WO2021232583A1 - 一种无人船覆盖投食的动态路径规划方法及设备 - Google Patents

一种无人船覆盖投食的动态路径规划方法及设备 Download PDF

Info

Publication number
WO2021232583A1
WO2021232583A1 PCT/CN2020/104561 CN2020104561W WO2021232583A1 WO 2021232583 A1 WO2021232583 A1 WO 2021232583A1 CN 2020104561 W CN2020104561 W CN 2020104561W WO 2021232583 A1 WO2021232583 A1 WO 2021232583A1
Authority
WO
WIPO (PCT)
Prior art keywords
path
planning
points
point
positioning information
Prior art date
Application number
PCT/CN2020/104561
Other languages
English (en)
French (fr)
Inventor
张京玲
陈可烁
欧涛
王天雷
郑宇杰
侯飞龙
吴英健
Original Assignee
五邑大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 五邑大学 filed Critical 五邑大学
Publication of WO2021232583A1 publication Critical patent/WO2021232583A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B79/00Monitoring properties or operating parameters of vessels in operation
    • B63B79/40Monitoring properties or operating parameters of vessels in operation for controlling the operation of vessels, e.g. monitoring their speed, routing or maintenance schedules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • G01C21/203Specially adapted for sailing ships
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B2035/006Unmanned surface vessels, e.g. remotely controlled
    • B63B2035/007Unmanned surface vessels, e.g. remotely controlled autonomously operating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B2213/00Navigational aids and use thereof, not otherwise provided for in this class
    • B63B2213/02Navigational aids and use thereof, not otherwise provided for in this class using satellite radio beacon positioning systems, e.g. the Global Positioning System GPS

