WO2021230591A1 - 열변환장치를 활용한 가상발전소 시스템 및 이를 이용한 가상발전소 운영 방법 - Google Patents
열변환장치를 활용한 가상발전소 시스템 및 이를 이용한 가상발전소 운영 방법 Download PDFInfo
- Publication number
- WO2021230591A1 WO2021230591A1 PCT/KR2021/005811 KR2021005811W WO2021230591A1 WO 2021230591 A1 WO2021230591 A1 WO 2021230591A1 KR 2021005811 W KR2021005811 W KR 2021005811W WO 2021230591 A1 WO2021230591 A1 WO 2021230591A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power plant
- power
- amount
- virtual
- virtual power
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 81
- 238000000034 method Methods 0.000 title claims description 33
- 238000010248 power generation Methods 0.000 claims abstract description 172
- 238000004458 analytical method Methods 0.000 claims abstract description 25
- 230000004044 response Effects 0.000 claims description 50
- 230000008859 change Effects 0.000 claims description 43
- 238000004519 manufacturing process Methods 0.000 claims description 40
- 238000012544 monitoring process Methods 0.000 claims description 27
- 230000000087 stabilizing effect Effects 0.000 claims description 13
- 238000005338 heat storage Methods 0.000 claims description 7
- 239000000446 fuel Substances 0.000 claims description 5
- 238000011017 operating method Methods 0.000 claims description 4
- 230000000694 effects Effects 0.000 abstract description 4
- 230000008569 process Effects 0.000 description 11
- 230000005540 biological transmission Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 230000005611 electricity Effects 0.000 description 6
- 230000001502 supplementing effect Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 239000013589 supplement Substances 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 241000272525 Anas platyrhynchos Species 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000000586 desensitisation Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/004—Generation forecast, e.g. methods or systems for forecasting future energy generation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D10/00—District heating systems
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/04—Programme control other than numerical control, i.e. in sequence controllers or logic controllers
- G05B19/042—Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/06—Energy or water supply
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J13/00—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
- H02J13/00002—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by monitoring
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/003—Load forecast, e.g. methods or systems for forecasting future load demand
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/008—Circuit arrangements for ac mains or ac distribution networks involving trading of energy or energy transmission rights
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/28—Arrangements for balancing of the load in a network by storage of energy
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/381—Dispersed generators
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/20—Pc systems
- G05B2219/26—Pc applications
- G05B2219/2639—Energy management, use maximum of cheap power, keep peak load low
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2203/00—Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
- H02J2203/20—Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/20—The dispersed energy generation being of renewable origin
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/17—District heating
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/62—Absorption based systems
- Y02B30/625—Absorption based systems combined with heat or power generation [CHP], e.g. trigeneration
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S50/00—Market activities related to the operation of systems integrating technologies related to power network operation or related to communication or information technologies
- Y04S50/10—Energy trading, including energy flowing from end-user application to grid
Definitions
- the present invention relates to a virtual power plant system using a heat conversion device and a method for operating a virtual power plant using the same.
- Distributed power can be installed on a small or medium scale near the load, can be installed in a short period of time, and has the advantage of being able to start within a short time.
- an integrated management system for operating various types of distributed power scattered within the power grid as a single power generation system using advanced information and communication technology and automatic control technology that is, a virtual power plant (VPP) is being developed. .
- VPP virtual power plant
- the frequency of the power system or virtual power plant increases, and a supply-demand imbalance may occur due to an excess of power supply.
- the output of the distributed power supply drops sharply and the generation amount of the distributed power supply becomes lower than the bidding generation amount, the grid frequency of the power system is lowered, and there is a problem that a supply-demand imbalance occurs due to a lack of power supply.
- ESS is expensive and economical is low.
- the ESS cannot store large-capacity power due to its capacity limitation, and this has made it difficult to supplement the insufficient amount of power in the power system.
- ESS also has a problem of low stability due to fire or explosion.
- the pumped-water power plant can store large-capacity power, it has low economic feasibility due to high installation and operating costs, and has difficulty in operating time as short as less than 2 hours.
- the pumped-water power plant has a problem in that there are many restrictions on the installation site, the construction period is long, and it has a problem of destroying the surrounding environment.
- the present invention is a virtual power plant capable of stabilizing the output of a virtual power plant by linking the virtual power plant with a virtual power plant output adjusting device, and adjusting the output variation and error of the virtual power plant generated by the output change of distributed power sources with the virtual power plant output adjusting device
- a virtual power plant system using a heat conversion device is connected to a plurality of distributed power sources connected to a virtual power plant, the virtual power plant, and receives power generated from the plurality of distributed power sources to receive thermal energy
- a virtual power plant output adjustment device including a heat converter for converting into , and a virtual power plant management device for stabilizing output fluctuations of the virtual power plant by controlling the power consumption of the virtual power plant output adjusting device based on the analysis result.
- the virtual power plant management device analyzes the expected power generation amount of each distributed power source based on the characteristics and power generation capacity of each distributed power source, and adds the predicted power generation amount of the plurality of distributed power sources to calculate the VPP expected power generation amount generated in the virtual power plant. derived, and the VPP bidding generation amount can be determined based on the derived VPP expected generation amount.
- the virtual power plant management device monitors the amount of power generated by the plurality of distributed power sources in real time to derive the VPP power generation generated in the virtual power plant, and subtracts the power consumption from the load of the virtual power plant from the VPP power generation amount. It is possible to control the power consumption of the thermal converter by calculating the VPP expected output amount, and comparing the VPP expected output amount and the VPP bidding generation amount.
- the virtual power plant management apparatus may increase the power consumption of the thermal converter by a difference between the VPP expected output amount and the VPP bid generation amount when the VPP expected output amount is greater than the VPP bid generation amount.
- the virtual power plant management device may stop the heat production of the heat conversion device when the expected VPP output amount is less than the VPP bid power generation amount.
- the virtual power plant management apparatus may detect a grid frequency of the power system in real time, and determine the power consumption of the thermal converter using the detected grid frequency.
- the virtual power plant management device may detect the zone frequency of the virtual power plant in real time, and determine the power consumption of the thermal converter using the detected zone frequency.
- the virtual power plant management device may monitor the amount of power generation of the individual distributed power source in real time, and may adjust the power consumption of the thermal converter in real time based on the amount of power generation of the individual distributed power source.
- the virtual power plant management device predicts the amount of power that can be generated by the individual distributed power sources during the bidding period to determine the individual bidding power generation of the individual distributed power sources, and compares the individual bidding power generation amount with the actual power generation amount of the individual distributed power sources.
- the power consumption of the thermal converter can be adjusted.
- the virtual power plant management device when the actual generation amount of the individual distributed power source exceeds the individual bidding generation amount during the bidding period, increases the power consumption of the thermal conversion device in proportion to the difference between the actual generation amount and the individual bid generation amount can do it
- the virtual power plant management device divides the bidding period into a plurality of sections, derives a section average value of the actual power generation amount of the individual distributed power source for each section, and compares the section average value of each section for the plurality of sections with the individual bid generation amount Thus, it is possible to control the power consumption of the thermal conversion device.
- the distributed power source may include at least one of a wind power generator, a solar power generator, a geothermal generator, a fuel cell, bio-energy, marine energy, or a variable power source whose output cannot be adjusted.
- the virtual power plant management apparatus may predict an electric power demand amount of a load disposed in the virtual power plant, and analyze an output change and an error of the virtual power plant based on the electric power demand amount.
- the heat conversion device may store the produced heat energy in a large-capacity heat storage tank and provide it to a heat load disposed in the virtual power plant.
- the distributed power in order to respond to a response amount that the distributed power supply can additionally generate in order to respond to an output change of the variable power connected to the virtual power plant or the output change of the variable power source, the distributed power can be additionally generated. Analyze the response speed that exists, and the power supply in the virtual power plant is smaller than the power demand of the load disposed in the virtual power plant because the output of the variable power supply is reduced, or the response amount or the response speed of the distributed power supply is placed in the virtual power plant. When the power demand of the load is not satisfied, the power consumption of the virtual power plant output adjusting device may be adjusted.
- the method for operating a virtual power plant using a heat conversion device includes predicting the amount of generation of distributed power connected to the virtual power plant, and calculating the output fluctuation and error of the virtual power plant based on the amount of generation of the distributed power source. and stabilizing the output of the virtual power plant by adjusting a heat production amount of a heat conversion device linked to the virtual power plant based on the analysis result.
- the heat conversion based on at least one of the VPP bidding power generation amount of the virtual power plant, the generation amount of individual distributed power sources, system information of the power system, or a control signal received from the outside of the virtual power plant The heat production of the device can be adjusted.
- Stabilizing the output of the virtual power plant may include detecting a grid frequency of the power system in real time, and adjusting the heat production amount of the heat converter based on the grid frequency in real time.
- Stabilizing the output of the virtual power plant may include detecting a zone frequency of the virtual power plant in real time, and adjusting the heat production amount of the heat converter based on the zone frequency in real time.
- the method may further include analyzing in real time the amount of power generation of the individual distributed power source, and adjusting the heat production amount of the heat conversion device in real time based on the amount of power generation of the individual distributed power source.
- the method may further include adjusting the heat production amount of the heat conversion device by comparing the amount of generation of the individual distributed power source with the amount of generation of the individual bid so that the output value of the individual bid generation is maintained.
- step of adjusting the heat production of the heat conversion device when the amount of power generation of the individual distributed power source exceeds the amount of generation of the individual bid during the bidding period, in proportion to the difference between the amount of power generation and the amount of generation of the individual bidding of the heat conversion device It can increase heat production.
- the step of adjusting the heat production of the heat converter may include dividing the bidding period into a plurality of sections, and deriving a section average value of the actual power generation amount of each distributed power source for each of the plurality of sections.
- the adjusting of the heat production of the heat conversion device may further include controlling the heat production of the heat conversion device by comparing an average value of each section for each section with the individual bid power generation for each of the plurality of sections.
- the method may further include predicting a demand response of a load connected to the virtual power plant, and analyzing output fluctuations and errors of the virtual power plant based on the demand response of the load.
- the method may further include adjusting the heat production amount of the heat conversion device when the response amount or the response speed of the distributed power sources does not meet the power demand amount of a load disposed in the virtual power plant.
- a method for operating a virtual power plant using a thermal converter includes the steps of monitoring the amount of power generated from a plurality of distributed power sources linked to the virtual power plant to derive the VPP power generation, and from the VPP power generation amount to the virtual power plant. calculating the expected VPP output by subtracting the power consumption from the load of , and controlling the heat production of the heat converter by comparing the VPP expected output with the VPP bid generation.
- the present invention it is possible to stabilize the output of the virtual power plant by linking the virtual power plant with the virtual power plant output adjusting device and adjusting the output variation and error of the virtual power plant due to the output change of distributed power sources through the virtual power plant output adjusting device.
- the present invention produces thermal energy using the surplus power that the virtual power plant output control device is overproduced by the output fluctuation of the distributed power source, so that the output of the virtual power plant by the output change of the distributed power source, which is difficult to control the output, such as a new renewable energy source.
- the output fluctuation can be minimized and the output of the virtual power plant can be maintained stably.
- the present invention provides an environment capable of not only stabilizing the output of the virtual power plant but also preventing the waste of energy sources by storing the thermal energy produced in the virtual power plant output adjusting device in a large capacity and providing it to the heat load.
- the present invention connects a new and renewable cogeneration plant to a virtual power plant as a distributed power source, adjusts the amount of power generation of the new and renewable cogeneration power plant in response to output fluctuations of distributed power sources, By supplementing the insufficient output, it is possible to maintain the output of the virtual power plant stably by minimizing the output shortage of the virtual power plant caused by distributed power sources with difficult output control such as new and renewable energy sources and the output fluctuation of the virtual power plant.
- the present invention analyzes the predicted power generation of each individual distributed power source, derives the VPP predicted power generation by summing the predicted power generation of the distributed power sources, and derives the VPP bidding power generation based on the VPP expected power generation amount, thereby determining the optimal bid generation amount It provides an environment in which to make effective decisions.
- the present invention monitors the amount of power generated by a plurality of distributed power sources to derive the VPP power generation generated in real time in the virtual power plant, and compares the VPP power generation amount with the VPP bidding power generation amount to reduce the power consumption or renewable energy of the thermal converter.
- the present invention monitors the amount of power generated by a plurality of distributed power sources to derive the VPP power generation generated in real time in the virtual power plant, and compares the VPP power generation amount with the VPP bidding power generation amount to reduce the power consumption or renewable energy of the thermal converter.
- the present invention detects the grid frequency of the power system or the zone frequency of the virtual power plant in real time, and controls the power consumption of the heat conversion device or the amount of power generation of the new renewable cogeneration plant based on the detected frequency, thereby providing a variable power distributed power source. It provides an environment that can prevent sudden changes in the grid frequency of the power system and the regional frequency of the virtual power plant due to changes in their output.
- the present invention monitors the amount of power generation of individual distributed power sources in real time and compares the generation amount of the individual distributed power sources with the individual bid generation amount of the individual distributed power sources to control the power consumption of the heat conversion device or the generation amount of the new and renewable cogeneration plant,
- the output of the individual distributed power sources is kept constant, and through this, the output of the individual distributed power sources is flattened to provide the same effect as provided to the virtual power plant.
- the present invention predicts the generation amount of individual distributed power sources during the bidding period to determine the individual bidding generation amount of the individual distributed power source, compares the individual bid generation amount with the generation amount of the individual distributed power source in real time, and thermal conversion based on this
- the present invention predicts the generation amount of individual distributed power sources during the bidding period to determine the individual bidding generation amount of the individual distributed power source, compares the individual bid generation amount with the generation amount of the individual distributed power source in real time, and thermal conversion based on this
- the present invention by controlling the operation of the virtual power plant output adjustment device based on at least one of VPP bidding power generation with the power exchange, power generation amount of individual distributed power sources, system information of the power system, or a control signal received from the power exchange, It provides an environment in which the output of the virtual power plant can be stably maintained and the power system can be stably maintained through this.
- FIG. 1 is a diagram schematically illustrating a virtual power plant system using a virtual power plant output adjustment device according to an embodiment of the present invention.
- FIG. 2 is a block diagram showing a schematic configuration of a virtual power plant management apparatus according to an embodiment of the present invention.
- FIG. 3 is a block diagram showing a schematic configuration of a virtual power plant output adjustment system according to an embodiment of the present invention.
- FIG. 4 is a flowchart schematically illustrating a process of predicting the amount of generation of distributed power connected to a virtual power plant, conducting a bidding, and controlling the virtual power plant output adjusting device to stabilize the output of the virtual power plant according to an embodiment of the present invention.
- 5 is a graph showing a typical daily power demand curve in the power system.
- FIG. 6 is a graph illustrating a change in a net load amount due to an increase in output of a variable power supply.
- FIG. 7 is a flowchart schematically illustrating a process of deriving a VPP predicted generation amount based on the expected generation amount of an individual distributed power source and determining a VPP bidding generation amount using the derived VPP expected generation amount according to an embodiment of the present invention.
- FIG. 8 is a graph showing the expected generation amount and average generation amount of individual distributed power sources according to an embodiment of the present invention.
- FIG. 9 is a graph showing the VPP expected generation amount and the VPP bidding generation amount of the virtual power plant according to an embodiment of the present invention.
- FIG. 10 is a flowchart schematically illustrating a process of controlling the virtual power plant output adjusting device by comparing the VPP expected output amount and the VPP bid generation amount according to an embodiment of the present invention.
- FIG. 11 is a graph illustrating an example of controlling the virtual power plant output adjusting device by comparing the VPP expected output amount and the VPP bid generation amount according to an embodiment of the present invention.
- FIG. 12 is a flowchart schematically illustrating a process of controlling a virtual power plant output adjusting device by monitoring a grid frequency of a power system or a zone frequency of a virtual power plant according to an embodiment of the present invention.
- FIG. 13 is a flowchart schematically illustrating a process of predicting the amount of power generation of individual distributed power sources, conducting a bidding, and monitoring the actual power generation of individual distributed power sources to control the virtual power plant output adjustment device according to an embodiment of the present invention.
- FIG. 14 is an example of controlling the virtual power plant output adjusting device by dividing the bidding period into a plurality of sections and monitoring the amount of generation of individual distributed power sources according to an embodiment of the present invention, and monitoring the actual amount of power generation of individual distributed power sources for each section. is the graph shown.
- FIGS. 1 to 14 a virtual power plant system and a virtual power plant operating method using the virtual power plant output adjusting device according to an embodiment of the present invention will be described in detail with reference to FIGS. 1 to 14 .
- FIG. 1 is a diagram schematically illustrating a virtual power plant system using a virtual power plant output adjustment device according to an embodiment of the present invention.
- the power system 10 and the virtual power plant system only show schematic configurations necessary for description according to an embodiment of the present invention, but are not limited to these configurations.
- VPP Virtual Power Plant
- KPX Korea Power Exchange
- the virtual power plant system includes various types of distributed power sources (Distributed Energy Resource, DER) 110 linked to the virtual power plant (VPP, 100). ) can be supplied.
- distributed Energy Resource Distributed Energy Resource
- the power exchange 20 transmits the power produced by the plurality of power plants 12-1 to 12-n of the power system 10 through the transmission substation 14 and the distribution substation 16 to power users. Operate the electricity market to supply
- the distributed power source 110 may include at least one of a wind power generator, a solar power generator, a geothermal generator, a fuel cell, bio-energy, marine energy, or a variable power source whose output cannot be adjusted.
- the virtual power plant system may bid with the power exchange 20 and supply some of the power produced by the plurality of distributed power sources 110-1 to 110-m to the power system 10 .
- the virtual power plant system may bid with the power exchange 20 through the virtual power plant management device 200 .
- the virtual power plant management device 200 may determine the amount of VPP bidding power supplied from the virtual power plant 100 to the power system 10 .
- the VPP bidding power generation includes the power supply amount or power output amount supplied from the virtual power plant 100 to the power system 10 during the bidding period.
- the virtual power plant system may supply some of the power produced by the plurality of distributed power sources 110-1 to 110-m linked to the virtual power plant 100 to the power system 10 according to the VPP bidding power generation amount. have.
- the virtual power plant management apparatus 200 may execute a bid by predicting the amount of power generated by the plurality of distributed power sources 110-1 to 110-m.
- the virtual power plant management apparatus 200 subtracts the power consumption from the load 120 in the virtual power plant 100 from the predicted power generation amount of the plurality of distributed power sources 110-1 to 110-m.
- VPP bidding power generation can be determined.
- the virtual power plant management apparatus 200 may analyze the output variation and error of the virtual power plant 100 due to the output variation of the plurality of distributed power sources 110-1 to 110-m.
- the virtual power plant management device 200 may predict the power demand amount of the load disposed in the virtual power plant 100, and analyze the output variation and error of the virtual power plant 100 based on the power demand amount. .
- the virtual power plant management device 200 controls the operation of the virtual power plant output adjustment system 300 based on the analysis result of the output variation and error of the virtual power plant 100 to change the output of the virtual power plant 100 . can be stabilized.
- the virtual power plant output adjustment system 300 may be disposed in the virtual power plant 100 .
- the virtual power plant output adjustment system 300 consumes power generated from the plurality of distributed power sources 110-1 to 110-m linked to the virtual power plant 100 through the virtual power plant output adjustment device 310 . can be converted into heat.
- the virtual power plant output adjustment system 300 may generate power through the virtual power plant output adjustment device 310 and supply it to the virtual power plant 100 .
- the virtual power plant output adjustment device 310 receives a portion of the power generated from the plurality of distributed power sources 110-1 to 110-m and converts it into thermal energy, and a new renewable energy It may include a new and renewable cogeneration plant that uses a source to generate electricity.
- the heat conversion device of the virtual power plant output control device 310 and the new renewable cogeneration power plant have advantages of low cost and high responsiveness, unlike conventional ESS (Energy storage system) or pumped-water power plants.
- the virtual power plant output adjustment device 310 is easy to install around the distributed power supply 110 or the virtual power plant 100, and also has the advantage of low restrictions on the installation area.
- the virtual power plant management apparatus 200 may analyze information on a response amount that the distributed power sources may additionally generate in order to respond to an output change of the variable power source linked to the virtual power plant 100 .
- the response amount information is the response that the distributed power sources linked to the virtual power plant 100 can additionally generate in order to respond to output fluctuations of the variable power source (eg, a new and renewable energy source) linked to the virtual power plant 100 . and a response speed at which the distributed power supplies can additionally generate power in response to an equivalent value or a change in the output of the variable power supply.
- the variable power source eg, a new and renewable energy source
- the response amount is the amount of power that the distributed power sources linked to the virtual power plant 100 can additionally generate in order to respond to a change in the output of the variable power source (eg, a new and renewable energy source) linked to the virtual power plant 100 .
- the response speed includes a power generation rate at which distributed power sources linked to the virtual power plant 100 can additionally generate power in response to a change in output of the variable power source linked to the virtual power plant 100 .
- the response amount and the response speed may include ramp rate characteristic information of the distributed power sources.
- the virtual power plant management device 200 decreases the output of the variable power source so that the power supply in the virtual power plant 100 is smaller than the power demand of a load disposed in the virtual power plant 100, or the amount of response of the distributed power sources.
- the response speed does not satisfy the power demand amount of the load disposed in the virtual power plant, the power consumption or the power generation amount of the virtual power plant output adjusting device 310 may be adjusted.
- the power supply in the virtual power plant 100 is smaller than the power demand of a load disposed in the virtual power plant 100, or the response amount or response speed of the distributed power supply is lower than the response speed of the virtual power plant. If the power demand amount of the load disposed in the present invention is not satisfied, the heat conversion device of the virtual power plant output adjusting device 310 reduces power consumption, or the new and renewable cogeneration of the virtual power plant output adjusting device 310 The power plant can be controlled to increase the amount of power generated.
