WO2021233101A1 - 发光模组、显示模组、显示屏及显示器 - Google Patents

发光模组、显示模组、显示屏及显示器 Download PDF

Info

Publication number
WO2021233101A1
WO2021233101A1 PCT/CN2021/090625 CN2021090625W WO2021233101A1 WO 2021233101 A1 WO2021233101 A1 WO 2021233101A1 CN 2021090625 W CN2021090625 W CN 2021090625W WO 2021233101 A1 WO2021233101 A1 WO 2021233101A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
emitting unit
backlight
emitting
Prior art date
Application number
PCT/CN2021/090625
Other languages
English (en)
French (fr)
Inventor
刁鸿浩
Original Assignee
北京芯海视界三维科技有限公司
视觉技术创投私人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京芯海视界三维科技有限公司, 视觉技术创投私人有限公司 filed Critical 北京芯海视界三维科技有限公司
Publication of WO2021233101A1 publication Critical patent/WO2021233101A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes

Definitions

  • This application relates to the field of optical technology, such as a light-emitting module, a display module, a display screen, and a display.
  • Part of the light emitted by the light-emitting unit will be transmitted in an undesired direction, and the light transmitted in an undesired direction will affect the display effect.
  • the embodiments of the present disclosure provide a light-emitting module, a display module, a display screen, and a display, so as to solve the technical problem that a part of the light emitted by the light-emitting unit may be conducted in an undesired direction, which may affect the display effect.
  • the light-emitting unit layer includes a plurality of light-emitting units
  • the backlight isolation layer is arranged on the backlight surface of the light-emitting unit layer
  • a light-emitting unit optical isolation structure is provided between two adjacent light-emitting units.
  • the backlight isolation layer may include at least one of a backlight distributed Bragg reflector (DBR) reflective layer, a backlight metal reflective layer, and a backlight absorbing layer.
  • DBR distributed Bragg reflector
  • the backlight isolation layer may include at least one backlight DBR reflective layer.
  • the backlight isolation layer may include at least one backlight metal reflective layer.
  • the backlight isolation layer may include at least one backlight absorption layer.
  • the backlight isolation layer may include at least one backlight DBR reflective layer and at least one backlight metal reflective layer.
  • the backlight isolation layer may include at least one backlight DBR reflective layer and at least one backlight absorption layer.
  • the backlight isolation layer may include at least one backlight metal reflective layer and at least one backlight absorption layer.
  • the backlight isolation layer may include at least one backlight metal reflective layer and at least one backlight absorption layer.
  • the backlight isolation layer may include at least one backlight DBR reflective layer, at least one backlight metal reflective layer, and at least one backlight absorbing layer.
  • a conductive hole supporting the light-emitting unit layer to achieve electrical connection may be provided in the backlight isolation layer.
  • the conductive holes may be filled with conductive materials
  • the backlight isolation layer may include at least one of a backlight DBR reflective layer and at least one backlight absorbing layer, and at least one backlight DBR reflective layer And at least one of the at least one backlight absorbing layer may be in direct contact with the conductive material.
  • the conductive hole may be filled with a conductive material
  • the backlight isolation layer may include at least one backlight metal reflective layer
  • an insulating part may be provided between the at least one backlight metal reflective layer and the conductive material.
  • part or all of the insulating portion may be provided with a light isolation material.
  • the side of the backlight isolation layer away from the light-emitting unit layer may be provided with an electrical connection layer.
  • the light-emitting unit layer and the electrical connection layer may be electrically connected through conductive holes.
  • the backlight isolation layer may include at least one backlight metal reflective layer, and the at least one backlight metal reflective layer may be provided with an insulating layer that is insulated from the electrical connection layer and the light-emitting unit layer.
  • the insulating layer may include at least one of the following:
  • a first insulating layer disposed between the backlight metal reflective layer and the electrical connection layer
  • the second insulating layer is arranged between the backlight metal reflective layer and the light-emitting unit layer.
  • a part or all of at least one of the first insulating layer and the second insulating layer may be provided with a light isolation material.
  • the backlight isolation layer may be directly disposed on the backlight surface of the light-emitting unit layer.
  • the backlight isolation layer may be attached to the backlight surface of the light-emitting unit layer.
  • the backlight isolation layer may be disposed on part or all of the backlight surface of the light-emitting unit layer.
  • the backlight isolation layer may be disposed in the light-transmitting area of the backlight surface of the light-emitting unit layer.
  • the light-isolating structure of the light-emitting unit may be disposed in a part or all of the area between two adjacent light-emitting units.
  • a light-emitting unit optical isolation structure may be provided in part or all of the light-emitting unit interval region.
  • two adjacent light-emitting units may include a first light-emitting unit and a second light-emitting unit
  • the first light-emitting unit may include a first surface close to the second light-emitting unit
  • the second light-emitting unit may include a The second side of the light-emitting unit.
  • the light isolation structure of the light-emitting unit may be disposed on at least one of the first surface and the second surface, or not in contact with the first surface and the second surface.
  • the light-isolating structure of the light-emitting unit may be disposed in the light-transmitting area of at least one of the first surface and the second surface.
  • the light-isolation structure of the light-emitting unit may be in direct contact with the backlight isolation layer, or there may be a gap between the light-isolation structure and the backlight isolation layer.
  • the light-isolating structure of the light-emitting unit may include a light-isolating body of the light-emitting unit.
  • the light-isolating body of the light-emitting unit may be non-conductive, and may include a light-isolating material.
  • the light-isolating body of the light-emitting unit may be conductive.
  • the light-isolating structure of the light-emitting unit may further include an insulating structure disposed between the light-isolating body of the light-emitting unit and the light-emitting unit that needs to be insulated from the light-isolating body of the light-emitting unit.
  • the insulating structure may be disposed between the light-isolating body of the light-emitting unit and at least one of two adjacent light-emitting units.
  • the insulating structure may cover part or all of the light-isolating body of the light-emitting unit.
  • At least one of the light-isolating body and the insulating structure of the light-emitting unit may include a light-isolating material.
  • the insulating structure may be in contact with at least one of two adjacent light-emitting units.
  • the insulating structure may not be in contact with two adjacent light-emitting units.
  • the light isolation material may include at least one of a light absorbing material and a light reflecting material.
  • part or all of the cross-sectional shape of the light-isolation structure of the light-emitting unit along the light-emitting direction of the light-emitting unit layer may include at least one of a right-angled quadrilateral, a triangle, and a trapezoid.
  • the cross-sectional shape of the light-isolation structure of the light-emitting unit along the light-emitting direction of the light-emitting unit layer may include a trapezoid, and the upper bottom side of the trapezoid may face the light-emitting side of the light-emitting unit layer.
  • the light-emitting module may further include: a light conversion layer disposed on the light-emitting unit layer.
  • the light conversion layer may be disposed on the light-emitting surface of the light-emitting unit layer.
  • some or all of the plurality of light-emitting units may be unpackaged structures.
  • the multiple light emitting units may include:
  • the display module provided by the embodiment of the present disclosure includes the above-mentioned light-emitting module.
  • the display screen provided by the embodiment of the present disclosure includes the above-mentioned display module.
  • the display provided by the embodiment of the present disclosure includes the above-mentioned display screen.
  • the light emitting module, display module, display screen, and display provided by the embodiments of the present disclosure can achieve the following technical effects:
  • the backlight isolation layer provided on the backlight surface of the light-emitting unit layer and the light-emitting unit optical isolation structure between the adjacent two light-emitting units in part or all of the multiple light-emitting units, it is possible to avoid the light emitted by the light-emitting unit from being different
  • the desired direction of conduction is conducive to improving the display effect.
  • FIG. 1 is a schematic structural diagram of a light-emitting module provided by an embodiment of the present disclosure
  • FIG. 2A, FIG. 2B, FIG. 2C, FIG. 2D, FIG. 2E, FIG. 2F, and FIG. 2G are structural schematic diagrams of a backlight isolation layer provided by an embodiment of the present disclosure
  • FIG. 3 is another schematic diagram of the structure of the backlight isolation layer provided by an embodiment of the present disclosure.
  • 4A, 4B, and 4C are schematic diagrams of another structure of a backlight isolation layer provided by an embodiment of the present disclosure.
  • FIG. 5 is another schematic diagram of the structure of the backlight isolation layer provided by an embodiment of the present disclosure.
  • FIG. 6A, FIG. 6B, FIG. 6C, and FIG. 6D are structural schematic diagrams of an insulating part provided by an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of another structure of a light emitting module provided by an embodiment of the present disclosure.
  • FIG. 8 is another schematic diagram of the structure of a light emitting module provided by an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of another structure of a light emitting module provided by an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of the structure of an insulating layer provided by an embodiment of the present disclosure.
  • FIG. 11A, FIG. 11B, FIG. 11C, FIG. 11D, FIG. 11E, FIG. 11F, FIG. 11G, and FIG. 11H are schematic diagrams of another structure of an insulating layer provided by an embodiment of the present disclosure.
  • 12A, 12B, and 12C are schematic diagrams of another structure of a light emitting module provided by an embodiment of the present disclosure.
  • FIGS. 13A, 13B, and 13C are schematic diagrams of another structure of a light-emitting module provided by an embodiment of the present disclosure.
  • FIG. 14A, 14B, and 14C are structural schematic diagrams of light-isolating structures of light-emitting units provided by embodiments of the present disclosure.
  • FIG. 15A, FIG. 15B, FIG. 15C, FIG. 15D, and FIG. 15E are another structural schematic diagrams of the light-emitting unit optical isolation structure provided by the embodiment of the present disclosure.
  • FIG. 16A, FIG. 16B, FIG. 16C, and FIG. 16D are another schematic diagrams of the light-emitting unit optical isolation structure provided by the embodiment of the present disclosure.
  • 17A, 17B, 17C, 17D, 17E, 17F, 17G, 17H, 17I, 17J, 17K, 17L, 17M, 17N are light-emitting units provided by embodiments of the present disclosure Another schematic diagram of the optical isolation structure;
  • FIG. 18 is a schematic structural diagram of a light-isolating body of a light-emitting unit provided by an embodiment of the present disclosure.
  • 19 is another schematic diagram of the structure of the light-isolating body of the light-emitting unit provided by the embodiment of the present disclosure.
  • FIG. 20 is another schematic structural diagram of the light isolation structure of the light-emitting unit provided by the embodiment of the present disclosure.
  • 21A, 21B, and 21C are schematic diagrams of another structure of a light-emitting unit optical isolation structure provided by an embodiment of the present disclosure.
  • FIG. 22A, FIG. 22B, FIG. 22C, FIG. 22D, and FIG. 22E are another schematic structural diagrams of the light-emitting unit optical isolation structure provided by the embodiment of the present disclosure.
  • FIG. 23A, FIG. 23B, FIG. 23C, FIG. 23D, and FIG. 23E are schematic diagrams of another structure of the light-emitting unit optical isolation structure provided by the embodiment of the present disclosure.
  • FIG. 24A, FIG. 24B, FIG. 24C, and FIG. 24D are structural schematic diagrams of optical isolation materials provided by embodiments of the present disclosure.
  • FIG. 25A, FIG. 25B, FIG. 25C, FIG. 25D, FIG. 25E, FIG. 25F, FIG. 25G, and FIG. 25H are schematic diagrams of another structure of a light emitting module provided by an embodiment of the present disclosure.
  • FIG. 26 is a schematic diagram of another structure of a light emitting module provided by an embodiment of the present disclosure.
  • FIG. 27 is another schematic diagram of the structure of a light emitting module provided by an embodiment of the present disclosure.
  • FIG. 28 is a schematic structural diagram of a display module provided by an embodiment of the present disclosure.
  • FIG. 29 is a schematic structural diagram of a display screen provided by an embodiment of the present disclosure.
  • FIG. 30 is a schematic structural diagram of a display provided by an embodiment of the present disclosure.
  • 100 Light-emitting module; 110: Light-emitting unit layer; 111: Light-emitting unit; 112: Backlight surface; 1121: Light-transmitting area; 120: Backlight isolation layer; 1201: Layer structure; 121: Backlight DBR reflective layer; 122: Backlight metal Reflective layer; 123: backlight absorption layer; 124: conductive hole; 125: conductive material; 126: insulating part; 127: optical isolation material; 128: insulating layer; 1281: first insulating layer; 1282: second insulating layer; 130 : Electrical connection layer; 300: Light-emitting unit optical isolation structure; 301: Light-emitting unit optical isolation body; 302: Optical isolation material; 3021: Light absorbing material; 3022: Light reflecting material; 303: Insulating structure; 310: Light-emitting unit interval area 320: the first light-emitting unit; 321: the first surface; 330: the second light-emitting unit; 331: the second surface;
  • an embodiment of the present disclosure provides a light emitting module 100, including:
  • the light-emitting unit layer 110 includes a plurality of light-emitting units 111;
  • the backlight isolation layer 120 is disposed on the backlight surface 112 of the light-emitting unit layer 110;
  • a light-emitting unit optical isolation structure 300 is provided between two adjacent light-emitting units 111.
  • the backlight isolation layer 120 can try to prevent the light emitted by the light-emitting unit 111 from being conducted in undesired directions (for example, the light emitted by the light-emitting unit 111 transmits through the backlight surface 112 of the light-emitting unit layer 110), and the light-isolating structure 300 of the light-emitting unit can Try to avoid the light emitted by two adjacent light-emitting units 111 from being conducted in undesired directions (for example, the light emitted by two adjacent light-emitting units 111 are conducted to each other), which is beneficial to improve the display effect.
  • the backlight isolation layer 120 may include a backlight DBR reflective layer 121, a backlight metal reflective layer 122, and a backlight absorbing layer 123 At least one of them.
  • the backlight DBR reflective layer 121 may include a structure and material capable of realizing light reflection.
  • the structure and material of the backlight DBR reflective layer 121 can be determined according to actual conditions such as process requirements, as long as it can reflect the light emitted by the light-emitting unit layer 110.
  • the backlight metal reflective layer 122 may include a structure and material capable of realizing light reflection, for example, at least one of metals such as silver and aluminum.
  • the material included in the backlight metal reflective layer 122 can be determined according to actual conditions such as process requirements, as long as it can reflect the light emitted by the light-emitting unit layer 110.
  • the backlight absorbing layer 123 may include a structure and material capable of light absorption, such as a resin composition.
  • the material for realizing light absorption may also include a black matrix (BM).
  • BM black matrix
  • the structure and material of the backlight absorption layer 123 can be determined according to actual conditions such as process requirements, as long as it can absorb the light emitted by the light-emitting unit layer 110.
  • the backlight isolation layer 120 may also include other structures and materials.
  • the backlight isolation layer 120 may not include any of the backlight DBR reflective layer 121, the backlight metal reflective layer 122, and the backlight absorbing layer 123, but includes other structures and materials.
  • the structure and material of the backlight isolation layer 120 can be determined according to actual conditions such as process requirements. Regardless of the structure and material of the backlight isolation layer 120, as long as the backlight isolation layer 120 can isolate the light emitted by the light-emitting unit layer 110, it can be avoided as much as possible.
  • the light emitted by the light-emitting unit 111 may be conducted in an undesired direction.
  • the backlight isolation layer 120 can completely or proportionally isolate the light emitted by the light-emitting unit layer 110 by reflection or absorption, for example: 100%, 90%, 80%, etc., to isolate the light emitted by the light-emitting unit layer 110 The light.
  • the proportion of light emitted by the isolated light-emitting unit layer 110 can be determined according to actual conditions such as process requirements.
  • the backlight isolation layer 120 may include at least one layer of a backlight DBR reflective layer 121.
  • the backlight isolation layer 120 may include at least one backlight metal reflective layer 122, for example, one, two, three, or more backlight metal reflective layers 122.
  • the backlight isolation layer 120 may include at least one backlight absorbing layer 123, for example: one, two, three, or more backlight absorbing layers 123.
  • the backlight isolation layer 120 may include at least one layer of backlight DBR reflective layer 121 and at least one layer of backlight metal reflective layer 122, for example: one layer, two layers, three layers Or more layers of the backlight DBR reflective layer 121, and one, two, three or more layers of the backlight metal reflective layer 122.
  • the hierarchical relationship of at least one layer of backlight DBR reflective layer 121 and at least one layer of backlight metal reflective layer 122 can be determined according to actual conditions such as process requirements, for example: at least one layer of backlight is relatively concentrated.
