WO2021232338A1 - 电池模块、电池模块组件及其生产方法以及装置 - Google Patents

电池模块、电池模块组件及其生产方法以及装置 Download PDF

Info

Publication number
WO2021232338A1
WO2021232338A1 PCT/CN2020/091520 CN2020091520W WO2021232338A1 WO 2021232338 A1 WO2021232338 A1 WO 2021232338A1 CN 2020091520 W CN2020091520 W CN 2020091520W WO 2021232338 A1 WO2021232338 A1 WO 2021232338A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery module
battery
injection channel
end plate
thermally conductive
Prior art date
Application number
PCT/CN2020/091520
Other languages
English (en)
French (fr)
Inventor
高汉卿
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP20936805.9A priority Critical patent/EP4037064A4/en
Priority to PCT/CN2020/091520 priority patent/WO2021232338A1/zh
Priority to CN202080005632.0A priority patent/CN112997350B/zh
Publication of WO2021232338A1 publication Critical patent/WO2021232338A1/zh
Priority to US17/746,905 priority patent/US20220278391A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the field of battery technology, in particular to a battery module, a battery module assembly, and a production method and device thereof.
  • the battery module assembly includes a battery module and a cooling component.
  • a thermal conductive glue is filled between the battery module and the cooling component to reduce thermal resistance and improve thermal conductivity.
  • thermally conductive slurry is directly spread on the cooling component, and then the battery module is directly placed on the thermally conductive slurry.
  • the battery module assembly manufactured in this way has poor heat dissipation performance of the battery module, which affects the normal use of the battery module.
  • the embodiments of the present application provide a battery module, a battery module assembly, and a production method and device thereof.
  • the battery module is provided with an injection channel, and the thermally conductive slurry injected into the accommodating cavity between the battery module and the cooling component through the injection channel can fill the accommodating cavity, thereby improving the heat dissipation efficiency of the battery module.
  • an embodiment of the present application provides a battery module, which includes a battery unit and a housing accommodating the battery unit.
  • the battery cell has a top surface, a bottom surface, and side surfaces connecting the top surface and the bottom surface.
  • the shell includes a limit frame and an injection channel arranged on the limit frame.
  • the limit frame is arranged around the side of the battery unit.
  • the bottom of the battery module is configured to form an accommodating cavity with the cooling component.
  • the injection channel is configured to communicate with the accommodating cavity, so as to inject the thermally conductive slurry from the injection channel into the accommodating cavity.
  • an injection channel is provided on the limit frame surrounding the battery unit.
  • the battery module When the battery module is applied to the battery module assembly, the battery module can be pre-assembled with the cooling component, and an accommodation cavity is formed between the bottom of the battery module and the cooling component. Then, the thermal conductive slurry is injected into the containing cavity through the injection channel on the limit frame. Since the thermally conductive slurry is injected into the containing cavity through the injection channel, the thermally conductive slurry can effectively fill the various areas of the containing cavity under the action of the injection pressure. On the one hand, it ensures that the bottom surface of the battery module and the surface of the cooling component can communicate with the thermal conductivity.
  • the slurry maintains the contact state, reducing the possibility of gaps between the battery module and the thermally conductive slurry or between the cooling component and the thermally conductive slurry, which is beneficial to improve the heat dissipation effect and the heat dissipation efficiency of the battery module.
  • an embodiment of the present application provides a battery module assembly, which includes a cooling component and the above-mentioned battery module connected to the cooling component.
  • An accommodating cavity is provided between the bottom of the battery module and the cooling component.
  • the injection channel communicates with the containing cavity.
  • the injection channel is used to inject the thermally conductive slurry into the containing cavity.
  • the thermally conductive paste is used to conduct the heat of the battery module to the cooling part.
  • an embodiment of the present application provides a method for producing a battery module assembly, which includes:
  • the battery module includes a battery unit and a casing.
  • the casing contains the battery unit.
  • the casing includes a limit frame and an injection channel arranged on the limit frame.
  • the limit frame is arranged around the battery unit;
  • the thermally conductive slurry is injected into the containing cavity through the injection channel.
  • an embodiment of the present application provides a device using a battery module as a power source, which includes the battery module as described above.
  • Fig. 1 is a schematic structural diagram of a vehicle disclosed in an embodiment of the present application
  • FIG. 2 is a schematic diagram of an exploded structure of a battery pack disclosed in an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a battery module disclosed in an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a partial structure of a battery module disclosed in an embodiment of the present application.
  • FIG. 5 is a schematic partial cross-sectional view of a battery module assembly disclosed in an embodiment of the present application.
  • Figure 6 is an enlarged view of A in Figure 5;
  • FIG. 7 is a schematic diagram of an exploded structure of a battery module disclosed in an embodiment of the present application.
  • FIG. 8 is a schematic diagram of an exploded structure of an end plate assembly disclosed in an embodiment of the present application.
  • FIG. 9 is a schematic diagram of an exploded structure of an end plate assembly disclosed in an embodiment of the present application.
  • Fig. 10 is a schematic bottom view of an end plate assembly disclosed in an embodiment of the present application.
  • End plate 611, body part; 612, first adapter part;
  • Insulating plate 621, the second transfer part; 621a, the receiving part; 622, the convex part;
  • X height direction
  • Y length direction
  • Z width direction
  • the embodiment of the present application provides a device that uses a battery module as a power source.
  • the device can be, but is not limited to, a vehicle, a ship, or an aircraft.
  • an embodiment of the present application provides a vehicle 1 including a vehicle body and a battery pack 10.
  • the battery pack 10 is installed in the vehicle body.
  • the vehicle 1 may be a pure electric vehicle, a hybrid electric vehicle or an extended-range vehicle.
  • the vehicle body is provided with a drive motor electrically connected to the battery pack 10.
  • the battery pack 10 provides electric energy to the drive motor.
  • the drive motor is connected to the wheels on the vehicle body through a transmission mechanism to drive the vehicle to travel.
  • the battery pack 10 may be horizontally arranged at the bottom of the vehicle body.
  • the battery pack 10 includes a box body 11 and a battery module assembly disposed in the box body 11.
  • the number of battery module components is one or more.
  • One or more battery module components are arranged in the box 11 in a row.
  • the type of the cabinet 11 is not limited.
  • the box 11 may be a frame-shaped box, a disk-shaped box, a box-shaped box, or the like.
  • the box body 11 includes a lower box body for accommodating the battery module assembly and an upper box body covered with the lower box body. The upper box body and the lower box body are closed to form a receiving part for accommodating the battery module assembly.
  • the applicant conducted research and analysis on the various structures of the battery module.
  • the applicant found that there is a gap between the battery module and the thermally conductive paste or between the cooling component and the thermally conductive paste, resulting in partial non-contact, so that the thermal resistance of the non-contact area is relatively large, which affects the heat dissipation and consistency of the battery module .
  • the thermal conductivity slurry was spread on the cooling component, and then the battery module was placed on the thermal slurry to press the thermal slurry apart. Due to the difference in the flatness of the surface of the battery module or the surface of the cooling component, There are high and low undulating areas on the surfaces of the two.
  • the thermal paste will not be able to ensure sufficient contact between the battery module and the thermal paste or between the cooling component and the thermal paste during the pressing process, resulting in the battery module and the thermal paste There is a gap between or between the cooling component and the thermally conductive slurry.
  • the applicant has improved the structure of the battery module, and the embodiments of the present application will be further described below.