- the virtual power plant management device 200 responds to the output change of the variable power associated with the virtual power plant 100, the response amount that the new and renewable cogeneration plant of the virtual power plant output adjustment device 310 can additionally generate power. information can be analyzed.
- the virtual power plant management apparatus 200 decreases the output of the variable power associated with the virtual power plant 100 so that the power supply in the virtual power plant 100 is higher than the power demand of a load disposed in the virtual power plant 100 .
- the amount of heat production of the heat conversion device may be controlled based on the response amount information of the new and renewable cogeneration power plant of the virtual power plant output adjusting device 310, or the amount of power generation of the new and renewable combined heat and power plant may be controlled.
- FIG. 2 is a block diagram showing a schematic configuration of a virtual power plant management apparatus according to an embodiment of the present invention.
- the virtual power plant management apparatus 200 only shows a schematic configuration necessary for description according to an embodiment of the present invention, but is not limited to this configuration.
- the virtual power plant management apparatus 200 predicts the expected generation amount of a plurality of distributed power sources 110-1 to 110-m linked to the virtual power plant 100, and , bidding with the power exchange 20 is carried out.
- the virtual power plant management apparatus 200 may analyze the output variation and error of the virtual power plant 100 due to the output variation of the plurality of distributed power sources 110-1 to 110-m. In addition, the virtual power plant management apparatus 200 may control the VPP output adjustment system 300 based on the analysis result to stabilize the output fluctuation of the virtual power plant 100 .
- the virtual power plant management apparatus 200 includes a VPP control module 210 , a transmission/reception module 220 , a bidding module 230 , a monitoring module 240 , an analysis module 250 , and a VPP output. and an adjustment module 260 .
- the VPP control module 210 analyzes the output variation and error of the virtual power plant 100 due to the output variation of the plurality of distributed power sources 110-1 to 110-m and the demand variation of the load 120, Based on the analysis result, the VPP output adjustment system 300 may be controlled to control the operation of each unit to stabilize the output fluctuation of the virtual power plant.
- the transmission/reception module 220 may transmit virtual power plant information to the power exchange 20 and receive power system information and power system analysis information from the power exchange 20 .
- the virtual power plant information includes power generation information of the plurality of distributed power sources 110-1 to 110-m, power consumption information of the load 120, and the like.
- the transmission/reception module 220 may transmit the metered data read by the virtual power plant 100 to the power exchange 20 .
- the transmission/reception module 220 may receive power system information and power system analysis information from the power exchange 20 .
- the power system information and the power system analysis information are the ramp rate characteristic information of the generators 12 linked to the power system 10 , the system frequency information of the power system 10 , and the power system 10 of Power supply and demand information, net load information by the variable power source of the power system 10, response amount information by the variable power source, new and renewable output fluctuation information linked to the power system 10, and reserve power of the power system 10 information, etc.
- the ramp rate characteristic information is a change in generator output per minute, and includes an evaporation rate of a generator, a desensitization rate of a generator, or a speed adjustment rate of a generator.
- the grid frequency information of the power system 10 includes a real-time grid frequency, a grid frequency predicted value, a frequency change rate, or frequency sensitivity.
- the frequency change rate or frequency sensitivity includes the change rate or degree of change of the system frequency with time.
- the frequency change rate may have a positive value (+) or a negative value (-).
- a case in which the frequency change rate is a positive number may include a case in which the system frequency rapidly increases.
- the frequency change rate is a negative number it may include a case where the system frequency is sharply decreased.
- the power supply and demand information of the power system 10 includes power supply and demand imbalance of the power system 10 .
- the power supply and demand imbalance of the power system 10 is the dropout of a generator linked to the power system 10 , a sudden change in power demand of the power system 10 , or the output of the variable power source 16 linked to the power system 10 . It includes a case where the deviation between the power supply and the power demand of the power system 10 exceeds the power supply and demand set value due to a sudden change or the like.
- the net load information includes a value obtained by subtracting an output amount of a variable power source (eg, a renewable energy source) linked to the power system 10 from the total load amount of the power system 10 .
- a variable power source eg, a renewable energy source
- the response amount information is a response amount value that can be additionally generated by generators linked to the power system in order to respond to output fluctuations of a variable power source (eg, a renewable energy source) linked to the power system 10 or the It may include a response rate at which the generator can additionally generate power in response to fluctuations in the output of the variable power source.
- a variable power source eg, a renewable energy source
- the bidding module 230 predicts the expected power generation amount of the plurality of distributed power sources 110-1 to 110-m and executes a bid with the power exchange 20. In addition, the bidding module 230 may analyze the expected power generation amount of each distributed power source based on the characteristics and power generation capacity of each distributed power source. In addition, the bidding module 230 may derive the VPP predicted power generation amount by summing the predicted power generation amounts of the plurality of distributed power sources 110-1 to 110-m.
- the bidding module 230 may conduct a bidding with the power exchange 20 based on the VPP expected generation amount and determine the VPP bidding generation amount.
- the VPP expected generation includes the amount of generation that the plurality of distributed power sources 110-1 to 110-m linked to the virtual power plant 100 are expected to generate during the bidding period.
- the VPP bidding power generation includes the power supply amount or power output amount supplied from the virtual power plant 100 to the power system 10 during the bidding period.
- the bidding module 230 may include a distributed power generation amount prediction unit 232 , a VPP generation amount calculation unit 234 , and a VPP bidding generation amount determination unit 236 according to an embodiment of the present invention.
- the distributed power generation amount prediction unit 232 analyzes the expected generation amount of each distributed power source based on the characteristics and generation capacity of each distributed power source. In addition, the distributed power generation amount prediction unit 232 determines the amount of generation that can be generated by the plurality of distributed power sources 110-1 to 110-m at a specific point in time or during a bidding period based on the expected generation amount of each distributed power source. predictable.
- the VPP generation amount calculation unit 234 may derive the VPP expected generation amount that can be generated by the virtual power plant 100 by summing the predicted generation amounts of the plurality of distributed power sources 110 - 1 to 110 -m.
- the VPP bidding generation amount determining unit 236 determines the VPP bidding generation amount based on the VPP expected generation amount. In addition, the VPP bidding generation amount determining unit 236 may determine the VPP bidding generation amount by subtracting the power consumption expected to be consumed by the load 120 of the virtual power plant 100 for a predetermined period from the VPP expected generation amount.
- the monitoring module 240 may monitor in real time the amount of power generation of the distributed power source 110 linked to the virtual power plant 100 and the power consumption of the load 120 disposed in the virtual power plant 100 .
- the monitoring module 240 may monitor the actual amount of power generation of the plurality of distributed power sources 110-1 to 110-m in real time. In addition, the monitoring module 240 may monitor the amount of generation of the individual distributed power supply 110 , the amount of change in the amount of generation and the rate of change in real time.
- the monitoring module 240 may monitor in real time the amount of electricity used, the amount of change in the amount of electricity and the rate of change of the load 120 linked to the virtual power plant 100 .
- the monitoring module 240 may include a distributed power monitoring unit 242 and a VPP monitoring unit 244 according to an embodiment of the present invention.
- the distributed power monitoring unit 242 may monitor the actual power generation amount of the plurality of distributed power sources 110 - 1 to 110 -m linked to the virtual power plant 100 in real time. In addition, the distributed power monitoring unit 242 may monitor the amount of power generation, the amount of change and the rate of change of the individual distributed power source 110 in real time.
- the VPP monitoring unit 244 may monitor the generation amount and power consumption of the virtual power plant 100 in real time.
- the VPP monitoring unit 244 includes the total amount of power generated by the plurality of distributed power sources 110 - 1 to 110 -m of the virtual power plant 100 and the total amount of power used by the load 120 of the virtual power plant 100 . can be monitored in real time.
- the VPP monitoring unit 244 may monitor the amount of surplus power of the virtual power plant 100 in real time.
- the amount of surplus power is a value obtained by subtracting the total amount of power generated by the load 120 of the virtual power plant 100 from the total power generated by the plurality of distributed power sources 110-1 to 110-m of the virtual power plant 100.
- the analysis module 250 may analyze the output variation of the individual distributed power supply 110 .
- the analysis module 250 is configured to change the output of the virtual power plant 100 and error can be analyzed.
- the analysis module 250 is based on the power system information received from the transmission/reception module 220, the grid frequency of the power system 10, power supply and demand imbalance, net load information, response amount information, and renewable energy sources Changes in output information of , etc. can be analyzed.
- the analysis module 250 may include a distributed power analysis unit 252 and a VPP analysis unit 254 according to an embodiment of the present invention.
- the distributed power analysis unit 252 is configured to change the output of the individual distributed power supply 110 based on the actual power generation amount of the plurality of distributed power sources 110-1 to 110-m monitored by the monitoring module 240 and control the plurality of distributed power sources 110. The output fluctuations of the distributed power supplies 110-1 to 110-m are analyzed.
- the VPP analysis unit 254 analyzes the output variation and error of the virtual power plant 100 due to the output variation of the plurality of distributed power sources 110-1 to 110-m and the demand variation of the load 120 can do.
- the VPP analysis unit 254 is based on the amount of surplus power of the virtual power plant 100 monitored by the monitoring module 240 by the output change of the plurality of distributed power sources (110-1 to 110-m) It is possible to analyze the output variation and error of the virtual power plant 100 .
- the VPP analysis unit 254 predicts the demand response and power demand of the load 120 disposed in the virtual power plant 100, and calculates the output variation and error of the virtual power plant 100 based on the power demand. can also be analyzed.
- the VPP output adjustment module 260 may control the operation of the virtual power plant output adjustment system 300 based on the analysis result of the analysis module 250 . Specifically, the VPP output adjustment module 260 may control the amount of power consumption and generation of the virtual power plant output adjustment device 310 . Through this, the VPP output adjustment module 260 may adjust the amount of output provided from the virtual power plant 100 to the power system 10 and stabilize the output fluctuations of the virtual power plant 100 .
- the VPP output adjustment module 260 includes the VPP bid generation amount, the zone frequency of the virtual power plant 100, the generation amount of the individual distributed power source 110, the individual bid generation amount of the individual distributed power source 110, and power system information (for example, using at least one of grid frequency, power supply and demand information, reserve power, net load, response amount, new and renewable output fluctuation, etc.), and a control signal received from outside the virtual power plant (eg, power exchange)
- power system information For example, using at least one of grid frequency, power supply and demand information, reserve power, net load, response amount, new and renewable output fluctuation, etc.
- a control signal received from outside the virtual power plant eg, power exchange
- the VPP output adjustment module 260 includes the VPP bidding generation amount, the zone frequency of the virtual power plant 100, the generation amount of the individual distributed power source 110, the individual bidding generation amount of the individual distributed power source 110, and power system information (for example, system frequency, power supply and demand information, reserve power, net load, response amount, new and renewable output fluctuation, etc.), and control signals received from outside the virtual power plant (eg, power exchange) are considered
- power system information For example, system frequency, power supply and demand information, reserve power, net load, response amount, new and renewable output fluctuation, etc.
- control signals received from outside the virtual power plant eg, power exchange
- the VPP output adjustment module 260 may include a power consumption controller 262 and a power generation controller 264 according to an embodiment of the present invention.
- the power consumption control unit 262 includes the VPP bidding generation amount, the zone frequency of the virtual power plant 100, the generation amount of the individual distributed power source 110, the individual bidding generation amount of the individual distributed power source 110, power system information, and the virtual power plant. Power consumption or heat production of the virtual power plant output adjusting device 310 may be controlled based on a control signal received from the outside.
- the generation amount control unit 254 is the VPP bidding generation amount, the zone frequency of the virtual power plant 100, the generation amount of the individual distributed power source 110, the individual bidding generation amount of the individual distributed power source 110, power system information, and the virtual power plant It is possible to control the amount of power generation of the virtual power plant output adjustment device 310 based on the control signal received from the outside.
- FIG. 3 is a block diagram showing a schematic configuration of a virtual power plant output adjustment system according to an embodiment of the present invention.
- the virtual power plant output adjustment system 300 only shows a schematic configuration necessary for description according to an embodiment of the present invention, but is not limited to this configuration.
- the virtual power plant output adjustment system 300 may include a virtual power plant output adjustment device 310 , a heat storage device 340 , and a heat supply device 350 . have.
- the virtual power plant output adjustment device 310 may include a heat conversion device 320 and a renewable heat and power plant 220 according to an embodiment of the present invention.
- the thermal converter 320 receives the power generated from the plurality of distributed power sources, and converts it into thermal energy.
- the heat conversion device 320 may supply the converted heat energy to the heat storage device 340 or the heat supply device 350 .
- the heat conversion device 320 may include a boiler or an electric heater.
- the heat storage device 340 may include a heat storage tank for storing the heat energy.
- the heat supply device 350 may include a heat pump for supplying the heat energy to a heat load, but the configuration of the present invention is not limited thereto.
- the heat conversion device 320 may store the produced heat energy in a large-capacity heat storage tank and provide it to a heat load disposed in the power system 10 or the virtual power plant 100 .
- the present invention provides an environment capable of not only stabilizing the output of the virtual power plant but also preventing the waste of energy sources by storing the thermal energy produced by the virtual power plant output adjusting device 310 in a large capacity and providing it to the heat load. .
- the new and renewable cogeneration power plant 330 is connected to the virtual power plant 100 and may generate electricity using a new and renewable energy source.
- the renewable cogeneration power plant 330 may supply the generated power to the virtual power plant 100 or the power system 10 .
- the renewable cogeneration power plant 330 may generate power using at least one of wood chips, fuel cells, and by-product gas.
- the virtual power plant management device 200 by controlling the power consumption and heat production of the heat conversion device 320 or by adjusting the power generation amount of the new and renewable cogeneration power plant 330, the output fluctuation of the distributed power source (110) It is possible to stabilize the output fluctuation of the virtual power plant by
- the virtual power plant management apparatus 200 may control the power consumption of the thermal converter 320 by comparing the VPP expected output amount with the VPP bid generation amount.
- the VPP expected output includes the amount of power expected to be supplied from the virtual power plant 100 to the power system 10 during the bidding period.
- the virtual power plant management apparatus 200 may monitor the amount of power generated by the plurality of distributed power sources in real time, and may derive the amount of VPP power generated in the virtual power plant 100 in real time.
- the expected VPP output amount may be calculated by subtracting the amount of power consumed by the load 120 of the virtual power plant 100 from the VPP generation amount.
- the virtual power plant management device 200 may increase the power consumption of the thermal converter 320 by the difference between the VPP expected output amount and the VPP bid generation amount when the VPP expected output amount is greater than the VPP bid generation amount. have.
- the virtual power plant management device 200 may stop the heat production of the heat conversion device 320 .
- the virtual power plant management apparatus 200 may control the amount of power generation of the renewable combined heat and power plant 330 by comparing the VPP expected output amount with the VPP bidding power generation amount.
- the virtual power plant management device 200 may increase the generation amount of the renewable combined heat and power plant 330 by the difference between the VPP expected output amount and the VPP bid generation amount. have.
- the virtual power plant management apparatus 200 may detect a grid frequency of the power system in real time, and determine the power consumption of the thermal converter 320 using the detected grid frequency.
- the virtual power plant management apparatus 200 may detect the grid frequency of the power system in real time, and control the amount of power generation of the renewable combined heat and power plant 330 using the detected grid frequency.
- the virtual power plant management apparatus 200 may detect the zone frequency of the virtual power plant 100 in real time, and determine the power consumption of the thermal converter 320 using the detected zone frequency.
- the virtual power plant management apparatus 200 may detect the zone frequency of the virtual power plant 100 in real time, and control the amount of power generation of the renewable combined heat and power plant 330 using the detected zone frequency.
- the virtual power plant management device 200 may monitor the amount of power generation of the individual distributed power source 110 in real time, and adjust the heat production amount of the heat conversion device 320 based on the amount of power generation of the individual distributed power source 110 in real time. have.
- the virtual power plant management device 200 analyzes the generation amount of the individual distributed power source 110 in real time, and based on the actual generation amount of the individual distributed power source 110 , the generation amount of the new and renewable combined heat and power plant 330 in real time can also be adjusted to
- the virtual power plant management apparatus 200 predicts the amount of power generation of the individual distributed power sources 110 that can be generated during the bidding period, and determines the amount of individual bid generation of the individual distributed power sources 110 . In addition, the virtual power plant management device 200 compares the individual bid generation amount with the actual generation amount of the individual distributed power source, and converts the heat based on the difference between the individual bid generation amount of the individual distributed power source 110 and the actual generation amount The power consumption or heat production of the device 320 may be adjusted.
- the virtual power plant management device 200 when the actual power generation amount of the individual distributed power source 110 exceeds the individual bid generation amount during the bidding period, the virtual power plant management device 200 generates the heat by the difference between the actual generation amount and the individual bid generation amount. It is possible to increase the power consumption or heat production of the converter.
- the virtual power plant management apparatus 200 divides the bidding period into a plurality of sections, derives a section average value of the actual power generation amount of the individual distributed power source 110 for each section, and the section average value of each section for each section It is possible to control the amount of heat production of the heat conversion device 320 in comparison with the amount of the individual bidding power generation.
- the virtual power plant management device 200 predicts the average power generation amount of the individual distributed power sources 110 that can be generated during the bidding interval, and based on the predicted average power generation amount, the individual bid power generation amount of the individual distributed power sources 110 can be decided
- the virtual power plant management device 200 is configured to maintain the output value of the individual distributed power source 110 as the individual bid generation amount during the bidding period, based on the actual power generation amount of the individual distributed power source 110 .
- the amount of power generation of the renewable cogeneration power plant 330 can be adjusted in real time.
- the virtual power plant management device 200 may increase the amount of power generation of the new and renewable cogeneration plant 330 when the average value of the actual power generation by the individual distributed power sources during the bidding period is smaller than the individual bidding power generation amount. have.
- the virtual power plant management apparatus 200 divides the bidding period into a plurality of sections, derives a section average value of the actual power generation amount of the individual distributed power source 110 for each section, and calculates the section average value of each section for each section. It is possible to control the amount of power generation of the renewable combined heat and power plant 330 in comparison with the amount of power generated by the individual bid.
- FIG. 4 is a flowchart schematically illustrating a process of predicting the amount of generation of distributed power connected to a virtual power plant, conducting a bidding, and controlling the virtual power plant output adjusting device to stabilize the output of the virtual power plant according to an embodiment of the present invention.
- the following flowchart will be described using the same reference numerals in connection with the configuration of FIGS. 1 to 3 .
- the virtual power plant management apparatus 200 predicts the expected generation amount of a plurality of distributed power sources 110 - 1 to 110 -m linked to the virtual power plant 100 . (S102).
- the virtual power plant management apparatus 200 may predict the expected generation amount of each distributed power source based on the characteristics and power generation capacity of each distributed power source.
- the virtual power plant management device 200 may conduct a bidding with the power exchange 20 and determine the amount of VPP bidding power supplied from the virtual power plant 100 to the power system 10 ( S104 ).
- the virtual power plant management device 200 derives the VPP predicted power generation by summing the predicted power generation amounts of the plurality of distributed power sources 110-1 to 110-m, and based on the VPP predicted power generation amount, the power exchange 20 ) and bidding to determine the amount of power generated by the VPP bidding.
- the VPP expected generation amount is the minimum VPP generation amount and the maximum VVP generation amount that the plurality of distributed power sources 110-1 to 110-m linked to the virtual power plant 100 can generate at a specific point in time or during a bidding period.
- the VPP bidding generation amount may be determined as a value between the VPP minimum generation amount and the VVP maximum generation amount.
- the virtual power plant management apparatus 200 analyzes the output variation and error of the virtual power plant 100 due to the output variation of the plurality of distributed power sources 110-1 to 110-m (S106).
- the virtual power plant management device 200 may control the power consumption and power production of the virtual power plant output adjusting device 310 based on the analysis result ( S108 ).
- the virtual power plant management device 200 includes the VPP bidding generation amount with the power exchange 20, the generation amount of the individual distributed power source 110, and system information of the power system 10 (eg, frequency, power supply and demand, reserve).
- the virtual power plant output adjusting device 310 based on at least one of a power amount, a net load amount, a response amount, a change in new and renewable output, etc.), or a control signal received from outside (eg, a power exchange) of the virtual power plant 100 . ) can be controlled.
- the virtual power plant management device 200 may stabilize the output variation of the virtual power plant 100 by adjusting the output variation and error of the virtual power plant 100 through the operation of the virtual power plant output adjusting device 310 . There is (S110).
- the present invention uses the surplus power of the virtual power plant 100 to produce thermal energy with the virtual power plant output adjusting device 310, and provides the produced thermal energy to a heat load, and at the same time, the virtual power plant 100 The output can be stabilized.
- the present invention may stabilize the output of the virtual power plant 100 by supplementing the insufficient output of the virtual power plant 100 with the power generated by the virtual power plant output adjusting device 310 .
- FIG. 5 is a graph showing a typical daily power demand curve in the power system
- FIG. 6 is a graph showing a change in net load due to an increase in output of a variable power supply.
- the net load is formed in the form of a duck curve.
- a variable power source for example, a renewable energy source
- the power load decreases sharply after sunrise, and the power load increases rapidly after sunset. Due to this phenomenon, the power demand curve is expected to change in a pattern different from the existing power demand curve.
- the duck-curve phenomenon intensifies, it is expected that the power demand forecasting error increases and the pharmaceutical cost increases.
- a wind power generator which is a renewable energy source
- a solar power generator has an output dependent on the amount of insolation of a photovoltaic module.
