WO2021233137A1 - 多梯度时间箱的测距方法及测距系统 - Google Patents
多梯度时间箱的测距方法及测距系统 Download PDFInfo
- Publication number
- WO2021233137A1 WO2021233137A1 PCT/CN2021/092276 CN2021092276W WO2021233137A1 WO 2021233137 A1 WO2021233137 A1 WO 2021233137A1 CN 2021092276 W CN2021092276 W CN 2021092276W WO 2021233137 A1 WO2021233137 A1 WO 2021233137A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- time
- signal
- ranging
- box
- gradient
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/08—Systems determining position data of a target for measuring distance only
- G01S17/32—Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/481—Constructional features, e.g. arrangements of optical elements
- G01S7/4816—Constructional features, e.g. arrangements of optical elements of receivers alone
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/481—Constructional features, e.g. arrangements of optical elements
- G01S7/4817—Constructional features, e.g. arrangements of optical elements relating to scanning
Definitions
- This application relates to the field of laser ranging, in particular to a ranging method and a ranging system with multiple gradient time boxes.
- Laser distance measuring uses a laser as a light source for distance measurement.
- Time-of-flight is one of the mainstream methods for laser radar to achieve precise ranging. Its working principle is: the laser emits light signals to the target object, and the photoelectric device receives the light signal reflected by the target object. The flight time of the light signal from emission to reception, so as to calculate the distance of the target object.
- the signal intensity output by the optoelectronic device is generally represented by a histogram, and the time bin in the histogram is one of the factors that measure the accuracy of laser ranging.
- long-distance measurement of target objects has low accuracy requirements
- short-distance measurement of target objects has high accuracy requirements.
- most of the time boxes in the existing laser ranging process are single and immutable. If a relatively small time box is used, the data storage capacity will be very large; if a relatively large time box is used, the target object will be measured. The distance is not precise enough.
- the present application provides a ranging method and a ranging system with multiple gradient time bins.
- This application provides a multi-gradient time box ranging method, including: detecting the flight time of the light signal from the signal transmitting end to the target object and reflecting to the signal receiving end; setting the flight time to a number of time intervals, and each The time interval includes at least one time box, wherein the time boxes in the same time interval are the same, and the time boxes in different time intervals change in a gradient manner; each of the times is detected and processed in sequence according to the time sequence.
- the optical signal of the interval construct a histogram according to the time box and the optical signal intensity corresponding to each of the time boxes; determine the distance of the target object according to the time box corresponding to the peak of the optical signal intensity in the histogram.
- the above ranging method can not only ensure accuracy when measuring short distances, but also ensure that the storage capacity is not large when measuring long distances, reduce power consumption, and obtain more comprehensive information.
- the time boxes in the same time interval are the same, and the time boxes in different time intervals increase in a gradual manner according to the time sequence.
- the method further includes: setting a ranging error requirement, and the ranging error requirement is related to the distance corresponding to the single time box and the actual Ranging distance.
- the method further includes: setting the number of time bins in each time interval according to the ranging error requirement, so as to determine the number of time boxes in each time interval. Ranging range.
- the method further includes: setting the ranging range of each time interval according to the ranging error requirement, so as to determine the range of each time interval The number of said time bins.
- the detecting and processing the optical signals in each of the time intervals sequentially in time sequence includes: setting different signal transmitting terminal voltages according to different time intervals; Light signal.
- the start signal receiving end detecting the optical signal in each of the time intervals includes: determining whether the detection in the current time interval is over; if not, continue the optical signal detection; if so, then Continue to determine whether all the time intervals have been scanned; if the scan is not completed, continue to set different signal transmitting terminal voltages according to different time intervals; if the scan has been completed, determine again whether to continue the detection; if so, Continue to repeat the above steps; if not, end the detection.
- the present application also provides a multi-gradient time box ranging system, including: a signal transmitting end configured to transmit a light signal to a target object; a signal receiving end configured to receive the light reflected from the target object Signal; a signal processing device electrically connected to the signal transmitting terminal and the signal receiving terminal; wherein the signal processing device is configured to detect that the optical signal is reflected from the signal transmitting terminal to the target object
- the flight time of the signal receiving end; the flight time is set to a number of time intervals, each of the time intervals includes at least one time box, wherein the time boxes in the same time interval are the same, and the time boxes are different
- the time box within the time interval changes in a gradient manner; sequentially detects and processes the optical signal intensity of each time interval according to the time sequence; constructs a histogram according to the time box and the light signal intensity corresponding to each time box; according to The time box corresponding to the peak light signal intensity in the histogram determines the distance of the target object.
- the above ranging system can not only ensure accuracy when measuring short distances, but also ensure that the storage capacity is not large when measuring long distances, reduce power consumption, and obtain more comprehensive information.
- the signal processing device includes: an analog front end configured to convert the optical signal received by the sensor array into an analog electrical signal; a decoder configured to decode the analog electrical signal; a storage unit , Is configured to store the histogram.
- the signal processing device further includes a time-to-digital converter or an analog-to-digital converter, configured to detect the signal strength of the signal transmitted by the signal transmitter.
