WO2021234272A1 - Dispositif d'enroulement/déroulement d'un lien - Google Patents

Dispositif d'enroulement/déroulement d'un lien Download PDF

Info

Publication number
WO2021234272A1
WO2021234272A1 PCT/FR2021/050865 FR2021050865W WO2021234272A1 WO 2021234272 A1 WO2021234272 A1 WO 2021234272A1 FR 2021050865 W FR2021050865 W FR 2021050865W WO 2021234272 A1 WO2021234272 A1 WO 2021234272A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
coil
magnets
stator
motor
Prior art date
Application number
PCT/FR2021/050865
Other languages
English (en)
Inventor
Jean-Michel BERGER
Bruno PARSEIHIAN
Yohan FOURNIER
Original Assignee
Conductix Wampfler France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Conductix Wampfler France filed Critical Conductix Wampfler France
Priority to JP2022566327A priority Critical patent/JP2023526906A/ja
Priority to BR112022023510A priority patent/BR112022023510A2/pt
Priority to EP21732476.3A priority patent/EP4154391A1/fr
Priority to CA3181800A priority patent/CA3181800A1/fr
Priority to KR1020227038626A priority patent/KR20230010633A/ko
Priority to US17/925,874 priority patent/US20230192440A1/en
Priority to CN202180036850.5A priority patent/CN115668709A/zh
Publication of WO2021234272A1 publication Critical patent/WO2021234272A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2793Rotors axially facing stators
    • H02K1/2795Rotors axially facing stators the rotor consisting of two or more circumferentially positioned magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H75/00Storing webs, tapes, or filamentary material, e.g. on reels
    • B65H75/02Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks
    • B65H75/34Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks specially adapted or mounted for storing and repeatedly paying-out and re-storing lengths of material provided for particular purposes, e.g. anchored hoses, power cables
    • B65H75/38Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks specially adapted or mounted for storing and repeatedly paying-out and re-storing lengths of material provided for particular purposes, e.g. anchored hoses, power cables involving the use of a core or former internal to, and supporting, a stored package of material
    • B65H75/44Constructional details
    • B65H75/4481Arrangements or adaptations for driving the reel or the material
    • B65H75/4486Electric motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/003Couplings; Details of shafts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2555/00Actuating means
    • B65H2555/20Actuating means angular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/30Handled filamentary material
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4439Auxiliary devices
    • G02B6/4457Bobbins; Reels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G11/00Arrangements of electric cables or lines between relatively-movable parts
    • H02G11/02Arrangements of electric cables or lines between relatively-movable parts using take-up reel or drum
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • the invention relates to a device for winding / unwinding a link suitable for transporting a fluid or transmitting energy and / or signals.
  • the first element could be a cabinet fixed to the floor, a robot frame, etc. and the second element can be a trolley or a gantry rolling on the ground, an arm of a robot, etc.
  • the aforementioned energy and / or signals are transmitted through an electric cable, an optical fiber or a bundle of optical fibers, a mechanical cable, a hydraulic or pneumatic conduit or any other suitable means. , generally referred to in this text as a “link”.
  • a reel must adapt as closely as possible to the applications for which it is used, these being very varied.
  • the link the installation height, the speeds and accelerations of movement of the second element relative to the first element, the sizing of the drive unit must be adapted.
  • a particularity of the winders is the low speed of rotation of the reel but the need to deliver a high torque.
  • a first type of drive unit comprises the association of a motor with a magnetic coupler, as described for example in documents FR2102600, FR2607333 and FR2899399.
  • This design allows a certain modularity from identical motors and couplers, insofar as several motor groups couplers can be mounted on the same reducer to adjust the torque according to the application.
  • a second type of drive unit consists of a combination of a variable frequency motor and an electronic control unit. This type of drive unit does not benefit from the modularity of the first type insofar as the motor must be chosen with the power required for the application.
  • Another type of drive unit is an axial flow motor as for example described in EP3072220.
  • An object of the invention is to design a new type of drive for a reel, making it possible to provide high torque at low speed.
  • the invention provides a winding / unwinding device for a link suitable for transporting a fluid or transmitting energy and / or signals, comprising:
  • At least one synchronous motor with permanent magnets with direct drive comprising a stator carrying windings adapted to be supplied electrically in three-phase and a rotor carrying the permanent magnets opposite the stator windings.
  • At least one rotor of said at least one motor is formed by a central disc of the coil.
  • At least one rotor of said at least one synchronous motor is rigidly integral with the shaft.
  • the permanent magnets are arranged through said at least one rotor so as to each have a north face on one side of said rotor and a south face on the opposite side of the same rotor.
  • each permanent magnet is trapezoidal in shape, with the height of each permanent magnet extending radially from the longitudinal axis.
  • the magnets are juxtaposed to form a crown.
  • the radial extension of the crown of the magnets is substantially equal to the height of the coils.
  • the motor is axial flow.
  • the device may further include an electronic speed variator suitable for varying the supply current of the stator windings.
  • the device advantageousously further comprises a rotating joint coupled to one end of the hollow shaft opposite the spool and a control / command system comprising a processing unit coupled or integrated with the electronic speed variator to control each motor as a function in particular of the position rewinder and operating phase.
  • FIG. 1 is an overall view of a winding / unwinding device according to one embodiment of the invention.
  • FIG. 2 is a sectional view of the winding / unwinding device of Figure 1;
  • FIG. 3 is a perspective view of the winding / unwinding device of Figure 1 with a partial section at the level of the motor, according to a first embodiment of the motor;
  • Figure 4 is a view similar to that of Figure 3 with a second embodiment of the engine
  • FIG. 5 is a view similar to that of Figures 3 and 4 with a third embodiment of the engine
  • FIG. 6 is a sectional view of the winding / unwinding device according to another embodiment of the invention.
  • FIG. 7 is a perspective view of a winding / unwinding device according to another embodiment of the invention, with a partial section at the stator;
  • Figure 8 is a view similar to that of Figure 7 with two juxtaposed motors
  • Figure 9 is a view similar to that of Figures 7 and 8 with three juxtaposed motors;
  • Figure 10 is a view similar to that of Figures 7-9 with four juxtaposed motors.
  • FIG. 1 is an overview of a device for winding / unwinding a link according to one embodiment of the invention.
  • the link can be an electrical cable, an optical fiber or a bundle of optical fibers, a mechanical cable, a hydraulic or pneumatic conduit or any other suitable means for transmitting energy and / or signals.
  • One of these elements can be, in particular but not limited to, a cabinet fixed to the floor or a frame of a robot.
  • the other of these elements can be, in particular but not limited to: a trolley or a gantry rolling on the ground, or even an arm of a robot.
  • the winding / unwinding device (also called a "winder” in the remainder of the text) comprises a support which is adapted to be rigidly secured to one of the elements.
  • the winder also includes a spool 2 adapted to receive the link in coiled form.
  • the coil includes:
  • the cheeks of the coil may be solid, each set of arms being replaced by a disc of equivalent diameter.
  • ferrules which may be an integral part of the mandrel or of the cheeks, namely:
  • each ferrule is attached to at least one arm of a respective cheek at a second distance from the mandrel, greater than the first distance.
  • the coil comprises a bearing surface adapted to receive the turns of the link, the inner turn being in contact with said bearing surface.
  • Said bearing surface may in particular form part of the mandrel or of the inner shell.
  • the flange that is to say the distance between the two cheeks, is defined as a function of the width of the link to be wound on the spool.
  • the interflask is adjusted so that the distances between the cheeks are adapted to the link wound at the level of the proximal and distal ends of the arms.
  • the flange and the length of the arms, which define the capacity of the spool, are chosen according to the maximum length of the link that can be wound on the spool.
  • the outside diameter of the coil can typically be in the range of 3 to 8 m.
  • the spool 2 is rigidly secured to one end of a shaft 3 which is mounted so as to be able to rotate relative to the support by means of bearings 30.
  • the shaft 3 is hollow, so as to allow the passage of the link between the coil 2 and the rotary joint (not shown) which is located on the side of the shaft opposite to the coil .
  • the link is protected from the elements surrounding the reel and does not risk being damaged by them.
  • the hollow shaft itself can constitute a conduit for the fluid, connections with the link then being provided at the ends of the shaft.
  • the end of the hollow shaft opposite the spool is coupled to a hollow shaft of the rotary joint (not shown) coaxial with the hollow shaft 3.
  • the shaft and the coil are rotated about the longitudinal axis X of the shaft 3 by at least one direct-drive permanent magnet synchronous motor.
  • This type of motor is also called a "direct drive motor" in English terminology.
  • Said at least one motor comprises a stator 1 which is rigidly secured to the support.
  • the stator 1 is formed integrally with the support, but it could be formed from a separate piece rigidly linked to the support.
  • the stator 1 supports a plurality of windings 10 supplied in three phase arranged around the X axis to produce a magnetic field along the X axis whose polarity alternates depending on the direction of the current flowing through the windings. More precisely, the stator 1 comprises a plurality of magnetic sheets 100 separated from each other by radial notches and each coil consists of a set 101 of turns of electrically conductive wires slipped into said notches.
  • the motor also comprises a rotor movable in rotation with respect to the stator 1.
  • the rotor supports a plurality of permanent magnets 11.
  • the turns of the coils 10 are arranged in a substantially radial direction so as to create an axial magnetic field opposite the permanent magnets 11 of the rotor.
  • the rotor is constituted by a disc 24 integral with the coil on which the magnets are fixed. permanent.
  • said disc can be merged with the mandrel 20.
  • the magnets advantageously have a substantially trapezoidal shape, with a height oriented radially with respect to the X axis, the narrowest base being positioned closer to the X axis than the lower base. large.
  • the bases of the magnets can be straight or curved.
  • the permanent magnets can thus be juxtaposed to form a crown coaxial with the X axis, facing the coils.
  • the stator 1 comprises coils 10 of different heights
  • the rotor comprises trapezoidal permanent magnets 11 arranged in a ring whose width, which corresponds to the height of the magnets, is preferably less. or equal to the height of the coils (the height of a coil being measured in the radial direction with respect to the X axis).
  • the rotor 41, 42 comprises a disc on one face of which the permanent magnets 11 are fixed, said disc not forming part of the coil 2 but being rigidly integral with the hollow shaft 3.
  • the rotor can be formed integrally with the hollow shaft, or else be rigidly fixed thereto, for example by splines, keys, or any other fixing means .
  • the stator 1 is arranged around the rotor 41, 42 and the hollow shaft 3 by means of bearings 30 allowing rotation of the hollow shaft and the rotor 41, 42 relative to the stator 1.
  • the stator 1 comprises a surface facing the face of the rotor carrying the permanent magnets, said surface supporting a plurality of windings 101-104 supplied in three-phase arranged around the X axis to produce a magnetic field along the X axis, the size of which is polarity alternates according to the direction of the current flowing through the windings.
  • the stator 1 comprises a plurality of magnetic sheets separated from each other by radial notches and each coil 101-104 consists of a set of turns of electrically conductive wires slipped into said notches.
  • this arrangement of the rotor and the stator makes it possible to juxtapose several motors along the X axis, each motor associating one face of a rotor carrying the permanent magnets and the face of the stator facing each other, supporting the coils.
  • each rotor can be common to two adjacent motors, a first face bearing the permanent magnets belonging to a first motor and a second face, opposite the first and also bearing the permanent magnets, belonging to a second motor.
  • other rotors can be added which, combined with respective faces of the stator, each contribute to two additional motors.
  • FIG. 6 thus illustrates an embodiment with four motors 51-54, comprising two rotors 41, 42 supporting permanent magnets 111-114 on their two faces, each face of a rotor being opposite a respective face of the stator comprising windings 101-104.
  • FIG. 6 allows the number of motors to be varied between 1 and 4, depending on the number of faces of the rotors 41, 42 which are provided with permanent magnets and respective stator faces which are provided with windings.
  • additional motors could be added by providing one or more additional rotors coaxial with rotors 41, 42, and respective additional stator faces.
  • FIG. 7 illustrates an embodiment comprising a rotor 41 comprising magnets 111 on a face facing a surface of the stator 1 comprising the windings 101, forming a motor 51.
  • the rotor 41 is rigidly secured to the shaft 3 and coaxial with the coil.
  • FIG. 8 illustrates an embodiment comprising a rotor 41 comprising magnets 111 on a face facing the surface of the stator 1 comprising the windings 101, forming a motor 51, and magnets 112 on the opposite face of the rotor 41 facing a second surface of the stator 1 comprising the windings 102, forming a second motor 52.
  • the magnets can, for example, be glued to the surfaces of the rotor 41.
  • a single set of magnets can be used for two adjacent motors.
  • the magnets are arranged in the rotor 41 so that a magnet has a north face on a first side of the rotor 41 and a south face on the other side of the same rotor 41, and a magnet adjacent has a south face on the first side of rotor 41 and the north face on the other side of rotor 41.
  • the north and south faces alternate on each side of rotor 41.
  • the first motor formed by the rotor 41 therefore comprises magnets on a crown, alternately presenting a north face and a south face. On the opposite face of the same rotor 41, there is a ring of magnets having the opposite polarity. By shifting the stator windings on either side of the rotor by a magnet pitch, torque is doubled compared to a ring of magnets used on one side only.
  • each magnet thus has a face used by the first motor 51, while its opposite face is used by the second motor 52.
  • the rotor 41 can be made of sheet metal having reservations in the shape of the magnets, in which the magnets 111 -114 are arranged so as to pass through the rotor 41.
  • the rotor 42 is not used to form a motor and therefore does not carry permanent magnets. It would of course be possible to do away with this rotor 42 in order to increase the compactness of the device.
  • FIG. 9 illustrates an embodiment comprising the motors 51 and 52 and a second rotor 42 comprising magnets 113 on a face facing the surface of the stator 1 comprising the coils 103, forming a third motor 53.
  • FIG. 10 illustrates an embodiment comprising the motors 51 and 52 and a second rotor 42 comprising magnets 113 on a face facing a third surface of the stator 1 comprising the coils 103, forming a third motor 53, and magnets 114 on its opposite face facing a fourth surface of stator 1 comprising the coils 104, forming a fourth motor 54.
  • the motors 53 and 54 can be formed by the same set of magnets arranged through the rotor 42 so as to present, each one a north face on one side of the rotor 42 and a south face on the other side of the rotor. same rotor 42, by alternating the north and south faces of the adjacent magnets on each side of the rotor.
  • the number of rotors is purely illustrative and not limiting, a person skilled in the art will know how to adapt it according to the parameters of the winding device and the necessary torque.
  • the permanent magnets 111-114 advantageously have a substantially trapezoidal shape, with a height oriented radially with respect to the X axis, the base la narrower being positioned closer to the X axis than the wider base.
  • the bases of the magnets can be straight or curved.
  • the permanent magnets can thus be juxtaposed to form a crown coaxial with the X axis, facing the coils.
  • Each motor is controlled by an electronic speed variator (not shown) adapted to vary the voltage, frequency and current supplying the windings of stator 1.
  • Said windings produce a magnetic field rotating at a speed proportional to the frequency d power supply, causing a rotation of the rotor (s), the permanent magnets of which produce a magnetic field.
  • the current supplying the windings can be controlled, so as to vary the magnetic field and therefore adapt the torque produced by the motor.
  • the electronic speed variator is part of the reel control / command system, which also includes a processing unit coupled or integrated into the variator to control the motor in particular according to the position of the reel and the operating phase. .
  • Said control / command system further comprises sensors suitable for measuring the electric current flowing through the motor windings.
  • the processing unit comprises at least one processor configured to implement calculation algorithms taking account of input data supplied in particular by the sensors and a memory in which are recorded the parameters necessary for the execution of the algorithms.
  • the processing unit is integrated directly into the drive; in other embodiments, the processing unit is integrated in a programmable logic controller external to the variator (for example that of the machine to which the reel is connected).
  • the processing unit and the drive can be arranged inside a cabinet located near the rewinder.
  • An advantage of such a motor or set of direct drive motors is that it makes it possible to avoid the use of any transmission element, such as a reduction gear, and therefore overcomes all the problems generated by such a reducer, such as in particular possible failures and operating clearances of the reducer, as well as the losses that it causes by its efficiency.
  • such a motor or set of motors makes it possible to generate shorter torques that are greater than current asynchronous motor technologies, which proves to be important in making it possible to reduce the braking time of the reel when stopped. emergency (at constant engine power) or to pass more quickly above the feed point of the reel, this requiring a strong overtorque, compared to the torque generated in current use, over a short period (typically less at 5 seconds).
  • the winder according to the invention benefits from the large dimension of the coil to allow an arrangement of a large number of permanent magnets, and to place said magnets at a significant distance from the X axis, in order to provide the desired torque.
  • the spool rotational speed is typically around 30 rpm, but more generally can range from almost zero to 100 rpm.
  • the torque produced by the motor can reach 8000 Nm.
  • the winding architecture according to the invention lends itself to a certain modularity, both in terms of the size and / or number of the coils and of the size of the permanent magnets.
  • the stator 1 comprises coils 10 having a height h 1, the top of the coils in the direction radial being at a distance d from the X axis, and the height of the magnets 11 is substantially equal to the total thickness of the coil, the magnets being arranged opposite the coils.
  • the stator 1 comprises coils 10 having a height h2 less than h1.
  • the top of the coils in the radial direction is the same distance d from the X axis as in the coils of Figure 3, and the wide base of the magnets 11 is located the same distance from the X axis as the coils. magnets of the rotor of Figure 3 to maximize the torque generated.
  • the stator 1 comprises coils 10 having a height h3 less than h2.
  • the top of the coils in the radial direction is the same distance d from the X axis as in the coils of Figures 3 and 4, and the wide base of the magnets 11 is located the same distance from the X axis as the rotor magnets of Figures 3 and 4 in order to maximize the torque generated.
  • each magnet in the form of two or more trapezoidal portions juxtaposed in the radial direction, the sum of the heights of which forms the total height of the magnet.
  • magnets of maximum height using all of the trapezoidal portions, or to form magnets of minimum or intermediate height by using only part of the trapezoidal portions and arranging them in a ring.
  • the illustrated embodiments are given for illustration only; those skilled in the art may use any other number of turns for the winding and size and number of magnets accordingly, depending on the application and the torque and speed required.
  • Those skilled in the art will also be able to adapt the turns for the winding 101-104 and size the size and the number of magnets 111-114 in the same way for an embodiment in which one or more rotors 41, 42 are integral. shaft 3 as shown in Figures 6-10.
  • the size and the number of turns for the windings 101-104 and the number of magnets 111-114 may be different or identical for the several motors 51-54 formed by the rotors and the surfaces of the stator 1.
  • the motor could, according to an alternative, be radial flow.
  • the rotor would comprise a drum integral with the mandrel 20 carrying the permanent magnets and the stator 1 would carry windings supplied in three-phase orienting the field radially.
  • the magnets could be placed inside or outside the coils.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Winding Of Webs (AREA)
  • Storing, Repeated Paying-Out, And Re-Storing Of Elongated Articles (AREA)
  • Replacement Of Web Rolls (AREA)

Abstract

Dispositif d'enroulement/déroulement d'un lien L'invention concerne un dispositif d'enroulement/déroulement d'un lien adapté pour transporter un fluide ou transmettre de l'énergie et/ou des signaux, comprenant : - une bobine (2) adaptée pour recevoir ledit lien sous forme enroulée, - un arbre creux (3) traversant adapté pour le passage dudit lien ou fluide entre un joint tournant et la bobine, ledit arbre creux (3) étant solidarisé à la bobine (2) pour entraîner ladite bobine en rotation autour d'un axe longitudinal (X) dudit arbre, - au moins un moteur synchrone à aimants permanents à entraînement direct, comprenant un stator portant des bobinages (10) adaptés pour être alimentés électriquement en triphasé et un rotor portant les aimants permanents (11) en regard des bobinages (10) du stator.

Description

Dispositif d’enroulement/déroulement d’un lien
Domaine technique
L’invention concerne un dispositif d’enroulement/déroulement d’un lien adapté pour transporter un fluide ou transmettre de l’énergie et/ou des signaux.
Etat de la technique
Il existe de nombreuses applications industrielles dans lesquelles il est nécessaire de transmettre de l’énergie et/ou des signaux (par exemple, un courant électrique, des signaux optiques, une tension mécanique, un fluide, etc.) par une liaison tournante entre un premier élément et un second élément mobile par rapport au premier élément. Par exemple, le premier élément peut être une armoire fixée au sol, un bâti d’un robot, etc. et le second élément peut être un chariot ou un portique roulant au sol, un bras d’un robot, etc.
L’énergie et/ou les signaux susmentionnés sont transmis par l’intermédiaire d’un câble électrique, d’une fibre optique ou d’un faisceau de fibres optiques, un câble mécanique, un conduit hydraulique ou pneumatique ou de tout autre moyen approprié, généralement désigné dans le présent texte par « lien ».
Pour éviter que le lien ne se déploie de manière désordonnée lors du déplacement du second élément par rapport au premier élément, il est connu de disposer le lien sur une bobine d’un enrouleur monté sur le premier ou le second élément et comprenant une unité d’entraînement adaptée pour entraîner en rotation la bobine, de sorte à dérouler ou enrouler ledit lien de manière synchronisée avec le déplacement du second élément par rapport au premier élément. Un tel dispositif d’enroulement est par exemple décrit dans EP3008005.
Un enrouleur doit s’adapter au plus près des applications pour lesquelles il est utilisé, celles-ci étant très variées. En fonction du lien, de la hauteur d’installation, des vitesses et accélérations de déplacement du second élément par rapport au premier élément, le dimensionnement de l’unité d’entraînement doit être adapté.
Une particularité des enrouleurs est la faible vitesse de rotation de la bobine mais la nécessité de délivrer un couple important.
Il existe différents types d’unités d’entraînement destinées à répondre à ces contraintes techniques.
Un premier type d’unité d’entraînement comprend l’association d’un moteur avec un coupleur magnétique, tel que décrit par exemple dans les documents FR2102600, FR2607333 et FR2899399. Cette conception autorise une certaine modularité à partir de moteurs et de coupleurs identiques, dans la mesure où plusieurs groupes moto- coupleurs peuvent être montés sur un même réducteur pour ajuster le couple en fonction de l’application.
Un second type d’unité d’entraînement comprend l’association d’un moteur à fréquence variable et d’une unité de contrôle électronique. Ce type d’unité d’entraînement ne bénéficie pas de la modularité du premier type dans la mesure où le moteur doit être choisi avec la puissance requise pour l’application. Un autre type d’unité d’entraînement est un moteur à flux axial comme par exemple décrit dans EP3072220.
Brève description de l’invention
Un but de l’invention est de concevoir un nouveau type d’entraînement pour un enrouleur, permettant de procurer un couple élevé à basse vitesse.
A cet effet, l’invention propose un dispositif d’enroulement/déroulement d’un lien adapté pour transporter un fluide ou transmettre de l’énergie et/ou des signaux, comprenant :
- une bobine adaptée pour recevoir ledit lien sous forme enroulée,
- un arbre creux traversant adapté pour le passage dudit lien ou fluide entre le joint tournant et la bobine, ledit arbre creux étant solidarisé à la bobine pour entraîner ladite bobine en rotation autour d’un axe longitudinal dudit arbre,
- au moins un moteur synchrone à aimants permanents à entraînement direct, comprenant un stator portant des bobinages adaptés pour être alimentés électriquement en triphasé et un rotor portant les aimants permanents en regard des bobinages du stator.
Dans certains modes de réalisation, au moins un rotor dudit au moins un moteur est formé par un disque central de la bobine.
Dans d’autres modes de réalisation, au moins un rotor dudit au moins un moteur synchrone est rigidement solidaire de l’arbre. Dans certains modes de réalisation les aimants permanents sont agencés au travers dudit au moins un rotor de sorte à présenter chacun une face nord sur un côté dudit rotor et une face sud sur le côté opposé du même rotor.
Dans certains modes de réalisation, chaque aimant permanent présente une forme trapézoïdale, la hauteur de chaque aimant permanent s’étendant radialement par rapport à l’axe longitudinal. De manière particulièrement avantageuse, les aimants sont juxtaposés pour former une couronne.
Dans certains modes de réalisation, l’extension radiale de la couronne des aimants est sensiblement égale à la hauteur des bobinages.
Dans un mode de réalisation préféré, le moteur est à flux axial.
Le dispositif peut en outre comprendre un variateur de vitesse électronique adapté pour faire varier le courant d’alimentation des bobinages du stator. Le dispositif comprend avantageusement en outre un joint tournant couplé à une extrémité de l’arbre creux opposée à la bobine et un système de contrôle/commande comprenant une unité de traitement couplée ou intégrée au variateur de vitesse électronique pour piloter chaque moteur en fonction notamment de la position de l’enrouleur et de la phase de fonctionnement.
Brève description des dessins
D’autres caractéristiques et avantages de l’invention ressortiront de la description détaillée qui va suivre, en référence aux dessins annexés, sur lesquels :
- la figure 1 est une vue d’ensemble d’un dispositif d’enroulement/déroulement selon un mode de réalisation de l’invention ;
- la figure 2 est une vue en coupe du dispositif d’enroulement/déroulement de la figure 1 ;
- la figure 3 est une vue en perspective du dispositif d’enroulement/déroulement de la figure 1 avec une coupe partielle au niveau du moteur, selon une première forme d’exécution du moteur ;
- la figure 4 est une vue similaire à celle de la figure 3 avec une seconde forme d’exécution du moteur ;
- la figure 5 est une vue similaire à celle des figures 3 et 4 avec une troisième forme d’exécution du moteur ;
- la figure 6 est une vue en coupe du dispositif d’enroulement/déroulement selon un autre mode de réalisation de l’invention ;
- la figure 7 est une vue en perspective d’un dispositif d’enroulement/déroulement selon un autre mode de réalisation de l’invention, avec une coupe partielle au niveau du stator ;
- la figure 8 est une vue similaire à celle de la figure 7 avec deux moteurs juxtaposés ;
- la figure 9 est une vue similaire à celle des figures 7 et 8 avec trois moteurs juxtaposés ;
- la figure 10 est une vue similaire à celle des figures 7-9 avec quatre moteurs juxtaposés.
Seuls les éléments nécessaires à la description de l’enrouleur ont été représentés. Les signes de référence identiques d’une figure à l’autre désignent des éléments identiques ou remplissant une même fonction, et ne seront donc pas nécessairement décrits en détail à nouveau. Description détaillée de modes de réalisation
La figure 1 est une vue d’ensemble d’un dispositif d’enroulement/déroulement d’un lien selon une forme d’exécution de l’invention.
Le lien peut être un câble électrique, une fibre optique ou un faisceau de fibres optiques, un câble mécanique, un conduit hydraulique ou pneumatique ou tout autre moyen approprié pour transmettre de l’énergie et/ou des signaux.
Pour des raisons de lisibilité des figures, le raccord tournant, le dispositif de contrôle/commande et les éléments reliés par le lien n’ont pas été représentés.
L’un de ces éléments peut être, notamment mais de manière non limitative, une armoire fixée au sol ou un bâti d’un robot.
L’autre de ces éléments peut être, notamment mais de manière non limitative : un chariot ou un portique roulant au sol, ou encore un bras d’un robot.
Le dispositif d’enroulement/déroulement (également appelé « enrouleur » dans la suite du texte) comprend un support qui est adapté pour être rigidement solidaire de l’un des éléments.
L’enrouleur comprend également une bobine 2 adaptée pour recevoir le lien sous forme enroulée.
La bobine comprend :
- un mandrin 20 s’étendant selon un axe de rotation de la bobine, et
- deux ensembles de bras latéraux 21a, 21b définissant un volume d'enroulement du lien, adaptés pour contenir latéralement les spires dudit lien, fixés de part et d’autre du mandrin 20. Chaque ensemble de bras forme une joue.
De manière alternative (non représentée), les joues de la bobine peuvent être pleines, chaque ensemble de bras étant remplacé par un disque de diamètre équivalent.
La structure de la bobine est rigidifiée par des viroles, qui peuvent faire partie intégrante du mandrin ou des joues, à savoir :
- une virole intérieure 22, située à une première distance du mandrin, et
- une paire de viroles extérieures 23a, 23b dans laquelle chaque virole est fixée à au moins un bras d’une joue respective à une seconde distance du mandrin, supérieure à la première distance.
La bobine comprend une surface portante adaptée pour recevoir les spires du lien, la spire intérieure étant au contact de ladite surface portante. Ladite surface portante peut notamment faire partie du mandrin ou de la virole intérieure.
L’entreflasque, c’est-à-dire la distance entre les deux joues, est défini en fonction de la largeur du lien à enrouler sur la bobine. Pour permettre un enroulement/déroulement correct du lien, notamment dans le cas d'une bobine mono- spire, l’entreflasque est ajusté pour que les distances entre les joues soient adaptées au lien enroulé au niveau des extrémités proximales et distales des bras.
L’entreflasque et la longueur des bras, qui définissent la capacité de la bobine, sont choisis en fonction de la longueur maximale du lien susceptible d’être enroulée sur la bobine. Selon les applications, le diamètre extérieur de la bobine peut être typiquement de l’ordre de 3 à 8 m.
La bobine 2 est rigidement solidaire d’une extrémité d’un arbre 3 qui est monté mobile en rotation par rapport au support par l’intermédiaire de roulements 30.
Comme on le voit mieux sur la figure 2, l’arbre 3 est creux, de sorte à permettre le passage du lien entre la bobine 2 et le joint tournant (non représenté) qui est situé du côté de l’arbre opposé à la bobine. Ainsi, le lien est protégé vis-à-vis des éléments environnant l’enrouleur et ne risque pas d’être endommagé par ceux-ci.
Dans le cas où le lien transporte un fluide, l’arbre creux lui-même peut constituer un conduit pour le fluide, des raccords avec le lien étant alors prévus aux extrémités de l’arbre.
L’extrémité de l’arbre creux opposée à la bobine est couplée à un arbre creux du joint tournant (non représenté) coaxial avec l’arbre creux 3.
L’arbre et la bobine sont entraînés en rotation autour de l’axe longitudinal X de l’arbre 3 par au moins un moteur synchrone à aimants permanents à entraînement direct. Ce type de moteur est également appelé « direct drive motor » dans la terminologie anglo-saxonne.
Ledit au moins un moteur comprend un stator 1 qui est rigidement solidaire du support. Sur les figures, le stator 1 est formé d’un seul tenant avec le support, mais il pourrait être formé d’une pièce distincte rigidement liée au support.
Selon un mode de réalisation préféré, le stator 1 supporte une pluralité de bobinages 10 alimentés en triphasé agencés autour de l’axe X pour produire un champ magnétique selon l’axe X dont la polarité alterne en fonction du sens du courant traversant les bobinages. Plus précisément, le stator 1 comprend une pluralité de tôles magnétiques 100 séparées les unes des autres par des encoches radiales et chaque bobinage est constitué d’un ensemble 101 de spires de fils électriquement conducteurs glissés dans lesdites encoches.
Le moteur comprend également un rotor mobile en rotation par rapport au stator 1 . Le rotor supporte une pluralité d’aimants permanents 11 .
Les spires des bobinages 10 sont agencées dans une direction sensiblement radiale de sorte à créer un champ magnétique axial en regard des aimants permanents 11 du rotor.
Dans certains modes de réalisation, en référence aux figures 2-5, le rotor est constitué par un disque 24 solidaire de la bobine sur lequel sont fixés les aimants permanents. De manière avantageuse, ledit disque peut être confondu avec le mandrin 20.
Pour optimiser la surface couverte par les aimants, les aimants présentent avantageusement une forme sensiblement trapézoïdale, avec une hauteur orientée radialement par rapport à l’axe X, la base la plus étroite étant positionnée plus près de l’axe X que la base la plus large. Les bases des aimants peuvent être droites ou incurvées. Les aimants permanents peuvent ainsi être juxtaposés pour former une couronne coaxiale avec l’axe X, en regard des bobinages. Ainsi, comme illustré sur les figures 3 à 5, le stator 1 comprend des bobinages 10 de différentes hauteurs, et le rotor comprend des aimants permanents 11 trapézoïdaux agencés selon une couronne dont la largeur, qui correspond à la hauteur des aimants, est préférentiellement inférieure ou égale à la hauteur des bobinages (la hauteur d’un bobinage étant mesurée dans le sens radial par rapport à l’axe X).
Dans d’autres modes de réalisation, en référence aux figures 6-10, le rotor 41 , 42 comprend un disque sur une face duquel sont fixés les aimants permanents 11 , ledit disque ne faisant pas partie de la bobine 2 mais étant rigidement solidaire de l’arbre creux 3. En particulier, le rotor peut être formé d’un seul tenant avec l’arbre creux, ou bien être fixé rigidement à celui-ci, par exemple par des cannelures, des clavettes, ou tout autre moyen de fixation. Le stator 1 est agencé autour du rotor 41 , 42 et de l’arbre creux 3 par l’intermédiaire de roulements 30 permettant une rotation de l’arbre creux et du rotor 41 , 42 par rapport au stator 1 . Le stator 1 comprend une surface en regard de la face du rotor portant les aimants permanents, ladite surface supportant une pluralité de bobinages 101-104 alimentés en triphasé agencés autour de l’axe X pour produire un champ magnétique selon l’axe X dont la polarité alterne en fonction du sens du courant traversant les bobinages.
Plus précisément, le stator 1 comprend une pluralité de tôles magnétiques séparées les unes des autres par des encoches radiales et chaque bobinage 101-104 est constitué d’un ensemble de spires de fils électriquement conducteurs glissés dans lesdites encoches.
De manière particulièrement avantageuse, cet agencement du rotor et du stator permet de juxtaposer plusieurs moteurs le long de l’axe X, chaque moteur associant une face d’un rotor portant les aimants permanents et la face du stator en vis-à-vis, supportant les bobinages. Ainsi, chaque rotor peut être commun à deux moteurs adjacents, une première face portant les aimants permanents appartenant à un premier moteur et une seconde face, opposée à la première et portant également les aimants permanents, appartenant à un second moteur. Selon ce principe, d’autres rotors peuvent être ajoutés qui, combinés à des faces respectives du stator, contribuent chacun à deux moteurs supplémentaires. La figure 6 illustre ainsi un mode de réalisation avec quatre moteurs 51-54, comprenant deux rotors 41 , 42 supportant des aimants permanents 111-114 sur leurs deux faces, chaque face d’un rotor étant en regard d’une face respective du stator comprenant des bobinages 101-104.
L’architecture de la figure 6 permet de faire varier le nombre de moteurs entre 1 et 4, selon le nombre de faces des rotors 41 , 42 qui sont pourvues d’aimants permanents et de faces de stator respectives qui sont pourvues de bobinages. Naturellement, on pourrait ajouter des moteurs supplémentaires en prévoyant un ou plusieurs rotors supplémentaires coaxiaux avec les rotors 41 , 42, et des faces de stator supplémentaires respectives.
La figure 7 illustre un mode de réalisation comportant un rotor 41 comportant des aimants 111 sur une face en regard d’une surface du stator 1 comportant les bobinages 101 , formant un moteur 51. Le rotor 41 est rigidement solidaire de l’arbre 3 et coaxial avec la bobine.
La figure 8 illustre un mode de réalisation comportant un rotor 41 comportant des aimants 111 sur une face en regard de la surface du stator 1 comportant les bobinages 101 , formant un moteur 51 , et des aimants 112 sur la face opposée du rotor 41 en regard d’une deuxième surface du stator 1 comportant les bobinages 102, formant un deuxième moteur 52.
Les aimants peuvent, par exemple, être collés sur les surfaces du rotor 41.
De manière alternative, un seul ensemble d’aimants peut être utilisé pour deux moteurs adjacents. Dans ce cas, les aimants sont agencés dans le rotor 41 de manière à ce qu’un aimant présente une face nord sur un premier côté du rotor 41 et une face sud de l’autre côté du même rotor 41 , et qu’un aimant adjacent présente une face sud sur le premier côté du rotor 41 et la face nord sur l’autre côté du rotor 41. En d’autres termes, les faces nord et sud sont alternées sur chaque côté du rotor 41.
Le premier moteur formé par le rotor 41 comporte donc des aimants sur une couronne, présentant de manière alternée une face nord et une face sud. Sur la face opposée du même rotor 41 , on trouve une couronne d’aimants présentant la polarité opposée. En décalant les enroulements des stators situés de part et d’autre du rotor d’un pas d’aimant, on crée un couple doublé par rapport à une couronne d’aimants utilisée d’un seul côté.
Chaque aimant a ainsi une face utilisée par le premier moteur 51 , tandis que sa face opposée est utilisée par le second moteur 52. Par exemple, le rotor 41 peut être en tôle présentant des réservations de la forme des aimants, dans lesquelles les aimants 111-114 sont agencés de manière à traverser le rotor 41. Dans les modes de réalisation des figures 7 et 8, le rotor 42 n’est pas utilisé pour former un moteur et ne porte donc pas d’aimants permanents. Il serait naturellement possible de supprimer ce rotor 42 afin d’augmenter la compacité du dispositif.
La figure 9 illustre un mode de réalisation comportant les moteurs 51 et 52 et un deuxième rotor 42 comportant des aimants 113 sur une face en regard de la surface du stator 1 comportant les bobinages 103, formant troisième un moteur 53.
La figure 10 illustre un mode de réalisation comportant les moteurs 51 et 52 et un deuxième rotor 42 comportant des aimants 113 sur une face en regard d’une troisième surface du stator 1 comportant les bobinages 103, formant un troisième moteur 53, et des aimants 114 sur sa face opposée en regard d’une quatrième surface du stator 1 comportant les bobinages 104, formant un quatrième moteur 54.
De manière alternative, les moteurs 53 et 54 peuvent être formés par un même ensemble d’aimants agencés au travers du rotor 42 de manière à présenter, chacun une face nord sur un coté du rotor 42 et une face sud de l’autre côté du même rotor 42, en alternant les faces nord et sud des aimants adjacents sur chaque côté du rotor.
Le nombre de rotors est à titre purement illustratif et non limitatif, l’homme du métier saura l’adapter en fonction des paramètres du dispositif d’enroulement et le couple nécessaire.
Dans les modes de réalisation comprenant un ou plusieurs rotors 41-42 portant des aimants permanents 111-114, les aimants permanents 111-114 présentent avantageusement une forme sensiblement trapézoïdale, avec une hauteur orientée radialement par rapport à l’axe X, la base la plus étroite étant positionnée plus près de l’axe X que la base la plus large. Les bases des aimants peuvent être droites ou incurvées. Les aimants permanents peuvent ainsi être juxtaposés pour former une couronne coaxiale avec l’axe X, en regard des bobinages.
Chaque moteur est piloté par un variateur de vitesse électronique (non représenté) adapté pour faire varier la tension, la fréquence et le courant d’alimentation des bobinages du stator 1. Lesdits bobinages produisent un champ magnétique tournant à une vitesse proportionnelle à la fréquence d’alimentation, engendrant une rotation du ou des rotors dont les aimants permanents produisent un champ magnétique. De manière avantageuse, on peut piloter le courant alimentant les bobinages, de sorte à faire varier le champ magnétique et donc adapter le couple produit par le moteur.
Le variateur de vitesse électronique fait partie du système de contrôle/commande de l’enrouleur, qui comprend également une unité de traitement couplée ou intégrée au variateur pour piloter le moteur notamment en fonction de la position de l’enrouleur et de la phase de fonctionnement.
Ledit système de contrôle/commande comprend en outre des capteurs adaptés pour mesurer le courant électrique circulant à travers les bobinages du moteur. L’unité de traitement comprend au moins un processeur configuré pour implémenter des algorithmes de calcul tenant compte de données d’entrées fournies notamment par les capteurs et une mémoire dans laquelle sont enregistrés des paramètres nécessaires à l’exécution des algorithmes.
Dans certains modes de réalisation, l’unité de traitement est intégrée directement dans le variateur ; dans d’autres modes de réalisation, l’unité de traitement est intégrée dans un automate programmable extérieur au variateur (par exemple celui de la machine à laquelle est relié l’enrouleur).
L’unité de traitement et le variateur peuvent être agencés à l’intérieur d’une armoire située à proximité de l’enrouleur.
Un avantage d’un tel moteur ou ensemble de moteurs à entraînement direct est qu’il permet d’éviter l’utilisation de tout élément de transmission, tel qu’un réducteur, et s’affranchit donc de toutes les problématiques générées par un tel réducteur, telles que notamment les éventuelles défaillances et jeux de fonctionnement du réducteur, ainsi que les pertes qu’il induit par son rendement.
Par ailleurs, dans un tel moteur, il n’y a aucun contact entre le rotor et le stator 1. Il n’y a donc aucune usure mécanique, ce qui engendre une excellente fiabilité et une longue durée de vie.
D’autre part, un tel moteur ou ensemble de moteurs permet de générer des couples de courte durée plus importants que les technologies actuelles à moteur asynchrone, ce qui s’avère important pour permettre de réduire la durée de freinage de l’enrouleur en arrêt d’urgence (à puissance constante du moteur) ou de passer plus rapidement au-dessus du point d’alimentation de l’enrouleur, ceci requérant un fort surcouple, en comparaison du couple généré en utilisation courante, sur une période courte (typiquement inférieure à 5 secondes).
Par ailleurs, l’enrouleur selon l’invention bénéficie de la grande dimension de la bobine pour permettre un agencement d’un grand nombre d’aimants permanents, et de placer lesdits aimants à une distance importante de l’axe X, afin de procurer le couple souhaité.
Par exemple, on dispose typiquement d’un diamètre de l’ordre de 1 ,5 m pour disposer les aimants. La vitesse de rotation de la bobine est typiquement de l’ordre de 30 tr/min, mais peut plus généralement être comprise entre une vitesse presque nulle et 100 tr/min. Le couple produit par le moteur peut atteindre 8000 Nm.
Comme on le voit sur les figures 3 à 10, l’architecture d’enrouleur selon l’invention se prête à une certaine modularité, tant en termes de taille et/ou nombre des bobinages que de taille des aimants permanents.
Ainsi, dans le mode de réalisation de la figure 3, le stator 1 comprend des bobinages 10 présentant une hauteur h 1 , le sommet des bobinages dans la direction radiale étant à une distance d de l’axe X, et la hauteur des aimants 11 est sensiblement égale à l’épaisseur totale du bobinage, les aimants étant agencés en regard des bobinages.
Dans le mode de réalisation de la figure 4, le stator 1 comprend des bobinages 10 présentant une hauteur h2 inférieure à h1. De préférence, le sommet des bobinages dans la direction radiale est la même distance d de l’axe X que dans les bobinages de la figure 3, et la base large des aimants 11 est située à la même distance de l’axe X que les aimants du rotor de la figure 3 afin de maximiser le couple généré.
Dans le mode de réalisation de la figure 5, le stator 1 comprend des bobinages 10 présentant une hauteur h3 inférieure à h2. De préférence, le sommet des bobinages dans la direction radiale est la même distance d de l’axe X que dans les bobinages des figures 3 et 4, et la base large des aimants 11 est située à la même distance de l’axe X que les aimants du rotor des figures 3 et 4 afin de maximiser le couple généré.
Il est possible d’ajuster l’emplacement des aimants et des bobinages par rapport à l’axe X en fonction de l’espace disponible et notamment de la dimension de la bobine.
Il est éventuellement possible de procurer une certaine modularité en formant chaque aimant sous la forme de deux ou plusieurs portions trapézoïdales juxtaposées dans le sens radial, dont la somme des hauteurs forme la hauteur totale de l’aimant.
Selon les applications, il est possible de former des aimants de hauteur maximale en utilisant l’ensemble des portions trapézoïdales, ou de former des aimants de hauteur minimale ou intermédiaire en utilisant seulement une partie des portions trapézoïdales et en les agençant en couronne.
Naturellement, les modes de réalisation illustrés sont donnés uniquement à titre d’illustration ; l’homme du métier pourra utiliser tout autre nombre de spires pour le bobinage et dimensionner la taille et le nombre d’aimants en conséquence, en fonction de l’application et du couple et de la vitesse requis. L’homme du métier pourra d’ailleurs adapter les spires pour le bobinage 101-104 et dimensionner la taille et le nombre d’aimants 111-114 de même manière pour un mode de réalisation dans lequel un ou plusieurs rotors 41 ,42 sont solidaires de l’arbre 3 tels qu’illustrés sur les figures 6-10. D’ailleurs, dans un tel mode de réalisation, la taille et le nombre des spires pour les bobinages 101-104 et le nombre d’aimants 111-114 peuvent être différents ou identiques pour les plusieurs moteurs 51-54 formés par les rotors et les surfaces du stator 1.
Par ailleurs, bien que la description ait été faite en référence à un moteur à flux axial, le moteur pourrait, selon une alternative, être à flux radial. Dans ce mode de réalisation, le rotor comprendrait un tambour solidaire du mandrin 20 portant les aimants permanents et le stator 1 porterait des bobinages alimentés en triphasé orientant le champ radialement. Les aimants pourraient être placés à l’intérieur ou à l’extérieur des bobinages.

Claims

Revendications
1. Dispositif d’enroulement/déroulement d’un lien adapté pour transporter un fluide ou transmettre de l’énergie et/ou des signaux, comprenant :
- une bobine (2) adaptée pour recevoir ledit lien sous forme enroulée,
- un arbre creux (3) traversant adapté pour le passage dudit lien ou fluide entre un joint tournant et la bobine, ledit arbre creux (3) étant solidarisé à la bobine (2) pour entraîner ladite bobine en rotation autour d’un axe longitudinal (X) dudit arbre,
- au moins un moteur synchrone à aimants permanents à entraînement direct, comprenant un stator portant des bobinages (10) adaptés pour être alimentés électriquement en triphasé et un rotor portant les aimants permanents (11 ) en regard des bobinages (10) du stator.
2. Dispositif selon la revendication 1 , dans lequel au moins un rotor dudit au moins un moteur synchrone est formé par un disque central (24) de la bobine (2).
3. Dispositif selon la revendication 1 , dans lequel au moins un rotor (41 , 42) dudit au moins un moteur synchrone est rigidement solidaire de l’arbre (3).
4. Dispositif selon la revendication 3, dans lequel les aimants permanents sont agencés au travers dudit au moins rotor (41) de sorte à présenter chacun une face nord sur un côté dudit rotor (41 ,42) et une face sud sur le côté opposé du même rotor (41 ,42).
5. Dispositif selon l’une des revendications 1 à 4, dans lequel chaque aimant (11 ) permanent présente une forme trapézoïdale, la hauteur de chaque aimant permanent s’étendant radialement par rapport à l’axe longitudinal (X).
6. Dispositif selon la revendication 5, dans lequel les aimants (11 ) sont juxtaposés pour former une couronne.
7. Dispositif selon la revendication 6, dans lequel l’extension radiale de la couronne d’aimants (11) est sensiblement égale à la hauteur des bobinages (10).
8. Dispositif selon l’une des revendications 1 à 7, dans lequel le moteur est à flux axial.
9. Dispositif selon l’une des revendications 1 à 8, comprenant en outre un variateur de vitesse électronique adapté pour faire varier le courant d’alimentation des bobinages du stator.
10. Dispositif selon la revendication 9, comprenant en outre un joint tournant couplé à une extrémité de l’arbre creux (3) opposée à la bobine (2) et un système de contrôle/commande comprenant une unité de traitement couplée ou intégrée au variateur de vitesse électronique pour piloter chaque moteur en fonction notamment de la position de l’enrouleur et de la phase de fonctionnement.
PCT/FR2021/050865 2020-05-19 2021-05-18 Dispositif d'enroulement/déroulement d'un lien WO2021234272A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2022566327A JP2023526906A (ja) 2020-05-19 2021-05-18 リンクを巻き取る/巻き出すための装置
BR112022023510A BR112022023510A2 (pt) 2020-05-19 2021-05-18 Dispositivo para enrolar/desenrolar um enlace
EP21732476.3A EP4154391A1 (fr) 2020-05-19 2021-05-18 Dispositif d'enroulement/déroulement d'un lien
CA3181800A CA3181800A1 (fr) 2020-05-19 2021-05-18 Dispositif d'enroulement/deroulement d'un lien
KR1020227038626A KR20230010633A (ko) 2020-05-19 2021-05-18 라인을 권취하거나 권출하기 위한 장치
US17/925,874 US20230192440A1 (en) 2020-05-19 2021-05-18 Device for winding or unwinding a line
CN202180036850.5A CN115668709A (zh) 2020-05-19 2021-05-18 用于缠绕/展开线路的装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2005124A FR3110783B1 (fr) 2020-05-19 2020-05-19 Dispositif d’enroulement/déroulement d’un lien
FR2005124 2020-05-19

Publications (1)

Publication Number Publication Date
WO2021234272A1 true WO2021234272A1 (fr) 2021-11-25

Family

ID=72644322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2021/050865 WO2021234272A1 (fr) 2020-05-19 2021-05-18 Dispositif d'enroulement/déroulement d'un lien

Country Status (9)

Country Link
US (1) US20230192440A1 (fr)
EP (1) EP4154391A1 (fr)
JP (1) JP2023526906A (fr)
KR (1) KR20230010633A (fr)
CN (1) CN115668709A (fr)
BR (1) BR112022023510A2 (fr)
CA (1) CA3181800A1 (fr)
FR (1) FR3110783B1 (fr)
WO (1) WO2021234272A1 (fr)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2102600A5 (fr) 1970-08-11 1972-04-07 Sermag
FR2607333A1 (fr) 1986-11-25 1988-05-27 Enrouleur Electr Moderne Coupleur magnetique a hysteresis a couple peu dependant de la vitesse de glissement et son utilisation
FR2899399A1 (fr) 2006-03-30 2007-10-05 Delachaux Sa Sa Coupleur magnetique a hysteresis, notamment pour dispositifs enrouleurs-derouleurs
EP2481701A1 (fr) * 2011-01-31 2012-08-01 Siemens Aktiengesellschaft Dispositif de levage pour grue à conteneur et grue à conteneur
US20120247579A1 (en) * 2011-04-04 2012-10-04 Stewart & Stevenson, LLC Tubing Reel Assembly For Coiled Tubing Systems
EP3008005A1 (fr) 2013-06-12 2016-04-20 Graco Minnesota Inc. Système d'entraînement direct modulaire pour dévidoirs motorisés
EP3072220A1 (fr) 2013-11-22 2016-09-28 Kone Corporation Couvercle de corps de palier, moteur à flux axial, élévateur et procédé de compensation de tolérance de fabrication dans un moteur à flux axial

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2102600A5 (fr) 1970-08-11 1972-04-07 Sermag
FR2607333A1 (fr) 1986-11-25 1988-05-27 Enrouleur Electr Moderne Coupleur magnetique a hysteresis a couple peu dependant de la vitesse de glissement et son utilisation
FR2899399A1 (fr) 2006-03-30 2007-10-05 Delachaux Sa Sa Coupleur magnetique a hysteresis, notamment pour dispositifs enrouleurs-derouleurs
EP2481701A1 (fr) * 2011-01-31 2012-08-01 Siemens Aktiengesellschaft Dispositif de levage pour grue à conteneur et grue à conteneur
US20120247579A1 (en) * 2011-04-04 2012-10-04 Stewart & Stevenson, LLC Tubing Reel Assembly For Coiled Tubing Systems
EP3008005A1 (fr) 2013-06-12 2016-04-20 Graco Minnesota Inc. Système d'entraînement direct modulaire pour dévidoirs motorisés
EP3008005B1 (fr) * 2013-06-12 2019-03-06 Graco Minnesota Inc. Système d'entraînement direct modulaire pour dévidoirs motorisés
EP3072220A1 (fr) 2013-11-22 2016-09-28 Kone Corporation Couvercle de corps de palier, moteur à flux axial, élévateur et procédé de compensation de tolérance de fabrication dans un moteur à flux axial
EP3072220B1 (fr) * 2013-11-22 2020-02-26 Kone Corporation Couvercle de corps de palier, moteur à flux axial, élévateur et procédé de compensation de tolérance de fabrication dans un moteur à flux axial

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AMIN SHAHBAZ ET AL: "A Comprehensive Review on Axial Flux Machines and Its Applications", 2019 2ND INTERNATIONAL CONFERENCE ON COMPUTING, MATHEMATICS AND ENGINEERING TECHNOLOGIES (ICOMET), IEEE, 30 January 2019 (2019-01-30), pages 1 - 7, XP033532355, DOI: 10.1109/ICOMET.2019.8673422 *

Also Published As

Publication number Publication date
JP2023526906A (ja) 2023-06-26
CA3181800A1 (fr) 2021-11-25
BR112022023510A2 (pt) 2023-01-17
EP4154391A1 (fr) 2023-03-29
FR3110783A1 (fr) 2021-11-26
FR3110783B1 (fr) 2022-04-22
KR20230010633A (ko) 2023-01-19
US20230192440A1 (en) 2023-06-22
CN115668709A (zh) 2023-01-31

Similar Documents

Publication Publication Date Title
CA2413234C (fr) Dispositif de production de courant electrique a partir d'energie eolienne
EP0650644B1 (fr) Moteur-roue electrique
FR2865867A1 (fr) Coupleur electromagnetique
WO2010010110A2 (fr) Moteur a rotor excentrique
FR2796671A1 (fr) Dispositif de captage d'energie eolienne et de production d'energie electrique et procede d'optimisation de la production d'energie
WO1983002043A1 (fr) Machine electrique tournante formant notamment variateur de vitesse ou convertisseur de couple
EP1079505A1 (fr) Transmission électromagnétique à variation continue
FR3054746B1 (fr) Machine electrique tournante munie d'un interconnecteur dote de bequilles d'appui
WO2013175098A1 (fr) Système d'alimentation en énergie électrique comprenant une machine asynchrone et moteur de propulsion équipé d'un tel système d'alimentation en énergie électrique
WO2021234272A1 (fr) Dispositif d'enroulement/déroulement d'un lien
FR2727952A1 (fr) Bobineuse d'enroulement d'une bande
FR3110655A1 (fr) Dispositif d’enroulement/déroulement d’un lien
FR2658494A1 (fr) Dispositif de compensation de rotation pour un cable ou analogue enroulable et deroulable sur un tambour rotatif.
TW202315281A (zh) 用於捲繞/解繞鏈接件之裝置
FR2972872A1 (fr) Moteur electrique et installation de fermeture ou de protection solaire comprenant un tel moteur
WO2024153760A1 (fr) Actionneur pour bras robotisé
WO2008025910A1 (fr) Dispositif d'embrayage electromagnetique double du type a anneau et a bobinage fixe, et mecanisme de transmission mecanique a plusieurs sorties comportant au moins un tel dispositif
EP3017525B1 (fr) Gamme d'actionneurs electriques et procede de fabrication d'un moteur compris dans un actionneur appartenant a une telle gamme
FR2905205A1 (fr) Machine electrique a stator muni de griffes et de bobinages deportes.
FR3138857A1 (fr) moteur à courant continu alléger et puissant
FR3143445A1 (fr) Systeme de propulsion pour vehicule electrique ou hybride
BE483245A (fr)
WO2016113227A1 (fr) Moteur électrique
BE464931A (fr)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21732476

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022566327

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3181800

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022023510

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 202217072908

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021732476

Country of ref document: EP

Effective date: 20221219

ENP Entry into the national phase

Ref document number: 112022023510

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20221118