WO2021233068A1 - 投影设备及其视场角调整方法 - Google Patents

投影设备及其视场角调整方法 Download PDF

Info

Publication number
WO2021233068A1
WO2021233068A1 PCT/CN2021/089280 CN2021089280W WO2021233068A1 WO 2021233068 A1 WO2021233068 A1 WO 2021233068A1 CN 2021089280 W CN2021089280 W CN 2021089280W WO 2021233068 A1 WO2021233068 A1 WO 2021233068A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical signal
target
receiving
component
aperture
Prior art date
Application number
PCT/CN2021/089280
Other languages
English (en)
French (fr)
Inventor
陈许
朱亚文
Original Assignee
青岛海信激光显示股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信激光显示股份有限公司 filed Critical 青岛海信激光显示股份有限公司
Priority to CN202180036211.9A priority Critical patent/CN115516852B/zh
Publication of WO2021233068A1 publication Critical patent/WO2021233068A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3155Modulator illumination systems for controlling the light source
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2053Intensity control of illuminating light
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3161Modulator illumination systems using laser light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3179Video signal processing therefor

Definitions

  • the present disclosure relates to the field of projection display, and in particular to a projection device and a method for adjusting its field of view.
  • the image can be projected onto the projection screen.
  • the laser light emitted by the projection device has high brightness, when the user is closer to the projection screen, the laser light may cause damage to human eyes.
  • the projection device may include a pyroelectric sensor and a control circuit.
  • the pyroelectric sensor can detect the infrared signal radiated by the human body and amplify the received infrared signal. Then the amplified infrared signal is converted into an electrical signal and sent to the control circuit.
  • the control circuit determines that the electrical signal is greater than the signal threshold, the brightness of the projection screen can be reduced, thereby reducing the damage to human eyes caused by the laser light emitted by the projection device.
  • the pyroelectric sensor can only detect the infrared signal radiated by the human body when the human body is moving, the reliability of human body detection is low, and the safety of human eye protection is low.
  • a projection device in one aspect of the embodiments of the present disclosure, includes: an optical signal emitting component and an optical signal receiving component disposed on the host side of the projection device, and the optical signal emitting component and the optical signal receiving component are disposed on the housing of the projection device On the upper surface or front side of the body, the optical signal receiving component includes a plurality of photoreceptors;
  • the optical signal emitting component is used to emit the optical signal along the preset field of view range
  • the optical signal receiving component is used to receive the optical signal reflected by the target in front of or on the side of the projection device;
  • control circuit which is respectively connected to the optical signal emitting component and the optical signal receiving component; used to determine the target object and the projection device according to the light output time value of the optical signal emitting component and the light receiving time value of the optical signal receiving component Target distance between
  • control circuit is also used to adjust the receiving field angle of the optical signal receiving component according to the target distance, and the size of the receiving field angle is negatively related to the length of the target distance;
  • optical signal receiving component is also used to receive the light reflection signal with the adjusted receiving field of view angle
  • control circuit is also used to adjust the brightness of the laser light source according to the target distance.
  • a method for adjusting the angle of view is provided.
  • the method is applied to a control circuit in a projection device.
  • the projection device further includes: an optical signal transmitting component and an optical signal receiving component arranged on the host side of the projection device.
  • the transmitting component and the optical signal receiving component are arranged on the upper surface or the front side of the casing of the projection device, the optical signal receiving component includes a plurality of photoreceptors, wherein the control circuit is respectively connected with the optical signal transmitting component and the optical signal receiving component, and the method includes:
  • the target distance adjust the receiving field angle of the optical signal receiving component, and the size of the receiving field angle is negatively related to the length of the target distance, so that the optical signal receiving component receives the light reflection signal at the adjusted receiving field angle;
  • FIG. 1 is a schematic structural diagram of a projection device provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of another projection device provided by an embodiment of the present disclosure.
  • FIG. 3 is a flowchart of a method for adjusting a field of view angle provided by an embodiment of the present disclosure
  • FIG. 4 is a flowchart of another method for adjusting the angle of view provided by an embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram of another projection device provided by an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of another projection device provided by an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of an optical signal transmitting component emitting an optical signal and an optical signal receiving component receiving an optical signal reflected by a target object according to an embodiment of the present disclosure
  • FIG. 8 is a schematic diagram of a target receiving field of view corresponding to a target distance provided by an embodiment of the present disclosure
  • FIG. 9 is a schematic diagram of the switch state of the corresponding photoreceptor when the field of view of the optical signal receiving component provided by the embodiment of the present disclosure is 30 degrees;
  • FIG. 10 is a schematic diagram of the switch state of the corresponding photoreceptor when the field of view of the optical signal receiving component provided by the embodiment of the present disclosure is 25 degrees;
  • Fig. 11 is a schematic diagram of the switch state of the corresponding photoreceptor when the field of view of the optical signal receiving component provided by the embodiment of the present disclosure is 15 degrees;
  • FIG. 12 is a schematic structural diagram of still another projection device provided by an embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram of an aperture adjustment process provided by an embodiment of the present disclosure.
  • Fig. 1 is a schematic structural diagram of a projection device provided by an embodiment of the present disclosure.
  • Fig. 2 is a schematic structural diagram of another projection device provided by an embodiment of the present disclosure.
  • the projection device may include: a control circuit 10, an optical signal emitting component 20 and an optical signal receiving component 30 arranged on the host side of the projection device, the optical signal emitting component 20 and the optical signal receiving component 30 It is arranged on the upper surface or the front side of the casing 00 of the projection device.
  • the area 01 in the upper surface of the casing 00, the area 02 and the area 03 in the front side may all be provided with an optical signal emitting component 20 and an optical signal.
  • the receiving component 30, the optical signals emitted by the optical signal emitting components 20 at different positions can form a range F, and the optical signal receiving component 30 can receive the optical signals reflected by the target within the range F.
  • the optical signal receiving assembly 30 may include a plurality of photoreceptors arranged in an array.
  • control circuit 10 is connected to the optical signal transmitting component 20 and the optical signal receiving component 30 respectively.
  • the control circuit 10 is used to control the optical signal emitting component 20 to emit optical signals.
  • the optical signal receiving assembly 30 may include M ⁇ N photoreceptors arranged in an array, where M is the number of rows of the photoreceptor, and N is the number of columns of the photoreceptor, and both M and N are greater than A positive integer of 1.
  • the photoreceptor can be a photodiode.
  • FIG. 3 is a flowchart of a method for adjusting a field of view angle provided by an embodiment of the present disclosure.
  • the adjustment method is applied to the control circuit 10 in the projection device shown in FIG. 1 and FIG. 2.
  • the component 20 and the optical signal receiving component 30 are arranged on the upper surface or the front side of the casing 00 of the projection device.
  • the optical signal receiving component 30 may include a plurality of photoreceptors.
  • the control circuit 10 is connected to the optical signal transmitting component 20 and the optical signal receiving component 30 respectively.
  • the method may include:
  • Step 301 Determine the target distance between the target object and the projection device according to the light output time value of the light signal transmitting component and the light receiving time value of the light signal receiving component.
  • the optical signal transmitting component can emit the optical signal along the preset viewing angle range
  • the optical signal receiving component can receive the optical signal reflected by the target in front or side of the projection device.
  • the control circuit can determine the target distance between the target object and the projection device according to the light output time value of the light signal transmitting component and the light receiving time value of the light signal receiving component.
  • the target object may be a human or animal located in the optical signal transmission path of the optical signal emitted by the optical signal emitting component.
  • Step 302 Adjust the receiving field of view angle of the optical signal receiving component according to the target distance.
  • the control circuit can adjust the receiving field angle of the optical signal receiving component according to the target distance, so that the optical signal receiving component receives the light reflection signal at the adjusted receiving field angle .
  • the size of the receiving field of view is negatively related to the length of the target distance. That is, the longer the target distance, the smaller the receiving field of view angle; the shorter the target distance, the larger the receiving field of view angle.
  • the receiving field angle of the optical signal receiving component refers to the range in which the optical signal receiving component can detect the optical signal, and the larger the receiving field angle, the larger the optical signal receiving component can detect the range of the optical signal.
  • the receiving field angle of the optical signal receiving component may be a pre-stored initial receiving field angle.
  • the initial receiving field of view angle may be the maximum receiving field of view angle of the optical signal receiving component.
  • Step 303 Adjust the brightness of the laser light source according to the target distance.
  • the control circuit can also adjust the brightness of the laser light source according to the target distance to protect human eyes.
  • the embodiments of the present disclosure provide a method for adjusting the field of view angle, which can adjust the receiving field of view angle of the optical signal receiving component according to the target distance between the target object and the projection device, so that the optical signal
  • the receiving component receives the light reflection signal with the adjusted receiving field of view angle. Since the adjusted receiving field of view is negatively related to the length of the target distance, when the target is closer to the projection device, the larger receiving field of view can increase the detection range of the optical signal receiving component, so that The detection range of the target is more comprehensive, thereby improving the reliability of the detection of the target.
  • the receiving field of view angle of the optical signal receiving component can be dynamically adjusted according to the distance, the flexibility of target detection is improved. At the same time, since the brightness of the laser light source can be adjusted according to the target distance, the human eyes are effectively protected.
  • Fig. 4 is a flowchart of another method for adjusting the angle of view provided by an embodiment of the present disclosure.
  • the adjustment method is applied to the control circuit 10 in the projection device shown in FIG. 1 and FIG. 2.
  • the component 20 and the optical signal receiving component 30 are arranged on the upper surface or the front side of the casing 00 of the projection device.
  • the optical signal receiving component 30 may include a plurality of photoreceptors.
  • the control circuit 10 is connected to the optical signal transmitting component 20 and the optical signal receiving component 30 respectively.
  • the method may include:
  • Step 401 In response to the start instruction, start the optical signal emitting component.
  • the projection device may further include a multimedia control component 40, and the multimedia control component 40 is connected to the control circuit 10.
  • the projection device may be provided with a power-on button, and the multimedia control component 40 can generate a start-up instruction after detecting a click operation on the power-on button, and can send the start-up instruction to the control circuit 10.
  • the control circuit 10 can activate the optical signal emitting component 20 in response to the activation instruction.
  • the start instruction may be triggered by the user through the remote control.
  • the multimedia control component 40 After the multimedia control component 40 receives the start instruction sent by the remote control, the start instruction can be sent to the control circuit 10.
  • the control circuit 10 can activate the optical signal emitting component 20 in response to the activation instruction.
  • the start instruction may be triggered by the user through the projection client installed in the terminal.
  • the display interface of the projection client may display a start button, and the projection client may generate a start instruction after detecting a user's click operation on the start button.
  • the projection client can then send the start instruction to the multimedia control component 40.
  • the multimedia control component 40 can send the startup instruction to the control circuit 10.
  • the control circuit 10 can activate the optical signal emitting component 20 in response to the activation instruction.
  • the optical signal transmitting assembly 20 may include a laser driving assembly 21 and a laser 22.
  • the control circuit 10 can send an enable signal and a laser drive current signal to the laser drive assembly 21 in response to a start instruction.
  • the laser driving component 21 can provide laser driving current to the laser 22 in response to an enable signal and a laser driving current signal.
  • the laser 22 can emit an optical signal driven by a laser driving current.
  • the safety level of the laser 22 meets the requirements of the laser safety level 1, and the optical signal receiving component emitted by the laser 22 may be infrared light with a wavelength of 940 nanometers (nm).
  • the laser 22 may be a vertical cavity surface emitting laser (VCSEL).
  • Step 402 Determine the transmission time of the optical signal according to the light output time value of the optical signal transmitting component and the light receiving time value of the optical signal receiving component.
  • the optical signal emitting component 20 can emit the optical signal along the preset field of view range, and the optical signal receiving component 30 can receive the projected device.
  • the light signal reflected by the front or side target object.
  • the control circuit can determine the light output time value t1 of the optical signal emitted by the optical signal transmitting component 20 and the light receiving time value t2 of the optical signal receiving component 30 receiving the optical signal, and according to the light output time value t1 and the light receiving time value t2, Determine the transmission time T of the optical signal.
  • the T t2-t1, where both t2 and t1 are greater than zero.
  • the target object may be a human or animal located in the optical signal transmission path of the optical signal emitted by the optical signal emitting component 20.
  • Step 403 Determine the target distance between the target object and the projection device according to the transmission speed and transmission duration of the detected light signal.
  • the transmission speed V of the optical signal is pre-stored in the control circuit.
  • the control circuit can determine the target distance S between the target object and the projection device according to the transmission speed V and the transmission time length T of the optical signal. Should Since the transmission speed of the optical signal is a fixed value, the length of the target distance is positively correlated with the length of the transmission time. That is, the longer the transmission time, the longer the target distance; the shorter the transmission time, the shorter the target distance.
  • Step 404 From the corresponding relationship between the distance range and the receiving field of view, determine the target receiving field of view corresponding to the target distance range where the target distance is located.
  • the corresponding relationship between the distance range and the receiving field of view angle is pre-stored in the control circuit.