- the signal receiving end includes a single photon avalanche diode array or a silicon photomultiplier tube.
- FIG. 1 is a flowchart of a multi-gradient time box ranging method according to an embodiment of the application.
- FIG. 2 is a histogram in a distance measurement method and a distance measurement system with multiple gradient time bins according to an embodiment of the application.
- FIG. 3 is a flowchart of detecting a time interval in a multi-gradient time box ranging method according to an embodiment of the application.
- FIG. 4 is a schematic structural diagram of a multi-gradient time box ranging system according to an embodiment of the application.
- FIG. 5 is a schematic structural diagram of a signal processing device in a distance measurement system with multiple gradient time bins according to an embodiment of the application.
- FIG. 6 is a schematic structural diagram of a single-photon avalanche diode in a multi-gradient time box ranging system according to an embodiment of the application.
- FIG. 7 is a schematic structural diagram of a silicon photomultiplier tube in a multi-gradient time box ranging system according to an embodiment of the application.
- FIG. 8 is a schematic structural diagram of a single-photon avalanche diode array in a multi-gradient time box ranging system according to an embodiment of the application.
- 101 the first time interval
- 102 the second time interval
- 103 the third time interval; 20, the time box.
- a distance measurement method with a multi-gradient time box 20 including: detecting the flight time of the optical signal from the signal transmitting end to the target object and reflecting to the signal receiving end; setting the flight time Set as several time intervals, each time interval includes at least one time box 20, where the time boxes 20 in the same time interval are the same, and the time boxes 20 in different time intervals change in a gradient manner; each time is detected and processed in sequence according to the time sequence The optical signal of the interval; the histogram is constructed according to the time box 20 and the optical signal intensity corresponding to each time box 20; the distance of the target object is determined according to the time box 20 corresponding to the peak of the optical signal intensity in the histogram.
- the aforementioned distance measurement method can not only ensure accuracy when measuring short-distance target objects, but also ensure that the storage capacity is small when measuring long-distance target objects, the power consumption is low, and the information acquisition is more comprehensive.
- S20 Set the flight time to several time intervals, and each time interval includes at least one time box 20, wherein the time boxes 20 in the same time interval are the same, and the time boxes 20 in different time intervals change in a gradient manner.
- the time boxes 20 in the same time interval are the same, and the time boxes 20 in different time intervals increase in a gradual manner according to the time sequence.
- the time boxes 20 in different time intervals may be 100 ps (picosecond ), 200ps, 300ps, 400ps, 500ps, or 200ps, 400ps, 600ps.
- the number of time intervals is between 3 and 6, for example, the number of time intervals can be 3, 4, 5, or 6.
- the number of time intervals is three, including the first time interval 101, the second time interval 102, and the third time interval 103 arranged in sequence in sequence.
- the time box 20 of the first time interval 101 is 100 ps
- the time box 20 of the second time interval 102 is 200 ps
- the time box 20 of the third time interval 103 is 400 ps.
- the time boxes 20 in the same time interval are the same, and the time boxes 20 in different time intervals increase in a gradual manner according to the time sequence, so that the ranging method can not only guarantee accuracy when measuring close distances, but also At long distances, the storage capacity is not large, the power consumption is small, and the information is more comprehensive.
- each time interval includes at least one time box 20.
- the number of time boxes 20 in the time interval may be 1, 5, 10, 80, 100, 200, or 300.
- step S20 the method further includes:
- S21 Set the ranging error requirement, which is related to the distance corresponding to the single time box 20 and the actual ranging distance.
- step S21 the method further includes:
- S221 Set the number of time boxes 20 in each time interval according to the ranging error requirement, so that the ranging range of each time interval can be determined.
- the number of time bins 20 in each set time interval must meet the ranging error requirements.
- the ranging error is required to be less than 1.5%.
- the ranging error requirement is less than 1%.
- the time box 20 of the first time interval 101 is 100 ps
- the time box 20 of the second time interval 102 is 200 ps
- the time box 20 of the third time interval 103 is 400 ps.
- the error requirement is less than 1%. At the time, you can set the number of time boxes 20 in the time interval to 200.
- the time box 20 is 100ps, the distance corresponding to the time box 20 is 1.5cm, the number of time boxes 20 is 200, the size of the first time interval 101 is 20ns, and the first time interval 101 corresponds to
- the distance range is 0 to 3m, and the minimum error is 0.5%.
- the error between 0 and 1.5m will exceed the set error requirement.
- the time box 20 in the second time interval 102, the time box 20 is 200ps, the distance corresponding to the time box 20 is 3cm, the number of time boxes 20 is 200, the size of the first time interval 101 is 40ns, the distance corresponding to the second time interval 102 ranges from 3 to 9m, and the error range is 0.33% to 1% ;
- the third time interval 103 the time box 20 is 400ps, the distance corresponding to the time box 20 is 6cm, the number of time boxes 20 is 200, the size of the third time interval 103 is 80ns, and the distance range corresponding to the third time interval 103 It is 9 to 21m, and the error range is 0.28% to 0.66%.
- step S21 the method further includes:
- S222 Set the ranging range of each time interval according to the ranging error requirement, so that the number of time boxes 20 in each time interval can be determined.