  • All the backlight DBR reflective layers 121 in the DBR reflective layer 121 are relatively concentratedly provided with at least one layer of the backlight metal reflective layers 122 in the backlight metal reflective layers 122; or, the backlight DBR reflective layers 121 and the backlight metal reflective layers are overlapped 122.
  • the backlight isolation layer 120 may include at least one layer of the backlight DBR reflective layer 121 and at least one layer of the backlight absorption layer 123, for example: one layer, two layers, three layers or More layers of the backlight DBR reflective layer 121, and one, two, three or more layers of the backlight absorbing layer 123.
  • the hierarchical relationship between the at least one backlight DBR reflective layer 121 and the at least one backlight absorbing layer 123 can be determined according to actual conditions such as process requirements, for example: at least one backlight DBR is relatively concentrated.
  • all the backlight absorbing layers 123 in at least one backlight absorbing layer 123 are relatively concentrated; or, the backlight DBR reflective layer 121 and the backlight absorbing layer 123 are overlapped.
  • the backlight isolation layer 120 may include at least one backlight metal reflective layer 122 and at least one backlight absorption layer 123, for example: one layer, two layers, three layers or More layers of the backlight metal reflective layer 122, and one, two, three or more layers of the backlight absorbing layer 123.
  • the hierarchical relationship between the at least one backlight metal reflective layer 122 and the at least one backlight absorbing layer 123 can be determined according to actual conditions such as process requirements. For example, at least one layer of backlight metal is relatively concentrated.
  • all the backlight metal reflective layers 122 in the reflective layer 122 all the backlight absorbing layers 123 in the backlight absorbing layer 123 of at least one layer are relatively concentrated; or, the backlight metal reflective layer 122 and the backlight absorbing layer 123 are overlapped.
  • the backlight isolation layer 120 may include at least one backlight DBR reflective layer 121, at least one backlight metal reflective layer 122, and at least one backlight absorbing layer 123, such as : One, two, three or more backlight DBR reflective layers 121, one, two, three or more backlight metal reflective layers 122, and one, two, three or more layers Multi-layer backlight absorbing layer 123.
  • the hierarchical relationship among the at least one backlight DBR reflective layer 121, the at least one backlight metal reflective layer 122, and the at least one backlight absorbing layer 123 can be determined according to actual conditions such as process requirements, for example: All the backlight DBR reflective layers 121 in the at least one backlight DBR reflective layer 121 are relatively concentrated, all the backlight metal reflective layers 122 in the at least one backlight metal reflective layer 122 are relatively concentrated, and at least one is relatively concentrated. All the backlight absorbing layers 123 in the backlight absorbing layer 123 of the layer; or, at least two of the backlight DBR reflective layer 121, the backlight metal reflective layer 122, and the backlight absorbing layer 123 are overlapped.
  • the backlight isolation layer 120 may be provided with conductive holes 124 supporting the light-emitting unit layer 110 to achieve electrical connection.
  • the number and location of the conductive holes 124 may be determined according to actual conditions such as process requirements.
  • a plurality of conductive holes 124 may be provided; optionally, some or all of the conductive holes 124 may be conductive holes. hole.
  • the conductive hole 124 may be filled with a conductive material 125
  • the backlight isolation layer 120 may include at least one layer of backlight DBR reflective layer 121, and at least one layer of backlight absorber At least one of the layers 123, at least one of the backlight DBR reflective layer 121 of at least one layer, and at least one of the backlight absorbing layer 123 of at least one layer may be in direct contact with the conductive material 125.
  • the conductive hole 124 may be filled with a conductive material 125, and the backlight isolation layer 120 may include at least one backlight DBR reflective layer 121.
  • a plurality of conductive holes 124 may be provided.
  • part or all of the plurality of conductive holes 124 may be conductive through holes, which can penetrate part or all of all the backlight DBR reflective layers 121 in at least one layer of the backlight DBR reflective layer 121.
  • the number and location of the conductive holes 124 can be determined according to actual conditions such as process requirements.
  • the conductive hole 124 may be filled with a conductive material 125, and the backlight isolation layer 120 may include at least one backlight absorbing layer 123.
  • a plurality of conductive holes 124 may be provided.
  • part or all of the plurality of conductive holes 124 may be conductive vias, which can penetrate part or all of all the backlight absorbing layers 123 in at least one backlight absorbing layer 123.
  • the number and location of the conductive holes 124 can be determined according to actual conditions such as process requirements.
  • the conductive hole 124 may be filled with a conductive material 125, and the backlight isolation layer 120 may include at least one backlight DBR reflective layer 121 and at least one backlight absorption layer 123.
  • a plurality of conductive holes 124 may be provided.
  • part or all of the plurality of conductive holes 124 may be conductive vias, which can penetrate at least one backlight DBR reflective layer 121 and all the backlight DBR reflective layers 121 in at least one backlight absorbing layer 123, and Part or all of the backlight absorption layer 123.
  • the number and location of the conductive holes 124 can be determined according to actual conditions such as process requirements.
  • the conductive hole 124 may be filled with a conductive material 125
  • the backlight isolation layer 120 may include at least one backlight metal reflective layer 122, at least one backlight metal reflective layer 122 and the conductive material 125
  • An insulating part 126 is provided therebetween.
  • a plurality of conductive holes 124 may be provided in the backlight isolation layer 120, and part or all of the plurality of conductive holes 124 may be provided as shown in FIG. 5.
  • a part or all of the insulating portion 126 is provided with a light isolation material 127.
  • optical isolation materials 127 may be provided on both sides of the insulating portion 126.
  • a light isolation material 127 may be provided on one side of the insulating part 126.
  • the other side of the insulating portion 126 opposite to the side where the light isolation material 127 is provided in FIG. 6B may be provided with the light isolation material 127.
  • the entire area in the insulating portion 126 is provided with a light isolation material 127.
  • the area where the optical isolation material 127 is provided in the insulating portion 126 may be determined according to actual conditions such as process requirements.
  • the side of the backlight isolation layer 120 away from the light-emitting unit layer 110 may be provided with an electrical connection layer 130.
  • the light-emitting unit layer 110 and the electrical connection layer 130 may be electrically connected through the conductive hole 124.
  • the electrical connection between the light-emitting unit layer 110 and the electrical connection layer 130 can be achieved in other ways than the conductive holes 124 according to actual conditions such as process requirements.
  • the backlight isolation layer 120 may include at least one layer of backlight metal reflective layer 122, and at least one layer of the backlight metal reflective layer 122 may be provided with an insulating layer from the electrical connection layer 130 and the light-emitting unit layer 110. Insulation layer 128.
  • the insulating layer 128 may include at least one of the following:
  • the second insulating layer 1282 is disposed between the backlight metal reflective layer 122 and the light-emitting unit layer 110.
  • part or all of at least one of the first insulating layer 1281 and the second insulating layer 1282 may be provided with a light isolation material 127.
  • optical isolation materials 127 are provided on both sides of the first insulating layer 1281.
  • a light isolation material 127 is provided on one side of the first insulating layer 1281.
  • the optical isolation material 127 is provided on the other side of the first insulating layer 1281 opposite to the side where the optical isolation material 127 is provided in FIG. 11B.
  • the entire area of the first insulating layer 1281 is provided with a light isolation material 127.
  • optical isolation materials 127 are provided on both sides of the second insulating layer 1282.
  • a light isolation material 127 is provided on one side of the second insulating layer 1282.
  • an optical isolation material 127 is provided on the other side of the second insulating layer 1282 opposite to the side where the optical isolation material 127 is provided in FIG. 11F.
  • the entire area of the second insulating layer 1282 is provided with a light isolation material 127.
  • the area where the optical isolation material 127 is provided in the insulating layer 128 (for example, at least one of the first insulating layer 1281 and the second insulating layer 1282) can be determined according to actual conditions such as process requirements.
  • the backlight isolation layer 120 may be directly disposed on the backlight surface 112 of the light-emitting unit layer 110.
  • other devices or structures may be provided in part or all of the area between the backlight isolation layer 120 and the backlight surface 112 of the light-emitting unit layer 110 according to actual conditions such as process requirements.
  • the backlight isolation layer 120 may be attached to the backlight surface 112 of the light-emitting unit layer 110.
  • part or all of the backlight isolation layer 120 can be attached to the backlight surface 112 of the light-emitting unit layer 110 according to actual conditions such as process requirements.
  • the portion of the backlight isolation layer 120 that is not attached to the backlight surface 112 of the light-emitting unit layer 110 may be attached to the light-emitting unit layer 110.
  • There is a certain distance between the backlight surfaces 112 of the layer 110 is a certain distance between the backlight surfaces 112 of the layer 110.
  • the distance can be set according to actual conditions such as process requirements.
  • the backlight isolation layer 120 may be disposed on part or all of the backlight surface 112 of the light emitting unit layer 110.
  • the backlight isolation layer 120 is disposed on the entire area of the backlight surface 112 of the light-emitting unit layer 110.
  • the backlight isolation layer 120 is disposed on a partial area of the backlight surface 112 of the light-emitting unit layer 110, and the partial area may be a continuous area.
  • the continuous area may include at least one edge EG of the backlight surface 112 of the light-emitting unit layer 110; or, it does not include any edge EG of the backlight surface 112 of the light-emitting unit layer 110.
  • the backlight isolation layer 120 (for easy identification, the backlight isolation layer 120 is surrounded by a dotted line) is disposed on a partial area of the backlight surface 112 of the light-emitting unit layer 110, and the partial area may be Discontinuous area.
  • the backlight isolation layer 120 may be composed of more than one non-continuous layer structure 1201.
  • at least two discontinuous regions may be provided, and at least one of the discontinuous regions may include at least one edge EG of the backlight surface 112 of the light-emitting unit layer 110; or, excluding any of the backlight surface 112 of the light-emitting unit layer 110 An edge EG.
  • the position and number of the discontinuous areas of the backlight surface 112 of the light-emitting unit layer 110 for setting the backlight isolation layer 120 can be determined according to actual conditions such as process requirements to determine the discontinuous layers constituting the backlight isolation layer 120 The location, number, etc. of the structure 1201.
  • the backlight isolation layer 120 may be disposed on part or all of the backlight surface 112 of the light-emitting unit layer 110 according to actual conditions such as process requirements. As long as the backlight isolation layer 120 can isolate the light emitted by the light-emitting unit layer 110, It is sufficient to prevent the light emitted by the light-emitting unit 111 from being conducted in an undesired direction as much as possible.
  • the backlight isolation layer 120 may be disposed on the light-transmitting area 1121 of the backlight surface 112 of the light-emitting unit layer 110.
  • the arrow graphics exemplarily represent the direction of a part of the light of the light-emitting unit layer 110 toward the backlight isolation layer 120.
  • the light-transmitting area 1121 is surrounded by a dotted line.
  • the light-transmitting area 1121 of the backlight surface 112 of the light-emitting unit layer 110 includes the entire area of the backlight surface 112 of the light-emitting unit layer 110.
  • the backlight isolation layer 120 may be disposed on the entire area of the backlight surface 112 of the light-emitting unit layer 110, so that the backlight isolation layer 120 may be disposed on the light-transmitting area 1121 of the backlight surface 112 of the light-emitting unit layer 110.
  • the light-transmitting area 1121 of the backlight surface 112 of the light-emitting unit layer 110 includes a partial area of the backlight surface 112 of the light-emitting unit layer 110, and the partial area may be a continuous area.
  • the backlight isolation layer 120 can be disposed on a partial area (for example, the continuous area) of the backlight surface 112 of the light-emitting unit layer 110, so that the backlight isolation layer 120 can be disposed on the backlight surface 112 of the light-emitting unit layer 110.
  • the continuous area may include at least one edge EG of the backlight surface 112 of the light-emitting unit layer 110; or, it does not include any edge EG of the backlight surface 112 of the light-emitting unit layer 110.
  • the light-transmitting area 1121 of the backlight surface 112 of the light-emitting unit layer 110 includes a partial area of the backlight surface 112 of the light-emitting unit layer 110, and the partial area may be a discontinuous area.
  • the backlight isolation layer 120 may be disposed on a partial area (for example, the discontinuous area) of the backlight surface 112 of the light-emitting unit layer 110, so that the backlight isolation layer 120 may be disposed on the backlight surface 112 of the light-emitting unit layer 110 The light-transmitting area 1121.
  • the backlight isolation layer 120 may be composed of more than one non-continuous layer structure 1201.
  • At least two discontinuous regions may be provided, and at least one of the discontinuous regions may include at least one edge EG of the backlight surface 112 of the light-emitting unit layer 110; or, excluding any of the backlight surface 112 of the light-emitting unit layer 110 An edge EG.
  • the position and number of the discontinuous areas of the backlight surface 112 of the light-emitting unit layer 110 for setting the backlight isolation layer 120 can be determined according to actual light transmission conditions such as process requirements, so as to determine the discontinuity constituting the backlight isolation layer 120 The location, number, etc. of the layer structure 1201.
  • the light-transmitting area 1121 of the backlight surface 112 of the light-emitting unit layer 110 can be determined according to the actual light transmission conditions such as process requirements, and accordingly, it is considered that the backlight isolation layer 120 is disposed on the light-transmitting area 112 of the backlight surface 112 of the light-emitting unit layer 110.
  • Light area 1121 may include part or all of the backlight surface 112 of the light-emitting unit layer 110, and may be in the form of a continuous area or a discontinuous area, and the corresponding light transmission conditions may be determined according to process requirements and other actual light transmission conditions.
  • the backlight isolation layer 120 can isolate the light emitted by the light-emitting unit layer 110, so as to prevent the light emitted by the light-emitting unit 111 from being conducted in undesired directions.
  • the light-emitting unit light isolation structure 300 may be disposed in a part or all of the area between two adjacent light-emitting units 111.
  • the light-emitting unit optical isolation structure 300 is disposed in a partial area between two adjacent light-emitting units 111, and the partial area is located between two adjacent light-emitting units 111 and Close to one of the light-emitting units 111 (the light-emitting unit 111 on the left in the figure).
  • the light-emitting unit optical isolation structure 300 is disposed in a partial area between two adjacent light-emitting units 111, and the partial area is located between two adjacent light-emitting units 111. It is opposite to the position of the light-emitting unit optical isolation structure 300 in FIG. 14A (close to the light-emitting unit 111 on the right side of the figure).
  • the light-emitting unit optical isolation structure 300 is disposed in the entire area between two adjacent light-emitting units 111.
  • the area where the light-emitting unit optical isolation structure 300 is provided between two adjacent light-emitting units 111 can be determined according to actual conditions such as process requirements, as long as the light-emitting unit optical isolation structure 300 can avoid two adjacent light-emitting units.
  • the light emitted by the unit 111 may be transmitted in an undesired direction (for example, the light emitted by two adjacent light-emitting units 111 may be transmitted to each other).
  • a light isolation structure 300 for the light-emitting unit may be provided.
  • a light-emitting unit spacing area 310 having a rectangular shape may be used as a light-emitting unit spacing area between two adjacent light-emitting units 111; the light-emitting unit spacing area 310 may be smooth
  • the two adjacent light-emitting units 111 are groundedly connected, so that the projection formed by the two adjacent light-emitting units 111 and the light-emitting unit spacing area 310 can form a regular shape such as a right-angled quadrilateral as shown in FIG. 15A.
  • the light-emitting unit interval area 310 between two adjacent light-emitting units 111 may not have the shape of the light-emitting unit interval area 310 as shown in FIG. 15A, but has a circular, elliptical, or triangular shape. , Trapezoid and other shapes.
  • the light-emitting unit spacing area 310 between two adjacent light-emitting units 111 has other shapes such as a circle, an ellipse, a triangle, a trapezoid, etc.
  • the light-emitting unit spacing area 310 may also be smoothly connected to each other.
  • Two adjacent light-emitting units 111 so that the projections formed by the two adjacent light-emitting units 111 and the light-emitting unit spacing area 310 can form a regular shape such as a right-angled quadrilateral as shown in FIG. 15A.
  • the position, shape, size, etc. of the light-emitting unit interval region 310 between two adjacent light-emitting units 111 may be determined according to actual conditions such as process requirements.
