WO2021232994A1 - 一种可穿戴设备 - Google Patents

一种可穿戴设备 Download PDF

Info

Publication number
WO2021232994A1
WO2021232994A1 PCT/CN2021/086238 CN2021086238W WO2021232994A1 WO 2021232994 A1 WO2021232994 A1 WO 2021232994A1 CN 2021086238 W CN2021086238 W CN 2021086238W WO 2021232994 A1 WO2021232994 A1 WO 2021232994A1
Authority
WO
WIPO (PCT)
Prior art keywords
resonance
point
wearable device
metal frame
area
Prior art date
Application number
PCT/CN2021/086238
Other languages
English (en)
French (fr)
Inventor
许志玮
王汉阳
刘兵
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21809533.9A priority Critical patent/EP4145631A4/en
Priority to US17/926,795 priority patent/US20230208015A1/en
Publication of WO2021232994A1 publication Critical patent/WO2021232994A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/273Adaptation for carrying or wearing by persons or animals
    • GPHYSICS
    • G04HOROLOGY
    • G04RRADIO-CONTROLLED TIME-PIECES
    • G04R60/00Constructional details
    • G04R60/06Antennas attached to or integrated in clock or watch bodies
    • G04R60/10Antennas attached to or integrated in clock or watch bodies inside cases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • H01Q5/25Ultra-wideband [UWB] systems, e.g. multiple resonance systems; Pulse systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/50Feeding or matching arrangements for broad-band or multi-band operation