- the output of renewable energy sources such as wind power and solar power is increased during the daytime, and for this reason, the power system 10 by subtracting the output of the renewable energy source from the total load of the power system 10 or the virtual power plant 100 ) or the net load of the virtual power plant 100 is greatly reduced.
- the power system 10 or the virtual power plant 100 when the renewable energy source is linked to the power system 10 or the virtual power plant 100 during the daytime of the season when the output variability of the renewable energy source is large, the power system 10 or the virtual power plant 100 It causes imbalance in power supply and demand, and the system frequency of the power system 10 or the regional frequency of the virtual power plant 100 becomes unstable.
- the virtual power plant output adjustment device 310 is linked to the virtual power plant 100 and the surplus power of the virtual power plant 100 is consumed by adjusting the power consumption and generation amount of the virtual power plant output adjustment device 310 .
- the output variation and error of the virtual power plant caused by the output variation of distributed power sources are resolved, and an environment capable of stabilizing the output of the virtual power plant is provided.
- FIG. 7 is a flowchart schematically illustrating a process of deriving a VPP predicted generation amount based on the expected generation amount of an individual distributed power source and determining a VPP bidding generation amount using the derived VPP expected generation amount according to an embodiment of the present invention.
- the following flowchart will be described using the same reference numerals in connection with the configuration of FIGS. 1 to 3 .
- the virtual power plant management apparatus 200 analyzes characteristics of the individual distributed power sources 110 ( S202 ).
- the individual distributed power source may include at least one of a wind power generator, a solar power generator, a geothermal generator, a fuel cell, bio-energy, marine energy, or a variable power source whose output cannot be adjusted.
- the virtual power plant management device 200 may derive the expected amount of power generated by the individual distributed power sources 110 during a predetermined period (eg, a bidding period) based on the characteristics of the individual distributed power sources 110 . There is (S204).
- the virtual power plant management apparatus 200 may derive the VPP predicted power generation amount by summing the predicted power generation amounts of the plurality of distributed power sources 110-1 to 110-m (S206 and S208).
- the VPP expected generation includes the amount of generation that the plurality of distributed power sources 110-1 to 110-m linked to the virtual power plant 100 can generate at a specific point in time or during a bidding period.
- the virtual power plant management device 200 may determine the amount of VPP bidding generation output from the virtual power plant 100 to the power system 10 during the bidding period (S210).
- the VPP bidding power generation includes the power supply amount or power output amount supplied from the virtual power plant 100 to the power system 10 during the bidding period.
- FIG. 8 is a graph showing the expected generation amount and average generation amount of individual distributed power sources according to an embodiment of the present invention
- FIG. 9 is a graph showing the VPP expected generation amount and the VPP bidding generation amount of the virtual power plant according to an embodiment of the present invention.
- the virtual power plant management apparatus 200 analyzes the characteristics of each of the plurality of distributed power sources 110-1 to 110-m, and the predicted power generation amount (P DER1_Estimated) of each distributed power source to P DERm_expected ) and average power generation (P DER1_average to P DERm_average ) can be predicted.
- the virtual power plant management device 200 is the predicted generation amount (P DER1_expected to P DERm_expected ) or average generation amount (P DER1_average to P DERm) of the plurality of distributed power sources 110-1 to 110-m.
- the average sum _) can be derived by the generation of a virtual power plant (100).
- the virtual power plant management apparatus 200 may include an estimated power generation amount ( P DER1_expected to P DERm_expected ) can be summed to derive the VPP expected generation (P vpp_expected generation).
- the VPP expected generation amount (P vpp_expected generation amount ) may include the VPP minimum generation amount (P vpp_min ), which is the minimum generation amount of the virtual power plant 100, and the VVP maximum generation amount (P vpp_max ), which is the maximum generation amount of the virtual power plant 100. have.
- VPP bid generation output to the power grid (10) in the virtual power plant management device 200 includes the virtual power plant (100) during the bidding period on the basis of the estimated VPP power generation (P vpp_ expected generation) (P vpp bid generation ) can be determined.
- the VPP bid generation amount (P vpp bid generation amount ) may have a value between the VPP minimum generation amount (P vpp_min ) and the VVP maximum generation amount (P vpp_max ).
- the VPP bidding generation amount (P vpp bidding generation amount ) may be a sum of the average generation amounts (P DER1_average to P DERm_average ) of the plurality of distributed power sources 110-1 to 110-m.
- FIG. 10 is a flowchart schematically illustrating a process of controlling the virtual power plant output adjusting device by comparing the VPP expected output amount and the VPP bid generation amount according to an embodiment of the present invention.
- the following flowchart will be described using the same reference numerals in connection with the configuration of FIGS. 1 to 3 .
- the virtual power plant management apparatus 200 conducts bidding with the power exchange 20 , and the amount of VPP bidding power supplied from the virtual power plant 100 to the power system 10 . is determined (S302).
- the VPP bidding generation amount may include a power supply amount or power output amount supplied from the virtual power plant 100 to the power system 10 during a bidding period.
- the virtual power plant management device 200 monitors the amount of power generated by the plurality of distributed power sources 110-1 to 110-m linked to the virtual power plant 100 in real time, and the virtual power plant 100
- the amount of VPP power generated in is derived (S304).
- the VPP generation amount may include the total of the generation amount each produced by the plurality of distributed power sources 110-1 to 110-m during a specific time point or a bidding period.
- the virtual power plant management device 200 calculates the expected VPP output amount by subtracting the amount of power consumed by the load 120 of the virtual power plant 100 from the VPP power generation amount (S306).
- the VPP expected generation amount may include the amount of generation that the plurality of distributed power sources 110-1 to 110-m linked to the virtual power plant 100 can generate at a specific point in time or during a bidding period.
- the virtual power plant management device 200 may control the operation of the virtual power plant output adjusting device 310 by comparing the VPP generation amount or the VPP expected output amount with the VPP bidding generation amount.
- the virtual power plant management device 200 steams the generation amount or power production amount of the new and renewable cogeneration plant 330 . It can be controlled to do so (S308 and S310).
- the power generation of the new and renewable cogeneration plant 330 is steamed. You can also control it.
- the virtual power plant management device 200 is proportional to the difference value between the VPP generation amount and the VPP bid generation amount or the difference value between the VPP expected output amount and the VPP bid generation amount. You can also control it.
- the power consumption of the thermal converter 320 is It can be controlled to increase (S312 and S314).
- the virtual power plant management device 200 is proportional to the difference value between the VPP generation amount and the VPP bid generation amount or the difference value between the VPP expected output amount and the VPP bid generation amount
- the size of the power consumption of the thermal conversion device 320 can also be controlled.
- FIG. 11 is a graph illustrating an example of controlling the virtual power plant output adjusting device by comparing the VPP expected output amount and the VPP bid generation amount according to an embodiment of the present invention.
- the virtual power plant management apparatus 200 compares the VPP bid generation (P vpp bid generation ) and the VPP expected output (P vpp expected output ) in real time to compare the heat conversion device ( 320) and the amount of power generation of the renewable cogeneration power plant 330 can be controlled in real time.
- the renewable cogeneration power plant 330 can increase power generation.
- the present invention can supplement the insufficient amount of power generation and output of the virtual power plant 100 by supplying the electric power produced in the renewable cogeneration power plant 330 to the virtual power plant 100 or the electric power system 10 .
- the power consumption of the thermal converter 320 is adjusted to make virtual The surplus power of the power plant 100 may be consumed.
- VPP expected output amount (P vpp expected output amount ) is a section (t1 to t2, t3 to t4) that is larger than the VPP bid generation amount (P vpp bid generation amount )
- the power consumption of the load 120 rapidly increases and the
- the expected VPP output amount is smaller than the VPP bid generation amount, it is possible to control the generation amount of the renewable cogeneration power plant 330 to be steamed.
- FIG. 12 is a flowchart schematically illustrating a process of controlling a virtual power plant output adjusting device by monitoring a grid frequency of a power system or a zone frequency of a virtual power plant according to an embodiment of the present invention.
- the following flowchart will be described using the same reference numerals in connection with the configuration of FIGS. 1 to 3 .
- the virtual power plant management apparatus 200 detects the grid frequency of the power system 10 or the zone frequency of the virtual power plant 100 in real time and monitors the frequency change ( S402).
- the virtual power plant management device 200 may control the operation of the virtual power plant output adjusting device 310 by comparing the system frequency or the zone frequency with a set value.
- the output of the variable power connected to the power system 10 may change abruptly, or the system frequency of the power system 10 may change abruptly due to a generator dropout or a large-scale load surge.
- the present invention may compare the system frequency or the zone frequency with a set value and control the operation of the virtual power plant output adjusting device 310 .
- the output amount of the virtual power plant 100 can be adjusted through the operation of the virtual power plant output adjusting device 310 , and as a result, the system frequency of the power system 10 can be maintained within a predetermined range.
- the output of the distributed power source 110 linked to the virtual power plant 100 may change abruptly, so that the zone frequency of the virtual power plant 100 may change abruptly.
- the present invention can control the operation of the virtual power plant output adjustment device 310 by comparing the system frequency or the zone frequency with a set value. And, according to the present invention, the output of the virtual power plant 100 can be stably maintained through the operation of the virtual power plant output adjusting device 310 .
- the virtual power plant management apparatus 200 may control to increase the power consumption of the thermal converter 320 when the system frequency or the zone frequency is greater than a preset first frequency set value (S404) and S406).
- the virtual power plant management apparatus 200 may control to increase the amount of power generation of the renewable combined heat and power plant 330 (S408 and S408 and S410).
- the virtual power plant management device 200 may directly compare the system frequency and the zone frequency, and control the operation of the virtual power plant output adjusting device 310 based on the comparison result.
- FIG. 13 is a flowchart schematically illustrating a process of controlling a virtual power plant output adjusting device by monitoring the amount of generation of individual distributed power sources according to an embodiment of the present invention.
- the following flowchart will be described using the same reference numerals in connection with the configuration of FIGS. 1 to 3 .
- the virtual power plant management apparatus 200 predicts the expected generation amount of the individual distributed power source 110 ( S502 ).
- the virtual power plant management device 200 analyzes the expected power generation amount of the individual distributed power source 110, and among the total power generation that the individual distributed power source 110 can generate during the bidding period, the power system ( 10), it is possible to determine the individual bidding power generation amount of the individual distributed power supply 110 supplied to (S504).
- the virtual power plant management device 200 compares the expected generation amount of the individual distributed power source 110 with the individual bid generation amount of the individual distributed power source 110, and pre-operations the virtual power plant output adjustment device 310 . can be predicted in
- the virtual power plant management device 200 may pre-analyze the power consumption and power generation of the virtual power plant output adjusting device 310 by using the comparison result between the expected power generation amount and the individual bidding power generation amount (S506).
- the heat conversion device 320 is configured to stabilize the virtual power plant 100 or to keep the output of the individual distributed power source 110 constant. It is possible to analyze and predict the size or amount of power consumption required to use the surplus power of the individual distributed power supply 110 (S508).
- the new and renewable combined heat and power plant 330 must generate power so as to stabilize the virtual power plant 100 or keep the output of the individual distributed power source 110 constant. It is possible to analyze and predict the size or amount of power generation (S510).
- the virtual power plant management device 200 may monitor the actual amount of power generated by the individual distributed power sources 110 ( S512 ). And, the virtual power plant management device 200 compares the actual power generation amount of the individual distributed power source 110 with the individual bidding power generation amount of the individual distributed power source 110, and based on the comparison result, the virtual power plant output adjustment device 310 operation can be controlled.
- the actual generation amount of the individual distributed power supply 110 is greater than the individual bidding generation amount, it is possible to control to increase the power consumption of the thermal converter 320 (S514 and S516).
- the present invention monitors the actual generation amount of the individual distributed power supply 110 in real time, and compares the actual generation amount of the individual distributed power supply 110 with the individual bid generation amount of the individual distributed power supply 110 to the heat conversion device ( By controlling the power consumption of the 320) or controlling the power generation amount of the renewable cogeneration power plant 330, the output of the individual distributed power sources can be constantly maintained. And, through this, the present invention can provide the same effect that the output of the individual distributed power supply 110 is flattened and provided to the virtual power plant 100 .
- the individual distributed power supply 110 is By comparing the actual power generation amount and the individual bid generation amount in real time to control the operation of the thermal converter 320 and the new and renewable cogeneration power plant 220 in real time, it provides an environment that can more effectively respond to changes in the output of the distributed power source.
- the bidding period of the individual distributed power source 110 may be divided into a plurality of sections, and a section average value of the actual power generation amount of the individual distributed power source 110 may be derived for each section.
- the present invention can control the operation of the heat conversion device 320 and the renewable heat and power plant 220 by comparing the average value of each section for each section with the individual bidding power generation amount.
- the bidding period of the virtual power plant 100 may be divided into a plurality of sections, and a section average value of the actual power generation amount of the virtual power plant 100 may be derived for each section.
- the present invention may control the operation of the heat conversion device 320 and the renewable cogeneration power plant 220 by comparing the average value of each section for each section with the VPP bidding power generation amount.
- FIG. 14 is an example of controlling the virtual power plant output adjusting device by dividing the bidding period into a plurality of sections and monitoring the amount of generation of individual distributed power sources according to an embodiment of the present invention, and monitoring the actual amount of power generation of individual distributed power sources for each section. is the graph shown.
- the apparatus 200 for managing a virtual power plant may divide the bidding period ta to te of the individual distributed power sources 110 into a plurality of sections.
- the plurality of sections may include a first section (ta to tb), a second section (tb to tc), a third section (tc to td), and a fourth section (td to te).
- the virtual power plant management apparatus 200 calculates the actual generation amount (P DER_ generation amount ) of the individual distributed power source 110 by the individual bidding generation amount (P DER_ individual bidding) of the individual distributed power source 110 . power generation amount ), and based on the comparison result, the power consumption or power generation amount of the virtual power plant output adjusting device 310 may be controlled in real time.
- the virtual power plant management apparatus 200 derives a section average value (P DER_ section average value ) of the actual generation amount of the individual distributed power source 110 for each section, and the section average value of each section ( The operation of the virtual power plant output adjusting device 310 may be controlled by comparing the P DER_interval average value ) and the individual bid generation amount (P DER_individual bid generation amount ).
- the first section (ta to tb) and the fourth section (td to te) have a first section average value (P DER_first section average value) than the individual bid generation amount (P DER_individual bid generation amount ) And since the fourth section average value (P DER_ fourth section average value ) is large, it is possible to increase the heat production amount of the heat converter 320 .
- the heat production of the heat conversion device 320 is proportional to the difference between the individual bid generation amount (P DER_ individual bid generation amount ) and the first section average value (P DER_ first section average value ), or the individual bid generation amount It may be proportional to the difference between (P DER_individual bidding power generation ) and the average value of the fourth section (P DER_average value of the fourth section).
- the second section (tb to tc) and the third section (tc to td) are the second section average value (P DER_second section average value ) and the third than the individual bid generation amount (P DER_individual bid generation amount) Since the section average value (P DER_the third section average value ) is small, the amount of power generation of the renewable combined heat and power plant 330 can be increased.
- the amount of power generation of the renewable cogeneration power plant 330 may be proportional to the difference between the individual bid generation amount (P DER_individual bid generation amount ) and the second section average value (P DER_second section average value ).
- the amount of power generation of the new and renewable cogeneration power plant 330 may be proportional to the difference between the individual bid generation amount (P DER_individual bid generation amount ) and the average value of the third section (P DER_average value of the third section).
- the virtual power plant system and the virtual power plant operating method link the virtual power plant output adjusting device to the virtual power plant, and output of the virtual power plant by the output change of distributed power sources through the virtual power plant output adjusting device By adjusting fluctuations and errors, an environment in which the output of the virtual power plant can be stabilized is provided.
- the present invention produces thermal energy using the surplus power that the virtual power plant output control device is overproduced by the output fluctuation of the distributed power source, so that the output of the virtual power plant by the output change of the distributed power source, which is difficult to control the output, such as a new renewable energy source.
- the output fluctuation can be minimized and the output of the virtual power plant can be maintained stably.
- the present invention provides an environment in which the waste of energy sources can be prevented by storing the thermal energy produced in the virtual power plant output adjusting device in a large capacity and providing it to the thermal load.
- the present invention connects a new and renewable cogeneration plant to a virtual power plant as a distributed power source, adjusts the amount of power generation of the new and renewable cogeneration power plant in response to output fluctuations of distributed power sources, By supplementing the insufficient output, it is possible to maintain the output of the virtual power plant stably by minimizing the output shortage of the virtual power plant caused by distributed power sources with difficult output control such as new and renewable energy sources and the output fluctuation of the virtual power plant.
- the present invention analyzes the predicted power generation of each individual distributed power source, derives the VPP predicted power generation by summing the predicted power generation of the distributed power sources, and derives the VPP bidding power generation based on the VPP expected power generation amount, thereby determining the optimal bid generation amount It provides an environment in which to make effective decisions.
- the present invention monitors the amount of power generated by a plurality of distributed power sources to derive the VPP power generation generated in real time in the virtual power plant, and compares the VPP power generation amount with the VPP bidding power generation amount to reduce the power consumption or renewable energy of the thermal converter.
- the present invention monitors the amount of power generated by a plurality of distributed power sources to derive the VPP power generation generated in real time in the virtual power plant, and compares the VPP power generation amount with the VPP bidding power generation amount to reduce the power consumption or renewable energy of the thermal converter.
- the present invention detects the grid frequency of the power system or the zone frequency of the virtual power plant in real time, and controls the power consumption of the heat conversion device or the amount of power generation of the new renewable cogeneration plant based on the detected frequency, thereby providing a variable power distributed power source. It provides an environment that can prevent sudden changes in the grid frequency of the power system and the regional frequency of the virtual power plant due to changes in their output.
- the present invention monitors the amount of power generation of individual distributed power sources in real time and compares the generation amount of the individual distributed power sources with the individual bid generation amount of the individual distributed power sources to control the power consumption of the heat conversion device or the generation amount of the new and renewable cogeneration plant,
- the output of the individual distributed power sources is kept constant, and through this, the output of the individual distributed power sources is flattened to provide the same effect as provided to the virtual power plant.
- the present invention predicts the generation amount of individual distributed power sources during the bidding period to determine the individual bidding generation amount of the individual distributed power source, compares the individual bid generation amount with the generation amount of the individual distributed power source in real time, and thermal conversion based on this
- the present invention predicts the generation amount of individual distributed power sources during the bidding period to determine the individual bidding generation amount of the individual distributed power source, compares the individual bid generation amount with the generation amount of the individual distributed power source in real time, and thermal conversion based on this
- the present invention by controlling the operation of the virtual power plant output adjustment device based on at least one of VPP bidding power generation with the power exchange, power generation amount of individual distributed power sources, system information of the power system, or a control signal received from the power exchange, It provides an environment in which the output of the virtual power plant can be stably maintained and the power system can be stably maintained through this.
- the embodiment of the present invention described above is not implemented only through the apparatus and method, and may be implemented through a program for realizing a function corresponding to the configuration of the embodiment of the present invention or a recording medium in which the program is recorded.
- a recording medium may be executed not only in the server but also in the user terminal.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Business, Economics & Management (AREA)
- Physics & Mathematics (AREA)
- Economics (AREA)
- Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Marketing (AREA)
- Combustion & Propulsion (AREA)
- Water Supply & Treatment (AREA)
- General Health & Medical Sciences (AREA)
- Human Resources & Organizations (AREA)
- General Engineering & Computer Science (AREA)
- Primary Health Care (AREA)
- Strategic Management (AREA)
- Tourism & Hospitality (AREA)
- General Business, Economics & Management (AREA)
- Theoretical Computer Science (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Public Health (AREA)
- Mechanical Engineering (AREA)
- Automation & Control Theory (AREA)
- Supply And Distribution Of Alternating Current (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
본 발명에 따른 열변환장치를 활용한 가상발전소 시스템은 가상발전소에 연계된 복수의 분산전원들, 상기 가상발전소와 연계되며, 상기 복수의 분산전원들에서 생산된 전력을 공급받아 열에너지로 변환하는 열변환장치를 포함하는 가상발전소 출력조정 장치, 그리고 상기 복수의 분산전원들의 예상발전량을 예측하여 입찰을 집행하며, 상기 복수의 분산전원들의 출력변동에 의한 상기 가상발전소의 출력변동 및 오차를 분석하고, 상기 분석결과를 기초로 상기 가상발전소 출력조정 장치의 전력소모량을 제어하여 상기 가상발전소의 출력변동을 안정화시키는 가상발전소 관리 장치를 포함한다. 이를 통해서, 본 발명은 분산전원들의 출력변동에 의한 가상발전소의 출력변동을 최소화시키고, 가상발전소의 출력을 안정적으로 유지시키는 효과를 제공한다.
Description
본 발명은 열변환장치를 활용한 가상발전소 시스템 및 이를 이용한 가상발전소 운영 방법에 관한 것이다.
최근에는 화석 연료 고갈과 에너지난으로 인해서 신재생 에너지원의 비중이 꾸준히 증가되고 있다. 또한, 글로벌 기후위기 대응 및 산업경쟁력 확보를 위해 신재생 에너지원의 비중이 전세계적으로 확대되고 있다. 그리고, 기존의 중앙급전중심의 전력공급방식을 보완하기 위해, 분산전원(Distributed Energy Resource; DER)이 적극적으로 전력계통에 도입되고 있다.
분산전원은 부하 근처에 중소규모로 설치될 수 있고, 단기간에 설치가 가능하며, 짧은시간 내에 기동이 가능한 장점을 가지고 있다. 그리고, 전력망 내에 산재해 있는 다양한 유형의 분산전원을 진보된 정보통신기술 및 자동제어기술을 이용하여 단일 발전시스템으로 운영하기 위한 통합관리시스템, 즉 가상발전소(Virtual Power Plant, VPP)가 개발되고 있다.