  • the light-emitting unit interval area 310 having an approximately elliptical shape shown by the dashed line in FIG. 15B may also be used as The light-emitting unit interval area between two adjacent light-emitting units 111.
  • the light-emitting unit optical isolation structure 300 is disposed in a partial area of the light-emitting unit interval region 310 between two adjacent light-emitting units 111, and the partial area is located between two adjacent light-emitting units 111. Between the two light-emitting units 111 and close to one of the light-emitting units 111 (the light-emitting unit 111 on the left side of the figure).
  • the light-emitting unit optical isolation structure 300 is disposed in a partial area of the light-emitting unit interval region 310 between two adjacent light-emitting units 111, and the partial area is located between two adjacent light-emitting units 111.
  • the two light-emitting units 111 are located opposite to the position of the light-emitting unit optical isolation structure 300 in FIG. 15C (close to the light-emitting unit 111 on the right side of the figure).
  • the light-emitting unit light isolation structure 300 is disposed in all areas of the light-emitting unit interval area 310 between two adjacent light-emitting units 111.
  • the position where the light-emitting unit optical isolation structure 300 is provided in the light-emitting unit spacing area 310 between two adjacent light-emitting units 111 can be determined according to actual conditions such as process requirements, as long as the light-emitting unit optical isolation structure 300 can It is sufficient to prevent the light emitted by two adjacent light-emitting units 111 from being conducted in an undesired direction (for example, the light emitted by two adjacent light-emitting units 111 is conducted to each other).
  • two adjacent light-emitting units 111 may include a first light-emitting unit 320 and a second light-emitting unit 330
  • the first light-emitting unit 320 may include a first light-emitting unit 320 and a second light-emitting unit 330
  • the first surface 321 of the two light emitting units 330 and the second light emitting unit 330 may include a second surface 331 close to the first light emitting unit 320.
  • the light-isolating structure 300 of the light-emitting unit may be disposed on at least one of the first surface 321 and the second surface 331 or not in contact with the first surface 321 and the second surface 331.
  • the light-emitting unit optical isolation structure 300 is disposed on the first surface 321 of the first light-emitting unit 320, is in contact with the first surface 321 of the first light-emitting unit 320, and does not contact the second light-emitting unit 320.
  • the second surface 331 of the unit 330 is in contact.
  • the light-emitting unit optical isolation structure 300 is disposed on the second surface 331 of the second light-emitting unit 330, is in contact with the second surface 331 of the second light-emitting unit 330, and does not contact the first light-emitting unit 330.
  • the first surface 321 of the unit 320 is in contact.
  • the light-emitting unit optical isolation structure 300 is disposed on the first surface 321 of the first light-emitting unit 320 and the second surface 331 of the second light-emitting unit 330, and the first light-emitting unit 320 The first surface 321 is in contact with the second surface 331 of the second light-emitting unit 330.
  • the light-emitting unit optical isolation structure 300 is disposed between the first surface 321 of the first light-emitting unit 320 and the second surface 331 of the second light-emitting unit 330, and is not connected to the first light-emitting unit 330.
  • the first surface 321 of the unit 320 is in contact with the second surface 331 of the second light-emitting unit 330.
  • the arrangement relationship between the light-emitting unit optical isolation structure 300 and the first light-emitting unit 320 and the second light-emitting unit 330 can be determined according to actual conditions such as process requirements, as long as the light-emitting unit optical isolation structure 300 can avoid the first light emission.
  • the light emitted by the unit 320 and the second light-emitting unit 330 may be conducted in an undesired direction (for example, the light emitted by the first light-emitting unit 320 and the second light-emitting unit 330 may be conducted to each other).
  • the luminescence The unit light isolation structure 300 may be disposed in a light-transmitting area of at least one of the first surface 321 and the second surface 331.
  • the arrow graph exemplarily represents the direction of light transmission of a part of the light-emitting unit 111 to the outside.
  • the light-transmitting areas 333 and 334 are surrounded by dotted lines.
  • the light-transmitting area 333 of the first surface 321 of the first light-emitting unit 320 includes the entire area of the first surface 321.
  • the light-emitting unit optical isolation structure 300 may be disposed on the entire area of the first surface 321, and be in contact with the entire area of the first surface 321, so that the light-emitting unit optical isolation structure 300 may be disposed on the first surface 321.
  • Light-transmitting area 333 may be disposed on the entire area of the first surface 321, and be in contact with the entire area of the first surface 321, so that the light-emitting unit optical isolation structure 300 may be disposed on the first surface 321.
  • the light-transmitting area 333 of the first surface 321 of the first light-emitting unit 320 includes a partial area of the first surface 321.
  • the light-emitting unit optical isolation structure 300 may be disposed on a corresponding partial area of the first surface 321 and contact the corresponding partial area of the first surface 321, so that the light-emitting unit optical isolation structure 300 may be disposed on the first surface 321 of the light-transmitting area 333.
  • the light-transmitting area 334 of the second surface 331 of the second light-emitting unit 330 includes the entire area of the second surface 331.
  • the light-emitting unit optical isolation structure 300 may be disposed on the entire area of the second surface 331 and contact the entire area of the second surface 331, so that the light-emitting unit optical isolation structure 300 may be disposed on the second surface 331.
  • Light-transmitting area 334 may be disposed on the entire area of the second surface 331 and contact the entire area of the second surface 331, so that the light-emitting unit optical isolation structure 300 may be disposed on the second surface 331.
  • the light-transmitting area 334 of the second surface 331 of the second light-emitting unit 330 includes a partial area of the second surface 331.
  • the light-emitting unit optical isolation structure 300 may be disposed on a corresponding partial area of the second surface 331, and be in contact with a corresponding partial area of the second surface 331, so that the light-emitting unit optical isolation structure 300 may be disposed on the second surface 331 of the light-transmitting area 334.
  • the light-transmitting area 333 of the first surface 321 of the first light-emitting unit 320 includes the entire area of the first surface 321, and the light-transmitting area 333 of the second surface 331 of the second light-emitting unit 330
  • the area 334 includes the entire area of the second surface 331.
  • the light-emitting unit optical isolation structure 300 may be disposed on the entire area of the first surface 321 and the entire area of the second surface 331, and is connected to the entire area of the first surface 321 and the entire area of the second surface 331. Contact, so that the light-isolating structure 300 of the light-emitting unit can be disposed on the light-transmitting area 333 of the first surface 321 and the light-transmitting area 334 of the second surface 331.
  • the light-transmitting area 333 of the first surface 321 of the first light-emitting unit 320 includes a partial area of the first surface 321, and the second surface 331 of the second light-emitting unit 330
  • the light-transmitting area 334 includes a partial area of the second surface 331, and the light-transmitting area 333 of the first surface 321 is consistent with the light-transmitting area 334 of the second surface 331 (for example, at least one of the position, shape, area, etc. is the same) ).
  • the light-emitting unit light isolation structure 300 may be disposed on the corresponding partial area of the first surface 321 and the second surface 331, and contact the corresponding partial area of the first surface 321 and the corresponding partial area of the second surface 331 , So that the light-isolating structure 300 of the light-emitting unit can be disposed on the first surface 321 and the light-transmitting area 334 of the second surface 331.
  • the light-transmitting area 333 of the first surface 321 of the first light-emitting unit 320 includes a partial area of the first surface 321, and the light-transmitting area 333 of the second surface 331 of the second light-emitting unit 330
  • the area 334 includes a partial area of the second surface 331, and the light-transmitting area 333 of the first surface 321 is not consistent with the light-transmitting area 334 of the second surface 331 (for example, at least one of the position, shape, area, etc. is different).
  • the light-emitting unit light isolation structure 300 may be disposed on the corresponding partial area of the first surface 321 and the second surface 331, and contact the corresponding partial area of the first surface 321 and the corresponding partial area of the second surface 331 , So that the light-isolating structure 300 of the light-emitting unit can be disposed on the first surface 321 and the light-transmitting area 334 of the second surface 331.
  • the light-transmitting area 333 of the first surface 321 of the first light-emitting unit 320 may include the entire area of the first surface 321, and the light-transmitting area 334 of the second surface 331 of the second light-emitting unit 330 may include the second light-emitting unit 330. Partial area of face 331.
  • the light-emitting unit optical isolation structure 300 may be disposed on the entire area of the first surface 321 and a partial area of the second surface 331, and is connected to the entire area of the first surface 321 and the portion of the second surface 331.
  • the light-transmitting area 333 of the first surface 321 of the first light-emitting unit 320 may include a partial area of the first surface 321
  • the light-transmitting area 334 of the second surface 331 of the second light-emitting unit 330 may include the second surface 331 The entire area.
  • the light-emitting unit optical isolation structure 300 may be disposed on the partial area of the first surface 321 and the entire area of the second surface 331, and is connected to the partial area of the first surface 321 and the second surface 331. All areas are in contact, so that the light-isolating structure 300 of the light-emitting unit can be disposed on the first surface 321 and the light-transmitting area 334 of the second surface 331.
  • the light-transmitting area 333 of the first surface 321 of the first light-emitting unit 320 includes the entire area of the first surface 321 and the entire area of the second surface 331.
  • the light-emitting unit optical isolation structure 300 may be disposed between the entire area of the first surface 321 and the entire area of the second surface 331, and does not contact the first surface 321 and the second surface 331, so as to Therefore, the light-isolating structure 300 of the light-emitting unit can be disposed between the light-transmitting area 333 of the first surface 321 and the light-transmitting area 334 of the second surface 331.
  • the light-transmitting area 333 of the first surface 321 of the first light-emitting unit 320 includes a partial area of the first surface 321, and the second surface 331 of the second light-emitting unit 330
  • the light-transmitting area 334 includes a partial area of the second surface 331, and the light-transmitting area 333 of the first surface 321 is consistent with the light-transmitting area 334 of the second surface 331 (for example, at least one of the position, shape, area, etc. is the same) ).
  • the light-emitting unit optical isolation structure 300 may be disposed between the corresponding partial regions of the first surface 321 and the second surface 331, and does not contact the first surface 321 and the second surface 331, so that the light-emitting unit
  • the light isolation structure 300 may be disposed between the light-transmitting area 333 of the first surface 321 and the light-transmitting area 334 of the second surface 331.
  • the light-transmitting area 333 of the first surface 321 of the first light-emitting unit 320 includes a partial area of the first surface 321, and the light-transmitting area 333 of the second surface 331 of the second light-emitting unit 330
  • the area 334 includes a partial area of the second surface 331, and the light-transmitting area 333 of the first surface 321 is not consistent with the light-transmitting area 334 of the second surface 331 (for example, at least one of the position, shape, area, etc. is different).
  • the light-emitting unit optical isolation structure 300 may be disposed between the corresponding partial area of the first surface 321 and the corresponding partial area of the second surface 331, and does not contact the first surface 321 and the second surface 331. , So that the light-emitting unit light isolation structure 300 can be disposed between the first surface 321 and the light-transmitting area 334 of the second surface 331.
  • the light-transmitting area 333 of the first surface 321 of the first light-emitting unit 320 may include the entire area of the first surface 321, and the light-transmitting area 334 of the second surface 331 of the second light-emitting unit 330 may include the second light-emitting unit 330. Partial area of face 331.
  • the light-emitting unit optical isolation structure 300 may be disposed between the entire area of the first surface 321 and a partial area of the second surface 331, without contacting the first surface 321 and the second surface 331, so as to Therefore, the light isolation structure 300 of the light-emitting unit can be disposed between the first surface 321 and the light-transmitting area 334 of the second surface 331.
  • the light-transmitting area 333 of the first surface 321 of the first light-emitting unit 320 may include a partial area of the first surface 321, and the light-transmitting area 334 of the second surface 331 of the second light-emitting unit 330 may include the second surface 331 The entire area.
  • the light-emitting unit optical isolation structure 300 may be disposed between the partial area of the first surface 321 and the entire area of the second surface 331, and does not contact the first surface 321 and the second surface 331. In this way, the light-isolating structure 300 of the light-emitting unit can be disposed between the first surface 321 and the light-transmitting area 334 of the second surface 331.
  • the light-transmitting areas 333 and 334 of the light-emitting unit 111 may be continuous areas.
  • the light-emitting unit optical isolation structure 300 may be disposed in the continuous area, and may be in contact with or not in contact with the continuous area, so that the light-emitting unit optical isolation structure 300 may be disposed in the light-transmitting areas 333, 334 of the light-emitting unit 111 .
  • the light-transmitting areas 333 and 334 of the light-emitting unit 111 may be discontinuous areas.
  • the light-emitting unit optical isolation structure 300 may be disposed in the discontinuous area, and may be in contact with or not in contact with the discontinuous area, so that the light-emitting unit optical isolation structure 300 may be disposed in the light-transmitting area 333 of the light-emitting unit 111 , 334.
  • the position and number of discontinuous areas for disposing the light-emitting unit optical isolation structure 300 can be determined according to actual light transmission conditions such as process requirements, so that the light-emitting unit light isolation structure 300 can be arranged in a discontinuous area.
  • the light-transmitting areas 333 and 334 of the light-emitting unit 111 are examples of the light-emitting unit 111.
  • the light-transmitting areas 333, 334 of the light-emitting unit 111 can be determined according to the actual light transmission conditions such as process requirements, and accordingly, it is considered that the light-emitting unit light isolation structure 300 is disposed in the light-transmitting areas 333, 334 of the light-emitting unit 111. Or between the corresponding light-transmitting regions 333 and 334 of two adjacent light-emitting units 111.
  • the light-transmitting areas 333, 334 may include part or all of the light-emitting unit 111, and may be presented in the form of a continuous area or a discontinuous area, and the corresponding position and quantity may be determined according to actual light transmission conditions such as process requirements.
  • the light-emitting unit optical isolation structure 300 can prevent the light emitted by two adjacent light-emitting units 111 from being conducted in an undesired direction (for example, the light emitted by the first light-emitting unit 320 and the second light-emitting unit 330 are transmitted to each other). Can.
  • the light isolation structure 300 of the light emitting unit and the backlight isolation layer 120 may be in direct contact, or there may be a gap between the light isolation structure 300 and the backlight isolation layer 120.
  • other media or other structures may be provided in the area where there is a gap between the light-emitting unit light isolation structure 300 and the backlight isolation layer 120.
  • the gap between the light isolation structure 300 of the light emitting unit and the backlight isolation layer 120 may be partially or completely provided with a light isolation material.
  • the light-emitting unit light isolation structure 300 may include a light-emitting unit light isolation body 301.
  • the light-isolating body 301 of the light-emitting unit may be non-conductive and include a light-isolating material 302.
  • the light-isolating body 301 of the light-emitting unit may be conductive.
  • the light-emitting unit optical isolation structure 300 may further include: an insulating structure 303 disposed between the light-emitting unit optical isolation main body 301 and the light-emitting unit 111 that needs to be insulated from the light-emitting unit optical isolation main body 301.
  • the insulating structure 303 may be disposed between the light-emitting unit optical isolation body 301 and at least one of the two adjacent light-emitting units 111.
  • the insulating structure 303 is disposed on the light-isolating body 301 and the light-emitting unit. Between the first light-emitting unit 320.
  • the insulating structure 303 is disposed on the light-isolating body 301 and the light-emitting unit. Between the second light-emitting units 330.
  • the light-emitting unit when two adjacent light-emitting units 111 include a first light-emitting unit 320 and a second light-emitting unit 330, the light-emitting unit optically isolates the main body 301 and the first light-emitting unit 320.
  • An insulating structure 303 is provided therebetween, and an insulating structure 303 is also provided between the light-isolating body 301 of the light-emitting unit and the second light-emitting unit 330.
  • the location of the insulating structure 303 may be considered according to actual conditions such as process requirements, as long as the light-emitting unit optical isolation body 301 can be effectively insulated from the adjacent light-emitting unit 111.