Definitions

  • This application relates to the field of wireless communication, and in particular to a wearable device.
  • wearable devices can be used to monitor important data such as human heartbeat and sleep status at any time, and complete data synchronization by connecting to the Internet through communication functions. Or wearable devices can also get information such as weather and temperature.
  • the built-in near field communication (NFC) function allows users to easily conduct consumption behaviors through wearable devices.
  • the embodiments of the present application provide a wearable device, using the slot antenna theory, the metal frame of the wearable device can be used to achieve full frequency band coverage in 4G communication, and provide good communication performance for the wearable device.
  • a wearable device including: a printed circuit board PCB and an antenna structure, the antenna structure includes a metal frame, and a first feeding unit; wherein the metal frame and the PCB are formed between Gap; the metal frame includes a first feed point, a first ground point and a second ground point, the metal frame is grounded at the first ground point and the second ground point; the metal frame is The first grounding point and the second grounding point are divided into a first area and a second area, and the circumferential length corresponding to the first area is greater than the circumferential length corresponding to the second area; the first feeder The point is set in the first area, and the distance between the first feeding point and the first grounding point along the metal frame is less than one third of the circumferential length corresponding to the first area; the first feeding point The electric unit feeds the antenna structure at the first feeding point.
  • the metal frame of the wearable device and the printed circuit board are used to form the antenna structure of the wearable device, which can generate three resonances to cover 4G communication The full frequency band in the system.
  • the antenna structure is a slot antenna.
  • the antenna structure when the first feeding unit feeds power, the antenna structure generates a first resonance, a second resonance, and a third resonance; wherein, the first resonance The frequency of the resonance point of the resonance is smaller than the frequency of the resonance point of the second resonance, and the frequency of the resonance point of the second resonance is smaller than the frequency of the resonance point of the third resonance.
  • the antenna structure when the first feeding unit feeds power, the antenna structure can generate a first resonance, a second resonance, and a third resonance. It can respectively correspond to the low frequency band, the middle frequency band and the high frequency band in the 4G communication system.
  • the antenna structure when the first resonance is generated, the antenna structure can work in the half-wavelength mode, when the second resonance is generated, the antenna structure can work in the double-wavelength mode, and when the third resonance is generated, the antenna structure can work in the two-wavelength mode. In three-quarter wavelength mode.
  • the operating frequency band of the antenna structure corresponding to the second resonance covers the GPS frequency band of the Global Positioning System.
  • the second resonance can also cover the frequency band of the global positioning system
  • the positioning antenna is also integrated on the metal frame of the wearable device to provide positioning services for the wearable device, which can further reduce the complexity of the overall structure .
  • the working frequency band of the antenna structure corresponding to the first resonance covers 698MHz-960MHz
  • the working frequency band of the antenna structure corresponding to the second resonance covers From 1710 MHz to 2170 MHz
  • the operating frequency band of the antenna structure corresponding to the third resonance covers 2300 MHz to 2690 MHz.
  • the first resonance, the second resonance and the third resonance may respectively correspond to the low frequency band, the middle frequency band and the high frequency band in the 4G communication system.
  • the wearable device further includes a bandpass filter; the metal frame further includes a third ground point, and the third ground point is disposed in the first area , Located between the first feed point and the second ground point; one end of the band pass filter is electrically connected to the metal frame at the third ground point, and the other end is grounded.
  • the technical solution according to the embodiment of the present application can be used to adjust the resonance point at which the antenna structure resonates.
  • the working frequency band of the band-pass filter covers the working frequency band of the antenna structure corresponding to the third resonance.
  • the band-pass filter can shorten its return path and increase its radiation performance when the antenna works in the working frequency band corresponding to the third resonance.
  • the band-pass filter operates at the operating frequency band of the antenna structure corresponding to the first resonance or the antenna structure corresponding to the second resonance.
  • the working frequency band is capacitive.
  • the capacitor in the band-pass filter can be set as an adjustable device, which can be used to adjust the antenna structure to generate the first resonance and the second resonance to cover the resonance points of the low frequency band and the middle frequency band in the 4G mobile communication system.
  • the working frequency band of the band-pass filter covers 2300 MHz to 2690 MHz.
  • the band-pass filter 410 can work in a high frequency band in a 4G mobile communication system.
  • the distance between the third ground point and the first ground point along the metal frame is one-third of the circumferential length corresponding to the first area one.
  • the return path of the antenna structure when working in the three-half wavelength mode can be effectively shortened, and the interference caused by the environment near the metal frame can be reduced when the antenna structure is working in the high frequency band, and the operation of the antenna structure can be increased. Radiation characteristics at high frequency.
  • the circumferential length corresponding to the first region is one-half of the working wavelength corresponding to the resonance point of the first resonance.
  • the circumferential length corresponding to the first region is one-half of the working wavelength corresponding to the resonance point of the first resonance, and the specific value can be obtained according to simulation.
  • the circumferential length corresponding to the first area is between 120 mm and 90 mm.
  • the circumferential length corresponding to the first area is 112 mm, 102 mm, or 97 mm.
  • the circumferential length corresponding to the first area 250 can be 112mm; when the surface diameter is 42mm, the first area 250 corresponds to The circumferential length can be 102mm; when the diameter is 40mm, the circumferential length corresponding to the first region 250 can be 97mm.
  • the angle of the central angle corresponding to the first region is between 288° and 252°.
  • the central angle corresponding to the first region may be between 288° and 252°.
  • the proportion of the metal frame occupied by the radiator of the antenna structure is about 0.7 to 0.8.
  • the first region is a metallic material
  • the second region is a non-metallic material
  • the gap between the second area and the PCB can be used for electrical connection between the screen of the wearable device and the PCB, or for electrical connection between the flexible circuit board and the PCB. It can avoid excessive wiring and reduce the loss of the antenna structure.
  • a wearable device including: an antenna structure and a printed circuit board PCB.
  • the antenna structure includes a metal frame, a band pass filter, and a first feeding unit; wherein the metal frame and the PCB A gap is formed between the metal frame; the metal frame includes a first feed point, a first ground point and a second ground point, and the metal frame is grounded at the first ground point and the second ground point; the metal The frame is divided into a first area and a second area by the first grounding point and the second grounding point, and the circumferential length corresponding to the first area is greater than the circumferential length corresponding to the second area; A feeding point is arranged in the first area, and the distance between the first feeding point and the first grounding point along the metal frame is less than one third of the circumferential length corresponding to the first area; The first feeding unit feeds the antenna structure at the first feeding point; the metal frame further includes a third grounding point, and the third grounding point is arranged in the first area and located in the first
  • one end of the band pass filter is electrically connected to the metal frame at the third ground point, and the other end is grounded.
  • the working frequency band of the band pass filter covers 2300MHz to 2690MHz; the distance between the third ground point and the first ground point along the metal frame is one third of the circumferential length corresponding to the first area.
  • Fig. 1 is a schematic diagram of a wearable device provided by an embodiment of the present application.
  • Fig. 2 is a schematic structural diagram of an antenna structure of a wearable device provided by the present application.
  • Fig. 3 is the S parameter simulation result of the antenna structure shown in Fig. 2.
  • FIG. 4 is a schematic diagram of the electric field intensity distribution of the antenna structure provided by an embodiment of the present application.
  • Fig. 5 is a schematic diagram of the electric field distribution in the slot when the antenna structure works in the half-wavelength mode.
  • Fig. 6 is a schematic diagram of the electric field distribution in the slot when the antenna structure works in the double-wavelength mode.
  • Fig. 7 is a schematic diagram of the electric field distribution in the slot when the antenna structure works in the three-half wavelength mode.
  • Fig. 8 is a schematic structural diagram of another antenna structure of a wearable device provided by the present application.
  • FIG. 9 is a schematic structural diagram of a wearable device provided by an embodiment of the present application.
  • Fig. 10 is an expanded view of a metal frame provided by an embodiment of the present application.
  • FIG. 11 is a bandpass filter structure provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a power feeding scheme of an antenna structure provided by an embodiment of the present application.
  • the wearable device provided in this application may be a portable device that can be integrated into a user's clothes or accessories, has a computing function, and can be connected to mobile phones and various terminal devices.
  • the wearable device may be a watch, a smart wristband, a portable music player, a health monitoring device, a computing or gaming device, a smart phone, an accessory, and the like.
  • the wearable device is a watch that can be worn around the user's wrist.
  • Fig. 1 is a schematic structural diagram of a wearable device provided by the present application.
  • the wearable device may be a watch or a bracelet.
  • the wearable device 100 includes a main body 101 and one or more wristbands 102 (a partial area of the wristband 102 is shown in FIG. 1 ).
  • the wristband 102 is fixedly connected to the main body 101, and the wristband 102 can be wrapped around the wrist, arm, leg or other parts of the body to fix the wearable device to the user's body.
  • the main body 101 may include a metal frame 180 and a screen 140.
  • the metal frame 180 may surround the wearable device for a full circle, as a part of the appearance of the wearable device, and surround the screen 140.
  • the edge of the screen 140 abuts and is fixed on the middle frame 180 to form the surface of the main body 101.
  • An accommodating space is formed between the metal frame 180 and the screen 140, which can accommodate a combination of multiple electronic devices to implement various functions of the wearable device 100.
  • the main body 101 further includes an input device 120.
  • the accommodation space between the metal frame 180 and the screen 140 can accommodate a portion of the input device 120, and the exposed portion of the input device 120 is convenient for the user to contact.
  • the metal frame 180 of the wearable device in the embodiment of the present application may be round, square, polygonal, or other regular or irregular shapes, which are not limited here.
  • the following embodiments take the circular metal frame 180 as an example for description.
  • the screen 140 is used as the surface of the main body 101 and can be used as a protective plate of the main body 101 to prevent the components contained in the metal frame 180 from being exposed and damaged.
  • the screen 140 may include a liquid crystal display (LCD) and a protective member, and the protective member may be sapphire crystal, glass, plastic or other materials.
  • the screen protector can be integrated with the metal frame through thermoplastic plastic (PC/ABS).
  • the user can interact with the wearable device 100 through the screen 140.
  • the screen 140 may receive a user's input operation, and make a corresponding output in response to the input operation.
  • the user may select (or in other ways) to open by touching or pressing a graphic position on the screen 140 , Edit the graphic, etc.
  • the input device 120 is attached to the outside of the metal frame 180 and extends to the inside of the metal frame 180.
  • the input device includes a head 121 and a stem 122 that are connected.
  • the rod 122 extends into the housing 180, and the head 121 is exposed outside the housing 180, which can be used as a part that contacts the user to allow the user to touch the input device, and receive user input by rotating, translating, tilting or pressing the head 121 Operation, when the user operates the head 121, the rod 122 can move together with the head 121.
  • the head 121 may have any shape, for example, the head 121 may have a cylindrical shape.
  • the rotatable input device 120 may be referred to as a button. In the embodiment where the wearable device 100 is a watch, the rotatable input device 120 may form the crown of the watch, and the input device 120 is referred to as the crown.
  • one or more functions are integrated in the input device 120 to improve the user experience, which will be described in detail below.
  • the input device 120 is not limited to the structure shown in FIG. 1, and any mechanical component that can receive the input operation of the user can be used as the input device of the present application.