  • the control circuit can determine the target distance range in which the target distance is located, and determine the target corresponding to the target distance range from the corresponding relationship between the distance range and the receiving field of view.
  • Receiving field of view angle The size of the target receiving field of view is negatively related to the length of the target distance, that is, the longer the target distance, the smaller the target receiving field of view angle; the shorter the target distance, the larger the target receiving field of view angle.
  • the target distance is 0.7 meters (m)
  • the target distance is within the target distance range (0, 0.7m), that is, the target distance
  • the range is greater than 0 and less than or equal to 0.7m.
  • the target distance range (0, 0.7m) corresponds to the target receiving field of view angle of 30 degrees.
  • the target distance is 1, the target distance is within the target distance range (0.7m, 1m), that is, the target distance range is greater than 0.7 and less than or equal to 1m. From Table 1, determine that the target distance range (0.7m, 1m) corresponds to the target receiving field of view angle of 25 degrees.
  • the target distance is 1.3m, and the target distance is within the target distance range (1m, 1.3m], that is, the target distance range is greater than 1 and less than or equal to 1.3m.
  • the corresponding target receiving field of view angle is 15 degrees.
  • FIG. 8 is a schematic diagram of a target receiving field angle corresponding to a target distance provided by an embodiment of the present disclosure.
  • the control circuit can determine the target receiving field angle ⁇ 1 corresponding to the target distance range of the target distance from the corresponding relationship between the distance range and the receiving field of view angle.
  • the control circuit can determine the target receiving field angle ⁇ 0 corresponding to the target distance range of the target distance from the corresponding relationship between the distance range and the receiving field of view angle. It can be seen from Fig. 8 that the target distance D1 is smaller than the target distance D2, and the target receiving field angle ⁇ 1 corresponding to the target distance D1 is greater than the target receiving field angle ⁇ 0 corresponding to the target distance D2.
  • the receiving field of view FOV of the optical signal receiving component needs to meet:
  • B is the reflectance of the target, and the magnitude of the reflectance is related to the material of the target.
  • the B can be set to a fixed value.
  • F(d) is the efficiency function, and its value is positively correlated with the distance d, which is the distance between the target and the projection device.
  • the value of f(I F ) is related to the number of optical signals emitted by the optical signal transmitting assembly and the number of target photoreceptors when the receiving field of view angle of the optical signal receiving assembly is maximum.
  • the value of f(I F ) is a fixed value .
  • the number of optical signals emitted by the optical signal emitting component is positively correlated with the duty ratio of the laser drive current signal transmitted from the control circuit to the laser drive circuit.
  • the target photoreceptor is a photoreceptor that is in an open state in the light signal receiving assembly and can be lit by the light signal reflected by the target.
  • the receiving field of view angle of the optical signal receiving component is negatively related to the distance. That is, the shorter the distance between the target and the projection device, the larger the receiving field angle of the optical signal receiving component needs to be set. The longer the distance between the target and the projection device, the smaller the receiving field of view angle of the optical signal receiving component can be set.
  • Step 405 Adjust the receiving field angle of the optical signal receiving component to the target receiving field angle.
  • the control circuit can adjust the field angle of the optical signal receiving component to the target receiving field angle, so that the optical signal receiving component receives the light reflection signal at the target receiving field angle .
  • the receiving field of view angle of the optical signal receiving component may be a pre-stored initial receiving field of view, and the initial receiving field of view angle may be the maximum receiving field of view of the optical signal receiving component Horn.
  • the receiving field angle of the optical signal receiving component refers to the range in which the optical signal receiving component can detect the optical signal, and the larger the receiving field angle, the larger the range in which the optical signal receiving component can detect the optical signal.
  • the projection device may further include a photoreceptor driving circuit 50 connected to the control circuit 10 and the optical signal receiving assembly 30 respectively.
  • the control circuit can determine the candidate photoreceptor to be turned on from the corresponding relationship between the receiving view angle and the photoreceptor according to the target receiving field of view angle. And start the optional photoreceptor to adjust the receiving field angle of the optical signal receiving component to the target receiving field angle.
  • the number of the candidate photoreceptors is positively correlated with the size of the target receiving field of view.
  • the candidate photoreceptor is the photoreceptor in the open state in the optical signal receiving assembly, and the open candidate photoreceptor can receive the The light signal receiving component reflected by the target object.
  • the corresponding relationship between the receiving field of view and the photoreceptor is pre-stored in the control circuit.
  • the control circuit can determine the position of the candidate photoreceptor to be turned on in the optical signal receiving assembly from the corresponding relationship between the receiving field of view and the photoreceptor according to the target receiving field of view angle.
  • the control circuit 10 may transmit the first field of view signal to the photoreceptor driving circuit 50.
  • the photoreceptor driving circuit 50 can provide a drive current to the candidate photoreceptor in response to the received first field of view signal to turn on the candidate photoreceptor, so as to adjust the receiving field of view angle of the optical signal receiving component to the target Receiving field of view angle.
  • the photoreceptor driving circuit 50 may select one or more rows of photoreceptors in the optical signal receiving assembly from the middle row of the optical signal receiving assembly in response to the received first field angle signal. Turn on.
  • the photoreceptor driving circuit 50 may select one or more rows of photoreceptors in the optical signal receiving assembly to be turned on starting from the middle column of the optical signal receiving assembly in response to the received first field angle signal.
  • the photoreceptor driving circuit 50 may determine a circular area with the center of the optical signal receiving component as a circular point in response to the received first field of view signal, and turn on the photoreceptor in the circular area.
  • the control circuit can dynamically adjust the number of photoreceptors that can be turned on in the optical signal receiving assembly according to the receiving field of view angle, the power consumption of the projection device is reduced.
  • Figures 9 to 11 show schematic diagrams of photoreceptor switch states corresponding to different receiving field angles. Among them, 1 indicates that the photoreceptor is in the on state, and 0 indicates that the photoreceptor is in the off state.
  • the control circuit can determine the candidate photoreceptors as the 6 ⁇ 12 photoreceptors in the optical signal receiving assembly according to the target receiving field angle of 30 degrees, and can start the 6 ⁇ 12 optional photoreceptors, so that the 6 ⁇ 12 optional photoreceptors are turned on.
  • the control circuit determines that the candidate photoreceptor corresponding to the target receiving field angle of 25 degrees is the photoreceptor in the second row to the fifth row of the optical signal receiving assembly.
  • the control circuit can activate the candidate photoreceptor so that the candidate photoreceptor is in an on state, and the photoreceptors in the remaining rows in the optical signal receiving assembly are in an off state.
  • the control circuit can determine that the candidate photoreceptors corresponding to the target receiving field angle of 15 degrees are the photoreceptors in the third and fourth rows of the optical signal receiving assembly. Therefore, the control circuit can activate the candidate photoreceptor, so that the candidate photoreceptor is in the on state, and the photoreceptors in the remaining rows in the optical signal receiving assembly are in the off state.
  • the projection device may further include an aperture 60 and an aperture driving circuit 70, the aperture driving circuit 70 is respectively connected to the aperture 60 and the control circuit 10
  • the aperture 60 is located on the side of the optical signal receiving assembly 30 away from the projection screen 04.
  • the shape of the aperture 60 can be circular or rectangular.
  • step 401 after receiving the startup instruction sent by the multimedia control component 40, the control circuit may also respond to the startup instruction to send a second field of view signal to the optical signal receiving component to control
  • the multiple photoreceptors in the optical signal receiving assembly are all turned on, so that all the photoreceptors in the optical signal receiving assembly are in an on state.
  • the control circuit can adjust the amount of light entering the aperture according to the target receiving field angle, so as to adjust the field angle of the optical signal receiving component to the target receiving field angle.
  • the control circuit 10 may send a second field of view signal to the optical signal receiving assembly 30 in response to the start instruction to control the multiple photoreceptors in the optical signal receiving assembly 30 to be turned on. After determining the target receiving field angle, the control circuit 10 may transmit an aperture driving current signal to the aperture driving circuit 70 according to the target receiving field angle.
  • the aperture driving circuit 70 can provide an aperture driving current to the aperture 60 in response to the aperture driving current signal.
  • the aperture 60 can adjust the amount of light entering the aperture 60 under the driving of the aperture driving current, so as to adjust the receiving field angle of the optical signal receiving component to the target receiving field angle.
  • the duty cycle of the iris drive current signal is positively correlated with the size of the target receiving field of view
  • the magnitude of the iris drive current is positively correlated with the duty cycle of the iris drive current signal
  • the amount of light entering is proportional to the magnitude of the iris drive current.
  • the size is positively correlated. That is, the amount of light entering is positively correlated with the size of the receiving field of view of the target. The larger the receiving field of view of the target, the greater the amount of light entering the aperture, and the corresponding light signal receiving component can receive the light reflected by the target. The more photoreceptors of the signal.
  • the receiving field angle of the optical signal receiving assembly can be adjusted by adjusting the size of the aperture, thereby adjusting the multiple photoreceptors A photoreceptor that can receive the light signal reflected by the target.
  • the optical signal receiving component 30 includes 6 ⁇ 12 photoreceptors.
  • the control circuit can receive the field of view according to the target The field angle adjusts the amount of light entering the aperture so that the 6 ⁇ 12 photoreceptors included in the optical signal receiving assembly 30 can receive the light signal reflected by the target.
  • the target receiving field angle is 25 degrees, the control circuit adjusts the amount of light entering the aperture according to the target receiving field angle, so that the photoreceptors in the second to fifth rows of the optical signal receiving assembly 30 can receive the target object Reflected light signal.
  • the control circuit adjusts the amount of light entering the aperture according to the target receiving field angle, so that the photoreceptors in the third and fourth rows of the optical signal receiving assembly can both receive the target The light signal reflected by the object.
  • the aperture is continuously opened or closed under the driving of the aperture driving current, so as to adjust the amount of light entering the aperture.
  • the amount of light entering the aperture is positively correlated with the number of openings of the aperture per unit time. That is, the greater the amount of light entering the aperture, the greater the number of openings of the aperture per unit time.
  • the control circuit when the control circuit detects that the number of openings of the aperture in a unit time is greater than the number threshold, it can reduce the duty cycle of the aperture drive current signal provided to the aperture drive circuit, thereby reducing the direction of the aperture drive circuit to the aperture.
  • the provided iris drive current can avoid the situation that the iris is opened too many times per unit time and damaged.
  • the threshold of the number of times is a fixed number of times stored in advance in the control circuit.
  • a damping coil is provided inside the aperture, and the damping coil is connected to a current sensor.
  • the control circuit detects that the electromotive force on the damping coil exceeds the electromotive force threshold, it can determine that the number of openings of the aperture in a unit time exceeds the number threshold, and can reduce the duty cycle of the aperture drive current signal provided to the aperture drive circuit, and then Reduce the aperture drive current supplied to the aperture.
  • the damping coil plays a role in smoothly controlling the iris.
  • Step 406 Determine the target response level corresponding to the target distance range in which the target distance is located from the corresponding relationship between the distance range and the response level.
  • the corresponding relationship between the distance range and the response level is pre-stored in the control circuit.
  • the control circuit may also calculate the relationship between the distance range and the response level. In the corresponding relationship, the target response level corresponding to the target distance range is determined.
  • the target distance range is within the target distance range (0, 0.7m)
  • determine the target distance range from Table 2 (0,0.7m) corresponds to the target response level of 1.
  • the target distance is 1m
  • the target distance is within the target distance range (0.7m, 1m)
  • the corresponding target response level is 2.
  • the target distance is 1.3m
  • the target distance is within the target distance range (1m, 1.3m)
  • the target response level corresponding to the target distance range (1m, 1.3m] is determined from Table 2. Is 3.
  • Step 407 Adjust the brightness of the laser light source according to the target response level.
  • the corresponding relationship between the response level and the brightness can be pre-stored in the control circuit.
  • the control circuit can determine the target brightness corresponding to the target response level from the corresponding relationship between the response level and the brightness according to the target response level, and then adjust the brightness of the laser light source to the target brightness.
  • the brightness is negatively related to the target response level.
  • the target brightness is negatively related to the target response level, that is, the shorter the target distance, the higher the target response level, and the lower the target brightness, which can be reduced when the target is closer to the projection device
  • the brightness of the laser light source improves the reliability of target protection. And according to the distance, the response level can be dynamically adjusted, and then the brightness of the laser light source can be dynamically adjusted, which improves the flexibility of protecting the target.
  • the target response level is 1, it is determined from Table 3 that the target brightness corresponding to the target response level 1 is 0, and then the brightness of the laser light source can be adjusted Is 0. If the target response level is 2, it is determined from Table 3 that the target brightness corresponding to the target response level 2 is 50% of the initial brightness, and the brightness of the laser light source can be adjusted to 50% of the initial brightness. If the target response level is 3, it is determined from Table 3 that the target brightness corresponding to the target response level 3 is 80% of the initial brightness, and the brightness of the laser light source can be adjusted to 80% of the initial brightness.
  • the initial brightness is the brightness of the normal light emission of the laser light source.
  • the multimedia control component 40 may include a first logic control circuit 401 and a multimedia driving sub-component 402.
  • the first logic control circuit 401 is connected to the control circuit 10 and the multimedia driving subassembly 402 respectively.
  • the projection device may further include a backlight control assembly 80, a light source driving assembly 90, and a laser light source 100.
  • the laser light source 100 is used to emit laser light.
  • the backlight control assembly 80 may include a display driving circuit 801 and a second logic control circuit 802.