Definitions

  • the invention relates to the technical field of unmanned ship path planning, in particular to a dynamic path planning method and equipment for unmanned ship covering and feeding.
  • the purpose of the present invention is to solve at least one of the technical problems existing in the prior art, and to provide a dynamic path planning method and equipment for the unmanned vessel to cover and feed, which can ensure that the unmanned vessel deviates from the predetermined cruise path due to various factors. , Dynamically generate the cruise path with the shortest distance.
  • the present invention provides a dynamic path planning method for unmanned ship covering and feeding, including:
  • the establishing an area model according to the positioning information of the first vertex group, and obtaining a path planning point according to the area model and the range distance of the feeding device includes:
  • a path planning point is obtained.
  • the obtaining a path planning point according to the range distance of the feeder and the positioning information of the second vertex group includes:
  • the horizontal length and the vertical length are obtained by using the latitude and longitude length conversion formula
  • the horizontal longitude difference value formula is used to obtain the longitude difference value
  • the latitude difference value formula is used to obtain the latitude difference value
  • a path planning point is obtained.
  • the obtaining the number of horizontal planning points according to the lateral length and the range distance of the feeding device, and obtaining the number of vertical planning points according to the longitudinal length and the range distance of the feeding device includes:
  • the first horizontal number formula is used to obtain the number of horizontal planning points; otherwise, the second horizontal number formula is used to obtain the number of horizontal planning points;
  • the first longitudinal number formula is used to obtain the number of longitudinal planning points; otherwise, the second longitudinal number formula is used to obtain the number of longitudinal planning points.
  • the obtaining path planning points according to the second vertex group positioning information, the number of horizontal planning points, the number of longitudinal planning points, the longitude difference value, and the latitude difference value includes :
  • any vertex in the second vertex group is taken as the starting vertex to obtain the starting planning point, and the abscissa of the starting planning point is different from the starting vertex Half the magnitude of the longitude difference, the ordinate of the starting planning point differs from the starting vertex by half the magnitude of the latitude difference, and the starting planning point is located in the regional model;
  • a path planning point is obtained.
  • the obtaining a path target point according to the first vertex group positioning information and the path planning point includes:
  • the path planning points are divided into path target points and forbidden points.
  • the dividing the path target point into the unreached target point and the reached target point according to the unmanned ship positioning information and the path target point includes:
  • a judgment area circle is obtained, the center of the judgment area circle is the path target point, and the radius of the judgment area circle is 1/3 of the longitude difference and the latitude difference The smallest value among 1/3 of the value;
  • the path target points are divided into unreached target points and reached target points.
  • the obtaining a cruise path according to the unmanned ship positioning information and the unreached target point includes:
  • the total path length traversed is obtained by using an accumulation formula
  • the present invention provides a dynamic path planning device for unmanned ship covering and feeding
  • It includes at least one control processor and a memory for communicating with the at least one control processor; the memory stores instructions executable by the at least one control processor, and the instructions are executed by the at least one control processor to enable the at least one control processor.
  • the present invention provides a computer-readable storage medium, the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are used to make the computer execute the dynamic path of unmanned ship covering and feeding as described above Planning method.
  • the present invention also provides a computer program product, the computer program product includes a computer program stored on a computer-readable storage medium, the computer program includes program instructions, when the program instructions are executed by a computer , Let the computer execute the dynamic path planning method of unmanned ship covering and feeding as described above.
  • the present invention provides a dynamic path planning method and equipment for unmanned ship covering and feeding, according to the apex of the water body area and the range of the feeding device Determine the path target point by distance, then record the cruised and reached target point, determine that the target point has not been reached, and dynamically generate the shortest cruise path during the cruise, which can ensure that the unmanned ship deviates from the predetermined cruise path due to various factors , Drive in accordance with the current optimal cruise path, carry out full coverage feeding, thereby increasing output value and benefits.
  • Figure 1 is a flow chart of a dynamic path planning method for unmanned ship covering and feeding provided by the first embodiment of the present invention
  • step S200 is a specific method flowchart of step S200 in a dynamic path planning method for unmanned ship covering feeding provided by the first embodiment of the present invention
  • step S230 is a specific method flowchart of step S230 in a dynamic path planning method for unmanned ship covering feeding provided by the first embodiment of the present invention
  • step S232 is a specific method flowchart of step S232 in a dynamic path planning method for unmanned ship covering feeding provided by the first embodiment of the present invention
  • step S235 is a specific method flowchart of step S235 in a dynamic path planning method for unmanned ship covering feeding provided by the first embodiment of the present invention
  • step S300 is a specific method flowchart of step S300 in a dynamic path planning method for unmanned ship covering feeding provided by the first embodiment of the present invention
  • FIG. 7 is a specific method flowchart of step S400 in a dynamic path planning method for unmanned ship covering and feeding provided by the first embodiment of the present invention.
  • step S500 is a specific method flowchart of step S500 in a dynamic path planning method for unmanned ship covering feeding provided by the first embodiment of the present invention
  • FIG. 9 is a flow chart of generating a cruise path in a dynamic path planning method for unmanned ship covering and feeding provided by the first embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a dynamic path planning device for unmanned ship covering and feeding provided by the second embodiment of the present invention.
  • 100-Dynamic path planning equipment for unmanned ship covering and feeding 110-control processor, 120-memory.
  • FIG. 1 a flow chart of a dynamic path planning method for unmanned ship covering and feeding.
  • This method can also be implemented by a dynamic path planning device for unmanned ship covering and feeding Implementation, the method specifically includes:
  • S200 Establish an area model according to the positioning information of the first vertex group, and obtain a path planning point according to the area model and the range of the feeder;
  • S400 According to the unmanned ship positioning information and the path target point, divide the path target point into the unreached target point and the reached target point;
  • S500 Obtain a cruise path based on the unmanned ship's positioning information and the unreached target point.
  • GPS or Beidou positioning equipment is used to obtain the positioning information of the first vertex group of the water body area, first determine the number of the first vertex in the water body area, and then obtain the longitude and latitude coordinates of the first vertex; according to the number of the first vertex Count N, construct a 2 ⁇ N array bPoint[][], and then obtain the longitude and latitude coordinates (bLng(n), bLat(n)) corresponding to each vertex, and record the longitude coordinates bLng(n) to bPoint[ 0][n], record the latitude coordinates bLat(n) to bPoint[1][n] in turn to establish the area model of the water body area; obtain the range distance of the feeder from the specifications of the feeder, and combine the area of the water body area Model, analyze the path planning point; according to the first vertex positioning information, combined with the path planning point to obtain the path target point; use GPS or Beidou positioning equipment to obtain the unmanned ship positioning information, combined with
  • the shape of the water body area is generally a convex polygon with multiple vertices. All the vertices of the water body area form the first vertex group.
  • the path target point is determined according to the first vertex group of the water body area and the range distance of the feeder, and then recorded The target point that has been cruised is determined, and the target point is determined not to be reached.
  • the cruise path with the shortest distance is dynamically generated during the cruise, which can ensure that the unmanned ship deviates from the predetermined cruise path due to various factors, and then follows the current optimal cruise path Driving, complete coverage feeding, thereby increasing output value and efficiency.
  • step S200 includes:
  • S210 Obtain a maximum longitude value, a minimum longitude value, a maximum latitude value, and a minimum latitude value according to the positioning information of the first vertex group;
  • S220 According to the maximum longitude value, the minimum longitude value, the maximum latitude value, and the minimum latitude value, establish an area model and obtain the positioning information of the second vertex group of the area model;
  • S230 Obtain a path planning point according to the range distance of the feeder and the positioning information of the second vertex group.
  • the rectangular area model is easier to perform mathematical analysis.
  • a circumscribed rectangular area model can be obtained.