  • the battery module assembly includes a battery module 20.
  • the battery module 20 includes a battery unit 30 and a casing 40.
  • the battery unit 30 is housed in the case 40.
  • the battery cell 30 includes a plurality of secondary batteries 30 and a bus bar 32 that connects different secondary batteries 30 in series or in parallel.
  • a plurality of secondary batteries 30 are arranged side by side in one direction.
  • the housing 40 includes a limit frame 50 and an injection channel 200 provided on the limit frame 50.
  • the limit frame 50 encloses the battery unit 30 inside the limit frame 50.
  • the battery unit 30 has a top surface, a bottom surface, and side surfaces connecting the top surface and the bottom surface.
  • the limit frame 50 is arranged around the side surface of the battery unit 30.
  • the battery module assembly further includes a cooling part 400.
  • the bottom surface of the battery cell 30 faces the cooling member 400.
  • the battery module 20 may be pre-assembled with the cooling part 400 and a receiving cavity 500 is formed between the bottom of the battery module 20 and the cooling part 400.
  • the injection channel 200 provided on the limit frame 50 communicates with the accommodating cavity 500. Then, the thermal conductive slurry is injected into the containing cavity 500 through the injection channel 200 on the limit frame 50.
  • the thermally conductive slurry is injected into the containing cavity 500 through the injection channel 200, the thermally conductive slurry can effectively fill various areas of the containing cavity 500 under the action of the injection pressure, thereby ensuring the bottom surface of the battery module 20 and the cooling component 400 on the one hand.
  • the surface of the battery module can be kept in contact with the thermally conductive paste, which reduces the possibility of gaps between the battery module 20 and the thermally conductive paste or between the cooling component 400 and the thermally conductive paste, which is beneficial to improve the heat dissipation effect and heat dissipation efficiency of the battery module 20;
  • the flatness of the bottom surface of the battery module 20 and the flatness accuracy of the surface of the cooling component 400 are low, and the bottom surface of the battery module 20 and the surface of the cooling component 400 may have ups and downs, thereby reducing the quality of the battery module 20.
  • the processing requirements of the bottom and cooling part 400 reduce the processing difficulty and cost.
  • the battery module assembly includes a cooling component 400 and a plurality of battery modules 20 disposed above the cooling component 400.
  • the injection channel 200 on the limit frame 50 of the battery module 20, it is possible to separately inject the thermally conductive slurry into the accommodating cavity 500 between each battery module 20 and the cooling component 400, so that there is no need to damage the cooling.
  • the component 400 and the box body 11 ensure the structural integrity of the cooling component 400 and the box body 11.
  • the cooling part 400 and the box body 11 need to be provided with an injection channel 200 at the same time for feeding the battery module 20
  • the accommodating cavity 500 between and the cooling component 400 is filled with a thermally conductive slurry.
  • the provision of the injection channel 200 on the box 11 will affect the overall sealing of the battery pack 10.
  • the battery unit 30 of the embodiment of the present application has a predetermined height, length, and width.
  • the height direction X of the battery cells 30 is perpendicular to the arrangement direction of the secondary batteries.
  • the longitudinal direction Y of the battery cells 30 is the same as the arrangement direction of the secondary batteries.
  • the width direction Z of the battery cell 30 is perpendicular to the height direction X and the length direction Y.
  • the injection channel 200 penetrates the limit frame 50 along the height direction X of the battery unit 30.
  • the injection device can be easily moved above the battery module 20 and aligned with the injection channel 200 along the height direction X, which is beneficial to reduce the difficulty of aligning the injection device with the injection channel 200.
  • the thermally conductive slurry flows toward the accommodating cavity 500 under the combined action of its own gravity and the injection pressure, which is beneficial to improve the fluidity of the thermally conductive slurry and reduce the retention of the thermally conductive slurry in the injection channel 200 Possibility to improve the efficiency of injection work.
  • the limit frame 50 includes an end plate assembly 60 and a side plate assembly 70.
  • the end plate assembly 60 and the side plate assembly 70 are connected to each other and alternately arranged around the battery cell 30.
  • the battery unit 30 has two opposite ends in the length direction Y of the battery unit 30.
  • the end plate assembly 60 is disposed at the end of the battery unit 30.
  • the two side plate assemblies 70 are oppositely disposed on both sides of the battery cell 30 along the width direction Z of the battery cell 30.
  • the injection channel 200 is provided in the side plate assembly 70. Along the height direction X, the injection channel 200 penetrates the side plate assembly 70.
  • the injection channel 200 is provided in the end plate assembly 60. Structural features such as reinforcements are usually provided on the end plate assembly 60.
  • the injection channel 200 arranged on the end plate assembly 60 can be processed and manufactured together with the corresponding structural features, and the processing technology is simple.
  • the injection channel 200 is arranged on the corresponding structural feature without occupying additional space, which is beneficial to improve the battery module 20 Energy Density.
  • the thickness of the side plate assembly 70 can be reduced, which is beneficial to increase the energy density of the battery module 20.
  • two or more battery modules 20 are arranged side by side.
  • the respective side plate assemblies 70 of two adjacent battery modules 20 are arranged adjacently, and the end plate assemblies 60 are arranged side by side along the width direction Z, so that the spacing between the injection channels 200 on each end plate assembly 60 is relatively large. In this way, when the injection channel 200 is arranged in the end plate assembly 60, it is convenient for the injection device to inject the thermally conductive slurry into the multiple battery modules 20 at the same time, and the two adjacent injection devices will not interfere with each other, which improves the convenience of injection. And efficiency.
  • the end plate assembly 60 includes an end plate 61 and an insulating plate 62. At least part of the insulating plate 62 is disposed between the end plate 61 and the battery cell 30 to isolate the end plate 61 and the battery cell 30.
  • the end plate 61 of the end plate assembly 60 is used to connect with the side plate assembly 70.
  • the material of the end plate 61 may be aluminum, aluminum alloy or steel.
  • the injection channel 200 penetrates the end plate 61 and the insulating plate 62.
  • a part of the insulating plate 62 is disposed between the end plate 61 and the battery cell 30, and a part is located below the end plate 61 and used to isolate the end plate 61 from the cooling component 400.
  • the end plate assembly 60 further includes a connecting pipe 63.
  • the two ends of the connecting pipe 63 are connected to the end plate 61 and the insulating plate 62 respectively.
  • the injection channel 200 penetrates the end plate 61, the connecting pipe 63 and the insulating plate 62.
  • the connecting pipe 63 has two opposite ends in the height direction X. One end of the connecting pipe 63 is connected to the end plate 61, and the other end is connected to the insulating plate 62.
  • the end plate 61 and the insulating plate 62 are manufactured separately, it is necessary to make a through hole on the end plate 61 to form a part of the injection channel 200, and make a through hole on the insulating plate 62 to form a part of the injection channel 200.
  • the connecting pipe 63 can compensate for the position error of the through hole on the end plate 61 and the through hole on the insulating plate 62, thereby reducing the end plate 61 and the insulating plate 62.
  • the position accuracy of the through holes made on the insulating plate 62 is required.
  • the end plate 61 has a body portion 611 and a first adapter portion 612.
  • the first adapter portion 612 is disposed on the side of the main body portion 611 away from the battery unit 30. At least part of the insulating plate 62 is provided between the main body portion 611 and the battery unit 30.
  • a through hole is processed on the first adapter portion 612 to form a part of the injection channel 200.
  • the connecting pipe 63 is detachably connected to the first adapter portion 612.
  • one end of the connecting pipe 63 is threadedly connected to the first adapter portion 612 or one end of the connecting pipe 63 is in interference fit with the through hole on the first adapter portion 612.
  • one end of the connecting pipe 63 is sealed to the first adapter portion 612 to reduce the possibility of the thermally conductive slurry overflowing from the connection between the one end of the connecting pipe 63 and the first adapter portion 612.
