a capacitor and a resistor connected in series.
  4.  前記容量補償素子は直列に接続されたコンデンサと第2遮断素子であることを特徴とする請求項1に記載のマルチユニット式オゾン発生器。 The multi-unit ozone generator according to claim 1, wherein the capacitance compensating element is a capacitor connected in series and a second breaking element.
  5.  前記容量補償素子を流れる電流を検出する電流検知器を備えたことを特徴とする請求項1から4のいずれか1項に記載のマルチユニット式オゾン発生器。 The multi-unit ozone generator according to any one of claims 1 to 4, further comprising a current detector that detects a current flowing through the capacitance compensating element.
PCT/JP2020/019865 2020-05-20 2020-05-20 Multiunit type ozone generator WO2021234833A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/019865 WO2021234833A1 (en) 2020-05-20 2020-05-20 Multiunit type ozone generator
JP2020546184A JP6818958B1 (en) 2020-05-20 2020-05-20 Multi-unit ozone generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/019865 WO2021234833A1 (en) 2020-05-20 2020-05-20 Multiunit type ozone generator

Publications (1)

Publication Number Publication Date
WO2021234833A1 true WO2021234833A1 (en) 2021-11-25

Family

ID=74200196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/019865 WO2021234833A1 (en) 2020-05-20 2020-05-20 Multiunit type ozone generator

Country Status (2)

Country Link
JP (1) JP6818958B1 (en)
WO (1) WO2021234833A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4833583A (en) * 1987-01-23 1989-05-23 Trailigaz-Compagnie Generale De L'ozone Electric supply device for an ozonizer
JPH11171505A (en) * 1997-12-17 1999-06-29 Mitsubishi Electric Corp Ozonizer and equipment for treating chemical reaction using the same
JP2003201105A (en) * 2002-01-07 2003-07-15 Mitsubishi Electric Corp System for treating ozone
JP2010168241A (en) * 2009-01-22 2010-08-05 Mitsubishi Electric Corp Ozone generating apparatus
WO2011158361A1 (en) * 2010-06-17 2011-12-22 三菱電機株式会社 Capacitive load device, and method for detecting abnormalities in capacitive load device
JP2013049582A (en) * 2011-08-30 2013-03-14 Mitsubishi Electric Corp Ozone generating tube and ozone generating apparatus
JP2015067464A (en) * 2013-09-27 2015-04-13 三菱電機株式会社 Ozone generator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4833583A (en) * 1987-01-23 1989-05-23 Trailigaz-Compagnie Generale De L'ozone Electric supply device for an ozonizer
JPH11171505A (en) * 1997-12-17 1999-06-29 Mitsubishi Electric Corp Ozonizer and equipment for treating chemical reaction using the same
JP2003201105A (en) * 2002-01-07 2003-07-15 Mitsubishi Electric Corp System for treating ozone
JP2010168241A (en) * 2009-01-22 2010-08-05 Mitsubishi Electric Corp Ozone generating apparatus
WO2011158361A1 (en) * 2010-06-17 2011-12-22 三菱電機株式会社 Capacitive load device, and method for detecting abnormalities in capacitive load device
JP2013049582A (en) * 2011-08-30 2013-03-14 Mitsubishi Electric Corp Ozone generating tube and ozone generating apparatus
JP2015067464A (en) * 2013-09-27 2015-04-13 三菱電機株式会社 Ozone generator

Also Published As

Publication number Publication date
JPWO2021234833A1 (en) 2021-11-25
JP6818958B1 (en) 2021-01-27

Similar Documents

Publication Publication Date Title
US8675336B2 (en) Multiple concentric wound film capacitors
US10110119B2 (en) Power supply and method of manufacturing
US20200236766A1 (en) Electrostatic discharge device
CN112514020A (en) Vacuum interrupter and high-voltage switching device
CN103680992B (en) A kind of capacitor bank
JP5117987B2 (en) Gas insulated switchgear
WO2021234833A1 (en) Multiunit type ozone generator
CN108321000B (en) Vacuum arc-extinguishing chamber for self-equalizing multi-fracture vacuum circuit breaker
US20230065268A1 (en) Dielectric nanofluid for a capacitor system
JP5595136B2 (en) Inductively coupled plasma generator
JP6104630B2 (en) Power supply for sliding discharge
WO2019180193A1 (en) A bushing with a tap assembly
US4296397A (en) Fuse structure for corrosive atmosphere
KR102360909B1 (en) Vacuum capacitor
KR102360910B1 (en) Vacuum capacitor and manufacturing method of the same
CN218826422U (en) High-voltage insulation connecting piece of mass spectrometer
EP1515413B1 (en) Support structure for high-voltage conductors
JPH09292435A (en) Protecting device for withstand voltage test
JP7458441B2 (en) high voltage drive device
Kulkarni et al. Concept of series connected vacuum interrupters
US11043330B2 (en) Electrical component
JP4385104B2 (en) Steep wave suppression device
CN110678953A (en) Current cutoff element and ozone generating device
JP7418672B1 (en) insulation equipment
RU195860U1 (en) TWO-CHAMBER ELECTRIC SWITCH

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020546184

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20936973

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20936973

Country of ref document: EP

Kind code of ref document: A1