하지만, 신재생에너지원을 이용하여 발전하는 분산전원의 경우에는 기후 및 날씨 등에 따라 출력이 급변하여 출력 제어가 어려우며, 순간적으로 발생하는 출력변동성으로 인해 전력수급의 불균형을 초래할 수 있다.
예를 들어, 분산전원의 출력이 급증하여 분산전원의 발전량이 입찰발전량을 초과하는 경우, 전력계통이나 가상발전소의 주파수가 높아지고, 전력공급의 과잉으로 수급불균형이 발생할 수 있다. 또한, 분산전원의 출력이 급감하여 분산전원의 발전량이 입찰발전량 보다 낮아지는 경우, 전력계통의 계통주파수가 낮아지고, 전력공급의 부족으로 수급불균형이 발생하는 문제점이 있었다.
따라서, 전력계통 및 가상발전소를 안정적으로 운영할 수 있는 방안이 요구된다.
한편, 최근에는 ESS(Energy storage system)나 양수발전소를 통해 신재생 에너지를 저장하고 부족한 전력량을 보충해주는 방법이 연구되고 있다.
하지만, ESS는 가격이 비싸서 경제성이 낮다. 그리고, ESS는 용량의 한계로 인해 대용량의 전력저장이 불가능하며, 이로 인해 전력계통의 부족한 전력량을 보충하기에는 어려움이 있었다. 또한, ESS는 화재나 폭발로 인해 안정성 낮은 문제점도 가지고 있다.
그리고, 양수발전소는 대용량의 전력저장이 가능하나, 설치비용 및 운영비용이 많아 경제성이 낮으며, 가동시간도 2시간이내로 짧은 어려움이 있었다. 또한, 양수발전소는 설치 장소에 제약이 많으며 건설기간이 긴 문제점을 가지고 있으며, 주변환경을 파괴하는 문제점을 가지고 있다.
이 배경기술 부분에 기재된 사항은 발명의 배경에 대한 이해를 증진하기 위하여 작성된 것으로서, 이 기술이 속하는 분야에서 통상의 지식을 가진 자에게 이미 알려진 종래기술이 아닌 사항을 포함할 수 있다.
본 발명은 가상발전소에 가상발전소 출력조정 장치를 연계시키고, 분산전원들의 출력변동에 의해 발생되는 가상발전소의 출력변동 및 오차를 가상발전소 출력조정 장치로 조정하여 가상발전소의 출력을 안정화시킬 수 있는 가상발전소 시스템 및 가상발전소 운영 방법을 제안하고자 한다.
본 발명의 한 실시예에 따른 열변환장치를 활용한 가상발전소 시스템은 가상발전소에 연계된 복수의 분산전원들, 상기 가상발전소와 연계되며, 상기 복수의 분산전원들에서 생산된 전력을 공급받아 열에너지로 변환하는 열변환장치를 포함하는 가상발전소 출력조정 장치, 그리고 상기 복수의 분산전원들의 예상발전량을 예측하여 입찰을 집행하며, 상기 복수의 분산전원들의 출력변동에 의한 상기 가상발전소의 출력변동 및 오차를 분석하고, 상기 분석결과를 기초로 상기 가상발전소 출력조정 장치의 전력소모량을 제어하여 상기 가상발전소의 출력변동을 안정화시키는 가상발전소 관리 장치를 포함한다.
상기 가상발전소 관리 장치는, 각각의 분산전원의 특성 및 발전용량을 기초로 각각의 분산전원의 예상발전량을 분석하고, 상기 복수의 분산전원들의 예상발전량을 합산하여 가상발전소에서 발전하는 VPP예상발전량을 도출하며, 도출된 상기 VPP예상발전량을 기초로 VPP입찰발전량을 결정할 수 있다.
상기 가상발전소 관리 장치는, 상기 복수의 분산전원들에서 생산되는 발전량을 실시간으로 모니터링하여 가상발전소에서 발전되는 VPP발전량을 도출하고, 상기 VPP발전량에서 상기 가상발전소의 부하에서 소모되는 전력사용량을 차감하여 VPP예상출력량을 계산하며, 상기 VPP예상출력량과 상기 VPP입찰발전량을 비교하여 상기 열변환장치의 전력소모량을 제어할 수 있다.
상기 가상발전소 관리 장치는, 상기 VPP예상출력량이 상기 VPP입찰발전량보다 큰 경우, 상기 VPP예상출력량과 상기 VPP입찰발전량의 차이만큼 상기 열변환장치의 전력소모량을 증가시킬 수 있다.
상기 가상발전소 관리 장치는, 상기 VPP예상출력량이 상기 VPP입찰발전량보다 작은 경우, 상기 열변환장치의 열생산을 중단시킬 수 있다.
상기 가상발전소 관리 장치는, 전력계통의 계통주파수를 실시간으로 검출하고, 검출된 상기 계통주파수를 이용하여 상기 열변환장치의 전력소모량을 결정할 수 있다.
상기 가상발전소 관리 장치는, 상기 가상발전소의 구역주파수를 실시간으로 검출하고, 검출된 상기 구역주파수를 이용하여 상기 열변환장치의 전력소모량을 결정할 수 있다.
상기 가상발전소 관리 장치는, 개별 분산전원의 발전량을 실시간으로 모니터링하고, 상기 개별 분산전원의 발전량을 기초로 상기 열변환장치의 전력소모량을 실시간으로 조절할 수 있다.
상기 가상발전소 관리 장치는, 개별 분산전원이 입찰기간 동안 발전할 수 있는 발전량을 예측하여 상기 개별 분산전원의 개별입찰발전량을 결정하되, 상기 개별입찰발전량과 상기 개별 분산전원의 실제발전량을 비교하여 상기 열변환장치의 전력소모량을 조정할 수 있다.
상기 가상발전소 관리 장치는, 상기 입찰기간 동안 상기 개별 분산전원의 실제발전량이 상기 개별입찰발전량을 초과하는 경우, 상기 실제발전량과 상기 개별입찰발전량의 차이에 비례하여 상기 열변환장치의 전력소모량을 증가시킬 수 있다.
상기 가상발전소 관리 장치는, 입찰기간을 복수의 구간으로 분할하고, 각 구간별로 개별 분산전원의 실제발전량의 구간평균값을 도출하며, 상기 복수의 구간별로 각 구간의 구간평균값을 상기 개별입찰발전량과 비교하여 상기 열변환장치의 전력소모량을 제어할 수 있다.
상기 분산전원은, 풍력 발전기, 태양광 발전기, 지열발전기, 연료전지, 바이오 에너지, 해양에너지, 또는 출력조정이 안되는 변동성 전원 중 적어도 하나를 포함할 수 있다.
상기 가상발전소 관리 장치는, 상기 가상발전소 내에 배치된 부하의 전력수요량을 예측하고, 상기 전력수요량을 기초로 상기 가상발전소의 출력변동 및 오차를 분석할 수 있다.
상기 열변환장치는, 생산된 열에너지를 대용량의 축열조에 저장하고, 가상발전소 내에 배치된 열부하에 제공할 수 있다.
상기 가상발전소 관리 장치는, 가상발전소에 연계된 변동성 전원의 출력변동에 대응하기 위해서 분산전원들이 추가적으로 발전할 수 있는 응동량 또는 상기 변동성 전원의 출력변동에 대응하기 위해서 상기 분산전원들이 추가적으로 발전할 수 있는 응동 속도를 분석하고, 상기 변동성 전원의 출력이 감소하여 가상발전소 내의 전력공급이 가상발전소 내에 배치된 부하의 전력수요량보다 작거나, 상기 분산전원들의 응동량 또는 응동속도가 상기 가상발전소 내에 배치된 부하의 전력수요량을 충족시키지 못하는 경우, 상기 가상발전소 출력조정 장치의 전력소모량을 조정할 수 있다.
본 발명의 한 실시예에 따른 열변환장치를 활용한 가상발전소 운영 방법은 가상발전소에 연계된 분산전원의 발전량을 예측하는 단계, 상기 분산전원의 발전량을 기초로 상기 가상발전소의 출력변동 및 오차를 분석하는 단계, 그리고 상기 분석결과를 기초로, 상기 가상발전소에 연계된 열변환장치의 열생산량을 조절하여 상기 가상발전소의 출력을 안정화시키는 단계를 포함한다.
상기 가상발전소의 출력을 안정화시키는 단계는, 상기 가상발전소의 VPP입찰발전량, 개별 분산전원의 발전량, 전력계통의 계통정보, 또는 가상발전소의 외부에서 수신된 제어신호 중 적어도 하나를 기초로 상기 열변환장치의 열생산량을 조절할 수 있다.
상기 가상발전소의 출력을 안정화시키는 단계는, 전력계통의 계통주파수를 실시간으로 검출하는 단계, 그리고 상기 계통주파수를 기초로 상기 열변환장치의 열생산량을 실시간으로 조절하는 단계를 포함할 수 있다.
상기 가상발전소의 출력을 안정화시키는 단계는, 상기 가상발전소의 구역주파수를 실시간으로 검출하는 단계, 그리고 상기 구역주파수를 기초로 상기 열변환장치의 열생산량을 실시간으로 조절하는 단계를 포함할 수 있다.
개별 분산전원의 발전량을 실시간으로 분석하는 단계, 그리고 상기 개별 분산전원의 발전량을 기초로 상기 열변환장치의 열생산량을 실시간으로 조절하는 단계를 더 포함할 수 있다.
입찰기간 동안 발전할 수 있는 분산전원의 발전량을 예측하여 상기 개별 분산전원의 개별입찰발전량을 결정하는 단계, 상기 개별 분산전원에서 생산되는 발전량을 모니터링하는 단계, 그리고 상기 입찰기간 동안 상기 개별 분산전원에 의한 출력값이 상기 개별입찰발전량을 유지시키도록, 상기 개별 분산전원의 발전량과 상기 개별입찰발전량을 비교하여 상기 열변환장치의 열생산량을 조정하는 단계를 더 포할 수 있다.
상기 열변환장치의 열생산량을 조정하는 단계는, 상기 입찰기간 동안 상기 개별 분산전원의 발전량이 상기 개별입찰발전량을 초과하는 경우, 상기 발전량과 상기 개별입찰발전량의 차이에 비례하여 상기 열변환장치의 열생산량을 증가시킬 수 있다.
상기 열변환장치의 열생산량을 조정하는 단계는, 상기 입찰기간을 복수의 구간으로 분할하는 단계, 그리고 상기 복수의 구간 별로 개별 분산전원의 실제발전량의 구간평균값을 도출하는 단계를 포함할 수 있다.
상기 열변환장치의 열생산량을 조정하는 단계는, 상기 복수의 구간별로 각 구간의 구간평균값을 상기 개별입찰발전량과 비교하여 상기 열변환장치의 열생산량을 제어하는 단계를 더 포함할 수 있다.
상기 가상발전소에 연계된 부하의 수요반응을 예측하는 단계, 그리고 상기 부하의 수요반응을 기초로 상기 가상발전소의 출력변동 및 오차를 분석하는 단계를 더 포함할 수 있다.
상기 가상발전소에 연계된 변동성 전원의 출력변동에 대응하기 위해서 분산전원들이 추가적으로 발전할 수 있는 응동량 또는 상기 변동성 전원의 출력변동에 대응하기 위해서 상기 분산전원들이 추가적으로 발전할 수 있는 응동 속도를 분석하는 단계, 그리고 상기 분산전원들의 응동량 또는 응동속도가 상기 가상발전소 내에 배치된 부하의 전력수요량을 충족시키지 못하는 경우, 상기 열변환장치의 열생산량을 조정하는 단계를 더 포함할 수 있다.
본 발명의 한 실시예에 따른 열변환장치를 활용한 가상발전소 운영 방법은 가상발전소에 연계된 복수의 분산전원들에서 생산되는 발전량을 모니터링하여 VPP발전량을 도출하는 단계, 상기 VPP발전량에서 상기 가상발전소의 부하에서 소모되는 전력사용량을 차감하여 VPP예상출력량을 계산하는 단계, 그리고 상기 VPP예상출력량과 상기 VPP입찰발전량을 비교하여 상기 열변환장치의 열생산량을 제어하는 단계를 포함한다.
본 발명에 따르면, 가상발전소에 가상발전소 출력조정 장치를 연계시키고, 가상발전소 출력조정 장치를 통해서 분산전원들의 출력변동에 의한 가상발전소의 출력변동 및 오차를 조정함으로써, 가상발전소의 출력을 안정화시킬 수 있는 환경을 제공한다.
또한, 본 발명은 가상발전소 출력조정 장치가 분산전원의 출력변동에 의해 과잉생산되는 잉여전력을 이용해 열에너지를 생산함으로써, 신재생 에너지원과 같이 출력 제어가 어려운 분산전원들의 출력변동에 의한 가상발전소의 출력변동을 최소화시키고, 가상발전소의 출력을 안정적으로 유지시킬 수 있다.
또한, 본 발명은 가상발전소 출력조정 장치에서 생산된 열에너지를 대용량으로 저장하여 열부하에 제공함으로써, 가상발전소의 출력을 안정화시킬 뿐만 아니라 에너지원의 낭비를 방지할 수 있는 환경을 제공한다.
또한, 본 발명은 가상발전소에 신재생 열병합발전소를 분산전원으로 연계시키고, 분산전원들의 출력변동에 대응하여 상기 신재생 열병합발전소의 발전량을 조정하고, 상기 신재생 열병합발전소에서 발전된 전력으로 가상발전소의 부족한 출력을 보충함으로써, 신재생 에너지원과 같이 출력 제어가 어려운 분산전원들에 의해 발생되는 가상발전소의 출력부족 및 이로 인한 가상발전소의 출력변동을 최소화시켜 가상발전소의 출력을 안정적으로 유지시킬 수 있는 환경을 제공한다.
또한, 본 발명은 각 개별 분산전원의 예상발전량을 분석하고, 분산전원들의 예상발전량을 합산하여 VPP예상발전량을 도출하며, 상기 VPP예상발전량을 기초로 VPP입찰발전량을 도출함으로써, 최적의 입찰발전량을 효과적으로 결정할 수 있는 환경을 제공한다.
또한, 본 발명은 복수의 분산전원들에서 생산되는 발전량을 모니터링하여 가상발전소 내에서 실시간으로 발전되는 VPP발전량을 도출하고, 상기 VPP발전량과 VPP입찰발전량을 비교하여 열변환장치의 전력소모량 또는 신재생 열병합발전소의 발전량을 조정함으로써, 가상발전소의 출력을 안정적으로 유지시킬 수 있는 환경을 제공한다.
또한, 본 발명은 전력계통의 계통주파수 또는 가상발전소의 구역주파수를 실시간으로 검출하고, 검출된 주파수를 기초로 열변환장치의 전력소모량 또는 신재생 열병합발전소의 발전량을 제어함으로써, 변동성전원인 분산전원들의 출력변동으로 인한 전력계통의 계통주파수 급변 및 가상발전소의 구역주파수 급변을 방지할 수 있는 환경을 제공한다.
또한, 본 발명은 개별 분산전원의 발전량을 실시간으로 모니터링하고, 상기 개별 분산전원의 발전량과 개별 분산전원의 개별입찰발전량을 비교하여 열변환장치의 전력소모량 또는 신재생 열병합발전소의 발전량을 제어함으로써, 개별 분산전원의 출력을 일정하게 유지시키고, 이를 통해서 개별 분산전원의 출력이 평탄화되어 가상발전소에 제공되는 것과 같은 효과를 제공한다.
또한, 본 발명은 입찰기간 동안 개별 분산전원의 발전량을 예측하여 상기 개별 분산전원의 개별입찰발전량을 결정하고, 상기 개별입찰발전량과 상기 개별 분산전원의 발전량을 실시간으로 비교하며, 이를 기초로 열변환장치의 전력소모량을 제어하거나 신재생 열병합발전소의 발전량을 실시간으로 제어함으로써, 입찰기간 동안 개별 분산전원의 출력량을 상기 개별입찰발전량에 맞춰줄 수 있는 환경을 제공한다.
또한, 본 발명은 전력거래소와의 VPP입찰발전량, 개별 분산전원의 발전량, 전력계통의 계통정보, 또는 전력거래소에서 수신된 제어신호 중 적어도 하나를 기초로 가상발전소 출력조정 장치의 동작을 제어함으로써, 가상발전소의 출력을 안정적으로 유지시키고, 이를 통해서 전력계통을 안정적으로 유지시킬 수 있는 환경을 제공한다.
도 1은 본 발명의 한 실시예에 따른 가상발전소 출력조정 장치를 활용한 가상발전소 시스템을 간략히 도시한 도면이다.
도 2는 본 발명의 한 실시예에 따른 가상발전소 관리 장치의 개략적인 구성을 나타낸 블록도이다.
도 3은 본 발명의 한 실시예에 따른 가상발전소 출력조정 시스템의 개략적인 구성을 나타낸 블록도이다.
도 4는 본 발명의 한 실예에 따라 가상발전소에 연계된 분산전원의 발전량을 예측하여 입찰을 진행하고, 가상발전소 출력조정 장치를 제어하여 가상발전소의 출력을 안전화시키는 과정을 간략히 도시한 흐름도이다.
도 5는 전력계통에서 일반적인 일일 전력수요곡선을 도시한 그래프이다.
도 6은 변동성 전원의 출력 증가로 인한 순부하량의 변화를 도시한 그래프이다.
도 7은 본 발명의 한 실예에 따라 개별 분산전원의 예상 발전량을 기초로 VPP예상발전량을 도출하고, 도출된 VPP예상발전량을 이용해 VPP입찰발전량을 결정하는 과정을 간략히 도시한 흐름도이다.
도 8은 본 발명의 한 실예에 따른 개별 분산전원들의 예상발전량 및 평균발전량을 나타내는 그래프이다.
도 9는 본 발명의 한 실예에 따라 가상발전소의 VPP예상발전량과 VPP입찰발전량을 도시한 그래프이다.
도 10은 본 발명의 한 실예에 따라 VPP예상출력량과 VPP입찰발전량을 비교하여 가상발전소 출력조정 장치를 제어하는 과정을 간략히 도시한 흐름도이다.
도 11은 본 발명의 한 실예에 따라 VPP예상출력량과 VPP입찰발전량을 비교하여 가상발전소 출력조정 장치를 제어하는 예를 도시한 그래프이다.
도 12는 본 발명의 한 실예에 따라 전력계통의 계통주파수 또는 가상발전소의 구역주파수를 모니터링하여 가상발전소 출력조정 장치를 제어하는 과정을 간략히 도시한 흐름도이다.
도 13은 본 발명의 한 실예에 따라 개별 분산전원의 발전량을 예측하여 입찰을 진행하고, 개별 분산전원의 실제발전량을 모니터링하여 가상발전소 출력조정 장치를 제어하는 과정을 간략히 도시한 흐름도이다.
도 14는 본 발명의 한 실예에 따라 입찰기간을 복수의 구간으로 나누어 개별 분산전원의 발전량을 모니터링하며, 각각의 구간별로 개별 분산전원의 실제발전량을 모니터링하여 가상발전소 출력조정 장치를 제어하는 예를 도시한 그래프이다.
이하, 본 발명의 바람직한 실시예를 첨부한 도면에 의거하여 상세하게 설명하면 다음과 같다.
이에 앞서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 본 발명이 반드시 도면에 도시된 바에 한정되지 않으며, 여러 부분 및 영역을 명확하게 표현하기 위하여 두께를 확대하여 나타내었다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서에 기재된 "…부", "…기", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
또한, 실시예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 실시예의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
이제 도 1 내지 도 14를 참고하여 본 발명의 한 실시예에 따른 가상발전소 출력조정 장치를 활용한 가상발전소 시스템 및 가상발전소 운영 방법에 대하여 상세하게 설명한다.
도 1은 본 발명의 한 실시예에 따른 가상발전소 출력조정 장치를 활용한 가상발전소 시스템을 간략히 도시한 도면이다. 이때, 전력계통(10) 및 가상발전소 시스템은 본 발명의 실시예에 따른 설명을 위해 필요한 개략적인 구성만을 도시할 뿐 이러한 구성에 국한되는 것은 아니다.
도 1을 참조하면, 본 발명의 한 실시예에 따른 가상발전소(Virtual Power Plant, 이하 VPP) 시스템은 전력계통(10)의 전력거래소(Korea Power Exchange, KPX)(20)와 연계된다.
그리고, 상기 가상발전소 시스템은 가상발전소(VPP, 100)에 연계된 다양한 종류의 분산전원(Distributed Energy Resource, DER)(110)를 포함하며, 분산전원(110)에서 생산된 전력을 전력계통(10)에 공급할 수 있다.
그리고, 상기 전력거래소(20)는 전력계통(10)의 복수의 발전소들(12-1 내지 12-n)에서 생산한 전력을 송전용변전소(14) 및 배전용변전소(16)를 거쳐 전력사용자에게 공급하도록 전력시장을 운영한다.
그리고, 상기 분산전원(110)은 풍력 발전기, 태양광 발전기, 지열발전기, 연료전지, 바이오 에너지, 해양에너지, 또는 출력조정이 안되는 변동성 전원 중 적어도 하나를 포함할 수 있다.
또한, 상기 가상발전소 시스템은 전력거래소(20)와 입찰을 진행하고, 복수의 분산전원들(110-1 내지 110-m)에서 생산된 전력 중 일부를 전력계통(10)에 공급할 수 있다.