  • the first adapter portion 612 protrudes from the body portion 611 and has a strip structure extending along the height direction X.
  • the through hole on the first adapter portion 612 extends along the height direction X. In this way, the thickness of the main body portion 611 can be reduced, which is beneficial to reduce the overall weight of the end plate assembly 60 and increase the energy density of the secondary battery.
  • the insulating plate 62 includes a second adapter portion 621.
  • the second adapter portion 621 is disposed on the side of the insulating plate 62 away from the battery unit 30.
  • a part of the insulating plate 62 protruding from the main body part 611 forms a second adapter part 621.
  • One end of the connecting pipe 63 is connected to the second adapter portion 621.
  • the injection channel 200 penetrates the end plate 61, the connecting pipe 63 and the second adapter portion 621.
  • one end of the connecting pipe 63 is sealed to the second adapter portion 621, which reduces the possibility of the thermally conductive slurry overflowing from the connection between the one end of the connecting pipe 63 and the second adapter portion 621.
  • the first adapter portion 612 and the second adapter portion 621 are correspondingly disposed along the height direction X.
  • the through holes on the first adapter portion 612 and the through holes on the second adapter portion 621 are correspondingly arranged along the height direction X.
  • the second adapter part 621 has a receiving part. One end of the connecting pipe 63 is received in the receiving portion.
  • one end of the connecting pipe 63 is not easy to interfere with the adjacent structure, reducing the possibility that the connecting pipe 63 is blocked by the adjacent structure and causing the thermal paste to flow poorly.
  • the insulating plate 62 can restrict the connecting pipe 63 from moving in its radial direction, so as to reduce the possibility of frequent friction between the connecting pipe 63 and the insulating plate 62 and loosening.
  • one end of the connecting pipe 63 accommodated in the accommodating portion matches the shape of the accommodating portion.
  • One end of the connecting pipe 63 received in the receiving portion has an inner polygonal hole, which is convenient for inserting a tool into the inner polygonal hole and screwing the connecting pipe 63.
  • the housing 40 further includes a discharge channel 300.
  • the discharge channel 300 is configured to communicate with the containing cavity 500 for discharging the thermally conductive slurry injected into the containing cavity 500.
  • the air remaining in the accommodating cavity 500 can be discharged through the exhaust channel 300, so that the thermally conductive slurry can fully fill the accommodating cavity 500 and reduce the amount of the injected thermally conductive slurry. Possibility to form residual bubbles and affect thermal conductivity.
  • the discharge channel 300 can be used as an observation site.
  • the operator can determine whether the accommodating cavity 500 is filled with the thermally conductive slurry by checking whether the thermally conductive slurry overflows in the discharge channel 300. After the accommodating cavity 500 is filled with the thermally conductive slurry, the thermally conductive slurry can overflow from the discharge channel 300. At this time, the injection action is stopped to reduce unnecessary waste caused by excessive use of the thermally conductive slurry.
  • the insulating plate 62 includes protrusions 622.
  • the convex portion 622 is disposed on the side of the insulating plate 62 away from the battery unit 30.
  • the discharge channel 300 penetrates the convex portion 622 in the height direction X of the battery cell 30.
  • the discharge port of the discharge channel 300 is located on the upper surface of the convex portion 622 and is higher than the containing cavity 500, so as to ensure that the thermal paste will overflow from the discharge channel 300 after the containing cavity 500 is filled with the thermally conductive slurry.
  • the second adapter portion 621 and the convex portion 622 are spaced apart, thereby increasing the distance between the injection channel 200 and the discharge channel 300. In this way, it is possible to reduce the possibility that the thermally conductive slurry injected from the injection channel 200 will be discharged from the discharge channel 300 when the cavity 500 has not been filled, which may cause misjudgment by the operator.
  • the battery module 20 further includes a blocking member 100.
  • the blocking member 100 is disposed on the housing 40.
  • the housing 40 and the blocking member 100 are configured to form a receiving cavity 500 with the cooling component 400.
  • the stopper 100 is located between the housing 40 and the cooling component 400.
  • a circle of stoppers 100 is provided around the bottom of the housing 40.
  • the blocking member 100 can block the thermally conductive slurry, reduce the possibility of the thermally conductive slurry injected into the containing cavity 500 from overflowing to the outside from the containing cavity 500, improve the utilization rate of the thermally conductive slurry, and reduce unnecessary use of the thermally conductive slurry. Waste.
  • the blocking member 100 is an integrally formed ring structure.
  • the barrier 100 is also a flexible structure, and has an elastic deformation capability.
  • the housing 40 and the cooling component 400 can jointly apply a compressive stress to the blocking member 100, which is beneficial to further improve the sealing performance between the blocking member 100 and the housing 40 and the blocking member 100 and the cooling component 400.
  • the material of the blocking member 100 may be rubber or silicone.
  • the limit frame 50 is provided with a boss 51.
  • the blocking member 100 is located inside the boss 51, and the opening of the injection channel 200 and the opening of the discharge channel 300 are located inside the blocking member 100.
  • the boss 51 is used to limit the position of the stopper 100.
  • the boss 51 can form a restrictive position on the stopper 100 from the outside of the stopper 100, reducing the possibility that the stopper 100 itself will expand outwards due to the extrusion stress and cause a position shift.
  • the surface of the insulating plate 62 away from the end plate 61 is provided with a boss 51.
  • the housing 40 further includes a bottom plate 80.
  • the battery unit 30 is disposed on the bottom plate 80 and supported by the bottom plate 80.
  • the blocking member 100 is disposed on a side of the bottom plate 80 away from the battery unit 30.
  • the bottom plate 80, the blocking member 100 and the cooling part 400 form a receiving cavity 500.
  • the bottom plate 80 is connected and fixed with the limit frame 50.
  • the housing 40 further includes a top plate 90.
  • the top plate 90 is connected and fixed to the limit frame 50, so that the top plate 90, the bottom plate 80 and the limit frame 50 enclose the battery unit 30.
  • an embodiment of the present application provides a battery module assembly, which includes a cooling component 400 and a battery module 20.
  • the cooling member 400 is provided below the battery module 20.
  • the cooling member 400 is used to cool the battery module 20.
  • the injection channel 200 communicates with the containing cavity 500.
  • the injection channel 200 is used to inject the thermally conductive slurry into the containing cavity 500.
  • the heat of the battery module 20 may be conducted to the cooling part 400 through the thermally conductive slurry. Since the thermally conductive slurry is injected into the accommodating cavity 500 through the injection channel 200 on the limit frame 50, it can be ensured that the accommodating cavity 500 is filled with heat conduction even when the bottom surface of the battery module 20 and the surface of the cooling component 400 are different in flatness. The slurry therefore makes it difficult to leave gaps between the battery module 20 and the thermally conductive slurry and between the cooling component 400 and the thermally conductive slurry, but is in a good contact state, thereby ensuring that the battery module assembly itself has a good heat dissipation effect.
  • the embodiment of the present application provides a method for producing a battery module assembly, which includes:
  • a battery module 20 is provided.
  • the battery module 20 includes a battery unit 30 and a casing 40.
  • the casing 40 contains the battery unit 30.
  • the casing 40 includes a limit frame 50 and an injection channel 200 arranged on the limit frame 50.
  • the limit frame 50 Set around the battery unit 30;
  • the thermally conductive slurry is injected into the containing cavity 500 through the injection channel 200.
  • the accommodating cavity 500 formed between the battery module 20 and the cooling component 400 can be filled with the thermally conductive slurry through the injection channel 200, so that the battery module 20 and the thermally conductive slurry And the cooling component 400 and the thermal conductive paste are in good contact state, so as to ensure that the battery module assembly itself has a good heat dissipation effect.