  • the second logic control circuit 802 is connected to the display driving circuit 801 and the multimedia driving subassembly 402 through an integrated circuit bus (I2C).
  • I2C integrated circuit bus
  • the control circuit 10 After the control circuit 10 determines the target brightness, it can send the target brightness to the multimedia drive subassembly 402 through the first logic control circuit 401, and the multimedia drive subassembly 402 sends the target brightness to the display drive circuit through the second logic control circuit. 801.
  • the display driving circuit 801 adjusts the duty ratio of the light source driving current signal sent to the light source driving component 90 according to the target brightness, thereby adjusting the light source driving current provided by the light source driving component 90 to the laser light source. For example, the display driving circuit 801 can reduce the duty cycle of the light source driving current signal sent to the light source driving component 90, thereby reducing the light source driving current provided by the light source driving component 90 to the laser light source 100, thereby reducing the brightness of the projection screen.
  • step 406 and step 407 can be deleted according to the situation.
  • Any person skilled in the art can easily conceive of various methods within the technical scope disclosed in the present disclosure, which should be covered by the protection scope of the present disclosure, and therefore will not be repeated.
  • the embodiments of the present disclosure provide a method for adjusting the field of view angle, which can adjust the receiving field of view angle of the optical signal receiving component according to the target distance between the target object and the projection device. Since the adjusted receiving field of view is negatively related to the length of the target distance, when the target is closer to the projection device, the larger receiving field of view can increase the detection range of the optical signal receiving component, so that The detection range of the target is more comprehensive, thereby improving the reliability of the detection of the target. In addition, since the receiving field of view angle of the optical signal receiving component can be dynamically adjusted according to the distance, the flexibility of target detection is improved. And because the target distance between the projection device and the target can be detected, this method can detect a stationary person. At the same time, since the brightness of the laser light source can be adjusted according to the target distance, the human eyes are effectively protected.
  • the embodiment of the present disclosure also provides a projection device.
  • the projection device may include a control circuit 10, an optical signal transmitting component 20 and an optical signal receiving component 30 arranged on the host side of the projection device.
  • the transmitting assembly 20 and the optical signal receiving assembly 30 are arranged on the upper surface or the front side of the casing 00 of the projection device, and the optical signal receiving assembly 30 may include a plurality of photoreceptors.
  • the optical signal emitting component 20 is used for emitting optical signals along a preset range of angle of view.
  • the optical signal receiving component 30 is used to receive the optical signal reflected by the target in front or side of the projection device.
  • control circuit 10 is further included, and the control circuit 10 is connected to the optical signal transmitting component 20 and the optical signal receiving component 30 respectively.
  • the control circuit 10 is used for determining the target distance between the target object and the projection device according to the light output time value of the light signal transmitting component 20 and the light receiving time value of the light signal receiving component 30.
  • control circuit is also used to adjust the receiving field angle of the optical signal receiving component according to the target distance, and the size of the receiving field angle is negatively correlated with the length of the target distance.
  • optical signal receiving component 30 is also used to receive the light reflection signal at the adjusted receiving field of view angle.
  • control circuit 10 is also used to adjust the brightness of the laser light source according to the target distance.
  • the embodiments of the present disclosure provide a projection device in which the control circuit can adjust the field of view of the optical signal receiving component according to the target distance between the target object and the projection device. Since the adjusted receiving field of view is negatively related to the length of the target distance, when the target is closer to the projection device, the larger receiving field of view can increase the detection range of the optical signal receiving component, so that The detection range of the target is more comprehensive, thereby improving the reliability of the detection of the target. In addition, since the receiving field of view angle of the optical signal receiving component can be dynamically adjusted according to the distance, the flexibility of target detection is improved. At the same time, since the brightness of the laser light source can be adjusted according to the target distance, the human eyes are effectively protected.
  • control circuit 10 is configured to determine the target receiving field angle corresponding to the target distance range in which the target distance is located from the corresponding relationship between the distance range and the receiving field angle according to the target distance. Adjust the receiving field angle of the optical signal receiving component to the target receiving field angle.
  • the projection device may further include a photoreceptor driving circuit 50 connected to the control circuit 10 and the optical signal receiving assembly 30 respectively.
  • the control circuit 10 is used to determine the candidate photoreceptor to be turned on from the corresponding relationship between the receiving view angle and the photoreceptor according to the target receiving field of view angle, and transmit the first field of view signal to the photoreceptor drive circuit 50, Among them, the number of candidate photoreceptors is positively correlated with the size of the target receiving field of view.
  • the photoreceptor driving circuit 50 is used to provide a driving current to the candidate photoreceptor in response to the received first field of view signal, and turn on the candidate photoreceptor to adjust the receiving field of view angle of the optical signal receiving assembly 30 to the target Receiving field of view angle.
  • the projection device may further include an aperture 60 and an aperture driving circuit 70.
  • the aperture driving circuit 70 is connected to the aperture 60 and the control circuit 10, respectively.
  • the aperture 60 is located at the optical signal receiving assembly 30 away from the projection screen. On the side.
  • the control circuit 10 is also used for:
  • the second field of view signal is sent to the optical signal receiving assembly 30 to control the multiple photoreceptors in the optical signal receiving assembly 30 to be turned on.
  • the aperture driving current signal is transmitted to the aperture driving circuit 70 according to the target receiving field angle, and the duty cycle of the aperture driving current signal is positively correlated with the size of the target receiving field angle.
  • the aperture driving circuit 70 is configured to provide an aperture driving current to the aperture 60 in response to the aperture driving current signal, and the magnitude of the aperture driving current is positively correlated with the duty ratio of the aperture driving current signal.
  • the iris control circuit mainly has two methods: video control and DC control.
  • the aperture 60 is used to adjust the amount of light entering the aperture under the driving of the aperture driving current to adjust the receiving field angle of the optical signal receiving component 30 to the target receiving field angle, and the amount of light entering is positively correlated with the size of the aperture driving current .
  • the control circuit 10 may include a conversion sub-circuit 11, a first comparison sub-circuit 12, a second comparison sub-circuit 13 and a third comparison sub-circuit 14.
  • Each of the comparator sub-circuits is respectively connected to the conversion sub-circuit 11, the aperture driving circuit 70 and a negative feedback resistor Rf.
  • the conversion sub-circuit 11 is used to convert the target distance into an output voltage, and transmit the output voltage to the three comparison sub-circuits.
  • Each comparator circuit is used to compare the output voltage with a pre-stored reference voltage, and output an aperture drive current signal to the aperture drive circuit 70 so that the aperture drive circuit 70 provides the aperture drive current to the aperture 60.
  • the reference voltage stored in each comparison circuit may be obtained according to the upper limit value or the lower limit value of different distance ranges.
  • the first reference voltage stored in the first comparator circuit 12 may be obtained according to the upper limit value of 0.7 m in the distance range (0, 0.7 m).
  • the second reference voltage stored in the second comparator circuit 13 may be It is obtained according to the upper limit 1m of the distance range (0.7m, 1m].
  • the third reference voltage stored in the third comparison circuit 14 may be obtained according to the upper limit 1.3m of the distance range (1m, 1.3m).
  • the iris driving circuit 70 When the iris driving circuit 70 provides the iris driving current to the iris 60, it usually needs to adjust the iris driving current to a desired value in a short time to adjust the field of view of the optical signal receiving component 30 to the target receiving field of view.
  • the aperture 60, the optical signal receiving assembly 30, and the conversion sub-circuit 11 shown in FIG. 12 can form a first-order closed loop system.
  • the first-order closed loop system has better convergence performance and can make the aperture driving current of the aperture quickly converge to a desired value.
  • the field angle of the optical signal receiving component is quickly converged to the target receiving field angle, thereby making the performance of the system faster and more stable.
  • FIG. 13 is a schematic diagram of an aperture adjustment process provided by an embodiment of the present disclosure.
  • the schematic diagram includes a first curve, a second curve, and a third curve.
  • the first curve represents the under-damped process
  • the second curve represents the critically damped process
  • the third curve represents the over-damped process.
  • the horizontal axis is time
  • the vertical axis is the aperture driving current provided to the aperture.
  • the second curve adjusts the aperture driving current of the aperture to the desired value i through a shorter time T1.
  • the diaphragm driving circuit 70 adjusts the diaphragm driving current to a desired value in a short time, thereby achieving critical damping.
  • the projection device may further include a first inductor L1, a second inductor L2, a third inductor L3, and a capacitor C.
  • One end of the second inductor L2 is connected to one end of the first inductor L1.
  • the other end of the second inductor L2 is connected to one end of the capacitor C.
  • One end of the third inductor L3 is connected to the other end of the first inductor L1, the other end of the third inductor L3 is connected to the other end of the capacitor C, and each comparison circuit is respectively connected to both ends of the capacitor.
  • the second inductor L2 and the third inductor L3 are used for impedance matching.
  • the control circuit 10 After the control circuit 10 reduces the duty cycle of the aperture drive current signal provided to the aperture drive circuit 70, and thereby reduces the aperture drive current provided to the aperture 60, the control circuit 10 can compare the voltage across the capacitor C with the direction of the aperture drive circuit 70. The difference between the voltages provided by the aperture 60. If the difference is less than the difference threshold, the control circuit 10 can no longer reduce the duty cycle of the aperture driving current signal provided to the aperture driving circuit 70.
  • control circuit 10 is also used for:
  • the brightness of the laser light source is adjusted.
  • control circuit 10 is used to:
  • the transmission time of the optical signal is determined.
  • the target distance between the target object and the projection device is determined.
  • the optical signal emitting component 20 may include a laser 22 and a laser driving component 21, and the laser driving component 21 is connected to the laser 22 and the control circuit 10 respectively.
  • the control circuit 10 is configured to send an enable signal and a laser drive current signal to the laser drive assembly 21 in response to a start instruction.
  • the laser driving component 21 is used to provide laser driving current to the laser in response to the enable signal and the laser driving current signal.
  • the laser 22 is used to emit an optical signal driven by a laser driving current.
  • the projection device may further include an optical lens 120, a filter component 110, and a data processing component 140.
  • the optical lens 120 is used to collimate the detection light emitted by the laser 22.
  • the filter component 110 is located on the side of the optical signal receiving component 30 far away from the projection screen, and is used to filter out light with a wavelength different from that of the detected light. That is, the filter component can filter out the light reflected by the non-human body and the ambient light.
  • the data processing component 140 may include an optical signal analysis sub-component and a photoelectric conversion sub-component.
  • the optical signal analysis sub-component is used to determine the number of target photoreceptors that can be illuminated after the photoreceptor in the on state of the photoreceiving component receives the light signal reflected by the target.
  • the quantity is sent to the photoelectric conversion subassembly, which is used to convert the quantity into a digital electric signal and send it to the control circuit, which can obtain the quantity of the target photoreceptor according to the digital electric signal.
  • the multimedia control component 40 may further include a first memory 403.
  • the first memory 403 may be used to store the image to be projected and displayed.
  • the multimedia driver subcomponent 402 may include an application layer 4021, a framework layer 4022, a driver layer 4023, and a guide layer 4024.
  • the application layer 4021, the frame layer 4022, the driving layer 4023, and the guiding layer 4024 can send the image to be projected and displayed to the second logic control circuit 802, and then to the display driving circuit 801.
  • the laser light source 100 includes a red laser, a green laser component, a blue laser component, and a yellow laser component.
  • the light output side of each laser is provided with a glass lens with a light combining function.
  • the display driving circuit 801 can output the red PWM signal R_PWM corresponding to the red laser component based on the red primary color component of the image to be displayed, and output the green PWM signal G_PWM corresponding to the green laser component based on the green primary color component of the image to be displayed.
  • the blue primary color component of outputs the blue PWM signal B_PWM corresponding to the blue laser component, and outputs the yellow PWM signal Y_PWM corresponding to the yellow laser component based on the yellow primary color component of the image to be displayed.
  • the display driving circuit 801 can output the enable signal R_EN corresponding to the red laser component based on the lighting time of the red laser component in the driving cycle, and output the same signal as the green laser component based on the lighting time of the green laser component in the driving cycle.
  • the enable signal G_EN corresponding to the component outputs the enable signal B_EN corresponding to the blue laser component based on the lighting time of the blue laser component in the driving period. Based on the lighting duration of the yellow laser component in the driving period, the enable signal Y_EN corresponding to the yellow laser component is output.
  • the backlight control assembly 80 may further include a second memory 803 for storing the primary color gradation values of the pixels in the image to be projected.
  • the display driving circuit 801 is also used to obtain the stored primary color gradation value of the pixel in the image to be projected from the second memory, and control the light valve to flip according to the primary color gradation value of the pixel in the image to be projected, so as to convert the image to be projected Project the display to the projection screen.
  • the embodiments of the present disclosure provide a projection device in which the control circuit can adjust the field of view of the optical signal receiving component according to the target distance between the target object and the projection device. Since the size of the adjusted field of view is negatively related to the length of the target distance, when the target is closer to the projection device, the larger field of view can increase the detection range of the optical signal receiving component, so that the target The detection range is more comprehensive, which improves the reliability of target detection. In addition, since the field of view angle of the optical signal receiving component can be dynamically adjusted according to the distance, the flexibility of target detection is improved. At the same time, since the brightness of the laser light source can be adjusted according to the target distance, the human eyes are effectively protected.