그리고, 가상발전소 시스템은 가상발전소 관리 장치(200)를 통해 전력거래소(20)와 입찰을 진행할 수 있다. 상기 가상발전소 관리 장치(200)는 가상발전소(100)에서 전력계통(10)으로 공급하는 VPP입찰발전량을 결정할 수 있다. 여기서, 상기 VPP입찰발전량은 입찰기간 동안 가상발전소(100)에서 전력계통(10)으로 공급하는 전력공급량 또는 전력출력량을 포함한다.
그리고, 가상발전소 시스템은 상기 VPP입찰발전량에 따라 상기 가상발전소(100)에 연계된 복수의 분산전원들(110-1 내지 110-m)에서 생산된 전력 중 일부를 전력계통(10)에 공급할 수 있다.
예를 들어, 상기 가상발전소 관리 장치(200)는 복수의 분산전원들(110-1 내지 110-m)의 발전량을 예측하여 입찰을 집행할 수 있다. 그리고, 상기 가상발전소 관리 장치(200)는 복수의 분산전원들(110-1 내지 110-m)의 상기 예측발전량에서 상기 가상발전소(100) 내의 부하(120)에서 소모되는 전력소모량을 차감하여 상기 VPP입찰발전량을 결정할 수 있다.
또한, 상기 가상발전소 관리 장치(200)는 상기 복수의 분산전원들(110-1 내지 110-m)의 출력변동에 의한 가상발전소(100)의 출력변동 및 오차를 분석할 수 있다. 그리고, 상기 가상발전소 관리 장치(200)는 상기 가상발전소(100) 내에 배치된 부하의 전력수요량을 예측하고, 상기 전력수요량을 기초로 상기 가상발전소(100)의 출력변동 및 오차를 분석할 수도 있다.
그리고, 상기 가상발전소 관리 장치(200)는 상기 가상발전소(100)의 출력변동 및 오차의 분석결과를 기초로 가상발전소 출력조정 시스템(300)의 동작을 제어하여 상기 가상발전소(100)의 출력변동을 안정화시킬 수 있다.
상기 가상발전소 출력조정 시스템(300)은 상기 가상발전소(100) 내에 배치될 수 있다. 그리고, 상기 가상발전소 출력조정 시스템(300)은 가상발전소 출력조정 장치(310)를 통해 가상발전소(100)에 연계된 복수의 분산전원들(110-1 내지 110-m)에서 생산된 전력을 소모하여 열로 변환할 수 있다. 또한, 상기 가상발전소 출력조정 시스템(300)은 가상발전소 출력조정 장치(310)를 통해 전력을 생산해서 가상발전소(100)에 공급할 수도 있다.
예를 들어, 상기 가상발전소 출력조정 장치(310)는 상기 복수의 분산전원들(110-1 내지 110-m)에서 생산된 전력 중 일부를 공급받아 열에너지로 변환하는 열변환장치 및, 신재생에너지원을 이용해서 전력을 생산하는 신재생 열병합발전소 등을 포함할 수 있다.
이러한 가상발전소 출력조정 장치(310)의 열변환장치 및 신재생 열병합발전소는 기존의 ESS(Energy storage system)나 양수발전소와 달리, 비용이 저렴하며 속응성이 높은 장점을 가지고 있다. 또한, 상기 가상발전소 출력조정 장치(310)는 분산전원(110)이나 가상발전소(100) 주변에 설치가 간편하며, 설치 지역에 제한이 낮은 장점도 가지고 있다.
그리고, 상기 가상발전소 관리 장치(200)는 가상발전소(100)에 연계된 변동성 전원의 출력변동에 대응하기 위해서 분산전원들이 추가적으로 발전할 수 있는 응동량 정보를 분석할 수 있다.
여기서, 응동량 정보는 가상발전소(100)에 연계된 변동성 전원(예를 들어, 신재생 에너지원)의 출력 변동에 대응하기 위해서 가상발전소(100)에 연계된 분산전원들이 추가적으로 발전할 수 있는 응동량 값 또는 상기 변동성 전원의 출력 변동에 대응하여 분산전원들이 추가적으로 발전할 수 있는 응동 속도를 포함한다.
그리고, 상기 응동량은 가상발전소(100)에 연계된 변동성 전원(예를 들어, 신재생 에너지원)의 출력 변동에 대응하기 위해서 가상발전소(100)에 연계된 분산전원들이 추가적으로 발전할 수 있는 발전량을 포함한다. 그리고, 응동 속도는 가상발전소(100)에 연계된 변동성 전원의 출력 변동에 대응하여 가상발전소(100)에 연계된 분산전원들이 추가적으로 발전할 수 있는 발전 속도를 포함한다. 이때, 이러한 응동량 및 응동 속도는 분산전원들의 램프레이트(Ramp Rate) 특성 정보를 포함할 수 있다.
그리고, 상기 가상발전소 관리 장치(200)는 상기 변동성 전원의 출력이 감소하여 가상발전소(100) 내의 전력공급이 가상발전소(100) 내에 배치된 부하의 전력수요량보다 작거나, 상기 분산전원들의 응동량 또는 응동속도가 상기 가상발전소 내에 배치된 부하의 전력수요량을 충족시키지 못하는 경우, 상기 가상발전소 출력조정 장치(310)의 전력소모량 또는 발전량을 조정할 수 있다.
예를 들어, 상기 변동성 전원의 출력이 감소하여 가상발전소(100) 내의 전력공급이 가상발전소(100) 내에 배치된 부하의 전력수요량보다 작거나, 상기 분산전원들의 응동량 또는 응동속도가 상기 가상발전소 내에 배치된 부하의 전력수요량을 충족시키지 못하는 경우, 본 발명은 상기 가상발전소 출력조정 장치(310)의 열변환장치가 전력소모량을 감소시키거나, 상기 가상발전소 출력조정 장치(310)의 신재생 열병합발전소가 발전량을 증가시키도록 제어할 수 있다.
또한, 상기 가상발전소 관리 장치(200)는 가상발전소(100)에 연계된 변동성 전원의 출력변동에 대응하기 위해서 상기 가상발전소 출력조정 장치(310)의 신재생 열병합발전소가 추가적으로 발전할 수 있는 응동량 정보를 분석할 수 있다.
그리고, 상기 가상발전소 관리 장치(200)는 상기 가상발전소(100)에 연계된 변동성 전원의 출력이 감소하여 상기 가상발전소(100) 내의 전력공급이 가상발전소(100) 내에 배치된 부하의 전력수요량보다 작은 경우, 상기 가상발전소 출력조정 장치(310)의 신재생 열병합발전소의 응동량 정보를 기초로 상기 열변환장치의 열생산량을 제어하거나, 신재생 열병합발전소의 발전량을 제어할 수도 있다.
도 2는 본 발명의 한 실시예에 따른 가상발전소 관리 장치의 개략적인 구성을 나타낸 블록도이다. 이때, 가상발전소 관리 장치(200)는 본 발명의 실시예에 따른 설명을 위해 필요한 개략적인 구성만을 도시할 뿐 이러한 구성에 국한되는 것은 아니다.
도 2를 참조하면, 본 발명의 한 실시예에 따른 가상발전소 관리 장치(200)는 가상발전소(100)에 연계된 복수의 분산전원들(110-1 내지 110-m)의 예상발전량을 예측하고, 전력거래소(20)와 입찰을 진행한다.
그리고, 상기 가상발전소 관리 장치(200)는 상기 복수의 분산전원들(110-1 내지 110-m)의 출력변동에 의한 가상발전소(100)의 출력변동 및 오차를 분석할 수 있다. 그리고, 상기 가상발전소 관리 장치(200)는 상기 분석결과를 기초로 상기 VPP 출력조정 시스템(300)을 제어하여 가상발전소(100)의 출력변동을 안정화시킬 수 있다.
본 발명의 한 실시예에 따른 가상발전소 관리 장치(200)는 VPP제어모듈(210), 송수신모듈(220), 입찰모듈(230), 모니터링모듈(240), 분석모듈(250), 그리고 VPP 출력조정 모듈(260)을 포함한다.
상기 VPP제어모듈(210)은 상기 복수의 분산전원들(110-1 내지 110-m)의 출력변동 및 부하(120)의 수요변동에 의한 가상발전소(100)의 출력변동 및 오차를 분석하고, 상기 분석결과를 기초로 상기 VPP 출력조정 시스템(300)을 제어하여 가상발전소의 출력변동을 안정화시키도록 상기 각부의 동작을 제어할 수 있다.
상기 송수신모듈(220)은 가상발전소 정보를 전력거래소(20)에 송신하고, 상기 전력거래소(20)로부터 전력계통 정보 및 전력계통 분석 정보를 수신할 수 있다.
예를 들어, 상기 가상발전소 정보는 복수의 분산전원들(110-1 내지 110-m)의 발전량 정보, 부하(120)의 전력소모량 정보 등을 포함한다. 그리고, 상기 송수신모듈(220)은 가상발전소(100)에서 검침된 계량데이터를 전력거래소(20)에 송신할 수 있다.
그리고, 상기 송수신모듈(220)은 상기 전력거래소(20)로부터 전력계통 정보 및 전력계통 분석 정보를 수신할 수 있다. 여기서, 전력계통 정보 및 전력계통 분석 정보는 전력계통(10)에 연계된 발전기들(12)의 램프레이트(Ramp Rate) 특성 정보, 전력계통(10)의 계통주파수 정보, 전력계통(10)의 전력수급 정보, 전력계통(10)의 변동성 전원에 의한 순부하량 정보, 상기 변동성 전원에 의한 응동량 정보, 전력계통(10)에 연계된 신재생 출력변동 정보, 및 전력계통(10)의 예비력량 정보 등을 포함한다.
여기서, 램프레이트 특성 정보는 1분당 발전기출력의 변동이며, 발전기의 증발속도, 발전기의 감발속도, 또는 발전기의 속도 조정율을 포함한다.
그리고, 전력계통(10)의 계통주파수 정보는 실시간 계통주파수, 계통주파수 예측값, 주파수 변화율, 또는 주파수 민감도 등을 포함한다. 주파수 변화율이나 주파수 민감도는 시간의 변화에 따른 계통주파수의 변화율 또는 변화 정도를 포함한다.
그리고, 주파수 변화율은 양의 값(+)을 갖거나, 음의 값(-)을 가질 수 있다. 예를 들어, 주파수 변화율이 양수인 경우는 계통주파수가 급증하는 경우를 포함할 수 있다. 그리고, 주파수 변화율이 음수인 경우에는 계통주파수가 급감하는 경우를 포함할 수 있다.
또한, 전력계통(10)의 전력수급 정보는 전력계통(10)의 전력수급 불균형을 포함한다. 여기서, 전력계통(10)의 전력수급 불균형은 전력계통(10)에 연계된 발전기의 탈락, 전력계통(10)의 전력수요 급변, 또는 전력계통(10)에 연계된 변동성 전원(16)의 출력변동 급변 등에 의해서 전력계통(10)의 전력공급과 전력수요 사이의 편차가 전력수급 설정값을 초과하는 경우를 포함한다.
그리고, 상기 순부하량 정보는 전력계통(10)의 총부하량에서 전력계통(10)에 연계된 변동성 전원(예를 들어, 신재생 에너지원)의 출력량을 차감한 값을 포함한다.
또한, 응동량 정보는 전력계통(10)에 연계된 변동성 전원(예를 들어, 신재생 에너지원)의 출력변동에 대응하기 위해서 전력계통에 연계된 발전기들이 추가적으로 발전할 수 있는 응동량 값 또는 상기 변동성 전원의 출력변동에 대응하여 발전기가 추가적으로 발전할 수 있는 응동 속도를 포함할 수 있다.
상기 입찰모듈(230)은 상기 복수의 분산전원들(110-1 내지 110-m)의 예상발전량을 예측하여 전력거래소(20)와 입찰을 집행한다. 또한, 상기 입찰모듈(230)은 각각의 분산전원의 특성 및 발전용량을 기초로 각각의 분산전원의 예상발전량을 분석할 수 있다. 그리고, 상기 입찰모듈(230)은 상기 복수의 분산전원들(110-1 내지 110-m)의 예상발전량을 합산하여 VPP예상발전량을 도출할 수 있다.
그리고, 상기 입찰모듈(230)은 상기 VPP예상발전량을 기초로 전력거래소(20)와 입찰을 진행하고, VPP입찰발전량을 결정할 수 있다. 여기서, 상기 VPP예상발전량은 가상발전소(100)에 연계된 복수의 분산전원들(110-1 내지 110-m)이 입찰기간 동안에 발전할 것으로 예상되는 발전량을 포함한다. 그리고, 상기 VPP입찰발전량은 입찰기간 동안 가상발전소(100)에서 전력계통(10)으로 공급하는 전력공급량 또는 전력출력량을 포함한다.
그리고, 상기 입찰모듈(230)은 본 발명의 한 실시예에 따른 분산전원 발전량 예측부(232), VPP 발전량 계산부(234), 및 VPP 입찰발전량 결정부(236)를 포함할 수 있다.
상기 분산전원 발전량 예측부(232)는 각각의 분산전원의 특성 및 발전용량을 기초로 각각의 분산전원의 예상발전량을 분석한다. 그리고, 상기 분산전원 발전량 예측부(232)는 각각의 분산전원의 예상발전량을 기초로 상기 복수의 분산전원들(110-1 내지 110-m)이 특정시점 또는 입찰기간 동안에 발전할 수 있는 발전량을 예측할 수 있다.
상기 VPP 발전량 계산부(234)는 상기 복수의 분산전원들(110-1 내지 110-m)의 예상발전량을 합산하여 상기 가상발전소(100)에서 발전할 수 있는 VPP예상발전량을 도출할 수 있다.
그리고, 상기 VPP 입찰발전량 결정부(236)는 상기 VPP예상발전량을 기초로 VPP입찰발전량을 결정한다. 또한, 상기 VPP 입찰발전량 결정부(236)는 상기 VPP예상발전량에서 소정기간동안 가상발전소(100)의 부하(120)에서 소모할 것으로 예상되는 전력사용량을 차감하여 상기 VPP입찰발전량을 결정할 수 있다.
상기 모니터링모듈(240)은 가상발전소(100)에 연계된 분산전원(110)의 발전량 및 가상발전소(100) 내에 배치된 부하(120)의 전력사용량을 실시간으로 모니터링할 수 있다.
예를 들어, 상기 모니터링모듈(240)은 상기 복수의 분산전원들(110-1 내지 110-m)의 실제 발전량을 실시간으로 모니터링할 수 있다. 그리고, 상기 모니터링모듈(240)은 개별 분산전원(110)의 발전량, 발전량의 변화량 및 변화율 등을 실시간으로 모니터링할 수 있다.
또한, 상기 모니터링모듈(240)은 상기 가상발전소(100)에 연계된 부하(120)의 전력사용량, 전력사용량의 변화량 및 변화율 등을 실시간으로 모니터링할 수도 있다.
그리고, 상기 모니터링모듈(240)은 본 발명의 한 실시예에 따른 분산전원 모니터링부(242), 그리고 VPP 모니터링부(244)를 포함할 수 있다.
상기 분산전원 모니터링부(242)는 상기 가상발전소(100)에 연계된 복수의 분산전원들(110-1 내지 110-m)의 실제발전량을 실시간으로 모니터링할 수 있다. 그리고, 상기 분산전원 모니터링부(242)는 개별 분산전원(110)에 대한 발전량, 발전량의 변화량 및 변화율 등을 실시간으로 모니터링할 수 있다.
상기 VPP 모니터링부(244)는 상기 가상발전소(100)의 발전량 및 전력사용량을 실시간으로 모니터링할 수 있다. 또한, 상기 VPP 모니터링부(244)는 상기 가상발전소(100)의 복수의 분산전원들(110-1 내지 110-m)에 의한 총발전량과 가상발전소(100)의 부하(120)에 의한 총사용량을 실시간으로 모니터링할 수 있다.
예를 들어, 상기 VPP 모니터링부(244)는 상기 가상발전소(100)의 잉여전력량을 실시간으로 모니터링할 수 있다. 여기서, 상기 잉여전력량은 가상발전소(100)의 복수의 분산전원들(110-1 내지 110-m)에 의한 총발전량에서 가상발전소(100)의 부하(120)에 의한 총사용량을 차감한 값을 포함할 수 있다.
그리고, 상기 분석모듈(250)은 개별 분산전원(110)의 출력변동을 분석할 수 있다. 또한, 상기 분석모듈(250)은 가상발전소(100)의 가상발전소 정보를 기초로 상기 복수의 분산전원들(110-1 내지 110-m)의 출력변동에 의한 가상발전소(100)의 출력변동 및 오차를 분석할 수 있다.
또한, 상기 분석모듈(250)은 상기 송수신모듈(220)에서 수신된 전력계통 정보를 기초로 전력계통(10)의 계통주파수, 전력수급 불균형, 순부하량 정보, 응동량 정보, 및 신재생 에너지원의 출력 정보의 변화 등을 분석할 수 있다.
그리고, 상기 분석모듈(250)은 본 발명의 한 실시예에 따른 분산전원 분석부(252), 그리고 VPP 분석부(254)를 포함할 수 있다.
상기 분산전원 분석부(252)는 상기 모니터링모듈(240)에서 모니터링된 복수의 분산전원들(110-1 내지 110-m)의 실제발전량을 기초로 개별 분산전원(110)의 출력변동 및 복수의 분산전원들(110-1 내지 110-m)의 출력변동을 분석한다.
그리고, 상기 VPP 분석부(254)는 상기 복수의 분산전원들(110-1 내지 110-m)의 출력변동 및 부하(120)의 수요변동에 의한 가상발전소(100)의 출력변동 및 오차를 분석할 수 있다.
또한, 상기 VPP 분석부(254)는 상기 모니터링모듈(240)에서 모니터링된 가상발전소(100)의 잉여전력량을 기초로 상기 복수의 분산전원들(110-1 내지 110-m)의 출력변동에 의한 가상발전소(100)의 출력변동 및 오차를 분석할 수 있다.
그리고, 상기 VPP 분석부(254)는 가상발전소(100) 내에 배치된 부하(120)의 수요반응 및 전력수요량을 예측하고, 상기 전력수요량을 기초로 상기 가상발전소(100)의 출력변동 및 오차를 분석할 수도 있다.
상기 VPP 출력조정 모듈(260)은 상기 분석모듈(250)의 분석결과를 기초로 가상발전소 출력조정 시스템(300)의 동작을 제어할 수 있다. 구체적으로, 상기 VPP 출력조정 모듈(260)은 가상발전소 출력조정 장치(310)의 전력소모량 및 발전량을 제어할 수 있다. 이를 통해서, 상기 VPP 출력조정 모듈(260)은 상기 가상발전소(100)에서 전력계통(10)으로 제공하는 출력량을 조정하고, 상기 가상발전소(100)의 출력변동을 안정화시킬 수 있다.
여기서, 상기 VPP 출력조정 모듈(260)은 상기 VPP입찰발전량, 가상발전소(100)의 구역주파수, 개별 분산전원(110)의 발전량, 개별 분산전원(110)의 개별입찰발전량, 및 전력계통 정보(예를 들어, 계통주파수,전력수급정보, 예비력량, 순부하량, 응동량, 신재생출력변동 등), 및 가상발전소의 외부(예를 들어, 전력거래소)에서 수신된 제어신호 중에서 적어도 하나를 이용하여 상기 가상발전소 출력조정 장치(310)의 전력소모량 및 발전량을 제어할 수 있다.
물론, 상기 VPP 출력조정 모듈(260)은 상기 VPP입찰발전량, 가상발전소(100)의 구역주파수, 개별 분산전원(110)의 발전량, 개별 분산전원(110)의 개별입찰발전량, 및 전력계통 정보(예를 들어, 계통주파수,전력수급정보, 예비력량, 순부하량, 응동량, 신재생출력변동 등), 및 가상발전소의 외부(예를 들어, 전력거래소)에서 수신된 제어신호 등을 복합적으로 고려해서 상기 가상발전소 출력조정 장치(310)의 전력소모량 및 발전량을 제어할 수도 있다.
그리고, 상기 VPP 출력조정 모듈(260)은 본 발명의 한 실시예에 따른 전력소모량 제어부(262) 및 발전량 제어부(264)를 포함할 수 있다.
상기 전력소모량 제어부(262)는 상기 VPP입찰발전량, 가상발전소(100)의 구역주파수, 개별 분산전원(110)의 발전량, 개별 분산전원(110)의 개별입찰발전량, 전력계통 정보, 및 가상발전소의 외부에서 수신된 제어신호 등을 기초로 상기 가상발전소 출력조정 장치(310)의 전력소모량 또는 열생산량을 제어할 수 있다.
그리고, 상기 발전량 제어부(254)는 상기 VPP입찰발전량, 가상발전소(100)의 구역주파수, 개별 분산전원(110)의 발전량, 개별 분산전원(110)의 개별입찰발전량, 전력계통 정보, 및 가상발전소의 외부에서 수신된 제어신호를 기초로 가상발전소 출력조정 장치(310)의 발전량을 제어할 수 있다.
도 3은 본 발명의 한 실시예에 따른 가상발전소 출력조정 시스템의 개략적인 구성을 나타낸 블록도이다. 이때, 가상발전소 출력조정 시스템(300)는 본 발명의 실시예에 따른 설명을 위해 필요한 개략적인 구성만을 도시할 뿐 이러한 구성에 국한되는 것은 아니다.
도 3을 참조하면, 본 발명의 한 실시예에 따른 가상발전소 출력조정 시스템(300)은 가상발전소 출력조정 장치(310), 열 저장 장치(340), 및 열 공급 장치(350)를 포함할 수 있다.