  • the rectangular area model has four vertices, and the four vertices form the second vertex group.
  • the path planning point is obtained. After the unmanned ship passes the path planning point obtained by the analysis, the feeding area can be completely covered by the water body, and the output value and benefits of the production can be guaranteed.
  • step S230 includes:
  • S231 According to the positioning information of the second vertex group, use the latitude and longitude length conversion formula to obtain the horizontal length and the vertical length;
  • D x is the longitude difference value
  • lngMax is the maximum longitude value
  • lngMin is the minimum longitude value
  • M x is the number of horizontal planning points
  • D y latitude difference value, lngMax maximum latitude, lngMin minimum latitude, M y is a longitudinal plan point number
  • the corresponding formula is used to obtain the number of horizontal planning points and the number of longitudinal planning points, so as to obtain the longitude difference and latitude difference values, and then obtain the path planning points to ensure the effectiveness of the path planning points generation.
  • the feeding area can be completely covered by the water body, and the output value and benefits of the production can be guaranteed.
  • step S232 includes:
  • M x is the number of horizontal planning points
  • S x is the horizontal length
  • L is the range of the feeder
  • My is the number of longitudinal planning points
  • Sy is the longitudinal length
  • L is the range of the feeder.
  • the first horizontal number formula is used to obtain the number of horizontal planning points. At this time, the full coverage of the horizontal feeding can be guaranteed.
  • the horizontal remainder is not 0, the horizontal length needs to be changed.
  • the second horizontal number formula is used to obtain the number of horizontal planning points. At this time, the full coverage of the horizontal feeding can be guaranteed.
  • use the first vertical number formula or the second vertical number formula The formula obtains the number of vertical planning points, and the full coverage of vertical feeding can be guaranteed at this time.
  • step S235 includes:
  • the starting vertex group takes any vertex in the second vertex group as the starting vertex to obtain the starting planning point.
  • the abscissa of the starting planning point differs from the starting vertex by half of the longitude difference.
  • the ordinate of the starting planning point is half of the latitude difference between the starting vertex and the starting planning point is located in the area model;
  • S245 Obtain a longitudinal coordinate group according to the initial planning point, the number of calculations of the longitudinal coordinate, and the latitude difference value, and the adjacent coordinate values of the longitudinal coordinate group all differ by the latitude difference value;
  • S246 Obtain a path planning point according to the starting planning point, the horizontal coordinate group, and the vertical coordinate group.
  • the distance between the route planning point near the boundary of the water body area and the boundary is only half of the distance between the two route planning points, so the increment of the longitude coordinate of the starting planning point is only half of the longitude difference.
  • the increment of the latitude coordinate is only half of the latitude difference.
  • step S300 includes:
  • S310 Obtain a path vector group according to the positioning information of the first vertex group and the path planning point;
  • the array bPoint[][] is used to record the coordinates of the first vertex of the water area, and a 2 ⁇ N array pVrctor[][] is constructed according to the number N of path planning points, according to the formula:
  • bLng is the longitude value of the first vertex coordinate
  • pLng is the longitude value of the path planning point
  • bLat is the latitude value of the first vertex coordinate
  • pLat is the latitude value of the path planning point
  • ⁇ z is the angle between two adjacent vectors
  • the area of the regional model established according to the first vertex is larger than the water body area, and the route planning points are generated according to the regional model.
  • the route planning points located outside the water body area cannot pass.
  • the method can determine whether the route planning point is located in the water body area, and the angle and method are used to ensure that all the path target points are found, thereby ensuring the effectiveness of the cruise route.
  • step S400 includes:
  • each path target point has a corresponding judgment area circle, and the minimum of 1/3 of the longitude difference and 1/3 of the latitude difference is taken as the radius of the judgment area circle.
  • the position of the ship determine the path target point closest to the unmanned ship as the closest target point, and get the shortest distance; when the shortest distance is less than the radius of the judgment area circle, judge the current closest target point as the reached target point, otherwise it is not reached At the target point, the radius is determined according to 1/3 of the difference value, which can effectively ensure the full coverage of the unmanned ship's feeding, thereby ensuring the output value and benefits.
  • step S500 includes:
  • S520 Take the two adjacent unreached target points in the sequential path point array, and use the distance formula to obtain the distance between the two points;
  • the distance formula is:
  • zLat(i) is the latitude value of the unreached target point i
  • zLng(i) is the longitude value of the unreached target point i
  • zLat(j) is the latitude value of the unreached target point j
  • zLng(j) is the The longitude value of reaching the target point j, where R is the radius of the earth, and H(ij) is the distance between the two points;
  • the accumulation formula is:
  • W is the number of unreached target points
  • Dz is the total path length
  • the shortest total path length is obtained according to the unreached target point updated in real time, and the corresponding sequential path point array is obtained, thereby obtaining the optimal cruise path updated in real time, ensuring the real-time and effective cruise path It can ensure that after the unmanned ship deviates from the predetermined cruise path due to various factors, it will travel according to the current optimal cruise path and carry out full coverage feeding, thereby increasing the output value and benefits.
  • the dynamic path planning device 100 for unmanned ship covering and feeding can be any type of intelligent terminal, For example, mobile phones, tablet computers, personal computers, etc.
  • the dynamic path planning device 100 for the unmanned ship covering feeding includes: one or more control processors 110 and a memory 120.
  • one control processor 110 is taken as an example.
  • control processor 110 and the memory 120 may be connected through a bus or in other ways.
  • connection through a bus is taken as an example.
  • the memory 120 can be used to store non-transitory software programs, non-transitory computer-executable programs, and modules, such as the dynamic path of unmanned ship covering and feeding in the embodiment of the present invention.
  • the program instructions/modules corresponding to the planning method for example, the receiving module 110 and the processing module 120 shown in FIG. 10.
  • the control processor 110 implements the dynamic path planning method of the unmanned ship covering feeding of the above method embodiment by running the non-transient software programs, instructions, and modules stored in the memory 120.
  • the memory 120 may include a program storage area and a data storage area.
  • the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created by use, and the like.
  • the memory 120 may include a high-speed random access memory, and may also include a non-transitory memory, such as at least one magnetic disk storage device, a flash memory device, or other non-transitory solid-state storage devices.
  • the memory 120 may optionally include memories remotely provided with respect to the control processor 110, and these remote memories may be connected to the dynamic path planning device 100 for the unmanned vessel to cover feeding via a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • One or more modules are stored in the memory 120, and when executed by one or more control processors 110, the dynamic path planning method for unmanned ship covering and feeding in the above method embodiment is executed, for example, the above-described diagram is executed.
  • 1 method steps S100 to S500 method steps S210 to S230 in FIG. 2, method steps S231 to S235 in FIG. 3, method steps S236 to S237 in FIG. 4, method steps S241 to S246 in FIG.
  • the method steps S310 to S330 in 6 the method steps S410 to S430 in FIG. 7, and the method steps S510 to S550 in FIG.
  • the embodiment of the present invention also provides a computer-readable storage medium.
  • the computer-readable storage medium stores computer-executable instructions.
  • the computer-executable instructions are executed by one or more control processors 110, for example, by One control processor 110 executes, so that the one or more control processors 110 can execute the dynamic path planning method of unmanned vessel feeding in the above method embodiment, for example, execute the method step S100 in FIG. 1 described above.
  • To S500 method steps S210 to S230 in Fig. 2, method steps S231 to S235 in Fig. 3, method steps S236 to S237 in Fig. 4, method steps S241 to S246 in Fig. 5, method step S310 in Fig. 6
  • the device embodiments described above are merely illustrative, and the units described as separate components may or may not be physically separated, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the modules can be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each implementation manner can be implemented by means of software plus a general hardware platform.
  • All or part of the processes in the methods of the above embodiments can be implemented by computer programs instructing relevant hardware.
  • the programs can be stored in a computer readable storage medium. At this time, it may include the flow of the embodiment of the above-mentioned method.
  • the storage medium may be a magnetic disk, an optical disc, a read-only memory (Read Only Memory, ROM), or a random storage memory (Random AccesSS Memory, RAM), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Navigation (AREA)