Abstract

本申请公开了一种投影设备及其视场角调整方法,属于投影显示领域。该投影设备中的控制电路用于根据光信号发射组件的光输出时间值和光信号接收组件的光接收时间值,确定目标物与投影设备之间的目标距离;根据目标距离,调整光信号接收组件的接收视场角;并根据目标距离对激光光源进行亮度调整。由于调整后的接收视场角的大小与目标距离的长短负相关,因此在目标物距离投影设备较近时,该较大的接收视场角可以增大光信号接收组件的检测范围,使得对目标物的检测范围更全面,由此提高了对目标物检测的可靠性。同时由于能够根据目标距离,对激光光源的亮度进行调整,因此有效保护了人眼。

Description

投影设备及其视场角调整方法
相关申请的交叉引用
本申请要求在2020年5月18日提交中国专利局、申请号为202010419446.3,发明名称为投影设备及其视场角调整方法的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及投影显示领域,特别涉及一种投影设备及其视场角调整方法。
背景技术
目前,投影设备发射出来的激光投射至投影屏幕上后,可以实现将图像投影至投影屏幕。但是,由于投影设备发射出来的激光具有较高的亮度,当用户距离投影屏幕较近时,该激光可能对人眼造成伤害。
相关技术中,投影设备可以包括热释电传感器和控制电路。当位于热释电传感器的感应范围内的人体发生移动时,热释电传感器可以检测到人体辐射的红外信号,并将接收到红外信号放大。之后将放大后的红外信号转化为电信号发送至控制电路。控制电路在确定该电信号大于信号阈值时,可以降低投影屏幕的亮度,从而降低投影设备发射的激光对人眼造成的伤害。
但是,由于热释电传感器仅能在人体移动的时候检测到人体辐射的红外信号,使得对人体检测的可靠性较低,进而导致对人眼保护的安全性较低。
发明内容
本公开实施例一方面,提供了一种投影设备,投影设备包括:设置于投影设备的主机一侧的光信号发射组件和光信号接收组件,光信号发射组件和光信号接收组件设置于投影设备的壳体的上表面或前侧面,光信号接收组件包括多个感光器;
光信号发射组件,用于沿预设视场角范围发射光信号;
光信号接收组件,用于接收被投影设备的前方或侧方的目标物反射的光信号;
以及,还包括控制电路,控制电路分别与光信号发射组件和光信号接收组件连接;用于根据光信号发射组件的光输出时间值与光信号接收组件的光接收时间值,确定目标物与投影设备之间的目标距离;
以及,控制电路还用于根据目标距离,调整光信号接收组件的接收视场角,接收视场 角的大小与目标距离的长短负相关;
以及,光信号接收组件还用于以调整后的接收视场角接收光反射信号,
以及,控制电路还用于根据目标距离,对激光光源进行亮度调整。
另一方面,提供了一种视场角调整方法,方法应用于投影设备中的控制电路中,投影设备还包括:设置于投影设备的主机一侧的光信号发射组件和光信号接收组件,光信号发射组件和光信号接收组件设置于投影设备的壳体的上表面或前侧面,光信号接收组件包括多个感光器,其中,控制电路分别与光信号发射组件和光信号接收组件连接,方法包括:
根据光信号发射组件的光输出时间值与光信号接收组件的光接收时间值,确定目标物与投影设备之间的目标距离;
根据目标距离,调整光信号接收组件的接收视场角,接收视场角的大小与目标距离的长短负相关,以使光信号接收组件以调整后的接收视场角接收光反射信号;
根据目标距离,对激光光源进行亮度调整。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本公开实施例提供的一种投影设备的结构示意图;
图2是本公开实施例提供的另一种投影设备的结构示意图;
图3是本公开实施例提供的一种视场角调整方法的流程图;
图4是本公开实施例提供的另一种视场角调整方法的流程图;
图5是本公开实施例提供的另一种投影设备的结构示意图;
图6是本公开实施例提供的又一种投影设备的结构示意图;
图7是本公开实施例提供的一种光信号发射组件发射光信号和光信号接收组件接收被目标物反射的光信号的示意图;
图8是本公开实施例提供的目标距离对应的目标接收视场角的示意图;
图9是本公开实施例提供的光信号接收组件的视场角为30度时对应的感光器开关状态的示意图;
图10是本公开实施例提供的光信号接收组件的视场角为25度时对应的感光器开关状态的示意图;
图11是本公开实施例提供的光信号接收组件的视场角为15度时对应的感光器开关状态的示 意图;
图12是本公开实施例提供的再一种投影设备的结构示意图;
图13是本公开实施例提供的一种光圈调整过程的示意图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开实施方式作进一步地详细描述。
图1是本公开实施例提供的一种投影设备的结构示意图。图2是本公开实施例提供的另一种投影设备的结构示意图。如图1和图2所示,该投影设备可以包括:控制电路10、设置于投影设备的主机一侧的光信号发射组件20和光信号接收组件30,该光信号发射组件20和光信号接收组件30设置于该投影设备的壳体00的上表面或前侧面,例如,壳体00的上表面中的区域01、前侧面中的区域02和区域03处可以均设置有光信号发射组件20和光信号接收组件30,该不同位置处的光信号发射组件20发射的光信号可以形成一个范围F,且光信号接收组件30可以接收到被位于该范围F内的目标物反射的光信号。该光信号接收组件30可以包括多个阵列排布的感光器。
其中,该控制电路10分别与光信号发射组件20和光信号接收组件30连接。该控制电路10用于控制光信号发射组件20发射光信号。在一种实施方式中,该光信号接收组件30可以包括M×N个阵列排布的感光器,该M为感光器的行数,N为感光器的列数,该M和N均为大于1的正整数。该感光器可以为光电二极管。
图3是本公开实施例提供的一种视场角调整方法的流程图。该调整方法应用于图1和图2所示的投影设备中的控制电路10中,参考图1和图2可以看出,该投影设备还可以包括设置于投影设备的主机一侧的光信号发射组件20和光信号接收组件30,该光信号发射组件20和光信号接收组件30设置于该投影设备的壳体00的上表面或前侧面,该光信号接收组件30可以包括多个感光器。其中,该控制电路10分别与光信号发射组件20和光信号接收组件30连接。如图3所示,该方法可以包括:
步骤301、根据光信号发射组件的光输出时间值与光信号接收组件的光接收时间值,确定目标物与投影设备之间的目标距离。
在本公开实施例中,光信号发射组件可以沿预设视场角范围发射光信号,该光信号接收组件可以接收被投影设备的前方或侧方的目标物反射的光信号。控制电路可以根据该光信号发射组件的光输出时间值和光信号接收组件的光接收时间值,确定目标物与投影设备之间的目标距离。
在一种实施方式中,该目标物可以为位于光信号发射组件发射的光信号的传输光路中的人或动物。
步骤302、根据目标距离,调整光信号接收组件的接收视场角。
控制电路在确定目标物与投影设备之间的目标距离后,可以根据该目标距离调整光信号接收组件的接收视场角,以使光信号接收组件以调整后的接收视场角接收光反射信号。该接收视场角的大小与目标距离的长短负相关。也即是,该目标距离越长,该接收视场角越小;该目标距离越短,该接收视场角越大。其中,该光信号接收组件的接收视场角是指该光信号接收组件能够检测到光信号的范围,且该接收视场角越大,该光信号接收组件能够检测到光信号的范围越大。需要说明的是,在该投影设备启动后,该光信号接收组件的接收视场角可以为预先存储的初始接收视场角。该初始接收视场角可以为光信号接收组件的最大接收视场角。
步骤303、根据目标距离,对激光光源进行亮度调整。
控制电路还可以根据目标距离对激光光源进行亮度调整,以保护人眼。
综上所述,本公开实施例提供了一种视场角调整方法,该调整方法可以根据目标物与投影设备之间的目标距离,调整光信号接收组件的接收视场角,以使光信号接收组件以调整后的接收视场角接收光反射信号。由于调整后的接收视场角的大小与目标距离的长短负相关,因此在目标物距离投影设备较近时,该较大的接收视场角可以增大光信号接收组件的检测范围,使得对目标物的检测范围更全面,由此提高了对目标物检测的可靠性。并且,由于能够根据距离动态调整光信号接收组件的接收视场角,因此提高了对目标物检测的灵活性。同时由于能够根据目标距离,对激光光源的亮度进行调整,因此有效保护了人眼。
图4本公开实施例提供的另一种视场角调整方法的流程图。该调整方法应用于图1和图2所示的投影设备中的控制电路10中,参考图1和图2可以看出,该投影设备还可以包括设置于投影设备的主机一侧的光信号发射组件20和光信号接收组件30,该光信号发射组件20和光信号接收组件30设置于该投影设备的壳体00的上表面或前侧面,该光信号接收组件30可以包括多个感光器。其中,该控制电路10分别与光信号发射组件20和光信号接收组件30连接。如图4所示,该方法可以包括:
步骤401、响应于启动指令,启动光信号发射组件。
参考图1,该投影设备还可以包括多媒体控制组件40,该多媒体控制组件40与控制电路10连接。该投影设备上可以设置有开机按钮,该多媒体控制组件40在检测到针对该开机按钮的点击操作后,可以生成启动指令,并可以将该启动指令发送至控制电路10。该控制电路10可以响应于启动指令,启动光信号发射组件20。
或者,该启动指令可以是用户通过遥控器触发的。该多媒体控制组件40在接收到遥控器发送的启动指令后,可以将该启动指令发送至控制电路10。控制电路10可以响应于该启动指令,启动光信号发射组件20。
或者,该启动指令可以是用户通过终端中安装的投影客户端触发的。该投影客户端的显示界面可以显示有启动按钮,该投影客户端在检测到用户针对该启动按钮的点击操作后,可以生成启动指令。之后投影客户端可以将该启动指令发送至多媒体控制组件40。该多媒体控制组件40在接收到投影客户端发送的启动指令后,可以将该启动指令发送至控制电路10。该控制电路10可以响应于该启动指令,启动光信号发射组件20。
图5是本公开实施例提供的另一种投影设备的结构示意图。图6是本公开实施例提供的再一种投影设备的结构示意图。参考图5和图6,该光信号发射组件20可以包括激光器驱动组件21和激光器22。该控制电路10可以响应于启动指令,向激光器驱动组件21发送使能信号和激光驱动电流信号。该激光器驱动组件21可以响应于使能信号和激光驱动电流信号,向激光器22提供激光驱动电流。该激光器22可以在激光驱动电流的驱动下发射光信号。该激光器22的安全等级符合激光安全等级1级的要求,且该激光器22发射的光信号接收组件可以为940纳米(nm)波长的红外光。在一种实施方式中,该激光器22可以为面射型激光器(vertical cavity surface emitting laser,VCSEL)。
步骤402、根据光信号发射组件的光输出时间值与光信号接收组件的光接收时间值,确定光信号的传输时长。
在本公开实施例中,控制电路在启动光信号发射组件后,参考图7,该光信号发射组件20可以沿预设视场角范围发射光信号,该光信号接收组件30可以接收被投影设备的前方或侧方的目标物反射的光信号。控制电路可以确定光信号发射组件20发射该光信号的光输出时间值t1和光信号接收组件30接收到该光信号的光接收时间值t2,并根据该光输出时间值t1和光接收时间值t2,确定光信号的传输时长T。该T=t2-t1,其中,该t2和t1均大于0。在一种实施方式中,该目标物可以为位于光信号发射组件20发射的光信号的传输光路中的人或动物。
步骤403、根据检测光信号的传输速度和传输时长,确定目标物与投影设备之间的目标距离。
控制电路中预先存储有光信号的传输速度V。控制电路在确定光信号的传输时长后,可以根据光信号的传输速度V和传输时长T,确定目标物与投影设备之间的目标距离S。该
Figure PCTCN2021089280-appb-000001
由于光信号的传输速度为一个固定值,因此该目标距离的长短与传输时长的大小正相关。即传输时长越长,该目标距离越长;该传输时长越小,该目标距离越短。
步骤404、从距离范围与接收视场角的对应关系中,确定目标距离所处的目标距离范 围对应的目标接收视场角。