그리고, 상기 가상발전소 출력조정 장치(310)는 본 발명의 한 실시예에 따라 열변환장치(320) 및 신재생 열병합발전소(220)를 포함할 수 있다.
상기 열변환장치(320)는 상기 복수의 분산전원들에서 생산된 전력을 공급받고, 이를 열에너지로 변환한다. 그리고, 상기 열변환장치(320)는 변환된 상기 열에너지를 열 저장 장치(340) 또는 열 공급 장치(350)에 공급할 수 있다.
여기서, 상기 열변환장치(320)는 보일러 또는 전열기 등을 포함할 수 있다. 그리고, 상기 열 저장 장치(340)는 상기 열에너지를 저장하는 축열조 등을 포함할 수 있다. 또한, 상기 열 공급 장치(350)는 열부하에 상기 열에너지를 공급하는 히트펌프 등을 포함할 수 있으나, 본 발명의 구성이 이에 한정되는 것은 아니다.
그리고, 상기 열변환장치(320)는 생산된 열에너지를 대용량의 축열조에 저장하고, 전력계통(10) 또는 가상발전소(100) 내에 배치된 열부하에 제공할 수 있다.
이와 같이, 본 발명은 가상발전소 출력조정 장치(310)에서 생산된 열에너지를 대용량으로 저장하여 열부하에 제공함으로써, 가상발전소의 출력을 안정화시킬 뿐만 아니라 에너지원의 낭비를 방지할 수 있는 환경을 제공한다.
상기 신재생 열병합발전소(330)는 상기 가상발전소(100)에 연계되며 신재생에너지원을 이용해서 전력을 생산할 수 있다. 그리고, 상기 신재생 열병합발전소(330)는 생산된 전력을 상기 가상발전소(100) 또는 상기 전력계통(10)에 공급할 수 있다. 그리고, 상기 신재생 열병합발전소(330)는 우드칩, 연료전지, 또는 부생가스 중 적어도 하나를 이용하여 전력을 생산할 수 있다.
그리고, 상기 가상발전소 관리 장치(200)는 상기 열변환장치(320)의 전력소모량 및 열생산량을 제어하거나, 상기 신재생 열병합발전소(330)의 발전량을 조절함으로써, 분산전원(110)의 출력변동에 의한 가상발전소의 출력변동을 안정화시킬 수 있다.
예를 들어, 상기 가상발전소 관리 장치(200)는 VPP예상출력량을 VPP입찰발전량과 비교하여 상기 열변환장치(320)의 전력소모량을 제어할 수 있다. 여기서, 상기 VPP예상출력량은 입찰기간 동안에 상기 가상발전소(100)에서 상기 전력계통(10)으로 공급될 것으로 예상되는 전력량을 포함하다.
그리고, 상기 가상발전소 관리 장치(200)는 상기 복수의 분산전원들에서 생산되는 발전량을 실시간으로 모니터링하고, 가상발전소(100)에서 실시간으로 발전되는 VPP발전량을 도출할 수 있다. 그리고, 상기 VPP예상출력량은 상기 VPP발전량에서 상기 가상발전소(100)의 부하(120)에서 소모되는 전력사용량을 차감하여 계산될 수 있다.
이때, 상기 가상발전소 관리 장치(200)는 상기 VPP예상출력량이 상기 VPP입찰발전량보다 큰 경우, 상기 VPP예상출력량과 상기 VPP입찰발전량의 차이만큼 상기 열변환장치(320)의 전력소모량을 증가시킬 수 있다.
이와 달리, 상기 VPP예상출력량이 상기 VPP입찰발전량보다 작은 경우, 상기 가상발전소 관리 장치(200)는 상기 열변환장치(320)의 열생산을 중단시킬 수도 있다.
또한, 상기 가상발전소 관리 장치(200)는 상기 VPP예상출력량과 상기 VPP입찰발전량을 비교하여 상기 신재생 열병합발전소(330)의 발전량을 제어할 수 있다.
이때, 상기 VPP예상출력량이 상기 VPP입찰발전량보다 작은 경우, 상기 가상발전소 관리 장치(200)는 상기 VPP예상출력량과 상기 VPP입찰발전량의 차이만큼 상기 신재생 열병합발전소(330)의 발전량을 증가시킬 수 있다.
그리고, 상기 가상발전소 관리 장치(200)는 전력계통의 계통주파수를 실시간으로 검출하고, 검출된 상기 계통주파수를 이용하여 상기 열변환장치(320)의 전력소모량을 결정할 수 있다.
물론, 상기 가상발전소 관리 장치(200)는 전력계통의 계통주파수를 실시간으로 검출하고, 검출된 상기 계통주파수를 이용하여 상기 신재생 열병합발전소(330)의 발전량을 제어할 수도 있다.
그리고, 상기 가상발전소 관리 장치(200)는 상기 가상발전소(100)의 구역주파수를 실시간으로 검출하고, 검출된 상기 구역주파수를 이용하여 상기 열변환장치(320)의 전력소모량을 결정할 수 있다.
또한, 상기 가상발전소 관리 장치(200)는 상기 가상발전소(100)의 구역주파수를 실시간으로 검출하고, 검출된 상기 구역주파수를 이용하여 상기 신재생 열병합발전소(330)의 발전량을 제어할 수도 있다.
상기 가상발전소 관리 장치(200)는 개별 분산전원(110)의 발전량을 실시간으로 모니터링하고, 상기 개별 분산전원(110)의 발전량을 기초로 상기 열변환장치(320)의 열생산량을 실시간으로 조절할 수 있다.
또한, 상기 가상발전소 관리 장치(200)는 개별 분산전원(110)의 발전량을 실시간으로 분석하고, 상기 개별 분산전원(110)의 실제 발전량을 기초로 상기 신재생 열병합발전소(330)의 발전량을 실시간으로 조절할 수도 있다.
상기 가상발전소 관리 장치(200)는 입찰기간 동안 발전할 수 있는 개별 분산전원(110)의 발전량을 예측하여 상기 개별 분산전원(110)의 개별입찰발전량을 결정한다. 그리고, 상기 가상발전소 관리 장치(200)는 상기 개별입찰발전량과 상기 개별 분산전원의 실제발전량을 비교하고, 상기 개별 분산전원(110)의 개별입찰발전량과 상기 실제발전량의 차이를 기초로 상기 열변환장치(320)의 전력소모량 또는 열생산량을 조정할 수 있다.
예를 들어, 상기 가상발전소 관리 장치(200)는 상기 입찰기간 동안 상기 개별 분산전원(110)의 실제발전량이 상기 개별입찰발전량을 초과하는 경우, 상기 실제발전량과 상기 개별입찰발전량의 차이만큼 상기 열변환장치의 전력소모량 또는 열생산량을 증가시킬 수 있다.
그리고, 상기 가상발전소 관리 장치(200)는 상기 입찰기간을 복수의 구간으로 분할하고, 각 구간별로 개별 분산전원(110)의 실제발전량의 구간평균값을 도출하며, 상기 구간별로 각 구간의 구간평균값을 상기 개별입찰발전량과 비교하여 상기 열변환장치(320)의 열생산량을 제어할 수 있다.
또한, 상기 가상발전소 관리 장치(200)는 입찰간격 동안 발전할 수 있는 개별 분산전원(110)의 평균발전량을 예측하고, 예측된 상기 평균발전량을 기초로 상기 개별 분산전원(110)의 개별입찰발전량을 결정할 수 있다. 그리고, 상기 가상발전소 관리 장치(200)는 상기 입찰기간 동안 상기 개별 분산전원(110)에 의한 출력값을 상기 개별입찰발전량으로 유지시킬 수 있도록, 상기 개별 분산전원(110)의 실제발전량을 기초로 상기 신재생 열병합발전소(330)의 발전량을 실시간으로 조절할 수 있다.
예를 들어, 상기 가상발전소 관리 장치(200)는 상기 입찰기간 동안 상기 개별 분산전원에 의한 실제발전량의 평균값이 상기 개별입찰발전량 보다 작은 경우, 상기 신재생 열병합발전소(330)의 발전량을 증가시킬 수 있다.
또한, 상기 가상발전소 관리 장치(200)는 상기 입찰기간을 복수의 구간으로 분할하고, 각 구간별로 개별 분산전원(110)의 실제발전량의 구간평균값을 도출하며, 상기 구간별로 각 구간의 구간평균값을 상기 개별입찰발전량과 비교하여 상기 신재생 열병합발전소(330)의 발전량을 제어할 수 있다.
도 4는 본 발명의 한 실예에 따라 가상발전소에 연계된 분산전원의 발전량을 예측하여 입찰을 진행하고, 가상발전소 출력조정 장치를 제어하여 가상발전소의 출력을 안전화시키는 과정을 간략히 도시한 흐름도이다. 이때, 이하의 흐름도는 도 1 내지 도 3의 구성과 연계하여 동일한 도면부호를 사용하여 설명한다.
도 4을 참조하면, 본 발명의 한 실시예에 따른 가상발전소 관리 장치(200)는 가상발전소(100)에 연계된 복수의 분산전원들(110-1 내지 110-m)의 예상발전량을 예측한다(S102). 여기서, 상기 가상발전소 관리 장치(200)는 각각의 분산전원의 특성 및 발전용량을 기초로 각각의 분산전원의 예상발전량을 예측할 수 있다.
그리고, 상기 가상발전소 관리 장치(200)는 전력거래소(20)와 입찰을 진행하고, 가상발전소(100)에서 전력계통(10)으로 공급하는 VPP입찰발전량을 결정할 수 있다(S104).
여기서, 상기 가상발전소 관리 장치(200)는 상기 복수의 분산전원들(110-1 내지 110-m)의 예상발전량을 합산하여 VPP예상발전량을 도출하며, 상기 VPP예상발전량을 기초로 전력거래소(20)와 입찰을 진행하여 상기 VPP입찰발전량을 결정할 수 있다.
예를 들어, 상기 VPP예상발전량은 상기 가상발전소(100)에 연계된 복수의 분산전원들(110-1 내지 110-m)이 특정시점 또는 입찰기간 동안에 발전할 수 있는 VPP최소발전량과 VVP최대발전량을 포함할 수 있다. 그리고, 상기 VPP입찰발전량은 상기 VPP최소발전량과 VVP최대발전량의 사이의 값으로 결정될 수 있다.
그리고, 상기 가상발전소 관리 장치(200)는 상기 복수의 분산전원들(110-1 내지 110-m)의 출력변동에 의한 상기 가상발전소(100)의 출력변동 및 오차를 분석한다(S106).
그리고, 상기 가상발전소 관리 장치(200)는 상기 분석결과를 기초로 상기 가상발전소 출력조정 장치(310)의 전력소모량 및 전력생산량을 제어할 수 있다(S108).
여기서, 상기 가상발전소 관리 장치(200)는 전력거래소(20)와의 상기 VPP입찰발전량, 개별 분산전원(110)의 발전량, 전력계통(10)의 계통정보(예를 들어, 주파수,전력수급, 예비력량, 순부하량, 응동량, 신재생출력변동 등), 또는 가상발전소(100)의 외부(예를 들어, 전력거래소)에서 수신된 제어신호 중 적어도 하나를 기초로 상기 가상발전소 출력조정 장치(310)의 동작을 제어할 수 있다.
그리고, 상기 가상발전소 관리 장치(200)는 상기 가상발전소 출력조정 장치(310)의 동작을 통해서 상기 가상발전소(100)의 출력변동 및 오차 조정하여 상기 가상발전소(100)의 출력변동을 안정화시킬 수 있다(S110).
예를 들어, 본 발명은 가상발전소(100)의 잉여전력을 활용하여 상기 가상발전소 출력조정 장치(310)로 열에너지를 생산하고, 생산된 열에너지를 열부하에 제공하며, 이와 동시에 가상발전소(100)의 출력을 안정화시킬 수 있다.
또한, 본 발명은 가상발전소(100)의 부족한 출력을 상기 가상발전소 출력조정 장치(310)에서 생산된 전력으로 보충시켜 가상발전소(100)의 출력을 안정화시킬 수도 있다.
도 5는 전력계통에서 일반적인 일일 전력수요곡선을 도시한 그래프이고, 도 6은 변동성 전원의 출력 증가로 인한 순부하량의 변화를 도시한 그래프이다.
도 5 및 도 6을 참조하면, 전력계통(10)에 연계된 변동성 전원이나 가상발전소(100)에 연계된 분산전원의 출력변동성 증가시에 순부하량은 덕커브 형태로 형성된다. 특히, 전력계통(10) 또는 가상발전소(100)에 연계되는 변동성 전원(예를 들어, 신재생 에너지원)의 비중이 증가될 경우, 일출 후 전력부하가 급감하고, 일몰 후 전력부하가 급증하는 현상으로 인해서, 전력수요곡선이 기존의 전력수요곡선과는 다른 패턴으로 변화될 것으로 예상된다. 또한, 덕커브 현상이 심화되는 경우에는 전력수요예측 오차가 증가되고, 제약비용이 증가되는 어려움이 예상된다.
예를 들어, 신재생 에너지원인 풍력 발전기는 풍속에 의해서 출력이 크게 좌우되며, 태양광 발전기는 태양광 모듈의 일사량에 의해서 출력이 좌우된다. 그리고, 풍력 및 태양광 같은 신재생 에너지원은 낮 시간대에 출력이 증가되며, 이로 인해서 전력계통(10)이나 가상발전소(100)의 총부하량에서 신재생 에너지원의 출력량을 차감한 전력계통(10)이나 가상발전소(100)의 순부하량이 크게 감소된다.
특히, 신재생 에너지원의 출력변동성이 큰 계절의 낮 시간대에 신재생 에너지원이 전력계통(10)이나 가상발전소(100)에 연계되어 있는 경우, 전력계통(10) 또는 가상발전소(100)의 전력수급 불균형을 야기하고, 전력계통(10)의 계통주파수 또는 가상발전소(100)의 구역주파수가 불안정해지는 문제가 발생된다.
따라서, 본 발명은 가상발전소 출력조정 장치(310)를 가상발전소(100)에 연계시키고, 상기 가상발전소 출력조정 장치(310)의 전력소모량 및 발전량을 조절하여 가상발전소(100)의 잉여전력을 소모하거나 가상발전소(100)의 부족한 출력을 보충함으로써, 분산전원들의 출력변동에 의한 가상발전소의 출력변동 및 오차를 해소하고, 가상발전소의 출력을 안정화시킬 수 있는 환경을 제공한다.
도 7은 본 발명의 한 실예에 따라 개별 분산전원의 예상 발전량을 기초로 VPP예상발전량을 도출하고, 도출된 VPP예상발전량을 이용해 VPP입찰발전량을 결정하는 과정을 간략히 도시한 흐름도이다. 이때, 이하의 흐름도는 도 1 내지 도 3의 구성과 연계하여 동일한 도면부호를 사용하여 설명한다.
도 7을 참조하면, 본 발명의 한 실시예에 따른 가상발전소 관리 장치(200)는 개별 분산전원(110)의 특성을 분석한다(S202). 여기서, 개별 분산전원은 풍력 발전기, 태양광 발전기, 지열발전기, 연료전지, 바이오 에너지, 해양에너지, 또는 출력조정이 안되는 변동성 전원 중 적어도 하나를 포함할 수 있다.
그리고, 상기 가상발전소 관리 장치(200)는 개별 분산전원(110)의 특성을 기초로 소정기간(예를 들어, 입찰기간) 동안에 개별 분산전원(110)이 발전할 수 있는 예상발전량을 도출할 수 있다(S204).
그리고, 상기 가상발전소 관리 장치(200)는 복수의 분산전원들(110-1 내지 110-m)의 예상발전량을 합산하여 VPP예상발전량을 도출할 수 있다(S206 및 S208). 여기서, 상기 VPP예상발전량은 가상발전소(100)에 연계된 복수의 분산전원들(110-1 내지 110-m)이 특정시점 또는 입찰기간 동안에 발전할 수 있는 발전량을 포함한다.
그리고, 상기 가상발전소 관리 장치(200)는 상기 입찰기간 동안 가상발전소(100)에서 전력계통(10)으로 출력하는 VPP입찰발전량을 결정할 수 있다(S210). 여기서, 상기 VPP입찰발전량은 상기 입찰기간 동안 상기 가상발전소(100)에서 상기 전력계통(10)으로 공급하는 전력공급량 또는 전력출력량을 포함한다.
도 8은 본 발명의 한 실예에 따른 개별 분산전원들의 예상발전량 및 평균발전량을 나타내는 그래프이고, 도 9는 본 발명의 한 실예에 따라 가상발전소의 VPP예상발전량과 VPP입찰발전량을 도시한 그래프이다.
도 8 및 도 9를 참조하면, 상기 가상발전소 관리 장치(200)는 복수의 분산전원들(110-1 내지 110-m) 각각의 특성을 분석하여 각각의 분산전원의 예상발전량(P
DER1_예상 내지 P
DERm_예상) 및 평균발전량(P
DER1_평균 내지 P
DERm_평균)을 예측할 수 있다.
그리고, 상기 가상발전소 관리 장치(200)는 복수의 분산전원들(110-1 내지 110-m)의 예상발전량(P
DER1_예상 내지 P
DERm_예상) 또는 평균발전량(P
DER1_평균 내지 P
DERm_평균)을 합산하여 가상발전소(100)의 발전량을 도출할 수 있다.
예를 들어, 상기 가상발전소 관리 장치(200)는 상기 가상발전소(100)에 연계된 복수의 분산전원들(110-1 내지 110-m)이 특정시점 또는 입찰기간 동안에 발전할 수 있는 예상발전량(P
DER1_예상 내지 P
DERm_예상)을 합산하여 VPP예상발전량(P
vpp_예상발전량)을 도출할 수 있다.
여기서, VPP예상발전량(P
vpp_예상발전량)은 가상발전소(100)의 최소발전량인 VPP최소발전량(P
vpp_min)과 가상발전소(100)의 최대발전량인 VVP최대발전량(P
vpp_max)을 포함할 수 있다.
그리고, 상기 가상발전소 관리 장치(200)는 상기 VPP예상발전량(P
vpp_예상발전량)을 기초로 입찰기간 동안 상기 가상발전소(100)에서 상기 전력계통(10)으로 출력하는 VPP입찰발전량(P
vpp입찰발전량)을 결정할 수 있다.
이때, 상기 VPP입찰발전량(P
vpp입찰발전량)은 상기 VPP최소발전량(P
vpp_min)과 VVP최대발전량(P
vpp_max)의 사이의 값을 가질 수 있다. 그리고, 상기 VPP입찰발전량(P
vpp입찰발전량)은 복수의 분산전원들(110-1 내지 110-m)의 평균발전량(P
DER1_평균 내지 P
DERm_평균)을 합산한 값일 수도 있다.
도 10은 본 발명의 한 실예에 따라 VPP예상출력량과 VPP입찰발전량을 비교하여 가상발전소 출력조정 장치를 제어하는 과정을 간략히 도시한 흐름도이다. 이때, 이하의 흐름도는 도 1 내지 도 3의 구성과 연계하여 동일한 도면부호를 사용하여 설명한다.
도 10을 참조하면, 본 발명의 한 실시예에 따른 가상발전소 관리 장치(200)는 전력거래소(20)와 입찰을 진행하고, 가상발전소(100)에서 전력계통(10)으로 공급하는 VPP입찰발전량을 결정한다(S302). 여기서, 상기 VPP입찰발전량은 입찰기간 동안 상기 가상발전소(100)에서 상기 전력계통(10)으로 공급하는 전력공급량 또는 전력출력량을 포함할 수 있다.
그리고, 상기 가상발전소 관리 장치(200)는 상기 가상발전소(100)에 연계된 복수의 분산전원들(110-1 내지 110-m)에서 생산되는 발전량을 실시간으로 모니터링하고, 상기 가상발전소(100)에서 발전되는 VPP발전량을 도출한다.(S304). 여기서, 상기 VPP발전량은 특정시점 또는 입찰기간 동안에 상기 복수의 분산전원들(110-1 내지 110-m)에서 각각 생산되는 발전량의 총합을 포함할 수 있다.
그리고, 상기 가상발전소 관리 장치(200)는 상기 VPP발전량에서 가상발전소(100)의 부하(120)에서 소모되는 전력사용량을 차감하여 VPP예상출력량을 계산한다(S306). 여기서, 상기 VPP예상발전량은 상기 가상발전소(100)에 연계된 복수의 분산전원들(110-1 내지 110-m)이 특정시점 또는 입찰기간 동안에 발전할 수 있는 발전량을 포함할 수 있다.
그리고, 상기 가상발전소 관리 장치(200)는 상기 VPP발전량 또는 상기 VPP예상출력량을 상기 VPP입찰발전량을 비교하여 상기 가상발전소 출력조정 장치(310)의 동작을 제어할 수 있다.
예를 들어, 분산전원(110)의 발전량이 감소하여 상기 VPP발전량이 상기 VPP입찰발전량 보다 큰 경우에, 상기 가상발전소 관리 장치(200)는 신재생 열병합발전소(330)의 발전량 또는 전력생산량을 증기시키도록 제어할 수 있다(S308 및 S310).
이때, 가상발전소(100)에 연계된 부하(120)의 전력사용량이 급격하게 증가하여 상기 VPP예상출력량이 상기 VPP입찰발전량 보다 작아지는 경우에도 상기 신재생 열병합발전소(330)의 발전량을 증기시키도록 제어할 수도 있다.
그리고, 가상발전소 관리 장치(200)는 상기 VPP발전량과 상기 VPP입찰발전량의 차이값 또는 상기 VPP예상출력량과 상기 VPP입찰발전량의 차이값에 비례하여 상기 신재생 열병합발전소(330)의 발전량의 크기를 제어할 수도 있다.