  • the insulating structure 303 may cover part or all of the light-isolating body 301 of the light-emitting unit.
  • the insulating structure 303 may cover a portion of the light-emitting unit optical isolation body 301, for example: one side and both sides of the light-emitting unit optical isolation body 301 , Three or more sides.
  • the insulating structure 303 may cover all of the light-isolating body 301 of the light-emitting unit.
  • the arrangement of the insulating structure 303 (for example, covering part or all of the light-isolating body 301 of the light-emitting unit) can be considered according to actual conditions such as process requirements, as long as the light-emitting unit can be optically isolated from the adjacent light-emitting unit 301.
  • the unit 111 can be effectively insulated.
  • At least one of the light-isolating body 301 and the insulating structure 303 of the light-emitting unit may include a light-isolating material 302.
  • the insulating structure 303 may be in contact with at least one of two adjacent light-emitting units 111.
  • the insulating structure 303 may not be in contact with two adjacent light emitting units 111.
  • the insulating structure 303 is in contact with the first light-emitting unit 320. It is in contact with the second light emitting unit 330.
  • the insulating structure 303 is in contact with the second light-emitting unit 330. It is in contact with the first light emitting unit 320.
  • two adjacent light-emitting units 111 include a first light-emitting unit 320 and a second light-emitting unit 330
  • the insulating structure 303 and the first light-emitting unit as a single unit 320 and the second light emitting unit 330 are in contact.
  • two adjacent light-emitting units 111 include a first light-emitting unit 320 and a second light-emitting unit 330
  • one of the two relatively independent insulating structures 303 is insulated
  • the structure 303 is in contact with the first light-emitting unit 320 but not with the second light-emitting unit 330
  • the other insulating structure 303 is in contact with the second light-emitting unit 330 but not with the first light-emitting unit 320.
  • the insulating structure 303 is connected to the first light-emitting unit 320 and the second light-emitting unit 330. None of the light emitting units 330 are in contact.
  • the arrangement of the insulating structure 303 (for example, contacting at least one of the two adjacent light-emitting units 111) can be considered according to actual conditions such as process requirements, as long as the light-emitting unit can be optically isolated from the main body 301 and the phase.
  • the adjacent light-emitting unit 111 may be effectively insulated.
  • the light isolation material 302 may include at least one of a light absorbing material 3021 and a light reflecting material 3022.
  • the light isolation material 302 may include a light absorbing material 3021.
  • the light isolation material 302 may include a light reflective material 3022.
  • the light isolation material 302 may include a light absorbing material 3021 and a light reflecting material 3022.
  • the arrangement of the optical isolation material 302 may be considered according to actual conditions such as process requirements, as long as the optical isolation material 302 can effectively achieve optical isolation.
  • the light isolation material 302 contains the light absorbing material 3021 and the light reflecting material 3022
  • the positions and proportions of the light absorbing material 3021 and the light reflecting material 3022 can be considered according to actual conditions such as process requirements.
  • the light-emitting unit light isolation structure 300 has a cross-sectional shape along the light-emitting direction Z of the light-emitting unit layer 110 Part or all of the shapes include at least one of right-angled quadrilaterals, triangles, and trapezoids.
  • the cross-sectional shape of the light-emitting unit light isolation structure 300 along the light emission direction Z of the light-emitting unit layer 110 is a right-angled quadrilateral.
  • the cross-sectional shape of the light-emitting unit light isolation structure 300 along the light emission direction Z of the light-emitting unit layer 110 includes two right-angled quadrilaterals, and the two right-angled quadrilaterals are in the plane direction of the light-emitting unit layer 110.
  • the width on P is not the same.
  • a right-angled quadrilateral with a relatively small width in the planar direction P of the light-emitting unit layer 110 may be close to the light-emitting side X of the light-emitting unit layer 110, and a right-angled square with a relatively large width in the planar direction P of the light-emitting unit layer 110 The quadrilateral may be far away from the light emitting side X of the light emitting unit layer 110.
  • the relative positional relationship of the two right-angled quadrilaterals can also be opposite to that shown in the figure.
  • a right-angled quadrilateral with a relatively large width in the plane direction P of the light-emitting unit layer 110 can be close to the light output of the light-emitting unit layer 110.
  • the side X, a right-angled quadrilateral with a relatively small width in the plane direction P of the light-emitting unit layer 110 may be far away from the light-emitting side X of the light-emitting unit layer 110.
  • the cross-sectional shape of the light-emitting unit light isolation structure 300 along the light-emitting direction Z of the light-emitting unit layer 110 is a triangle.
  • one side of the triangle may be far away from the light emitting side X of the light emitting unit layer 110.
  • one side of the triangle may be close to the light emitting side X of the light emitting unit layer 110.
  • the cross-sectional shape of the light-emitting unit light isolation structure 300 along the light emitting direction Z of the light-emitting unit layer 110 includes a right-angled quadrilateral and a triangle.
  • the right-angled quadrilateral may be far away from the light-emitting side X of the light-emitting unit layer 110, and the triangle may be close to the light-emitting side X of the light-emitting unit layer 110.
  • the relative positional relationship between the right-angled quadrilateral and the triangle can also be opposite to that shown in the figure.
  • one side of the triangle may face the light-emitting side X of the light-emitting unit layer 110 or back to the light-emitting side X of the light-emitting unit layer 110.
  • the cross-sectional shape of the light-emitting unit light isolation structure 300 along the light emission direction Z of the light-emitting unit layer 110 is a trapezoid.
  • the upper bottom side A of the trapezoid may face the light emitting side X of the light emitting unit layer 110.
  • the upper bottom side A of the trapezoid may face away from the light emitting side X of the light emitting unit layer 110.
  • the cross-sectional shape of the light-emitting unit light isolation structure 300 along the light emission direction Z of the light-emitting unit layer 110 includes a trapezoid and a right-angled quadrilateral.
  • the right-angled quadrilateral may be close to the light-emitting side X of the light-emitting unit layer 110, and the trapezoid may be far away from the light-emitting side X of the light-emitting unit layer 110.
  • the upper bottom side A of the trapezoid may face the light-emitting side X of the light-emitting unit layer 110 or face away from the light-emitting side X of the light-emitting unit layer 110.
  • the cross-sectional shape of the light-emitting unit light isolation structure 300 along the light emission direction Z of the light-emitting unit layer 110 includes a trapezoid and a right-angled quadrilateral.
  • the right-angled quadrilateral may be far away from the light-emitting side X of the light-emitting unit layer 110, and the trapezoid may be close to the light-emitting side X of the light-emitting unit layer 110.
  • the upper bottom side A of the trapezoid may face the light-emitting side X of the light-emitting unit layer 110 or face away from the light-emitting side X of the light-emitting unit layer 110.
  • the cross-sectional shape of the light-emitting unit light isolation structure 300 along the light emission direction Z of the light-emitting unit layer 110 includes a trapezoid and a triangle.
  • the trapezoid may be far away from the light emitting side X of the light emitting unit layer 110, and the triangle may be close to the light emitting side X of the light emitting unit layer 110.
  • the relative positional relationship between the trapezoid and the triangle may be opposite to that shown in the figure.
  • the trapezoid may be close to the light emitting side X of the light emitting unit layer 110, and the triangle may be far away from the light emitting side X of the light emitting unit layer 110.
  • the upper bottom side A of the trapezoid may face the light-emitting side X of the light-emitting unit layer 110 or face away from the light-emitting side X of the light-emitting unit layer 110.
  • one side of the triangle may face the light-emitting side X of the light-emitting unit layer 110 or back to the light-emitting side X of the light-emitting unit layer 110.
  • the cross-sectional shape of the light-emitting unit optical isolation structure 300 along the light emission direction Z of the light-emitting unit layer 110 may be considered according to actual conditions such as process requirements, as long as the light-emitting unit optical isolation structure 300 can avoid two adjacent light-emitting units 111
  • the emitted light may be conducted in an undesired direction (for example, the light emitted by two adjacent light-emitting units 111 may be conducted to each other).
  • the light isolation structure 300 of the light-emitting unit may include a structure and material capable of achieving light isolation, such as at least one of metals such as silver and aluminum.
  • the structure and material of the light-emitting unit optical isolation structure 300 can be determined according to actual conditions such as process requirements, as long as the light-emitting unit optical isolation structure 300 can prevent the light emitted by two adjacent light-emitting units 111 from being transmitted in undesired directions ( For example, the light emitted by two adjacent light-emitting units 111 is transmitted to each other).
  • the light-isolating structure 300 of the light-emitting unit may also include other structures and materials capable of light absorption, light reflection, etc., such as resin compositions, titanium oxides (for example, TiO2), and the like.
  • the material for realizing light absorption may also include a black matrix (BM).
  • the structure and material of the light-emitting unit optical isolation structure 300 can be determined according to actual conditions such as process requirements, as long as the light-emitting unit optical isolation structure 300 can prevent the light emitted by two adjacent light-emitting units 111 from being transmitted in undesired directions ( For example, the light emitted by two adjacent light-emitting units 111 is transmitted to each other).
  • the light-emitting module may further include: a light conversion layer 410 disposed on the light-emitting unit layer 110.
  • the light conversion layer 410 can realize the color conversion of light by means of wavelength selection or the like, for example: color conversion of the light from the light-emitting unit layer 110.
  • the light conversion layer 410 may be disposed on the light emitting surface S of the light emitting unit layer 110.
  • part or all of the plurality of light emitting units 111 may be an unpackaged structure.
  • part of the plurality of light emitting units 111 may be an unpackaged structure.
  • one, two, three, or more of the plurality of light-emitting units 111 may only be light-emitting units that have been set up and capable of emitting light, and have not undergone encapsulation processing, and have not formed packages such as an encapsulation layer for encapsulating the light-emitting units.
  • At least one of the plurality of light-emitting units 111 may be a light-emitting unit including a first semiconductor layer, an active layer, and a second semiconductor layer (or, an electrode) formed based on epitaxial growth, but not After the encapsulation process, no encapsulation structure such as an encapsulation layer that encapsulates the light-emitting unit including the first semiconductor layer, the active layer, and the second semiconductor layer (or, may also include an electrode) is not formed.
  • all of the plurality of light emitting units 111 may be an unpackaged structure.
  • all of the multiple light-emitting units 111 may only be light-emitting units that have been set up and capable of emitting light, and have not undergone encapsulation processing, and no packaging structure such as an encapsulation layer for encapsulating the light-emitting units has been formed, for example: multiple light-emitting units 111 All of them may be light emitting units including the first semiconductor layer, the active layer, and the second semiconductor layer (or, may also include electrodes) formed based on epitaxial growth.
  • Packaging structures such as a semiconductor layer, an active layer, a second semiconductor layer (or, an encapsulation layer, which may also include an electrode) encapsulated by the light-emitting unit.
  • part or all of the plurality of light emitting units 111 may be a package structure.
  • one, two, three or more of the plurality of light-emitting units 111 may not only complete the set-up of light-emitting units that can emit light, but also may undergo packaging processing to form an encapsulation layer that encapsulates the light-emitting units.
  • at least one of the plurality of light-emitting units 111 may be a light-emitting unit including a first semiconductor layer, an active layer, and a second semiconductor layer (or an electrode) formed based on epitaxial growth.
  • a packaging structure such as an packaging layer that encapsulates the light emitting unit including the first semiconductor layer, the active layer, and the second semiconductor layer (or, may also include electrodes) is formed.
  • the package structure encapsulating one or more light-emitting units 111 can be regarded as one light-emitting unit 111 as a whole.
  • one package structure includes one light-emitting unit 111.
  • Unit 111, the package structure including the one light-emitting unit 111 can be regarded as a light-emitting unit 111; for another example: a package structure includes three light-emitting units 111, and the package structure including the three light-emitting units 111 can be viewed as Make a light-emitting unit 111.
  • part or all of the multiple light-emitting units 111 may be configured as unpackaged structures according to actual conditions such as process requirements, or part or all of the multiple light-emitting units 111 may be configured as unpackaged structures according to actual conditions such as process requirements.
  • the light-emitting unit optical isolation structure 300 can prevent the light emitted by two adjacent light-emitting units 111 from being conducted in an undesired direction (for example, the light emitted by two adjacent light-emitting units 111 is conducted to each other) for the packaging structure.
  • the plurality of light emitting units 111 may include at least one of LED, Mini LED, and Micro LED.
  • the plurality of light emitting units 111 may include at least one LED.
  • the plurality of light emitting units 111 may include at least one Mini LED.
  • the plurality of light emitting units 111 may include at least one Micro LED.
  • the plurality of light emitting units 111 may include at least one LED and at least one Mini LED.
  • the plurality of light emitting units 111 may include at least one LED and at least one Micro LED.
  • the plurality of light emitting units 111 may include at least one Mini LED and at least one Micro LED.
  • the plurality of light emitting units 111 may include at least one LED, at least one Mini LED, and at least one Micro LED.
  • the plurality of light emitting units 111 may include other light emitting devices in addition to LEDs, Mini LEDs, and Micro LEDs.
  • the device type of the light-emitting unit 111 may be determined according to actual conditions such as process requirements, for example: LED, Mini LED, Micro LED, or other light-emitting devices.
  • the display module 700 provided by an embodiment of the present disclosure includes the above-mentioned light-emitting module 100.
  • the display module 700 may support 3D display.
  • the display screen 800 provided by the embodiment of the present disclosure includes the above-mentioned display module 700.
  • the display screen 800 may perform 3D display.
  • a display 900 provided by an embodiment of the present disclosure includes the above-mentioned display screen 800.
  • the display 900 may perform 3D display.
  • the display 900 may further include other components for supporting the normal operation of the display 900, such as at least one of a communication interface, a frame, a control circuit, and other components.
  • the light-emitting module, display module, display screen and display provided by the embodiments of the present disclosure pass through the backlight isolation layer provided on the backlight surface of the light-emitting unit layer, and two adjacent light-emitting units in part or all of the multiple light-emitting units.
  • the light isolation structure of the light-emitting unit is arranged between the units to try to avoid the light emitted by the light-emitting unit from being conducted in undesired directions, which is beneficial to improve the display effect and also has the possibility of improving the light utilization rate.
  • the first element can be called the second element, and similarly, the second element can be called the first element, as long as all occurrences of the "first element” are renamed consistently and all occurrences "Second component” can be renamed consistently.
  • the first element and the second element are both elements, but they may not be the same element.
  • the terms used in this application are only used to describe the embodiments and are not used to limit the claims. As used in the description of the embodiments and claims, unless the context clearly indicates, the singular forms "a” (a), “an” (an) and “the” (the) are intended to also include plural forms .
  • the term “and/or” as used in this application refers to any and all possible combinations that include one or more of the associated lists.
  • the term “comprise” and its variants “comprises” and/or including (comprising) and the like refer to the stated features, wholes, steps, operations, elements, and/or The existence of components does not exclude the existence or addition of one or more other features, wholes, steps, operations, elements, components, and/or groups of these. If there are no more restrictions, the element defined by the sentence “including a" does not exclude the existence of other identical elements in the process, method, or device that includes the element.
  • each embodiment focuses on the differences from other embodiments, and the same or similar parts between the various embodiments can be referred to each other.
  • the relevant parts can be referred to the description of the method parts.
  • the disclosed methods and products can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of units may only be a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to implement this embodiment.
  • the functional units in the embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Planar Illumination Modules (AREA)
  • Electroluminescent Light Sources (AREA)
  • Liquid Crystal (AREA)