控制电路中预先存储有距离范围与接收视场角之间的对应关系。控制电路在确定目标物与投影设备之间的目标距离后,可以确定该目标距离所处的目标距离范围,并从距离范围与接收视场角的对应关系中,确定该目标距离范围对应的目标接收视场角。该目标接收视场角的大小与目标距离的长短负相关,即该目标距离越长,该目标接收视场角越小;该目标距离越短,该目标接收视场角越大。
示例的,假设距离范围与接收视场角的对应关系如表1所示,则若目标距离为0.7米(m),该目标距离处于目标距离范围(0,0.7m]内,即该目标距离范围为大于0且小于或等于0.7m,从表1中确定该目标距离范围(0,0.7m]对应的目标接收视场角为30度。若目标距离为1,该目标距离处于目标距离范围(0.7m,1m]内,即该目标距离范围为大于0.7且小于或等于1m,从表1中确定该目标距离范围(0.7m,1m]对应的目标接收视场角为25度。若目标距离为1.3m,该目标距离处于目标距离范围(1m,1.3m]内,即该目标距离范围为大于1且小于或等于1.3m,从表1中确定该目标距离范围(1m,1.3m]对应的目标接收视场角为15度。
表1
距离范围 接收视场角
(0,0.7m] 30度
(0.7m,1m] 25度
(1m,1.3m] 15度
图8是本公开实施例提供的一种目标距离对应的目标接收视场角的示意图。如图8所示,当目标距离为D1时,控制电路从距离范围与接收视场角的对应关系中,可以确定目标距离所处的目标距离范围对应的目标接收视场角ɑ1,当目标距离为D2时,控制电路从距离范围与接收视场角的对应关系中,可以确定目标距离所处的目标距离范围对应的目标接收视场角ɑ0。由图8可以看出,该目标距离D1小于目标距离D2,该目标距离D1对应的目标接收视场角ɑ1大于目标距离D2对应的目标接收视场角ɑ0。
在本公开实施例中,为了实现对目标物的有效检测,光信号接收组件的接收视场角FOV需满足:
Figure PCTCN2021089280-appb-000002
其中,B为目标物的反射率,该反射率的大小与目标物的材料有关。在本公开实施例中,可以将该B设定为一个固定的数值。F(d)为效率函数,其取值与距离d正相关,该距离d为目标物与投影设备之间的距离。f(I F)的值与光信号接收组件的接收视场角最大时,光信号发射组件发射的光信号的数量和目标感光器的数量相关,该f(I F)的值为固定的数值。该光信号发射组件发射的光信号的数量与控制电路传输至激光器驱动电路的激光驱动电流信号的占空比正相关。该目标感光器为光信号接收组件中处于开启状态的感光器中,能够被目标物反射的光信号点亮的感光器。
由于B和f(I F)确定的数值均为固定的值,通过该公式可以看出,为了实现对目标物的有效检测,该光信号接收组件的接收视场角与距离负相关。即目标物与投影设备之间的距离越短,光信号接收组件的接收视场角需设置的越大。目标物与投影设备的距离越长,光信号接收组件的接收视场角可以设置的越小。
步骤405、将光信号接收组件的接收视场角调整为目标接收视场角。
控制电路在确定光信号接收组件的目标接收视场角后,可以将光信号接收组件的视场角调整为目标接收视场角,以使光信号接收组件以目标接收视场角接收光反射信号。需要说明的是,在该投影设备启动后,该光信号接收组件的接收视场角可以为预先存储的初始接收视场角,该初始接收视场角可以为光信号接收组件的最大接收视场角。该光信号接收组件的接收视场角是指该光信号接收组件能够检测到光信号的范围,且该接收视场角越大,该光信号接收组件能够检测到光信号的范围越大。
作为本公开一种在一种实施方式中实现方式,参考图5,该投影设备还可以包括分别与控制电路10和光信号接收组件30连接的感光器驱动电路50。控制电路可以根据目标接收视场角,从接收视场角与感光器的对应关系中,确定待开启的备选感光器。并启动该备选感光器,以将光信号接收组件的接收视场角调整为目标接收视场角。
其中,该备选感光器的数量与目标接收视场角的大小正相关,该备选感光器为光信号接收组件中处于开启状态的感光器,该处于开启状态的备选感光器能够接收被目标物反射的光信号接收组件。
在一种实施方式中,控制电路中预先存储有接收视场角和感光器的对应关系。控制电路在确定目标接收视场角之后,可以根据该目标接收视场角,从该接收视场角与感光器的对应关系中,确定待开启的备选感光器在光信号接收组件中的位置。之后,控制电路10可以向感光器驱动电路50传输第一视场角信号。该感光器驱动电路50可以响应于接收到的第一视场角信号,向备选感光器提供驱动电流,以开启该备选感光器,以将光信号接收组件的接收视场角调整为目标接收视场角。
在一种实施方式中,该感光器驱动电路50可以响应于接收到的第一视场角信号,按行从光信号接收组件的中间行开始选择光信号接收组件中的一行或多行感光器开启。
或者,感光器驱动电路50可以响应于接收到的第一视场角信号,按列从光信号接收组件的中间列开始选择光信号接受组件中的一列或多列感光器开启。
或者,感光器驱动电路50可以响应于接收到的第一视场角信号,以光信号接收组件的中心为圆点确定一个圆形区域,并开启该圆形区域内的感光器。
由于该备选感光器的数量与目标接收视场角的大小正相关,即该目标接收视场角越大,备选感光器的数量越多,目标接收视场角越小,备选感光器的数量越少。由于控制电路可 以根据接收视场角动态调整光信号接收组件中能够开启的感光器的数量,由此降低了投影设备的功耗。
示例的,假设M为6,N为12,即光信号接收组件30包括6×12个感光器。图9至图11示出了不同接收视场角对应的感光器开关状态的示意图。其中,1表示的是该感光器处于开启状态,0表示该感光器处于关闭状态。
参考图9,若目标接收视场角α为30度,则控制电路可以根据目标接收视场角30度确定备选感光器为光信号接收组件中6×12个感光器,并可以启动该6×12个备选感光器,以使该6×12个备选感光器处于开启状态。
参考图10,若目标接收视场角α为25度,则控制电路确定该目标接收视场角25度对应的备选感光器为光信号接收组件中第二行至第五行的感光器。控制电路可以启动该备选感光器,以使该备选感光器处于开启状态,该光信号接收组件中其余行的感光器处于关闭状态。
参考图11,若目标接收视场角α为15度,则控制电路可以确定该目标接收视场角15度对应的备选感光器为光信号接收组件中第三行和第四行的感光器,由此控制电路可以启动该备选感光器,以使该备选感光器处于开启状态,该光信号接收组件中其余行的感光器处于关闭状态。
作为本公开另一种在一种实施方式中实现方式,参考图6和图8,该投影设备还可以包括光圈60和光圈驱动电路70,该光圈驱动电路70分别与光圈60和控制电路10连接,该光圈60位于光信号接收组件30远离投影屏幕04的一侧。该光圈60的形状可以为圆形或者矩形。
在本公开实施例中,在步骤401中,控制电路在接收到多媒体控制组件40发送的启动指令后,还可以响应于该启动指令,向光信号接收组件发送第二视场角信号,以控制光信号接收组件中的多个感光器均开启,以使光信号接收组件中的所有感光器处于开启状态。控制电路在确定目标接收视场角后,可以根据该目标接收视场角调整光圈的进光量,以将光信号接收组件的视场角调整为目标接收视场角。
在一种实施方式中,参考图6,控制电路10可以响应于启动指令,向光信号接收组件30发送第二视场角信号,以控制光信号接收组件30中的多个感光器均开启。在确定目标接收视场角后,控制电路10可以根据目标接收视场角向光圈驱动电路70传输光圈驱动电流信号。该光圈驱动电路70可以响应于该光圈驱动电流信号,向光圈60提供光圈驱动电流。该光圈60可以在该光圈驱动电流的驱动下调节光圈60的进光量,以将光信号接收组件的接收视场角调整为目标接收视场角。
其中,该光圈驱动电流信号的占空比与目标接收视场角的大小正相关,该光圈驱动电流的大小与光圈驱动电流信号的占空比正相关,该进光量的大小与光圈驱动电流的大小正相关。即该进光量的大小与目标接收视场角的大小正相关,该目标接收视场角越大,该光圈的进光量越大,相应的光信号接收组件中能够接收到被目标物反射的光信号的感光器越多。
在本公开实施例中,由于光信号接收组件中包括的多个感光器均处于开启状态,因此可以通过调节光圈的大小来调整光信号接收组件的接收视场角,由此调整多个感光器中能够接收被目标物反射的光信号的感光器。
示例的,假设光圈的形状为矩形,M为6,N为12,即光信号接收组件30包括6×12个感光器,若目标接收视场角为30,则控制电路可以根据该目标接收视场角调整光圈的进光量,以使光信号接收组件30包括的6×12个感光器均能够接收到被目标物反射的光信号。若目标接收视场角为25度,则控制电路根据该目标接收视场角调整光圈的进光量,以使光信号接收组件30中第二行至第五行的感光器均能够接收到被目标物反射的光信号。若目标接收视场角为15度,则控制电路根据该目标接收视场角调整光圈的进光量,以使该光信号接收组件中第三行和第四行的感光器均能够接收到被目标物反射的光信号。
在一种实施方式中,光圈在光圈驱动电流的驱动下不断开启或者关闭,从而实现对光圈的进光量大小的调整,光圈的进光量的大小与光圈在单位时间内的开启次数正相关,也即是,光圈的进光量的越大,该光圈在单位时间内的开启次数越多。
在本公开实施例中,控制电路在检测到光圈在单位时间内的开启次数大于次数阈值时,可以降低向光圈驱动电路提供的光圈驱动电流信号的占空比,进而降低了光圈驱动电路向光圈提供的光圈驱动电流,从而避免出现光圈在单位时间内开启次数过多而损坏的情况。该次数阈值为控制电路中预先存储的固定次数。
在一种实施方式中,该光圈内部设置有阻尼线圈,该阻尼线圈连接一个电流传感器。控制电路在检测到该阻尼线圈上的电动势超过电动势阈值时,可以确定该光圈在单位时间内的开启次数超过次数阈值,则可以降低向光圈驱动电路提供的光圈驱动电流信号的占空比,进而降低向光圈提供的光圈驱动电流。该阻尼线圈起到平滑控制光圈的作用。
步骤406、从距离范围与响应等级的对应关系中,确定目标距离所处的目标距离范围对应的目标响应等级。
在本公开实施例中,控制电路中预先存储有距离范围与响应等级的对应关系,在步骤404中,控制电路在确定目标距离所处的目标距离范围后,还可以从距离范围与响应等级的对应关系中,确定目标距离范围对应的目标响应等级。
示例的,假设距离范围与响应等级的对应关系如表2所示,则若目标距离为0.7m,该目标距离处于目标距离范围(0,0.7m]内,从表2中确定该目标距离范围(0,0.7m]对应的目标响应等级为1。若目标距离为1m,该目标距离处于目标距离范围(0.7m,1m]内,从表2中确定该目标距离范围(0.7m,1m]对应的目标响应等级为2。若目标距离为1.3m,该目标距离处于目标距离范围(1m,1.3m]内,从表2中确定该目标距离范围(1m,1.3m]对应的目标响应等级为3。
表2
距离范围 响应等级
(0,0.7m] 1
(0.7m,1m] 2
(1m,1.3m] 3
步骤407、根据目标响应等级,对激光光源进行亮度调整。
控制电路中可以预先存储有响应等级与亮度的对应关系。控制电路在确定目标响应等级之后,可以根据该目标响应等级,从该响应等级与亮度的对应关系中,确定该目标响应等级对应的目标亮度,进而将激光光源的亮度调整为目标亮度,该目标亮度与目标响应等级负相关。
由于目标距离与目标响应等级负相关,目标亮度与目标响应等级负相关,即目标距离越短,目标响应等级越高,目标亮度越低,由此在目标物与投影设备较近时,可以降低激光光源的亮度,由此提高了对目标物保护的可靠性。且根据距离可以动态调整响应等级,进而动态调整激光光源的亮度,提高了对目标物保护的灵活性。
示例的,假设响应等级与亮度的对应关系如表3所示,则若目标响应等级为1,从表3中确定该目标响应等级1对应的目标亮度为0,进而可以将激光光源的亮度调整为0。若目标响应等级为2,从表3中确定该目标响应等级2对应的目标亮度为初始亮度的50%,进而可以将激光光源的亮度调整为初始亮度的50%。若目标响应等级为3,从表3中确定该目标响应等级3对应的目标亮度为初始亮度的80%,进而可以将激光光源的亮度调整为初始亮度的80%。该初始亮度为激光光源的正常发光的亮度。
表3
响应等级 亮度
1 0
2 初始亮度的50%
3 初始亮度的80%