또한, 분산전원(110)의 발전량이 증가하거나 부하(120)의 전력사용량이 급감하여 상기 VPP발전량이나 상기 VPP예상출력량이 상기 VPP입찰발전량 보다 큰 경우에는 상기 열변환장치(320)의 전력소모량을 증가시키도록 제어할 수 있다(S312 및 S314). 이때, 상기 가상발전소 관리 장치(200)는 상기 VPP발전량과 상기 VPP입찰발전량의 차이값 또는 상기 VPP예상출력량과 상기 VPP입찰발전량의 차이값에 비례하여 상기 열변환장치(320)의 전력소모량의 크기를 제어할 수도 있다.
도 11은 본 발명의 한 실예에 따라 VPP예상출력량과 VPP입찰발전량을 비교하여 가상발전소 출력조정 장치를 제어하는 예를 도시한 그래프이다.
도 11을 참조하면, 본 발명의 한 실시예에 따른 가상발전소 관리 장치(200)는 VPP입찰발전량(P
vpp입찰발전량)과 VPP예상출력량(P
vpp예상출력량)을 실시간으로 비교하여 열변환장치(320)의 전력소모량 및 신재생 열병합발전소(330)의 발전량을 실시간으로 제어할 수 있다.
예를 들어, 상기 VPP예상출력량(P
vpp예상출력량)이 상기 VPP입찰발전량(P
vpp입찰발전량) 보다 작은 구간(t0~t1, t2~t3, t4~t5)에서는 상기 신재생 열병합발전소(330)의 발전량을 증가시킬 수 있다.
그리고, 본 발명은 신재생 열병합발전소(330)에서 생산된 전력을 상기 가상발전소(100) 또는 상기 전력계통(10)에 공급하여 상기 가상발전소(100)의 부족한 발전량 및 출력량을 보충할 수 있다.
또한, 상기 VPP예상출력량(P
vpp예상출력량)이 상기 VPP입찰발전량(P
vpp입찰발전량) 보다 큰 구간(t1~t2, t3~t4)에서는 상기 열변환장치(320)의 전력소모량을 조절하여 가상발전소(100)의 잉여전력을 소모할 수 있다.
물론, 상기 VPP예상출력량(P
vpp예상출력량)이 상기 VPP입찰발전량(P
vpp입찰발전량) 보다 큰 구간(t1~t2, t3~t4)이지만, 부하(120)의 전력사용량이 급격하게 증가하여 상기 VPP예상출력량이 상기 VPP입찰발전량 보다 작아지는 경우에는 상기 신재생 열병합발전소(330)의 발전량을 증기시키도록 제어할 수 있다.
도 12는 본 발명의 한 실예에 따라 전력계통의 계통주파수 또는 가상발전소의 구역주파수를 모니터링하여 가상발전소 출력조정 장치를 제어하는 과정을 간략히 도시한 흐름도이다. 이때, 이하의 흐름도는 도 1 내지 도 3의 구성과 연계하여 동일한 도면부호를 사용하여 설명한다.
도 12를 참조하면, 본 발명의 한 실시예에 따른 가상발전소 관리 장치(200)는 전력계통(10)의 계통주파수 또는 가상발전소(100)의 구역주파수를 실시간으로 검출하고 주파수 변화를 모니터링한다(S402).
그리고, 상기 가상발전소 관리 장치(200)는 상기 계통주파수 또는 상기 구역주파수를 설정값과 비교하여 상기 가상발전소 출력조정 장치(310)의 동작을 제어할 수 있다.
예를 들어, 전력계통(10)에 연계된 변동성 전원의 출력이 급변하거나, 발전기 탈락 또는 대규모 부하 급증으로 인하여 전력계통(10)의 계통주파수가 급변할 수 있다. 이때, 본 발명은 상기 계통주파수 또는 상기 구역주파수를 설정값과 비교하고, 상기 가상발전소 출력조정 장치(310)의 동작을 제어할 수 있다.
그리고, 본 발명은 상기 가상발전소 출력조정 장치(310)의 동작을 통해서 가상발전소(100)의 출력량을 조절할 수 있고, 결과적으로 전력계통(10)의 계통주파수를 소정범위 이내로 유지시킬 수 있다.
또한, 가상발전소(100)에 연계된 분산전원(110)의 출력이 급변하여 가상발전소(100)의 구역주파수가 급변할 수 있다. 이때에도, 본 발명은 상기 계통주파수 또는 상기 구역주파수를 설정값과 비교하여 가상발전소 출력조정 장치(310)의 동작을 제어할 수 있다. 그리고, 본 발명은 상기 가상발전소 출력조정 장치(310)의 동작을 통해서 가상발전소(100)의 출력을 안정적으로 유지시킬 수 있다.
예를 들어, 가상발전소 관리 장치(200)는 상기 계통주파수 또는 상기 구역주파수가 기설정된 제1주파수설정값 보다 큰 경우에는 열변환장치(320)의 전력소모량을 증가시키도록 제어할 수 있다(S404 및 S406).
또한, 가상발전소 관리 장치(200)는 상기 계통주파수 또는 상기 구역주파수가 기설정된 제2주파수설정값 보다 작은 경우에는 상기 신재생 열병합발전소(330)의 발전량을 증가시키도록 제어할 수 있다(S408 및 S410).
물론, 상기 가상발전소 관리 장치(200)는 상기 계통주파수와 상기 구역주파수를 직접적으로 비교하고, 상기 비교결과를 기초로 상기 가상발전소 출력조정 장치(310)의 동작을 제어할 수도 있다.
도 13은 본 발명의 한 실예에 따라 개별 분산전원의 발전량을 모니터링하여 가상발전소 출력조정 장치를 제어하는 과정을 간략히 도시한 흐름도이다. 이때, 이하의 흐름도는 도 1 내지 도 3의 구성과 연계하여 동일한 도면부호를 사용하여 설명한다.
도 13을 참조하면, 본 발명의 한 실시예에 따른 가상발전소 관리 장치(200)는 개별 분산전원(110)의 예상발전량을 예측한다(S502).
그리고, 상기 가상발전소 관리 장치(200)는 개별 분산전원(110)의 상기 예상발전량을 분석하고, 개별 분산전원(110)이 입찰기간 동안에 발전할 수 있는 총발전량 중에서, 상기 입찰기간 동안에 전력계통(10)으로 공급하는 개별 분산전원(110)의 개별입찰발전량을 결정할 수 있다(S504).
또한, 상기 가상발전소 관리 장치(200)는 개별 분산전원(110)의 상기 예상발전량과 개별 분산전원(110)의 상기 개별입찰발전량을 비교하고, 상기 가상발전소 출력조정 장치(310)의 동작을 사전에 예측할 수 있다. 그리고, 상기 가상발전소 관리 장치(200)는 상기 예상발전량과 상기 개별입찰발전량을 비교결과를 이용하여 상기 가상발전소 출력조정 장치(310)의 전력소모량 및 발전량을 미리 분석할 수 있다(S506).
예를 들어, 상기 예상발전량이 상기 개별입찰발전량 보다 큰 경우에는, 가상발전소(100)를 안정화시키거나 개별 분산전원(110)의 출력을 일정하게 유지시킬 수 있도록, 상기 열변환장치(320)가 상기 개별 분산전원(110)의 잉여전력을 사용해야 하는 전력소모량의 크기나 양을 분석하고 예측할 수 있다(S508).
그리고, 상기 예상발전량이 상기 개별입찰발전량 보다 작은 경우에는 가상발전소(100)를 안정화시키거나 개별 분산전원(110)의 출력을 일정하게 유지시킬 수 있도록, 상기 신재생 열병합발전소(330)가 발전해야 하는 발전량의 크기나 양을 분석하고 예측할 수 있다(S510).
또한, 상기 가상발전소 관리 장치(200)는 개별 분산전원(110)이 실제로 발전하고 있는 실제발전량을 모니터링할 수 있다(S512). 그리고, 상기 가상발전소 관리 장치(200)는 개별 분산전원(110)의 실제발전량을 개별 분산전원(110)의 개별입찰발전량과 비교하고, 상기 비교결과를 기초로 상기 가상발전소 출력조정 장치(310)의 동작을 제어할 수 있다.
예를 들어, 개별 분산전원(110)의 실제발전량이 상기 개별입찰발전량 보다 큰 경우에는 상기 열변환장치(320)의 전력소모량을 증가시키도록 제어할 수 있다(S514 및 S516).
또한, 개별 분산전원(110)의 실제발전량이 상기 개별입찰발전량 보다 작은 경우에는 상기 신재생 열병합발전소(330)의 발전량을 증가시키도록 제어할 수 있다(S518).
즉, 본 발명은 개별 분산전원(110)의 실제발전량을 실시간으로 모니터링하고, 상기 개별 분산전원(110)의 실제발전량을 상기 개별 분산전원(110)의 개별입찰발전량과 비교하여 상기 열변환장치(320)의 전력소모량을 제어하거나 상기 신재생 열병합발전소(330)의 발전량을 제어함으로써, 개별 분산전원의 출력을 일정하게 유지시킬 수 있다. 그리고, 이를 통해서 본발명은 개별 분산전원(110)의 출력이 평탄화되어 가상발전소(100)에 제공되는 것과 같은 효과를 제공할 수 있다.
그리고, 본 발명은 개별 분산전원(110)의 상기 예상발전량과 상기 개별입찰발전량과 비교하여 상기 가상발전소 출력조정 장치(310)의 동작을 사전에 미리 예측 분석한 후에, 개별 분산전원(110)의 실제 발전량과 상기 개별입찰발전량을 실시간으로 비교하여 열변환장치(320) 및 신재생 열병합발전소(220)의 동작을 실시간으로 제어함으로써, 분산전원의 출력변동에 보다 효과적으로 대응할 수 있는 환경을 제공한다.
또한, 본 발명은 상기 개별 분산전원(110)의 입찰기간을 복수의 구간으로 분할하고, 각 구간별로 상기 개별 분산전원(110)의 실제발전량의 구간평균값을 도출할 수 있다. 그리고, 본 발명은 상기 구간별로 각 구간의 구간평균값을 상기 개별입찰발전량과 비교하여 상기 열변환장치(320) 및 상기 신재생 열병합발전소(220)의 동작을 제어할 수 있다.
물론, 본 발명은 상기 가상발전소(100)의 입찰기간을 복수의 구간으로 분할하고, 각 구간별로 상기 가상발전소(100)의 실제발전량의 구간평균값을 도출할 수도 있다. 그리고, 본 발명은 상기 구간별로 각 구간의 구간평균값을 VPP입찰발전량과 비교하여 상기 열변환장치(320) 및 상기 신재생 열병합발전소(220)의 동작을 제어할 수도 있다.
도 14는 본 발명의 한 실예에 따라 입찰기간을 복수의 구간으로 나누어 개별 분산전원의 발전량을 모니터링하며, 각각의 구간별로 개별 분산전원의 실제발전량을 모니터링하여 가상발전소 출력조정 장치를 제어하는 예를 도시한 그래프이다.
도 14를 참조하면, 본 발명의 한 실시예에 따른 가상발전소 관리 장치(200)는 개별 분산전원(110)의 입찰기간(ta 내지 te)을 복수의 구간으로 분할할 수 있다. 여기서, 상기 복수의 구간은 제1 구간(ta 내지 tb), 제2 구간(tb 내지 tc), 제3 구간(tc 내지 td), 및 제4 구간(td 내지 te)를 포함할 수 있다.
그리고, 본 발명의 한 실시예에 따른 가상발전소 관리 장치(200)는 개별 분산전원(110)의 실제발전량(P
DER_발전량)을 개별 분산전원(110)의 개별입찰발전량(P
DER_개별입찰발전량)과 비교하고, 상기 비교결과를 기초로 상기 가상발전소 출력조정 장치(310)의 전력소모량 또는 발전량을 실시간으로 제어할 수 있다.
또한, 본 발명의 한 실시예에 따른 가상발전소 관리 장치(200)는 각 구간별로 개별 분산전원(110)의 실제발전량의 구간평균값(P
DER_구간평균값)을 도출하고, 각 구간의 구간평균값(P
DER_구간평균값)과 상기 개별입찰발전량(P
DER_개별입찰발전량)을 비교하여 상기 가상발전소 출력조정 장치(310)의 동작을 제어할 수도 있다.
예를 들어, 상기 제1 구간(ta 내지 tb)과 상기 제4 구간(td 내지 te)은 상기 개별입찰발전량(P
DER_개별입찰발전량) 보다 제1구간평균값(P
DER_제1구간평균값) 및 제4구간평균값(P
DER_제4구간평균값)이 크므로, 상기 열변환장치(320)의 열생산량을 증가시킬 수 있다. 이때, 상기 열변환장치(320)의 열생산량은 상기 개별입찰발전량(P
DER_개별입찰발전량)과 제1구간평균값(P
DER_제1구간평균값)의 차이에 비례하거나, 또는 상기 개별입찰발전량(P
DER_개별입찰발전량)과 제4구간평균값(P
DER_제4구간평균값)의 차이에 비례할 수 있다.
또한, 상기 제2 구간(tb 내지 tc) 및 제3 구간(tc 내지 td)은 상기 개별입찰발전량(P
DER_개별입찰발전량) 보다 제2구간평균값(P
DER_제2구간평균값) 및 제3구간평균값(P
DER_제3구간평균값)이 작으므로, 상기 신재생 열병합발전소(330)의 발전량을 증가시킬 수 있다.
이때, 상기 신재생 열병합발전소(330)의 발전량은 상기 개별입찰발전량(P
DER_개별입찰발전량)과 제2구간평균값(P
DER_제2구간평균값)의 차이에 비례할 수 있다. 그리고, 신재생 열병합발전소(330)의 발전량은 상기 개별입찰발전량(P
DER_개별입찰발전량)과 제3구간평균값(P
DER_제3구간평균값)의 차이에 비례할 수 있다.
이와 같이, 본 발명의 한 실시예에 따른 가상발전소 시스템 및 가상발전소 운영 방법은 가상발전소에 가상발전소 출력조정 장치를 연계시키고, 가상발전소 출력조정 장치를 통해서 분산전원들의 출력변동에 의한 가상발전소의 출력변동 및 오차를 조정함으로써, 가상발전소의 출력을 안정화시킬 수 있는 환경을 제공한다.
또한, 본 발명은 가상발전소 출력조정 장치가 분산전원의 출력변동에 의해 과잉생산되는 잉여전력을 이용해 열에너지를 생산함으로써, 신재생 에너지원과 같이 출력 제어가 어려운 분산전원들의 출력변동에 의한 가상발전소의 출력변동을 최소화시키고, 가상발전소의 출력을 안정적으로 유지시킬 수 있다.
또한, 본 발명은 가상발전소 출력조정 장치에서 생산된 열에너지를 대용량으로 저장하여 열부하에 제공함으로써, 에너지원의 낭비를 방지할 수 있는 환경을 제공한다.
또한, 본 발명은 가상발전소에 신재생 열병합발전소를 분산전원으로 연계시키고, 분산전원들의 출력변동에 대응하여 상기 신재생 열병합발전소의 발전량을 조정하고, 상기 신재생 열병합발전소에서 발전된 전력으로 가상발전소의 부족한 출력을 보충함으로써, 신재생 에너지원과 같이 출력 제어가 어려운 분산전원들에 의해 발생되는 가상발전소의 출력부족 및 이로 인한 가상발전소의 출력변동을 최소화시켜 가상발전소의 출력을 안정적으로 유지시킬 수 있는 환경을 제공한다.
또한, 본 발명은 각 개별 분산전원의 예상발전량을 분석하고, 분산전원들의 예상발전량을 합산하여 VPP예상발전량을 도출하며, 상기 VPP예상발전량을 기초로 VPP입찰발전량을 도출함으로써, 최적의 입찰발전량을 효과적으로 결정할 수 있는 환경을 제공한다.
또한, 본 발명은 복수의 분산전원들에서 생산되는 발전량을 모니터링하여 가상발전소 내에서 실시간으로 발전되는 VPP발전량을 도출하고, 상기 VPP발전량과 VPP입찰발전량을 비교하여 열변환장치의 전력소모량 또는 신재생 열병합발전소의 발전량을 조정함으로써, 가상발전소의 출력을 안정적으로 유지시킬 수 있는 환경을 제공한다.
또한, 본 발명은 전력계통의 계통주파수 또는 가상발전소의 구역주파수를 실시간으로 검출하고, 검출된 주파수를 기초로 열변환장치의 전력소모량 또는 신재생 열병합발전소의 발전량을 제어함으로써, 변동성전원인 분산전원들의 출력변동으로 인한 전력계통의 계통주파수 급변 및 가상발전소의 구역주파수 급변을 방지할 수 있는 환경을 제공한다.
또한, 본 발명은 개별 분산전원의 발전량을 실시간으로 모니터링하고, 상기 개별 분산전원의 발전량과 개별 분산전원의 개별입찰발전량을 비교하여 열변환장치의 전력소모량 또는 신재생 열병합발전소의 발전량을 제어함으로써, 개별 분산전원의 출력을 일정하게 유지시키고, 이를 통해서 개별 분산전원의 출력이 평탄화되어 가상발전소에 제공되는 것과 같은 효과를 제공한다.
또한, 본 발명은 입찰기간 동안 개별 분산전원의 발전량을 예측하여 상기 개별 분산전원의 개별입찰발전량을 결정하고, 상기 개별입찰발전량과 상기 개별 분산전원의 발전량을 실시간으로 비교하며, 이를 기초로 열변환장치의 전력소모량을 제어하거나 신재생 열병합발전소의 발전량을 실시간으로 제어함으로써, 입찰기간 동안 개별 분산전원의 출력량을 상기 개별입찰발전량에 맞춰줄 수 있는 환경을 제공한다.
또한, 본 발명은 전력거래소와의 VPP입찰발전량, 개별 분산전원의 발전량, 전력계통의 계통정보, 또는 전력거래소에서 수신된 제어신호 중 적어도 하나를 기초로 가상발전소 출력조정 장치의 동작을 제어함으로써, 가상발전소의 출력을 안정적으로 유지시키고, 이를 통해서 전력계통을 안정적으로 유지시킬 수 있는 환경을 제공한다.
이상에서 설명한 본 발명의 실시예는 장치 및 방법을 통해서만 구현이 되는 것은 아니며, 본 발명의 실시예의 구성에 대응하는 기능을 실현하는 프로그램 또는 그 프로그램이 기록된 기록 매체를 통해 구현될 수도 있다. 이러한 기록 매체는 서버뿐만 아니라 사용자 단말에서도 실행될 수 있다.
이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.
Claims (27)
- 가상발전소에 연계된 복수의 분산전원들,상기 가상발전소와 연계되며, 상기 복수의 분산전원들에서 생산된 전력을 공급받아 열에너지로 변환하는 열변환장치를 포함하는 가상발전소 출력조정 장치, 그리고상기 복수의 분산전원들의 예상발전량을 예측하여 입찰을 집행하며, 상기 복수의 분산전원들의 출력변동에 의한 상기 가상발전소의 출력변동 및 오차를 분석하고, 상기 분석결과를 기초로 상기 가상발전소 출력조정 장치의 전력소모량을 제어하여 상기 가상발전소의 출력변동을 안정화시키는 가상발전소 관리 장치를 포함하는 열변환장치를 활용한 가상발전소 시스템.
- 제1항에서,상기 가상발전소 관리 장치는,각각의 분산전원의 특성 및 발전용량을 기초로 각각의 분산전원의 예상발전량을 분석하고, 상기 복수의 분산전원들의 예상발전량을 합산하여 가상발전소에서 발전하는 VPP예상발전량을 도출하며, 도출된 상기 VPP예상발전량을 기초로 VPP입찰발전량을 결정하는 것을 특징으로 하는 열변환장치를 활용한 가상발전소 시스템.
- 제2항에서,상기 가상발전소 관리 장치는,상기 복수의 분산전원들에서 생산되는 발전량을 실시간으로 모니터링하여 가상발전소에서 발전되는 VPP발전량을 도출하고, 상기 VPP발전량에서 상기 가상발전소의 부하에서 소모되는 전력사용량을 차감하여 VPP예상출력량을 계산하며, 상기 VPP예상출력량과 상기 VPP입찰발전량을 비교하여 상기 열변환장치의 전력소모량을 제어하는 것을 특징으로 하는 열변환장치를 활용한 가상발전소 시스템.
- 제3항에서,상기 가상발전소 관리 장치는,상기 VPP예상출력량이 상기 VPP입찰발전량보다 큰 경우, 상기 VPP예상출력량과 상기 VPP입찰발전량의 차이만큼 상기 열변환장치의 전력소모량을 증가시키는 것을 특징으로 하는 열변환장치를 활용한 가상발전소 시스템.
- 제4항에서,상기 가상발전소 관리 장치는,상기 VPP예상출력량이 상기 VPP입찰발전량보다 작은 경우, 상기 열변환장치의 열생산을 중단시키는 것을 특징으로 하는 열변환장치를 활용한 가상발전소 시스템.
- 제1항에서,상기 가상발전소 관리 장치는,전력계통의 계통주파수를 실시간으로 검출하고, 검출된 상기 계통주파수를 이용하여 상기 열변환장치의 전력소모량을 결정하는 것을 특징으로 하는 열변환장치를 활용한 가상발전소 시스템.
- 제1항에서,상기 가상발전소 관리 장치는,상기 가상발전소의 구역주파수를 실시간으로 검출하고, 검출된 상기 구역주파수를 이용하여 상기 열변환장치의 전력소모량을 결정하는 것을 특징으로 하는 열변환장치를 활용한 가상발전소 시스템.