Abstract

一种发光模组(100),涉及光学技术领域,包括:发光单元层(110),包括多个发光单元(111);背光隔离层(120),设置于发光单元层(110)的背光面(112);其中,在多个发光单元(111)的部分或全部中,相邻的两个发光单元(111)之间设置有发光单元光隔离结构(300)。发光模组(100)通过设置于发光单元层(110)背光面(112)的背光隔离层(120),以及在多个发光单元(111)的部分或全部中相邻的两个发光单元(111)之间设置的发光单元光隔离结构(300),尽量避免发光单元(111)发出的光向不希望的方向传导,有利于改善显示效果。一种显示模组(700)、显示屏(800)及显示器(900)。

Description

发光模组、显示模组、显示屏及显示器
本申请要求在2020年05月22日提交中国知识产权局、申请号为202010440095.4、发明名称为“发光模组、显示模组、显示屏及显示器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光学技术领域,例如涉及一种发光模组、显示模组、显示屏及显示器。
背景技术
目前通常使用到发光单元,以对显示进行支持。
在实现本公开实施例的过程中,发现相关技术中至少存在如下问题:
发光单元发出的光中的一部分会向不希望的方向传导,向不希望的方向传导的光将影响显示效果。
发明内容
为了对披露的实施例的一些方面有基本的理解,下面给出了简单的概括。该概括不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围,而是作为后面的详细说明的序言。
本公开实施例提供了一种发光模组、显示模组、显示屏及显示器,以解决发光单元发出的光中的一部分会向不希望的方向传导,导致影响显示效果的技术问题。
本公开实施例提供的发光模组,包括:
发光单元层,包括多个发光单元;
背光隔离层,设置于发光单元层的背光面;
其中,在多个发光单元的部分或全部中,相邻的两个发光单元之间设置有发光单元光隔离结构。
在一些实施例中,背光隔离层可以包括背光分布式布拉格反射镜(DBR)反射层、背光金属反射层、背光吸收层中至少之一。
在一些实施例中,背光隔离层可以包括至少一层的背光DBR反射层。可选地,背光隔离层可以包括至少一层的背光金属反射层。可选地,背光隔离层可以包括至少一层的背光吸收层。可选地,背光隔离层可以包括至少一层的背光DBR反射层、以及至少一层的背光 金属反射层。可选地,背光隔离层可以包括至少一层的背光DBR反射层、以及至少一层的背光吸收层。可选地,背光隔离层可以包括至少一层的背光金属反射层、以及至少一层的背光吸收层。可选地,背光隔离层可以包括至少一层的背光DBR反射层、至少一层的背光金属反射层、以及至少一层的背光吸收层。
在一些实施例中,背光隔离层中可以设置有支持发光单元层实现电连接的导电孔。
在一些实施例中,导电孔中可以填充有导电材料,背光隔离层可以包括至少一层的背光DBR反射层、以及至少一层的背光吸收层中至少之一,至少一层的背光DBR反射层、以及至少一层的背光吸收层中至少之一可以与导电材料直接接触。
在一些实施例中,导电孔中可以填充有导电材料,背光隔离层可以包括至少一层的背光金属反射层,至少一层的背光金属反射层与导电材料之间可以设置有绝缘部。
在一些实施例中,绝缘部中的部分或全部区域可以设置有光隔离材料。
在一些实施例中,背光隔离层远离发光单元层的一面,可以设置有电连接层。
在一些实施例中,发光单元层与电连接层可以通过导电孔实现电连接。
在一些实施例中,背光隔离层可以包括至少一层的背光金属反射层,至少一层的背光金属反射层可以设置有与电连接层、发光单元层绝缘的绝缘层。
在一些实施例中,绝缘层可以包括以下至少之一:
设置于背光金属反射层与电连接层之间的第一绝缘层;
设置于背光金属反射层与发光单元层之间的第二绝缘层。
在一些实施例中,第一绝缘层和第二绝缘层中至少之一的部分或全部区域可以设置有光隔离材料。
在一些实施例中,背光隔离层可以直接设置于发光单元层的背光面。
在一些实施例中,背光隔离层可以贴合于发光单元层的背光面。
在一些实施例中,背光隔离层可以设置于发光单元层的背光面的部分或全部区域。
在一些实施例中,背光隔离层可以设置于发光单元层的背光面的透光区域。
在一些实施例中,发光单元光隔离结构可以设置于相邻的两个发光单元之间的部分或全部区域。
在一些实施例中,相邻的两个发光单元之间可以存在发光单元间隔区域,发光单元间隔区域的部分或全部中可以设置有发光单元光隔离结构。
在一些实施例中,相邻的两个发光单元可以包括第一发光单元、第二发光单元,第一发光单元可以包括靠近第二发光单元的第一面,第二发光单元可以包括靠近第一发光单元的第二面。可选地,发光单元光隔离结构可以设置于第一面、第二面中至少之一,或不与 第一面、第二面接触。
在一些实施例中,发光单元光隔离结构可以设置于第一面、第二面中至少之一的透光区域。
在一些实施例中,发光单元光隔离结构可以与背光隔离层直接接触,或与背光隔离层之间存在间隙。
在一些实施例中,发光单元光隔离结构可以包括发光单元光隔离主体。
在一些实施例中,发光单元光隔离主体可以不导电,且可以包含光隔离材料。
在一些实施例中,发光单元光隔离主体可以导电。可选地,发光单元光隔离结构还可以包括:绝缘结构,设置于发光单元光隔离主体,和需要绝缘于发光单元光隔离主体的发光单元之间。
在一些实施例中,绝缘结构可以设置于发光单元光隔离主体,和相邻的两个发光单元中至少之一之间。
在一些实施例中,绝缘结构可以覆盖发光单元光隔离主体的部分或全部。
在一些实施例中,发光单元光隔离主体和绝缘结构中至少之一可以包含光隔离材料。
在一些实施例中,绝缘结构可以与相邻的两个发光单元中至少之一接触。可选地,绝缘结构可以不与相邻的两个发光单元接触。
在一些实施例中,光隔离材料可以包括光吸收材料、光反射材料中至少之一。
在一些实施例中,发光单元光隔离结构沿发光单元层的出光方向的截面形状中的部分或全部形状可以包括直角四边形、三角形、梯形中至少之一。
在一些实施例中,发光单元光隔离结构沿发光单元层的出光方向的截面形状可以包括梯形,梯形的上底边可以朝向发光单元层的出光侧。
在一些实施例中,发光模组还可以包括:设置于发光单元层的光转换层。
在一些实施例中,光转换层可以设置于发光单元层的出光面。
在一些实施例中,多个发光单元中的部分或全部可以是未封装结构。
在一些实施例中,多个发光单元,可以包括:
发光二极管(LED)、迷你(Mini)LED、微(Micro)LED中至少之一。
本公开实施例提供的显示模组,包括上述的发光模组。
本公开实施例提供的显示屏,包括上述的显示模组。
本公开实施例提供的显示器,包括上述的显示屏。
本公开实施例提供的发光模组、显示模组、显示屏及显示器,可以实现以下技术效果:
通过设置于发光单元层的背光面的背光隔离层,以及在多个发光单元的部分或全部中 相邻的两个发光单元之间设置发光单元光隔离结构,尽量避免发光单元发出的光向不希望的方向传导,有利于改善显示效果。
以上的总体描述和下文中的描述仅是示例性和解释性的,不用于限制本申请。
附图说明
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明和附图并不构成对实施例的限定,附图中具有相同参考数字标号的元件示为类似的元件,附图不构成比例限制,并且其中:
图1是本公开实施例提供的发光模组的结构示意图;
图2A、图2B、图2C、图2D、图2E、图2F、图2G是本公开实施例提供的背光隔离层的结构示意图;
图3是本公开实施例提供的背光隔离层的另一结构示意图;
图4A、图4B、图4C是本公开实施例提供的背光隔离层的另一结构示意图;
图5是本公开实施例提供的背光隔离层的另一结构示意图;
图6A、图6B、图6C、图6D是本公开实施例提供的绝缘部的结构示意图;
图7是本公开实施例提供的发光模组的另一结构示意图;
图8是本公开实施例提供的发光模组的另一结构示意图;
图9是本公开实施例提供的发光模组的另一结构示意图;
图10是本公开实施例提供的绝缘层的结构示意图;
图11A、图11B、图11C、图11D、图11E、图11F、图11G、图11H是本公开实施例提供的绝缘层的另一结构示意图;
图12A、图12B、图12C是本公开实施例提供的发光模组的另一结构示意图;
图13A、图13B、图13C是本公开实施例提供的发光模组的另一结构示意图;
图14A、图14B、图14C是本公开实施例提供的发光单元光隔离结构的结构示意图;
图15A、图15B、图15C、图15D、图15E是本公开实施例提供的发光单元光隔离结构的另一结构示意图;
图16A、图16B、图16C、图16D是本公开实施例提供的发光单元光隔离结构的另一结构示意图;
图17A、图17B、图17C、图17D、图17E、图17F、图17G、图17H、图17I、图17J、图17K、图17L、图17M、图17N是本公开实施例提供的发光单元光隔离结构的另一结构示意图;
图18是本公开实施例提供的发光单元光隔离主体的结构示意图;
图19是本公开实施例提供的发光单元光隔离主体的另一结构示意图;
图20是本公开实施例提供的发光单元光隔离结构的另一结构示意图;
图21A、图21B、图21C是本公开实施例提供的发光单元光隔离结构的另一结构示意图;
图22A、图22B、图22C、图22D、图22E是本公开实施例提供的发光单元光隔离结构的另一结构示意图;
图23A、图23B、图23C、图23D、图23E是本公开实施例提供的发光单元光隔离结构的另一结构示意图;
图24A、图24B、图24C、图24D是本公开实施例提供的光隔离材料的结构示意图;
图25A、图25B、图25C、图25D、图25E、图25F、图25G、图25H是本公开实施例提供的发光模组的另一结构示意图;
图26是本公开实施例提供的发光模组的另一结构示意图;
图27是本公开实施例提供的发光模组的另一结构示意图;
图28是本公开实施例提供的显示模组的结构示意图;
图29是本公开实施例提供的显示屏的结构示意图;
图30是本公开实施例提供的显示器的结构示意图。
附图标记:
100:发光模组;110:发光单元层;111:发光单元;112:背光面;1121:透光区域;120:背光隔离层;1201:层结构;121:背光DBR反射层;122:背光金属反射层;123:背光吸收层;124:导电孔;125:导电材料;126:绝缘部;127:光隔离材料;128:绝缘层;1281:第一绝缘层;1282:第二绝缘层;130:电连接层;300:发光单元光隔离结构;301:发光单元光隔离主体;302:光隔离材料;3021:光吸收材料;3022:光反射材料;303:绝缘结构;310:发光单元间隔区域;320:第一发光单元;321:第一面;330:第二发光单元;331:第二面;333:透光区域;334:透光区域;A:上底边;P:平面方向;S:出光面;X:出光侧;Z:出光方向;EG:边缘;410:光转换层;700:显示模组;800:显示屏;900:显示器。
具体实施方式
为了能够更加详尽地了解本公开实施例的特点与技术内容,下面结合附图对本公开实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本公开实施例。在 以下的技术描述中,为方便解释起见,通过多个细节以提供对所披露实施例的充分理解。然而,在没有这些细节的情况下,一个或多个实施例仍然可以实施。在其它情况下,为简化附图,熟知的结构和装置可以简化展示。
参见图1,本公开实施例提供了一种发光模组100,包括:
发光单元层110,包括多个发光单元111;
背光隔离层120,设置于发光单元层110的背光面112;
其中,在多个发光单元111的部分或全部中,相邻的两个发光单元111之间设置有发光单元光隔离结构300。
这样,背光隔离层120能够尽量避免发光单元111发出的光向不希望的方向传导(例如:发光单元111发出的光透过发光单元层110的背光面112),并且发光单元光隔离结构300能够尽量避免相邻的两个发光单元111发出的光向不希望的方向传导(例如:相邻的两个发光单元111发出的光向彼此传导),有利于改善显示效果。
参见图2A、图2B、图2C、图2D、图2E、图2F、图2G,在一些实施例中,背光隔离层120可以包括背光DBR反射层121、背光金属反射层122、背光吸收层123中至少之一。
在一些实施例中,背光DBR反射层121可以包括能够实现光反射的结构及材质。可选地,可以根据工艺需求等实际情况确定背光DBR反射层121的结构及材质,只要能够反射发光单元层110发出的光即可。
在一些实施例中,背光金属反射层122可以包括能够实现光反射的结构及材质,例如:银、铝等金属中的至少一种。可选地,可以根据工艺需求等实际情况确定背光金属反射层122所包含的材质,只要能够反射发光单元层110发出的光即可。
在一些实施例中,背光吸收层123可以包括能够实现光吸收的结构及材质,例如:树脂组合物。可选地,实现光吸收的材质也可以包括黑矩阵(BM)。可选地,可以根据工艺需求等实际情况确定背光吸收层123的结构及材质,只要能够吸收发光单元层110发出的光即可。
在一些实施例中,除了背光DBR反射层121、背光金属反射层122、背光吸收层123中至少之一以外,背光隔离层120可能还包括其他结构和材质。可选地,背光隔离层120可能不包含背光DBR反射层121、背光金属反射层122、背光吸收层123中的任一种,而是包括其他结构和材质。可选地,可以根据工艺需求等实际情况确定背光隔离层120的结构及材质;无论背光隔离层120的结构及材质如何,只要背光隔离层120能够隔离发光单元层110发出的光,以尽量避免发光单元111发出的光向不希望的方向传导即可。
在一些实施例中,背光隔离层120可以以反射或吸收等方式完全或有比例地隔离发光单元层110发出的光,例如:以100%、90%、80%等比例隔离发光单元层110发出的光。可选地,可以根据工艺需求等实际情况确定隔离发光单元层110发出的光的比例。
在一些实施例中,如图2A中所示,背光隔离层120可以包括至少一层的背光DBR反射层121。
在一些实施例中,如图2B中所示,背光隔离层120可以包括至少一层的背光金属反射层122,例如:一层、两层、三层或更多层的背光金属反射层122。
在一些实施例中,如图2C中所示,背光隔离层120可以包括至少一层的背光吸收层123,例如:一层、两层、三层或更多层的背光吸收层123。
在一些实施例中,如图2D中所示,背光隔离层120可以包括至少一层的背光DBR反射层121、以及至少一层的背光金属反射层122,例如:一层、两层、三层或更多层的背光DBR反射层121,以及一层、两层、三层或更多层的背光金属反射层122。可选地,可以根据工艺需求等实际情况确定至少一层的背光DBR反射层121、以及至少一层的背光金属反射层122中各层的层次关系,例如:相对集中地设置至少一层的背光DBR反射层121中的所有背光DBR反射层121,相对集中地设置至少一层的背光金属反射层122中的所有背光金属反射层122;或,交叠设置背光DBR反射层121、背光金属反射层122。
在一些实施例中,如图2E中所示,背光隔离层120可以包括至少一层的背光DBR反射层121、以及至少一层的背光吸收层123,例如:一层、两层、三层或更多层的背光DBR反射层121,以及一层、两层、三层或更多层的背光吸收层123。可选地,可以根据工艺需求等实际情况确定至少一层的背光DBR反射层121、以及至少一层的背光吸收层123中各层的层次关系,例如:相对集中地设置至少一层的背光DBR反射层121中的所有背光DBR反射层121,相对集中地设置至少一层的背光吸收层123中的所有背光吸收层123;或,交叠设置背光DBR反射层121、背光吸收层123。
在一些实施例中,如图2F中所示,背光隔离层120可以包括至少一层的背光金属反射层122、以及至少一层的背光吸收层123,例如:一层、两层、三层或更多层的背光金属反射层122,以及一层、两层、三层或更多层的背光吸收层123。可选地,可以根据工艺需求等实际情况确定至少一层的背光金属反射层122、以及至少一层的背光吸收层123中各层的层次关系,例如:相对集中地设置至少一层的背光金属反射层122中的所有背光金属反射层122,相对集中地设置至少一层的背光吸收层123中的所有背光吸收层123;或,交叠设置背光金属反射层122、背光吸收层123。
在一些实施例中,如图2G中所示,背光隔离层120可以包括至少一层的背光DBR反 射层121、至少一层的背光金属反射层122、以及至少一层的背光吸收层123,例如:一层、两层、三层或更多层的背光DBR反射层121,一层、两层、三层或更多层的背光金属反射层122,以及一层、两层、三层或更多层的背光吸收层123。可选地,可以根据工艺需求等实际情况确定至少一层的背光DBR反射层121、至少一层的背光金属反射层122、以及至少一层的背光吸收层123中各层的层次关系,例如:相对集中地设置至少一层的背光DBR反射层121中的所有背光DBR反射层121,相对集中地设置至少一层的背光金属反射层122中的所有背光金属反射层122,相对集中地设置至少一层的背光吸收层123中的所有背光吸收层123;或,交叠设置背光DBR反射层121、背光金属反射层122、背光吸收层123中的至少两种。
参见图3,在一些实施例中,背光隔离层120中可以设置有支持发光单元层110实现电连接的导电孔124。可选地,可以根据工艺需求等实际情况确定导电孔124的数量、设置位置等,例如:可以设置多个导电孔124;可选地,多个导电孔124中的部分或全部可以是导电通孔。
参见图4A、图4B、图4C,在一些实施例中,导电孔124中可以填充有导电材料125,背光隔离层120可以包括至少一层的背光DBR反射层121、以及至少一层的背光吸收层123中至少之一,至少一层的背光DBR反射层121、以及至少一层的背光吸收层123中至少之一可以与导电材料125直接接触。
在一些实施例中,如图4A中所示,导电孔124中可以填充有导电材料125,背光隔离层120可以包括至少一层的背光DBR反射层121。可选地,可以设置多个导电孔124。可选地,多个导电孔124中的部分或全部可以是导电通孔,能够贯穿至少一层的背光DBR反射层121中所有背光DBR反射层121的部分或全部。可选地,可以根据工艺需求等实际情况确定导电孔124的数量、设置位置等。
在一些实施例中,如图4B中所示,导电孔124中可以填充有导电材料125,背光隔离层120可以包括至少一层的背光吸收层123。可选地,可以设置多个导电孔124。可选地,多个导电孔124中的部分或全部可以是导电通孔,能够贯穿至少一层的背光吸收层123中所有背光吸收层123的部分或全部。可选地,可以根据工艺需求等实际情况确定导电孔124的数量、设置位置等。
在一些实施例中,如图4C中所示,导电孔124中可以填充有导电材料125,背光隔离层120可以包括至少一层的背光DBR反射层121、以及至少一层的背光吸收层123。可选地,可以设置多个导电孔124。可选地,多个导电孔124中的部分或全部可以是导电通孔,能够贯穿至少一层的背光DBR反射层121、以及至少一层的背光吸收层123中所有背光 DBR反射层121、以及背光吸收层123的部分或全部。可选地,可以根据工艺需求等实际情况确定导电孔124的数量、设置位置等。
参见图5,在一些实施例中,导电孔124中可以填充有导电材料125,背光隔离层120可以包括至少一层的背光金属反射层122,至少一层的背光金属反射层122与导电材料125之间设置有绝缘部126。可选地,背光隔离层120中可以设置有多个导电孔124,多个导电孔124中的部分或全部可以如图5所示设置。
参见图6A、图6B、图6C、图6D,在一些实施例中,绝缘部126中的部分或全部区域设置有光隔离材料127。
在一些实施例中,如图6A中所示,绝缘部126的两侧可以设置有光隔离材料127。
在一些实施例中,如图6B中所示,绝缘部126的一侧可以设置有光隔离材料127。