在本公开实施例中,参考图1,该多媒体控制组件40可以包括第一逻辑控制电路401和多媒体驱动子组件402。该第一逻辑控制电路401分别与控制电路10和多媒体驱动子组件402连接。该投影设备还可以包括背光控制组件80、光源驱动组件90和激光光源100。该激光光源100用于发射激光。该背光控制组件80可以包括显示驱动电路801和第二逻辑控制电路802。该第二逻辑控制电路802通过集成电路总线(inter integrated circuit,I2C)与显示驱动电路801和多媒体驱动子组件402连接。
控制电路10在确定目标亮度后,可以通过第一逻辑控制电路401将该目标亮度发送至多媒体驱动子组件402,该多媒体驱动子组件402通过第二逻辑控制电路将该目标亮度发送至显示驱动电路801。该显示驱动电路801根据该目标亮度调整向光源驱动组件90发送的光源驱动电流信号的占空比,由此调整光源驱动组件90向激光光源提供的光源驱动电流。例如,显示驱动电路801可以降低向光源驱动组件90发送的光源驱动电流信号的占空比,从而降低光源驱动组件90向激光光源100提供的光源驱动电流,从而降低投影屏幕的亮度。
需要说明的是,本公开实施例提供的视场角调整方法步骤的先后顺序可以进行适当调整,步骤也可以根据情况进行删除。例如,步骤406和步骤407可以根据情况删除。任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化的方法,都应涵盖在本公开的保护范围之内,因此不再赘述。
综上所述,本公开实施例提供了一种视场角调整方法,该调整方法可以根据目标物与投影设备之间的目标距离,调整光信号接收组件的接收视场角。由于调整后的接收视场角的大小与目标距离的长短负相关,因此在目标物距离投影设备较近时,该较大的接收视场角可以增大光信号接收组件的检测范围,使得对目标物的检测范围更全面,由此提高了对目标物检测的可靠性。并且,由于能够根据距离动态调整光信号接收组件的接收视场角,因此提高了对目标物检测的灵活性。且由于能够检测到投影设备与目标物之间的目标距离,因此,该方法能够检测到静止的人。同时由于能够根据目标距离,对激光光源的亮度进行调整,因此有效保护了人眼。
本公开实施例还提供了一种投影设备,参考图1和图2,投影设备可以包括控制电路10、设置于投影设备的主机一侧的光信号发射组件20和光信号接收组件30,该光信号发射组件20和光信号接收组件30设置于该投影设备的壳体00的上表面或前侧面,光信号接收组件30可以包括多个感光器。
光信号发射组件20,用于沿预设视场角范围发射光信号。
光信号接收组件30,用于接收被投影设备的前方或侧方的目标物反射的光信号。
以及,还包括控制电路10,控制电路10分别与光信号发射组件20和光信号接收组件30连接。控制电路10用于根据光信号发射组件20的光输出时间值与光信号接收组件30的光接收时间值,确定目标物与投影设备之间的目标距离。
以及,控制电路还用于根据目标距离,调整光信号接收组件的接收视场角,接收视场角的大小与目标距离的长短负相关。
以及,光信号接收组件30还用于以调整后的接收视场角接收光反射信号。
以及,控制电路10还用于根据目标距离,对激光光源进行亮度调整。
综上所述,本公开实施例提供了一种投影设备,该投影设备中控制电路可以根据目标物与投影设备之间的目标距离,调整光信号接收组件的视场角。由于调整后的接收视场角的大小与目标距离的长短负相关,因此在目标物距离投影设备较近时,该较大的接收视场角可以增大光信号接收组件的检测范围,使得对目标物的检测范围更全面,由此提高了对目标物检测的可靠性。并且,由于能够根据距离动态调整光信号接收组件的接收视场角,因此提高了对目标物检测的灵活性。同时由于能够根据目标距离,对激光光源的亮度进行调整,因此有效保护了人眼。
在一种实施方式中,控制电路10用于根据目标距离,从距离范围与接收视场角的对应关系中,确定目标距离所处的目标距离范围对应的目标接收视场角。将光信号接收组件的接收视场角调整为目标接收视场角。
在一种实施方式中,参考图5,该投影设备还可以包括分别与控制电路10和光信号接收组件30连接的感光器驱动电路50。
控制电路10,用于根据目标接收视场角,从接收视场角与感光器的对应关系中,确定待开启的备选感光器,并向感光器驱动电路50传输第一视场角信号,其中,备选感光器的数量与目标接收视场角的大小正相关。
感光器驱动电路50,用于响应于接收到的第一视场角信号,向备选感光器提供驱动电流,开启备选感光器,以将光信号接收组件30的接收视场角调整为目标接收视场角。
在一种实施方式中,参考图6,该投影设备还可以包括光圈60和光圈驱动电路70,光圈驱动电路70分别与光圈60和控制电路10连接,光圈60位于光信号接收组件30远离投影屏幕的一侧。
控制电路10还用于:
响应于启动指令,向光信号接收组件30发送第二视场角信号,以控制光信号接收组件30中的多个感光器均开启。
根据目标接收视场角向光圈驱动电路70传输光圈驱动电流信号,光圈驱动电流信号的占空比与目标接收视场角的大小正相关。
光圈驱动电路70,用于响应于光圈驱动电流信号,向光圈60提供光圈驱动电流,光圈驱动电流的大小与光圈驱动电流信号的占空比正相关。在本公开实施例中,该光圈控制电路主要有视频控制和直流控制两种方法。
光圈60,用于在光圈驱动电流的驱动下调节光圈的进光量,以将光信号接收组件30的接收视场角调整为目标接收视场角,进光量的大小与光圈驱动电流的大小正相关。
参考图12,该控制电路10可以包括转换子电路11、第一比较子电路12、第二比较子电路13和第三比较子电路14。该每个比较子电路分别与转换子电路11、光圈驱动电路70和一个负反馈电阻Rf连接。该转换子电路11用于将目标距离转换为输出电压,并将该输出电压传输至该三个比较子电路。该每个比较子电路用于将该输出电压与其预先存储的基准电压进行比较,并向光圈驱动电路70输出光圈驱动电流信号,以使光圈驱动电路70向光圈60提供光圈驱动电流。
其中,每个比较电路中存储的基准电压可以是根据不同距离范围的上限值或者下限值得到的。例如,第一比较子电路12中存储的第一基准电压可以是根据距离范围(0,0.7m]的上限值0.7m得到的。第二比较子电路13中存储的第二基准电压可以是根据距离范围(0.7m,1m]的上限值1m得到的。第三比较电路14中存储的第三基准电压可以是根据距离范围(1m,1.3m]的上限值1.3m得到的。
光圈驱动电路70在向光圈60提供光圈驱动电流的过程中,通常需要以较短的时间将光圈驱动电流调整至期望值,以将光信号接收组件30的视场角调整为目标接收视场角。图12所示的光圈60、光信号接收组件30和转换子电路11可以组成一阶闭环系统,该一阶闭环系统具有较好的收敛性能,能够使得光圈的光圈驱动电流快速收敛至期望值,以将光信号接收组件的视场角快速收敛至目标接收视场角,进而使该系统的性能更快速更稳定。
图13是本公开实施例提供的一种光圈调整过程的示意图。该示意图包括第一曲线、第二曲线和第三曲线,第一曲线表示的是欠阻尼的过程,第二曲线表示的是临界阻尼的过程,第三曲线表示的是过阻尼的过程。该示意图中横轴为时间,纵轴为向光圈提供的光圈驱动电流。通过图13可以看出,光圈驱动电路在向光圈提供光圈驱动电流的过程中,相较于第一曲线和第三曲线,第二曲线通过较短时间T1将光圈的光圈驱动电流调整到了期望值i。光圈驱动电路70在向光圈60提供光圈驱动电流的过程中,以较短的时间将光圈驱动电流调整至期望值,从而实现了临界阻尼。
在一种实施方式中,参考图12,该投影设备还可以包括第一电感L1、第二电感L2、 第三电感L3和电容C,该第二电感L2的一端与第一电感L1的一端连接,该第二电感L2的另一端与电容C的一端连接。该第三电感L3的一端与第一电感L1的另一端连接,第三电感L3的另一端与电容C的另一端连接,该每个比较电路分别与电容的两端连接。该第二电感L2和第三电感L3用于进行阻抗匹配。
控制电路10在降低向光圈驱动电路70提供的光圈驱动电流信号的占空比,进而降低向光圈60提供的光圈驱动电流后,控制电路10可以比较该电容C两端的电压和光圈驱动电路70向光圈60提供的电压之间的差值。若该差值小于差值阈值,则控制电路10可以不再降低向光圈驱动电路70提供的光圈驱动电流信号的占空比。
在一种实施方式中,控制电路10还用于:
从距离范围与响应等级的对应关系中,确定目标距离所处的目标距离范围对应的目标响应等级。
根据目标响应等级,对激光光源进行亮度调整。
在一种实施方式中,控制电路10用于:
根据光信号发射组件20的光输出时间值,以及光信号接收组件30的光接收时间值,确定光信号的传输时长。
根据光信号的传输速度和传输时长,确定目标物与投影设备之间的目标距离。
在一种实施方式中,参考图5和图6,光信号发射组件20可以包括激光器22和激光器驱动组件21,激光器驱动组件21分别与激光器22和控制电路10连接。
控制电路10用于响应于启动指令,向激光器驱动组件21发送使能信号和激光驱动电流信号。
激光器驱动组件21用于响应于使能信号和激光驱动电流信号,向激光器提供激光驱动电流。
激光器22用于在激光驱动电流的驱动下发射光信号。
在本公开实施例中,参考图5和图6,该投影设备还可以包括光学镜片120、滤波组件110和数据处理组件140,该光学镜片120用于对激光器22发射的检测光进行准直处理。该滤波组件110位于光信号接收组件30远离投影屏幕的一侧,用于滤除与检测光波长不同的光。即该滤波组件能够滤掉非人体反射回来的光以及环境光。
该数据处理组件140可以包括光信号分析子组件和光电转换子组件。该光信号分析子组件用于确定光信号接收组件中处于开启状态的感光器在接收到被目标物反射的光信号后,能够被点亮的目标感光器的数量。并将该数量发送至光电转换子组件,该光电转换子组件用于将该数量转换为数字电信号发送至控制电路,该控制电路可以根据该数字电信号 得到该目标感光器的数量。
在本公开实施例中,参考图1,该多媒体控制组件40还可以包括第一存储器403。该第一存储器403可以用于存储待投影显示的图像。多媒体驱动子组件402可以包括应用层4021、框架层4022、驱动层4023和引导层4024。该应用层4021、框架层4022、驱动层4023和引导层4024可以将待投影显示的图像发送至第二逻辑控制电路802,进而发送给显示驱动电路801。
假设激光光源100包括红色激光器、绿色激光器组件、蓝色激光器组件和黄色激光器组件。该每个激光器的出光侧设置有具备合光功能的玻璃镜片。该显示驱动电路801可以基于待显示图像的红色基色分量输出与红色激光器组件对应的红色PWM信号R_PWM,基于待显示图像的绿色基色分量输出与绿色激光器组件对应的绿色PWM信号G_PWM,基于待显示图像的蓝色基色分量输出与蓝色激光器组件对应的蓝色PWM信号B_PWM,基于待显示图像的黄色基色分量输出与黄色激光器组件对应的黄色PWM信号Y_PWM。并且,该显示驱动电路801可以基于红色激光器组件在驱动周期内的点亮时长,输出与红色激光器组件对应的使能信号R_EN,基于绿色激光器组件在驱动周期内的点亮时长,输出与绿色激光器组件对应的使能信号G_EN,基于蓝色激光器组件在驱动周期内的点亮时长,输出与蓝色激光器组件对应的使能信号B_EN。基于黄色激光器组件在驱动周期内的点亮时长,输出与黄色激光器组件对应的使能信号Y_EN。
该背光控制组件80还可以包括第二存储器803,该第二存储器803用于存储待投影图像中像素的基色色阶值。显示驱动电路801还用于从该第二存储器中获取存储的待投影图像中像素的基色色阶值,并根据待投影图像中像素的基色色阶值控制光阀进行翻转,以将待投影图像投影显示至投影屏幕。
综上所述,本公开实施例提供了一种投影设备,该投影设备中控制电路可以根据目标物与投影设备之间的目标距离,调整光信号接收组件的视场角。由于调整后的视场角的大小与目标距离的长短负相关,因此在目标物距离投影设备较近时,该较大的视场角可以增大光信号接收组件的检测范围,使得对目标物的检测范围更全面,由此提高了对目标物检测的可靠性。并且,由于能够根据距离动态调整光信号接收组件的视场角,因此提高了对目标物检测的灵活性。同时由于能够根据目标距离,对激光光源的亮度进行调整,因此有效保护了人眼。
以上所述仅为本公开的一些实施例,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (12)