  • the wearable device 100 includes a button 1202.
  • the user can press, move or tilt the button 1202 to perform an input operation.
  • the button 1202 can be installed on the side 180-A of the metal frame 180, a part of the button 1202 is exposed, and the other part extends from the side of the metal frame 180 toward the inside of the housing 180 (not shown in the figure).
  • the button 1202 may also be provided on the head 121 of the button 1201, and the pressing operation may also be performed while performing the rotation operation.
  • the button 1202 may also be arranged on the top surface of the main body 101 on which the display screen 140 is installed.
  • the wearable device 100 may include a button 1201 and a button 1202.
  • the button 1201 and the button 1202 may be arranged on the same surface of the metal frame 180, for example, both are arranged on the metal frame 180.
  • the buttons 1201 and 1202 can also be arranged on different surfaces of the metal frame 180, which is not limited in this application. It can be understood that the wearable device 100 may include one or more buttons 1202, and may also include one or more buttons 1201.
  • wearable devices are inseparable from communication functions and need a built-in antenna to transmit or receive electromagnetic signals.
  • monopole, IFA and other antenna forms are generally used. Limited by the size of wearable devices (such as smart watches), it is difficult for the built-in antennas to support all frequency bands in the 4G mobile communication system.
  • the embodiment of this application provides an antenna design solution for a wearable device.
  • the metal frame of the wearable device can be used to implement low-band (LB) (698MHz-960MHz) and middle-band (MB) in a 4G communication system. (1710MHz-2170MHz) and high-band (HB) (2300MHz-2690MHz), providing good communication performance for wearable devices.
  • LB low-band
  • MB middle-band
  • HB high-band
  • Fig. 2 is a schematic structural diagram of an antenna structure of a wearable device provided by the present application.
  • the wearable device may include a PCB 220 and an antenna structure 200, and the antenna structure may include a metal frame 210 and a first feeding unit 230.
  • a gap 240 is formed between the metal frame 210 and the PCB 220.
  • the metal frame 210 may include a first feed point 201, a first ground point 211 and a second ground point 212.
  • the metal frame 210 may be grounded at the first ground point 211 and the second ground point 212.
  • the metal frame 210 is divided into a first area 250 and a second area 260 by a first ground point 211 and a second ground point 212.
  • the circumferential length corresponding to the first area 250 is greater than the circumferential length corresponding to the second area 260.
  • the first feeding point 201 may be arranged in the first area 250 close to the first grounding point 211.
  • the distance between the first feeding point 201 and the first grounding point 211 along the metal frame 210 is less than one third of the circumferential length corresponding to the first area 250.
  • the first feeding unit 230 feeds the antenna structure at the first feeding point 201.
  • the circumferential length corresponding to the first region 250 can be considered as the longer distance from the first ground point 211 to the second ground point 212 along the surface of the metal frame 210.
  • the circumferential length corresponding to the second region 260 can be considered as the short distance from the first ground point 211 to the second ground point 212 along the surface of the metal frame 210.
  • the antenna structure 200 may be a slot antenna.
  • the PCB 220 is formed by pressing a multilayer dielectric board, and there is a metal plating layer in the multilayer dielectric board, which can be used as the ground of the antenna structure.
  • the metal frame 210 may be arranged around the PCB 220.
  • the first area 250 of the metal frame 210 may be a metal material
  • the second area 260 may be a non-metal material.
  • the first power feeding unit 230 may be disposed on the PCB 220, and may be a power chip in a wearable device.
  • the wearable device may further include at least one tuning device, which may be set at the first ground point 211 or the second ground point 212 for adjusting the operating frequency of the antenna structure.
  • the central angle corresponding to the first region 250 may be between 288° and 252°.
  • the proportion of the metal frame 210 occupied by the radiator of the antenna structure is about 0.7 to 0.8.
  • the circumferential length corresponding to the first area may be between 120 mm and 90 mm.
  • the circumferential length corresponding to the first area 250 can be 112mm; when the surface diameter is 42mm, the circumferential length corresponding to the first area 250 can be When the gauge diameter is 40 mm, the circumferential length corresponding to the first area 250 can be 97 mm. It should be understood that the circumferential length corresponding to the first region 250 can be adjusted according to design or simulation, which is not limited in this application.
  • the gap between the second area 260 and the PCB 220 may be used for electrical connection between the screen of the wearable device and the PCB 220, or for electrical connection between a flexible printed circuit (FPC) and the PCB 220. It can avoid excessive wiring and reduce the loss of the antenna structure.
  • FPC flexible printed circuit
  • Fig. 3 is the S parameter simulation result of the antenna structure shown in Fig. 2.
  • the antenna structure when the first feeding unit feeds power, the antenna structure can generate a first resonance, a second resonance and a third resonance.
  • the first resonance may be a resonance generated by the antenna structure working in a half-wavelength mode, which corresponds to the LB in the 4G communication system.
  • the second resonance may be a resonance generated by the antenna structure working in a double-wavelength mode, which corresponds to the MB in the 4G communication system.
  • the third resonance may be the resonance generated by the antenna structure working in the three-half wavelength mode, which corresponds to the HB in the 4G communication system.
  • the antenna structure provided in the technical solution provided in the embodiments of the present application utilizes the concept of volume multiplexing, so that each resonance can fill the antenna structure. It is also possible to add parasitic stubs on the basis of this scheme, which can excite new resonance modes and further expand the working bandwidth of the antenna.
  • the second resonance can also cover the global positioning system (GPS) frequency band
  • the positioning antenna is also integrated on the metal frame of the wearable device to provide positioning services for the wearable device, which can further reduce the overall structure Complexity.
  • GPS global positioning system
  • the working frequency band corresponding to the antenna structure can also cover the frequency band corresponding to the global system of mobile communication (GSM) system or code division multiple access (CDMA), or it can also cover broadband codes.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • GPRS general packet radio service
  • FIG. 4 is a schematic diagram of the electric field intensity distribution of the antenna structure provided by an embodiment of the present application.
  • the metal frame 210 can be expanded from the first ground point 211 to form the structure of FIG. 4. That is, the two ends of the metal frame 210 in the structure in FIG. 4 are connected to form the circular structure in FIG. 2.
  • the first feeding point 201 can be located near the ground, that is, the strong current area/weak electric field area of the metal frame.
  • the antenna structure can generate multiple resonances that work in double frequency.
  • the antenna structure can work in a half-wavelength mode, a double-wavelength mode, a three-half-wavelength mode, or a double-wavelength mode.
  • the connection between the first area 250 and the second area 260 may be provided with electronic components, that is, the first ground point
  • An electronic device may also be provided at 211, and the resonance point of the resonance generated by the antenna structure can be adjusted by the capacitance or inductivity of the electronic device.
  • an inductor may be provided at the first ground point 211, one end of the inductor is connected to the metal frame 210 at the first ground point 211, and the other end is grounded, which can reduce the resonance point of the antenna structure.
  • an electronic device can be provided at the second ground point 212, and the resonance point of the resonance generated by the antenna structure can be adjusted.
  • an inductor can be provided at the second ground point 212, one end of the inductor is connected to the metal frame 210 at the second ground point 212, and the other end is grounded, which can reduce the resonance point of the antenna structure.
  • FIG. 5 to 7 are schematic diagrams of the electric field intensity distribution of the antenna structure operating in each mode provided by the embodiments of the present application.
  • FIG. 5 is a schematic diagram of the electric field distribution in the slot when the antenna structure works in the half-wavelength mode.
  • Fig. 6 is a schematic diagram of the electric field distribution in the slot when the antenna structure works in the double-wavelength mode.
  • Fig. 7 is a schematic diagram of the electric field distribution in the slot when the antenna structure works in the three-half wavelength mode.
  • FIG. 5 to 7 the schematic diagrams of the electric field intensity distribution on the gap formed by the PCB and the metal frame in each working mode.
  • the dark area in the figure is the position of the electric field zero point, which can correspond to the strong current point on the metal frame.
  • electronic devices such as capacitors or inductors
  • capacitors or inductors can be loaded or unloaded at the strong electric field points corresponding to each mode, and the resonance point of the resonance corresponding to each mode can be fine-tuned.
  • Fig. 8 is a schematic structural diagram of another antenna structure of a wearable device provided by the present application.
  • the wearable device further includes a second power feeding unit 310.
  • the metal frame 210 may further include a second feeding point 301, and the second feeding point 301 may be disposed in the first area 250 between the first feeding point 201 and the second grounding point 212.
  • the second feeding unit 310 may feed the antenna structure at the second feeding point.
  • the distance between the second feed point 301 and the first ground point 211 along the metal frame 210 is one half of the circumferential length corresponding to the first region 250. That is, as shown in FIG. 4, the second feeding point 301 can be set at the zero point of the electric field in the double-wavelength mode.
  • the second feeding unit 310 feeds at the second feeding point 301, it can excite the half-wavelength mode and the three-half-wavelength mode of the antenna structure, which corresponds to LB and HB in the 4G communication system.
  • the wearable device may include a band-pass filter for generating MB so that the working frequency band of the antenna structure covers the 4G communication system.
  • FIG. 9 and 10 are schematic structural diagrams of yet another antenna structure of the wearable device provided by the present application.
  • FIG. 9 is a schematic structural diagram of a wearable device provided by an embodiment of the present application.
  • Fig. 10 is an expanded view of a metal frame provided by an embodiment of the present application.
  • the wearable device further includes a band pass filter 410.
  • the metal frame 210 may further include a third ground point 401, and the third ground point 401 is disposed in the first area 250 and is located between the first feed point 201 and the second ground point 212.
  • One end of the band pass filter 410 is electrically connected to the metal frame 210 at the third ground point 401, and the other end is grounded.
  • the band-pass filter 410 may be disposed on the PCB 220, and is electrically connected to the metal frame 210 at the third ground point 401 through a metal spring sheet.
  • the working frequency band of the band pass filter 410 covers 2300 MHz to 2690 MHz. That is, the band pass filter 410 can work in the HB in the 4G mobile communication system.
  • the distance between the third ground point 401 and the first ground point 211 along the metal frame 210 is one third of the circumferential length corresponding to the first region 250.
  • the third ground point 401 is the strong current point when the antenna structure works in the three-half wavelength mode, as shown in FIG. 10. It can effectively shorten the return path when the antenna structure works in the three-half wavelength mode, and reduce the interference caused by the environment near the metal frame.
  • the band pass filter may include an inductor 411 and a capacitor 412. Because the band-pass filter works at HB, it is capacitive for LB and MB. Therefore, the capacitor 412 can be set as an adjustable device, which can be used to adjust the antenna structure to generate the first resonance and the second resonance to cover the resonance points of the LB and MB in the 4G mobile communication system.
  • the wearable device may also include a switch device, which is arranged between the band pass filter and the third ground point.
  • the switch device can be used to select the corresponding band pass filter when the antenna structure generates different resonances, and the antenna structure can be adjusted to produce The resonance corresponds to the resonance point.
  • FIG. 12 is a schematic structural diagram of a power feeding scheme of an antenna structure provided by an embodiment of the present application.
  • the power feeding unit of the wearable device can be arranged on the PCB 220, and is electrically connected to the power feeding point on the metal frame 210 through the elastic sheet 501.
  • the shrapnel 501 may be directly electrically connected to each feeding point, or coupled feeding may be performed, which is not limited in this application for comparison.
  • the technical solution provided by the embodiment of the present application can also be applied to the ground structure of the antenna structure, which is connected to the ground through the elastic sheet.
  • the electrical connection between the various electronic devices on the PCB and the metal frame can also be achieved through the shrapnel.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical or other forms.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Support Of Aerials (AREA)