Abstract

一种电池模块(20)、电池模块组件及其生产方法以及装置。电池模块(20)包括:电池单元(30)和壳体(40)。电池单元(30)具有顶面、底面以及连接顶面和底面的侧面。壳体(40)容纳电池单元(30)。壳体(40)包括限位框(50)以及设置于限位框(50)上的注入通道(200)。限位框(50)围绕电池单元(30)的侧面设置。电池模块(20)的底部被配置为与冷却部件(400)形成容纳腔(500)。注入通道(200)被配置为与容纳腔(500)相连通,以实现从注入通道(200)向容纳腔(500)内注入导热浆料。电池模块(20)设置注入通道(200),通过注入通道(200)向电池模块(20)和冷却部件(400)之间的容纳腔(500)注入的导热浆料能够填满容纳腔(500),从而能够提高电池模块(20)的散热效率。

Description

电池模块、电池模块组件及其生产方法以及装置 技术领域
本申请涉及电池技术领域,特别是涉及一种电池模块、电池模块组件及其生产方法以及装置。
背景技术
随着科学技术的发展,二次电池应用的领域越来越广泛。二次电池所需的容量变得越来越大。随着二次电池容量增加,用于有效冷却二次电池中产生的热量的技术也在快速发展。
电池模块组件包括电池模块和冷却部件。通常在电池模块和冷却部件之间填充导热胶来降低热阻,提高导热效率。现有技术中,在冷却部件上直接铺好导热浆料,然后再将电池模块直接放置在导热浆料上。然而,通过该方式制造而成的电池模块组件,电池模块的散热性能较差,影响电池模块的正常使用。
发明内容
本申请实施例提供一种电池模块、电池模块组件及其生产方法以及装置。电池模块设置注入通道,通过注入通道向电池模块和冷却部件之间的容纳腔注入的导热浆料能够填满容纳腔,从而能够提高电池模块的散热效率。
一方面,本申请实施例提供一种电池模块,其包括电池单元和容纳电池单元的壳体。电池单元具有顶面、底面以及连接顶面和底面的侧面。壳体包括限位框以及设置于限位框上的注入通道。限位框围绕电池单元的侧面设置。电池模块的底部被配置为与冷却部件形成容纳腔。注入通道被配置为与容纳腔相连通,以实现从注入通道向容纳腔内注入导热浆料。
本申请实施例的电池模块,在围绕电池单元的限位框上设置注入通 道。在电池模块应用于电池模块组件时,电池模块可以与冷却部件预先组装并且电池模块的底部与冷却部件之间形成容纳腔。然后通过限位框上的注入通道向容纳腔内注入导热浆料。由于导热浆料通过注入通道注射进入容纳腔,因此导热浆料在注射压力的作用下,可以有效填充容纳腔的各个区域,从而一方面,保证电池模块的底部表面以及冷却部件的表面能够与导热浆料保持接触状态,降低电池模块与导热浆料之间或者冷却部件与导热浆料之间存在间隙的可能性,有利于提高电池模块的散热效果和散热效率。
另一方面,本申请实施例提供一种电池模块组件,其包括冷却部件和连接于冷却部件的如上述的电池模块。电池模块的底部与冷却部件之间具有容纳腔。注入通道与容纳腔相连通。注入通道用于向容纳腔内注入导热浆料。导热浆料用于将电池模块的热量传导至冷却部件。
另一方面,本申请实施例提供一种电池模块组件的生产方法,其包括:
提供冷却部件;
提供电池模块,电池模块包括电池单元和壳体,壳体容纳电池单元,壳体包括限位框以及设置于限位框上的注入通道,限位框围绕电池单元设置;
将电池模块连接于冷却部件,并在电池模块的底部和冷却部件之间形成容纳腔,注入通道与容纳腔相连通;
通过注入通道向容纳腔内注入导热浆料。
再一方面,本申请实施例提供一种使用电池模块作为电源的装置,其包括如上述的电池模块。
附图说明
下面将通过参考附图来描述本申请示例性实施例的特征、优点和技术效果。
图1是本申请一实施例公开的一种车辆的结构示意图;
图2是本申请一实施例公开的一种电池组的分解结构示意图;
图3是本申请一实施例公开的一种电池模块的结构示意图;
图4是本申请一实施例公开的一种电池模块的局部结构示意图;
图5是本申请一实施例公开的一种电池模块组件的局部剖视结构示意图;
图6是图5中A处放大图;
图7是本申请一实施例公开的一种电池模块的分解结构示意图;
图8是本申请一实施例公开的一种端板组件的分解结构示意图;
图9是本申请一实施例公开的一种端板组件的分解结构示意图;
图10是本申请一实施例公开的一种端板组件的仰视结构示意图。
在附图中,附图并未按照实际的比例绘制。
标记说明:
1、车辆;
10、电池组;11、箱体;
20、电池模块;
30、电池单元;31、二次电池;32、汇流片;
40、壳体;
50、限位框;51、凸台;
60、端板组件;
61、端板;611、本体部;612、第一转接部;
62、绝缘板;621、第二转接部;621a、收容部;622、凸部;
63、连接管件;
70、侧板组件;
80、底板;
90、顶板;
100、阻挡件;
200、注入通道;
300、排出通道;
400、冷却部件;
500、容纳腔;
X、高度方向;Y、长度方向;Z、宽度方向。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
为了更好地理解本申请,下面结合图1至图10对本申请实施例进行描述。
本申请实施例提供一种使用电池模块作为电源的装置。该装置可以但不仅限于为车辆、船舶或飞行器等。参见图1所示,本申请的一个实施例提供一种车辆1,其包括车辆主体和电池组10。电池组10设置于车辆主体。其中,车辆1可以是纯电动汽车,也可以是混合动力汽车或增程式汽车。车辆主体设置有与电池组10电连接的驱动电机。电池组10向驱动电机提供电能。驱动电机通过传动机构与车辆主体上的车轮连接,从而驱动 汽车行进。可选地,电池组10可水平设置于车辆主体的底部。
参见图2所示,电池组10的设置方式有多种。在一些可选的实施例中,电池组10包括箱体11和设置于箱体11内的电池模块组件。电池模块组件的数量为一个或多个。一个或多个电池模块组件排列布置于箱体11内。箱体11的类型不受限制。箱体11可为框状箱体、盘状箱体或盒状箱体等。可选地,箱体11包括用于容纳电池模块组件的下箱体和与下箱体盖合的上箱体。上箱体和下箱体盖合后形成容纳电池模块组件的容纳部。
申请人在注意到电池模块的散热性较差的问题之后,对电池模块的各个结构进行研究分析。申请人发现电池模块与导热浆料之间或者冷却部件与导热浆料之间存在间隙而造成局部处于未接触状态,从而未接触区域的位置热阻相对较大,影响电池模块的散热以及一致性。进一步研究后,发现在冷却部件铺好导热浆料,然后再将电池模块放置在导热浆料上以将导热浆料压开的方式,由于电池模块的表面或冷却部件的表面平面度存在差异,使得两者表面存在高低起伏的区域,因此导热浆料在压开过程中会无法保证电池模块和导热浆料之间或者冷却部件和导热浆料之间充分接触,从而导致电池模块与导热浆料之间或者冷却部件与导热浆料之间存在间隙。
基于申请人发现的上述问题,申请人对电池模块的结构进行改进,下面对本申请实施例进行进一步描述。
参见图3至图6所示,电池模块组件包括电池模块20。其中,电池模块20包括电池单元30和壳体40。电池单元30容纳于壳体40。电池单元30包括多个二次电池30以及将不同的二次电池30串联或并联的汇流片32。多个二次电池30沿一方向并排设置。壳体40包括限位框50以及设置于限位框50上的注入通道200。限位框50将电池单元30围合在限位框50的内侧。电池单元30具有顶面、底面以及连接顶面和底面的侧面。限位框50围绕电池单元30的侧面设置。电池模块组件还包括冷却部件400。电池单元30的底面朝向冷却部件400设置。在电池模块20应用于电池模块组件时,电池模块20可以与冷却部件400预先组装并且电池模块20的底部与冷却部件400之间形成容纳腔500。设置于限位框50上的 注入通道200与容纳腔500相连通。然后通过限位框50上的注入通道200向容纳腔500内注入导热浆料。由于导热浆料通过注入通道200注射进入容纳腔500,因此导热浆料在注射压力的作用下,可以有效填充容纳腔500的各个区域,从而一方面,保证电池模块20的底部表面以及冷却部件400的表面能够与导热浆料保持接触状态,降低电池模块20与导热浆料之间或者冷却部件400与导热浆料之间存在间隙的可能性,有利于提高电池模块20的散热效果和散热效率;另一方面,对电池模块20的底部表面的平整度和冷却部件400表面的平整度精度要求低,电池模块20的底部表面和冷却部件400表面可以存在高低起伏的情况,从而降低电池模块20的底部和冷却部件400的加工要求,降低加工难度和成本。
在一个实施例中,电池模块组件包括一个冷却部件400以及设置于冷却部件400上方的多个电池模块20。本实施例中,通过在电池模块20的限位框50上设置注入通道200的方式,可以单独对各个电池模块20和冷却部件400之间的容纳腔500注入导热浆料,从而不需要破坏冷却部件400和箱体11,保证冷却部件400和箱体11的结构完整性。如果不在限位框50上设置注入通道200,则在电池模块组件放入箱体11装配形成电池组后,需要在冷却部件400和箱体11上同时设置注入通道200以用于向电池模块20和冷却部件400之间的容纳腔500注入导热浆料。然而,在箱体11上设置注入通道200会影响电池组10的整体密封性。
参见图4所示,本申请实施例的电池单元30具有预定高度、长度和宽度。电池单元30的高度方向X与二次电池的排列方向相垂直。电池单元30的长度方向Y与二次电池的排列方向相同。电池单元30的宽度方向Z与高度方向X以及长度方向Y相垂直。参见图3所示,注入通道200沿电池单元30的高度方向X贯穿限位框50。注料装置可以方便地移动至电池模块20的上方并沿高度方向X对准注入通道200,有利于降低注料装置与注入通道200对准难度。导热浆料注入注入通道200后,导热浆料在自身重力以及注射压力的共同作用下朝容纳腔500流动,有利于提高导热浆料的流动性,降低导热浆料在注入通道200内发生滞留的可能性,提高注射工作效率。
在一个实施例中,参见图4所示,限位框50包括端板组件60和侧板组件70。端板组件60和侧板组件70彼此相连接并且围绕电池单元30交替设置。电池单元30具有沿自身长度方向Y相对的两个端部。端板组件60设置于电池单元30的端部。两个侧板组件70沿电池单元30的宽度方向Z相对设置于电池单元30的两侧。
在一个实施例中,注入通道200设置于侧板组件70。沿高度方向X,注入通道200贯穿侧板组件70。
在一个实施例中,参见图3所示,注入通道200设置于端板组件60。端板组件60上通常会设置加强部等结构特征。注入通道200设置在端板组件60上可以与相应的结构特征一同加工制造,加工工艺简单,同时将注入通道200设置在相应的结构特征上也不需要额外占用空间,有利于提高电池模块20的能量密度。另外,由于注入通道200设置于端板组件60,因此可以减小侧板组件70的厚度,有利于提高电池模块20的能量密度。在电池组10中,两个以上的电池模块20并排设置。相邻两个电池模块20中各自的侧板组件70相邻设置,而端板组件60沿宽度方向Z并排设置,从而各个端板组件60上的注入通道200之间间距较大。这样,将注入通道200设置于端板组件60时,方便注料装置分别同时对多个电池模块20注射导热浆料,而相邻两个注料装置不会发生位置干涉,提高注料便利性和效率。
在一个实施例中,一并参见图3、图7和图8所示,端板组件60包括端板61和绝缘板62。至少部分绝缘板62设置于端板61和电池单元30之间,用于将端板61和电池单元30隔离开。端板组件60的端板61用于与侧板组件70相连接。端板61的材料可以是铝、铝合金或钢。注入通道200贯穿端板61和绝缘板62。在一个示例中,绝缘板62的一部分设置于端板61和电池单元30之间,一部分位于端板61的下方并用于将端板61和冷却部件400隔离开。
在一个实施例中,一并参见图3、参见图7和图8所示,端板组件60还包括连接管件63。连接管件63的两个端部分别连接于端板61和绝缘板62。注入通道200贯穿端板61、连接管件63以及绝缘板62。连接管件63 具有沿高度方向X相对的两个端部。连接管件63的一个端部连接于端板61,另一个端部连接于绝缘板62。由于端板61和绝缘板62为分开加工制造,因此需要在端板61上制造通孔以形成注入通道200的一部分,在绝缘板62上制造通孔以形成注入通道200的一部分。本实施例中,端板61通过连接管件63和绝缘板62转接时,连接管件63可以补偿端板61上的通孔以及绝缘板62上的通孔位置误差,从而可以降低端板61和绝缘板62上制造通孔的位置精度要求。
在一个实施例中,参见图7和图8所示,端板61具有本体部611和第一转接部612。第一转接部612设置于本体部611远离电池单元30的一侧。至少部分绝缘板62设置于本体部611和电池单元30之间。在第一转接部612上加工通孔以形成注入通道200的一部分。连接管件63可拆卸连接于第一转接部612。可选地,连接管件63的一端与第一转接部612螺纹连接或连接管件63的一端与第一转接部612上的通孔过盈配合。可选地,连接管件63的一端与第一转接部612密封连接,降低导热浆料从连接管件63的一端与第一转接部612的连接处溢出的可能性。在一个示例中,第一转接部612凸出本体部611设置并且呈沿高度方向X延伸的条形结构。第一转接部612上的通孔沿高度方向X延伸。这样,可以减小本体部611的厚度,有利于降低端板组件60的整体重量,提高二次电池的能量密度。
在一个实施例中,参见图8和图9所示,绝缘板62包括第二转接部621。第二转接部621设置于绝缘板62远离电池单元30的一侧。绝缘板62上超出本体部611的一部分形成第二转接部621。连接管件63的一端连接于第二转接部621。注入通道200贯穿端板61、连接管件63以及第二转接部621。可选地,连接管件63的一端与第二转接部621密封连接,降低导热浆料从连接管件63的一端与第二转接部621的连接处溢出的可能性。可选地,第一转接部612和第二转接部621沿高度方向X对应设置。第一转接部612上的通孔和第二转接部621上的通孔沿高度方向X对应设置。在一个示例中,第二转接部621具有收容部。连接管件63的一端收容于收容部内。这样,一方面,连接管件63的一端不易与相邻的结 构件产生位置干涉,降低连接管件63被相邻的结构件堵塞而导致导热浆料流动不畅的可能性,另一方面,绝缘板62可以限制连接管件63沿自身径向发生移动,以降低连接管件63与绝缘板62频繁摩擦而发生松动的可能性。可选地,连接管件63收容于收容部内的一端与收容部的形状相匹配。连接管件63收容于收容部内的一端具有内多边形孔,方便使用工具插入内多边形孔中旋拧连接管件63。
在一个实施例中,一并参见图3和图7所示,壳体40还包括排出通道300。排出通道300被配置为与容纳腔500相连通,用于将注入到容纳腔500的导热浆料排出。导热浆料注入过程中,随着导热浆料不断注入,残留在容纳腔500内的空气可以通过排出通道300排出,从而使导热浆料能够充分填满容纳腔500,降低注入的导热浆料内形成气泡残留而影响导热效率的可能性。另外,排出通道300可以作为观察部位。操作人员可以通过排出通道300是否有导热浆料溢出来判断容纳腔500内是否填满导热浆料。在容纳腔500内注满导热浆料后,导热浆料可以从排出通道300溢出,此时停止注射动作,降低因过量使用导热浆料而导致不必要的浪费。在一个示例中,绝缘板62包括凸部622。凸部622设置于绝缘板62远离电池单元30的一侧。排出通道300沿电池单元30的高度方向X贯通凸部622。排出通道300的排出口位于凸部622的上表面并且高于容纳腔500,从而保证容纳腔500注满导热浆料后,导热浆料才会从排出通道300溢出。沿电池单元30的宽度方向Z,第二转接部621和凸部622间隔设置,从而增大注入通道200和排出通道300的距离。这样,可以降低从注入通道200注入的导热浆料还未注满容纳腔500时就从排出通道300排出而导致操作人员误判的可能性。
在一个实施例中,参见图6和图10所示,电池模块20还包括阻挡件100。阻挡件100设置于壳体40。壳体40以及阻挡件100被配置为与冷却部件400形成容纳腔500。电池模块20与冷却组件组装后,在高度方向X上,阻挡件100位于壳体40和冷却部件400之间。在壳体40的底部四周设置一圈阻挡件100。阻挡件100可以阻挡导热浆料,降低注射到容纳腔500后的导热浆料从容纳腔500溢出到外部的可能性,提高导热浆料的利 用率,降低因过量使用导热浆料而导致不必要的浪费。在一个示例中,阻挡件100为一体成型的环形结构。阻挡件100也是柔性结构,自身具有弹性变形能力。壳体40和冷却部件400可以共同对阻挡件100施加挤压应力,从而有利于进一步提高阻挡件100和壳体40以及阻挡件100和冷却部件400之间的密封性。可选地,阻挡件100的材料可以是橡胶或硅胶。
在一个实施例中,参见图6和图7所示,限位框50设置有凸台51。阻挡件100位于凸台51的内侧,而注入通道200的开口和排出通道300的开口位于阻挡件100的内侧。凸台51用于限制阻挡件100的位置。凸台51可以从阻挡件100的外侧对阻挡件100形成约束限位,降低阻挡件100自身受到挤压应力向外扩张并发生位置偏移的可能性。在一个示例中,绝缘板62远离端板61的表面设置凸台51。
在一个实施例中,参见图10所示,壳体40还包括底板80。电池单元30设置于底板80上并受到底板80支承。阻挡件100设置于底板80远离电池单元30的一侧。底板80、阻挡件100以及冷却部件400形成容纳腔500。底板80与限位框50连接固定。在另一个实施例中,参见图3所示,壳体40还包括顶板90。顶板90与限位框50连接固定,从而顶板90、底板80和限位框50将电池单元30围合起来。
参见图3和图6所示,本申请实施例提供一种电池模块组件,其包括冷却部件400和电池模块20。
沿高度方向X,冷却部件400设置于电池模块20的下方。冷却部件400用于冷却电池模块20。电池模块20的底部与冷却部件400之间具有容纳腔500。注入通道200与容纳腔500相连通。注入通道200用于向容纳腔500内注入导热浆料。
电池模块20的热量可以通过导热浆料传导至冷却部件400。由于通过限位框50上的注入通道200向容纳腔500注入导热浆料,可以在电池模块20的底部表面和冷却部件400的表面的平面度存在差异的情况下保证容纳腔500内填满导热浆料,因此使得电池模块20和导热浆料之间以及冷却部件400和导热浆料之间不易留有间隙,而是处于良好接触状态,从而保证电池模块组件自身具有良好的散热效果。
本申请实施例提供一种电池模块组件的生产方法,其包括:
提供冷却部件400;
提供电池模块20,电池模块20包括电池单元30和壳体40,壳体40容纳电池单元30,壳体40包括限位框50以及设置于限位框50上的注入通道200,限位框50围绕电池单元30设置;
将电池模块20连接于冷却部件400,并在电池模块20的底部和冷却部件400之间形成容纳腔500,注入通道200与容纳腔500相连通;
通过注入通道200向容纳腔500内注入导热浆料。
采用本申请实施例的电池模块组件的生产方法,能够通过注入通道200向电池模块20和冷却部件400之间形成的容纳腔500内填满导热浆料,使得电池模块20和导热浆料之间以及冷却部件400和导热浆料之间处于良好接触状态,从而保证电池模块组件自身具有良好的散热效果。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (16)

  1. 一种电池模块,其中,包括:
    电池单元,所述电池单元具有顶面、底面以及连接所述顶面和所述底面的侧面;
    壳体,容纳所述电池单元,所述壳体包括限位框以及设置于所述限位框上的注入通道,所述限位框围绕所述电池单元的所述侧面设置;所述电池模块的底部被配置为与冷却部件形成容纳腔,所述注入通道被配置为与所述容纳腔相连通,以实现从所述注入通道向所述容纳腔内注入导热浆料。
  2. 根据权利要求1所述的电池模块,其中,所述注入通道沿所述电池单元的高度方向贯穿所述限位框。
  3. 根据权利要求1所述的电池模块,其中,所述限位框包括端板组件,所述端板组件设置于所述电池单元的端部,所述注入通道设置于所述端板组件。
  4. 根据权利要求3所述的电池模块,其中,所述端板组件包括端板和绝缘板,至少部分所述绝缘板设置于所述端板和所述电池单元之间,所述注入通道贯穿所述端板和所述绝缘板。
  5. 根据权利要求4所述的电池模块,其中,所述端板组件还包括连接管件,所述连接管件的两个端部分别连接于所述端板和所述绝缘板,所述注入通道贯穿所述端板、所述连接管件以及所述绝缘板。
  6. 根据权利要求5所述的电池模块,其中,所述端板具有本体部和第一转接部,所述第一转接部设置于所述本体部远离所述电池单元的一侧,所述连接管件可拆卸连接于所述第一转接部。
  7. 根据权利要求5或6所述的电池模块,其中,所述绝缘板包括第二转接部,所述第二转接部设置于所述绝缘板远离所述电池单元的一侧,所述连接管件的一端连接于所述第二转接部,所述注入通道贯穿所述端板、所述连接管件以及所述第二转接部。
  8. 根据权利要求7所述的电池模块,其中,所述第二转接部具有收 容部,所述连接管件的一端收容于所述收容部内。
  9. 根据权利要求1所述的电池模块,其中,所述壳体还包括排出通道,所述排出通道被配置为与所述容纳腔相连通,用于将注入到所述容纳腔的所述导热浆料排出。
  10. 根据权利要求4或7所述的电池模块,所述绝缘板包括凸部,所述凸部设置于所述绝缘板远离所述电池单元的一侧,所述壳体包括排出通道,所述排出通道沿所述电池单元的高度方向贯通所述凸部,所述排出通道被配置为与所述容纳腔连通。
  11. 根据权利要求1至10任一项所述的电池模块,其中,所述电池模块还包括阻挡件,所述阻挡件设置于所述壳体,所述壳体以及所述阻挡件被配置为与所述冷却部件形成所述容纳腔。
  12. 根据权利要求11所述的电池模块,其中,所述阻挡件为环形柔性结构。
  13. 根据权利要求11或12所述的电池模块,其中,所述限位框设置有凸台,所述阻挡件位于所述凸台的内侧,所述凸台用于限制所述阻挡件的位置。
  14. 一种电池模块组件,其中,包括:
    冷却部件;
    如权利要求1至13任一项所述的电池模块,所述电池模块连接于所述冷却部件,所述电池模块的所述底部与所述冷却部件之间具有所述容纳腔,所述注入通道与所述容纳腔相连通,所述注入通道用于向所述容纳腔内注入所述导热浆料,所述导热浆料用于将所述电池模块的热量传导至所述冷却部件。
  15. 一种电池模块组件的生产方法,其中,包括:
    提供冷却部件;
    提供电池模块,所述电池模块包括电池单元和壳体,所述电池单元具有顶面、底面以及连接所述顶面和所述底面的侧面;所述壳体容纳所述电池单元,所述壳体包括限位框以及设置于所述限位框上的注入通道,所述限位框围绕所述电池单元的所述侧面设置;
    将所述电池模块连接于所述冷却部件,并在所述电池模块的底部和所述冷却部件之间形成容纳腔,所述注入通道与所述容纳腔相连通;
    通过所述注入通道向所述容纳腔内注入导热浆料。
  16. 一种使用电池模块作为电源的装置,其中,包括如权利要求1至13任一项所述的电池模块。
PCT/CN2020/091520 2020-05-21 2020-05-21 电池模块、电池模块组件及其生产方法以及装置 WO2021232338A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20936805.9A EP4037064A4 (en) 2020-05-21 2020-05-21 BATTERY MODULE, BATTERY MODULE ASSEMBLY AND METHOD OF MANUFACTURE THEREOF AND DEVICE
PCT/CN2020/091520 WO2021232338A1 (zh) 2020-05-21 2020-05-21 电池模块、电池模块组件及其生产方法以及装置
CN202080005632.0A CN112997350B (zh) 2020-05-21 2020-05-21 电池模块、电池模块组件及其生产方法以及装置
US17/746,905 US20220278391A1 (en) 2020-05-21 2022-05-17 Battery module, battery module assembly, production method therefor and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/091520 WO2021232338A1 (zh) 2020-05-21 2020-05-21 电池模块、电池模块组件及其生产方法以及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/746,905 Continuation US20220278391A1 (en) 2020-05-21 2022-05-17 Battery module, battery module assembly, production method therefor and apparatus

Publications (1)

Publication Number Publication Date
WO2021232338A1 true WO2021232338A1 (zh) 2021-11-25

Family

ID=76344786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/091520 WO2021232338A1 (zh) 2020-05-21 2020-05-21 电池模块、电池模块组件及其生产方法以及装置

Country Status (4)

Country Link
US (1) US20220278391A1 (zh)
EP (1) EP4037064A4 (zh)
CN (1) CN112997350B (zh)
WO (1) WO2021232338A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130022859A1 (en) * 2011-07-22 2013-01-24 Young-Bin Lim Battery Module
CN107534196A (zh) * 2015-09-24 2018-01-02 株式会社Lg化学 电池模块
CN108370075A (zh) * 2016-08-18 2018-08-03 株式会社Lg化学 电池模块
CN110246997A (zh) * 2018-03-07 2019-09-17 Sk新技术株式会社 电池模块及其制造方法
CN209447881U (zh) * 2019-01-18 2019-09-27 宁德时代新能源科技股份有限公司 一种电池模组
CN210006806U (zh) * 2019-08-29 2020-01-31 蜂巢能源科技有限公司 电池包的壳体、电池包和车辆
CN111029505A (zh) * 2019-12-24 2020-04-17 孚能科技(镇江)有限公司 电池模组的壳体、电池模组以及电池模组的灌胶方法
CN111048868A (zh) * 2019-12-25 2020-04-21 中国第一汽车股份有限公司 一种电池单体组及电池模组

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN208538976U (zh) * 2018-08-21 2019-02-22 宁德时代新能源科技股份有限公司 电池模组
CN209747688U (zh) * 2019-06-28 2019-12-06 宁德时代新能源科技股份有限公司 电池模组
CN209981339U (zh) * 2019-08-26 2020-01-21 多氟多新能源科技有限公司 软包锂电池标准模组

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130022859A1 (en) * 2011-07-22 2013-01-24 Young-Bin Lim Battery Module
CN107534196A (zh) * 2015-09-24 2018-01-02 株式会社Lg化学 电池模块
CN108370075A (zh) * 2016-08-18 2018-08-03 株式会社Lg化学 电池模块
CN110246997A (zh) * 2018-03-07 2019-09-17 Sk新技术株式会社 电池模块及其制造方法
CN209447881U (zh) * 2019-01-18 2019-09-27 宁德时代新能源科技股份有限公司 一种电池模组
CN210006806U (zh) * 2019-08-29 2020-01-31 蜂巢能源科技有限公司 电池包的壳体、电池包和车辆
CN111029505A (zh) * 2019-12-24 2020-04-17 孚能科技(镇江)有限公司 电池模组的壳体、电池模组以及电池模组的灌胶方法
CN111048868A (zh) * 2019-12-25 2020-04-21 中国第一汽车股份有限公司 一种电池单体组及电池模组

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4037064A4 *

Also Published As

Publication number Publication date
CN112997350A (zh) 2021-06-18
EP4037064A1 (en) 2022-08-03
US20220278391A1 (en) 2022-09-01
CN112997350B (zh) 2023-07-04
EP4037064A4 (en) 2023-05-10

Similar Documents

Publication Publication Date Title
KR102646854B1 (ko) 배터리 모듈
KR20220051147A (ko) 배터리 모듈 및 이의 제조 방법
KR102640327B1 (ko) 배터리의 대형 모듈
CN106935927A (zh) 电池模块和包括其的车辆
KR102640329B1 (ko) 배터리 모듈
CN214280062U (zh) 液冷电池包
KR102216586B1 (ko) 열관리 동력 전지 모듈 및 전지팩
EP3706189B1 (en) Battery module and battery pack
AU2011284656A1 (en) System for cooling an electrical battery, and battery including such a system
KR102640328B1 (ko) 배터리의 대형 모듈
CN218101432U (zh) 液冷板及电池包
WO2023078187A1 (zh) 电池组、电池的热管理系统以及用电装置
CN216055057U (zh) 电池包箱体、电池包和车辆
WO2023004720A1 (zh) 电池、用电装置以及电池的制造方法和制造系统
WO2021232338A1 (zh) 电池模块、电池模块组件及其生产方法以及装置
US11901529B2 (en) Battery module
CN113571823A (zh) 电池模组
CN210182532U (zh) 一种电池模组
JP2022554112A (ja) 電池パックおよびこれを含むデバイス
CN220106652U (zh) 电池箱、电池模组及电子设备
JP5298604B2 (ja) 電池パック
CN216250879U (zh) 一种带有液冷组件的电池结构
CN212874588U (zh) 一种电芯模组及电池包
CN219626737U (zh) 电池包液冷装置
WO2024000086A1 (zh) 电池和用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20936805

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020936805

Country of ref document: EP

Effective date: 20220425

NENP Non-entry into the national phase

Ref country code: DE