  1. 一种投影设备,其特征在于,所述投影设备包括:
    设置于所述投影设备的主机一侧的光信号发射组件和光信号接收组件,所述光信号发射组件和所述光信号接收组件设置于所述投影设备的壳体的上表面或前侧面,所述光信号接收组件包括多个感光器;
    所述光信号发射组件,用于沿预设视场角范围发射光信号;
    所述光信号接收组件,用于接收被所述投影设备的前方或侧方的目标物反射的所述光信号;
    以及,还包括控制电路,所述控制电路分别与所述光信号发射组件和所述光信号接收组件连接;用于根据所述光信号发射组件的光输出时间值与所述光信号接收组件的光接收时间值,确定所述目标物与所述投影设备之间的目标距离;
    以及,所述控制电路还用于根据所述目标距离,调整所述光信号接收组件的接收视场角,所述接收视场角的大小与所述目标距离的长短负相关;
    以及,所述光信号接收组件还用于以调整后的接收视场角接收光反射信号,
    以及,所述控制电路还用于根据所述目标距离,对激光光源进行亮度调整。
  2. 根据权利要求1所述的投影设备,其特征在于,所述控制电路用于根据所述目标距离,从距离范围与接收视场角的对应关系中,确定所述目标距离所处的目标距离范围对应的目标接收视场角;将所述光信号接收组件的接收视场角调整为所述目标接收视场角。
  3. 根据权利要求2所述的投影设备,其特征在于,所述投影设备还包括:分别与所述控制电路和所述光信号接收组件连接的感光器驱动电路;
    所述控制电路,用于根据所述目标接收视场角,从接收视场角与感光器的对应关系中,确定待开启的备选感光器,并向所述感光器驱动电路传输第一视场角信号,其中,所述备选感光器的数量与所述目标接收视场角的大小正相关;
    所述感光器驱动电路,用于响应于接收到的所述第一视场角信号,向所述备选感光器提供驱动电流,开启所述备选感光器,以将所述光信号接收组件的接收视场角调整为所述目标接收视场角。
  4. 根据权利要求2所述的投影设备,其特征在于,所述投影设备还包括:光圈和光圈驱动电路,所述光圈驱动电路分别与所述光圈和所述控制电路连接,所述光圈位于所述光信号接收组件远离所述投影屏幕的一侧;
    所述控制电路还用于:
    响应于启动指令,向所述光信号接收组件发送第二视场角信号,以控制所述光信号接收组件中的多个感光器均开启;
    根据所述目标接收视场角向所述光圈驱动电路传输光圈驱动电流信号,所述光圈驱动电流信号的占空比与所述目标接收视场角的大小正相关;
    所述光圈驱动电路,用于响应于所述光圈驱动电流信号,向所述光圈提供光圈驱动电流,所述光圈驱动电流的大小与所述光圈驱动电流信号的占空比正相关;
    所述光圈,用于在所述光圈驱动电流的驱动下调节所述光圈的进光量,以将所述光信号接收组件的接收视场角调整为所述目标接收视场角,所述进光量的大小与所述光圈驱动电流的大小正相关。
  5. 根据权利要求1至3任一所述的投影设备,其特征在于,所述控制电路还用于:
    从距离范围与响应等级的对应关系中,确定所述目标距离所处的目标距离范围对应的目标响应等级;
    根据所述目标响应等级,调整投影屏幕的亮度。
  6. 根据权利要求1至4任一所述的投影设备,其特征在于,所述控制电路用于:
    根据所述光信号发射组件的光输出时间值,以及所述光信号接收组件的光接收时间值,确定所述光信号的传输时长;
    根据所述光信号的传输速度和所述传输时长,确定所述目标物与所述投影设备之间的目标距离。
  7. 根据权利要求1至4任一所述的投影设备,其特征在于,所述光信号发射组件包括:
    激光器和激光器驱动组件,所述激光器驱动组件分别与所述激光器和所述控制电路连接;
    所述控制电路用于响应于启动指令,向所述激光器驱动组件发送使能信号和激光驱动电流信号;
    所述激光器驱动组件用于响应于所述使能信号和所述激光驱动电流信号,向所述激光器提供激光驱动电流;
    所述激光器用于在所述激光驱动电流的驱动下发射光信号。
  8. 一种视场角调整方法,其特征在于,所述方法应用于投影设备的控制电路中,所述投影设备还包括:设置于所述投影设备的主机一侧的光信号发射组件和光信号接收组件,所述光信号发射组件和所述光信号接收组件设置于所述投影设备的壳体的上表面或前侧面, 所述光信号接收组件包括多个感光器,其中,所述控制电路分别与所述光信号发射组件和所述光信号接收组件连接,所述方法包括:
    根据所述光信号发射组件的光输出时间值与所述光信号接收组件的光接收时间值,确定所述目标物与所述投影设备之间的目标距离;
    根据所述目标距离,调整所述光信号接收组件的接收视场角,所述接收视场角的大小与所述目标距离的长短负相关,以使所述光信号接收组件以调整后的接收视场角接收光反射信号;
    根据所述目标距离,对激光光源进行亮度调整。
  9. 根据权利要求8所述的方法,其特征在于,所述根据所述目标距离,调整所述光信号接收组件的接收视场角,包括:
    根据所述目标距离,从距离范围与接收视场角的对应关系中,确定所述目标距离所处的目标距离范围对应的目标接收视场角;将所述光信号接收组件的接收视场角调整为所述目标接收视场角。
  10. 根据权利要求9所述的方法,其特征在于,所述投影设备还包括:分别与所述控制电路和所述光信号接收组件连接的感光器驱动电路;
    所述将所述光信号接收组件的接收视场角调整为所述目标接收视场角,包括:
    根据所述目标接收视场角,从视场角接收与感光器的对应关系中,确定待开启的备选感光器,其中,所述备选感光器的数量与所述目标接收视场角的大小正相关;
    向所述感光器驱动电路传输第一视场角信号,所述第一视场角信号用于控制所述感光器驱动电路向所述备选感光器提供驱动电流,以开启所述备选感光器,将所述光信号接收组件的接收视场角调整为所述目标接收视场角。
  11. 根据权利要求9所述的方法,其特征在于,所述投影设备还包括:光圈和光圈驱动电路,所述光圈驱动电路分别与所述光圈和所述控制电路连接,所述光圈位于所述光信号接收组件远离所述投影屏幕的一侧;
    在将所述光信号接收组件的接收视场角调整为所述目标接收视场角之前,所述方法还包括:响应于启动指令,向所述光信号接收组件发送第二视场角信号,以控制所述光信号接收组件中的所述多个感光器均开启;
    所述将所述光信号接收组件的接收视场角调整为所述目标接收视场角,包括:
    根据所述目标接收视场角向所述光圈驱动电路传输光圈驱动电流信号,所述光圈驱动电流信号用于指示所述光圈驱动电路,向所述光圈提供光圈驱动电流,以调节所述光圈的进光量,将所述光信号接收组件的接收视场角调整为所述目标接收视场角;
    其中,所述光圈驱动电流信号的占空比与所述目标接收视场角的大小正相关,所述光圈驱动电流的大小与所述光圈驱动电流信号的占空比正相关,所述进光量的大小与所述光圈驱动电流的大小正相关。
  12. 根据权利要求8至11所述的方法,其特征在于,所述根据所述目标距离,对激光光源进行亮度调整,包括:
    从距离范围与响应等级的对应关系中,确定所述目标距离所处的目标距离范围对应的目标响应等级;
    根据所述目标响应等级,对激光光源进行亮度调整。
PCT/CN2021/089280 2020-05-18 2021-04-23 投影设备及其视场角调整方法 WO2021233068A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180036211.9A CN115516852B (zh) 2020-05-18 2021-04-23 投影设备及其视场角调整方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010419446.3A CN113691787B (zh) 2020-05-18 2020-05-18 投影设备及其视场角调整方法
CN202010419446.3 2020-05-18