- 제1항에서,상기 가상발전소 관리 장치는,개별 분산전원의 발전량을 실시간으로 모니터링하고, 상기 개별 분산전원의 발전량을 기초로 상기 열변환장치의 전력소모량을 실시간으로 조절하는 것을 특징으로 하는 열변환장치를 활용한 가상발전소 시스템.
- 제1항에서,상기 가상발전소 관리 장치는,개별 분산전원이 입찰기간 동안 발전할 수 있는 발전량을 예측하여 상기 개별 분산전원의 개별입찰발전량을 결정하되, 상기 개별입찰발전량과 상기 개별 분산전원의 실제발전량을 비교하여 상기 열변환장치의 전력소모량을 조정하는 것을 특징으로 하는 열변환장치를 활용한 가상발전소 시스템.
- 제9항에서,상기 가상발전소 관리 장치는,상기 입찰기간 동안 상기 개별 분산전원의 실제발전량이 상기 개별입찰발전량을 초과하는 경우, 상기 실제발전량과 상기 개별입찰발전량의 차이에 비례하여 상기 열변환장치의 전력소모량을 증가시키는 것을 특징으로 하는 열변환장치를 활용한 가상발전소 시스템.
- 제9항에서,상기 가상발전소 관리 장치는,입찰기간을 복수의 구간으로 분할하고, 각 구간별로 개별 분산전원의 실제발전량의 구간평균값을 도출하며, 상기 복수의 구간별로 각 구간의 구간평균값을 상기 개별입찰발전량과 비교하여 상기 열변환장치의 전력소모량을 제어하는 것을 특징으로 하는 열변환장치를 활용한 가상발전소 시스템.
- 제1항에서,상기 분산전원은,풍력 발전기, 태양광 발전기, 지열발전기, 연료전지, 바이오 에너지, 해양에너지, 또는 출력조정이 안되는 변동성 전원 중 적어도 하나를 포함하는 것을 특징으로 하는 열변환장치를 활용한 가상발전소 시스템.
- 제1항에서,상기 가상발전소 관리 장치는,상기 가상발전소 내에 배치된 부하의 전력수요량을 예측하고, 상기 전력수요량을 기초로 상기 가상발전소의 출력변동 및 오차를 분석하는 것을 특징으로 하는 열변환장치를 활용한 가상발전소 시스템.
- 제1항에서,상기 열변환장치는,생산된 열에너지를 대용량의 축열조에 저장하고, 가상발전소 내에 배치된 열부하에 제공하는 것을 특징으로 하는 열변환장치를 활용한 가상발전소 시스템.
- 제1항에서,상기 가상발전소 관리 장치는,가상발전소에 연계된 변동성 전원의 출력변동에 대응하기 위해서 분산전원들이 추가적으로 발전할 수 있는 응동량 또는 상기 변동성 전원의 출력변동에 대응하기 위해서 상기 분산전원들이 추가적으로 발전할 수 있는 응동 속도를 분석하고,상기 변동성 전원의 출력이 감소하여 가상발전소 내의 전력공급이 가상발전소 내에 배치된 부하의 전력수요량보다 작거나, 상기 분산전원들의 응동량 또는 응동속도가 상기 가상발전소 내에 배치된 부하의 전력수요량을 충족시키지 못하는 경우, 상기 가상발전소 출력조정 장치의 전력소모량을 조정하는 것을 특징으로 하는 열변환장치를 활용한 가상발전소 시스템.
- 가상발전소에 연계된 분산전원의 발전량을 예측하는 단계,상기 분산전원의 발전량을 기초로 상기 가상발전소의 출력변동 및 오차를 분석하는 단계, 그리고상기 분석결과를 기초로, 상기 가상발전소에 연계된 열변환장치의 열생산량을 조절하여 상기 가상발전소의 출력을 안정화시키는 단계를 포함하는 열변환장치를 활용한 가상발전소 운영 방법.
- 제16항에서,상기 가상발전소의 출력을 안정화시키는 단계는,상기 가상발전소의 VPP입찰발전량, 개별 분산전원의 발전량, 전력계통의 계통정보, 또는 가상발전소의 외부에서 수신된 제어신호 중 적어도 하나를 기초로 상기 열변환장치의 열생산량을 조절하는 것을 특징으로 하는 열변환장치를 활용한 가상발전소 운영 방법.
- 제16항에서,상기 가상발전소의 출력을 안정화시키는 단계는,전력계통의 계통주파수를 실시간으로 검출하는 단계, 그리고상기 계통주파수를 기초로 상기 열변환장치의 열생산량을 실시간으로 조절하는 단계를 포함하는 열변환장치를 활용한 가상발전소 운영 방법.
- 제16항에서,상기 가상발전소의 출력을 안정화시키는 단계는,상기 가상발전소의 구역주파수를 실시간으로 검출하는 단계, 그리고상기 구역주파수를 기초로 상기 열변환장치의 열생산량을 실시간으로 조절하는 단계를 포함하는 열변환장치를 활용한 가상발전소 운영 방법.
- 제16항에서,개별 분산전원의 발전량을 실시간으로 분석하는 단계, 그리고상기 개별 분산전원의 발전량을 기초로 상기 열변환장치의 열생산량을 실시간으로 조절하는 단계를 더 포함하는 열변환장치를 활용한 가상발전소 운영 방법.
- 제16항에서,입찰기간 동안 발전할 수 있는 분산전원의 발전량을 예측하여 상기 개별 분산전원의 개별입찰발전량을 결정하는 단계,상기 개별 분산전원에서 생산되는 발전량을 모니터링하는 단계, 그리고상기 입찰기간 동안 상기 개별 분산전원에 의한 출력값이 상기 개별입찰발전량을 유지시키도록, 상기 개별 분산전원의 발전량과 상기 개별입찰발전량을 비교하여 상기 열변환장치의 열생산량을 조정하는 단계를 더 포함하는 열변환장치를 활용한 가상발전소 운영 방법.
- 제21항에서,상기 열변환장치의 열생산량을 조정하는 단계는,상기 입찰기간 동안 상기 개별 분산전원의 발전량이 상기 개별입찰발전량을 초과하는 경우, 상기 발전량과 상기 개별입찰발전량의 차이에 비례하여 상기 열변환장치의 열생산량을 증가시키는 것을 특징으로하는 열변환장치를 활용한 가상발전소 운영 방법.
- 제21항에서,상기 열변환장치의 열생산량을 조정하는 단계는,상기 입찰기간을 복수의 구간으로 분할하는 단계, 그리고상기 복수의 구간 별로 개별 분산전원의 실제발전량의 구간평균값을 도출하는 단계를 포함하는 것을 특징으로 하는 열변환장치를 활용한 가상발전소 운영 방법.
- 제23항에서,상기 열변환장치의 열생산량을 조정하는 단계는,상기 복수의 구간별로 각 구간의 구간평균값을 상기 개별입찰발전량과 비교하여 상기 열변환장치의 열생산량을 제어하는 단계를 더 포함하는 것을 특징으로 하는 열변환장치를 활용한 가상발전소 운영 방법.
- 제16항에서,상기 가상발전소에 연계된 부하의 수요반응을 예측하는 단계, 그리고상기 부하의 수요반응을 기초로 상기 가상발전소의 출력변동 및 오차를 분석하는 단계를 더 포함하는 열변환장치를 활용한 가상발전소 운영 방법.
- 제16항에서,상기 가상발전소에 연계된 변동성 전원의 출력변동에 대응하기 위해서 분산전원들이 추가적으로 발전할 수 있는 응동량 또는 상기 변동성 전원의 출력변동에 대응하기 위해서 상기 분산전원들이 추가적으로 발전할 수 있는 응동 속도를 분석하는 단계, 그리고상기 분산전원들의 응동량 또는 응동속도가 상기 가상발전소 내에 배치된 부하의 전력수요량을 충족시키지 못하는 경우, 상기 열변환장치의 열생산량을 조정하는 단계를 더 포함하는 것을 특징으로 하는 열변환장치를 활용한 가상발전소 운영 방법.
- 가상발전소에 연계된 복수의 분산전원들에서 생산되는 발전량을 모니터링하여 VPP발전량을 도출하는 단계,상기 VPP발전량에서 상기 가상발전소의 부하에서 소모되는 전력사용량을 차감하여 VPP예상출력량을 계산하는 단계, 그리고상기 VPP예상출력량과 상기 VPP입찰발전량을 비교하여 상기 열변환장치의 열생산량을 제어하는 단계를 포함하는 열변환장치를 활용한 가상발전소 운영 방법.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21804480.8A EP4092860A4 (en) | 2020-05-15 | 2021-05-10 | VIRTUAL POWER PLANT SYSTEM WITH HEAT CONVERSION DEVICE AND METHOD OF OPERATING A VIRTUAL POWER PLANT WITH THESE |
JP2021574239A JP7309926B2 (ja) | 2020-05-15 | 2021-05-10 | 熱変換装置を活用した仮想発電所システムおよびそれを利用した仮想発電所の運営方法 |
CN202180006178.5A CN114641912A (zh) | 2020-05-15 | 2021-05-10 | 利用热变换装置的虚拟发电厂系统及利用该系统的虚拟发电厂运行方法 |
US17/634,537 US20220285939A1 (en) | 2020-05-15 | 2021-05-10 | Virtual power plant system using heat conversion device and virtual power plant operating method using the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200058705A KR102384981B1 (ko) | 2020-05-15 | 2020-05-15 | 열변환장치를 활용한 가상발전소 시스템 및 이를 이용한 가상발전소 운영 방법 |
KR10-2020-0058705 | 2020-05-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021230591A1 true WO2021230591A1 (ko) | 2021-11-18 |
Family
ID=78524484
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2021/005811 WO2021230591A1 (ko) | 2020-05-15 | 2021-05-10 | 열변환장치를 활용한 가상발전소 시스템 및 이를 이용한 가상발전소 운영 방법 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20220285939A1 (ko) |
EP (1) | EP4092860A4 (ko) |
JP (1) | JP7309926B2 (ko) |
KR (1) | KR102384981B1 (ko) |
CN (1) | CN114641912A (ko) |
WO (1) | WO2021230591A1 (ko) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102437934B1 (ko) * | 2020-05-15 | 2022-08-30 | 한국지역난방공사 | 가상발전소 전력거래 시스템 및 이를 이용한 가상발전소 전력거래 방법 |
KR102384980B1 (ko) * | 2020-05-15 | 2022-04-08 | 한국지역난방공사 | 신재생 열병합발전소를 활용한 가상발전소 시스템 및 이를 이용한 가상발전소 운영 방법 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013198197A (ja) * | 2012-03-16 | 2013-09-30 | Chugoku Electric Power Co Inc:The | 出力安定化システム |
JP2015073367A (ja) * | 2013-10-02 | 2015-04-16 | 大阪瓦斯株式会社 | 分散型電源システム |
KR20190076572A (ko) * | 2017-12-22 | 2019-07-02 | 포스코에너지 주식회사 | 신재생 에너지의 출력 안정화 시스템 및 방법 |
KR20200022255A (ko) * | 2018-08-22 | 2020-03-03 | 한국전자통신연구원 | 에너지 발전량 및 입찰량을 기초로 에너지 저장 장치를 최적화하는 방법 및 장치 |
KR20200022947A (ko) * | 2018-08-24 | 2020-03-04 | 홍익대학교 산학협력단 | 신재생 에너지원의 출력 변동에 따른 전력계통의 전력수급 제어 장치 및 이를 이용한 전력계통의 전력수급 제어 방법 |
Family Cites Families (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7199482B2 (en) * | 2005-06-30 | 2007-04-03 | General Electric Company | System and method for controlling effective wind farm power output |
US7274111B2 (en) * | 2005-12-09 | 2007-09-25 | General Electric Company | Methods and apparatus for electric power grid frequency stabilization |
US8095245B1 (en) * | 2009-07-29 | 2012-01-10 | Lockheed Martin Corporation | Thermal energy dispatch system |
US20110055036A1 (en) * | 2009-09-03 | 2011-03-03 | Meishar Immediate Community | Methods and systems for managing electricity delivery and commerce |
EP2580832B1 (en) * | 2010-06-10 | 2016-12-28 | Basic Holdings | Thermal storage device controller |
WO2012061763A2 (en) * | 2010-11-05 | 2012-05-10 | Bsst Llc | Energy management systems and methods with thermoelectric generators |
US8831788B2 (en) * | 2011-04-20 | 2014-09-09 | General Electric Company | Systems, methods, and apparatus for maintaining stable conditions within a power grid |
US9124098B2 (en) * | 2011-08-08 | 2015-09-01 | General Electric Company | Managing excess renewable energy |
US20130218355A1 (en) * | 2012-02-16 | 2013-08-22 | Spyros James Lazaris | Electricity grid data analytics as a moduled service for production, delivery, and distribution of power as a dynamic demand response within a renewable energy-based electricity grid infrastructure |
US20140163755A1 (en) * | 2012-12-11 | 2014-06-12 | Chevron Usa Inc. | Systems and methods for improving generator efficiency in an isolated power consumption system |
JP2014150641A (ja) * | 2013-01-31 | 2014-08-21 | Toshiba Corp | エネルギー管理システム、エネルギー管理方法、プログラムおよびサーバ装置 |
CN103236718B (zh) * | 2013-03-26 | 2014-12-31 | 东北大学 | 一种智能微网的源-网-荷自动控制系统及控制方法 |
JP2015023678A (ja) * | 2013-07-19 | 2015-02-02 | 中国電力株式会社 | 配電系統負荷制御システム |
EP3039767A4 (en) * | 2013-08-26 | 2017-10-18 | Robert Bosch GmbH | Dispatch controller for an energy system |
US11018523B2 (en) * | 2013-12-26 | 2021-05-25 | Green Power Labs Inc. | Utility grid, intermittent energy management system |
US10078315B2 (en) * | 2014-07-11 | 2018-09-18 | Nec Corporation | Collaborative balancing of renewable energy overproduction with electricity-heat coupling and electric and thermal storage for prosumer communities |
GB2547190A (en) * | 2016-02-03 | 2017-08-16 | St John Spencer Cave Piers | Heat storing and heat transfer systems |
US9778673B2 (en) * | 2014-08-26 | 2017-10-03 | Nec Corporation | Collaborative load balancing within a community of energy nodes |
DE102014017346A1 (de) * | 2014-10-17 | 2016-04-21 | Carbon-Clean Technologies Gmbh | Verfahren und Speicherkraftwerk zum Ausgleich von Lastspitzen bei der Energieerzeugung und/oder zur Erzeugung von elektrischer Energie |
US11070058B2 (en) * | 2014-10-26 | 2021-07-20 | Green Power Labs Inc. | Forecasting net load in a distributed utility grid |
NL2017316B1 (en) * | 2016-08-15 | 2018-02-21 | Danvest Energy As | Renewable energy supply system, island operation powerline and method |
WO2018156700A1 (en) * | 2017-02-22 | 2018-08-30 | Board Of Regents, The University Of Texas System | Building energy management and optimization |
EP3590222A4 (en) * | 2017-03-03 | 2020-12-30 | General Electric Company | MICRONNET ENERGY STORAGE TRANSACTION VERIFICATION VIA A SECURE DISTRIBUTED LEGER |
JP6678348B2 (ja) * | 2017-03-10 | 2020-04-08 | パナソニックIpマネジメント株式会社 | 分散型発電システム、及び該システムの運転計画の少なくとも一部を該システムの外部に与える方法 |
US10530163B2 (en) * | 2017-03-17 | 2020-01-07 | Rolls-Royce Corporation | Micro grid control system |
EP3695286A4 (en) * | 2017-10-11 | 2021-07-07 | The Solar Generation Company LLC | VERTICAL GLOBAL PLATFORM FOR ONLINE ENERGY TRADING |
US10554046B2 (en) * | 2017-12-18 | 2020-02-04 | International Business Machines Corporation | Virtualization of large-scale energy storage |
US11101658B2 (en) * | 2019-01-18 | 2021-08-24 | Non-Synchronous Energy Electronics, Llc | Techniques for electric power distribution and a system implementing the same |
DE102019201463A1 (de) * | 2019-02-05 | 2020-08-06 | Siemens Aktiengesellschaft | Energiesystem, lokaler Energiemarkt und Verfahren zum Betrieb eines Energiesystems |
US11909210B2 (en) * | 2019-10-30 | 2024-02-20 | Enerwise Global Technologies, LLC | Systems and methods for load management |
KR102384980B1 (ko) * | 2020-05-15 | 2022-04-08 | 한국지역난방공사 | 신재생 열병합발전소를 활용한 가상발전소 시스템 및 이를 이용한 가상발전소 운영 방법 |
KR102437934B1 (ko) * | 2020-05-15 | 2022-08-30 | 한국지역난방공사 | 가상발전소 전력거래 시스템 및 이를 이용한 가상발전소 전력거래 방법 |
-
2020
- 2020-05-15 KR KR1020200058705A patent/KR102384981B1/ko active IP Right Grant
-
2021
- 2021-05-10 CN CN202180006178.5A patent/CN114641912A/zh active Pending
- 2021-05-10 WO PCT/KR2021/005811 patent/WO2021230591A1/ko unknown
- 2021-05-10 US US17/634,537 patent/US20220285939A1/en active Pending
- 2021-05-10 EP EP21804480.8A patent/EP4092860A4/en active Pending
- 2021-05-10 JP JP2021574239A patent/JP7309926B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013198197A (ja) * | 2012-03-16 | 2013-09-30 | Chugoku Electric Power Co Inc:The | 出力安定化システム |
JP2015073367A (ja) * | 2013-10-02 | 2015-04-16 | 大阪瓦斯株式会社 | 分散型電源システム |
KR20190076572A (ko) * | 2017-12-22 | 2019-07-02 | 포스코에너지 주식회사 | 신재생 에너지의 출력 안정화 시스템 및 방법 |
KR20200022255A (ko) * | 2018-08-22 | 2020-03-03 | 한국전자통신연구원 | 에너지 발전량 및 입찰량을 기초로 에너지 저장 장치를 최적화하는 방법 및 장치 |
KR20200022947A (ko) * | 2018-08-24 | 2020-03-04 | 홍익대학교 산학협력단 | 신재생 에너지원의 출력 변동에 따른 전력계통의 전력수급 제어 장치 및 이를 이용한 전력계통의 전력수급 제어 방법 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4092860A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP4092860A1 (en) | 2022-11-23 |
CN114641912A (zh) | 2022-06-17 |
KR20210141272A (ko) | 2021-11-23 |
US20220285939A1 (en) | 2022-09-08 |
EP4092860A4 (en) | 2023-07-05 |
JP2022543966A (ja) | 2022-10-17 |
JP7309926B2 (ja) | 2023-07-18 |
KR102384981B1 (ko) | 2022-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021230593A1 (ko) | 신재생 열병합발전소를 활용한 가상발전소 시스템 및 이를 이용한 가상발전소 운영 방법 | |
WO2021230596A1 (ko) | 가상발전소 전력거래 시스템 및 이를 이용한 가상발전소 전력거래 방법 | |
WO2021230591A1 (ko) | 열변환장치를 활용한 가상발전소 시스템 및 이를 이용한 가상발전소 운영 방법 | |
WO2018052163A1 (ko) | Pcs 효율을 고려한 마이크로그리드 운영장치 및 운영방법 | |
WO2020122475A1 (en) | Energy storage system and controlling method thereof | |
WO2018199658A1 (ko) | 전력설비의 자산관리 방법 | |
WO2019225834A1 (ko) | 에너지 저장 장치와 태양광 발전을 이용한 전력 공급 제어 시스템 및 방법 | |
WO2019151639A1 (ko) | 독립형 다중 마이크로 그리드 시스템에서 서로 다른 주파수 품질을 유지하기 위한 드롭 주파수 제어기 및 이를 이용한 독립형 다중 마이크로 그리드 시스템 | |
WO2016006977A1 (en) | Apparatus, server, system and method for energy measuring | |
WO2017069555A1 (en) | Power supply device and power supply system including the same | |
WO2019107806A1 (ko) | 계층형 전력 제어 시스템 | |
WO2014017832A1 (ko) | 에이전트 기반 에너지 관리 시스템 및 방법 | |
WO2010032909A1 (ko) | 풍력 발전기의 피치 제어 장치 및 시스템 | |
WO2023140566A1 (ko) | 성능 상태 회로와 우회 회로가 장착된 태양광 모듈용 직렬 연결 차동 전력 변환기 | |
WO2019156373A1 (ko) | 계통 연계형 인버터 시스템 | |
WO2011083967A2 (ko) | 네트워크 시스템 | |
WO2020251273A1 (ko) | 모니터링 장치, 및 이를 구비하는 태양광 시스템 | |
WO2023085560A1 (ko) | 제약 강화 학습이 적용된 이산 산업 제조 시스템의 수요반응 관리 방법 | |
WO2018139797A1 (ko) | 에너지 관리 장치 및 그의 동작 방법 | |
WO2018199667A1 (ko) | 태양광 발전 시스템 및 그 제어 방법 | |
WO2023200201A1 (ko) | 마이크로그리드 시스템 및 그 제어 방법 | |
WO2015105210A1 (ko) | 수요반응자원과 에너지저장장치를 포함하는 장기전원구성 포트폴리오 시스템 | |
WO2023158100A1 (ko) | 수요 반응 자원의 최적 운영을 위한 에너지 저장 시스템 및 이의 운영 방법 | |
WO2011025304A2 (ko) | 네트워크 시스템 | |
WO2023249187A1 (ko) | 태양광 발전 시스템 및 전기자동차 충전 시스템과 연동하는 에너지 저장 시스템 및 이의 운영 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2021574239 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21804480 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021804480 Country of ref document: EP Effective date: 20220818 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |