WO2021233407A1 - 物料测量装置及物料测量系统 - Google Patents

物料测量装置及物料测量系统 Download PDF

Info

Publication number
WO2021233407A1
WO2021233407A1 PCT/CN2021/095041 CN2021095041W WO2021233407A1 WO 2021233407 A1 WO2021233407 A1 WO 2021233407A1 CN 2021095041 W CN2021095041 W CN 2021095041W WO 2021233407 A1 WO2021233407 A1 WO 2021233407A1
Authority
WO
WIPO (PCT)
Prior art keywords
microwave
antenna
measuring device
microstrip
microstrip antennas
Prior art date
Application number
PCT/CN2021/095041
Other languages
English (en)
French (fr)
Inventor
呼秀山
夏阳
Original Assignee
北京锐达仪表有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京锐达仪表有限公司 filed Critical 北京锐达仪表有限公司
Priority to DE112021002892.8T priority Critical patent/DE112021002892T5/de
Publication of WO2021233407A1 publication Critical patent/WO2021233407A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F22/00Methods or apparatus for measuring volume of fluids or fluent solid material, not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/80Arrangements for signal processing

Definitions

  • the present disclosure relates to a material measuring device and a material measuring system.
  • the volume measurement of solid materials storage has always been a difficult point.
  • the main reason is that the materials will be piled up in a mountain shape because of the incoming material or piled up in a funnel shape because of the discharged material.
  • the traditional method can only measure the level information of a single point or a few points.
  • Single-point measurement can not meet the needs at all.
  • the current method usually uses three to four antennas to measure the shape of the material, but it still cannot meet the demand.
  • each additional beam will cause the gain of a single beam to decrease, which will affect the measurement effect.
  • the number of antennas in the prior art is small and the signal is weak, and it is difficult to adapt to the measurement environment, for example, it is difficult to pass through solid dust.
  • the present disclosure provides a material measuring device and a material measuring system.
  • a material measuring device including:
  • the transceiver antenna unit includes a transmitting antenna and a receiving antenna.
  • the transmitting antenna is used to generate a microwave transmission beam
  • the receiving antenna is used to receive the reflected microwave transmission beam.
  • the microwave reflection beam generated thereafter is used to measure the material through the microwave emission beam and the microwave reflection beam;
  • a microwave lens where the multiple microstrip antennas are located on one side of the microwave lens, and on the other side of the microwave lens, the microwave lens condenses the microwave emission beams emitted by each transmission antenna, and each one after the convergence The angles of the microwave transmission beams are different, and the microwave lens condenses the microwave reflection beam so that the receiving antenna receives the converged microwave reflection beam.
  • a material measuring device including:
  • One or more microstrip antennas form one or more transceiving antenna units, the transceiving antenna unit includes a transmitting antenna and a receiving antenna, the transmitting antenna is used to generate a microwave transmission beam, and the receiving antenna is used to receive the microwave The microwave reflection beam generated after the transmission beam is reflected, and the material is measured by the microwave transmission beam and the microwave reflection beam; and
  • a microwave lens the microstrip antenna is located on one side of the microwave lens, and on the other side of the microwave lens, the microwave lens condenses the microwave emission beams emitted by each transmission antenna, and each microwave emission after the convergence The angles of the beams are different, and the microwave lens condenses the reflected microwave beam, so that the receiving antenna receives the converged microwave reflected beam,
  • the one or more microstrip antennas are movable microstrip antennas, and the material is measured by the movement of the microstrip antennas.
  • a material measurement system for measuring solid materials or liquid materials, including:
  • the containing body is used to contain the solid material or the liquid material, and the containing body is provided with an inlet for materials to enter and an outlet for materials to discharge;
  • the material measuring device is installed above the opening formed on the containing body, and the material measuring device measures the material from multiple angles by using microwave emission beams with different angles .
  • a material measurement system for measuring the vortex of liquid or solid materials, including:
  • the containing body is used to contain the liquid or solid material
  • a stirrer for stirring the liquid or solid materials A stirrer for stirring the liquid or solid materials
  • the material measuring device is installed above the opening formed on the containing body, and the material measuring device uses microwave emission beams with different angles to multi-angle the vortex. Take measurements.
  • a material measurement system for measuring materials including:
  • a containing body for containing the material A containing body for containing the material
  • the material measuring device is installed above the opening formed on the containing body, and the material measuring device measures the material from multiple angles by using microwave emission beams with different angles ,
  • the microstrip antenna is located in or near two or more reference planes, and the two or more reference planes are respectively parallel to the axis of the microwave lens and/or pass through the axis, and are respectively located at the center of the two or more reference planes.
  • the microstrip antennas in or near each reference plane are respectively arranged in a straight line or a curved shape or close to a straight line or a curved shape, so that when the microstrip antenna in one reference plane is interfered by the interference in the material measurement system, it passes through the other reference planes.
  • the planar microstrip antenna performs measurements to eliminate the interference of the interferers.
  • Fig. 1 is a schematic diagram of a material measuring device according to an embodiment of the present disclosure.
  • 2 to 5 are schematic diagrams showing the distribution of transmitting antennas and receiving antennas according to an embodiment of the present disclosure.
  • Fig. 6 is a schematic diagram of a microwave lens according to an embodiment of the present disclosure.
  • Fig. 7 is a schematic diagram of the distribution of transceiver antenna units according to an embodiment of the present disclosure.
  • FIGS. 8 to 12 are schematic diagrams of a microwave transceiver processing module according to an embodiment of the present disclosure.
  • Fig. 13 is a schematic diagram of a material measuring device according to an embodiment of the present disclosure.
  • 14 to 15 are schematic diagrams of a material measurement system according to an embodiment of the present disclosure.
  • 16 to 17 are flowcharts of a material measurement method according to an embodiment of the present disclosure.
  • FIG. 18 is a schematic diagram of a material measurement system according to an embodiment of the present disclosure.
  • 19 to 20 are schematic diagrams of vortex measurement according to an embodiment of the present disclosure.
  • FIG. 21 is a schematic diagram of interference elimination according to an embodiment of the present disclosure.
  • Figures 22 to 23 are schematic diagrams of conveyor belt materials according to one embodiment of the present disclosure.
  • a material measuring device is provided.
  • Fig. 1 shows a material measuring device 10 according to an embodiment of the present disclosure.
  • the material measuring device 10 may include a microstrip antenna 100 and a microwave lens 200. It also includes a housing, and the housing and the microwave lens form a closed space for accommodating the microstrip antenna.
  • the number of microstrip antennas 100 is multiple.
  • the number of microstrip antennas may be more than 5, 10, etc., thereby forming multiple transceiver antenna units.
  • Each transceiver antenna unit includes a transmitting antenna 110 and a receiving antenna 120.
  • Figures 2 to 5 show examples of transmitting antennas and receiving antennas.
  • the transmitting antenna 110 and the receiving antenna 120 of each transceiver antenna unit share a microstrip antenna 100.
  • the transmission and reception can be combined by a coupler, so that n transmission antennas 110a, 110b, ..., 110n and n reception antennas 120a, 120b, ..., can be formed by n microstrip antennas. 120n.
  • each transmitting antenna and each receiving antenna use a microstrip antenna 100, and adjacent transmitting antennas and receiving antennas form a transceiver antenna unit, for example, the transmitting antenna 110a and the receiving antenna 120a form a transceiver antenna unit.
  • the transmitting antenna 110b and the receiving antenna 120b form a transceiving antenna unit,..., the transmitting antenna 110n and the receiving antenna 120n form a transceiving unit.
  • the transmitting antenna and the receiving antenna in a transceiver antenna unit are two adjacent microstrip antennas.
  • each transmitting antenna and each receiving antenna respectively use a microstrip antenna 100, and two adjacent transmitting antennas and receiving antennas form a transceiver antenna unit.
  • the transmitting antenna 110a and the adjacent receiving antenna 120a form a transceiving antenna unit
  • the receiving antenna 120a and the adjacent transmitting antenna 110b form a transceiving antenna unit
  • the transmitting antenna 110b and the receiving antenna 120b form a transceiving antenna unit,... .
  • the transmitting and receiving antenna units of different beams can share the transmitting antenna or the receiving antenna, and one transmitting antenna or receiving antenna can be in the transmitting and receiving antenna units of two or more beams.
  • the transmitting antenna and the receiving antenna are alternately appearing.
  • six transceiving antenna units can be constructed and six beams can be processed.
  • the number of transmitting antennas is n and the number of receiving antennas is n+1, 2n beams can be realized, and when the number of transmitting antennas is n+1 and the number of receiving antennas is n, 2n beams can also be realized.
  • each transmitting antenna and each receiving antenna use a microstrip antenna 100, and each microstrip antenna 100 is close to each other, so that the transmitting antenna and the receiving antenna can be combined in pairs, and the number of processing beams is the same as that of the transmitting antenna. Multiply the number by the number of receiving antennas.
  • the transmitting antenna 110 is used for generating a microwave transmitting beam and directing the microwave transmitting beam to the microwave lens 200.
  • the receiving antenna 120 is used for receiving the microwave reflection beam generated after the microwave transmission beam is reflected, and measures the material based on the microwave transmission beam and the microwave reflection beam.
  • the microstrip antennas 100 are all located on the same side of the microwave lens 200, such as the upper side of the microwave lens 200 shown in FIG. 1.
  • the transmitting antenna 110 emits divergent microwave beams to the microwave lens 200, and the microwave beams are converged by the microwave lens 200 to form parallel or nearly parallel microwave beams on the other side of the microwave lens 200.
  • the angles of the multiple microwave emission beams formed on the other side of the microwave lens 200 are different from each other.
  • microwave emission beams converged by the microwave lens 200 reach the material 300, they will be reflected by the material 300 to form a reflected microwave reflection beam.
  • Each microwave reflection beam is incident on the microwave lens 200 and is converged by the microwave lens 200. It is received by the receiving antenna located on the side of the microwave lens 200.
  • At least one microwave transmission beam of the multiple microwave transmission beams emitted by the multiple transmission antennas is used as a vertical microwave transmission beam, and the vertical microwave transmission beam is parallel to the axis of the microwave lens or passes through the axis of the microwave lens.
  • the material information that needs to be measured by the vertical microwave emission beam is determined according to one or more non-vertical microwave emission beams other than the vertical microwave emission beam.
  • the material information that needs to be measured by the vertical microwave transmitting beam is determined.
  • the angle difference between the multiple microwave transmission beams emitted by the multiple transmission antennas is equal or unequal, and is 0.5 to 1.5 times the beam opening angle of the microwave transmission beam.
  • the microwave lens 200 is configured to be penetrated by microwaves and can change the direction of the microwaves.
  • the microwave lens 200 may be made of materials such as ceramics or plastics, and its dielectric constant may be uniform or non-uniform.
  • the dielectric constant of the microwave lens 200 may be greater than 1, which can be penetrated by microwaves, and is made of materials with low loss, such as ceramics or plastics.
  • FIG. 6 shows several forms of the microwave lens 200.
  • the microwave lens 200 can be a convex lens with a thick middle and a thin outer side.
  • the microwave lens 200 can be a concave lens with a thick outer side and a thin middle.
  • the microwave lens 200 can be a structure with a curved surface on one side and a flat surface on the other side.
  • the microwave lens 200 can It is a structure with curved surfaces on both sides.
  • the curved surface can be a spherical surface or an elliptical spherical surface, or a combination of multiple curved surfaces.
  • the microwave lens 200 may be a solid lens or a hollow lens.
  • the microwave lens 200 may include one microwave lens or a combination of two or more microwave lenses.
  • the purpose of a combination of a microwave lens and a microwave lens is to converge the microwave transmission beam and the microwave reflection beam.
  • a plurality of microstrip antennas 100 are arranged on the focal plane of the microwave lens 200.
  • a microstrip antenna 100 emits a microwave beam on one side of the microwave lens 200
  • a convergent microwave beam can be formed on the other side of the microwave lens 200 through the microwave lens 200.
  • the microstrip antennas 100 on the left and the right can form a convergent microwave beam through the microwave lens 200, and the microstrip antenna 100 in the middle can also form a convergent microwave beam through the microwave lens 200.
  • each converged microwave beam is a parallel beam, but in actual situations there may be a small angle of spread, and the spread angle is preferably less than 15°.
  • the microwave beams emitted by the microstrip antenna 100 at the corresponding position of the microwave lens 200 can be condensed by the microwave lens 200, and the position of each microwave lens 200 can be called the focal point of the microwave lens, and these focal points form The surface of can be called the focal surface of the microwave lens.
  • the microwave lens 200 can be set so that the focal plane of the microwave lens is a flat surface or a curved surface.
  • the microwave lens 200 By arranging the microstrip antenna 100 on the focal plane of the microwave lens 200, the energy of the microwave reflected beam received by the receiving antenna can be maximized.
  • the transmitting antenna and the receiving antenna as a transceiver antenna unit are located at or near a focal point of the microwave lens 200.
  • each transceiver antenna unit arranged at the focal point of the microwave lens 200 can cooperate to process one transmission beam and one reflection beam, and the two beams are opposite and parallel, close to or coincident.
  • the focal plane of the microwave lens 200 may be a planar shape or a curved shape.
  • the plurality of microstrip antennas 100 may be arranged in or near a reference plane perpendicular to the cross section of the microwave lens 200 (a plane perpendicular to the optical axis). In this way, the multiple microstrip antennas 100 will be in a straight line or roughly in a straight line.
  • the reference plane is preferably parallel to the axis of the microwave lens 200 or passes through the axis (the axis is located in the reference plane).
  • the plurality of microstrip antennas 100 may be arranged in or near a reference plane perpendicular to the cross section of the microwave lens 200 (a plane perpendicular to the optical axis). In this way, the multiple microstrip antennas 100 will be on a curve or roughly on a curve.
  • the reference plane is preferably parallel to the axis of the microwave lens 200 or passes through the axis (the axis is located in the reference plane).
  • microstrip antennas 100 arranged in or roughly in a straight line/curve are described above.
  • the multiple microstrip antennas 100 may also be arranged in the shape of more than two straight lines/curves or roughly straight lines/curves. .
  • the multiple microstrip antennas 100 can be arranged in or near two or more reference planes perpendicular to the cross section of the microwave lens 200 (a plane perpendicular to the optical axis).
  • the multiple microstrip antennas 100 are arranged in more than two linear shapes.
  • the multiple microstrip antennas 100 are arranged in more than two curved shapes.
  • each of the two or more reference planes passes through the axis of the microwave lens 200, and more preferably, the angles between adjacent reference planes in the two or more reference planes are equal to each other.
  • the reference planes on which the two straight lines/curves are located are perpendicular to each other.
  • the distance between adjacent reference planes among the four reference planes where the four straight lines/curves are located is perpendicular to each other. The angles are 45° respectively.
  • microstrip antennas 100 When multiple microstrip antennas 100 are located in or near two or more reference planes, the number of microstrip antennas 100 located in or near each reference plane is the same or different, that is, microstrip antennas located in different straight lines/curves The number can be different.
  • a central transceiver antenna unit is provided on or near the axis of the lens.
  • the microwave transmission beams of different angles converged by the microwave lens 200 are located in or near a plane, thereby forming a beam scanning surface to obtain a cross-section of the material. To measure.
  • the microwave transmission beams emitted by the microstrip antenna 100 are converged by the microwave lens 200 to form convergent microwave transmission beams at different angles, so that the convergent microwave transmission beams at different angles can be
  • a microwave beam surface is formed. This surface constitutes a measurement section. When the beam surface is in contact with the surface of the material, it is reflected by the surface of the material. The distance information of several measurement points on the surface of the material is obtained by receiving the microwave reflection signal received by the antenna. , In this way, a cross-sectional structure of the material can be obtained.
  • the microwave transmission beams of the microstrip antennas 100 located in or near each reference plane are condensed by the microwave lens 200 to be located at different angles in one plane.
  • the microwave emits beams to form multiple beam scanning surfaces to measure multiple cross-sections of the material.
  • the multiple microstrip antennas 100 are arranged on more than two straight lines/curves, and the multiple microstrip antennas 100 on each straight line/curve form a microwave beam surface, so that they pass through the two or more formed lines/curves.
  • the microwave beam surface constitutes more than two measurement sections.
  • the three-dimensional surface information of the object can be measured.
  • the two or more microwave beam surfaces can cross each other, so that multiple cross-sectional structures of the material at different angles can be obtained to obtain the three-dimensional surface information of the material.
  • Fig. 7 shows the layout shape of the microstrip antenna when the cross-section of the microwave lens is circular.
  • the microstrip antenna can be arranged in a straight line/curve, and the two microstrip antennas can be arranged in a straight line/curve intersecting perpendicularly.
  • the four microstrip antennas can be arranged in a similar circular ring (when the focal plane is curved, the different circular rings can be at different heights).
  • the microstrip antenna in the present disclosure may be an antenna formed on a printed circuit board (PCB). Multiple microstrip antennas can be formed on one printed circuit board or not on one printed circuit board. Preferably, multiple transceiving antenna units of the same microwave transceiving processing module described below are arranged on a printed circuit board.
  • PCB printed circuit board
  • the shape of the printed circuit board can be set according to the layout shape of the microstrip antenna, for example, it can be a straight shape (when the focal plane is flat), or it can be a curved shape (when the focal plane is a curved surface).
  • Each transceiver antenna unit can be arranged on a printed circuit board, and multiple transceiver antenna units can be arranged on a printed circuit board.
  • the printed circuit boards separated from each other can be angled to form a curved shape (when the focal plane is curved).
  • microstrip antennas are arranged on one printed circuit board, and the angles of the multiple microstrip antennas are different, or multiple microstrip antennas are arranged on multiple printed circuit boards, and the angles of the multiple printed circuit boards are different to make The angles of the microstrip antennas are different.
  • the printed circuit board is perpendicular or nearly perpendicular to the microwave emission beam emitted by the microstrip antenna disposed on the printed circuit board.
  • the printed circuit board can be rotated or moved so as to change the emission angle or emission position of the microwave emission beam emitted by the microstrip antenna of the printed circuit board.
  • the rotation or movement of the printed circuit board is periodic.
  • the rotation or movement of the printed circuit board forms a scanning surface for measuring the profile of the material.
  • the material measuring device 10 further includes a microwave transceiving processing module, and the microwave transceiving processing module obtains the difference between the transmission time of the transmitting antenna transmitting the microwave transmission beam and the receiving time of the receiving antenna receiving the microwave reflected beam based on the time-flight principle. Time difference in order to get the information of the material measuring point.
  • the frequency of the microwave transmitting beam emitted by the transmitting antenna is a continuously adjusted frequency. By comparing the frequency of the microwave transmission beam emitted by the transmitting antenna and the frequency of the microwave reflection beam received by the receiving antenna at a certain time, the frequency difference between the two is obtained, so as to obtain the information of the material measurement point.
  • the microwave transceiving processing module 130 can be used at least to provide a transmission signal for controlling the transmission antenna and to receive a reception signal from the reception antenna.
  • the microwave transceiving processing module 130 provides the transmitting signal to the transmitting antenna 110 and receives the receiving signal from the receiving antenna 120.
  • a microwave antenna + microwave coupler can be used.
  • the microwave coupler can mix the received signal and the transmitted signal.
  • the microwave transceiver processing module 130 provides the transmitted signal to the microwave coupler.
  • the antenna is used as a transmitting antenna to transmit a microwave beam, and when receiving a signal, the microwave antenna is used as a receiving antenna to receive the microwave beam, and the received signal is provided to the microwave transceiving processing module 130 through the microwave coupler.
  • the microwave transceiver processing module is a multi-receiving and multi-sending module, that is to say, one module includes multiple transmitting paths and multiple receiving paths. As shown in Figure 9, the receiving path and the transmitting path are not arranged on the same side of the microwave transceiver processing module, which can increase the isolation between the reception and transmission of the microwave transceiver processing module.
  • FIG. 10 shows a case where the transmitting antenna and the receiving antenna are separate antennas, and the transmitting antenna and the receiving antenna are in one-to-one correspondence.
  • the microwave transceiving and processing module can be located on the same side of the printed circuit board as the transmitting antenna and the receiving antenna, and the microwave transceiving and processing module can provide transmission signals to the transmitting antenna through the transmitting path and the receiving path on different sides. The signal received by the antenna.
  • a pair of transceiver channels corresponds to a fixed transceiver antenna unit.
  • Fig. 11 shows a situation where one transmitting antenna and/or receiving antenna can be used in two transceiving antenna units. The transmitting antenna and the receiving antenna are arranged alternately. For a specific description of the antenna, refer to the description of FIG. 4.
  • the microwave transceiver processing module to control the combined relationship of the transmitting path and the receiving path, beam multiplication can be realized. By combining more beams, a finer beam angle can be formed, so that the measurement of materials can be more accurate.
  • Figure 12 shows that multiple transceiver antenna units are in a multiple-transmit and multiple-receive microwave transceiver processing module.
  • the transmitting antenna and the receiving antenna can be combined with each other through the microwave transceiver processing module
  • the number of beams can be obtained by multiplying the number of transmitting antennas by the number of receiving antennas.
  • the closer the distance between the transmitting antenna and the receiving antenna the better the beam performance, and the longer the distance, the worse the beam performance.
  • the transmitting antenna 110a is used to transmit microwave beams, and the microwave transmitting beams emitted by the transmitting antenna 110a can be received by the receiving antenna 120a.
  • the microwave reflection beam generated by the microwave transmission beam of the transmission antenna 110a can be received by the reception antenna 120b.
  • the transmitting antenna and the receiving antenna can be circularly polarized antennas, and the polarization directions of the transmitting antenna and the receiving antenna are opposite.
  • the transmitting antenna is right-handed polarization
  • the receiving antenna is left-handed polarization
  • the transmitting antenna is left-handed polarization
  • the receiving antenna is right-handed polarization. Since the material measuring device forms multiple microwave beams, the measurement surface is formed, so there is a high probability that the microwave emission beams emitted from the material measuring device will directly reach the wall of the silo body, and the microwave beams reaching the wall of the silo body will be received After the antenna receives it, it must be a false signal. If these false signals are doped, the shape of the measured material will be a false shape.
  • the transmitting antenna and the receiving antenna may be circularly polarized antennas with opposite polarization directions, and the polarization direction of the microwave beam of the circularly polarized antenna changes every time it is reflected.
  • the microwave beam emitted from the transmitting antenna (the leftmost beam in Figure 14) is right-handed.
  • the microwave reflected from the warehouse body wall to the surface of the material
  • the beam becomes left-handed, and when reflected from the surface of the material back to the receiving antenna, the microwave beam becomes right-handed again, but because the receiving antenna is left-handed polarization, the left-handed polarized receiving antenna will not be able to receive the right-handed microwave beam.
  • the antenna can be increased without reducing the gain, and it also has the characteristics of small size and low cost.
  • a large number of high-gain microstrip antennas can be used to achieve more accurate material measurement.
  • a material measurement system is provided.
  • the material measurement system includes the aforementioned material measurement device 10, a processing unit, and a central control unit, and may also include a power supply unit, a communication unit, and a display unit.
  • one microwave transceiving processing unit may correspond to one or more transceiving antenna units. Although three are shown in the figure, they are not used for limitation.
  • the material measurement system may include multiple microwave transceiver processing units.
  • the microwave transceiver processing module can be a collection of local oscillators or VCOs, mixers, power amplifiers, low noise amplifiers and other devices. It can provide the signal source for microwave transmission and the mixing and amplification of the microwave reception signal, and obtain the echo analog signal of the reflection information of the material surface.
  • the local oscillator can split the local oscillator signal into one signal to generate the reflected signal of the transceiver antenna unit, and split another signal to provide to the mixer, the mixer also receives the reflected signal and mixes it to determine the level distance Mixing signal.
  • the amplifier is used to amplify the mixed signal.
  • the processing unit can be in the form of a digital calculation module, which can perform AD sampling on the mixed signal, perform FFT and other operations on the sampled digital signal to obtain spectrum information, and calculate the distance information between the transmitting beam and the contact point of the material surface through spectrum analysis.
  • Multiple transceiving antenna units can work at the same time, or only one transceiving antenna unit can work at a time, so that the distance of multiple points can be measured at the same time, or the distance of only one point can be measured at the same time.
  • One processing unit can correspond to one microwave transceiving processing unit or multiple microwave transceiving processing units. That is, one processing unit can calculate the distance of one point or the distance of multiple points.
  • the time difference between the transmission time of the transmitting antenna and the receiving time of the microwave reflection beam received by the receiving antenna is obtained, so as to obtain the information of the material measurement point.
  • It also includes an arithmetic unit or a processing unit as the arithmetic unit, and the arithmetic unit obtains the information of the material measurement point according to the time difference.
  • the frequency of the microwave transmitting beam emitted by the transmitting antenna is a continuously adjusted frequency.
  • the frequency difference between the two is obtained to obtain the material measurement.
  • the arithmetic unit obtains the information of the material measurement point according to the frequency difference.
  • the central control unit is responsible for controlling the work of each processing unit and microwave processing module, and collects the distance calculation results of the processing unit, and then according to the preset warehouse information, the installation position information of the material measuring device, and the position information of the inlet and outlet, and each The angle information of the beams corresponding to the transmitting and receiving antennas is used to calculate the shape, average height, and total volume of the material.
  • the power supply unit is responsible for supplying various voltages to the material measurement system.
  • the communication unit outputs the information of the central control unit to the outside and the input of external setting information.
  • the communication unit can communicate in a wired way or wirelessly.
  • the display unit updates the displayed material information in real time according to the information of each microwave reflected beam.
  • the material measurement system also includes a purge part, which is arranged under the microwave lens, and the microwave lens can be kept clean by compressed air to avoid interference from dust.
  • the material measuring system also includes an angle measuring part, which is used to measure the inclination angle of the material measuring device, so as to obtain the actual angle of the microwave transmitting beam and/or the microwave reflecting beam based on the measured inclination angle.
  • the material measuring device can also be installed obliquely.
  • the material measuring device may have an inclination angle, and the inclination angle can be measured by a sensor.
  • the tilt angle can also be input by the customer. After measuring or inputting the tilt angle, the angle information can be used to update the angle information of all beams to obtain the current actual angle information of all beams.
  • the sensor for measuring the tilt angle may be a gyroscope or an inclinometer.
  • the material measuring device also includes a storage unit for storing information of a plurality of the microwave reflected beams.
  • the position of the microstrip antenna is fixed.
  • the microstrip antennas can also be mobile, and the number of microstrip antennas can be one or more in this case.
  • a moving microstrip antenna can be used to construct the scanning surface.
  • the moving microstrip antenna can be moved along a guide rail or the like.
  • the measurement is achieved by, for example, transmitting and receiving beams at different positions on the focal plane.
  • a material measurement method is also provided.
  • preset information such as the above
  • the shape of the material is obtained by the shape of the container, the angle between the microwave beams, the inclination angle of the material measuring device, etc.
  • the material volume, average height, quality and other information are obtained according to the material shape.
  • the obtained information is provided to the display device.
  • Figure 16 is a measurement method in the case where all microstrip antennas transmit and receive at the same time.
  • Figure 17 shows the measurement method when the microstrip antenna is transmitting and receiving respectively.
  • the transmitting antenna in a transceiver antenna unit emits a microwave beam, and then obtains the microwave reflection signal of the angle of the transceiver antenna unit, and calculates the distance between the surface of the material and the transmission antenna based on the microwave reflection signal, and then determines whether It is the last transceiver antenna unit. If not, continue to emit microwave beams. If it is, the distance value of each angle will be obtained, and the material shape will be obtained according to the preset information (such as the shape of the container, the angle between the microwave beams, the inclination angle of the material measuring device, etc.) and each distance value, and then according to the material Shape, get material volume, average height, quality and other information. Finally, the obtained information is provided to the display device.
  • the preset information such as the shape of the container, the angle between the microwave beams, the inclination angle of the material measuring device, etc.
  • a material measurement system for measuring solid materials or liquid materials, including: a container (bin body) for accommodating solid materials or liquid materials, and the accommodating body is arranged There are inlets for materials to enter and outlets for materials to discharge; and the above-mentioned material measuring device, the material measuring device is installed above the opening formed on the containing body, and the material measuring device emits microwaves at different angles. The beam is used to measure materials from multiple angles.
  • more than two material measuring devices can be installed, and the two or more material measuring devices are respectively arranged in the openings of the different positions of the container. Above. Two material measuring devices are shown in Figure 18.
  • Two or more material measuring devices are used to measure materials on a section, that is to say, the microwave beams of two or more material measuring devices form a measuring section, and each of them occupies at least a part of the one measuring section. In this way, a complete profile information of the material can be obtained.
  • two or more material measuring devices can form a cross measuring section.
  • it can be set to cross at 90°.
  • the angle between adjacent measurement planes is 45°.
  • the angles between adjacent measurement sections can be equal.
  • multiple microstrip antennas of a material measuring device are located in or near a reference plane
  • a reference plane is parallel to and/or through the axis of the microwave lens
  • multiple microstrip antennas located in or near a reference plane The antenna is arranged in a linear or curved shape or close to a linear or curved shape.
  • a reference plane passes through the projection point of the feed opening on the material or is located near the projection point.
  • the multiple microstrip antennas of a material measuring device are located in or near two or more reference planes, and the two or more reference planes are respectively parallel to the axis of the microwave lens and/or pass through the axis, and are respectively located in more than two reference planes.
  • the multiple microstrip antennas in or near each of the reference planes are respectively arranged in a linear or curved shape or close to a linear or curved shape.
  • two or more reference planes pass through the feed port on the material The projection point or is located near the projection point.
  • the multiple microstrip antennas are circularly polarized microstrip antennas, and the polarization direction of the transmitting antenna and the receiving antenna are opposite, so that when the microwave transmitting beam of the transmitting antenna is reflected by the wall surface of the container, the microwave reflection beam reflected by the material again will not be affected by Received by the receiving antenna.
  • the material measurement system may also include the material measurement system described in the second embodiment above, which also includes a processing unit, a central control unit, a power supply unit, a communication unit, and a display unit, at least according to the material information measured by the material measurement device At least one of the shape, volume, mass, and average height of the material is obtained.
  • a material measurement system for measuring the vortex of liquid or solid materials, including a container for containing liquid or solid materials; a stirrer for measuring liquid or solid materials. The material is stirred; and the material measuring device as described above, the material measuring device is installed above the opening formed on the containing body, and the material measuring device measures the vortex at multiple angles by emitting microwave beams with different angles.
  • the number of material measuring devices may be more than two, and the two or more material measuring devices are respectively arranged above the openings at different positions of the containing body. Two or more material measuring devices are used to measure vortices on one cross-section, or to measure vortices on multiple cross-sections.
  • microstrip antennas are located in or near a reference plane, a reference plane is parallel to the axis of the microwave lens and/or passes through the axis, and multiple microstrip antennas located in or near a reference plane are arranged in a linear or curved shape or close to it Straight or curved shape, a reference plane passing through or near the agitator shaft.
  • Multiple microstrip antennas are located in or near two or more reference planes, and the two or more reference planes are respectively parallel to and/or pass through the axis of the microwave lens, and are located in or near each of the two or more reference planes.
  • the multiple microstrip antennas are respectively arranged in a linear or curved shape or close to a linear or curved shape, wherein two or more reference planes pass through or near the stirring shaft of the stirrer.
  • the measured distance of the second microwave transmission beam that is vertically transmitted downward in the converged microwave transmission beams is calculated.
  • the first microwave emission beam is deemed to be perpendicular to the angle of the vortex.
  • FIG. 19 shows a schematic diagram of reflected beam energy at each contact position of the transmitted beam and the liquid surface. It can be seen that when the stirrer is stirring to form a vortex, the reflected signal of the vertically downward beam d is relatively weak during stirring, and will be further weakened with the intensity of stirring.
  • the distance of each measurement point can be calculated based on the signal, and then the shape of the vortex can be obtained according to the distance of the measurement point at each angle.
  • the multi-beam measurement device can form more beams, for example, can form more than 10 beams, etc.
  • the formed beam can be arranged at an angle of -50 degrees with respect to the vertical direction. , -40 degrees, -30 degrees, -20 degrees, -10 degrees, 0 degrees, 10 degrees, 20 degrees, 30 degrees, 40 degrees, 50 degrees.
  • the vortex shape can be measured as shown in FIG. 20.
  • the beam energy is greater than the beam energy on both sides.
  • the energy of beam b is greater than beam a and at the same time greater than beam c, and the angle of beam b is considered to be close to perpendicular to the vortex surface.
  • the return time of the reflected beam the method of calculating the time can be a pulse radar method or a frequency modulated continuous wave radar method
  • the return distance D1 of the beam b is calculated.
  • the angle of beam b is close to perpendicular to the surface of the vortex, so the angle of the vortex is ⁇ b, and the shape of the vortex can be obtained according to ⁇ b and D1 and the axial symmetry of the vortex.
  • the distance D2 D1/cos( ⁇ b) from the transmitting and receiving antenna unit of the level measuring device that emits vertically or close to the vertical downwards to the vortex. In this way, the distance value associated with the beam with the weakest reflected signal will be calculated.
  • the average liquid level and the shape of the material can be calculated.
  • the material measurement system may also include the material measurement system described in the second embodiment above, which also includes a processing unit, a central control unit, a power supply unit, a communication unit, and a display unit, at least according to the material information measured by the material measurement device At least one of the shape, volume, mass, and average height of the material is obtained.
  • a material measuring system for measuring materials including: a container for accommodating materials; and the above-mentioned material measuring device, which is installed in the container Above the opening formed on the body, the material measuring device measures the material from multiple angles through microwave emission beams with different angles.
  • multiple microstrip antennas are located in or near two or more reference planes, and the two or more reference planes are respectively.
  • the multiple microstrip antennas that are parallel to and/or pass through the axis of the microwave lens and are located in or near each of the two or more reference planes are respectively arranged in a linear or curved shape or close to a linear or curved shape, so that when multiple microstrip antennas in one reference plane are interfered by interference in the material measurement system, the interference of the interference is eliminated by measuring with the microstrip antennas in other reference planes.
  • the number of microstrip antennas in other reference planes may be less than the number of microstrip antennas in this reference plane.
  • the number of reference planes can be two, and the two reference planes are perpendicular to each other.
  • the interference is a stirring fan that stirs the liquid.
  • the microstrip antenna in the one reference plane is used to measure the vortex formed when the liquid is stirred, and the microstrip antenna in the other reference planes is used to eliminate the interference of the interference.
  • Figure 21 shows a schematic diagram of the material measurement system.
  • the microstrip antenna is arranged in two straight lines/curves, and the two straight lines/curves intersect each other, for example, it may be 90°. If there are only multiple microstrip antennas in a straight line/curve, the stirring fan will completely cover all the microstrip antennas, which will lead to a complete failure of the material measurement system. Therefore, in FIG. 21, the microstrip antenna is arranged in two straight lines/curves, and the two straight lines/curves intersect each other, for example, it may be 90°. If there are only multiple microstrip antennas in a straight line/curve, the stirring fan will completely cover all the microstrip antennas, which will lead to a complete failure of the material measurement system. Therefore, in FIG.
  • a plurality of microstrip antennas in another straight line/curve (which can be arranged along the radial direction of the cartridge body) are arranged, which cross the plurality of microstrip antennas in a straight line/curve at an angle, so that, When multiple microstrip antennas in a straight line/curve are blocked, multiple microstrip antennas in another straight line/curve can be used for supplementary measurement.
  • the number of multiple microstrip antennas forming another straight line/curve may be less than the number of multiple microstrip antennas forming a straight line/curve.
  • the material measurement system may also include the material measurement system described in the second embodiment above, which also includes a processing unit, a central control unit, a power supply unit, a communication unit, and a display unit, at least according to the material information measured by the material measurement device At least one of the shape, volume, mass, and average height of the material is obtained.
  • a material measurement system for measuring materials conveyed by a conveyor belt including: a conveyor belt for conveying materials along the conveying direction; and the above-mentioned Material measuring device, the material measuring device is set above the conveyor belt, and the material measuring device measures the material from multiple angles by emitting microwave beams with different angles. In addition, it can also measure the presence or absence of materials on the conveyor belt and the amount of materials conveyed.
  • microstrip antennas are located in or near a reference plane, a reference plane is perpendicular or nearly perpendicular to the transmission direction, and multiple microstrip antennas located in or near a reference plane are arranged in a straight or curved shape or close to a straight or curved shape, And multiple microstrip antennas are used to measure the cross-sectional area of the material.
  • the Doppler effect of the microstrip antenna is used to measure the conveying speed of the material, so as to obtain the volume flow of the material according to the cross-sectional area and the conveying speed of the material.
  • the multiple microstrip antennas are located at least on the first reference plane and the second reference plane, respectively, the first reference plane is parallel or nearly parallel to the second reference plane, and is perpendicular to the transmission direction, and the multiple microstrip antennas passing through the first reference plane
  • the cross-sectional area of the material measured by the multiple microstrip antennas on the second reference plane is used to obtain the conveying speed of the material, and the volume flow of the material is obtained according to the cross-sectional area and the conveying speed of the material.
  • the multiple microstrip antennas are located at least on a first reference plane and a second reference plane, respectively, the first reference plane and the second reference plane are perpendicular or nearly perpendicular, and the first reference plane is perpendicular to the transmission direction.
  • the cross-sectional area of the material measured by two microstrip antennas and the transmission speed of the material measured by the multiple microstrip antennas of the second reference plane are used to obtain the volume flow rate of the material.
  • the measurement is performed by two vertically distributed transceiver antenna units.
  • the first measurement point shown in the left figure of Fig. 23 is the measurement point where the multiple transmitting and receiving antenna units in the first straight line (which can be perpendicular to the transmission direction) measure the material, and the multiple transmitting and receiving antenna units passing through the first straight line Measure the cross-sectional shape of the material conveyed by the conveyor belt.
  • the second measurement point shown in the left figure of Fig. 23 is the measurement point where multiple transceiver antenna units in a second straight line (can be parallel to the transmission direction) measure the material. Measurement of the conveying speed of the conveyed material.
  • the multiple transmitting and receiving antenna units of the second straight line obtain the transmission speed according to the change of the material form. For example, the transmission speed can be calculated from the time relationship of the height change of each measurement point and the distance value of each measurement point. Based on the fact that the shape of the material can be confirmed by the microwave beam, the position of the material at time T1 and the position of the material at time T2 can be confirmed. The difference between the positions of the two measuring points is D, and the material speed is D/(T2-T1).
  • the cross-sectional area S of the conveying belt material can be obtained through the scanning surface of the first straight line, and the volume flow rate of the material is equal to S*D/(T2-T1).
  • the mass flow rate of the material can be obtained.
  • the measurement is carried out by using two parallel transmitting and receiving antenna units.
  • the first measurement point as shown in the right figure of Figure 23 is the measurement point where the multiple transceiver antenna units in the first straight line (which can be perpendicular to the transmission direction) measure the material, and the multiple transceiver antenna units pass through the first straight line. Measure the cross-sectional shape of the material conveyed by the conveyor belt.
  • the second measurement point shown in the right figure of Figure 23 is the measurement point where multiple transceiver antenna units in a second straight line (perpendicular to the transmission direction) measure the material.
  • the cross-sectional shape of the conveyed material is measured.
  • the position of the material at time T1 and the position of the material at time T2 can be confirmed by comparing the shapes.
  • the difference between the positions of the two measuring points is D, Then the material speed is D/(T2-T1).
  • the volume flow rate of the material is equal to S*D/(T2-T1).
  • the mass flow rate of the material can be obtained.
  • the material measurement system may also include the material measurement system described in the second embodiment above, which also includes a processing unit, a central control unit, a power supply unit, a communication unit, and a display unit, at least according to the material information measured by the material measurement device At least one of the shape, volume, mass, and average height of the material is obtained.
  • materials can be measured more accurately, and the gain will not be reduced when the number of antennas is increased.
  • the volume can be smaller and the cost can be lower.
  • the present disclosure can effectively use small installation openings to realize multiple high-gain antennas, and the increase in the number of antennas is not limited by the openings. At the same time, the energy obtained by each antenna is not reduced. Moreover, the cost of a single antenna is lower, which can greatly increase the number of measurement points. In this way, the 3D shape of the material inside the storage tank can be measured more accurately, and the volume of the material can be measured more accurately.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Aerials With Secondary Devices (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种物料测量装置,包括:多个微带天线(100),形成多个收发天线单元,收发天线单元包括发射天线(110)与接收天线(120),发射天线(110)用于生成微波发射波束,接收天线(120)用于接收微波发射波束被反射后而生成的微波反射波束,通过微波发射波束和微波反射波束来对物料进行测量;微波透镜(200),多个微带天线(100)位于微波透镜(200)的一侧,在微波透镜(200)的另一侧,微波透镜(200)会聚每个发射天线(110)所发射的微波发射波束,会聚后的每个微波发射波束的角度不同,微波透镜(200)会聚微波反射波束,以便接收天线(120)接收会聚后的微波反射波束。装置多角度对物料进行测量,能够排除干扰物的干扰。

Description

物料测量装置及物料测量系统 技术领域
本公开涉及一种物料测量装置及物料测量系统。
背景技术
固体物料仓储的物料体积测量一直以来是一个难点,主要原因在于物料会因为进料堆砌成山峰型或者因为出料堆砌成漏斗形。对于多个进出料点的料仓会出现多个山峰和漏斗形。传统方式只能够测量单点或很少点的物位信息。单点测量完全不能满足需要。而多点测量,目前的方式通常通过三个到四个天线对物料形状进行测量,但是仍然不能满足需求。
通常的方式是采用喇叭天线,但是喇叭天线体积较大,在开口尺寸受限的情况下,将在数量上受到限制,因此通常仅为三个或四个喇叭天线。而且在现有的设计中,每增加一个波束,将会造成单个波束的增益下降,这样将会影响测量效果。
另外,在环境比较复杂的测量环境下,现有技术中天线数量较少且信号较弱,很难适应测量环境,例如很难穿过固体灰尘等。
对于液体的液位测量也存在物料表面不是平面的时候,比较常见的是液体因为搅拌而形成漩涡,此时同样存在上述的问题。
另外,现有技术中对测量干扰物的排除效果也并不理想。
发明内容
为了解决上述技术问题中的至少一个,本公开提供了一种物料测量装置及物料测量系统。
根据本公开的一个方面,提供了一种物料测量装置,包括:
多个微带天线,形成多个收发天线单元,所述收发天线单元包括发射天线与接收天线,所述发射天线用于生成微波发射波束,所述接收天线用于接收所述微波发射波束被反射后而生成的微波反射波束,通过所述微波发射波束和所述微波反射波束来对物料进行测量;以及
微波透镜,所述多个微带天线位于所述微波透镜的一侧,在所述微波透镜的另一侧,所述微波透镜会聚每个发射天线所发射的微波发射波束,会聚后的每个微波发射波束的角度不同,并且所述微波透镜会聚所述微波反射波束,以便所述接收天线接收会聚后的微波反射波束。
根据本公开的一个方面,提供了一种物料测量装置,包括:
一个或多个微带天线,形成一个或多个收发天线单元,所述收发天线单元包括发射天线与接收天线,所述发射天线用于生成微波发射波束,所述接收天线用于接收所述微波发射波束被反射后而生成的微波反射波束,通过所述微波发射波束和所述微波反射波束来对物料进行测量;以及
微波透镜,所述微带天线位于所述微波透镜的一侧,在所述微波透镜的另一侧,所述微波透镜会聚每个发射天线所发射的微波发射波束,会聚后的每个微波发射波束的角度不同,并且所述微波透镜会聚所述微波反射波束,以便所述接收天线接收会聚后的微波反射波束,
其中,所述一个或多个微带天线为可移动微带天线,通过所述微带天线的移动,来对所述物料进行测量。
根据本公开的一个方面,提供了一种物料测量系统,用于对固体物料或液体物料进行测量,包括:
容纳体,用于容纳所述固体物料或液体物料,并且所述容纳体设置有供物料进入的进料口与供物料排出的出料口;以及
如上任一项所述的物料测量装置,所述物料测量装置安装至在所述容纳体上形成的开口的上方,所述物料测量装置通过角度不同的微波发射波束来多角度地对物料进行测量。
根据本公开的一个方面,提供了一种物料测量系统,用于对液体或固体物料的漩涡进行测量,包括:
容纳体,用于容纳所述液体或固体物料;
搅拌器,用于对所述液体或固体物料进行搅拌;以及
如上任一项所述的物料测量装置,所述物料测量装置安装至在所述容纳体上形成的开口的上方,所述物料测量装置通过角度不同的微波发射波束来多角度地对所述漩涡进行测量。
根据本公开的一个方面,提供了一种物料测量系统,用于对物料进行测量,包括:
容纳体,用于容纳所述物料;以及
如上任一项所述的物料测量装置,所述物料测量装置安装至在所述容纳体上形成的开口的上方,所述物料测量装置通过角度不同的微波发射波束来多角度地对物料进行测量,
其中,所述微带天线位于两个以上参考平面中或附近,所述两个以上参考平面分别与所述微波透镜的轴线平行和/或穿过所述轴线,分别位于两个以上参考平面的每个参考平面中或附近的微带天线分别布置成直线或曲线形状或者接近直线或曲线形状,这样当处于一个参考平面的微带天线被物料测量系统中的干扰物干扰时,通过处于其他参考平面的微带天线进行测量来排除所述干扰物的干扰。
附图说明
附图示出了本公开的示例性实施方式,并与其说明一起用于解释本公开的原理,其中包括了这些附图以提供对本公开的进一步理解,并且附图包括在本说明书中并构成本说明书的一部分。
图1为根据本公开一个实施方式的物料测量装置的示意图。
图2至5为根据本公开一个实施方式的发射天线与接收天线分布示意图。
图6为根据本公开一个实施方式的微波透镜的示意图。
图7为根据本公开一个实施方式的收发天线单元分布示意图。
图8至12为根据本公开一个实施方式的微波收发处理模块示意图。
图13为根据本公开一个实施方式的物料测量装置的示意图。
图14至15为根据本公开一个实施方式的物料测量系统的示意图。
图16至17为根据本公开一个实施方式的物料测量方法的流程图。
图18为根据本公开一个实施方式的物料测量系统的示意图。
图19至20为根据本公开一个实施方式的漩涡测量的示意图。
图21为根据本公开一个实施方式的干扰物排除的示意图。
图22至23为根据本公开一个实施方式的传送带物料的示意图。
具体实施方式
下面结合附图和实施方式对本公开作进一步的详细说明。可以理解的是,此处所描述的具体实施方式仅用于解释相关内容,而非对本公开的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本公 开相关的部分。
根据本公开的一个实施方式,提供了一种物料测量装置。
图1示出了根据本公开的一个实施方式的物料测量装置10。
如图1所示,该物料测量装置10可以包括微带天线100和微波透镜200。还包括壳体,壳体与微波透镜形成容纳微带天线的封闭空间。
其中微带天线100的数量为多个,例如,微带天线的数量可以为5个以上、10个以上等,从而形成多个收发天线单元。
每个收发天线单元包括一个发射天线110与一个接收天线120。
图2至图5示出了发射天线与接收天线的实例。
在图2中,每个收发天线单元的发射天线110和接收天线120共用一个微带天线100。在该示例中,可以通过耦合器将发射与接收合成一路,这样可以通过n个微带天线来构成n个发射天线110a、110b、……、110n与n个接收天线120a、120b、……、120n。
在图3中,每个发射天线和每个接收天线分别使用一个微带天线100,并且相邻的发射天线与接收天线构成一个收发天线单元,例如发射天线110a与接收天线120a构成一个收发天线单元,发射天线110b与接收天线120b构成一个收发天线单元,……,发射天线110n与接收天线120n构成一个收发单元。其中作为一个收发天线单元中的发射天线与接收天线是相邻的两个微带天线。
在图4中,每个发射天线和每个接收天线分别使用一个微带天线100,相邻的发射天线和接收天线两个构成一个收发天线单元。例如,发射天线110a与相邻的接收天线120a构成一个收发天线单元,接收天线120a也与相邻的发射天线110b构成一个收发天线单元,发射天线110b与接收天线120b构成一个收发天线单元,……。这样,不同波束的收发天线单元可以共用发射天线或接收天线,一个发射天线或接收天线可以在两个或多个波束的收发天线单元中。
在该方式中,发射天线与接收天线为交替出现的形式。例如,在四个发射天线和三个接收天线交替布置的情况下,可以构成六个收发天线单元并且处理六个波束。当发射天线的数量为n且接收天线的数量为n+1时,可以实现2n个波束,当发射天线的数量为n+1且接收天线的数量为n时,也可以实现2n个波束。
在图5中,每个发射天线和每个接收天线分别使用一个微带天线100,各个微带天线100彼此靠近,这样发射天线与接收天线可以两两组合,其处理波束的数量为发射天线的数量乘以接收天线的数量。
发射天线110用于生成微波发射波束并且将微波发射波束射向微波透镜200。接收天线120用于接收微波发射波束被反射后而生成的微波反射波束,基于微波发射波束和微波反射波束来对物料进行测量。
微带天线100均位于微波透镜200的同一侧,例如图1所示微波透镜200的上侧。
发射天线110向微波透镜200发射发散的微波波束,该微波波束经过微波透镜200的会聚,在微波透镜200的另一侧形成平行或接近平行的每个微波波束。在微波透镜200的另一侧所形成的多个微波发射波束的角度各不相同。
当微波透镜200会聚的微波发射光束到达物料300时,将会被物料300进行反射而形成一次反射的微波反射波束,每个微波反射波束入射到微波透镜200中,并且经过微波透镜200的会聚,由位于微波透镜200的一侧的接收天线所接收。
多个发射天线所发射的多个微波发射波束中的至少一个微波发射波束作为垂直微波发射波束,垂直微波发射波束与微波透镜的轴线平 行或穿过微波透镜的轴线。
在对斜面形状的物料进行测量时,根据垂直微波发射波束之外的其他一个或多个非垂直微波发射波束来确定需要由垂直微波发射波束测得的物料信息。
基于非垂直微波发射波束和垂直微波发射波束之间的角度差,来确定需要由垂直微波发射波束测得的物料信息。
多个发射天线所发射的多个微波发射波束之间的角度差为相等的或不相等的,并且为微波发射波束的波束开角的0.5~1.5倍。
微波透镜200设置成能够被微波穿透并且可以改变微波的方向。
微波透镜200可以由陶瓷或塑料等材料制成,其介电常数可以是均匀的,也可以为不均匀的。在本公开中,微波透镜200的介电常数可以大于1,其可以被微波穿透,并且采用损耗小的材料制成,例如陶瓷或塑料等。
图6示出了微波透镜200的几种形式,图6所示的形式仅仅作为示例,本公开并不限定于图6所示的形式。例如,微波透镜200可以为中间厚外侧薄的凸透镜的结构、微波透镜200可以为外侧厚中间薄的凹透镜的结构,微波透镜200可以为一面是曲面而另一面为平面的结构,微波透镜200可以为两面都为曲面的结构。曲面可以为球面或椭圆球面,也可以为多个曲面组合的形式。微波透镜200可以为实心透镜也可以为空心透镜的形式。
另外,微波透镜200可以包括一个微波透镜,也可以是两个以上微波透镜的组合。一个微波透镜和微波透镜组合的目的均是为了使得微波发射波束和微波反射波束进行会聚。
在本公开的优选实施例中,多个微带天线100设置在微波透镜200的焦面上。
当在一个微带天线100在微波透镜200的一侧发射微波波束时,可以通过微波透镜200在微波透镜200的另一侧形成会聚的微波波束。
例如图1所示,左侧和右侧的微带天线100可以通过微波透镜200形成会聚的微波波束,中间的微带天线100也可以通过微波透镜200形成会聚的微波波束。
理想情况下每个会聚后的微波波束为平行波束,但是在实际情况中可能存在小角度的扩散,该扩散角度优选地小于15°。
处于微波透镜200的相应位置处的微带天线100所发射的微波波束均可以被微波透镜200进行会聚,每个微波透镜200所处的位置可以被称为微波透镜的焦点,而这些焦点所形成的面可以被称为微波透镜的焦面。
另外,可以对微波透镜200进行设置,使得微波透镜的焦面为一个平面或者为一个曲面。通过将微带天线100设置在微波透镜200的焦面上,可以使得接收天线所接收的微波反射波束的能量达到最强。
优选地,作为一个收发天线单元的发射天线与接收天线位于微波透镜200的一个焦点处或附近。这样布置在微波透镜200的焦点处的每个收发天线单元可以配合起来处理一路发射波束和一路反射波束,这两路波束是反向的,且是平行、靠近或重合的。
如上所述,微波透镜200的焦面可以为平面形状也可以为曲面形状。
当微波透镜200的焦面为平面形状时,多个微带天线100可以设置在与微波透镜200的横截面(与光轴垂直的平面)相垂直的参考平面中或该参考平面附近。这样多个微带天线100将处于一条直线上或大致处于一条直线上。其中,该参考平面优选地与微波透镜200的轴 线平行或者穿过该轴线(该轴线位于该参考平面中)。
当微波透镜200的焦面为曲面形状时,多个微带天线100可以设置在与微波透镜200的横截面(与光轴垂直的平面)相垂直的参考平面中或该参考平面附近。这样多个微带天线100将处于一条曲线上或大致处于一条曲线上。其中,该参考平面优选地与微波透镜200的轴线平行或者穿过该轴线(该轴线位于该参考平面中)。
上面说明了成或大致成一条直线/曲线布置的微带天线100,在本公开的实施例中,多个微带天线100也可以布置成两条以上的直线/曲线或大致直线/曲线的形状。
这时,多个微带天线100可以设置在在与微波透镜200的横截面(与光轴垂直的平面)相垂直的两个以上参考平面中或该两个以上参考平面附近,这样当微波透镜200的焦面为平面形状时,多个微带天线100成两条以上的直线形状布置,当微波透镜200的焦面为曲面形状时,多个微带天线100成两条以上的曲线形状布置。优选地,两个以上参考平面中的每个平面均穿过微波透镜200的轴线,并且更优选地,两个以上的参考平面中相邻参考平面之间的角度彼此相等。例如,当形成两条直线/曲线时,两条直线/曲线所在的参考平面相互垂直,当形成四条直线/曲线时,四条直线/曲线所在的四个参考平面中相邻的参考平面之间的角度分别为45°。
多个微带天线100位于两个以上参考平面中或附近的情况下,位于各个参考平面中或附近的微带天线100的数量相同或不同,也就说说位于不同直线/曲线的微带天线的数量可以不同。在本公开的优选实施例中,在透镜的轴线上或附近设置中心收发天线单元。
在多个微带天线100位于一个参考平面中或附近的情况下,通过微波透镜200会聚的不同角度的微波发射波束位于一个平面中或附近,从而形成一个波束扫描面,以对物料的一个截面的进行测量。
当多个微带天线100位于一条直线/曲线时,微带天线100发射的微波发射波束经过微波透镜200的会聚后,形成不同角度的会聚的微波发射波束,这样不同角度的会聚微波发射波束可以形成一个微波波束面,这个面就构成了一个测量切面,当波束面与物料的表面接触时,被物料表面反射,通过接收天线所接收的微波反射信号来得到物料表面的若干测量点的距离信息,这样可以得到物料的一个剖面结构。
在多个微带天线100位于两个以上参考平面中或附近的情况下,位于每个参考平面中或附近的微带天线100的微波发射波束被微波透镜200会聚为分别位于一个平面的不同角度的微波发射波束,从而形成多个波束扫描面,以对物料的多个截面进行测量。
也就是说,多个微带天线100设置在两条以上的直线/曲线上,每条直线/曲线上的多个微带天线100均分别形成一个微波波束面,这样通过所形成的两个以上的微波波束面构成了两个以上的测量切面,当两个以上的波束面可以测得物体的三维表面信息。优选地,该两个以上的微波波束面可以相互交叉,这样可以得到物料的多个不同角度的剖面结构来得到物料的三维表面信息。
图7中示出了微波透镜为截面为圆形的情况下,微带天线的布置形状,其中微带天线可以布置成一条直线/曲线,两条微带天线可以布置成垂直交叉的直线/曲线,四条微带天线可以布置成类似的圆环形(在焦面为曲面形状时,不同的圆环可以在不同的高度)。
本公开中的微带天线可以是在印刷电路板(PCB)上形成的天线。多个微带天线可以形成在一个印刷电路板上,也可以不在一个印刷电路板上。优选地,由下面描述的同一个微波收发处理模块的多个收发 天线单元设置在一个印刷电路板上。
其中印刷电路板的形状可以根据微带天线的布置形状来设定,例如可以为平直形状(焦面为平面时),也可以为弯曲形状(焦面为曲面时)。每个收发天线单元可以设置在一个印刷电路板上,多个收发天线单元可以设置在一个印刷电路板上。相互分离的印刷电路板可以成一定角度以便构成弯曲形状(焦面为曲面时)。
多个微带天线设置在一个印刷电路板上,并且多个微带天线的角度不同,或者多个微带天线设置在多个印刷电路板上,并且多个印刷电路板的角度不同以使得多个微带天线的角度不同。印刷电路板与设置在该印刷电路板上的微带天线所发射的微波发射波束垂直或接近垂直。
所述印刷电路板可被转动或移动,以便改变所述印刷电路板的微带天线发射的微波发射波束的发射角度或发射位置。所述印刷电路板的转动或移动为周期性的。通过所述印刷电路板的转动或移动来形成用于对物料的剖面进行测量的扫描面。
根据本公开的进一步实施例,物料测量装置10还包括微波收发处理模块,微波收发处理模块基于时间飞行原理得到发射天线发射微波发射波束的发射时间与接收天线接收微波反射波束的接收时间之间的时间差,以便得到物料测量点的信息。
发射天线发射的微波发射波束的频率为连续调整的频率。通过比较某时刻发射天线发射的微波发射波束的频率与接收天线接收的微波反射波束的频率来得到二者的频率差,以便得到物料测量点的信息。
如图8所示,微波收发处理模块130至少可以用于提供控制发射天线的发射信号、以及接收来自接收天线的接收信号。例如,在发射天线110与接收天线120独立的情况下,微波收发处理模块130提供发射信号至发射天线110并且接收来自接收天线120的接收信号。在收发天线单元共用一个微波天线时,可以采用微波天线+微波耦合器的形式,微波耦合器可以将接收信号及发射信号混合在一起,微波收发处理模块130将发射信号提供至微波耦合器,微波天线作为发射天线发射微波波束,并且在接收信号时,微波天线作为接收天线接收微波波束,并且通过微波耦合器将接收信号提供至微波收发处理模块130。
在本公开的优选实施例中,微波收发处理模块为多收多发模块,也就是说一个模块包括多个发射通路及多个接收通路。如图9所示,接收通路与发射通路不设置在微波收发处理模块的同一侧,这样可以增加微波收发处理模块的接收与发送之间的隔离度。
作为本公开的示例,图10示出了发射天线与接收天线为单独天线并且发射天线与接收天线一一对应的情况。这里,微波收发处理模块可以与发射天线与接收天线位于印刷电路板的同侧,并且通过微波收发处理模块通过处于不同侧的发射通路和接收通路来向发射天线提供发射信号,并且从接收来自接收天线的接收信号。
在图10中,一对收发通道对应一个固定的收发天线单元。在图11中示出了一个发射天线和/或接收天线可以在两个收发天线单元的情况。发射天线与接收天线交替布置。天线的具体说明可以参见关于图4的说明。通过微波收发处理模块控制发射通路与接收通路的组合关系,可以实现波束倍增。通过组合出更多的波束,可以形成更细微的波束角度,这样对于物料的测量可以更加精确。
图12示出了多个收发天线单元处于一个多发多收微波收发处理模块中,当多个发射天线和多个接收天线相互靠近时,发射天线和接收天线可以进行相互组合,通过微波收发处理模块的控制,可以得到 发射天线数乘以接收天线数的数量的波束。当然,发射天线与接收天线距离越近波束性能越好,距离越远波束性能越差。
此外,在多个发射天线和多个接收天线进行组合来构成收发天线单元从而处理更多波束的情况。在图13中,发射天线110a用于发射微波波束,根据发射天线110a发射的微波发射波束可以由接收天线120a来进行接收,但是,在接收天线120b与发射天线110a相应的微波波束的公共区域(图13中以阴影线示出,如上所述由于微波发射波束与微波反射波束具有扩散角度)中,根据发射天线110a的微波发射波束所产生的微波反射波束可以被接收天线120b所接收到。
当发射天线与接收天线为各自的微带天线时,发射天线和接收天线可以采用圆极化天线,并且发射天线和接收天线的极化方向相反。例如当发射天线为右旋极化时则接收天线为左旋极化,当发射天线为左旋极化时则接收天线为右旋极化。由于物料测量装置形成多个微波波束,从而形成了测量面,这样会有会有很大几率从物料测量装置发射的微波发射波束直接到达仓体的壁面上,到达仓体壁面的微波波束被接收天线接收后,其必然是虚假信号。如果掺杂有这些虚假信号,那么测量得到的物料的形状将会是虚假形状。
因此,在本公开中,发射天线和接收天线可以是极化方向相反的圆极化天线,圆极化天线的微波波束在每次被反射后,极化方向均进行变化。例如发射天线为右旋极化时,从发射天线发出的微波波束(图14中最左侧的波束)为右旋,当接触到仓体的壁面时,从仓体壁面反射至物料表面的微波波束变为左旋,当从物料表面反射回接收天线时的微波波束又变为右旋,但是由于接收天线为左旋极化,因此左旋极化的接收天线将不能接收该右旋的微波波束。从而避免了仓体产生的反射。
通过本公开的方式,与现有技术相比,可以在增加天线的基础上而不会降低增益,并且还具有体积小、成本低等特点。在用于对物料进行测量时,可以采用大数量高增益的微带天线,从而实现更精确的物料测量。
根据本公开的第二实施方式,提供了一种物料测量系统。
该物料测量系统包括上述的物料测量装置10、处理单元、中控单元,还可以包括供电单元、通讯单元、显示单元。
如图15所示,一个微波收发处理单元可以对应一个或多个收发天线单元,虽然在图中示出了3个,但是其不用于限定。物料测量系统可以包括多个微波收发处理单元。
微波收发处理模块可以是本振或VCO、混频器、功率放大器、低噪放大器等器件的集合。其可以提供微波发射用的信号源和微波接收信号的混频与放大,得到物料面反射信息的回波模拟信号。
本振可以将本振信号分出一路信号来生成收发天线单元的反射信号,并且分出另一路信号提供至混频器,混频器还接收反射信号,并混频形成用于确定物位距离的混频信号。放大器用于对混频信号进行放大。
处理单元可以为数字计算模块的形式,其可以对混频信号进行AD采样,对采样后的数字信号进行FFT等运算得到频谱信息,通过频谱分析计算得到发射波束与物料面接触点的距离信息。
多个收发天线单元可以同时工作也可以一个时间只有一个收发天线单元工作,这样可以同时测量多点距离,也可以同时只测量一个点的距离。
一个处理单元可以对应一个微波收发处理单元,也可以对应多个 微波收发处理单元。即,一个处理单元可以计算一个点的距离,也可以计算多个点的距离。
基于时间飞行原理得到发射天线发射微波发射波束的发射时间与接收天线接收微波反射波束的接收时间之间的时间差,以便得到物料测量点的信息。
还包括运算单元或者处理单元作为运算单元,运算单元根据时间差来得到物料测量点的信息。
发射天线发射的微波发射波束的频率为连续调整的频率,通过比较某时刻发射天线发射的微波发射波束的频率与接收天线接收的微波反射波束的频率来得到二者的频率差,以便得到物料测量点的信息。运算单元根据频率差来得到物料测量点的信息。
中控单元负责控制各个处理单元和微波处理模块工作,并且收集处理单元的距离计算结果,然后根据预先设置的仓体信息、物料测量装置的安装位置信息、以及进出料口的位置信息、以及每个收发天线对应的波束的角度信息来计算物料的形状、平均高度、以及物料总体积等信息。
供电单元负责给物料测量系统提供各种电压。通讯单元将中控单元的信息对外输出以及外部设置信息的输入。其中通讯单元可以通过有线方式也可以通过无线方式进行通讯。显示单元根据各个微波反射波束的信息来实时更新所显示的物料的信息。
物料测量系统还包括吹扫部,吹扫部设置在微波透镜的下方,可以通过压缩空气等保持微波透镜的清洁,以免灰尘等的干扰。
物料测量系统还包括角度测量部,角度测量部用于测量物料测量装置的倾斜角度,以便基于测量的倾斜角度来得到微波发射波束和/或微波反射波束的实际角度。
为了得到最好的微波反射信号,物料测量装置还可以倾斜安装。物料测量装置可以具有倾斜角度,并且通过传感器来测量倾斜角度。也可以由客户输入倾斜角度。测量或输入的倾斜角度之后,可以使用该角度信息更新所有波束的角度信息,以得到所有波束目前实际的角度信息。其中测量倾斜角度的传感器可以为陀螺仪或者倾角计。
物料测量装置还包括存储部,用于将多个所述微波反射波束的信息进行存储。
在上述的实施方式或实施例中,微带天线的位置为固定的。但是在本公开中,微带天线也可以是移动的,这时微带天线的数量可以为一个或多个。
下面以一个示例进行说明。在该示例中,可以通过一个移动的微带天线来构建扫描面。例如该移动的微带天线可以沿着导轨等进行移动。通过例如在焦面的不同位置发射和接收波束来实现测量。
对于移动微带天线的其他描述,与上面的实施方式相同,这里不再赘述。
在本公开中,还提供了一种物料测量方法。如图16所示,首先控制物料测量装置的各个收发天线单元发射微波波束,并且获得多个角度的微波反射信号,根据微波反射信号计算距离物料的各个距离值,根据预设信息(例如上述的容纳体形状、微波波束之间角度、物料测量装置的倾斜角度等)及各个距离值来得到物料形状,然后根据物料形状,得到物料体积、平均高度、质量等信息。最后将得到的信息提供给显示设备。
图16是在所有微带天线同时发射和接收的情况下的测量方法。图17示出了微带天线分别发射和接收情况下的测量方法。
如图17所示,一个收发天线单元中的发射天线发射微波波束,然后获得该收发天线单元的角度的微波反射信号,并且根据该微波反射信号来计算物料表面距离发射天线的距离,然后判断是否为最后一个收发天线单元。如果否,则继续发射微波波束。如果是,将会得到各个角度的距离值,根据预设信息(例如上述的容纳体形状、微波波束之间角度、物料测量装置的倾斜角度等)及各个距离值来得到物料形状,然后根据物料形状,得到物料体积、平均高度、质量等信息。最后将得到的信息提供给显示设备。
根据本公开的第三实施方式,提供了一种物料测量系统,用于对固体物料或液体物料进行测量,包括:容纳体(仓体),用于容纳固体物料或液体物料,并且容纳体设置有供物料进入的进料口与供物料排出的出料口;以及如上所述的物料测量装置,物料测量装置安装至在容纳体上形成的开口的上方,物料测量装置通过角度不同的微波发射波束来多角度地对物料进行测量。
在一些尺寸较大的容纳体或者具有多个进料口/出料口的容纳体,可以设置两个以上的物料测量装置,两个以上的物料测量装置分别设置在容纳体不同位置的开口的上方。图18中示出了两个物料测量装置。
两个以上的物料测量装置用于测量一个截面上的物料,也就是说两个以上的物料测量装置的微波波束构成了一个测量切面,每个均至少占据了该一个测量切面的一部分。这样可以得到物料的一个完整的剖面信息。
例如在需要测量物料的三维形状时,两个以上的物料测量装置可以构成交叉的测量切面,例如在两个物料测量装置的情况下,可以设置成90°交叉,在四个的情况下,相邻测量切面之间的角度为45°。相邻测量切面之间的角度可以是相等的。
如上所述,一个物料测量装置的多个微带天线位于一个参考平面中或附近,一个参考平面与微波透镜的轴线平行和/或穿过轴线,位于一个参考平面中或附近的多个微带天线布置成直线或曲线形状或者接近直线或曲线形状。在本公开中,优选地,一个参考平面穿过进料口在物料上的投影点或者位于投影点附近。
如上所述,一个物料测量装置的多个微带天线位于两个以上参考平面中或附近,两个以上参考平面分别与微波透镜的轴线平行和/或穿过轴线,分别位于两个以上参考平面的每个参考平面中或附近的多个微带天线分别布置成直线或曲线形状或者接近直线或曲线形状,在本公开中,优选地,两个以上参考平面穿过进料口在物料上的投影点或者位于投影点附近。
多个微带天线为圆极化微带天线,发射天线与接收天线的极化方向相反,这样当发射天线的微波发射波束被容纳体的壁面反射后再次由物料反射的微波反射波束不会由接收天线所接收。
该物料测量系统还可以包括上述的第二实施方式中描述的物料测量系统所包括的还包括处理单元、中控单元、供电单元、通讯单元、显示单元,至少根据物料测量装置测量的物料信息来得到物料形状、体积、质量和平均高度中的至少一种。
根据本公开的第四实施方式,提供了一种物料测量系统,用于对液体或固体物料的漩涡进行测量,包括容纳体,用于容纳液体或固体物料;搅拌器,用于对液体或固体物料进行搅拌;以及如上所述的物料测量装置,物料测量装置安装至在容纳体上形成的开口的上方,物料测量装置通过角度不同的微波发射波束来多角度地对漩涡进行测 量。
如第三实施方式所描述的那样,在该实施方式中,物料测量装置的数量可以为两个以上,两个以上的物料测量装置分别设置在容纳体不同位置的开口的上方。两个以上的物料测量装置用于测量一个截面上的漩涡,或者测量多个截面上的漩涡。
多个微带天线位于一个参考平面中或附近,一个参考平面与微波透镜的轴线平行和/或穿过轴线,位于一个参考平面中或附近的多个微带天线布置成直线或曲线形状或者接近直线或曲线形状,一个参考平面穿过搅拌器的搅拌轴或附近。
多个微带天线位于两个以上参考平面中或附近,两个以上参考平面分别与微波透镜的轴线平行和/或穿过轴线,分别位于两个以上参考平面的每个参考平面中或附近的多个微带天线分别布置成直线或曲线形状或者接近直线或曲线形状,其中,两个以上参考平面穿过搅拌器的搅拌轴或附近。
基于会聚后的微波发射波束中与漩涡的角度垂直的第一微波发射波束测得的距离,来计算会聚后的微波发射波束中向下垂直发射的第二微波发射波束应测得的距离。
设定第一微波发射波束与第二微波发射波束之间的角度为θ,第一微波发射波束测得的距离为D1,第二微波发射波束应测得的距离为D2,则D2=D1/cosθ。
在第一微波发射波束的能量大于相邻两侧的微波发射波束的能量的情况下,将第一微波发射波束认定为与漩涡的角度垂直。
图19中示出了在各个发射波束与液面接触位置的反射波束能量示意图。可以看出,在搅拌器进行搅拌形成漩涡的情况下,垂直向下发射的波束d在搅拌时反射信号比较弱,而且随着搅拌的剧烈程度会进一步减弱。
如果各个反射波束的反射波束均有信号,则可以根据信号计算每个测量点的距离,然后可以根据各个角度的测量点的距离就可以得到漩涡的形状。
但是,在液体物料情况下,随着搅拌程度变得剧烈或者内部弥漫蒸汽时,发射信号将会大为降低,甚至于只有某一两个与液面垂直或接近于垂直的发射波束才会有反射信号。因此靠常规的距离计算方法很难对漩涡进行测量。同样在测量固体物料的情况,如果在粉尘较大的时候也会测量不到反射信号。
传统的多波束最多只能达到3-4个,而且一般无法做到直线分布,很难保证恰好有波束会比较接近垂直于物料表面。
为了解决这种情况,根据本公开的多波束测量装置可以形成更多的波束,例如可以形成10个以上的波束等,作为示例,所形成的的波束与垂直方向夹角布置可以是-50度、-40度、-30度、-20度、-10度、0度、10度、20度、30度、40度、50度。
因为具有更多的波束,因此可以通过如图20所示的那样来对漩涡形状进行测量。
首先找到反射信号变化的极大值点,即波束能量大于两侧波束能量。比如波束b能量大于波束a,同时大于波束c,则认为波束b的角度与漩涡面接近于垂直。根据反射波束的返回时间(计算时间的方法可以是脉冲雷达的方法或者是调频连续波雷达的方法),计算出波束b的回波的距离D1。波束b的角度因为与漩涡面接近垂直,则波束b的角度就是漩涡的角度,这样漩涡的角度是∠b,则根据∠b和D1以及漩涡的轴对称性就可以得到漩涡的形状。物位测量装置垂直或接近垂 直向下发射的收发天线单元到漩涡的距离D2=D1/cos(∠b)。这样反射信号最弱的波束相关的距离值将会被计算得出。
在已知仓体半径为R,物料测量装置的安装位置与中心轴的距离为k的情况下,则平均液位和物料形状都可以计算出来。
上面以液体为例进行说明,在固体物料的情况下,方式相同,在此不再赘述。
该物料测量系统还可以包括上述的第二实施方式中描述的物料测量系统所包括的还包括处理单元、中控单元、供电单元、通讯单元、显示单元,至少根据物料测量装置测量的物料信息来得到物料形状、体积、质量和平均高度中的至少一种。
根据本公开的第五实施方式,提供了一种物料测量系统,用于对物料进行测量,包括:容纳体,用于容纳物料;以及如上所述的物料测量装置,物料测量装置安装至在容纳体上形成的开口的上方,物料测量装置通过角度不同的微波发射波束来多角度地对物料进行测量,其中,多个微带天线位于两个以上参考平面中或附近,两个以上参考平面分别与微波透镜的轴线平行和/或穿过轴线,分别位于两个以上参考平面的每个参考平面中或附近的多个微带天线分别布置成直线或曲线形状或者接近直线或曲线形状,这样当处于一个参考平面的多个微带天线被物料测量系统中的干扰物干扰时,通过处于其他参考平面的微带天线进行测量来排除干扰物的干扰。
在该实施方式中,处于其他参考平面的微带天线的数量可以少于处于该一个参考平面的微带天线的数量。
参考平面的数量可以为两个,并且两个参考平面相互垂直。
干扰物为搅拌液体的搅拌扇片,处于该一个参考平面的微带天线用于测量液体被搅拌时形成的漩涡,而处于其他参考平面的微带天线用于排除干扰物的干扰。
图21示出了物料测量系统的示意图。如图21所示,微带天线设置成两条直线/曲线,并且两条直线/曲线相互交叉,例如可以成90°。如果仅有成一条直线/曲线的多个微带天线的情况下,搅拌扇片将会完全遮挡住所有微带天线,这样将对导致物料测量系统完全失效。因此,在图21中设置了成另一条直线/曲线的多个微带天线(可以沿仓体径向布置),其与成一条直线/曲线的多个微带天线呈一个角度交叉,这样,在成一条直线/曲线的多个微带天线被遮挡的情况下,成另一条直线/曲线的多个微带天线可以进行补充测量。
在本公开中优选地,成另一条直线/曲线的多个微带天线的数量可以少于成一条直线/曲线的多个微带天线的数量。
该物料测量系统还可以包括上述的第二实施方式中描述的物料测量系统所包括的还包括处理单元、中控单元、供电单元、通讯单元、显示单元,至少根据物料测量装置测量的物料信息来得到物料形状、体积、质量和平均高度中的至少一种。
根据本公开的第六实施方式,如图22所示,还提供了一种物料测量系统,用于传送带传送的物料进行测量,包括:传送带,用于沿传送方向传送物料;以及如上所述的物料测量装置,物料测量装置设置在传送带的上方,物料测量装置通过角度不同的微波发射波束来多角度地对物料进行测量。另外,还可以测量传送带的物料的有无及物料的传送量等。
多个微带天线位于一个参考平面中或附近,一个参考平面与传送方向垂直或接近垂直,位于一个参考平面中或附近的多个微带天线布置成直线或曲线形状或者接近直线或曲线形状,并且多个微带天线用 于测量物料的截面面积。
通过微带天线的多普勒效应来测量物料的传送速度,以便根据物料的截面面积及传送速度来得到物料的体积流量。
多个微带天线至少分别位于第一参考平面与第二参考平面上,第一参考平面与第二参考平面平行或接近平行,并且与传送方向垂直,通过第一参考平面的多个微带天线和第二参考平面的多个微带天线分别测量的物料的截面面积来得到物料的传送速度,并且根据物料的截面面积及传送速度来得到物料的体积流量。
多个微带天线至少分别位于第一参考平面与第二参考平面上,第一参考平面与第二参考平面垂直或接近垂直,并且第一参考平面与传送方向垂直,通过第一参考平面的多个微带天线测量的物料的截面面积和第二参考平面的多个微带天线测量的物料的传送速度,来得到物料的体积流量。
在需要对传送带所输送的物料的体积流量或者质量流量进行测量时,可以根据得知传送的物料的截面形状以及传送速度来得到。
因此可以采用如图23所示的两种方式来进行测量。
在图23的左图中,通过两条垂直分布的收发天线单元来进行测量。
如图23左图所示的第一测量点为成第一直线(可以垂直于传送方向)的多个收发天线单元对物料进行测量的测量点,通过第一直线的多个收发天线单元对传送带所传送的物料的截面形状进行测量。
如图23左图所示的第二测量点为成第二直线(可以平行于传送方向)的多个收发天线单元对物料进行测量的测量点,通过第二直线的多个收发天线单元对传送带所传送的物料的传送速度测量。第二直线的多个收发天线单元根据物料形态的变化来得到传送速度。例如,通过各测量点的高度变化的时间关系、以及各测量点的距离值可以计算传送速度。基于微波波束能够确认物料形状,就能够在T1时刻确认物料的位置和T2时刻物料的位置,两个测量点位置之差为D,则物料速度为D/(T2-T1)。
通过第一直线的扫描面能够获知传输带物料的横截面积S,则物料的体积流量就等于S*D/(T2-T1)。在知道物料的密度的情况下,就可以得到物料的质量流量。
在图23的右图中,通过两条平行分布的收发天线单元来进行测量。
如图23右图所示的第一测量点为成第一直线(可以垂直于传送方向)的多个收发天线单元对物料进行测量的测量点,通过第一直线的多个收发天线单元对传送带所传送的物料的截面形状进行测量。
如图23右图所示的第二测量点为成第二直线(可以垂直于传送方向)的多个收发天线单元对物料进行测量的测量点,通过第二直线的多个收发天线单元对传送带所传送的物料的截面形状进行测量。
通过第一测量点的形状的测量与第二测量点的形状的测量,例如可以通过形状比较就能够在T1时刻确认物料的位置和T2时刻物料的位置,两个测量点位置之差为D,则物料速度为D/(T2-T1)。
通过获知的传输带物料的横截面积S,则物料的体积流量就等于S*D/(T2-T1)。在知道物料的密度的情况下,就可以得到物料的质量流量。
该物料测量系统还可以包括上述的第二实施方式中描述的物料测量系统所包括的还包括处理单元、中控单元、供电单元、通讯单元、显示单元,至少根据物料测量装置测量的物料信息来得到物料形状、 体积、质量和平均高度中的至少一种。
综上,根据本公开的实施方式,可以更加准确地对物料进行测量,并且在增加天线的个数的情况下不会降低增益。而且根据本公开的物料测量装置,体积可以较小并且成本较低。
本公开能够有效地利用小的安装开口实现多个高增益的天线,天线数量的增多不受开口的限制。同时又不会降低每个天线获得能量。而且单个天线的成本较低,可以将大大的增加测量点的数量。这样可以更准确的测量储罐内部物料的3D形状,从而更准确地测量物料的体积。
本领域的技术人员应当理解,上述实施方式仅仅是为了清楚地说明本公开,而并非是对本公开的范围进行限定。对于所属领域的技术人员而言,在上述公开的基础上还可以做出其它变化或变型,并且这些变化或变型仍处于本公开的范围内。

Claims (13)

  1. 一种物料测量装置,其特征在于,包括:
    多个微带天线,形成多个收发天线单元,所述收发天线单元包括发射天线与接收天线,所述发射天线用于生成微波发射波束,所述接收天线用于接收所述微波发射波束被反射后而生成的微波反射波束,通过所述微波发射波束和所述微波反射波束来对物料进行测量;以及
    微波透镜,所述多个微带天线位于所述微波透镜的一侧,在所述微波透镜的另一侧,所述微波透镜会聚每个发射天线所发射的微波发射波束,会聚后的每个微波发射波束的角度不同,并且所述微波透镜会聚所述微波反射波束,以便所述接收天线接收会聚后的微波反射波束。
  2. 如权利要求1所述的物料测量装置,其特征在于,一个发射天线和一个接收天线构成一个收发天线单元,一个收发天线单元中的一个发射天线与一个接收天线共用一个微带天线、或者为彼此靠近的两个微带天线。
  3. 如权利要求1所述的物料测量装置,其特征在于,所述多个微带天线设置在所述微波透镜的焦面上。
  4. 如权利要求1所述的物料测量装置,其特征在于,
    所述多个微带天线设置在一个印刷电路板上,并且所述多个微带天线的角度不同,或者
    所述多个微带天线设置在多个印刷电路板上,并且所述多个印刷电路板的角度不同以使得多个微带天线的角度不同。
  5. 如权利要求4所述的物料测量装置,其特征在于,所述印刷电路板可被转动或移动,以便改变所述印刷电路板的微带天线发射的微波发射波束的发射角度或发射位置。
  6. 如权利要求1所述的物料测量装置,其特征在于,
    所述多个微带天线位于一个参考平面中或附近,所述一个参考平面与所述微波透镜的轴线平行和/或穿过所述轴线,位于所述一个参考平面中或附近的多个微带天线布置成直线或曲线形状或者接近直线或曲线形状;或者
    所述多个微带天线位于两个以上参考平面中或附近,所述两个以上参考平面分别与所述微波透镜的轴线平行和/或穿过所述轴线,分别位于两个以上参考平面的每个参考平面中或附近的多个微带天线分别布置成直线或曲线形状或者接近直线或曲线形状。
  7. 如权利要求6所述的物料测量装置,其特征在于,
    在所述多个微带天线位于一个参考平面中或附近的情况下,通过所述微波透镜会聚的不同角度的微波发射波束位于一个平面中或附近,从而形成一个波束扫描面,以对一个截面上的物料进行测量;
    在所述多个微带天线位于两个以上参考平面中或附近的情况下,位于每个参考平面中或附近的微带天线的微波发射波束被所述微波透镜会聚为分别位于一个平面的不同角度的微波发射波束,从而形成多个波束扫描面,以对多个截面的物料进行测量。
  8. 一种物料测量装置,其特征在于,包括:
    一个或多个微带天线,形成一个或多个收发天线单元,所述收发天线单元包括发射天线与接收天线,所述发射天线用于生成微波发射波束,所述接收天线用于接收所述微波发射波束被反射后而生成的微波反射波束,通过所述微波发射波束和所述微波反射波束来对物料进行测量;以及
    微波透镜,所述微带天线位于所述微波透镜的一侧,在所述微波透镜的另一侧,所述微波透镜会聚每个发射天线所发射的微波发射波束,会聚后的每个微波发射波束的角度不同,并且所述微波透镜会聚所述微波反射波束,以便所述接收天线接收会聚后的微波反射波束,
    其中,所述一个或多个微带天线为可移动微带天线,通过所述微带天线的移动,来对所述物料进行测量。
  9. 如权利要求8所述的物料测量装置,其特征在于,一个发射天线和一个接收天线构成一个收发天线单元,一个收发天线单元中的一个发射天线与一个接收天线共用一个微带天线、或者为彼此靠近的两个微带天线。
  10. 如权利要求9所述的物料测量装置,其特征在于,所述微带天线设置在所述微波透镜的焦面上,并且所述微带天线能够沿着所述焦面移动。
  11. 一种物料测量系统,用于对固体物料或液体物料进行测量,其特征在于,包括:
    容纳体,用于容纳所述固体物料或液体物料,并且所述容纳体设置有供物料进入的进料口与供物料排出的出料口;以及
    如权利要求1至10中任一项所述的物料测量装置,所述物料测量装置安装至在所述容纳体上形成的开口的上方,所述物料测量装置通过角度不同的微波发射波束来多角度地对物料进行测量。
  12. 一种物料测量系统,用于对液体或固体物料的漩涡进行测量,其特征在于,包括:
    容纳体,用于容纳所述液体或固体物料;
    搅拌器,用于对所述液体或固体物料进行搅拌;以及
    如权利要求1至10中任一项所述的物料测量装置,所述物料测量装置安装至在所述容纳体上形成的开口的上方,所述物料测量装置通过角度不同的微波发射波束来多角度地对所述漩涡进行测量。
  13. 一种物料测量系统,用于对物料进行测量,其特征在于,包括:
    容纳体,用于容纳所述物料;以及
    如权利要求1至10中任一项所述的物料测量装置,所述物料测量装置安装至在所述容纳体上形成的开口的上方,所述物料测量装置通过角度不同的微波发射波束来多角度地对物料进行测量,
    其中,所述微带天线位于两个以上参考平面中或附近,所述两个以上参考平面分别与所述微波透镜的轴线平行和/或穿过所述轴线,分别位于两个以上参考平面的每个参考平面中或附近的微带天线分别布置成直线或曲线形状或者接近直线或曲线形状,这样当处于一个参考平面的微带天线被物料测量系统中的干扰物干扰时,通过处于其他参考平面的微带天线进行测量来排除所述干扰物的干扰。
PCT/CN2021/095041 2020-05-21 2021-05-21 物料测量装置及物料测量系统 WO2021233407A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112021002892.8T DE112021002892T5 (de) 2020-05-21 2021-05-21 Materialmessvorrichtung und Materialmesssystem

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010433969.3 2020-05-21
CN202010433969.3A CN111721357A (zh) 2020-05-21 2020-05-21 物料测量装置及物料测量系统

Publications (1)

Publication Number Publication Date
WO2021233407A1 true WO2021233407A1 (zh) 2021-11-25

Family

ID=72564919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/095041 WO2021233407A1 (zh) 2020-05-21 2021-05-21 物料测量装置及物料测量系统

Country Status (3)

Country Link
CN (1) CN111721357A (zh)
DE (1) DE112021002892T5 (zh)
WO (1) WO2021233407A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111721357A (zh) * 2020-05-21 2020-09-29 北京锐达仪表有限公司 物料测量装置及物料测量系统
DE102020129765A1 (de) * 2020-11-11 2022-05-12 Endress+Hauser SE+Co. KG Füllstandsmessgerät
CN113252138B (zh) * 2021-05-17 2023-02-03 北京锐达仪表有限公司 调频波束数字压缩雷达液位计
CN115421131B (zh) * 2022-11-04 2023-01-31 北京锐达仪表有限公司 等效多位置无死角的电磁波3d扫描雷达及物料测量方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1431724A1 (en) * 2002-12-20 2004-06-23 Saab Marine Electronics Aktiebolag Method and apparatus for radar-based level gauging using a plurality of differently directed radiation lobes
CN102177420A (zh) * 2008-10-10 2011-09-07 恩德莱斯和豪瑟尔两合公司 利用微波工作的物位测量设备
CN103594760A (zh) * 2012-08-15 2014-02-19 克洛纳测量技术有限公司 微波窗和根据雷达原理工作的填充状态测量系统
CN107991673A (zh) * 2016-10-17 2018-05-04 Vega格里沙贝两合公司 用于确定填充材料表面的拓扑的填充物位测量装置
CN109632048A (zh) * 2017-10-06 2019-04-16 Vega格里沙贝两合公司 具有片上雷达系统的雷达物位测量装置
CN111183339A (zh) * 2017-10-06 2020-05-19 Vega格里沙贝两合公司 具有片上雷达系统的物位测量装置
CN111721357A (zh) * 2020-05-21 2020-09-29 北京锐达仪表有限公司 物料测量装置及物料测量系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1431724A1 (en) * 2002-12-20 2004-06-23 Saab Marine Electronics Aktiebolag Method and apparatus for radar-based level gauging using a plurality of differently directed radiation lobes
CN102177420A (zh) * 2008-10-10 2011-09-07 恩德莱斯和豪瑟尔两合公司 利用微波工作的物位测量设备
CN103594760A (zh) * 2012-08-15 2014-02-19 克洛纳测量技术有限公司 微波窗和根据雷达原理工作的填充状态测量系统
CN107991673A (zh) * 2016-10-17 2018-05-04 Vega格里沙贝两合公司 用于确定填充材料表面的拓扑的填充物位测量装置
CN109632048A (zh) * 2017-10-06 2019-04-16 Vega格里沙贝两合公司 具有片上雷达系统的雷达物位测量装置
CN111183339A (zh) * 2017-10-06 2020-05-19 Vega格里沙贝两合公司 具有片上雷达系统的物位测量装置
CN111721357A (zh) * 2020-05-21 2020-09-29 北京锐达仪表有限公司 物料测量装置及物料测量系统

Also Published As

Publication number Publication date
DE112021002892T5 (de) 2023-03-02
CN111721357A (zh) 2020-09-29

Similar Documents

Publication Publication Date Title
WO2021233407A1 (zh) 物料测量装置及物料测量系统
US11415450B2 (en) Radar antenna for a fill level measurement device
US2594409A (en) Directive antenna
US10886624B2 (en) Waveguide coupling configuration for a line scanner
US10374284B2 (en) Topology determination of a filling material surface with uniform line scanning
EP2901524B1 (en) Radar level gauge comprising a two-channel directional antenna
RU2752284C2 (ru) Устройство измерения уровня заполнения для определения топологии поверхности заполняемого материала
US10260928B2 (en) Determining a topology of the surface of a material filled into a container
US10156601B2 (en) Antenna measurement system and antenna measurement method
US20150048963A1 (en) Radar beam deflection unit for a radar level indicator
US6859166B2 (en) Antenna device for radar-based level gauging
US11280658B2 (en) Radar level gauge for measuring the volume of bulk products in tanks
WO2015133005A1 (ja) 高炉への装入物の装入及び堆積方法、装入物の表面検出装置、並びに高炉の操業方法
AT508369A4 (de) Verfahren und vorrichtung zur berechnung einer oberfläche eines füllguts eines behälters
CN212458436U (zh) 物料测量装置及物料测量系统
US4342997A (en) Array modification that adds height capability to a 2D array radar
CN111765946A (zh) 物位计、测量方法及系统
JP7017753B2 (ja) 装入物の表面プロフィール検出装置及び操業方法
US3040310A (en) Radar tracking and antenna systems
CN105980818B (zh) 天线设备及其用途、料位测量装置、表面拓扑确定方法
JPS61290378A (ja) 竪型炉内の堆積量測定装置
AU2021202812B2 (en) System for recognizing and/or determining the volume of bodies or substances made of dielectric and/or conductive material
CN212458550U (zh) 物位计及测量系统
GB1597099A (en) Radar antenna systems
KR102577806B1 (ko) 빔 조향 전파고도계 및 컨벡스 최적화를 이용한 빔 조향 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21809448

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21809448

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21809448

Country of ref document: EP

Kind code of ref document: A1