Abstract

本发明公开了一种无人船覆盖投食的动态路径规划方法及设备,所述方法包括:获取水体区域的第一顶点组定位信息、投食器射程距离、无人船定位信息;根据所述第一顶点组定位信息建立区域模型,并根据所述区域模型和所述投食器射程距离,得到路径规划点;根据所述第一顶点组定位信息和所述路径规划点,得到路径目标点;根据所述无人船定位信息和所述路径目标点,将所述路径目标点划分为未到达目标点和已到达目标点;根据所述无人船定位信息和所述未到达目标点,得到巡航路径。本发明通过确定未到达目标点,动态生成巡航路径,能够保证无人船因各种因素导致偏离预定巡航路径后,按照当前最优的巡航路径行驶,进行完全覆盖投食,从而提高产值和效益。

Description

一种无人船覆盖投食的动态路径规划方法及设备 技术领域
本发明涉及无人船路径规划技术领域,特别涉及一种无人船覆盖投食的动态路径规划方法及设备。
背景技术
目前,我国的水产养殖面积非常巨大,养殖的种类繁多,而且集约化、规模化养殖加速发展,对养殖方式提出新的需求,自动化和智能化的养殖是发展的必然趋势。目前绝大部分是以露天的池塘为主的养殖池群,在养殖过程中,需要对这些池塘进行投食等的工作,对于大规模的池塘群来说,需要利用无人船进行自动投食。目前,无人船在巡航前需要生成一条巡航路径,但是当无人船因各种因素偏离预定巡航路径后,不能重新规划路线,导致无人船根据制定的巡航路径,无法进入偏离部分的投食区域,无人船无法进行全覆盖投食,导致产值和效益的降低。
发明内容
本发明的目的在于至少解决现有技术中存在的技术问题之一,提供一种无人船覆盖投食的动态路径规划方法及设备,能够保证无人船因各种因素导致偏离预定巡航路径后,动态生成距离最短的巡航路径。
本发明解决其技术问题的解决方案是:
第一方面,本发明提供了一种无人船覆盖投食的动态路径规划方法,包括:
获取水体区域的第一顶点组定位信息、投食器射程距离、无人船定位信息;
根据所述第一顶点组定位信息建立区域模型,并根据所述区域模型和所述投食器射程距离,得到路径规划点;
根据所述第一顶点组定位信息和所述路径规划点,得到路径目标点;
根据所述无人船定位信息和所述路径目标点,将所述路径目标点划分为未到达目标点和已到达目标点;
根据所述无人船定位信息和所述未到达目标点,得到巡航路径。
进一步,所述根据所述第一顶点组定位信息建立区域模型,并根据所述区域模型和所述投食器射程距离,得到路径规划点,包括:
根据所述第一顶点组定位信息,得到最大经度值、最小经度值、最大纬度值和最小纬度值;
根据所述最大经度值、所述最小经度值、所述最大纬度值和所述最小纬度值,建立区域模型并得到所述区域模型的第二顶点组定位信息;
根据所述投食器射程距离和所述第二顶点组定位信息,得到路径规划点。
进一步,所述根据所述投食器射程距离和所述第二顶点组定位信息,得到路径规划点,包括:
根据所述第二顶点组定位信息,利用经纬度长度换算公式,得到横向长度和纵向长度;
根据所述横向长度和所述投食器射程距离得到横向规划点个数,并根据所述纵向长度和所述投食器射程距离,得到纵向规划点个数;
根据所述第二顶点组定位信息和所述横向规划点个数,利用横向经度差量值公式,得到经度差量值;
根据所述第二顶点组定位信息和所述纵向规划点个数,利用纵向纬度差量值公式,得到纬度差量值;
根据所述第二顶点组定位信息、所述横向规划点个数、所述纵向规划点个数、所述经度差量值和所述纬度差量值,得到路径规划点。
进一步,所述根据所述横向长度和所述投食器射程距离得到横向规划点个数,并根据所述纵向长度和所述投食器射程距离,得到纵向规划点个数,包括:
利用所述横向长度对所述投食器射程距离取余,得到横向余数;
利用所述纵向长度对所述投食器射程距离取余,得到纵向余数;
若所述横向余数为0,则利用第一横向个数公式得到横向规划点个数,否则利用第二横向个数公式得到横向规划点个数;
若所述纵向余数为0,则利用第一纵向个数公式得到纵向规划点个数,否则利用第二纵向个数公式得到纵向规划点个数。
进一步,所述根据所述第二顶点组定位信息、所述横向规划点个数、所述纵向规划点个数、所述经度差量值和所述纬度差量值,得到路径规划点,包括:
根据所述第二顶点组定位信息,取所述第二顶点组中的任一顶点记为起始顶点,得到起始规划点,所述起始规划点的横坐标与所述起始顶点相差所述经度差量值的一半,所述起始规划点的纵坐标与所述起始顶点相差所述纬度差量值的一半,所述起始规划点位于所述区域模型内;
根据所述横向规划点个数,得到横向坐标计算次数;
根据所述起始规划点、所述横向坐标计算次数和所述经度差量值,得到横向坐标组,所述横向坐标组的相邻坐标值均相差所述经度差量值;
根据所述纵向规划点个数,得到纵向坐标计算次数;
根据所述起始规划点、所述纵向坐标计算次数和所述纬度差量值,得到纵向坐标组,所述纵向坐标组的相邻坐标值均相差所述纬度差量值;
根据所述起始规划点、所述横向坐标组和所述纵向坐标组,得到路径规划点。
进一步,所述根据所述第一顶点组定位信息和所述路径规划点,得到路径目标点,包括:
根据所述第一顶点组定位信息和所述路径规划点,得到路径向量组;
根据所述路径向量组,利用向量夹角公式,得到相邻向量的角度和;
根据所述相邻向量的角度和,将路径规划点划分为路径目标点和禁止通行点。
进一步,所述根据所述无人船定位信息和所述路径目标点,将所述路径目标点划分为未到达目标点和已到达目标点,包括:
根据所述路径目标点,得到判断区域圆,所述判断区域圆的圆心为所述路径目标点,所述判断区域圆的半径为所述经度差量值的1/3和所述纬度差量值的1/3中的最小值;
根据所述无人船定位信息和所述路径目标点,得到所述无人船与所述路径目标点的最短距离,记与所述无人船最近的所述路径目标点为最近目标点;
根据所述最短距离和所述判断区域圆的半径的大小,将所述路径目标点划分为未到达目标点和已到达目标点。
进一步,所述根据所述无人船定位信息和所述未到达目标点,得到巡航路径,包括:
设定迭代次数,根据所述迭代次数,将所述未到达目标点随机排列,得到对应的若干个顺序路径点数组;
取所述顺序路径点数组中相邻的两个所述未到达目标点,利用距离公式,得到两点间距离;
根据所述顺序路径点数组和所述两点间距离,利用累加公式,求得遍历的总路径长度;
比较所述总路径长度,得到最短的所述总路径长度,记对应的所述顺序路径点数组为最优路径点数组;
根据所述最优路径点数组,得到巡航路径。
第二方面,本发明提供了一种无人船覆盖投食的动态路径规划设备,
包括至少一个控制处理器和用于与至少一个控制处理器通信连接的存储器;存储器存储有可被至少一个控制处理器执行的指令,指令被至少一个控制处理器执行,以使至少一个控制处理器能够执行如上所述的无人船覆盖投食的动态路径规划方法。
第三方面,本发明提供了一种计算机可读存储介质,计算机可读存储介质存储有计算机可执行指令,计算机可执行指令用于使计算机执行如上所述的无人船覆盖投食的动态路径规划方法。
第五方面,本发明还提供了一种计算机程序产品,所述计算机程序产品包括存储在计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使计算机执行如上所述的无人船覆盖投食的动态路径规划方法。
本发明实施例中提供的一个或多个技术方案,至少具有如下有益效果:本发明给出了一种无人船覆盖投食的动态路径规划方法及设备,根据水体区域的顶点和投食器射程距离确定路径目标点,然后记录已巡航过的已到达目标点,确定未到达目标点,在巡航过程中动态生成距离最短的巡航路径,能够保证无人船因各种因素导致偏离预定巡航路径后,按照当前最优的巡航路径行驶,进行完全覆盖投食,从而提高产值和效益。
附图说明
下面结合附图和实施例对发明进一步地说明;
图1是本发明第一实施例提供的一种无人船覆盖投食的动态路径规划方法的流程图;
图2是本发明第一实施例提供的一种无人船覆盖投食的动态路径规划方法中步骤S200的具体方法流程图;
图3是本发明第一实施例提供的一种无人船覆盖投食的动态路径规划方法中步骤S230的具体方法流程图;
图4是本发明第一实施例提供的一种无人船覆盖投食的动态路径规划方法中步骤S232的具体方法流程图;
图5是本发明第一实施例提供的一种无人船覆盖投食的动态路径规划方法中步骤S235的具体方法流程图;
图6是本发明第一实施例提供的一种无人船覆盖投食的动态路径规划方法中步骤S300的具体方法流程图;