Abstract

本申请实施例提供了一种可穿戴设备,包括:金属边框,印刷电路板PCB和第一馈电单元;其中,所述金属边框与所述PCB之间形成缝隙;所述金属边框包括第一馈电点,第一接地点和第二接地点,所述金属边框在所述第一接地点和所述第二接地点处接地;所述金属边框由所述第一接地点和所述第二接地点分为第一区域和第二区域,所述第一区域对应的周向长度大于所述第二区域对应的周向长度;所述第一馈电点设置于第一区域,所述第一馈电点与所述第一接地点沿所述金属边框的距离小于所述第一区域对应的周向长度的三分之一;所述第一馈电单元在所述第一馈电点处馈电。本申请提供的技术方案可以利用可穿戴设备的金属边框实现4G通信系统的全频段覆盖。

Description

一种可穿戴设备
本申请要求于2020年5月19日提交中国专利局、申请号为202010424295.0、申请名称为“一种可穿戴设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信领域,尤其涉及一种可穿戴设备。
背景技术
随着移动通信技术的发展,可穿戴设备可用于随时监控人体心跳、睡眠状态等重要数据,藉由通信功能与互联网连接,完成数据同步。或是可穿戴设备也可以获得天气温度等信息。此外,内置的近场通信(near field communication,NFC)功能让用户能方便简易透过可穿戴设备进行消费行为。
上述可穿戴设备的重要应用离不开通信功能,需要内置天线来发射或接收电磁信号。目前,一般使用单极子,倒F形天线(inverted-F antenna,IFA)等天线形式,将天线放置在印刷电路板(printed circuit board,PCB)的四周。受限于可穿戴设备(例如智能手表)的尺寸,其内置的天线很难支持第四代(second generation,4G)移动通信系统中的所有频段。
发明内容
本申请实施例提供一种可穿戴设备,利用缝隙天线理论,可以利用可穿戴设备的金属边框实现4G通信中的全频段覆盖,为可穿戴设备提供良好的通信性能。
第一方面,提供了一种可穿戴设备,包括:印刷电路板PCB和天线结构,所述天线结构包括金属边框,和第一馈电单元;其中,所述金属边框与所述PCB之间形成缝隙;所述金属边框包括第一馈电点,第一接地点和第二接地点,所述金属边框在所述第一接地点和所述第二接地点处接地;所述金属边框由所述第一接地点和所述第二接地点分为第一区域和第二区域,所述第一区域对应的周向长度大于所述第二区域对应的周向长度;所述第一馈电点设置于第一区域,所述第一馈电点与所述第一接地点沿所述金属边框的距离小于所述第一区域对应的周向长度的三分之一;所述第一馈电单元在所述第一馈电点处为所述天线结构馈电。
根据本申请实施例的技术方案,在不增加可穿戴设备结构复杂度的情况下,利用可穿戴设备的金属边框和印刷电路板形成可穿戴设备的天线结构,可以产生三个谐振,覆盖4G通信系统中的全频段。
结合第一方面,在第一方面的某些实现方式中,所述天线结构为缝隙天线。
结合第一方面,在第一方面的某些实现方式中,所述第一馈电单元馈电时,所述天线结构产生第一谐振,第二谐振和第三谐振;其中,所述第一谐振的谐振点的频率小于所述第二谐振的谐振点的频率,所述第二谐振的谐振点的频率小于所述第三谐振的谐振点的频 率。
根据本申请实施例的技术方案,当第一馈电单元馈电时,天线结构可以产生第一谐振,第二谐振和第三谐振。可以分别对应于4G通信系统中的低频段,中频段和高频段。其中,产生第一谐振时,天线结构可以工作在二分之一波长模式下,产生第二谐振时,天线结构可以工作在一倍波长模式下,产生第三谐振时,天线结构可以工作在二分之三波长模式下。
结合第一方面,在第一方面的某些实现方式中,所述第二谐振对应的所述天线结构的工作频段覆盖全球定位系统GPS频段。
根据本申请实施例的技术方案,第二谐振还可以覆盖全球定位系统频段,将定位天线也集成在可穿戴设备的金属边框上,为可穿戴设备提供定位服务,可以进一步减少整体结构的复杂程度。
结合第一方面,在第一方面的某些实现方式中,所述第一谐振对应的所述天线结构的工作频段覆盖698MHz-960MHz,所述第二谐振对应的所述天线结构的工作频段覆盖1710MHz-2170MHz,所述第三谐振对应的所述天线结构的工作频段覆盖2300MHz至2690MHz。
根据本申请实施例的技术方案,第一谐振,第二谐振和第三谐振可以分别对应于4G通信系统中的低频段,中频段和高频段。
结合第一方面,在第一方面的某些实现方式中,所述可穿戴设备还包括带通滤波器;所述金属边框还包括第三接地点,所述第三接地点设置于第一区域,位于所述第一馈电点与所述第二接地点之间;所述带通滤波器一端在所述第三接地点处与所述金属边框电连接,另一端接地。
根据本申请实施例的技术方案,可以用于调整天线结构产生谐振的谐振点。
结合第一方面,在第一方面的某些实现方式中,所述带通滤波器的工作频段覆盖所述第三谐振对应的所述天线结构的工作频段。
根据本申请实施例的技术方案,带通滤波器可以在天线工作在第三谐振对应的工作频段时,缩短其回地路径,增加其辐射性能。
结合第一方面,在第一方面的某些实现方式中,所述带通滤波器在所述第一谐振对应的所述天线结构的工作频段或所述第二谐振对应的所述天线结构的工作频段呈容性。
根据本申请实施例的技术方案,由于带通滤波器工作在高频段时,对于低频段和中频段来说呈容性。因此,可以将带通滤波器中的电容设置为可调器件,可以用于调整天线结构产生第一谐振和第二谐振覆盖4G移动通信系统中的低频段和中频段的谐振点。
结合第一方面,在第一方面的某些实现方式中,所述带通滤波器的工作频段覆盖2300MHz至2690MHz。
根据本申请实施例的技术方案,带通滤波器410可以工作在4G移动通信系统中的高频段。
结合第一方面,在第一方面的某些实现方式中,所述第三接地点与所述第一接地点沿所述金属边框的距离为所述第一区域对应的周向长度的三分之一。
根据本申请实施例的技术方案,可以有效缩短天线结构工作在二分之三波长模式时的回地路径,在高频段工作时,可以减小由于金属边框附近环境引起的干扰,增加天线结构工作在高频段时的辐射特性。
结合第一方面,在第一方面的某些实现方式中,所述第一区域对应的周向长度为所述 第一谐振的谐振点对应的工作波长的二分之一。
根据本申请实施例的技术方案,第一区域对应的周向长度为第一谐振的谐振点对应的工作波长的二分之一,具体数值可以根据仿真得到。
结合第一方面,在第一方面的某些实现方式中,第一区域对应的周向长度介于120mm与90mm之间。
结合第一方面,在第一方面的某些实现方式中,其特征在于,所述第一区域对应的周向长度为112mm,102mm或97mm。
根据本申请实施例的技术方案,对于圆形的金属边框而言,当表径为46mm时,第一区域250对应的周向长度可以为112mm;当表径为42mm时,第一区域250对应的周向长度可以为102mm;当表径为40mm时,第一区域250对应的周向长度可以为97mm。
结合第一方面,在第一方面的某些实现方式中,第一区域对应的圆心角的角度介于288°至252°之间。
根据本申请实施例的技术方案,第一区域对应的圆心角可以介于288°至252°之间。天线结构的辐射体所占金属边框比例约为0.7至0.8。
结合第一方面,在第一方面的某些实现方式中,所述第一区域为金属材料,所述第二区域为非金属材料。
根据本申请实施例的技术方案,第二区域与PCB之间的缝隙可以用于可穿戴设备的屏幕与PCB实现电连接,或者柔性电路板与PCB实现电连接。可以避免过多的走线,降低天线结构的损耗。