在一些实施例中,如图6C中所示,绝缘部126的与图6B中设置有光隔离材料127的一侧相对的另一侧可以设置有光隔离材料127。
在一些实施例中,如图6D中所示,绝缘部126中的全部区域设置有光隔离材料127。
在一些实施例中,可以根据工艺需求等实际情况确定在绝缘部126中设置光隔离材料127的区域。
参见图7,在一些实施例中,背光隔离层120远离发光单元层110的一面,可以设置有电连接层130。
参见图8,在一些实施例中,发光单元层110与电连接层130可以通过导电孔124实现电连接。可选地,可以根据工艺需求等实际情况以导电孔124以外的其他方式实现发光单元层110与电连接层130之间的电连接。
参见图9,在一些实施例中,背光隔离层120可以包括至少一层的背光金属反射层122,至少一层的背光金属反射层122可以设置有与电连接层130、发光单元层110绝缘的绝缘层128。
参见图10,在一些实施例中,绝缘层128可以包括以下至少之一:
设置于背光金属反射层122与电连接层130之间的第一绝缘层1281;
设置于背光金属反射层122与发光单元层110之间的第二绝缘层1282。
参见图11A、图11B、图11C、图11D、图11E、图11F、图11G、图11H,在一些实施例中,第一绝缘层1281和第二绝缘层1282中至少之一的部分或全部区域可以设置有光隔离材料127。
在一些实施例中,如图11A中所示,第一绝缘层1281的两侧设置有光隔离材料127。
在一些实施例中,如图11B中所示,第一绝缘层1281的一侧设置有光隔离材料127。
在一些实施例中,如图11C中所示,第一绝缘层1281的与图11B中设置有光隔离材料127的一侧相对的另一侧设置有光隔离材料127。
在一些实施例中,如图11D中所示,第一绝缘层1281的全部区域设置有光隔离材料127。
在一些实施例中,如图11E中所示,第二绝缘层1282的两侧设置有光隔离材料127。
在一些实施例中,如图11F中所示,第二绝缘层1282的一侧设置有光隔离材料127。
在一些实施例中,如图11G中所示,第二绝缘层1282的与图11F中设置有光隔离材料127的一侧相对的另一侧设置有光隔离材料127。
在一些实施例中,如图11H中所示,第二绝缘层1282的全部区域设置有光隔离材料127。
在一些实施例中,可以根据工艺需求等实际情况确定在绝缘层128(例如:第一绝缘层1281、第二绝缘层1282中至少之一)中设置光隔离材料127的区域。
在一些实施例中,结合图1,背光隔离层120可以直接设置于发光单元层110的背光面112。可选地,背光隔离层120与发光单元层110的背光面112之间可以不存在其他器件或结构。可选地,可以根据工艺需求等实际情况在背光隔离层120与发光单元层110的背光面112之间的部分或全部区域设置其他器件或结构。
在一些实施例中,背光隔离层120可以贴合于发光单元层110的背光面112。可选地,可以根据工艺需求等实际情况将背光隔离层120的部分或全部贴合于发光单元层110的背光面112。可选地,在背光隔离层120的部分贴合于发光单元层110的背光面112的情况下,背光隔离层120的未贴合于发光单元层110的背光面112的部分,可以与发光单元层110的背光面112之间存在一定距离。可选地,可以根据工艺需求等实际情况设置该距离。
参见图12A、图12B、图12C,在一些实施例中,背光隔离层120可以设置于发光单元层110的背光面112的部分或全部区域。
在一些实施例中,如图12A中所示,背光隔离层120设置于发光单元层110的背光面112的全部区域。
在一些实施例中,如图12B中所示,背光隔离层120设置于发光单元层110的背光面112的部分区域,该部分区域可以为连续区域。可选地,该连续区域可以包括发光单元层110的背光面112的至少一个边缘EG;或,不包括发光单元层110的背光面112的任一边缘EG。
在一些实施例中,如图12C中所示,背光隔离层120(为方便识别,将背光隔离层120用虚线包围)设置于发光单元层110的背光面112的部分区域,该部分区域可以为非连续 区域。在这种情况下,背光隔离层120可以由不止一个的非连续的层结构1201构成。可选地,可以设置至少两个非连续区域,其中的至少一个非连续区域可以包括发光单元层110的背光面112的至少一个边缘EG;或,不包括发光单元层110的背光面112的任一边缘EG。可选地,可以根据工艺需求等实际情况确定用于设置背光隔离层120的发光单元层110的背光面112的非连续区域的位置、数量等,以确定构成背光隔离层120的非连续的层结构1201的位置、数量等。
在一些实施例中,可以根据工艺需求等实际情况考虑将背光隔离层120设置于发光单元层110的背光面112的部分或全部区域,只要背光隔离层120能够隔离发光单元层110发出的光,以尽量避免发光单元111发出的光向不希望的方向传导即可。
参见图13A、图13B、图13C,在一些实施例中,背光隔离层120可以设置于发光单元层110的背光面112的透光区域1121。在一些实施例中,如图13A、图13B、图13C中所示,箭头图形示例性地表示发光单元层110的一部分光向背光隔离层120的走向。可选地,为方便识别,将透光区域1121用虚线包围。
在一些实施例中,如图13A中所示,发光单元层110的背光面112的透光区域1121包括发光单元层110的背光面112的全部区域。在这种情况下,背光隔离层120可以设置于发光单元层110的背光面112的全部区域,以使得背光隔离层120可以设置于发光单元层110的背光面112的透光区域1121。
在一些实施例中,如图13B中所示,发光单元层110的背光面112的透光区域1121包括发光单元层110的背光面112的部分区域,该部分区域可以为连续区域。在这种情况下,背光隔离层120可以设置于发光单元层110的背光面112的部分区域(例如:该连续区域),以使得背光隔离层120可以设置于发光单元层110的背光面112的透光区域1121。可选地,该连续区域可以包括发光单元层110的背光面112的至少一个边缘EG;或,不包括发光单元层110的背光面112的任一边缘EG。
在一些实施例中,如图13C中所示,发光单元层110的背光面112的透光区域1121包括发光单元层110的背光面112的部分区域,该部分区域可以为非连续区域。在这种情况下,背光隔离层120可以设置于发光单元层110的背光面112的部分区域(例如:该非连续区域),以使得背光隔离层120可以设置于发光单元层110的背光面112的透光区域1121。相对应地,背光隔离层120可以由不止一个的非连续的层结构1201构成。可选地,可以设置至少两个非连续区域,其中的至少一个非连续区域可以包括发光单元层110的背光面112的至少一个边缘EG;或,不包括发光单元层110的背光面112的任一边缘EG。可选地,可以根据工艺需求等实际透光情况确定用于设置背光隔离层120的发光单元层110的背光 面112的非连续区域的位置、数量等,以确定构成背光隔离层120的非连续的层结构1201的位置、数量等。
在一些实施例中,可以根据工艺需求等实际透光情况确定发光单元层110的背光面112的透光区域1121,据此考虑将背光隔离层120设置于发光单元层110的背光面112的透光区域1121。可选地,该透光区域1121可以包括发光单元层110的背光面112的部分或全部区域,可以以连续区域或非连续区域的形式呈现,并且可以根据工艺需求等实际透光情况确定相应的位置、数量等,只要背光隔离层120能够隔离发光单元层110发出的光,以尽量避免发光单元111发出的光向不希望的方向传导即可。
参见图14A、图14B、图14C,在一些实施例中,发光单元光隔离结构300可以设置于相邻的两个发光单元111之间的部分或全部区域。
在一些实施例中,如图14A中所示,发光单元光隔离结构300设置于相邻的两个发光单元111之间的部分区域,该部分区域位于相邻的两个发光单元111之间且靠近其中的一个发光单元111(位于图中左侧的发光单元111)。
在一些实施例中,如图14B中所示,发光单元光隔离结构300设置于相邻的两个发光单元111之间的部分区域,该部分区域位于相邻的两个发光单元111之间,且与发光单元光隔离结构300在图14A中所处的位置相对(靠近位于图中右侧的发光单元111)。
在一些实施例中,如图14C中所示,发光单元光隔离结构300设置于相邻的两个发光单元111之间的全部区域。
在一些实施例中,可以根据工艺需求等实际情况确定在相邻的两个发光单元111之间设置发光单元光隔离结构300的区域,只要发光单元光隔离结构300能够避免相邻的两个发光单元111发出的光向不希望的方向传导(例如:相邻的两个发光单元111发出的光向彼此传导)即可。
参见图15A、图15B、图15C、图15D、图15E,在一些实施例中,相邻的两个发光单元111之间可以存在发光单元间隔区域310,发光单元间隔区域310的部分或全部中可以设置有发光单元光隔离结构300。
在一些实施例中,如图15A中所示,可以将具有直角四边形形状的发光单元间隔区域310作为相邻的两个发光单元111之间的发光单元间隔区域;该发光单元间隔区域310可以平顺地连接相邻的两个发光单元111,以使相邻的两个发光单元111与发光单元间隔区域310所共同形成的投影可以构成如图15A中所示的直角四边形等规则形状。
在一些实施例中,相邻的两个发光单元111之间的发光单元间隔区域310可能不具有如图15A中所示的发光单元间隔区域310的形状,而是具有圆形、椭圆形、三角形、梯形 等其他形状。可选地,在相邻的两个发光单元111之间的发光单元间隔区域310具有圆形、椭圆形、三角形、梯形等其他形状的情况下,该发光单元间隔区域310也有可能平顺地连接相邻的两个发光单元111,以使相邻的两个发光单元111与发光单元间隔区域310所共同形成的投影可以构成如图15A中所示的直角四边形等规则形状。
在一些实施例中,可以根据工艺需求等实际情况确定相邻的两个发光单元111之间的发光单元间隔区域310的位置、形状、尺寸等。可选地,无论相邻的两个发光单元111之间的发光单元间隔区域310的形状如何,为了方便描述,也可以以图15B中虚线所示的具有近似椭圆形的发光单元间隔区域310作为相邻的两个发光单元111之间的发光单元间隔区域。
在一些实施例中,如图15C中所示,发光单元光隔离结构300设置于相邻的两个发光单元111之间的发光单元间隔区域310中的部分区域,该部分区域位于相邻的两个发光单元111之间且靠近其中的一个发光单元111(位于图中左侧的发光单元111)。
在一些实施例中,如图15D中所示,发光单元光隔离结构300设置于相邻的两个发光单元111之间的发光单元间隔区域310中的部分区域,该部分区域位于相邻的两个发光单元111之间,且与发光单元光隔离结构300在图15C中所处的位置相对(靠近位于图中右侧的发光单元111)。
在一些实施例中,如图15E中所示,发光单元光隔离结构300设置于相邻的两个发光单元111之间的发光单元间隔区域310中的全部区域。
在一些实施例中,可以根据工艺需求等实际情况确定在相邻的两个发光单元111之间的发光单元间隔区域310中设置发光单元光隔离结构300的位置,只要发光单元光隔离结构300能够避免相邻的两个发光单元111发出的光向不希望的方向传导(例如:相邻的两个发光单元111发出的光向彼此传导)即可。
参见图16A、图16B、图16C、图16D,在一些实施例中,相邻的两个发光单元111可以包括第一发光单元320、第二发光单元330,第一发光单元320可以包括靠近第二发光单元330的第一面321,第二发光单元330可以包括靠近第一发光单元320的第二面331。可选地,发光单元光隔离结构300可以设置于第一面321、第二面331中至少之一,或不与第一面321、第二面331接触。
在一些实施例中,如图16A中所示,发光单元光隔离结构300设置于第一发光单元320的第一面321,与第一发光单元320的第一面321接触,不与第二发光单元330的第二面331接触。
在一些实施例中,如图16B中所示,发光单元光隔离结构300设置于第二发光单元 330的第二面331,与第二发光单元330的第二面331接触,不与第一发光单元320的第一面321接触。
在一些实施例中,如图16C中所示,发光单元光隔离结构300设置于第一发光单元320的第一面321、以及第二发光单元330的第二面331,与第一发光单元320的第一面321接触,与第二发光单元330的第二面331接触。
在一些实施例中,如图16D中所示,发光单元光隔离结构300设置于第一发光单元320的第一面321与第二发光单元330的第二面331之间,不与第一发光单元320的第一面321接触,不与第二发光单元330的第二面331接触。
在一些实施例中,可以根据工艺需求等实际情况确定发光单元光隔离结构300与第一发光单元320、第二发光单元330之间的设置关系,只要发光单元光隔离结构300能够避免第一发光单元320、第二发光单元330发出的光向不希望的方向传导(例如:第一发光单元320、第二发光单元330发出的光向彼此传导)即可。
参见图17A、图17B、图17C、图17D、图17E、图17F、图17G、图17H、图17I、图17J、图17K、图17L、图17M、图17N,在一些实施例中,发光单元光隔离结构300可以设置于第一面321、第二面331中至少之一的透光区域。
在一些实施例中,如图17A、图17B、图17C、图17D、图17E、图17F、图17G、图17H、图17I、图17J、图17K、图17L、图17M、图17N中所示,箭头图形示例性地表示发光单元111的一部分光向外传导的走向。可选地,为方便识别,将透光区域333、334用虚线包围。
在一些实施例中,如图17A中所示,第一发光单元320的第一面321的透光区域333包括第一面321的全部区域。在这种情况下,发光单元光隔离结构300可以设置于第一面321的全部区域,并与第一面321的全部区域接触,以使得发光单元光隔离结构300可以设置于第一面321的透光区域333。
在一些实施例中,如图17B、图17C中所示,第一发光单元320的第一面321的透光区域333包括第一面321的部分区域。在这种情况下,发光单元光隔离结构300可以设置于第一面321的相应部分区域,并与第一面321的相应部分区域接触,以使得发光单元光隔离结构300可以设置于第一面321的透光区域333。
在一些实施例中,如图17D中所示,第二发光单元330的第二面331的透光区域334包括第二面331的全部区域。在这种情况下,发光单元光隔离结构300可以设置于第二面331的全部区域,并与第二面331的全部区域接触,以使得发光单元光隔离结构300可以设置于第二面331的透光区域334。
在一些实施例中,如图17E、图17F中所示,第二发光单元330的第二面331的透光区域334包括第二面331的部分区域。在这种情况下,发光单元光隔离结构300可以设置于第二面331的相应部分区域,并与第二面331的相应部分区域接触,以使得发光单元光隔离结构300可以设置于第二面331的透光区域334。
在一些实施例中,如图17G中所示,第一发光单元320的第一面321的透光区域333包括第一面321的全部区域,第二发光单元330的第二面331的透光区域334包括第二面331的全部区域。在这种情况下,发光单元光隔离结构300可以设置于第一面321的全部区域、以及第二面331的全部区域,并与第一面321的全部区域、以及第二面331的全部区域接触,以使得发光单元光隔离结构300可以设置于第一面321的透光区域333、以及第二面331的透光区域334。
在一些实施例中,如图17H、图17I中所示,第一发光单元320的第一面321的透光区域333包括第一面321的部分区域,第二发光单元330的第二面331的透光区域334包括第二面331的部分区域,第一面321的透光区域333与第二面331的透光区域334相一致(例如:位置、形状、面积等中的至少之一相同)。在这种情况下,发光单元光隔离结构300可以设置于第一面321与第二面331的相应部分区域,并与第一面321的相应部分区域、以及第二面331的相应部分区域接触,以使得发光单元光隔离结构300可以设置于第一面321、以及第二面331的透光区域334。
在一些实施例中,如图17J中所示,第一发光单元320的第一面321的透光区域333包括第一面321的部分区域,第二发光单元330的第二面331的透光区域334包括第二面331的部分区域,第一面321的透光区域333与第二面331的透光区域334不一致(例如:位置、形状、面积等中的至少之一不相同)。在这种情况下,发光单元光隔离结构300可以设置于第一面321与第二面331的相应部分区域,并与第一面321的相应部分区域、以及第二面331的相应部分区域接触,以使得发光单元光隔离结构300可以设置于第一面321、以及第二面331的透光区域334。
在一些实施例中,第一发光单元320的第一面321的透光区域333可以包括第一面321的全部区域,第二发光单元330的第二面331的透光区域334可以包括第二面331的部分区域。在这种情况下,发光单元光隔离结构300可以设置于第一面321的全部区域、以及第二面331的部分区域,并与第一面321的全部区域、以及第二面331的该部分区域接触,以使得发光单元光隔离结构300可以设置于第一面321、以及第二面331的透光区域334。可选地,第一发光单元320的第一面321的透光区域333可以包括第一面321的部分区域,第二发光单元330的第二面331的透光区域334可以包括第二面331的全部区 域。在这种情况下,发光单元光隔离结构300可以设置于第一面321的该部分区域、以及第二面331的全部区域,并与第一面321的该部分区域、以及第二面331的全部区域接触,以使得发光单元光隔离结构300可以设置于第一面321、以及第二面331的透光区域334。
在一些实施例中,如图17K中所示,第一发光单元320的第一面321的透光区域333包括第一面321的全部区域、以及第二面331的全部区域。在这种情况下,发光单元光隔离结构300可以设置于第一面321的全部区域、以及第二面331的全部区域之间,并不与第一面321、以及第二面331接触,以使得发光单元光隔离结构300可以设置于第一面321的透光区域333与第二面331的透光区域334之间。
在一些实施例中,如图17L、图17M中所示,第一发光单元320的第一面321的透光区域333包括第一面321的部分区域,第二发光单元330的第二面331的透光区域334包括第二面331的部分区域,第一面321的透光区域333与第二面331的透光区域334相一致(例如:位置、形状、面积等中的至少之一相同)。在这种情况下,发光单元光隔离结构300可以设置于第一面321与第二面331的相应部分区域之间,并不与第一面321、以及第二面331接触,以使得发光单元光隔离结构300可以设置于第一面321的透光区域333与第二面331的透光区域334之间。
在一些实施例中,如图17N中所示,第一发光单元320的第一面321的透光区域333包括第一面321的部分区域,第二发光单元330的第二面331的透光区域334包括第二面331的部分区域,第一面321的透光区域333与第二面331的透光区域334不一致(例如:位置、形状、面积等中的至少之一不相同)。在这种情况下,发光单元光隔离结构300可以设置于第一面321的相应部分区域、以及第二面331的相应部分区域之间,并不与第一面321、以及第二面331接触,以使得发光单元光隔离结构300可以设置于第一面321、以及第二面331的透光区域334之间。