Publications (1)

Publication Number Publication Date
WO2021233068A1 true WO2021233068A1 (zh) 2021-11-25

Family

ID=78575502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/089280 WO2021233068A1 (zh) 2020-05-18 2021-04-23 投影设备及其视场角调整方法

Country Status (2)

Country Link
CN (3) CN113691787B (zh)
WO (1) WO2021233068A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102566220A (zh) * 2010-12-20 2012-07-11 鸿富锦精密工业(深圳)有限公司 投影装置保护系统及保护方法
CN103576431A (zh) * 2013-11-20 2014-02-12 巴可伟视(北京)电子有限公司 一种应用于高亮度激光投影机使用现场对人眼实施保护的方法及系统装置
US20140354962A1 (en) * 2013-05-29 2014-12-04 Hon Hai Precision Industry Co., Ltd. Protection system and protection method
CN104698727A (zh) * 2015-03-24 2015-06-10 海信集团有限公司 用于激光投影设备的人体保护方法、装置和激光投影设备
CN208299916U (zh) * 2018-05-02 2018-12-28 深圳吉祥星科技股份有限公司 一种投影仪

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4725021B2 (ja) * 2004-02-13 2011-07-13 カシオ計算機株式会社 投影装置、投影装置の光源制御方法
CN209014726U (zh) * 2018-09-28 2019-06-21 北京理工大学 一种无人驾驶变视场固态面阵激光雷达测距系统
CN111025319B (zh) * 2019-12-28 2022-05-27 奥比中光科技集团股份有限公司 一种深度测量装置及测量方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102566220A (zh) * 2010-12-20 2012-07-11 鸿富锦精密工业(深圳)有限公司 投影装置保护系统及保护方法
US20140354962A1 (en) * 2013-05-29 2014-12-04 Hon Hai Precision Industry Co., Ltd. Protection system and protection method
CN103576431A (zh) * 2013-11-20 2014-02-12 巴可伟视(北京)电子有限公司 一种应用于高亮度激光投影机使用现场对人眼实施保护的方法及系统装置
CN104698727A (zh) * 2015-03-24 2015-06-10 海信集团有限公司 用于激光投影设备的人体保护方法、装置和激光投影设备
CN208299916U (zh) * 2018-05-02 2018-12-28 深圳吉祥星科技股份有限公司 一种投影仪

Also Published As

Publication number Publication date
CN113691787B (zh) 2022-07-29
CN115802015A (zh) 2023-03-14
CN113691787A (zh) 2021-11-23
CN115516852A (zh) 2022-12-23
CN115516852B (zh) 2024-03-29

Similar Documents

Publication Publication Date Title
CN107885023B (zh) 图像投影设备中用于亮度和自动聚焦控制的飞行时间感测
WO2020073572A1 (zh) 控制方法、控制装置、深度相机和电子装置
KR20210019079A (ko) 구성 가능한 이미지 센서
US10880530B2 (en) Projector and brightness adjusting method
WO2020038060A1 (zh) 激光投射模组及其控制方法、图像获取设备和电子装置
US10313586B2 (en) Electronic apparatus, method for controlling the same, and storage medium
US20060139236A1 (en) Projection type image display apparatus
US20080225241A1 (en) Projector and Method for adjusting projective luminance thereof
US20120188623A1 (en) Scanning image display device and method of controlling the same
WO2020038064A1 (zh) 控制方法及装置、深度相机、电子装置及可读存储介质
US8767023B2 (en) Scanning image display device and method of controlling the same
WO2020038058A1 (zh) 标定方法、标定控制器及标定系统
CN114586331A (zh) 分布式传感器系统
WO2023087947A1 (zh) 一种投影设备和校正方法
KR20210018349A (ko) 이미지 센서 후처리
US9077909B2 (en) Strobe device, image photographing apparatus having the same, and method thereof
WO2021233068A1 (zh) 投影设备及其视场角调整方法
US20200142071A1 (en) Tof module and object recognition device using tof module
US20170295340A1 (en) Package with integrated infrared and flash leds
US20230013134A1 (en) Electronic device
US20230030103A1 (en) Electronic apparatus
WO2017038025A1 (en) Imaging apparatus
US11842682B2 (en) Light emitting device, photoelectric conversion device, electronic device, lighting device, and mobile body
KR102488778B1 (ko) 표시 장치
US11553128B2 (en) Image pickup control device, image pickup device, control method for image pickup device, non-transitory computer-readable storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21808981

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21808981

Country of ref document: EP

Kind code of ref document: A1