第二方面,提供了一种可穿戴设备,包括:天线结构和印刷电路板PCB,天线结构包括金属边框,带通滤波器,和第一馈电单元;其中,所述金属边框与所述PCB之间形成缝隙;所述金属边框包括第一馈电点,第一接地点和第二接地点,所述金属边框在所述第一接地点和所述第二接地点处接地;所述金属边框由所述第一接地点和所述第二接地点分为第一区域和第二区域,所述第一区域对应的周向长度大于所述第二区域对应的周向长度;所述第一馈电点设置于第一区域,所述第一馈电点与所述第一接地点沿所述金属边框的距离小于所述第一区域对应的周向长度的三分之一;所述第一馈电单元在所述第一馈电点处为所述天线结构馈电;所述金属边框还包括第三接地点,所述第三接地点设置于第一区域,位于所述第一馈电点与所述第二接地点之间;所述带通滤波器一端在所述第三接地点处与所述金属边框电连接,另一端接地,所述带通滤波器的工作频段覆盖2300MHz至2690MHz;所述第三接地点与所述第一接地点沿所述金属边框的距离为所述第一区域对应的周向长度的三分之一。
附图说明
图1是本申请实施例提供的可穿戴设备的示意图。
图2是本申请提供的可穿戴设备的天线结构的示意性结构图。
图3为图2所示的天线结构的S参数仿真结果。
图4是本申请实施例提供的天线结构的电场强度的分布示意图。
图5是天线结构工作在二分之一波长模式时缝隙内的电场分布示意图。
图6是天线结构工作在一倍波长模式时缝隙内的电场分布示意图。
图7是天线结构工作在二分之三波长模式时缝隙内的电场分布示意图。
图8是本申请提供的可穿戴设备的另一种天线结构的示意性结构图。
图9是本申请实施例提供的可穿戴设备的示意性结构图。
图10是本申请实施例提供的金属边框的展开图。
图11是本申请实施例提供的一种带通滤波器结构。
图12是本申请实施例提供的一种天线结构的馈电方案的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请提供的可穿戴设备可以是一种可整合到用户的衣服或配件的一种便携式设备,具备计算功能,可连接手机以及各类终端设备。示例性地,可穿戴设备可以是手表、智能腕带、便携式音乐播放器、健康监测设备、计算或游戏设备、智能电话、配饰等。在一些实施例中,可穿戴设备为可围绕用户的手腕佩戴的表。
图1是本申请提供的可穿戴设备的示意性结构图。在一些实施例中,可穿戴设备可以是表或手环。
参考图1,可穿戴设备100包括主体101和一个或多个腕带102(图1中示出了腕带102的部分区域)。腕带102固定连接在主体101上,腕带102可缠绕于手腕、胳膊、腿或身体的其他部位,以将可穿戴设备固定到用户的身上。主体101作为可穿戴设备100的中心元件,可以包括金属边框180和屏幕140。金属边框180可以环绕可穿戴设备一周,作为可穿戴设备外观的一部分,包围屏幕140。屏幕140的边缘邻接且固定在中框180上,形成为主体101的表面。金属边框180和屏幕140之间形成容纳空间,可容纳多个电子器件的组合,以实现可穿戴设备100的各种功能。主体101还包括输入设备120,金属边框180和屏幕140之间的容纳空间可容纳有输入设备120的部分,输入设备120的外露部分便于用户接触。
可以理解,本申请实施例中可穿戴设备的金属边框180可以为圆形,方形,多边形也还可以为其它各种规则的或不规则的形状,此处不作限定。为表述的简洁,以下实施例以圆形的金属边框180为例进行说明。
屏幕140作为主体101的表面,可作为主体101的保护板,以避免容纳于金属边框180内的部件外露而被损坏。示例性地,屏幕140可以包括液晶显示器(liquid crystal display,LCD)和保护件,保护件可以是蓝宝石晶体,玻璃,塑料或其他材料。屏幕的保护件可以通过热可塑性塑胶(PC/ABS)与金属边框成为一体。
用户可通过屏幕140与可穿戴设备100进行交互。示例性地,屏幕140可接收用户的输入操作,并且,响应于该输入操作做出相应的输出,例如,用户可以通过触摸或按压屏幕140上的图形位置处来选择(或以其他方式)打开、编辑该图形等。
输入设备120附接到金属边框180的外侧且延伸至金属边框180的内部。在一些实施例中,输入设备包括相连的头部121和杆部122。杆部122伸入壳体180内,头部121外露于壳体180,可作为和用户接触的部分,以允许用户接触输入设备,通过旋转、平移、倾斜或按压头部121来接收用户的输入操作,当用户操作头部121时,杆部122可随着头部121一起运动。可以理解,头部121可呈任意形状,例如,头部121可呈圆柱形。可以理解,可旋转的输入设备120可称为按钮,在可穿戴设备100是表的实施例中,可旋转的输入设备120可形成表的冠部,将输入设备120称为表冠。
在本申请中,通过对输入设备120做相关设计,在输入设备120中集成一种或多种功能,以提高用户体验,下文做详细说明。
可以理解,输入设备120不仅限于图1所示的结构,任何可接收用户的输入操作的机械部件都可以作为本申请的输入设备。
可穿戴设备100包括按键1202,作为输入设备120的一例,可允许用户按压、移动或倾斜按键1202进行输入操作。示例性地,按键1202可安装在金属边框180的侧面180-A上,按键1202的一部分外露,另一部分从金属边框180的侧面朝着壳体180的内部延伸(图中未示出)。示例性地,按键1202也可以设置在按钮1201的头部121上,在进行旋转操作的同时也可进行按压操作。示例性地,按键1202也可设置在主体101上安装有显示屏140的顶面上。
继续参考图1,在另一些实施例中,可穿戴设备100可包括按钮1201和按键1202,按钮1201和按键1202可设置在金属边框180的同一个表面上,例如,都设置在金属边框180的同一侧面上,按钮1201和按键1202也可设置在金属边框180的不同表面上,本申请不做任何限定。可以理解,可穿戴设备100可包括一个或多个按键1202,也可包括一个或多个按钮1201。
应理解,可穿戴设备离不开通信功能,需要内置天线来发射或接收电磁信号。目前,一般使用单极子,IFA等天线形式。受限于可穿戴设备(例如智能手表)的尺寸,其内置的天线很难支持4G移动通信系统中的所有频段。
本申请实施例提供了一种可穿戴设备的天线设计方案,可以利用可穿戴设备的金属边框实现4G通信系统中的低频(low band,LB)(698MHz-960MHz),中频(middle band,MB)(1710MHz-2170MHz)和高频(high band,HB)(2300MHz-2690MHz),为可穿戴设备提供良好的通信性能。
图2是本申请提供的可穿戴设备的天线结构的示意性结构图。
如图2所示,可穿戴设备可以包括PCB220和天线结构200,天线结构可以包括金属边框210和第一馈电单元230。
其中,金属边框210与PCB220之间形成缝隙240。金属边框210可以包括第一馈电点201,第一接地点211和第二接地点212。金属边框210可以在第一接地点211和第二接地点212处接地。金属边框210由第一接地点211和第二接地点212分为第一区域250和第二区域260,第一区域250对应的周向长度大于第二区域260对应的周向长度。第一馈电点201可以设置于第一区域250,靠近第一接地点211。第一馈电点201与第一接地点211沿所述金属边框210的距离小于第一区域250对应的周向长度的三分之一。第一馈电单元230在第一馈电点201处为天线结构馈电。第一区域250对应的周向长度可以认为是第一接地点211沿金属边框210表面到第二接地点212的较长距离。第二区域260对应的周向长度可以认为是第一接地点211沿金属边框210表面到第二接地点212的较短距离。
可选地,天线结构200可以是缝隙天线。
应理解,PCB220为多层介质板压合而成,多层介质板中存在金属镀层,可以作为天线结构的地。金属边框210可以环绕PCB220设置。
可选地,金属边框210的第一区域250可以为金属材料,第二区域260可以为非金属材料。