- S30 Detect and process the optical signal in each time interval in sequence according to the time sequence.
- step S30 includes:
- S301 Set different signal transmitting terminal voltages according to different time intervals
- S40 Construct a histogram according to the time box 20 and the light signal intensity corresponding to each time box 20.
- S50 Determine the distance of the target object according to the time box 20 corresponding to the peak light signal intensity in the histogram.
- a ranging system with multiple gradient time boxes 20 including: a signal transmitting end configured to transmit an optical signal to a target object; a signal receiving end configured to receive from The optical signal reflected by the target object; a signal processing device electrically connected to the signal transmitting end and the signal receiving end; wherein the signal processing device is configured to detect the flight time of the optical signal from the signal transmitting end to the target object and reflected to the signal receiving end; Set the flight time to several time intervals, and each time interval includes at least one time box 20, where the time boxes 20 in the same time interval are the same, and the time boxes 20 in different time intervals change in a gradient manner; sequentially detect according to the time sequence And process the optical signal intensity of each time interval; construct a histogram according to the time box 20 and the optical signal intensity corresponding to each time box 20; determine the distance of the target object according to the time box 20 corresponding to the peak of the optical signal intensity in the histogram.
- the signal processing device is a
- the above-mentioned ranging system can not only ensure accuracy when measuring short distances, but also ensure that the storage capacity is small when measuring long distances, the power consumption is low, and the information obtained is more comprehensive.
- the signal processing device includes a signal conversion unit.
- the signal processing device further includes an analog front-end (AFE) electrically connected to the front end of the signal conversion unit.
- AFE analog front-end
- the signal processing device further includes a decoder electrically connected to the back of the signal conversion unit.
- the signal processing device includes: an analog front end configured to convert the optical signal received by the sensor array into an analog electrical signal; a decoder configured to decode the analog electrical signal; and storage
- the unit is configured to store histograms.
- the AFE is configured to detect optical signals and is located at the forefront of the processing chain.
- the AFE is mainly used for single photon avalanche diode (SPAD) signal detection, and the SPAD signal reading method can be configured.
- SPAD single photon avalanche diode
- the decoder is used to translate the signal.
- the decoder is a multiple-input and multiple-output combinational logic circuit in electronic technology. It is responsible for translating the binary code into a specific object (such as logic level, etc.). Its function is opposite to that of the encoder.
- the signal processing device further includes a time-to-digital converter (TDC) or an analog-to-digital converter (ADC), which is used to detect the signal transmitted by the signal transmitter strength.
- TDC time-to-digital converter
- ADC analog-to-digital converter
- ADC is a device that realizes the conversion of analog to digital signal. After the analog signal passes through the ADC, it is converted into a digital signal that is proportional to the original signal.
- TDC is a device for realizing time to digital signal conversion, a circuit structure that can accurately measure the time interval between the start pulse signal and the stop pulse signal.
- the signal processing device further includes a control unit configured to control the signal processing device.
- the signal receiving end includes a SPAD array or a silicon photomultiplier (SiPM).
- SPAD is a detector with high gain and high sensitivity. It is widely used in nuclear medicine, high energy physics, precision analysis, laser detection and measurement (Lidar) and other fields.
- a single SPAD can be regarded as a 1-bit ultra-high-speed ADC, and a simple inverter can directly generate a digital signal, such as "0" when "no signal” and "1" when "signal” is output.
- SPAD has two manifestations in the field of depth detection, namely SiPM and SPAD array.
- SiPM HAMAMATSU is called MPPC according to the principle
- the SPAD output terminals (ports) in the array are connected in parallel to output signals as a whole, but because there are multiple SPAD sub-units, the signal light intensity can be identified.
- SPAD array as shown in Figure 8.
- Each pixel of the SPAD in the array is output separately, and an image can be directly generated.
- the SPAD array includes several SPAD reference sub-arrays and SPAD imaging sub-arrays (SAPD imaging sub-array).
- the SPAD reference sub-array includes at least 1 reference pixel (pixel).
- the SPAD reference sub-array is mainly used for calibration, generally used to measure the delay of the entire system; it can also be used for phase modulation of the laser to achieve anti-interference ability.
- the SPAD reference sub-array can be multiple rows, and can also be located at any given position in or around the SAPD imaging sub-array.
- the SPAD reference sub-array can also be used as a SPAD imaging array during imaging.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Electromagnetism (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Abstract
提供了一种多梯度时间箱的测距方法及测距系统,其中该测距方法包括:探测光信号从信号发射端到目标物体并反射至信号接收端的飞行时间(S10);将飞行时间设定为若干个时间区间,各时间区间包括至少一个时间箱,其中,同一时间区间内的时间箱相同,不同时间区间内的时间箱呈梯度式变化(S20);按时序依次探测并处理各时间区间的光信号(S30);根据时间箱以及各时间箱对应的光信号强度构建直方图(S40);根据直方图中光信号强度峰值对应的时间箱,确定目标物体的距离(S50)。该测距方法不仅能在测量近距离目标物体时保证精度,而且能在测量远距离目标物体时保证存储量不大,功耗较小,而且信息获取更全面。
Description
本申请要求于2020年5月22日提交中国专利局,申请号为2020104410759,申请名称为“一种多梯度时间箱的测距方法及测距系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及激光测距领域,特别是涉及一种多梯度时间箱的测距方法及测距系统。
激光测距(Laser distance measuring)是以激光器作为光源进行测距。飞行时间(Time-of-flight,ToF)是激光雷达实现精准测距的主流方式之一,其工作原理为:激光器向目标物体发射光信号,由光电器件接收目标物体反射的光信号,通过测定光信号从发射到接收的飞行时间,从而计算出目标物体的距离。光电器件输出的信号强度一般用直方图进行表示,直方图中的时间箱(Time bin)是衡量激光测距精度的因素之一。
通常情况下,远距离测量目标物体对精度的要求低,近距离测量目标物体对精度的要求高。但是,现有的激光测距过程中时间箱大多单一不可变,若采用一个比较小的时间箱,会使得数据的存储量非常大;若采用一个比较大的时间箱,会使得目标物体的测距不够精准。
发明内容
基于此,针对上述问题,本申请提供一种多梯度时间箱的测距方法及测距系统。
本申请提供一种多梯度时间箱的测距方法,包括:探测光信号从信号发射端到目标物体并反射至信号接收端的飞行时间;将所述飞行时间设定为若干个时间区间,各所述时间区间包括至少一个时间箱,其中,同一所述时间区间内的所述时间箱相同,不同所述时间区间内的所述时间箱呈梯度式变化;按时序依次探测并处理各所述时间区间的光信号;根据所述时间箱以及各所述时间箱对应的光信号强度构建直方图;根据所述直方图中光信号强度峰值对应的所述时间箱,确定目标物体的距离。
上述测距方法不仅能在测量短距离时保证精度,而且能在测量长距离时保证存储量不大,减少功耗,而且获取信息更全面。
在其中一个实施例中,同一所述时间区间内的所述时间箱相同,不同所述时间区间内的所述时间箱按时序呈梯度式增大。
在其中一个实施例中,在将所述飞行时间设定为若干个时间区间之后,还包括:设定测距误差要求,所述测距误差要求关联于单个所述时间箱对应的距离以及实际测距距离。
在其中一个实施例中,在设定所述测距误差要求之后,还包括:根据所述测距误差要求设定各所述时间区间内时间箱的数量,从而能确定各所述时间区间的测距范围。
在其中一个实施例中,在设定所述测距误差要求之后,还包括:根据所述测距误差要求设定各所述时间区间的测距范围,从而能确定各所述时间区间内的所述时间箱的数量。
在其中一个实施例中,所述按时序依次探测并处理各所述时间区间的光 信号,包括:根据不同所述时间区间设置不同信号发射端电压;启动信号接收端探测各所述时间区间的光信号。
在其中一个实施例中,所述启动信号接收端探测各所述时间区间的光信号,包括:判断当前所述时间区间内的探测是否结束;若否,则继续进行光信号探测;若是,则继续判断是否所有所述时间区间均已扫描完毕;若未扫描完毕,则继续进行所述根据不同所述时间区间设置不同信号发射端电压;若已扫描完毕,则再次判断是否继续探测;若是,则继续重复以上步骤;若否,则结束探测。
本申请还提供一种多梯度时间箱的测距系统,包括:信号发射端,被配置为向目标物体发射光信号;信号接收端,被配置为接收从所述目标物体反射回的所述光信号;信号处理装置,电性连接于所述信号发射端和所述信号接收端;其中所述信号处理装置被配置为探测所述光信号从所述信号发射端到所述目标物体并反射至所述信号接收端的飞行时间;将所述飞行时间设定为若干个时间区间,各所述时间区间包括至少一个时间箱,其中,同一所述时间区间内的所述时间箱相同,不同所述时间区间内的所述时间箱呈梯度式变化;按时序依次探测并处理各所述时间区间的光信号强度;根据所述时间箱以及各所述时间箱对应的光信号强度构建直方图;根据所述直方图中光信号强度峰值对应的所述时间箱,确定目标物体的距离。
上述测距系统不仅能在测量短距离时保证精度,而且能在测量长距离时保证存储量不大,减少功耗,而且获取信息更全面。
在其中一个实施例中,所述信号处理装置包括:模拟前端,被配置为将传感器阵列接收的光信号转换为模拟电信号;解码器,被配置为将所述模拟电信号进行解码;存储单元,被配置为存储所述直方图。
在其中一个实施例中,所述信号处理装置还包括时间数字转换器或模拟数字转换器,被配置为探测所述信号发射端的发射的信号强度。
在其中一个实施例中,所述信号接收端包括单光子雪崩二极管阵列或硅光电倍增管。
图1为本申请一实施例的多梯度时间箱的测距方法的流程图。
图2为本申请一实施例的多梯度时间箱的测距方法及测距系统中的直方图。
图3为本申请一实施例的多梯度时间箱的测距方法中对时间区间探测的流程图。
图4为本申请一实施例的多梯度时间箱的测距系统的结构示意图。
图5为本申请一实施例的多梯度时间箱的测距系统中信号处理装置的结构示意图。
图6为本申请一实施例的多梯度时间箱的测距系统中单光子雪崩二极管的结构示意图。
图7为本申请一实施例的多梯度时间箱的测距系统中硅光电倍增管的结构示意图。
图8为本申请一实施例的多梯度时间箱的测距系统中单光子雪崩二极管阵列的结构示意图。
图中:101、第一时间区间;102、第二时间区间;103、第三时间区间;20、时间箱。
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的首选实施例。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本申请的公开内容更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
在本申请的描述中,需要理解的是,术语“上”、“下”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方法或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在一个实施例中,如图1所示,提供一种多梯度时间箱20的测距方法,包括:探测光信号从信号发射端到目标物体并反射至信号接收端的飞行时间;将飞行时间设定为若干个时间区间,各时间区间包括至少一个时间箱20,其中,同一时间区间内的时间箱20相同,不同时间区间内的时间箱20呈梯度式变化;按时序依次探测并处理各时间区间的光信号;根据时间箱20以及各时间箱20对应的光信号强度构建直方图;根据直方图中光信号强度峰值对应的时间箱20,确定目标物体的距离。
测量近距离目标物体时对精度要求高,测量远距离目标物体时对精度要 求低。在本实施例中,上述测距方法不仅能在测量近距离目标物体时保证精度,而且能在测量远距离目标物体时保证存储量不大,功耗较小,而且信息获取更全面。
S10:探测光信号从信号发射端到目标物体并反射至信号接收端的飞行时间。
S20:将飞行时间设定为若干个时间区间,各时间区间包括至少一个时间箱20,其中,同一时间区间内的时间箱20相同,不同时间区间内的时间箱20呈梯度式变化。
在一个实施例中,同一时间区间内的时间箱20相同,不同时间区间内的时间箱20按时序呈梯度式增大,例如,不同时间区间内的时间箱20按时序依次可以是100ps(picosecond)、200ps、300ps、400ps、500ps,还可以是200ps、400ps、600ps。
在一个实施例中,时间区间数量介于3个至6个之间,例如,时间区间数量可以是3个、4个、5个或6个。
在一个实施例中,如图2所示,时间区间的数量为3个,包括按时序依次排列的第一时间区间101、第二时间区间102和第三时间区间103。
在一个实施例中,如图2所示,第一时间区间101的时间箱20为100ps,第二时间区间102的时间箱20为200ps,第三时间区间103的时间箱20为400ps。
在本实施例中,同一时间区间内的时间箱20相同,不同时间区间内的时间箱20按时序呈梯度式增大,使得测距方法不仅能在测量近距离时保证精度,而且能在测量远距离时保证存储量不大,功耗较小,而且获取信息更全面。
在一个实施例中,各时间区间包括至少一个时间箱20,例如,时间区间中的时间箱20数量可以是1个、5个、10个、80个、100个、200个、300个。
在一个实施例中,在步骤S20之后,还包括:
S21:设定测距误差要求,测距误差要求关联于单个时间箱20对应的距离以及实际测距距离。
在一个实施例中,在步骤S21之后,还包括:
S221:根据测距误差要求设定各时间区间内时间箱20的数量,从而能确定各时间区间的测距范围。
设定的各时间区间内时间箱20的数量要符合测距误差要求。
在一实施例中,测距误差要求小于1.5%。
在一个实施例中,测距误差要求为小于1%。
其中,误差=时间箱对应的距离/测量距离×100%,其中,时间箱20对应的距离=时间箱×c/2(c为光速,约为3×10
8m/s)。
根据测距误差要求设定各时间区间内时间箱20的数量,从而能确定各时间区间的大小,从而能确定各时间区间的测距范围,其中,时间区间的测距范围根据s=c×t/2计算得到(s为测距范围,t为时间)。
在一个实施例中,第一时间区间101的时间箱20为100ps,第二时间区间102的时间箱20为200ps,第三时间区间103的时间箱20为400ps,误差要求为小于1%,此时,可以设定时间区间内的时间箱20数量为200个。
其中,在第一时间区间101中,时间箱20为100ps,时间箱20对应的距离为1.5cm,时间箱20数量为200个,第一时间区间101大小为20ns,第一时间区间101对应的距离范围为0至3m,误差最小为0.5%,其中,在0 至1.5m之间误差会超过设定的误差要求值,此部分误差我们忽略;在第二时间区间102中,时间箱20为200ps,时间箱20对应的距离为3cm,时间箱20数量为200个,第一时间区间101大小为40ns,第二时间区间102对应的距离范围为3至9m,误差范围为0.33%至1%;在第三时间区间103中,时间箱20为400ps,时间箱20对应的距离为6cm,时间箱20数量为200个,第三时间区间103大小为80ns,第三时间区间103对应的距离范围为9至21m,误差范围为0.28%至0.66%。
在一个实施例中,在步骤S21之后,还包括:
S222:根据测距误差要求设定各时间区间的测距范围,从而能确定各时间区间内的时间箱20的数量。
S30:按时序依次探测并处理各时间区间的光信号。
在一个实施例中,如图3所示,步骤S30包括:
S301:根据不同时间区间设置不同信号发射端电压;
S302:启动信号接收端探测光信号;
S303:判断当前时间区间内的探测是否结束;若否,则继续进行步骤S302;若是,则进行步骤S304;
S304:判断是否所有时间区间均已扫描完毕;若未扫描完毕,则继续进行步骤S301;若已扫描完毕,则进行步骤S305;
S305:判断是否继续探测;若是,则继续进行步骤S301;若否,则进行步骤S306;
S306:结束探测。
S40:根据时间箱20以及各时间箱20对应的光信号强度构建直方图。
S50:根据直方图中光信号强度峰值对应的时间箱20,确定目标物体的 距离。
在一个实施例中,如图4所示,提供一种多梯度时间箱20的测距系统,包括:信号发射端,被配置为向目标物体发射光信号;信号接收端,被配置为接收从目标物体反射回的光信号;信号处理装置,电性连接于信号发射端和信号接收端;其中信号处理装置被配置为探测光信号从信号发射端到目标物体并反射至信号接收端的飞行时间;将飞行时间设定为若干个时间区间,各时间区间包括至少一个时间箱20,其中,同一时间区间内的时间箱20相同,不同时间区间内的时间箱20呈梯度式变化;按时序依次探测并处理各时间区间的光信号强度;根据时间箱20以及各时间箱20对应的光信号强度构建直方图;根据直方图中光信号强度峰值对应的时间箱20,确定目标物体的距离。在一实施例中,信号处理装置为信号处理器。
在本实施例中,上述测距系统不仅能在测量近距离时保证精度,而且能在测量远距离时保证存储量不大,功耗较小,而且获取信息更全面。
在一个实施例中,信号处理装置包括信号转换单元。
在一个实施例中,信号处理装置还包括电性连接于信号转换单元前端的模拟前端(Analog front-end,AFE)。
在一个实施例中,信号处理装置还包括电性连接于信号转换单元之后的解码器。
在一个实施例中,如图5所示,信号处理装置包括:模拟前端,被配置为将传感器阵列接收的光信号转换为模拟电信号;解码器,被配置为将模拟电信号进行解码;存储单元,被配置为存储直方图。
其中,AFE被配置为对光信号进行探测,位于在处理链的最前面。在其中一个实施例中,AFE主要用于单光子雪崩二极管(Single photon avalanche diode,SPAD)信号的探测,可以配置SPAD信号的读取方式。
解码器用于对信号进行翻译,解码器是电子技术中的一种多输入多输出的组合逻辑电路,负责将二进制代码翻译为特定的对象(如逻辑电平等),功能与编码器相反。
在一个实施例中,信号处理装置还包括时间数字转换器(Time-to-Digital Converter,TDC)或模拟数字转换器(Analog-to-Digital Converter,ADC),用于探测信号发射端的发射的信号强度。
ADC是实现模拟到数字信号转换的器件,模拟信号经过ADC后将其转换成与原始信号成正比关系的数字信号。
TDC是实现时间到数字信号转换的器件,一种可以精确测量开始脉冲信号和停止脉冲信号之间时间间隔的电路结构。
在一个实施例中,信号处理装置还包括控制单元,被配置为对信号处理装置进行控制。
在一个实施例中,信号接收端包括SPAD阵列或硅光电倍增管(Silicon photomultiplier,SiPM)。
SPAD是一种具有高增益、高灵敏度等优点的探测器,广泛应用于核医学、高能物理、精密分析、激光探测与测量(Lidar)等领域。单个SPAD可以看作为一个1bit的超高速ADC,连接一个简单的反向器即可直接产生数字信号,如“无信号”时输出“0”,“有信号”时输出“1”。为了测量光的强度信号,SPAD在深度探测领域中的有两种表现形式,即SiPM和SPAD阵列(SPAD array)。
SiPM(HAMAMATSU根据原理叫做MPPC),如图7所示。阵列中的SPAD输出端子(port)并联在一起,作为一个整体输出信号,但由于有多个SPAD子单 元,所以可以实现对信号光强度的识别。
SPAD阵列,如图8所示。阵列中的SPAD的每个像素单独输出,可以直接生成影像。
在一个实施例中,SPAD阵列包括若干SPAD参考子阵列(SPAD reference sub-array)和SPAD成像子阵列(SAPD imaging sub-array)。
在一个实施例中,SPAD参考子阵列包括至少1个参考像素(pixel)。
其中,SPAD参考子阵列主要用于校准工作,一般用于测量整个系统的延时;还可以用于激光的相位调制,用来实现抗干扰能力。SPAD参考子阵列可以是多行,也可以位于SAPD成像子阵列内或者周围任何给定的位置。成像时SPAD参考子阵列也可以作为SPAD成像阵列。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。
Claims (12)
- 一种多梯度时间箱的测距方法,包括:探测光信号从信号发射端到目标物体并反射至信号接收端的飞行时间;将所述飞行时间设定为若干个时间区间,各所述时间区间包括至少一个时间箱,其中,同一所述时间区间内的所述时间箱相同,不同所述时间区间内的所述时间箱呈梯度式变化;按时序依次探测并处理各所述时间区间的光信号;根据所述时间箱以及各所述时间箱对应的光信号强度构建直方图;根据所述直方图中光信号强度峰值对应的所述时间箱,确定目标物体的距离。
- 根据权利要求1所述的多梯度时间箱的测距方法,其中,同一所述时间区间内的所述时间箱相同,不同所述时间区间内的所述时间箱按时序呈梯度式增大。
- 根据权利要求1所述的多梯度时间箱的测距方法,其中,在将所述飞行时间设定为若干个时间区间之后,还包括:设定测距误差要求,所述测距误差要求关联于单个所述时间箱对应的距离以及实际测距距离。
- 根据权利要求3所述的多梯度时间箱的测距方法,其中,在设定所述测距误差要求之后,还包括:根据所述测距误差要求设定各所述时间区间内时间箱的数量,从而能确定各所述时间区间的测距范围。
- 根据权利要求3所述的多梯度时间箱的测距方法,其中,在设定所述测距误差要求之后,还包括:根据所述测距误差要求设定各所述时间区间的测距范围,从而能确定各所述时间区间内的所述时间箱的数量。
- 根据权利要求1所述的多梯度时间箱的测距方法,其中,所述按时序依次探测并处理各所述时间区间的光信号,包括:根据不同所述时间区间设置不同信号发射端电压;启动信号接收端探测各所述时间区间的光信号。
- 根据权利要求1所述的多梯度时间箱的测距方法,其中,所述启动信号接收端探测各所述时间区间的光信号,包括:判断当前所述时间区间内的探测是否结束;若否,则继续进行光信号探测;若是,则继续判断是否所有所述时间区间均已扫描完毕;若未扫描完毕,则继续进行所述根据不同所述时间区间设置不同信号发射端电压;若已扫描完毕,则再次判断是否继续探测;若是,则继续重复以上步骤;若否,则结束探测。
- 一种多梯度时间箱的测距系统,包括:信号发射端,被配置为向目标物体发射光信号;信号接收端,被配置为接收从所述目标物体反射回的所述光信号;信号处理装置,电性连接于所述信号发射端和所述信号接收端;其中,信号处理装置被配置为:用于探测所述光信号从所述信号发射端到所述目标物体并反射至所述信号接收端的飞行时间;将所述飞行时间设定为若干个时间区间,各所述时间区间包括至少一个时间箱,其中,同一所述时间区间内的所述时间箱相同,不同所述时间区间内的所述时间箱呈梯度式变化;按时序依次探测并处理各所述时间区间的光信号强度;根据所述时间箱以及各所述时间箱对应的光信号强度构建直方图;根据所述直方图中光信号强度峰值对应的所述时间箱,确定目标物体的距离。
- 根据权利要求8所述的多梯度时间箱的测距系统,其中,所述信号处理装置包括:模拟前端,被配置为将传感器阵列接收的光信号转换为模拟电信号;解码器,被配置为将所述模拟电信号进行解码;存储单元,被配置为存储所述直方图。
- 根据权利要求9所述的多梯度时间箱的测距系统,其中,所述信号处理装置还包括时间数字转换器或模拟数字转换器,被配置为探测所述信号发射端的发射的信号强度。
- 根据权利要求8-10中任一项所述的多梯度时间箱的测距系统,其中,所述信号接收端包括单光子雪崩二极管阵列或硅光电倍增管。
- 根据权利要求8-10中任一项所述的多梯度时间箱的测距系统,其中,同一所述时间区间内的所述时间箱相同,不同所述时间区间内的所述时间箱按时序呈梯度式增大。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010441075.9A CN111562590A (zh) | 2020-05-22 | 2020-05-22 | 一种多梯度时间箱的测距方法及测距系统 |
CN202010441075.9 | 2020-05-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021233137A1 true WO2021233137A1 (zh) | 2021-11-25 |
Family
ID=72075218
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/092276 WO2021233137A1 (zh) | 2020-05-22 | 2021-05-08 | 多梯度时间箱的测距方法及测距系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111562590A (zh) |
WO (1) | WO2021233137A1 (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111562590A (zh) * | 2020-05-22 | 2020-08-21 | 深圳市灵明光子科技有限公司 | 一种多梯度时间箱的测距方法及测距系统 |
CN112764048B (zh) * | 2020-12-30 | 2022-03-18 | 深圳市灵明光子科技有限公司 | 基于飞行时间的寻址和测距方法及测距系统 |
CN113075674A (zh) * | 2021-03-23 | 2021-07-06 | 深圳市灵明光子科技有限公司 | 基于飞行时间的测距方法及测距系统 |
CN113219450B (zh) * | 2021-04-29 | 2024-04-19 | 深圳市恒天伟焱科技股份有限公司 | 测距定位方法、测距装置及可读存储介质 |
CN114185057B (zh) * | 2021-11-10 | 2024-05-17 | 华为技术有限公司 | 一种探测方法、装置和终端 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102298149A (zh) * | 2010-06-25 | 2011-12-28 | 原相科技股份有限公司 | 提高精确度、移动侦测效率、省电的时差测距系统及方法 |
CN110244316A (zh) * | 2018-03-08 | 2019-09-17 | Zf 腓德烈斯哈芬股份公司 | 接收光脉冲的接收器组件、LiDAR模组和接收光脉冲的方法 |
CN110462437A (zh) * | 2017-03-29 | 2019-11-15 | 株式会社电装 | 光检测器 |
CN110609291A (zh) * | 2019-08-30 | 2019-12-24 | 深圳奥锐达科技有限公司 | 用于时间编码时间飞行距离测量的系统及方法 |
US20200097752A1 (en) * | 2018-09-26 | 2020-03-26 | Stmicroelectronics Sa | Device and method for processing a histogram of arrival times in an optical sensor |
WO2020070280A2 (en) * | 2018-10-04 | 2020-04-09 | Ams Ag | High resolution time-of-flight measurements |
CN111562590A (zh) * | 2020-05-22 | 2020-08-21 | 深圳市灵明光子科技有限公司 | 一种多梯度时间箱的测距方法及测距系统 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3988571B2 (ja) * | 2001-09-17 | 2007-10-10 | 株式会社デンソー | レーダ装置 |
EP2680028A1 (de) * | 2012-06-27 | 2014-01-01 | Leica Geosystems AG | Distanzmessverfahren und Distanzmesser |
-
2020
- 2020-05-22 CN CN202010441075.9A patent/CN111562590A/zh active Pending
-
2021
- 2021-05-08 WO PCT/CN2021/092276 patent/WO2021233137A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102298149A (zh) * | 2010-06-25 | 2011-12-28 | 原相科技股份有限公司 | 提高精确度、移动侦测效率、省电的时差测距系统及方法 |
CN110462437A (zh) * | 2017-03-29 | 2019-11-15 | 株式会社电装 | 光检测器 |
CN110244316A (zh) * | 2018-03-08 | 2019-09-17 | Zf 腓德烈斯哈芬股份公司 | 接收光脉冲的接收器组件、LiDAR模组和接收光脉冲的方法 |
US20200097752A1 (en) * | 2018-09-26 | 2020-03-26 | Stmicroelectronics Sa | Device and method for processing a histogram of arrival times in an optical sensor |
WO2020070280A2 (en) * | 2018-10-04 | 2020-04-09 | Ams Ag | High resolution time-of-flight measurements |
CN110609291A (zh) * | 2019-08-30 | 2019-12-24 | 深圳奥锐达科技有限公司 | 用于时间编码时间飞行距离测量的系统及方法 |
CN111562590A (zh) * | 2020-05-22 | 2020-08-21 | 深圳市灵明光子科技有限公司 | 一种多梯度时间箱的测距方法及测距系统 |
Also Published As
Publication number | Publication date |
---|---|
CN111562590A (zh) | 2020-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021233137A1 (zh) | 多梯度时间箱的测距方法及测距系统 | |
US11022680B2 (en) | Distance measuring device with SPAD array and range walk compensenation | |
US11725935B2 (en) | Distance meter comprising SPAD arrangement for consideration of multiple targets | |
US20240061091A1 (en) | Method for measuring reflectivity of target object by using lidar, and lidar | |
US11340109B2 (en) | Array of single-photon avalanche diode (SPAD) microcells and operating the same | |
WO2023103310A1 (zh) | 激光雷达及其测量目标反射率的方法和系统 | |
CN205992055U (zh) | 一种激光测距装置 | |
WO2022206031A1 (zh) | 确定噪声水平的方法、激光雷达以及测距方法 | |
CN107272010B (zh) | 距离传感器及其距离测量方法、3d图像传感器 | |
US20230084331A1 (en) | Photoelectric sensing acquisition module photoelectric sensing ranging method and ranging device | |
CN109521666B (zh) | 一种基于延迟锁相环的时间数字转换器 | |
US20240159903A1 (en) | Data processing method for lidar and lidar | |
EP4372421A1 (en) | Detection method of laser radar, transmitting unit and laser radar | |
Jahromi et al. | A single chip laser radar receiver with a 9× 9 SPAD detector array and a 10-channel TDC | |
US12007482B2 (en) | Optical proximity sensor and corresponding method of operation | |
US11061137B2 (en) | Proximity detection device and method comprising a pulse transmission circuit to transmit into a scene plural optical pulses with different pulse durations during a detection period | |
CN114814880A (zh) | 一种激光雷达探测参数调整控制方法及装置 | |
CN110887574B (zh) | 一种多参数配置的单光子计数系统 | |
CN114594494A (zh) | 激光雷达系统及其环境光去噪方法 | |
CN114114288A (zh) | 用于激光雷达的测量电路及其测量方法、以及激光雷达 | |
KR102715120B1 (ko) | TOF(Time of Flight)를 이용한 거리 측정 장치 및 방법 | |
US20240219531A1 (en) | Detector module and ranging device | |
CN217932067U (zh) | 读出电路、光电检测装置和车辆 | |
CN114814863B (zh) | 一种基于sipm的回波检测方法、装置、设备及存储介质 | |
CN114594493B (zh) | 激光雷达系统及其环境光感知方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21808859 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21808859 Country of ref document: EP Kind code of ref document: A1 |