图7是本发明第一实施例提供的一种无人船覆盖投食的动态路径规划方法中步骤S400的具体方法流程图;
图8是本发明第一实施例提供的一种无人船覆盖投食的动态路径规划方法中步骤S500的具体方法流程图;
图9是本发明第一实施例提供的一种无人船覆盖投食的动态路径规划方法中生成巡航路径的流程图;
图10是本发明第二实施例提供的一种无人船覆盖投食的动态路径规划设备的结构示意图;
100-无人船覆盖投食的动态路径规划设备、110-控制处理器、120-存储器。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
需要说明的是,如果不冲突,本发明实施例中的各个特征可以相互结合,均在本发明的保护范围之内。另外,虽然在装置示意图中进行了功能模块划分,在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于装置中的模块划分,或流程图中的顺序执行所示出或描述的步骤。
在本发明的第一实施例中,如图1所示,一种无人船覆盖投食的动态路径规划方法的流程图,该方法也可以由无人船覆盖投食的动态路径规划设备来执行,该方法具体包括:
S100、获取水体区域的第一顶点组定位信息、投食器射程距离、无人船定位信息;
S200、根据第一顶点组定位信息建立区域模型,并根据区域模型和投食器射程距离,得到路径规划点;
S300、根据第一顶点组定位信息和路径规划点,得到路径目标点;
S400、根据无人船定位信息和路径目标点,将路径目标点划分为未到达目标点和已到达目标点;
S500、根据无人船定位信息和未到达目标点,得到巡航路径。
在具体实践中,使用GPS或者北斗等定位设备获得水体区域的第一顶点组定位信息,先确定水体区域的第一顶点的个数,再获取第一顶点的经纬度坐标;根据第一顶点的个数N,构建一个2×N的数组bPoint[][],再获取每个顶点对应的经纬度坐标(bLng(n),bLat(n)),将经度坐标bLng(n)依次对应记录到bPoint[0][n],将纬度坐标bLat(n)依次对应记录到bPoint[1][n],从而建立水体区 域的区域模型;从投食器的规格中获得投食器射程距离,结合水体区域的区域模型,分析得出路径规划点;根据第一顶点定位信息,结合路径规划点,得到路径目标点;使用GPS或者北斗等定位设备获取无人船定位信息,结合无人船定位信息,将无人船经过的路径目标点标记为已到达目标点,未经过的路径目标点标记为未到达目标点;根据未到达目标点和无人船的位置,分析得到最优的巡航路径。
可以理解的是,水体区域的形状一般为凸多边形,具有多个顶点,水体区域所有的顶点组成第一顶点组,根据水体区域的第一顶点组和投食器射程距离确定路径目标点,然后记录已巡航过的已到达目标点,确定未到达目标点,在巡航过程中动态生成距离最短的巡航路径,能够保证无人船因各种因素导致偏离预定巡航路径后,按照当前最优的巡航路径行驶,进行完全覆盖投食,从而提高产值和效益。
如图2所示,步骤S200包括:
S210、根据第一顶点组定位信息,得到最大经度值、最小经度值、最大纬度值和最小纬度值;
S220、根据最大经度值、最小经度值、最大纬度值和最小纬度值,建立区域模型并得到区域模型的第二顶点组定位信息;
S230、根据投食器射程距离和第二顶点组定位信息,得到路径规划点。
在具体实践中,从数组bPoint[][]中,获取最大经度值lngMax、最小经度值lngMin、最大纬度值latMax和最小纬度值latMin,以(lngMax,latMax)、(lngMax,latMin)、(lngMin,latMax)和(lngMin,latMin)作为四个顶点,建立矩形的区域模型,根据投食器射程距离,在区域模型内分析得出路径规划点。
可以理解的是,矩形的区域模型更容易进行数学分析,根据第一顶点组定位信息,可以得到一个外接矩形的区域模型,矩形的区域模型具有四个顶点,四个顶点组成第二顶点组,根据投食器射程距离得到路径规划点,使无人船经过分析的得出的路径规划点后,能够使投食完全覆盖水体区域,保证生产的产值和效益。
如图3所示,步骤S230包括:
S231、根据第二顶点组定位信息,利用经纬度长度换算公式,得到横向长度和纵向长度;
S232、根据横向长度和投食器射程距离得到横向规划点个数,并根据纵向长度和投食器射程距离,得到纵向规划点个数;
S233、根据第二顶点组定位信息和横向规划点个数,利用横向经度差量值公式,得到经度差量值;
S234、根据第二顶点组定位信息和纵向规划点个数,利用纵向纬度差量值公式,得到纬度差量值;
S235、根据第二顶点组定位信息、横向规划点个数、纵向规划点个数、经度差量值和纬度差量值,得到路径规划点。
在具体实践中,横向经度差量值公式为:
D x=(lngMax-lngMin)/(M x+1),
其中,D x为经度差量值,lngMax为最大经度值,lngMin为最小经度值,M x为横向规划点个数;
纵向纬度差量值公式为:
D y=(latMax-latMin)/(M y+1),
其中,D y为纬度差量值,lngMax为最大纬度值,lngMin为最小纬度值,M y为纵向规划点个数;
可以理解的是,利用相应的公式,得到横向规划点个数和纵向规划点个数,从而得到经度差量值和纬度差量值,然后得到路径规划点,保证路径规划点生成的有效性,使无人船经过分析的得出的路径规划点后,能够使投食完全覆盖水体区域,保证生产的产值和效益。
如图4所示,步骤S232包括:
S236、利用横向长度对投食器射程距离取余,得到横向余数;
S237、利用纵向长度对投食器射程距离取余,得到纵向余数;
S238、若横向余数为0,则利用第一横向个数公式得到横向规划点个数,否则利用第二横向个数公式得到横向规划点个数;
S239、若纵向余数为0,则利用第一纵向个数公式得到纵向规划点个数,否则利用第二纵向个数公式得到纵向规划点个数。
在具体实践中,第一横向个数公式为:M x=S x/L,第二横向个数公式为:M x=S x/L+1,
其中,M x为横向规划点个数,S x为横向长度,L为投食器射程距离;
第一纵向个数公式为:M y=S y/L,第二纵向个数公式为:M y=S y/L+1,
其中,M y为纵向规划点个数,S y为纵向长度,L为投食器射程距离。
可以理解的是,当横向余数为0时,利用第一横向个数公式,得到横向规划点个数,此时可以保证横向投食全覆盖,当横向余数不为0时,则需要将横向长度除投食器射程距离的结果加一,利用第二横向个数公式得到横向规划点个数,此时可以保证横向投食全覆盖,同理,利用第一纵向个数公式或第二纵向个数公式得到纵向规划点个数,此时可以保证纵向投食全覆盖。
如图5所示,步骤S235包括:
S241、根据第二顶点组定位信息,取第二顶点组中的任一顶点记为起始顶点,得到起始规划点,起始规划点的横坐标与起始顶点相差经度差量值的一半,起始规划点的纵坐标与起始顶点相差纬度差量值的一半,起始规划点位于区域模型内;
S242、根据横向规划点个数,得到横向坐标计算次数;
S243、根据起始规划点、横向坐标计算次数和经度差量值,得到横向坐标组,横向坐标组的相邻坐标值均相差经度差量值;
S244、根据纵向规划点个数,得到纵向坐标计算次数;
S245、根据起始规划点、纵向坐标计算次数和纬度差量值,得到纵向坐标组,纵向坐标组的相邻坐标值均相差纬度差量值;
S246、根据起始规划点、横向坐标组和纵向坐标组,得到路径规划点。
可以理解的是,靠近水体区域边界的路径规划点距离边界的距离,只有两个路径规划点之间的距离的一半,因此起始规划点的经度坐标的增量只有经度差量值的一半,纬度坐标的增量只有纬度差量值的一半,根据横向规划点个数和纵向规划点个数,由起始规划点开始,依次得到相差经度差量值和纬度差量值的路径规划点,保证路径规划点的均匀性和有效性,从而保证巡航路径的有效性。
如图6所示,步骤S300包括:
S310、根据第一顶点组定位信息和路径规划点,得到路径向量组;
S320、根据路径向量组,利用向量夹角公式,得到相邻向量的角度和;
S330、根据相邻向量的角度和,将路径规划点划分为路径目标点和禁止通行点。
在具体实践中,利用数组bPoint[][]记录水体区域的第一顶点坐标,根据路径规划点的个数N,构建一个2×N的数组pVrctor[][],根据公式:
vLng=bLng-pLng,vLat=bLat-pLat,
其中,bLng为第一顶点坐标的经度值,pLng为路径规划点的经度值,bLat为第一顶点坐标的纬度值,pLat为路径规划点的纬度值,
计算得到每一个路径规划点与水体区域的第一顶点的向量(vLng,vLat),并将(vLng,vLat)按顺序记录到pVrctor[][]中,根据pVrctor[][]中向量,根据向量夹角公式:
Figure PCTCN2020104561-appb-000001
其中,θz为两条相邻向量的夹角,
计算得到每两条相邻向量的夹角θz,将所有的夹角θz相加得到θ;根据角度和法,若角度和θ等于2π,则确定路径规划点在水体区域内,将路径规划点记为路径目标点,否则记为禁止通行点。
可以理解的是,当水体区域不为矩形时,根据第一顶点建立的区域模型的区域比水体区域大,根据区域模型生成路径规划点,位于水体区域外的路径规划点不能通行,根据角度和法,能够判断路径规划点是否位于水体区域内,使用角度和法,保证找到全部的路径目标点,从而保证巡航路径的有效性。
如图7所示,步骤S400包括:
S410、根据路径目标点,得到判断区域圆,判断区域圆的圆心为路径目标点,判断区域圆的半径为经度差量值的1/3和纬度差量值的1/3中的最小值;
S420、根据无人船定位信息和路径目标点,得到无人船与路径目标点的最短距离,记与无人船最近的路径目标点为最近目标点;
S430、根据最短距离和判断区域圆的半径的大小,将路径目标点划分为未到达目标点和已到达目标点。
可以理解的是,每一个路径目标点均有对应的判断区域圆,取经度差量值的1/3和纬度差量值的1/3中的最小值作为判断区域圆的半径,由无人船的位置,确定距离无人船最近的路径目标点为最近目标点,并且得到最短距离;当最短距离小于判断区域圆的半径时,判断当前最近目标点为已到达目标点,否则为未到达目标点,根据差量值的1/3确定半径,可以有效保证无人船投食的全覆盖,从而保证产值和效益。
如图8至9所示,步骤S500包括:
S510、设定迭代次数,根据迭代次数,将未到达目标点随机排列,得到对应的若干个顺序路径点数组;
S520、取顺序路径点数组中相邻的两个未到达目标点,利用距离公式,得到两点间距离;
S530、根据顺序路径点数组和两点间距离,利用累加公式,求得遍历的总路径长度;
S540、比较总路径长度,得到最短的总路径长度,记对应的顺序路径点数组为最优路径点数组;
S550、根据最优路径点数组,得到巡航路径。
在具体实践中,距离公式为:
C=sin(zLat(i))*sin(zLat(j))+cos(zLat(i))*cos(zLat(j))*cos(zLng(i)-zLng(j)),
H(ij)=R*arccos(C)*π/180,
其中,zLat(i)为未到达目标点i的纬度值,zLng(i)为未到达目标点i的经度值,zLat(j)为未到达目标点j的纬度值,zLng(j)为未到达目标点j的经度值,R为地球半径,H(ij)为两点间距离;
累加公式为:
Dz=H(12)+H(23)+……+H((W-2)(W-1)),
其中,W为未到达目标点的个数,Dz为总路径长度;
构建一个2×W的顺序路径点数组zPoint[][],储存按顺序排列的未到达目标点(zLng(n),zLat(n));取一个足够大的数Max,令总路径长度D=Max,设定迭代次数Q=10000,根据未到达目标点的个数W,建立一个W×W的数组dPoint[][],利用距离公式求出相邻两个未到达目标点的两点间距离H(ij)并记录于数组dPoint[][]中;利用累加公式,求得总路径长度;构建一个2×W的数组wPoint[][],用于储存最短的总路径长度时的未到达目标点的排列顺序;记剩余路径目标点个数G,初始时令G=W,判断每一次生成的总路径长度Dz是否比保存的总路径长度D小,若小于,则令D=Dz,然后把此时zPoint[][]一一对应赋给wPoint[][],然后令迭代次数Q减一;若不小于,则直接令迭代次数Q减一。然后生成小于剩余路径目标点个数G的随机数u和v,交换zPoint[][u]和zPoint[][v]中的顺序,然后从新计算,直到迭代次数Q为0。最终在wPoint[][]内保存了特定顺序的路径目标点坐标,wPoint[][]为最优路径点数组,根据最优路径点数组得到巡航路径。
可以理解的是,根据实时更新的未到达目标点求得最短的总路径长度,并得到对应的顺序路径点数组,从而得到实时更新的最优的巡航路径,保证了巡航路径的实时性和有效性,能够保证无人船因各种因素导致偏离预定巡航路径后,按照当前最优的巡航路径行驶,进行完全覆盖投食,从而提高产值和效益。
在本发明的第二实施例中,如图10所示,无人船覆盖投食的动态路径规划设备100,该无人船覆盖投食的动态路径规划设备100可以是任意类型的智能终端,例如手机、平板电脑、个人计算机等。
具体地,该无人船覆盖投食的动态路径规划设备100包括:一个或多个控制处理器110和存储器120,图10中以一个控制处理器 110为例。
控制处理器110和存储器120可以通过总线或者其他方式连接,图10中以通过总线连接为例。
存储器120作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序、非暂态性计算机可执行程序以及模块,如本发明实施例中的无人船覆盖投食的动态路径规划方法对应的程序指令/模块,例如,图10所示的接收模块110和处理模块120。控制处理器110通过运行存储在存储器120中的非暂态软件程序、指令以及模块,实现上述方法实施例的无人船覆盖投食的动态路径规划方法。
存储器120可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储使用所创建的数据等。此外,存储器120可以包括高速随机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施方式中,存储器120可选包括相对于控制处理器110远程设置的存储器,这些远程存储器可以通过网络连接至该无人船覆盖投食的动态路径规划设备100。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
一个或者多个模块存储在存储器120中,当被一个或者多个控制处理器110执行时,执行上述方法实施例中的无人船覆盖投食的动态路径规划方法,例如,执行以上描述的图1中的方法步骤S100至S500,图2中的方法步骤S210至S230,图3中的方法步骤S231至S235,图4中的方法步骤S236至S237,图5中的方法步骤S241至S246,图6中的方法步骤S310至S330,图7中的方法步骤S410至S430,图8中的方法步骤S510至S550。
本发明实施例还提供了一种计算机可读存储介质,计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个或多个控制处理器110执行,例如,被图10中的一个控制处理器110执行,可使得上述一个或多个控制处理器110执行上述方法实施例中的无人船覆盖投食的动态路径规划方法,例如,执行以上描述的图1中的方法步骤S100至S500,图2中的方法步骤S210至S230,图3中的方法步骤S231至S235,图4中的方法步骤S236至S237,图5中的方法步骤S241至S246,图6中的方法步骤S310至S330,图7中的方法步骤S410至S430,图8中的方法步骤S510至S550。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
通过以上的实施方式的描述,本领域技术人员可以清楚地了解到各实施方式可借助软件加通用硬件平台的方式来实现。本领域技术人员可以理解实现上述实施例方法中的全部或部分流程是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(ReadOnly Memory,ROM)或随机存储记忆体(Random AcceSS Memory,RAM)等。
以上是对本发明的较佳实施进行了具体说明,但本发明并不局限于上述实施方式,熟悉本领域的技术人员在不违背本发明精神的前提下还可作出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