可选地,第一馈电单元230可以设置于PCB220上,可以是可穿戴设备中的电源芯片。
可选地,可穿戴设备还可以包括至少一个调谐器件,可以设置于第一接地点211或第二接地点212处,用于调整天线结构的工作频率。
可选地,第一区域250对应的圆心角可以介于288°至252°之间。天线结构的辐射体所占金属边框210比例约为0.7至0.8。
可选地,第一区域对应的周向长度可以介于120mm与90mm之间。
可选地,对于圆形的金属边框而言,当表径为46mm时,第一区域250对应的周向长度可以为112mm;当表径为42mm时,第一区域250对应的周向长度可以为102mm;当表径为40mm时,第一区域250对应的周向长度可以为97mm。应理解,第一区域250对应的周向长度可以根据设计或仿真进行调整,本申请对此并不做限制。
可选地,第二区域260与PCB220之间的缝隙可以用于可穿戴设备的屏幕与PCB220实现电连接,或者柔性电路板(flexible printed circuit,FPC)与PCB220实现电连接。可以避免过多的走线,降低天线结构的损耗。
图3为图2所示的天线结构的S参数仿真结果。
如图3所示,当第一馈电单元馈电时,天线结构可以产生第一谐振,第二谐振和第三谐振。
其中,第一谐振可以是天线结构工作在二分之一波长模式产生的谐振,对应于4G通信系统中的LB。第二谐振可以是天线结构工作在一倍波长模式产生的谐振,对应于4G通信系统中的MB。第三谐振可以是天线结构工作在二分之三波长模式产生的谐振,对应于4G通信系统中的HB。
应理解,本申请实施例提供的技术方案中提供的天线结构,利用了体积复用的概念,使每个谐振都可以充满天线结构。还可以在本方案的基础上增加寄生枝节,可以激励出新的谐振模式,进一步拓展天线的工作带宽。
可选地,第二谐振还可以覆盖全球定位系统(global positioning system,GPS)频段,将定位天线也集成在可穿戴设备的金属边框上,为可穿戴设备提供定位服务,可以进一步减少整体结构的复杂程度。
可选地,天线结构对应的工作频段也可以覆盖全球移动通讯(global system of mobile communication,GSM)系统或码分多址(code division multiple access,CDMA)对应的频段,或者,也可以覆盖宽带码分多址(wideband code division multiple access,WCDMA),通用移动通信系统(universal Mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统或通用分组无线业务(general packet radio service,GPRS)等对应的频段。应理解,本申请提供的技术方案也可以应用于5G通信中,本申请对此并不做限制。
图4是本申请实施例提供的天线结构的电场强度的分布示意图。
如图2所示,可以将金属边框210由第一接地点211处展开形成图4的结构。即图4结构中的金属边框210的两端连接可以形成图2中的圆形结构。
如图4所示,第一馈电点201可以设置于近地位置,即金属边框的强电流区/弱电场区。天线结构可以产生多个工作在倍频的谐振,例如,天线结构可以工作在二分之一波长模式,一倍波长模式,二分之三波长模式或者两倍波长模式等。
可选地,当金属边框210的第一区域250为金属材料,第二区域260为非金属材料时, 第一区域250与第二区域260的连接处可以设置有电子元件,即第一接地点211处还可以设置有电子器件,通过电子器件的容性或感性调节天线结构产生的谐振的谐振点。例如,可以在第一接地点处211设置电感,电感一端在第一接地点处211与金属边框210连接,另一端接地,可以将天线结构的谐振的谐振点降低。
可选地,可以在第二接地点处212设置电子器件,可以调整天线结构产生的谐振的谐振点。例如,可以在第二接地点处212设置电感,电感一端在第二接地点处212与金属边框210连接,另一端接地,可以将天线结构的谐振的谐振点降低。
图5至图7是本申请实施例提供的天线结构工作在各个模式的电场强度的分布示意图。其中,图5是天线结构工作在二分之一波长模式时缝隙内的电场分布示意图。图6是天线结构工作在一倍波长模式时缝隙内的电场分布示意图。图7是天线结构工作在二分之三波长模式时缝隙内的电场分布示意图。
如图5至7所示,为各个工作模式下PCB与金属边框形成的缝隙上的电场强度的分布示意图,图中深色区域为电场零点位置,可以对应于金属边框上电流强点。
可选地,可以在各个模式对应的电场强点加载或减载电子器件,如电容或电感,可以微调各个模式对应的谐振的谐振点。
图8是本申请提供的可穿戴设备的另一种天线结构的示意性结构图。
如图8所示,可穿戴设备还包括第二馈电单元310。金属边框210还可以包括第二馈电点301,第二馈电点301可以设置于第一区域250,位于所述第一馈电点201与第二接地点212之间。第二馈电单元310可以在第二馈电点处为天线结构馈电。
可选地,第二馈电点301与第一接地点211沿金属边框210的距离为第一区域250对应的周向长度的二分之一。即如图4所示,第二馈电点301可以设置于一倍波长模式时的电场零点处。第二馈电单元310在第二馈电点301馈电时,可以激励起天线结构的二分之一波长模式和二分之三波长模式,对应于4G通信系统中的LB和HB。应理解,可穿戴设备可以包括带通滤波器,用于产生MB,使天线结构的工作频段覆盖4G通信系统。
图9和图10是本申请提供的可穿戴设备的又一种天线结构的示意性结构图。其中,图9是本申请实施例提供的可穿戴设备的示意性结构图。图10是本申请实施例提供的金属边框的展开图。
如图9所示,可穿戴设备还包括带通滤波器410。
其中,金属边框210还可以包括第三接地点401,第三接地点401设置于第一区域250,位于第一馈电点201与第二接地点212之间。带通滤波器410一端在第三接地点401处与金属边框210电连接,另一端接地。
可选地,带通滤波器410可以设置于PCB220上,通过金属弹片在第三接地点401处与金属边框210电连接。
可选地,带通滤波器410的工作频段覆盖2300MHz至2690MHz。即带通滤波器410可以工作在4G移动通信系统中的HB。
可选地,第三接地点401与第一接地点211沿金属边框210的距离为第一区域250对应的周向长度的三分之一。第三接地点401为天线结构工作在二分之三波长模式时的电流强点,如图10所示。可以有效缩短天线结构工作在二分之三波长模式时的回地路径,减小由于金属边框附近环境引起的干扰。
如图11所示,是一种简单的带通滤波器结构,应理解,本申请实施例本不限制带通 滤波器的具体形式。带通滤波器可以包括电感411和电容412。由于带通滤波器工作在HB时,对于LB和MB来说呈容性。因此,可以将电容412设置为可调器件,可以用于调整天线结构产生第一谐振和第二谐振覆盖4G移动通信系统中的LB和MB的谐振点。
可选地,可穿戴设备还可以包括开关器件,设置于带通滤波器与第三接地点之间,可以通过开关器件选择天线结构产生不同谐振时对应的带通滤波器,可以调整天线结构产生的谐振对应的谐振点。
图12是本申请实施例提供的一种天线结构的馈电方案的结构示意图。
如图12所示,可穿戴设备的馈电单元可以设置PCB220上,通过弹片501与金属边框210上的馈电点电连接。
可选地,弹片501可以与各个馈电点直接电连接,也可以进行耦合馈电,本申请对比并不做限制。
应理解,本申请实施例提供的该技术方案还可以应用于天线结构的接地结构,通过弹片与地相连。或者,也可以通过弹片实现PCB上的各个电子器件与金属边框电连接。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (15)