在一些实施例中,第一发光单元320的第一面321的透光区域333可以包括第一面321的全部区域,第二发光单元330的第二面331的透光区域334可以包括第二面331的部分区域。在这种情况下,发光单元光隔离结构300可以设置于第一面321的全部区域、以及第二面331的部分区域之间,并不与第一面321、以及第二面331接触,以使得发光单元光隔离结构300可以设置于第一面321、以及第二面331的透光区域334之间。可选地,第一发光单元320的第一面321的透光区域333可以包括第一面321的部分区域,第二发光单元330的第二面331的透光区域334可以包括第二面331的全部区域。在这种情况下,发光单元光隔离结构300可以设置于第一面321的该部分区域、以及第二面331的全部区域之间,并不与第一面321、以及第二面331接触,以使得发光单元光隔离结构300 可以设置于第一面321、以及第二面331的透光区域334之间。
在一些实施例中,发光单元111的透光区域333、334可以为连续区域。在这种情况下,发光单元光隔离结构300可以设置于该连续区域,并与该连续区域接触或不接触,以使得发光单元光隔离结构300可以设置于发光单元111的透光区域333、334。可选地,发光单元111的透光区域333、334可以为非连续区域。在这种情况下,发光单元光隔离结构300可以设置于该非连续区域,并与该非连续区域接触或不接触,以使得发光单元光隔离结构300可以设置于发光单元111的透光区域333、334。可选地,可以根据工艺需求等实际透光情况确定用于设置发光单元光隔离结构300的非连续区域的位置、数量等,以使得发光单元光隔离结构300可以设置于以非连续区域呈现的发光单元111的透光区域333、334。
在一些实施例中,可以根据工艺需求等实际透光情况确定发光单元111的透光区域333、334,据此考虑将发光单元光隔离结构300设置于发光单元111的透光区域333、334,或相邻的两个发光单元111的相应透光区域333、334之间。可选地,该透光区域333、334可以包括发光单元111的部分或全部区域,可以以连续区域或非连续区域的形式呈现,并且可以根据工艺需求等实际透光情况确定相应的位置、数量等,只要发光单元光隔离结构300能够避免相邻的两个发光单元111发出的光向不希望的方向传导(例如:第一发光单元320、第二发光单元330发出的光向彼此传导)即可。
在一些实施例中,发光单元光隔离结构300与背光隔离层120可以直接接触,或与背光隔离层120之间存在间隙。可选地,发光单元光隔离结构300与背光隔离层120之间存在间隙的区域中,可以存在其他介质或设置有其他结构。可选地,发光单元光隔离结构300与背光隔离层120之间的间隙处,可以部分或全部设置有光隔离材料。
参见图18,在一些实施例中,发光单元光隔离结构300可以包括发光单元光隔离主体301。
参见图19,在一些实施例中,发光单元光隔离主体301可以不导电,且包含光隔离材料302。
参见图20,在一些实施例中,发光单元光隔离主体301可以导电。可选地,发光单元光隔离结构300还可以包括:绝缘结构303,设置于发光单元光隔离主体301,和需要绝缘于发光单元光隔离主体301的发光单元111之间。
参见图21A、图21B、图21C,在一些实施例中,绝缘结构303可以设置于发光单元光隔离主体301,和相邻的两个发光单元111中至少之一之间。
在一些实施例中,如图21A中所示,在相邻的两个发光单元111包括第一发光单元 320、第二发光单元330的情况下,绝缘结构303设置于发光单元光隔离主体301和第一发光单元320之间。
在一些实施例中,如图21B中所示,在相邻的两个发光单元111包括第一发光单元320、第二发光单元330的情况下,绝缘结构303设置于发光单元光隔离主体301和第二发光单元330之间。
在一些实施例中,如图21C中所示,在相邻的两个发光单元111包括第一发光单元320、第二发光单元330的情况下,发光单元光隔离主体301和第一发光单元320之间设置有绝缘结构303,发光单元光隔离主体301和第二发光单元330之间也设置有绝缘结构303。
在一些实施例中,可以根据工艺需求等实际情况考虑绝缘结构303的设置位置,只要能够将发光单元光隔离主体301与相邻的发光单元111有效绝缘即可。
参见图22A、图22B、图22C、图22D、图22E,在一些实施例中,绝缘结构303可以覆盖发光单元光隔离主体301的部分或全部。
在一些实施例中,如图22A、图22B、图22C、图22D中所示,绝缘结构303可以覆盖发光单元光隔离主体301的部分,例如:发光单元光隔离主体301的一侧、两侧、三侧或更多侧。
在一些实施例中,如图22E中所示,绝缘结构303可以覆盖发光单元光隔离主体301的全部。
在一些实施例中,可以根据工艺需求等实际情况考虑绝缘结构303的设置方式(例如:覆盖发光单元光隔离主体301的部分或全部),只要能够将发光单元光隔离主体301与相邻的发光单元111有效绝缘即可。
在一些实施例中,发光单元光隔离主体301和绝缘结构303中至少之一可以包含光隔离材料302。
参见图23A、图23B、图23C、图23D、图23E,在一些实施例中,绝缘结构303可以与相邻的两个发光单元111中至少之一接触。可选地,绝缘结构303可以不与相邻的两个发光单元111接触。
在一些实施例中,如图23A中所示,在相邻的两个发光单元111包括第一发光单元320、第二发光单元330的情况下,绝缘结构303与第一发光单元320接触,不与第二发光单元330接触。
在一些实施例中,如图23B中所示,在相邻的两个发光单元111包括第一发光单元320、第二发光单元330的情况下,绝缘结构303与第二发光单元330接触,不与第一发光 单元320接触。
在一些实施例中,如图23C中所示,在相邻的两个发光单元111包括第一发光单元320、第二发光单元330的情况下,作为单一整体的绝缘结构303与第一发光单元320、第二发光单元330均接触。
在一些实施例中,如图23D中所示,在相邻的两个发光单元111包括第一发光单元320、第二发光单元330的情况下,相对独立的两个绝缘结构303中,一个绝缘结构303与第一发光单元320接触、不与第二发光单元330接触,另一个绝缘结构303与第二发光单元330接触、不与第一发光单元320接触。
在一些实施例中,如图23E中所示,在相邻的两个发光单元111包括第一发光单元320、第二发光单元330的情况下,绝缘结构303与第一发光单元320、第二发光单元330均不接触。
在一些实施例中,可以根据工艺需求等实际情况考虑绝缘结构303的设置方式(例如:与相邻的两个发光单元111中至少之一接触),只要能够将发光单元光隔离主体301与相邻的发光单元111有效绝缘即可。
参见图24A、图24B、图24C、图24D,在一些实施例中,光隔离材料302可以包括光吸收材料3021、光反射材料3022中至少之一。
在一些实施例中,如图24A中所示,光隔离材料302可以包括光吸收材料3021。
在一些实施例中,如图24B中所示,光隔离材料302可以包括光反射材料3022。
在一些实施例中,如图24C、图24D中所示,光隔离材料302可以包括光吸收材料3021和光反射材料3022。
在一些实施例中,可以根据工艺需求等实际情况考虑光隔离材料302的设置,只要光隔离材料302能够有效实现光隔离即可。可选地,在光隔离材料302中包含光吸收材料3021和光反射材料3022的情况下,可以根据工艺需求等实际情况考虑所设置的光吸收材料3021和光反射材料3022的位置、比例等。
参见图25A、图25B、图25C、图25D、图25E、图25F、图25G、图25H,在一些实施例中,发光单元光隔离结构300沿发光单元层110的出光方向Z的截面形状中的部分或全部形状包括直角四边形、三角形、梯形中至少之一。
在一些实施例中,如图25A中所示,发光单元光隔离结构300沿发光单元层110的出光方向Z的截面形状为直角四边形。
在一些实施例中,如图25B中所示,发光单元光隔离结构300沿发光单元层110的出光方向Z的截面形状包括两个直角四边形,且两个直角四边形在发光单元层110的平面方 向P上的宽度不相同。可选地,在发光单元层110的平面方向P上的宽度相对较小的直角四边形可以靠近发光单元层110的出光侧X,在发光单元层110的平面方向P上的宽度相对较大的直角四边形可以远离发光单元层110的出光侧X。可选地,两个直角四边形的相对位置关系也可以与图中所示的相反,例如:在发光单元层110的平面方向P上的宽度相对较大的直角四边形可以靠近发光单元层110的出光侧X,在发光单元层110的平面方向P上的宽度相对较小的直角四边形可以远离发光单元层110的出光侧X。
在一些实施例中,如图25C中所示,发光单元光隔离结构300沿发光单元层110的出光方向Z的截面形状为三角形。可选地,三角形的一条边可以远离发光单元层110的出光侧X。可选地,三角形的一条边可以靠近发光单元层110的出光侧X。
在一些实施例中,如图25D中所示,发光单元光隔离结构300沿发光单元层110的出光方向Z的截面形状包括直角四边形和三角形。可选地,直角四边形可以远离发光单元层110的出光侧X,三角形可以靠近发光单元层110的出光侧X。可选地,直角四边形和三角形的相对位置关系也可以与图中所示的相反,例如:三角形可以远离发光单元层110的出光侧X,直角四边形可以靠近发光单元层110的出光侧X。可选地,三角形的一条边可以朝向发光单元层110的出光侧X,或背向发光单元层110的出光侧X。
在一些实施例中,如图25E中所示,发光单元光隔离结构300沿发光单元层110的出光方向Z的截面形状为梯形。可选地,梯形的上底边A可以朝向发光单元层110的出光侧X。可选地,梯形的上底边A可以背向发光单元层110的出光侧X。
在一些实施例中,如图25F中所示,发光单元光隔离结构300沿发光单元层110的出光方向Z的截面形状包括梯形和直角四边形。可选地,直角四边形可以靠近发光单元层110的出光侧X,梯形可以远离发光单元层110的出光侧X。可选地,梯形的上底边A可以朝向发光单元层110的出光侧X,或背向发光单元层110的出光侧X。
在一些实施例中,如图25G中所示,发光单元光隔离结构300沿发光单元层110的出光方向Z的截面形状包括梯形和直角四边形。可选地,直角四边形可以远离发光单元层110的出光侧X,梯形可以靠近发光单元层110的出光侧X。可选地,梯形的上底边A可以朝向发光单元层110的出光侧X,或背向发光单元层110的出光侧X。
在一些实施例中,如图25H中所示,发光单元光隔离结构300沿发光单元层110的出光方向Z的截面形状包括梯形和三角形。可选地,梯形可以远离发光单元层110的出光侧X,三角形可以靠近发光单元层110的出光侧X。可选地,梯形和三角形的相对位置关系也可以与图中所示的相反,例如:梯形可以靠近发光单元层110的出光侧X,三角形可以远离发光单元层110的出光侧X。可选地,梯形的上底边A可以朝向发光单元层110的出 光侧X,或背向发光单元层110的出光侧X。可选地,三角形的一条边可以朝向发光单元层110的出光侧X,或背向发光单元层110的出光侧X。
在一些实施例中,可以根据工艺需求等实际情况考虑发光单元光隔离结构300沿发光单元层110的出光方向Z的截面形状,只要发光单元光隔离结构300能够避免相邻的两个发光单元111发出的光向不希望的方向传导(例如:相邻的两个发光单元111发出的光向彼此传导)即可。
在一些实施例中,发光单元光隔离结构300可以包括能够实现光隔离的结构及材质,例如:银、铝等金属中的至少一种。可选地,可以根据工艺需求等实际情况确定发光单元光隔离结构300的结构及材质,只要发光单元光隔离结构300能够避免相邻的两个发光单元111发出的光向不希望的方向传导(例如:相邻的两个发光单元111发出的光向彼此传导)即可。
在一些实施例中,发光单元光隔离结构300也可以包括其他的能够起到光吸收、光反射等作用的结构及材质,例如:树脂组合物、钛的氧化物(例如:TiO2)等。可选地,实现光吸收的材质也可以包括黑矩阵(BM)。可选地,可以根据工艺需求等实际情况确定发光单元光隔离结构300的结构及材质,只要发光单元光隔离结构300能够避免相邻的两个发光单元111发出的光向不希望的方向传导(例如:相邻的两个发光单元111发出的光向彼此传导)即可。
参见图26,在一些实施例中,发光模组还可以包括:设置于发光单元层110的光转换层410。可选地,光转换层410可以通过波长选择等方式实现光的颜色转换,例如:对来自发光单元层110的光进行颜色转换。
参见图27,在一些实施例中,光转换层410可以设置于发光单元层110的出光面S。
在一些实施例中,多个发光单元111中的部分或全部可以是未封装结构。
在一些实施例中,多个发光单元111中的部分可以是未封装结构。可选地,多个发光单元111中的一个、两个、三个或更多可以仅仅是完成设置的能够发光的发光单元,未经过封装处理,未形成将发光单元封装起来的封装层等封装结构,例如:多个发光单元111中的至少一个可以是基于外延生长等方式形成的包括第一半导体层、有源层、第二半导体层(或者,还可以包括电极)的发光单元,但未经过封装处理,未形成将包括第一半导体层、有源层、第二半导体层(或者,还可以包括电极)的发光单元封装起来的封装层等封装结构。
在一些实施例中,多个发光单元111中的全部可以是未封装结构。可选地,多个发光单元111中的全部可以仅仅是完成设置的能够发光的发光单元,未经过封装处理,未形成 将发光单元封装起来的封装层等封装结构,例如:多个发光单元111中的全部可以是基于外延生长等方式形成的包括第一半导体层、有源层、第二半导体层(或者,还可以包括电极)的发光单元,但未经过封装处理,未形成将包括第一半导体层、有源层、第二半导体层(或者,还可以包括电极)的发光单元封装起来的封装层等封装结构。
在一些实施例中,多个发光单元111中的部分或全部可以是封装结构。可选地,多个发光单元111中的一个、两个、三个或更多可以不仅仅是完成设置的能够发光的发光单元,而且还可以经过封装处理形成了将发光单元封装起来的封装层等封装结构,例如:多个发光单元111中的至少一个可以是基于外延生长等方式形成的包括第一半导体层、有源层、第二半导体层(或者,还可以包括电极)的发光单元,而且经过封装处理,形成了将包括第一半导体层、有源层、第二半导体层(或者,还可以包括电极)的发光单元封装起来的封装层等封装结构。
在多个发光单元111中的部分或全部是封装结构的情况下,可以将封装有一个或一个以上的发光单元111的封装结构整体看做一个发光单元111,例如:一个封装结构中包括一个发光单元111,可以将包括该一个发光单元111的该封装结构看做一个发光单元111;再例如:一个封装结构中包括三个发光单元111,可以将包括该三个发光单元111的该封装结构看做一个发光单元111。
在一些实施例中,可以根据工艺需求等实际情况将多个发光单元111中的部分或全部设置为未封装结构,或根据工艺需求等实际情况将多个发光单元111中的部分或全部设置为封装结构,只要发光单元光隔离结构300能够避免相邻的两个发光单元111发出的光向不希望的方向传导(例如:相邻的两个发光单元111发出的光向彼此传导)即可。
在一些实施例中,多个发光单元111可以包括:LED、Mini LED、Micro LED中至少之一。可选地,多个发光单元111可以包括至少一个LED。可选地,多个发光单元111可以包括至少一个Mini LED。可选地,多个发光单元111可以包括至少一个Micro LED。可选地,多个发光单元111可以包括至少一个LED、以及至少一个Mini LED。可选地,多个发光单元111可以包括至少一个LED、以及至少一个Micro LED。可选地,多个发光单元111可以包括至少一个Mini LED、以及至少一个Micro LED。可选地,多个发光单元111可以包括至少一个LED、至少一个Mini LED、以及至少一个Micro LED。可选地,多个发光单元111可以包括除了LED、Mini LED、Micro LED以外的其他发光器件。
在一些实施例中,可以根据工艺需求等实际情况确定发光单元111的器件类型,例如:LED、Mini LED、Micro LED或其他发光器件。
参见图28,本公开实施例提供的显示模组700,包括上述的发光模组100。在一些实 施例中,显示模组700可以支持3D显示。
参见图29,本公开实施例提供的显示屏800,包括上述的显示模组700。在一些实施例中,显示屏800可以进行3D显示。
参见图30,本公开实施例提供的显示器900,包括上述的显示屏800。在一些实施例中,显示器900可以进行3D显示。在一些实施例中,显示器900还可以包括用于支持显示器900正常运转的其他构件,例如:通信接口、框架、控制电路等构件中的至少之一。
本公开实施例提供的发光模组、显示模组、显示屏及显示器,通过设置于发光单元层的背光面的背光隔离层,以及在多个发光单元的部分或全部中相邻的两个发光单元之间设置发光单元光隔离结构,尽量避免发光单元发出的光向不希望的方向传导,有利于改善显示效果,还具有提高光利用率的可能。
以上描述和附图充分地示出了本公开的实施例,以使本领域技术人员能够实践它们。其他实施例可以包括结构的、逻辑的、电气的、过程的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施例的部分和特征可以被包括在或替换其他实施例的部分和特征。本公开实施例的范围包括权利要求书的整个范围,以及权利要求书的所有可获得的等同物。当用于本申请中时,虽然术语“第一”、“第二”等可能会在本申请中使用以描述各元件,但这些元件不应受到这些术语的限制。这些术语仅用于将一个元件与另一个元件区别开。比如,在不改变描述的含义的情况下,第一元件可以叫做第二元件,并且同样地,第二元件可以叫做第一元件,只要所有出现的“第一元件”一致重命名并且所有出现的“第二元件”一致重命名即可。第一元件和第二元件都是元件,但可以不是相同的元件。而且,本申请中使用的用词仅用于描述实施例并且不用于限制权利要求。如在实施例以及权利要求的描述中使用的,除非上下文清楚地表明,否则单数形式的“一个”(a)、“一个”(an)和“所述”(the)旨在同样包括复数形式。类似地,如在本申请中所使用的术语“和/或”是指包含一个或一个以上相关联的列出的任何以及所有可能的组合。另外,当用于本申请中时,术语“包括”(comprise)及其变型“包括”(comprises)和/或包括(comprising)等指陈述的特征、整体、步骤、操作、元素,和/或组件的存在,但不排除一个或一个以上其它特征、整体、步骤、操作、元素、组件和/或这些的分组的存在或添加。在没有更多限制的情况下,由语句“包括一个…”限定的要素,并不排除在包括该要素的过程、方法或者设备中还存在另外的相同要素。本文中,每个实施例重点说明的可以是与其他实施例的不同之处,各个实施例之间相同相似部分可以互相参见。对于实施例公开的方法、产品等而言,如果其与实施例公开的方法部分相对应,那么相关之处可以参见方法部分的描述。
本领域技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,可以取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同方法以实现所描述的功能,但是这种实现不应认为超出本公开实施例的范围。本领域技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本文所披露的实施例中,所揭露的方法、产品(包括但不限于装置、设备等),可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,可以仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例。另外,在本公开实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在附图中,考虑到清楚性和描述性,可以夸大元件或层等结构的宽度、长度、厚度等。当元件或层等结构被称为“设置在”(或“安装在”、“铺设在”、“贴合在”、“涂布在”等类似描述)另一元件或层“上方”或“上”时,该元件或层等结构可以直接“设置在”上述的另一元件或层“上方”或“上”,或者可以存在与上述的另一元件或层之间的中间元件或层等结构,甚至有一部分嵌入上述的另一元件或层。

Claims (38)

  1. 一种发光模组,包括:
    发光单元层,包括多个发光单元;
    背光隔离层,设置于所述发光单元层的背光面;
    其中,在所述多个发光单元的部分或全部中,相邻的两个发光单元之间设置有发光单元光隔离结构。
  2. 根据权利要求1所述的发光模组,其中,所述背光隔离层包括背光分布式布拉格反射镜DBR反射层、背光金属反射层、背光吸收层中至少之一。
  3. 根据权利要求2所述的发光模组,其中,
    所述背光隔离层包括至少一层的背光DBR反射层;或
    所述背光隔离层包括至少一层的背光金属反射层;或
    所述背光隔离层包括至少一层的背光吸收层;或
    所述背光隔离层包括至少一层的背光DBR反射层、以及至少一层的背光金属反射层;或
    所述背光隔离层包括至少一层的背光DBR反射层、以及至少一层的背光吸收层;或
    所述背光隔离层包括至少一层的背光金属反射层、以及至少一层的背光吸收层;或
    所述背光隔离层包括至少一层的背光DBR反射层、至少一层的背光金属反射层、以及至少一层的背光吸收层。
  4. 根据权利要求2或3所述的发光模组,其中,所述背光隔离层中设置有支持所述发光单元层实现电连接的导电孔。
  5. 根据权利要求4所述的发光模组,其中,所述导电孔中填充有导电材料,所述背光隔离层包括至少一层的背光DBR反射层、以及至少一层的背光吸收层中至少之一,至少一层的所述背光DBR反射层、以及至少一层的所述背光吸收层中至少之一与所述导电材料直接接触。
  6. 根据权利要求4所述的发光模组,其中,所述导电孔中填充有导电材料,所述背光隔离层包括至少一层的背光金属反射层,至少一层的所述背光金属反射层与所述导电材料之间设置有绝缘部。
  7. 根据权利要求6所述的发光模组,其中,所述绝缘部中的部分或全部区域设置有光隔离材料。
  8. 根据权利要求4至7任一项所述的发光模组,其中,所述背光隔离层远离所述发光单元层的一面,设置有电连接层。
  9. 根据权利要求8所述的发光模组,其中,所述发光单元层与所述电连接层通过所述导电孔实现电连接。
  10. 根据权利要求8所述的发光模组,其中,
    所述背光隔离层包括至少一层的背光金属反射层,至少一层的所述背光金属反射层设置有与所述电连接层、发光单元层绝缘的绝缘层。
  11. 根据权利要求10所述的发光模组,其中,所述绝缘层包括以下至少之一:
    设置于所述背光金属反射层与所述电连接层之间的第一绝缘层;
    设置于所述背光金属反射层与所述发光单元层之间的第二绝缘层。
  12. 根据权利要求11所述的发光模组,其中,所述第一绝缘层和第二绝缘层中至少之一的部分或全部区域设置有光隔离材料。
  13. 根据权利要求1所述的发光模组,其中,所述背光隔离层直接设置于所述发光单元层的背光面。
  14. 根据权利要求13所述的发光模组,其中,所述背光隔离层贴合于所述发光单元层的背光面。
  15. 根据权利要求1所述的发光模组,其中,所述背光隔离层设置于所述发光单元层的背光面的部分或全部区域。
  16. 根据权利要求15所述的发光模组,其中,所述背光隔离层设置于所述发光单元层的背光面的透光区域。
  17. 根据权利要求1至16任一项所述的发光模组,其中,所述发光单元光隔离结构设置于相邻的所述两个发光单元之间的部分或全部区域。
  18. 根据权利要求17所述的发光模组,其中,相邻的所述两个发光单元之间存在发光单元间隔区域,所述发光单元间隔区域的部分或全部中设置有所述发光单元光隔离结构。
  19. 根据权利要求18所述的发光模组,其中,相邻的所述两个发光单元包括第一发光单元、第二发光单元,所述第一发光单元包括靠近所述第二发光单元的第一面,所述第二发光单元包括靠近所述第一发光单元的第二面;
    其中,所述发光单元光隔离结构设置于所述第一面、第二面中至少之一,或不与所述第一面、第二面接触。
  20. 根据权利要求19所述的发光模组,其中,所述发光单元光隔离结构设置于所述第一面、第二面中至少之一的透光区域。
  21. 根据权利要求17至20任一项所述的发光模组,其中,所述发光单元光隔离结构与所述背光隔离层直接接触,或与所述背光隔离层之间存在间隙。
  22. 根据权利要求17至20任一项所述的发光模组,其中,所述发光单元光隔离结构包括发光单元光隔离主体。
  23. 根据权利要求22所述的发光模组,其中,所述发光单元光隔离主体不导电,且包含光隔离材料。
  24. 根据权利要求22所述的发光模组,其中,所述发光单元光隔离主体导电;
    所述发光单元光隔离结构还包括:绝缘结构,设置于所述发光单元光隔离主体,和需要绝缘于所述发光单元光隔离主体的发光单元之间。
  25. 根据权利要求24所述的发光模组,其中,所述绝缘结构设置于所述发光单元光隔离主体,和相邻的所述两个发光单元中至少之一之间。
  26. 根据权利要求25所述的发光模组,其中,所述绝缘结构覆盖所述发光单元光隔离主体的部分或全部。
  27. 根据权利要求24所述的发光模组,其中,所述发光单元光隔离主体和所述绝缘结构中至少之一包含光隔离材料。
  28. 根据权利要求24所述的发光模组,其中,
    所述绝缘结构与相邻的所述两个发光单元中至少之一接触;或
    所述绝缘结构不与相邻的所述两个发光单元接触。
  29. 根据权利要求7、12、23或27所述的发光模组,其中,所述光隔离材料包括光吸收材料、光反射材料中至少之一。
  30. 根据权利要求1所述的发光模组,其中,所述发光单元光隔离结构沿所述发光单元层的出光方向的截面形状中的部分或全部形状包括直角四边形、三角形、梯形中至少之一。
  31. 根据权利要求30所述的发光模组,其中,所述发光单元光隔离结构沿所述发光单元层的出光方向的截面形状包括梯形,所述梯形的上底边朝向所述发光单元层的出光侧。
  32. 根据权利要求1至31任一项所述的发光模组,还包括:设置于所述发光单元层的光转换层。
  33. 根据权利要求32所述的发光模组,其中,所述光转换层设置于所述发光单元层的出光面。
  34. 根据权利要求1所述的发光模组,其中,所述多个发光单元中的部分或全部是未封装结构。
  35. 根据权利要求1所述的发光模组,其中,所述多个发光单元,包括:
    发光二极管LED、迷你Mini LED、微Micro LED中至少之一。
  36. 一种显示模组,包括如权利要求1至35任一项所述的发光模组。
  37. 一种显示屏,包括如权利要求36所述的显示模组。
  38. 一种显示器,包括如权利要求37所述的显示屏。
PCT/CN2021/090625 2020-05-22 2021-04-28 发光模组、显示模组、显示屏及显示器 WO2021233101A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010440095.4 2020-05-22
CN202010440095.4A CN113707041A (zh) 2020-05-22 2020-05-22 发光模组、显示模组、显示屏及显示器

Publications (1)

Publication Number Publication Date
WO2021233101A1 true WO2021233101A1 (zh) 2021-11-25

Family

ID=78646132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/090625 WO2021233101A1 (zh) 2020-05-22 2021-04-28 发光模组、显示模组、显示屏及显示器

Country Status (3)

Country Link
CN (1) CN113707041A (zh)
TW (1) TW202145552A (zh)
WO (1) WO2021233101A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105932134A (zh) * 2015-02-26 2016-09-07 Lg伊诺特有限公司 发光器件封装和包括该发光器件封装的照明设备
CN107134469A (zh) * 2016-02-26 2017-09-05 三星电子株式会社 发光二极管装置和发光设备
CN108123055A (zh) * 2016-11-30 2018-06-05 财团法人工业技术研究院 发光装置
CN108597377A (zh) * 2018-02-06 2018-09-28 友达光电股份有限公司 显示模块与显示装置
US20200066787A1 (en) * 2018-08-23 2020-02-27 Lg Display Co., Ltd. Display device and method of fabricating the same
CN110890453A (zh) * 2018-09-07 2020-03-17 群创光电股份有限公司 显示装置
CN110993634A (zh) * 2018-10-02 2020-04-10 三星电子株式会社 半导体发光器件
CN212624643U (zh) * 2020-05-22 2021-02-26 北京芯海视界三维科技有限公司 发光模组、显示模组、显示屏及显示器
CN212624645U (zh) * 2020-05-22 2021-02-26 北京芯海视界三维科技有限公司 发光模组、显示模组、显示屏及显示器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105932134A (zh) * 2015-02-26 2016-09-07 Lg伊诺特有限公司 发光器件封装和包括该发光器件封装的照明设备
CN107134469A (zh) * 2016-02-26 2017-09-05 三星电子株式会社 发光二极管装置和发光设备
CN108123055A (zh) * 2016-11-30 2018-06-05 财团法人工业技术研究院 发光装置
CN108597377A (zh) * 2018-02-06 2018-09-28 友达光电股份有限公司 显示模块与显示装置
US20200066787A1 (en) * 2018-08-23 2020-02-27 Lg Display Co., Ltd. Display device and method of fabricating the same
CN110890453A (zh) * 2018-09-07 2020-03-17 群创光电股份有限公司 显示装置
CN110993634A (zh) * 2018-10-02 2020-04-10 三星电子株式会社 半导体发光器件
CN212624643U (zh) * 2020-05-22 2021-02-26 北京芯海视界三维科技有限公司 发光模组、显示模组、显示屏及显示器
CN212624645U (zh) * 2020-05-22 2021-02-26 北京芯海视界三维科技有限公司 发光模组、显示模组、显示屏及显示器

Also Published As

Publication number Publication date
CN113707041A (zh) 2021-11-26
TW202145552A (zh) 2021-12-01

Similar Documents

Publication Publication Date Title
CN212624643U (zh) 发光模组、显示模组、显示屏及显示器
WO2019085484A1 (zh) 一种柔性显示模组及其制备方法
CN212624645U (zh) 发光模组、显示模组、显示屏及显示器
WO2021036723A1 (zh) 显示模组及电子设备
CN113488501B (zh) 显示面板及显示装置
CN104006327A (zh) 发光二极管背光模块
US20220005791A1 (en) Display panel, preparation method thereof and display device
CN212624641U (zh) 发光模组、显示模组、显示屏及显示器
CN212624642U (zh) 发光模组、显示模组、显示屏及显示器
CN212624646U (zh) 发光模组、显示模组、显示屏及显示器
WO2021233101A1 (zh) 发光模组、显示模组、显示屏及显示器
CN212624644U (zh) 发光模组、显示模组、显示屏及显示器
WO2021233104A1 (zh) 发光模组、显示模组、显示屏及显示器
WO2021233099A1 (zh) 发光模组、显示模组、显示屏及显示器
CN110998871A (zh) 一种微器件及其制备方法
WO2021233102A1 (zh) 发光模组、显示模组、显示屏及显示器
CN215527753U (zh) 一种led显示模组及led显示屏
EP3489744A1 (en) Display device
WO2021233098A1 (zh) 发光模组、显示模组、显示屏及显示器
WO2021233100A1 (zh) 发光模组、显示模组、显示屏及显示器
KR101260855B1 (ko) 발광소자 패키지 및 이를 구비하는 백라이트 유닛
KR101988524B1 (ko) 발광 다이오드 패키지
CN115000270B (zh) 光源模组及显示装置
TW201712269A (zh) 導光結構及其背光模組
US20190004243A1 (en) Backlight unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21808218

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21808218

Country of ref document: EP

Kind code of ref document: A1