Claims (10)

  1. 一种无人船覆盖投食的动态路径规划方法,其特征在于,包括:
    获取水体区域的第一顶点组定位信息、投食器射程距离、无人船定位信息;
    根据所述第一顶点组定位信息建立区域模型,并根据所述区域模型和所述投食器射程距离,得到路径规划点;
    根据所述第一顶点组定位信息和所述路径规划点,得到路径目标点;
    根据所述无人船定位信息和所述路径目标点,将所述路径目标点划分为未到达目标点和已到达目标点;
    根据所述无人船定位信息和所述未到达目标点,得到巡航路径。
  2. 如权利要求1所述的一种无人船覆盖投食的动态路径规划方法,其特征在于,所述根据所述第一顶点组定位信息建立区域模型,并根据所述区域模型和所述投食器射程距离,得到路径规划点,包括:
    根据所述第一顶点组定位信息,得到最大经度值、最小经度值、最大纬度值和最小纬度值;
    根据所述最大经度值、所述最小经度值、所述最大纬度值和所述最小纬度值,建立区域模型并得到所述区域模型的第二顶点组定位信息;
    根据所述投食器射程距离和所述第二顶点组定位信息,得到路径规划点。
  3. 如权利要求2所述的一种无人船覆盖投食的动态路径规划方法,其特征在于,所述根据所述投食器射程距离和所述第二顶点组定位信息,得到路径规划点,包括:
    根据所述第二顶点组定位信息,利用经纬度长度换算公式,得到横向长度和纵向长度;
    根据所述横向长度和所述投食器射程距离得到横向规划点个数,并根据所述纵向长度和所述投食器射程距离,得到纵向规划点个数;
    根据所述第二顶点组定位信息和所述横向规划点个数,利用横向经度差量值公式,得到经度差量值;
    根据所述第二顶点组定位信息和所述纵向规划点个数,利用纵向纬度差量值公式,得到纬度差量值;
    根据所述第二顶点组定位信息、所述横向规划点个数、所述纵向规划点个数、所述经度差量值和所述纬度差量值,得到路径规划点。
  4. 如权利要求3所述的一种无人船覆盖投食的动态路径规划方法,其特征在于,所述根据所述横向长度和所述投食器射程距离得到横向规划点个数,并根据所述纵向长度和所述投食器射程距离,得到纵向规划点个数,包括:
    利用所述横向长度对所述投食器射程距离取余,得到横向余数;
    利用所述纵向长度对所述投食器射程距离取余,得到纵向余数;
    若所述横向余数为0,则利用第一横向个数公式得到横向规划点个数,否则利用第二横向个数公式得到横向规划点个数;
    若所述纵向余数为0,则利用第一纵向个数公式得到纵向规划点个数,否则利用第二纵向个数公式得到纵向规划点个数。
  5. 如权利要求3所述的一种无人船覆盖投食的动态路径规划方法,其特征在于,所述根据所述第二顶点组定位信息、所述横向规划点个数、所述纵向规划点个数、所述经度差量值和所述纬度差量值,得到路径规划点,包括:
    根据所述第二顶点组定位信息,取所述第二顶点组中的任一顶点记为起始顶点,得到起始规划点,所述起始规划点的横坐标与所述起始顶点相差所述经度差量值的一半,所述起始规划点的纵坐标与所述起始顶点相差所述纬度差量值的一半,所述起始规划点位于所述区域模型内;
    根据所述横向规划点个数,得到横向坐标计算次数;
    根据所述起始规划点、所述横向坐标计算次数和所述经度差量值,得到横向坐标组,所述横向坐标组的相邻坐标值均相差所述经度差量值;
    根据所述纵向规划点个数,得到纵向坐标计算次数;
    根据所述起始规划点、所述纵向坐标计算次数和所述纬度差量值,得到纵向坐标组,所述纵向坐标组的相邻坐标值均相差所述纬度差量值;
    根据所述起始规划点、所述横向坐标组和所述纵向坐标组,得到路径规划点。
  6. 如权利要求1所述的一种无人船覆盖投食的动态路径规划方法,其特征在于,所述根据所述第一顶点组定位信息和所述路径规划点,得到路径目标点,包括:
    根据所述第一顶点组定位信息和所述路径规划点,得到路径向量组;
    根据所述路径向量组,利用向量夹角公式,得到相邻向量的角度和;
    根据所述相邻向量的角度和,将路径规划点划分为路径目标点和禁止通行点。
  7. 如权利要求5所述的一种无人船覆盖投食的动态路径规划方法,其特征在于,所述根据所述无人船定位信息和所述路径目标点,将所述路径目标点划分为未到达目标点和已到达目标点,包括:
    根据所述路径目标点,得到判断区域圆,所述判断区域圆的圆心为所述路径目标点,所述判断区域圆的半径为所述经度差量值的1/3和所述纬度差量值的1/3中的最小值;
    根据所述无人船定位信息和所述路径目标点,得到所述无人船与所述路径目标点的最短距离,记与所述无人船最近的所述路径目标点为最近目标点;
    根据所述最短距离和所述判断区域圆的半径的大小,将所述路径目标点划分为未到达目标点和已到达目标点。
  8. 如权利要求1所述的一种无人船覆盖投食的动态路径规划方法,其特征在于,所述根据所述无人船定位信息和所述未到达目标点,得到巡航路径,包括:
    设定迭代次数,根据所述迭代次数,将所述未到达目标点随机排列,得到对应的若干个顺序路径点数组;
    取所述顺序路径点数组中相邻的两个所述未到达目标点,利用距离公式,得到两点间距离;
    根据所述顺序路径点数组和所述两点间距离,利用累加公式,求得遍历的总路径长度;
    比较所述总路径长度,得到最短的所述总路径长度,记对应的所述顺序路径点数组为最优路径点数组;
    根据所述最优路径点数组,得到巡航路径。
  9. 一种无人船覆盖投食的动态路径规划设备,其特征在于,包括:
    至少一个处理器;以及,
    与所述至少一个处理器通信连接的存储器;其中,
    所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如权利要求1-8任一项所述的方法。
  10. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使计算机执行如权利要求1-8任一项所述的方法。
PCT/CN2020/104561 2020-05-20 2020-07-24 一种无人船覆盖投食的动态路径规划方法及设备 WO2021232583A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010430428.5 2020-05-20
CN202010430428.5A CN111693049B (zh) 2020-05-20 2020-05-20 一种无人船覆盖投食的动态路径规划方法及设备