  1. 一种可穿戴设备,其特征在于,包括:印刷电路板PCB和天线结构;
    所述天线结构包括金属边框和第一馈电单元;
    其中,所述金属边框与所述PCB之间形成缝隙;
    所述金属边框包括第一馈电点,第一接地点和第二接地点,所述金属边框在所述第一接地点和所述第二接地点处接地;
    所述金属边框由所述第一接地点和所述第二接地点分为第一区域和第二区域,所述第一区域对应的周向长度大于所述第二区域对应的周向长度;
    所述第一馈电点设置于第一区域,所述第一馈电点与所述第一接地点沿所述金属边框的距离小于所述第一区域对应的周向长度的三分之一;
    所述第一馈电单元在所述第一馈电点处馈电。
  2. 根据权利要求1所述的可穿戴设备,其特征在于,
    所述第一馈电单元馈电时,所述天线结构产生第一谐振,第二谐振和第三谐振;
    其中,所述第一谐振的谐振点的频率小于所述第二谐振的谐振点的频率,所述第二谐振的谐振点的频率小于所述第三谐振的谐振点的频率。
  3. 根据权利要求2所述的可穿戴设备,其特征在于,所述第二谐振对应的所述天线结构的工作频段覆盖全球定位系统GPS频段。
  4. 根据权利要求2所述的可穿戴设备,其特征在于,所述第一谐振对应的所述天线结构的工作频段覆盖698MHz-960MHz,所述第二谐振对应的所述天线结构的工作频段覆盖1710MHz-2170MHz,所述第三谐振对应的所述天线结构的工作频段覆盖2300MHz至2690MHz。
  5. 根据权利要求2所述的可穿戴设备,其特征在于,
    所述可穿戴设备还包括带通滤波器;
    所述金属边框还包括第三接地点,所述第三接地点设置于第一区域,位于所述第一馈电点与所述第二接地点之间;
    所述带通滤波器一端在所述第三接地点处与所述金属边框电连接,另一端接地。
  6. 根据权利要求5所述的可穿戴设备,其特征在于,所述带通滤波器的工作频段覆盖所述第三谐振对应的所述天线结构的工作频段。
  7. 根据权利要求5所述的可穿戴设备,其特征在于,所述带通滤波器在所述第一谐振对应的所述天线结构的工作频段或所述第二谐振对应的所述天线结构的工作频段呈容性。
  8. 根据权利要求6所述的可穿戴设备,其特征在于,所述带通滤波器的工作频段覆盖2300MHz至2690MHz。
  9. 根据权利要求5所述的可穿戴设备,其特征在于,所述第三接地点与所述第一接地点沿所述金属边框的距离为所述第一区域对应的周向长度的三分之一。
  10. 根据权利要求2所述的可穿戴设备,其特征在于,所述第一区域对应的周向长度为所述第一谐振的谐振点对应的工作波长的二分之一。
  11. 根据权利要求1至10中任一项所述的可穿戴设备,其特征在于,所述第一区域 对应的周向长度介于120mm与90mm之间。
  12. 根据权利要求11所述的可穿戴设备,其特征在于,所述第一区域对应的周向长度112mm,102mm或97mm。
  13. 根据权利要求1至12中任一项所述的可穿戴设备,其特征在于,所述第一区域对应的圆心角的角度介于288°至252°之间。
  14. 根据权利要求1至13中任一项所述的可穿戴设备,其特征在于,所述第一区域为金属材料,所述第二区域为非金属材料。
  15. 根据权利要求1至14中任一项所述的可穿戴设备,其特征在于,所述天线结构为缝隙天线。
PCT/CN2021/086238 2020-05-19 2021-04-09 一种可穿戴设备 WO2021232994A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21809533.9A EP4145631A4 (en) 2020-05-19 2021-04-09 WEARABLE DEVICE
US17/926,795 US20230208015A1 (en) 2020-05-19 2021-04-09 Wearable Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010424295.0 2020-05-19
CN202010424295.0A CN113690582B (zh) 2020-05-19 2020-05-19 一种可穿戴设备

Publications (1)

Publication Number Publication Date
WO2021232994A1 true WO2021232994A1 (zh) 2021-11-25

Family

ID=78576216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/086238 WO2021232994A1 (zh) 2020-05-19 2021-04-09 一种可穿戴设备

Country Status (4)

Country Link
US (1) US20230208015A1 (zh)
EP (1) EP4145631A4 (zh)
CN (2) CN116565519A (zh)
WO (1) WO2021232994A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116937137A (zh) * 2020-08-28 2023-10-24 华为技术有限公司 一种天线结构及电子设备
CN116780193A (zh) * 2022-03-17 2023-09-19 华为技术有限公司 一种可穿戴设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104009282A (zh) * 2014-06-12 2014-08-27 电子科技大学 基于全金属边框的七频段智能手机天线
WO2015026527A1 (en) * 2013-08-19 2015-02-26 Google Technology Holdings LLC Antenna system for a smart portable device using a continuous metal band
WO2016167914A1 (en) * 2015-04-16 2016-10-20 Qualcomm Incorporated Resonant bezel antenna
CN106602247A (zh) * 2016-12-26 2017-04-26 青岛海信移动通信技术股份有限公司 一种移动终端的多频天线和移动终端
CN107230835A (zh) * 2016-03-23 2017-10-03 Ace技术株式会社 具备环型辐射单元的金属体天线
CN108288752A (zh) * 2017-12-29 2018-07-17 瑞声精密制造科技(常州)有限公司 智能穿戴设备的天线系统及智能穿戴设备

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI557984B (zh) * 2014-03-05 2016-11-11 緯創資通股份有限公司 穿戴式裝置
KR102177285B1 (ko) * 2014-09-01 2020-11-10 삼성전자주식회사 안테나 장치 및 그것을 포함하는 전자 장치
CN106463837A (zh) * 2015-01-29 2017-02-22 华为技术有限公司 一种可穿戴设备
CN106299637B (zh) * 2015-06-24 2020-05-15 中兴通讯股份有限公司 天线及用户设备
CN106714498B (zh) * 2015-11-13 2019-06-18 深圳富泰宏精密工业有限公司 电子装置
CN105785757B (zh) * 2016-04-28 2018-05-01 歌尔股份有限公司 手表天线装置及电子手表
US10153554B2 (en) * 2016-08-31 2018-12-11 Apple Inc. Electronic device antennas with harmonic resonances
US10211520B2 (en) * 2016-10-11 2019-02-19 Motorola Mobility Llc Electronic device with transparent antenna
CN106571530A (zh) * 2016-10-25 2017-04-19 瑞声科技(南京)有限公司 智能穿戴设备的天线系统及智能穿戴设备
KR102591805B1 (ko) * 2016-11-04 2023-10-23 삼성전자주식회사 웨어러블 전자 장치의 안테나
CN107425292A (zh) * 2017-06-08 2017-12-01 瑞声科技(新加坡)有限公司 天线及可穿戴设备
EP3454411B1 (en) * 2017-09-07 2021-08-18 Bittium Wireless Oy Antenna arrangement for wearable device
US10658749B2 (en) * 2017-09-07 2020-05-19 Apple Inc. Electronic device slot antennas
CN207651666U (zh) * 2017-12-07 2018-07-24 歌尔科技有限公司 天线和通讯设备
TWI790344B (zh) * 2018-02-08 2023-01-21 芬蘭商順妥公司 槽孔模式天線
CN110383578B (zh) * 2018-07-20 2021-03-30 广东高驰运动科技有限公司 智能穿戴设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015026527A1 (en) * 2013-08-19 2015-02-26 Google Technology Holdings LLC Antenna system for a smart portable device using a continuous metal band
CN104009282A (zh) * 2014-06-12 2014-08-27 电子科技大学 基于全金属边框的七频段智能手机天线
WO2016167914A1 (en) * 2015-04-16 2016-10-20 Qualcomm Incorporated Resonant bezel antenna
CN107230835A (zh) * 2016-03-23 2017-10-03 Ace技术株式会社 具备环型辐射单元的金属体天线
CN106602247A (zh) * 2016-12-26 2017-04-26 青岛海信移动通信技术股份有限公司 一种移动终端的多频天线和移动终端
CN108288752A (zh) * 2017-12-29 2018-07-17 瑞声精密制造科技(常州)有限公司 智能穿戴设备的天线系统及智能穿戴设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4145631A4

Also Published As

Publication number Publication date
EP4145631A1 (en) 2023-03-08
EP4145631A4 (en) 2023-11-01
US20230208015A1 (en) 2023-06-29
CN113690582B (zh) 2023-02-03
CN116565519A (zh) 2023-08-08
CN113690582A (zh) 2021-11-23

Similar Documents

Publication Publication Date Title
JP3213686U (ja) 腕時計用アンテナ
US10594025B2 (en) Coupled antenna structure and methods
CN108511905B (zh) 天线系统和移动终端
US11050142B2 (en) Coupled antenna structure
US9647338B2 (en) Coupled antenna structure and methods
JP6574005B2 (ja) ウェアラブルデバイスのための動的に調節可能なアンテナ
EP3029767B1 (en) Antenna module and mobile terminal using the same
CN109613817B (zh) 穿戴式装置
WO2021232994A1 (zh) 一种可穿戴设备
CN109888460A (zh) 便携式通信装置
CN106707729B (zh) 智能手表
WO2016119172A1 (zh) 一种可穿戴设备
CN110534873B (zh) 一种可穿戴设备
JP2016517670A (ja) 多目的アンテナ
TWI606637B (zh) 電子裝置
CN109314305A (zh) 用于可穿戴电子设备的天线
Hong et al. Cellular antenna design with metallic housing for wearable device
CN109244637B (zh) 一种适用于全频段网络的金属环手表天线及金属环手表
CN108832268B (zh) 天线装置和智能手表
US10615490B2 (en) Wearable device
CN214313522U (zh) 电子设备
WO2023174274A1 (zh) 一种可穿戴设备
FI127789B (en) Coupled antenna construction and protective procedures for a body-worn device
CN111293419A (zh) 紧凑型lte天线布置
US20230045258A1 (en) Wearable device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21809533

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021809533

Country of ref document: EP

Effective date: 20221202

NENP Non-entry into the national phase

Ref country code: DE