Publications (1)

Publication Number Publication Date
WO2021232583A1 true WO2021232583A1 (zh) 2021-11-25

Family

ID=72477989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/104561 WO2021232583A1 (zh) 2020-05-20 2020-07-24 一种无人船覆盖投食的动态路径规划方法及设备

Country Status (3)

Country Link
US (1) US20210364297A1 (zh)
CN (1) CN111693049B (zh)
WO (1) WO2021232583A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114264299B (zh) * 2021-12-29 2023-11-24 杭州电子科技大学 一种基于标量磁场数据的交流输电海缆路由定位方法
CN114626139A (zh) * 2022-01-27 2022-06-14 深圳市人工智能与机器人研究院 一种船体动力学模型确定方法、装置、终端及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107197806A (zh) * 2017-05-17 2017-09-26 武汉理工大学 基于无人艇的弹性栅格式定点自动投饵方法
JP2019004830A (ja) * 2017-06-28 2019-01-17 株式会社ゼロプラス 自動給餌システム
CN110006430A (zh) * 2019-03-26 2019-07-12 智慧航海(青岛)科技有限公司 一种航迹规划算法的优化方法
CN110250069A (zh) * 2019-06-19 2019-09-20 江苏大学 一种河蟹养殖自动精细投饵的实现方法
CN110716551A (zh) * 2019-11-06 2020-01-21 小狗电器互联网科技(北京)股份有限公司 移动机器人行驶策略确定方法、装置以及移动机器人
CN111060109A (zh) * 2020-01-03 2020-04-24 东南大学 一种基于改进a星算法的无人艇全局路径规划方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5742924A (en) * 1994-12-02 1998-04-21 Nissan Motor Co., Ltd. Apparatus and method for navigating mobile body using road map displayed in form of bird's eye view
US7603233B2 (en) * 2006-10-16 2009-10-13 Alpine Electronics, Inc. Map matching method and apparatus for navigation system
CN103528585B (zh) * 2013-09-26 2016-05-25 中北大学 一种不等距分割可通行区域的路径规划方法
CN103744428B (zh) * 2014-01-17 2016-03-09 哈尔滨工程大学 一种基于邻域智能水滴算法的水面无人艇路径规划方法
CN105466429B (zh) * 2015-12-29 2018-06-01 江苏大学 一种水产养殖池塘全覆盖自动均匀投饲轨迹规划方法
CN107727098A (zh) * 2017-09-26 2018-02-23 上海大学 一种依次巡查多个目标位置的无人水面艇路径规划方法
CN107808059A (zh) * 2017-11-14 2018-03-16 南京师范大学 一种基于有向网络的地形路径规划方法
CN108981710B (zh) * 2018-08-07 2019-10-11 北京邮电大学 一种移动机器人的全覆盖路径规划方法
US10650548B1 (en) * 2019-01-30 2020-05-12 StradVision, Inc. Method and device for localization of autonomous vehicle for route planning by using attention-driven landmark detection
CN110196059B (zh) * 2019-05-14 2023-03-14 武汉理工大学 一种无人艇全局路径规划方法
CN110608740A (zh) * 2019-09-06 2019-12-24 遵义师范学院 一种无人船舰路径规划方法
CN110567477A (zh) * 2019-09-27 2019-12-13 五邑大学 基于改进a*算法的路径规划方法、装置及机器人

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107197806A (zh) * 2017-05-17 2017-09-26 武汉理工大学 基于无人艇的弹性栅格式定点自动投饵方法
JP2019004830A (ja) * 2017-06-28 2019-01-17 株式会社ゼロプラス 自動給餌システム
CN110006430A (zh) * 2019-03-26 2019-07-12 智慧航海(青岛)科技有限公司 一种航迹规划算法的优化方法
CN110250069A (zh) * 2019-06-19 2019-09-20 江苏大学 一种河蟹养殖自动精细投饵的实现方法
CN110716551A (zh) * 2019-11-06 2020-01-21 小狗电器互联网科技(北京)股份有限公司 移动机器人行驶策略确定方法、装置以及移动机器人
CN111060109A (zh) * 2020-01-03 2020-04-24 东南大学 一种基于改进a星算法的无人艇全局路径规划方法

Also Published As

Publication number Publication date
CN111693049A (zh) 2020-09-22
CN111693049B (zh) 2022-02-11
US20210364297A1 (en) 2021-11-25

Similar Documents

Publication Publication Date Title
LU102400B1 (en) Path planning method and system for unmanned surface vehicle based on improved genetic algorithm
CN109828607B (zh) 一种面向不规则障碍物的无人机路径规划方法及系统
WO2021232583A1 (zh) 一种无人船覆盖投食的动态路径规划方法及设备
WO2023016101A1 (zh) 一种基于启发式偏置采样的室内环境机器人探索方法
CN110196059B (zh) 一种无人艇全局路径规划方法
CN110597937B (zh) 一种无人智能巡检的方法、装置、设备及存储介质
CN112650248A (zh) 基于改进遗传算法的巡检机器人路径规划方法及系统
CN112947485A (zh) 路径规划方法及系统
CN109974708B (zh) 一种无人船航迹规划方法、终端设备及存储介质
CN114427866A (zh) 路径规划方法、电子设备以及存储介质
CN110633843A (zh) 园区巡检方法、装置、设备及存储介质
CN109855640B (zh) 一种基于自由空间与人工蜂群算法的路径规划方法
CN110516857B (zh) 一种死鱼捕捞路径规划方法、服务器及死鱼捕捞装置
CN113280818B (zh) 一种基于自适应三角网的舰船航线自动规划方法
CN112506216B (zh) 一种无人机的飞行路径规划方法及装置
CN116817958B (zh) 一种基于障碍物分组的参考路径生成方法、装置和介质
Wang et al. Research on autonomous planning method based on improved quantum Particle Swarm Optimization for Autonomous Underwater Vehicle
CN115421522B (zh) 一种基于并行自适应蚁群算法的无人机覆盖路径规划方法
XuanYuan et al. Online cooperative 3D mapping for autonomous driving
CN114609646A (zh) 激光建图方法、装置、介质及电子设备
CN113505836B (zh) 基于大数据的船舶航线自动生成方法
CN117873130A (zh) 面向配电网无人机巡检的低成本自主巡检方法及无人机
CN114040338B (zh) 利用单个移动信标的无线传感器网络节点定位方法及系统
CN117930859A (zh) 一种配网无人机自主巡视航迹规划方法及系统
CN117708367A (zh) 集散中心探索方法、装置、计算机设备及可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20936995

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20936995

Country of ref document: EP

Kind code of ref document: A1