WO2021230265A1 - Hydrogen gas separator - Google Patents

Hydrogen gas separator Download PDF

Info

Publication number
WO2021230265A1
WO2021230265A1 PCT/JP2021/017967 JP2021017967W WO2021230265A1 WO 2021230265 A1 WO2021230265 A1 WO 2021230265A1 JP 2021017967 W JP2021017967 W JP 2021017967W WO 2021230265 A1 WO2021230265 A1 WO 2021230265A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
hydrogen
porous membrane
flow path
membrane
Prior art date
Application number
PCT/JP2021/017967
Other languages
French (fr)
Japanese (ja)
Inventor
正章 永井
Original Assignee
株式会社ハイドロネクスト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ハイドロネクスト filed Critical 株式会社ハイドロネクスト
Priority to JP2022521948A priority Critical patent/JPWO2021230265A1/ja
Publication of WO2021230265A1 publication Critical patent/WO2021230265A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/08Flat membrane modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids

Definitions

  • the present invention relates to the separation of hydrogen gas.
  • Patent Document 1 describes a hydrogen separation device that separates hydrogen from a raw material gas, which is a raw material gas containing hydrogen, by using a hydrogen permeable film formed of a non-palladium-based metal or an alloy of a non-palladium-based metal that allows hydrogen to permeate. It is described (Patent Document 1).
  • Patent Document 1 For example, in order to improve hydrogen permeability, in Patent Document 1, in order to form a flow path having a predetermined width for distributing a raw material gas along the surface on the primary side of the hydrogen permeable membrane, the primary hydrogen permeable membrane is used. It is described that the flow path forming portion is provided so as to be separated from the side surface by a predetermined width.
  • An object of the present invention is to provide a hydrogen separation device capable of dealing with various conditions regarding the composition of a gas as a raw material and the partial pressure of hydrogen.
  • the present invention is in contact with an inflow portion that takes in a mixed gas containing hydrogen gas, a porous film that comes into contact with the mixed gas that has flowed in from the inflow portion, and a gas that has passed through the porous membrane.
  • a hydrogen gas separation device including a metal film that permeates hydrogen, an extraction unit that takes out hydrogen that has permeated the metal permeation film, and a discharge unit that discharges a gas that has not permeated the porous film or the metal film.
  • the average diameter of the plurality of pores of the porous membrane is 0.3 nanometers or less.
  • the porous membrane includes at least a first porous membrane that comes into contact with the mixed gas that has flowed in from the inflow portion and a second porous membrane that comes into contact with the gas that has passed through the first porous membrane.
  • the average diameter of the pores of the first porous membrane is larger than the average diameter of the pores of the second porous membrane.
  • the discharge unit has a first discharge unit and a second discharge unit, and has a first flow path for guiding a gas that has not penetrated the porous membrane to the first discharge unit, and the first discharge unit.
  • the second flow path is formed independently of the flow path, and includes a second flow path that guides a gas that has permeated the porous membrane but not the metal film to the second discharge portion.
  • the discharge unit includes one discharge unit that discharges a gas that does not permeate the porous membrane and a gas that permeates the porous membrane but does not permeate the metal membrane.
  • a hydrogen separation device capable of dealing with various conditions regarding the composition of the gas as a raw material and the partial pressure of hydrogen.
  • the external view of the hydrogen separation apparatus 100 Sectional drawing of the hydrogen separation apparatus 100. Sectional drawing of hydrogen separation apparatus 100C. Sectional drawing of the hydrogen separation apparatus 100A. Sectional drawing of the hydrogen separation apparatus 100B. Sectional drawing of the hydrogen separation apparatus 10D.
  • FIG. 1 is an external view of the hydrogen separation device 100.
  • the hydrogen separation device 100 has a substantially cylindrical housing 11, and is joined to the housing 11 to form an inlet and an outlet for gas, respectively.
  • the inflow portion 10 is connected to a source (not shown) of a raw material gas (for example, gaseous hydrogen (H 2; hereinafter simply referred to as hydrogen), by-product gas containing methane, ammonia, etc.), and is a mixed gas containing hydrogen.
  • a raw material gas for example, gaseous hydrogen (H 2; hereinafter simply referred to as hydrogen
  • a gas to be separated from hydrogen (hereinafter referred to as a raw material gas) is taken into the inside of the housing 11.
  • a gas connected to a storage tank (not shown) and containing hydrogen having a concentration equal to or higher than a predetermined concentration (for example, about 99%) is taken out from the extraction unit 70 as a final product.
  • the gas other than the gas taken out as the final refined product is discharged to the outside through the discharge unit 20.
  • the discharged gas may be returned to the inflow section 10 by the circulation device and reused as a raw material gas, or may be converted into heat energy supplied to the fuel device.
  • FIG. 2 is a cross-sectional view taken along the central axis of the hydrogen separator 100. Arrows indicate the flow of gas. In the figure, the dimensions in the thickness direction of each member are adopted for convenience of explanation, and do not directly reflect the size of the actual product (the same applies to the following figures).
  • the hydrogen separation device 100 includes an inflow portion 10 that takes in the raw material gas G1, a first flow distribution flange 30, a porous membrane 40 that is in contact with the mixed gas that has flowed in from the inflow portion 10, and a gas that has passed through the porous membrane 40. It has a metal film 60 in contact with (gas G2, G3), an extraction unit 70 for taking out hydrogen that has permeated the metal film 60, and a discharge unit 20 for discharging the gas that has not permeated the porous film 40 or the metal film 60. ..
  • the first flow distribution flange 30 is a disk-shaped metal member joined to the inflow portion 10, and forms a flow path for guiding the gas discharged from the orifice H1 to the discharge portion 20 together with the inner wall of the hydrogen separation device 100. ..
  • An orifice H1 is formed at the center of the first flow distribution flange 30, and the gas taken into the hydrogen separation device 100 from the inflow portion 10 is discharged into the space R1.
  • the porous film 40 is a disk-shaped member, which is supported by the second flow distribution flange 50 and has a porous film having pores such as silica and zeolite formed on the support of the ceramic laminate.
  • the porous membrane 40 has the property of allowing only gas of molecules as small as or smaller than the size of the pores to permeate. That is, the average molecular weight of the gas permeating the porous membrane 40 is smaller than that before the average molecular weight of the gas permeating the porous membrane 40.
  • the average diameter of the pores of the porous membrane 40 is 0.3 nanometers (nm) or less.
  • the molecular size contained in the raw material gas is, for example, about 0.36 nm for nitrogen, about 0.34 nm for oxygen, about 0.33 nm for carbon dioxide, about 0.38 nm for methane, and about 0.38 nm for ammonia, so that they are porous.
  • the porous membrane 40 having such a predetermined pore size can be produced by a conventionally known method. Further, the diameter of the pores (pores) of the porous membrane 40 can be measured, for example, by observing the membrane cross section with an electron microscope or by X-ray micro CT or the like.
  • the term "film” does not define the thickness of the member.
  • a support is used for the porous membrane 40, but the support is not essential. For example, when a self-supporting material is used for the porous membrane 40, it is not necessary to use a support.
  • porous membrane 40 a material that plays a role of a primary filter of a raw material gas (a mixed gas containing hydrogen gas) may be used.
  • a material that plays a role of a primary filter of a raw material gas a mixed gas containing hydrogen gas
  • the material as described above, in addition to inorganic materials such as silica and zeolite, organic materials such as polymers can also be mentioned.
  • the second flow distribution flange 50 is supported by the inner wall of the hydrogen separation device 100 via a member (not shown) to support the porous membrane 40, and also forms a space R2 inside the second flow distribution flange 50 to form an orifice. A part of the flow path of the gas flowing into the space R1 via H2 is formed together with the inner wall of the hydrogen separation device 100.
  • the porous film 40 is supported by forming a groove on the inner peripheral surface of the second flow distribution flange 50 and fitting and fixing the porous film 40 in the groove.
  • the metal film 60 is a disk-shaped film made of vanadium, niobium, tantalum, or other group V metal or alloy, and is fixed to the inner wall of the hydrogen separation device 100 using a predetermined member (not shown). NS.
  • the metal film 60 has a property of allowing hydrogen to permeate, and specifically, hydrogen molecules that have reached one surface are separated and permeated into the inside as hydrogen atoms to reach the opposite surface. It has the property of discharging hydrogen atoms as hydrogen molecules.
  • the hydrogen permeability may depend on the pressure and temperature, but in one example, it is about 99%, but the hydrogen permeability can be 99.99999% or more.
  • the raw material gas G1 flowing from the inflow portion 10 flows into the space R1 through the orifice H1.
  • a part of the gas molecules flowing into the space R1 comes into contact with the surface of the porous membrane 40.
  • a part of the contacted gas molecules (including hydrogen) permeates the porous membrane 40 and flows into the space R2 (gas G2).
  • the porous membrane 40 plays a role in increasing the ratio (partial pressure or concentration) of hydrogen in the space R2.
  • the first exhaust gas Gas molecules that did not reach the surface of the porous membrane 40 or gases that reached the surface of the porous membrane 40 but could not enter the inside of the porous membrane 40 (hereinafter collectively referred to as the first exhaust gas) are indicated by the arrows in the figure. It flows around the first flow distribution flange 30 in the direction of the above, and is finally discharged from the discharge unit 20.
  • the gas molecules that did not have a chance to come into contact with the metal film 60 and the gas that came into contact with the surface of the metal film 60 but did not permeate the metal film 60 (hereinafter collectively referred to as the second exhaust gas) are mixed with the first exhaust gas. Finally, it is discharged from the discharge unit 20.
  • the raw material gas G1 is first brought into contact with the porous membrane 40, and only the gas that has passed through the porous membrane 40 is brought into contact with the metal membrane 60.
  • a raw material gas having a low hydrogen concentration such as a general by-product gas
  • the presence of molecules other than hydrogen causes the metal film 60 to come into contact with the metal film 60. Performance cannot be fully brought out. This is because gases other than hydrogen molecules do not permeate through the metal film 60, and are simply repelled from the surface of the metal film 60 to prevent hydrogen molecules from coming into contact with the film.
  • the raw material gas is a metal.
  • the porous film 40 arranged in the front stage (upstream side) of the film 60 gas molecules having a size larger than at least hydrogen molecules are removed, and more hydrogen molecules have an opportunity to come into contact with the surface of the metal film 60. Is given.
  • the performance of the metal film 60 can be fully utilized, and a hydrogen transmittance close to the theoretical value (permeability with respect to pure hydrogen) can be realized.
  • the amount of hydrogen permeation from the raw material gas having a hydrogen partial pressure of 70% or less, which is not good at the PSA method (Pressure swing adsorption), is improved. More specifically, by selecting a suitable pore size according to the gas component other than hydrogen in the raw material gas, the hydrogen partial pressure of the gas in contact with the surface of the metal film 60 can be improved to about 99%. Can be done.
  • the method of the above embodiment does not need to design a complicated flow path for increasing the probability of contact with the metal film as in Patent Document 1, for example, so that the structure is simple and the manufacturing cost is low. It can be suppressed.
  • the porous membrane 40 is supported by the second flow distribution flange 50 supported by the laminate (not shown), so that the pressure of the raw material gas G1 can be received.
  • the effect is further exerted when the raw material gas contains water (water vapor).
  • water water vapor
  • the porous membrane 40 having a property of removing water vapor, the water vapor content of the gas after permeation of the porous membrane 40 is reduced.
  • deterioration of the metal film 60 is suppressed, the life is extended, and the life is extended.
  • the maintainability of the device is also improved.
  • the apparatus according to the above embodiment mutually compensates for the drawbacks of the method using the porous membrane and the drawbacks of the method using the metal film.
  • the positions and sizes of the inflow section 10, the discharge section 20, the first flow distribution flange 30, and the second flow distribution flange 50, and the shape of the formed exhaust gas flow path are examples.
  • the distance between the second flow distribution flange 50 and the hydrogen separation device 100 is tapered toward the discharge portion 20.
  • FIG. 4 is a cross-sectional view of the hydrogen separation device 100A.
  • a discharge unit 20A and a discharge unit 20B are provided to discharge the first exhaust gas and the second exhaust gas, respectively, and the space R1 is an independent space R1A and space R1B, respectively. It has a double structure in which a second exhaust gas flow path is provided outside the first exhaust gas flow path.
  • the discharge unit 20A and the discharge unit 20B function as a discharge unit that discharges the gas that has not penetrated the porous film 40 or the metal film 60. As a result, the first exhaust gas and the second exhaust gas are prevented from mixing.
  • the hydrogen separation efficiency is lowered due to the contact of the first exhaust gas, which has a lower hydrogen purity than the second exhaust gas, with the metal film 60.
  • the second exhaust gas which is a gas having a higher hydrogen concentration than the first exhaust gas, can be taken out independently of the first exhaust gas. For example, by returning the second exhaust gas as the raw material gas G1 to the inflow section 10 again and repeating this cycle, theoretically 100% of hydrogen can be recovered.
  • FIG. 5 is a cross-sectional view of the hydrogen separation device 100B.
  • the porous membrane 40-1, the porous membrane 40-2, and the porous membrane 40-3 are provided in place of the porous membrane 40, and the raw material gas is used.
  • the porous membranes 40-1, 40-2, and 40-3 are permeated in this order.
  • the size of the pores is reduced in the order of the porous membranes 40-1, 40-2, 40-3 (from the upstream side to the downstream side).
  • the porous membranes 40-1, 40-2, and 40-3 are arranged so as to be in contact with each other, but they are arranged at intervals from each other to temporarily store the permeated gas.
  • a flow path may be provided in each space for discharging the gas that did not pass through the film in the subsequent stage through the space R1.
  • the structure portion for allowing the raw material gas to permeate using the porous membrane 40 and the structure portion for allowing the raw material gas permeated through the porous membrane 40 to permeate the metal film 60 are structurally independent. May be good.
  • the hydrogen separation device 100D uses a porous membrane 40 to permeate a raw material gas into a cylindrical first structure 101 and a raw material gas permeated through a porous membrane 40 into a metal film. It can be composed of a cylindrical second structure 102 that allows 60 to pass through.
  • the first structure 101 and the second structure, which are independent structures may be directly joined or may be connected via a pipe. In short, it suffices that the raw material gas after permeating through the porous membrane 40 comes into contact with the metal membrane as a whole of the apparatus.
  • the configuration using the multi-stage porous membrane shown in the hydrogen separation device 100B is an example, and may be applied to, for example, the hydrogen separation device 100A or the hydrogen separation device 100C.
  • the number of porous membranes having different pore sizes and / or gas-permeable properties is 3 as an example, and may be 2 or 4 or more. That is, in the case of multi-layering the porous membrane in the present invention, the first porous membrane that comes into contact with the mixed gas that has flowed in from the inflow portion 10 and the second porous membrane that comes into contact with the gas that has passed through the first porous membrane. It is preferable that the average diameter of the pores of the first porous membrane is larger than the average diameter of the pores of the second porous membrane.
  • the porous membrane 40 which is a physically one member, is formed so that the average size of the pores differs depending on the thickness method (upstream-downstream direction), and a plurality of porous films having different average pore sizes. It may be used instead of the membrane.
  • the average of the pores is smaller on the downstream side (final end of the porous membrane) than on the upstream side (the side that first contacts the raw material gas G1). More preferably, the average size of the holes is gradually reduced from the upstream side to the downstream side.
  • the size and number of pores may be appropriately set according to parameters such as the composition of the raw material gas G1, the pressure (flow velocity) at the time of contact with the porous membrane 40, the size of the orifice H1, and the concentration of hydrogen. can.
  • the pressure, the flow rate, and the flow velocity of the raw material gas G1 may be controlled according to the characteristics of the porous membrane used.
  • the material of the metal film 60 is not limited to pure vanadium.
  • the material of the metal film 60 may be an alloy mainly composed of vanadium, a metal belonging to Group 5 (for example, niobium, vanadium, tantalum), an alloy mainly composed of Group 5 metal, or group 5 metals. It may be a metal other than vanadium, such as an alloy of.
  • the vanadium content of the metal film 60 is usually 50 atomic% or more, preferably 70 atomic% or more, more preferably 90 atomic% or more, and particularly preferably 95 atomic% or more.
  • the upper limit of the vanadium content of the hydrogen separation membrane may be 100% (pure vanadium), but this does not mean only the case of 100% theoretically, for example, 99.9999 atomic% or less. Including the case that means.
  • a palladium or palladium alloy as a catalyst is attached to one surface or both surfaces of the metal film 60 by, for example, sputtering.
  • the palladium-based alloy include an alloy of palladium and at least one element of silver, copper, and gold, and the alloy content is preferably 15 to 35% by weight.
  • the method of adhering palladium or a palladium-based alloy as a catalyst on the surface of the hydrogen separation membrane is not limited to sputtering, and is not limited to sputtering. Can be uniformly formed. At this time, it may be formed in an island shape, or may exist in the form of a particle-like aggregate (a form in which go stones are lined up).
  • the hydrogen separation device 100, 100A, 100B, 100C, and 100D may have a heating unit for heating the inside of the housing 11.
  • a ribbon heater may be used for the heating unit.
  • the temperature inside the housing 11 is heated to, for example, 200 to 400 degrees.
  • the shape of the porous film 40 and the metal film 60 is not limited. In each of the above-described embodiments, the porous film 40 and the metal film 60 are assumed to have a disk shape, but may have other shapes (square or molded film). The shapes of the porous film 40 and the metal film 60 can be freely set in consideration of the design of the apparatus and the like.
  • the orifice H1 may be designed to have a plurality of holes with a tapered hole size.
  • one inflow section 10 is provided for the porous film 40 and the metal film 60, but of course, a plurality of inflow sections may be provided. Further, one inflow portion may be provided for a plurality of porous membranes and metal membranes.
  • Such design changes required in device design are, of course, included in the technical idea of the present invention.
  • the separated hydrogen may be utilized for various purposes.
  • hydrogen may be used in a fuel cell for an automobile, a fuel cell for a household, or hydrogen power generation. Further, this hydrogen may be used as hydrogen for industry / industrial use.
  • pure hydrogen may have opportunities for medical use. For example, it is conceivable to improve the storage period of an organ by filling a case containing an organ for organ transplantation with hydrogen.
  • the hydrogen gas separation device has an intake port for taking in a mixed gas containing hydrogen gas, a porous membrane in contact with the mixed gas flowing in from the inflow portion, and a gas permeating the porous membrane. If it is provided with a metal film that comes into contact with and permeates hydrogen, a take-out part that takes out hydrogen that has permeated the metal permeation film, and a discharge part that discharges a gas that has not permeated the porous membrane or the metal membrane. good.
  • Hydrogen separation device 10 ... Inflow part, 11 ... Housing, 20 ... Discharge part, 30 ... First flow distribution flange, 40 ... -Porous film, 50 ... second flow distribution flange, 60 ... metal film, 70 ... take-out part

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

A hydrogen gas separator (100, 100A, 100B, 100C) is provided with: an inflow part (10) for intake of a mixed gas containing hydrogen gas; a porous membrane (40, 40-1, 40-2, 40-3) that is permeated by hydrogen as a result of contacting the mixed gas flowing in from the inflow part; a metal membrane (60) that contacts the gas that has permeated the porous membrane; an extracting part for extracting the hydrogen that has permeated the metal film; and an evacuation part (20, 20A, 20B) for evacuating gas that has not permeated the porous membranes or the metal membrane.

Description

水素ガス分離装置Hydrogen gas separator
 本発明は、水素ガスの分離に関する。 The present invention relates to the separation of hydrogen gas.
 水素透過膜を用いて、水素を含む原料ガスから水素を分離する技術が知られている。特許文献1には、水素を透過する非パラジウム系金属又は非パラジウム系金属の合金により形成された水素透過膜を用いて、水素を含む原料ガスである原料気体から水素を分離する水素分離装置が記載されている(特許文献1)。
 例えば、水素透過性を向上させるべく、特許文献1では、原料気体を水素透過膜の一次側の表面に沿って分配するための所定の幅の流路を形成するために、水素透過膜の一次側の表面から所定の幅だけ離隔して配置された流路形成部を備えることが記載されている。
A technique for separating hydrogen from a raw material gas containing hydrogen using a hydrogen permeable membrane is known. Patent Document 1 describes a hydrogen separation device that separates hydrogen from a raw material gas, which is a raw material gas containing hydrogen, by using a hydrogen permeable film formed of a non-palladium-based metal or an alloy of a non-palladium-based metal that allows hydrogen to permeate. It is described (Patent Document 1).
For example, in order to improve hydrogen permeability, in Patent Document 1, in order to form a flow path having a predetermined width for distributing a raw material gas along the surface on the primary side of the hydrogen permeable membrane, the primary hydrogen permeable membrane is used. It is described that the flow path forming portion is provided so as to be separated from the side surface by a predetermined width.
特開2019-5684号公報JP-A-2019-5684
 水素分離膜を用いた水素分離法を工業的に行う場合、原料となるガスとしては様々な成分が想定される。加えて、原料となるガス中の水素の割合(分圧もしくは濃度)についての条件も様々である。従来の技術では、同一の装置を用いて、多様な条件下で所定の水素分離効率を実現するのは困難であった。例えば、原料ガス中の水素濃度が70%程度あったとしても、水素分離効率は70%を大きく下回ることになる。
 本発明は、原料となるガスの組成や水素分圧についての多様な条件に対応することができる水素分離装置を提供することを目的とする。
When the hydrogen separation method using a hydrogen separation membrane is industrially performed, various components are assumed as the raw material gas. In addition, there are various conditions regarding the ratio (partial pressure or concentration) of hydrogen in the gas used as a raw material. With conventional techniques, it has been difficult to achieve a given hydrogen separation efficiency under various conditions using the same device. For example, even if the hydrogen concentration in the raw material gas is about 70%, the hydrogen separation efficiency is much lower than 70%.
An object of the present invention is to provide a hydrogen separation device capable of dealing with various conditions regarding the composition of a gas as a raw material and the partial pressure of hydrogen.
 本発明は、一の態様において、水素ガスを含む混合気体を取入れる流入部と、前記流入部から流入した混合気体と接触する多孔質膜と、前記多孔質膜を透過した気体と接触して水素を透過させる金属膜と前記金属透過膜を透過した水素を取出す取出し部と、前記多孔質膜または前記金属膜を透過しなかった気体を排出する排出部とを備える水素ガス分離装置を提供する。
 好ましい態様において、前記多孔質膜の複数の孔の直径の平均は0.3ナノメートル以下である。
 好ましい態様において、前記多孔質膜は、少なくとも、前記流入部から流入した混合気体と接触する第1多孔質膜と、当該第1多孔質膜を透過した気体が接触する第2多孔質膜とを有する。
 好ましい態様において、前記第1多孔質膜の孔の直径の平均は、前記第2多孔質膜の孔の直径の平均よりも大きい。
 好ましい態様において、前記排出部は、第1排出部および第2排出部を有し、前記多孔質膜を透過しなかった気体を前記第1排出部へ誘導する第1流路と、前記第1流路から独立して形成され、第2流路前記多孔質膜を透過したが前記金属膜を透過しなかった気体を前記第2排出部へ誘導する第2流路とを備える。
 好ましい態様において、前記排出部は、前記多孔質膜を透過しなかった気体と前記多孔質膜を透過したが前記金属膜を透過しなかった気体とを排出する一の排出部を備える。
 好ましい態様において、前記多孔質膜を透過しなかった気体の前記排出部までの第1流路と、前記多孔質膜を透過したが前記金属膜を透過しなかった気体の前記排出部までの第2流路とを備え、前記第1流路と前記第2流路の合流部において前記第2流路の圧力は前記第1流路の圧力以上である。
In one embodiment, the present invention is in contact with an inflow portion that takes in a mixed gas containing hydrogen gas, a porous film that comes into contact with the mixed gas that has flowed in from the inflow portion, and a gas that has passed through the porous membrane. Provided is a hydrogen gas separation device including a metal film that permeates hydrogen, an extraction unit that takes out hydrogen that has permeated the metal permeation film, and a discharge unit that discharges a gas that has not permeated the porous film or the metal film. ..
In a preferred embodiment, the average diameter of the plurality of pores of the porous membrane is 0.3 nanometers or less.
In a preferred embodiment, the porous membrane includes at least a first porous membrane that comes into contact with the mixed gas that has flowed in from the inflow portion and a second porous membrane that comes into contact with the gas that has passed through the first porous membrane. Have.
In a preferred embodiment, the average diameter of the pores of the first porous membrane is larger than the average diameter of the pores of the second porous membrane.
In a preferred embodiment, the discharge unit has a first discharge unit and a second discharge unit, and has a first flow path for guiding a gas that has not penetrated the porous membrane to the first discharge unit, and the first discharge unit. The second flow path is formed independently of the flow path, and includes a second flow path that guides a gas that has permeated the porous membrane but not the metal film to the second discharge portion.
In a preferred embodiment, the discharge unit includes one discharge unit that discharges a gas that does not permeate the porous membrane and a gas that permeates the porous membrane but does not permeate the metal membrane.
In a preferred embodiment, the first flow path to the discharge part of the gas that did not permeate the porous membrane and the first flow path to the discharge part of the gas that permeated the porous membrane but did not permeate the metal membrane. It is provided with two flow paths, and the pressure of the second flow path is equal to or higher than the pressure of the first flow path at the confluence of the first flow path and the second flow path.
 本発明によれば、原料となるガスの組成や水素分圧についての多様な条件に対応することができる水素分離装置が提供される。 According to the present invention, there is provided a hydrogen separation device capable of dealing with various conditions regarding the composition of the gas as a raw material and the partial pressure of hydrogen.
水素分離装置100の外観図。The external view of the hydrogen separation apparatus 100. 水素分離装置100の断面図。Sectional drawing of the hydrogen separation apparatus 100. 水素分離装置100Cの断面図。Sectional drawing of hydrogen separation apparatus 100C. 水素分離装置100Aの断面図。Sectional drawing of the hydrogen separation apparatus 100A. 水素分離装置100Bの断面図。Sectional drawing of the hydrogen separation apparatus 100B. 水素分離装置10Dの断面図。Sectional drawing of the hydrogen separation apparatus 10D.
 以下、本発明の実施するための形態について説明する。もっとも、以下の実施例及びその他の実施例は、本発明の技術思想を具現化した一例を示すものにすぎず、本発明は、以下の実施例に限定して解釈されるものではない。
<実施例>
 図1は水素分離装置100の外観図である。水素分離装置100は、略円筒体の筐体11を有し、それぞれ筐体11に接合され内部が気体の流入口および流出口となっている、管状の流入部10、排出部20、取出し部70を有する。流入部10は、原料ガス(例えば、気体水素(H2;以下、単に水素という)、メタン、アンモニア等を含む副生ガス)の供給源(図示せず)に接続され、水素を含む混合気体であって水素を分離する対象となる気体(以下、原料ガスという)を筐体11の内部に取り入れる。貯蔵タンク(図示せず)に接続され、所定以上の濃度(例えば99パーセント程度)の水素を含む気体が、最終生成物として取出し部70から取り出される。一方、最終精製物として取り出された気体以外の気体は、排出部20を介して外部に排出される。なお、排出されたガスは、循環装置によって流入部10に戻されて原料ガスとして再利用されてもよいし、燃料装置に供給された熱エネルギーに変換されてもよい。
Hereinafter, embodiments for carrying out the present invention will be described. However, the following examples and other examples are merely examples that embody the technical idea of the present invention, and the present invention is not construed as being limited to the following examples.
<Example>
FIG. 1 is an external view of the hydrogen separation device 100. The hydrogen separation device 100 has a substantially cylindrical housing 11, and is joined to the housing 11 to form an inlet and an outlet for gas, respectively. Has 70. The inflow portion 10 is connected to a source (not shown) of a raw material gas (for example, gaseous hydrogen (H 2; hereinafter simply referred to as hydrogen), by-product gas containing methane, ammonia, etc.), and is a mixed gas containing hydrogen. Therefore, a gas to be separated from hydrogen (hereinafter referred to as a raw material gas) is taken into the inside of the housing 11. A gas connected to a storage tank (not shown) and containing hydrogen having a concentration equal to or higher than a predetermined concentration (for example, about 99%) is taken out from the extraction unit 70 as a final product. On the other hand, the gas other than the gas taken out as the final refined product is discharged to the outside through the discharge unit 20. The discharged gas may be returned to the inflow section 10 by the circulation device and reused as a raw material gas, or may be converted into heat energy supplied to the fuel device.
 図2を用いて水素分離装置100の内部構造について詳細に説明する。図2は、水素分離装置100の中心軸に沿った断面図である。矢印は気体の流れを示す。なお、同図において、各部材の厚み方向の寸法は説明の便宜上採択されたものあり、実際の製品のサイズをそのまま反映したものではない(以下の図においても同様)。 The internal structure of the hydrogen separator 100 will be described in detail with reference to FIG. FIG. 2 is a cross-sectional view taken along the central axis of the hydrogen separator 100. Arrows indicate the flow of gas. In the figure, the dimensions in the thickness direction of each member are adopted for convenience of explanation, and do not directly reflect the size of the actual product (the same applies to the following figures).
 水素分離装置100は、原料ガスG1を取入れる流入部10と、第1流配フランジ30と、流入部10から流入した混合気体が接触する多孔質膜40と、多孔質膜40を透過した気体(ガスG2、G3)と接触する金属膜60と、金属膜60を透過した水素を取出す取出し部70と、多孔質膜40または金属膜60を透過しなかった気体を排出する排出部20と有する。 The hydrogen separation device 100 includes an inflow portion 10 that takes in the raw material gas G1, a first flow distribution flange 30, a porous membrane 40 that is in contact with the mixed gas that has flowed in from the inflow portion 10, and a gas that has passed through the porous membrane 40. It has a metal film 60 in contact with (gas G2, G3), an extraction unit 70 for taking out hydrogen that has permeated the metal film 60, and a discharge unit 20 for discharging the gas that has not permeated the porous film 40 or the metal film 60. ..
 第1流配フランジ30は、流入部10と接合された円板状の金属部材であって、水素分離装置100の内壁とともにオリフィスH1から排出された気体を排出部20へ導く流路を形成する。第1流配フランジ30の中心にはオリフィスH1が形成され、流入部10から水素分離装置100内部に取り込まれた気体は空間R1に放出される。 The first flow distribution flange 30 is a disk-shaped metal member joined to the inflow portion 10, and forms a flow path for guiding the gas discharged from the orifice H1 to the discharge portion 20 together with the inner wall of the hydrogen separation device 100. .. An orifice H1 is formed at the center of the first flow distribution flange 30, and the gas taken into the hydrogen separation device 100 from the inflow portion 10 is discharged into the space R1.
 多孔質膜40は、円板状の部材であって、第2流配フランジ50に支持され、セラミック積層体の支持体にシリカやゼオライトなどの細孔を有する多孔膜を形成した部材である。多孔質膜40は、細孔のサイズと同程度またはそれよりも小さな分子の気体のみを透過させる性質を有する。すなわち、多孔質膜40を透過した気体の平均分子量は多孔質膜40を透過する気体の平均分子量前よりも小さくなる。好ましくは、多孔質膜40が有する細孔(孔)の直径の平均は0.3ナノメートル(nm)以下である。原料ガス中に含まれる分子サイズは、例えば、窒素は約0.36nm、酸素は約0.34nm、二酸化炭素は約0.33nm、メタンは約0.38nm、アンモニアは約0.38nmなので、多孔質膜40が有する孔の直径の平均を0.3nm以下とすることで、これら分子を取り除きやすくなる。このような所定の孔径を有する多孔質膜40は従来公知の方法で製造することができる。
また、多孔質膜40の細孔(孔)の直径の測定は、例えば、電子顕微鏡による膜断面を観察し、あるいはX線マイクロCT等で測定することができる。電子顕微鏡で膜断面を観察して細孔(孔)の直径を測定する場合は、少なくとも細孔が100個以上観察できる程度の倍率で多孔質膜40の断面をSEM観察し、観察画面中から50個の細孔を任意に抽出し、これら細孔の直径(細孔が円形状でない場合は、細孔のうち最も長い径を直径とする。
)を観察画面上で測定し、その平均値を求めればよい。
 なお、以下において「膜」とは、その部材の厚さを規定するものではない。
 また、本実施例においては、多孔質膜40に支持体を用いているが、支持体は必須ではない。例えば、自立可能な材料を多孔質膜40に用いる場合、支持体を用いる必要はない。さらに、多孔質膜40は、原料ガス(水素ガスを含む混合気体)の一次フィルタ的な役割を果たす材料を用いればよい。その材料としては、上述のとおり、シリカ、ゼオライト等の無機材料の他、高分子等の有機材料を挙げることもできる。
The porous film 40 is a disk-shaped member, which is supported by the second flow distribution flange 50 and has a porous film having pores such as silica and zeolite formed on the support of the ceramic laminate. The porous membrane 40 has the property of allowing only gas of molecules as small as or smaller than the size of the pores to permeate. That is, the average molecular weight of the gas permeating the porous membrane 40 is smaller than that before the average molecular weight of the gas permeating the porous membrane 40. Preferably, the average diameter of the pores of the porous membrane 40 is 0.3 nanometers (nm) or less. The molecular size contained in the raw material gas is, for example, about 0.36 nm for nitrogen, about 0.34 nm for oxygen, about 0.33 nm for carbon dioxide, about 0.38 nm for methane, and about 0.38 nm for ammonia, so that they are porous. By setting the average diameter of the pores of the quality film 40 to 0.3 nm or less, it becomes easy to remove these molecules. The porous membrane 40 having such a predetermined pore size can be produced by a conventionally known method.
Further, the diameter of the pores (pores) of the porous membrane 40 can be measured, for example, by observing the membrane cross section with an electron microscope or by X-ray micro CT or the like. When observing the membrane cross section with an electron microscope and measuring the diameter of the pores (pores), observe the cross section of the porous membrane 40 by SEM at a magnification that allows at least 100 pores to be observed, and then from the observation screen. Fifty pores are arbitrarily extracted, and the diameter of these pores (if the pores are not circular, the longest diameter of the pores is taken as the diameter.
) May be measured on the observation screen and the average value may be obtained.
In the following, the term "film" does not define the thickness of the member.
Further, in this embodiment, a support is used for the porous membrane 40, but the support is not essential. For example, when a self-supporting material is used for the porous membrane 40, it is not necessary to use a support. Further, as the porous membrane 40, a material that plays a role of a primary filter of a raw material gas (a mixed gas containing hydrogen gas) may be used. As the material, as described above, in addition to inorganic materials such as silica and zeolite, organic materials such as polymers can also be mentioned.
 第2流配フランジ50は、図示せぬ部材を介して水素分離装置100の内壁に支持され、多孔質膜40を支持するとともに、第2流配フランジ50の内部に空間R2を形成し、オリフィスH2を介して空間R1へ流入したガスの流路の一部を水素分離装置100の内壁とともに形成する。例えば、第2流配フランジ50の内周面上に溝を形成し、多孔質膜40を溝にはめ込んで固定することで、多孔質膜40が支持される。 The second flow distribution flange 50 is supported by the inner wall of the hydrogen separation device 100 via a member (not shown) to support the porous membrane 40, and also forms a space R2 inside the second flow distribution flange 50 to form an orifice. A part of the flow path of the gas flowing into the space R1 via H2 is formed together with the inner wall of the hydrogen separation device 100. For example, the porous film 40 is supported by forming a groove on the inner peripheral surface of the second flow distribution flange 50 and fitting and fixing the porous film 40 in the groove.
 金属膜60は、バナジウム、ニオブ、タンタル、その他のV族の金属または合金で形成された円板状の膜であって、図示せぬ所定の部材を用いて水素分離装置100の内壁に固定される。金属膜60は、水素を透過可能な性質を有するものであって、具体的には、一方の表面に到達した水素分子を乖離させ水素原子としてその内部へ浸透させ、反対側の表面に到達した水素原子を水素分子として排出させる性質を有する。水素透過率は、圧力や温度にも依存しうるが、一例において99%程度であるが、水素透過率を99.99999%以上とすることもできる。 The metal film 60 is a disk-shaped film made of vanadium, niobium, tantalum, or other group V metal or alloy, and is fixed to the inner wall of the hydrogen separation device 100 using a predetermined member (not shown). NS. The metal film 60 has a property of allowing hydrogen to permeate, and specifically, hydrogen molecules that have reached one surface are separated and permeated into the inside as hydrogen atoms to reach the opposite surface. It has the property of discharging hydrogen atoms as hydrogen molecules. The hydrogen permeability may depend on the pressure and temperature, but in one example, it is about 99%, but the hydrogen permeability can be 99.99999% or more.
 以下、水素分離装置100内部の気体の流れについて説明する。まず、流入部10から流入した原料ガスG1は、オリフィスH1を介して空間R1へ流入する。空間R1に流入した気体分子の一部は多孔質膜40表面に接触する。接触した気体分子の一部(水素を含む。)は多孔質膜40を透過して、空間R2へ流入する(ガスG2)。この点で、多孔質膜40は、空間R2中の水素の割合(分圧又は濃度)を高くするための役割を担っている。多孔質膜40表面に到達しなかった気体分子または多孔質膜40表面に到達したものの多孔質膜40内部に侵入できなかった気体(以下、まとめて第1排出ガスという)は、同図の矢印の方向に第1流配フランジ30を回り込むように流れ、最終的に排出部20から排出される。 Hereinafter, the flow of gas inside the hydrogen separator 100 will be described. First, the raw material gas G1 flowing from the inflow portion 10 flows into the space R1 through the orifice H1. A part of the gas molecules flowing into the space R1 comes into contact with the surface of the porous membrane 40. A part of the contacted gas molecules (including hydrogen) permeates the porous membrane 40 and flows into the space R2 (gas G2). In this respect, the porous membrane 40 plays a role in increasing the ratio (partial pressure or concentration) of hydrogen in the space R2. Gas molecules that did not reach the surface of the porous membrane 40 or gases that reached the surface of the porous membrane 40 but could not enter the inside of the porous membrane 40 (hereinafter collectively referred to as the first exhaust gas) are indicated by the arrows in the figure. It flows around the first flow distribution flange 30 in the direction of the above, and is finally discharged from the discharge unit 20.
 空間R2に流入したガスG2は、オリフィスH2を介して空間R1へ流入する(G3)。そして、G3の一部の分子は金属膜60に接触する。接触した気体分子のうちの一部(水素)は、金属膜60を透過して最終精製物として空間R3に集められ、取出し部70から取出される。金属膜60に接触する機会がなかった気体分子および金属膜60表面に接触したものの金属膜60を透過しなかった気体(以下、まとめて第2排出ガスという)は、第1排出ガスと混合されて最終的に排出部20から排出される。 The gas G2 that has flowed into the space R2 flows into the space R1 via the orifice H2 (G3). Then, some molecules of G3 come into contact with the metal film 60. A part (hydrogen) of the contacted gas molecules passes through the metal film 60, is collected in the space R3 as a final purified product, and is taken out from the extraction unit 70. The gas molecules that did not have a chance to come into contact with the metal film 60 and the gas that came into contact with the surface of the metal film 60 but did not permeate the metal film 60 (hereinafter collectively referred to as the second exhaust gas) are mixed with the first exhaust gas. Finally, it is discharged from the discharge unit 20.
 上述の通り、上記実施例においては、原料ガスG1をまず多孔質膜40に接触させ、多孔質膜40を透過した気体だけを金属膜60と接触させる。
 ここで、水素分子を金属膜60から透過させるためには、まず金属膜60の表面に水素分子を接触させる機会をいかに増やすかが重要である。従来技術の方法のように、例えば一般的な副生ガスのような水素濃度があまり高くない原料ガスをそのまま金属膜60に接触させるとすれば、水素以外の分子の存在によって、金属膜60の性能を十分に引き出せない。水素分子以外の気体が金属膜60を透過することがなく、金属膜60表面から跳ね返されるだけで水素分子が膜に接触するのを阻害するだけだからである。
As described above, in the above embodiment, the raw material gas G1 is first brought into contact with the porous membrane 40, and only the gas that has passed through the porous membrane 40 is brought into contact with the metal membrane 60.
Here, in order to allow hydrogen molecules to permeate through the metal film 60, it is important to first increase the chances of the hydrogen molecules coming into contact with the surface of the metal film 60. If a raw material gas having a low hydrogen concentration, such as a general by-product gas, is brought into contact with the metal film 60 as it is as in the conventional method, the presence of molecules other than hydrogen causes the metal film 60 to come into contact with the metal film 60. Performance cannot be fully brought out. This is because gases other than hydrogen molecules do not permeate through the metal film 60, and are simply repelled from the surface of the metal film 60 to prevent hydrogen molecules from coming into contact with the film.
 これに対し上記実施例によれば、原料ガス中の水素の濃度(分圧)が低くとも、または原料ガス中に含まれる水素以外の気体その他原料ガスの組成によらず、原料ガスを、金属膜60の前段(上流側)に配置された多孔質膜40に接触させることで、少なくとも水素分子よりも大きなサイズの気体分子が除去され、より多くの水素分子が金属膜60表面に接触する機会が与えられる。この結果、金属膜60の性能を十分に生かすことができ、理論値(純粋水素に対する透過率)に近い水素透過率を実現することができる。
 例えば、上記実施例によれば、PSA法(Pressure swing adsorption;圧力変動吸着法)などが苦手とする、70%以下の水素分圧の原料ガスからの水素透過量が向上する。より具体的には、原料ガス中の水素以外の気体成分に応じて好適な細孔のサイズを選択することで、金属膜60表面に接触する気体の水素分圧を99%程度まで向上させることができる。
On the other hand, according to the above-mentioned embodiment, even if the concentration (partial pressure) of hydrogen in the raw material gas is low, or regardless of the composition of the gas other than hydrogen contained in the raw material gas or other raw material gas, the raw material gas is a metal. By contacting with the porous film 40 arranged in the front stage (upstream side) of the film 60, gas molecules having a size larger than at least hydrogen molecules are removed, and more hydrogen molecules have an opportunity to come into contact with the surface of the metal film 60. Is given. As a result, the performance of the metal film 60 can be fully utilized, and a hydrogen transmittance close to the theoretical value (permeability with respect to pure hydrogen) can be realized.
For example, according to the above embodiment, the amount of hydrogen permeation from the raw material gas having a hydrogen partial pressure of 70% or less, which is not good at the PSA method (Pressure swing adsorption), is improved. More specifically, by selecting a suitable pore size according to the gas component other than hydrogen in the raw material gas, the hydrogen partial pressure of the gas in contact with the surface of the metal film 60 can be improved to about 99%. Can be done.
 また、上記実施例の方法は、例えば特許文献1のように、金属膜に接触する確率を上げるための複雑な流路を設計する等の必要がないので、構造が簡易であり、製造コストが抑えられる。 Further, the method of the above embodiment does not need to design a complicated flow path for increasing the probability of contact with the metal film as in Patent Document 1, for example, so that the structure is simple and the manufacturing cost is low. It can be suppressed.
 同図の例において、多孔質膜40は、図示せぬ積層体によって支持された第2流配フランジ50によって支持されるので、原料ガスG1の圧力を受け止めることができる。 In the example of the figure, the porous membrane 40 is supported by the second flow distribution flange 50 supported by the laminate (not shown), so that the pressure of the raw material gas G1 can be received.
 加えて、上記実施例においては、原料ガス中に水分(水蒸気)が含まれている場合に、さらに効果を発揮する。一般に、水素透過金属膜は、水蒸気と接触すると水素分離効率が落ちることに加え、劣化が加速することが知られている。これに対して、本実施例によれば、水蒸気を除去する性質を有する多孔質膜40を設けることで、多孔質膜40透過後の気体のその水蒸気含有量が減少する。結果、金属膜60の劣化が抑制されて寿命が延び、
装置のメンテナンス性も向上する。
In addition, in the above embodiment, the effect is further exerted when the raw material gas contains water (water vapor). In general, it is known that when a hydrogen permeable metal membrane comes into contact with water vapor, the hydrogen separation efficiency is lowered and the deterioration is accelerated. On the other hand, according to the present embodiment, by providing the porous membrane 40 having a property of removing water vapor, the water vapor content of the gas after permeation of the porous membrane 40 is reduced. As a result, deterioration of the metal film 60 is suppressed, the life is extended, and the life is extended.
The maintainability of the device is also improved.
 なお、水素分離に関する従来技術として、シリカ膜などの多孔質膜のみを用いる方式が存在する。しかし、この技術では、上記実施例のように、透過金属膜を用いた方式ほどの高い純度(例えば99%程度)の分離効率を実現することは困難である。 As a conventional technique for hydrogen separation, there is a method using only a porous membrane such as a silica membrane. However, with this technique, it is difficult to realize a separation efficiency with a high purity (for example, about 99%) as in the method using a transparent metal film as in the above embodiment.
 すなわち、上記実施例に係る装置は、多孔質膜を用いた方式の欠点と金属膜を用いた方式の欠点とを相互に補うものといえる。 That is, it can be said that the apparatus according to the above embodiment mutually compensates for the drawbacks of the method using the porous membrane and the drawbacks of the method using the metal film.
 <その他の実施例>
 上述した各実施例において、流入部10、排出部20、第1流配フランジ30、第2流配フランジ50を設ける位置やサイズ、形成される排ガスの流路の形状は、一例である。
 例えば、排ガスの流路に関し、第1排出ガスと第2排出ガスの合流部における第2排出ガスの圧力は第1排出ガスよりも高くなるような形状に設計することが好ましい。例えば、図3に示す水素分離装置100Cのように、合流部ISにおいて、第2流配フランジ50と水素分離装置100との間の距離が排出部20へ向かうに従って先細りに形成する。これにより、第1排出ガスから第2排出ガスのほうへ(つまり同図の紙面左から右へ)逆流することが抑制される。
<Other Examples>
In each of the above-described embodiments, the positions and sizes of the inflow section 10, the discharge section 20, the first flow distribution flange 30, and the second flow distribution flange 50, and the shape of the formed exhaust gas flow path are examples.
For example, it is preferable to design the flow path of the exhaust gas so that the pressure of the second exhaust gas at the confluence of the first exhaust gas and the second exhaust gas is higher than that of the first exhaust gas. For example, as in the hydrogen separation device 100C shown in FIG. 3, in the confluence portion IS, the distance between the second flow distribution flange 50 and the hydrogen separation device 100 is tapered toward the discharge portion 20. As a result, the backflow from the first exhaust gas to the second exhaust gas (that is, from the left to the right of the paper in the figure) is suppressed.
 あるいは、第1排気ガスの流路と第2排気ガスの流路とを独立させてもよい。
 図4は、水素分離装置100Aの断面図である。この例においては、排出部20に替えて、第1排出ガスおよび第2排出ガスをそれぞれ排出するために排出部20Aおよび排出部20Bが設けられるとともに、空間R1がそれぞれ独立した空間R1Aおよび空間R1Bに区画され、第1排出ガスの流路の外側に第2排出ガスの流路が設けられた二重構造となっている。この例においては、排出部20Aおよび排出部20Bが、多孔質膜40または金属膜60を透過しなかった気体を排出する排出部として機能する。これにより、第1排出ガスと第2排出ガスとが混合しないようになっている。この例によれば、第2排出ガスよりも水素純度の低い第1排出ガスが金属膜60に接触することによる水素分離効率の低下が起きる虞がない。
 水素分離装置100Aにおいては、例えば、第1排出ガスに比べて水素濃度が高い気体である第2排出ガスを、第1排出ガスとは独立して取り出すことができる。例えば、第2排出ガスを原料ガスG1として再度流入部10に戻し、このサイクルを繰り返すことにより、理論上100%の水素が回収できる。
Alternatively, the flow path of the first exhaust gas and the flow path of the second exhaust gas may be made independent.
FIG. 4 is a cross-sectional view of the hydrogen separation device 100A. In this example, instead of the discharge unit 20, a discharge unit 20A and a discharge unit 20B are provided to discharge the first exhaust gas and the second exhaust gas, respectively, and the space R1 is an independent space R1A and space R1B, respectively. It has a double structure in which a second exhaust gas flow path is provided outside the first exhaust gas flow path. In this example, the discharge unit 20A and the discharge unit 20B function as a discharge unit that discharges the gas that has not penetrated the porous film 40 or the metal film 60. As a result, the first exhaust gas and the second exhaust gas are prevented from mixing. According to this example, there is no possibility that the hydrogen separation efficiency is lowered due to the contact of the first exhaust gas, which has a lower hydrogen purity than the second exhaust gas, with the metal film 60.
In the hydrogen separation device 100A, for example, the second exhaust gas, which is a gas having a higher hydrogen concentration than the first exhaust gas, can be taken out independently of the first exhaust gas. For example, by returning the second exhaust gas as the raw material gas G1 to the inflow section 10 again and repeating this cycle, theoretically 100% of hydrogen can be recovered.
 細孔のサイズなど気体を透過させることに関する性質が異なる多孔質膜40を、複数設けてもよい。
 図5は、水素分離装置100Bの断面図である。同図に示すように、水素分離装置100Bにおいては、多孔質膜40に替えて、多孔質膜40-1、多孔質膜40-2、多孔質膜40-3が設けられ、原料ガスを、多孔質膜40-1、40-2、40-3の順に透過させる。好ましくは、多孔質膜40-1、40-2、40-3の順で(上流側から下流側へ向かうにつれて)、細孔のサイズを小さくする。これにより、原料ガスのうち分子サイズが大きいものから小さいものを順に除去することができる。なお、同図においては、多孔質膜40-1、40-2、40-3が接触するように配置されているが、互いに間隔を空けて配置して透過した気体を一時的に所蔵するための空間を確保するとともに、各空間において後段の膜を透過しなかった気体を、空間R1を介して排出するための流路を設けてもよい。
A plurality of porous membranes 40 having different properties related to permeation of gas such as the size of pores may be provided.
FIG. 5 is a cross-sectional view of the hydrogen separation device 100B. As shown in the figure, in the hydrogen separation device 100B, the porous membrane 40-1, the porous membrane 40-2, and the porous membrane 40-3 are provided in place of the porous membrane 40, and the raw material gas is used. The porous membranes 40-1, 40-2, and 40-3 are permeated in this order. Preferably, the size of the pores is reduced in the order of the porous membranes 40-1, 40-2, 40-3 (from the upstream side to the downstream side). As a result, it is possible to remove the raw material gas from the one having the largest molecular size to the one having the smallest molecular size. In the figure, the porous membranes 40-1, 40-2, and 40-3 are arranged so as to be in contact with each other, but they are arranged at intervals from each other to temporarily store the permeated gas. In addition to securing the space of, a flow path may be provided in each space for discharging the gas that did not pass through the film in the subsequent stage through the space R1.
 多孔質膜40を用いて原料ガスを透過させるための構造体部分と、多孔質膜40を透過した原料ガスを金属膜60を透過させるための構造体部分とは、構造的に独立していてもよい。
 例えば、図6に示すように、水素分離装置100Dは、多孔質膜40を用いて原料ガスを透過させる円筒状の第1構造体101と、孔質膜40を透過した原料ガスを、金属膜60を透過させる円筒状の第2構造体102とから構成することができる。同図の例のように、独立した構造体である第1構造体101と第2構造体とは直接接合されていてもよいし、配管を介して接続されてもよい。要するに、装置全体として、多孔質膜40を透過後の原料ガスが金属膜に接するようになっていればよい。
The structure portion for allowing the raw material gas to permeate using the porous membrane 40 and the structure portion for allowing the raw material gas permeated through the porous membrane 40 to permeate the metal film 60 are structurally independent. May be good.
For example, as shown in FIG. 6, the hydrogen separation device 100D uses a porous membrane 40 to permeate a raw material gas into a cylindrical first structure 101 and a raw material gas permeated through a porous membrane 40 into a metal film. It can be composed of a cylindrical second structure 102 that allows 60 to pass through. As in the example of the figure, the first structure 101 and the second structure, which are independent structures, may be directly joined or may be connected via a pipe. In short, it suffices that the raw material gas after permeating through the porous membrane 40 comes into contact with the metal membrane as a whole of the apparatus.
 なお、水素分離装置100Bに示した多段の多孔質膜を用いる構成は一例であって、例えば水素分離装置100Aまたは水素分離装置100Cに適用してもよいことは言うまでもない。 Needless to say, the configuration using the multi-stage porous membrane shown in the hydrogen separation device 100B is an example, and may be applied to, for example, the hydrogen separation device 100A or the hydrogen separation device 100C.
 また、細孔のサイズおよびまたは気体を透過せる性質が異なる多孔質膜を用いる数は3であるというのは一例であって、2でもよいし、4以上あってもよい。すなわち、本発明において多孔質膜を多層化する場合は、流入部10から流入した混合気体と接触する第1多孔質膜と、第1多孔質膜を透過した気体が接触する第2多孔質膜とを少なくとも有すればく、前記第1多孔質膜の孔の直径の平均は、前記第2多孔質膜の孔の直径の平均よりも大きいことが好ましい。
 また、物理的に一つの部材である多孔質膜40を、その孔の平均サイズが、厚み方法(上流―下流方向)で異なるように形成したものを、孔の平均サイズが異なる複数の多孔質膜に替えて用いてもよい。具体的には、少なくとも上流側(原料ガスG1に最初に接触する側)よりも下流側(多孔質膜の最終端)のほうが孔の平均を小さくする。より好ましくは、上流側から下流側に行くにしたがって徐々に孔の平均サイズを小さくする。
Further, the number of porous membranes having different pore sizes and / or gas-permeable properties is 3 as an example, and may be 2 or 4 or more. That is, in the case of multi-layering the porous membrane in the present invention, the first porous membrane that comes into contact with the mixed gas that has flowed in from the inflow portion 10 and the second porous membrane that comes into contact with the gas that has passed through the first porous membrane. It is preferable that the average diameter of the pores of the first porous membrane is larger than the average diameter of the pores of the second porous membrane.
Further, the porous membrane 40, which is a physically one member, is formed so that the average size of the pores differs depending on the thickness method (upstream-downstream direction), and a plurality of porous films having different average pore sizes. It may be used instead of the membrane. Specifically, the average of the pores is smaller on the downstream side (final end of the porous membrane) than on the upstream side (the side that first contacts the raw material gas G1). More preferably, the average size of the holes is gradually reduced from the upstream side to the downstream side.
 なお、細孔のサイズや数は、原料ガスG1の組成、多孔質膜40に接触するときの圧力(流速)、オリフィスH1のサイズ、水素の濃度等のパラメータに応じて、適宜設定することができる。逆に、用いる多孔質膜の特性に応じて、原料ガスG1の圧力、流量、流速を制御してもよい。 The size and number of pores may be appropriately set according to parameters such as the composition of the raw material gas G1, the pressure (flow velocity) at the time of contact with the porous membrane 40, the size of the orifice H1, and the concentration of hydrogen. can. On the contrary, the pressure, the flow rate, and the flow velocity of the raw material gas G1 may be controlled according to the characteristics of the porous membrane used.
 上述した各実施例において、金属膜60の素材は、純バナジウムに限定されない。例えば金属膜60の素材は、バナジウムを主たる金属とする合金であってもよいし、5族に属する金属(例えばニオブ、バナジウム、タンタル)や5族金属を主とする合金や、5族金属同士の合金等、バナジウム以外の金属であってもよい。ここで、一の態様において、金属膜60のバナジウムの含有量は、通常50原子%以上、好ましくは70原子%以上、より好ましくは90原子%以上、特に好ましくは95原子%以上である。なお、水素分離膜のバナジウムの含有量の上限は100%(純バナジウム)であってもよいが、これは理論的に100%の場合のみを意味するのではなく、例えば99.9999原子%以下を意味する場合も含む。
 好ましい態様において、金属膜60の一方の面又は両表面には、触媒としてパラジウムまたはパラジウム系合金を、例えば、スパッタリングによって付着させる。パラジウム系合金としては、例えば、パラジウムと、銀、銅、金の少なくとも1つの元素との合金をあげることができ、合金の含有量は15~35重量%が好ましい。なお、水素分離膜の面に、触媒としてパラジウムまたはパラジウム系合金を付着させるには、スパッタリングに限定されることなく、例えば、塗布液に触媒を分散させて塗布する手段や、真空蒸着して薄膜を均一に形成する手段を採用することができる。この際、島状に形成されていてもよいし、粒子状の集合物(碁石を並べたような形態)で存在してもよい。
In each of the above-described embodiments, the material of the metal film 60 is not limited to pure vanadium. For example, the material of the metal film 60 may be an alloy mainly composed of vanadium, a metal belonging to Group 5 (for example, niobium, vanadium, tantalum), an alloy mainly composed of Group 5 metal, or group 5 metals. It may be a metal other than vanadium, such as an alloy of. Here, in one embodiment, the vanadium content of the metal film 60 is usually 50 atomic% or more, preferably 70 atomic% or more, more preferably 90 atomic% or more, and particularly preferably 95 atomic% or more. The upper limit of the vanadium content of the hydrogen separation membrane may be 100% (pure vanadium), but this does not mean only the case of 100% theoretically, for example, 99.9999 atomic% or less. Including the case that means.
In a preferred embodiment, a palladium or palladium alloy as a catalyst is attached to one surface or both surfaces of the metal film 60 by, for example, sputtering. Examples of the palladium-based alloy include an alloy of palladium and at least one element of silver, copper, and gold, and the alloy content is preferably 15 to 35% by weight. The method of adhering palladium or a palladium-based alloy as a catalyst on the surface of the hydrogen separation membrane is not limited to sputtering, and is not limited to sputtering. Can be uniformly formed. At this time, it may be formed in an island shape, or may exist in the form of a particle-like aggregate (a form in which go stones are lined up).
 水素分離装置100、100A、100B、100C、および100Dは、筐体11内部を加熱する加熱部を有してもよい。加熱部には、例えばリボンヒーターが用いられてもよい。筐体11の内部の温度は、例えば200~400度に加熱される。
 また、多孔質膜40や金属膜60の形状は限定されない。上述した各実施例においては、多孔質膜40や金属膜60は、円板形状であることが想定されているが、その他の形状(四角や成形膜)であってもよい。多孔質膜40や金属膜60の形状は、装置の設計等を考慮して自由に設定することができる。同様に、オリフィスH1についても、穴サイズを先細り形状とする、複数の穴にするような設計を採用してもよい。さらに、上述した各実施例において、流入部10は、多孔質膜40、金属膜60に対して1つ設けているが、当然ながら複数の流入部を設けてもよい。さらに、複数の多孔質膜および金属膜に対して、一つの流入部を設けるようにしてもよい。このような、装置設計において必要となる設計変更は、当然ながら本発明の技術的思想に含まれるものである。
The hydrogen separation device 100, 100A, 100B, 100C, and 100D may have a heating unit for heating the inside of the housing 11. For example, a ribbon heater may be used for the heating unit. The temperature inside the housing 11 is heated to, for example, 200 to 400 degrees.
Further, the shape of the porous film 40 and the metal film 60 is not limited. In each of the above-described embodiments, the porous film 40 and the metal film 60 are assumed to have a disk shape, but may have other shapes (square or molded film). The shapes of the porous film 40 and the metal film 60 can be freely set in consideration of the design of the apparatus and the like. Similarly, the orifice H1 may be designed to have a plurality of holes with a tapered hole size. Further, in each of the above-described embodiments, one inflow section 10 is provided for the porous film 40 and the metal film 60, but of course, a plurality of inflow sections may be provided. Further, one inflow portion may be provided for a plurality of porous membranes and metal membranes. Such design changes required in device design are, of course, included in the technical idea of the present invention.
 上述した各実施例において、分離された水素は様々な用途で利活用されてもよい。例えば水素は、自動車用の燃料電池や家庭用の燃料電池に用いられてもよいし、水素発電に用いられてもよい。また、この水素は、工業・産業用の水素として用いられてもよい。さらに、純水素は、医療でも活用の機会がありうる。例えば、臓器移植をするための臓器を入れたケースに水素を充填させることで、臓器の保存期間を向上させることが考えられる。 In each of the above-mentioned examples, the separated hydrogen may be utilized for various purposes. For example, hydrogen may be used in a fuel cell for an automobile, a fuel cell for a household, or hydrogen power generation. Further, this hydrogen may be used as hydrogen for industry / industrial use. In addition, pure hydrogen may have opportunities for medical use. For example, it is conceivable to improve the storage period of an organ by filling a case containing an organ for organ transplantation with hydrogen.
 要するに、本発明に係る水素ガス分離装置は、水素ガスを含む混合気体を取入れる取入れ口と、前記流入部から流入した混合気体と接触する多孔質膜と、前記多孔質膜を透過した気体と接触して水素を透過させる金属膜と、前記金属透過膜を透過した水素を取出す取出し部と、前記多孔質膜または前記金属膜を透過しなかった気体を排出する排出部とを備えていればよい。 In short, the hydrogen gas separation device according to the present invention has an intake port for taking in a mixed gas containing hydrogen gas, a porous membrane in contact with the mixed gas flowing in from the inflow portion, and a gas permeating the porous membrane. If it is provided with a metal film that comes into contact with and permeates hydrogen, a take-out part that takes out hydrogen that has permeated the metal permeation film, and a discharge part that discharges a gas that has not permeated the porous membrane or the metal membrane. good.
100、100A、100B,100C、100D・・・水素分離装置、10・・・流入部、11・・・筐体、20・・・排出部、30・・・第1流配フランジ、40・・・多孔質膜、50・・・第2流配フランジ、60・・・金属膜、70・・・取出し部 100, 100A, 100B, 100C, 100D ... Hydrogen separation device, 10 ... Inflow part, 11 ... Housing, 20 ... Discharge part, 30 ... First flow distribution flange, 40 ... -Porous film, 50 ... second flow distribution flange, 60 ... metal film, 70 ... take-out part

Claims (7)

  1.  水素ガスを含む混合気体を取入れる流入部と、
     前記流入部から流入した混合気体と接触する多孔質膜と、
     前記多孔質膜を透過した気体と接触して水素を透過させる金属膜と
     前記金属膜を透過した水素を取出す取出し部と、
     前記多孔質膜または前記金属膜を透過しなかった気体を排出する排出部と
     を備える水素ガス分離装置。
    An inflow part that takes in a mixed gas containing hydrogen gas,
    A porous membrane that comes into contact with the mixed gas that has flowed in from the inflow portion,
    A metal membrane that comes into contact with a gas that has permeated the porous membrane to permeate hydrogen, a take-out portion that takes out hydrogen that has permeated the metal membrane, and
    A hydrogen gas separation device including a discharge unit for discharging a gas that has not penetrated the porous membrane or the metal membrane.
  2.  前記多孔質膜の複数の孔の直径の平均は0.3ナノメートル以下である、
     請求項1に記載の水素ガス分離装置。
    The average diameter of the plurality of pores of the porous membrane is 0.3 nanometer or less.
    The hydrogen gas separation device according to claim 1.
  3.  前記多孔質膜は、少なくとも、前記流入部から流入した混合気体と接触する第1多孔質膜と、当該第1多孔質膜を透過した気体が接触する第2多孔質膜とを有する、
     請求項1または2に記載の水素ガス分離装置。
    The porous membrane has at least a first porous membrane that comes into contact with the mixed gas that has flowed in from the inflow portion and a second porous membrane that comes into contact with the gas that has passed through the first porous membrane.
    The hydrogen gas separation device according to claim 1 or 2.
  4.  前記第1多孔質膜の孔の直径の平均は、前記第2多孔質膜の孔の直径の平均よりも大きい、
     請求項3に記載の水素ガス分離装置。
    The average diameter of the pores of the first porous membrane is larger than the average diameter of the pores of the second porous membrane.
    The hydrogen gas separation device according to claim 3.
  5.  前記排出部は、第1排出部および第2排出部を有し、
     前記多孔質膜を透過しなかった気体を前記第1排出部へ誘導する第1流路と、前記第1流路から独立して形成され、第2流路前記多孔質膜を透過したが前記金属膜を透過しなかった気体を前記第2排出部へ誘導する第2流路とを備える、
     請求項1ないし4のいずれか一項に記載の水素ガス分離装置。
    The discharge unit has a first discharge unit and a second discharge unit.
    The first flow path that guides the gas that did not permeate the porous membrane to the first discharge portion and the second flow path that were formed independently of the first flow path and permeated the porous membrane, but said above. A second flow path for guiding a gas that has not penetrated the metal film to the second discharge portion is provided.
    The hydrogen gas separation device according to any one of claims 1 to 4.
  6.  前記排出部は、前記多孔質膜を透過しなかった気体と前記多孔質膜を透過したが前記金属膜を透過しなかった気体とを排出する一の排出部を備える、
     請求項1ないし5のいずれか一項に記載の水素ガス分離装置。
    The discharge unit includes one discharge unit that discharges a gas that does not permeate the porous membrane and a gas that permeates the porous membrane but does not permeate the metal membrane.
    The hydrogen gas separation device according to any one of claims 1 to 5.
  7.  前記多孔質膜を透過しなかった気体の前記排出部までの第1流路と、前記多孔質膜を透過したが前記金属膜を透過しなかった気体の前記排出部までの第2流路とを備え、前記第1流路と前記第2流路の合流部において前記第2流路の圧力は前記第1流路の圧力以上である、
     請求項6に記載の水素ガス分離装置。
    The first flow path to the discharge part of the gas that did not permeate the porous membrane and the second flow path to the discharge part of the gas that permeated the porous membrane but did not permeate the metal film. The pressure of the second flow path is equal to or higher than the pressure of the first flow path at the confluence of the first flow path and the second flow path.
    The hydrogen gas separation device according to claim 6.
PCT/JP2021/017967 2020-05-12 2021-05-12 Hydrogen gas separator WO2021230265A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022521948A JPWO2021230265A1 (en) 2020-05-12 2021-05-12

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-083871 2020-05-12
JP2020083871 2020-05-12

Publications (1)

Publication Number Publication Date
WO2021230265A1 true WO2021230265A1 (en) 2021-11-18

Family

ID=78524568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/017967 WO2021230265A1 (en) 2020-05-12 2021-05-12 Hydrogen gas separator

Country Status (2)

Country Link
JP (1) JPWO2021230265A1 (en)
WO (1) WO2021230265A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1085568A (en) * 1996-09-10 1998-04-07 Tonen Corp Gas separator
WO2006011619A1 (en) * 2004-07-26 2006-02-02 Ngk Insulators, Ltd. Separator and membrane reactor
JP2007260631A (en) * 2006-03-29 2007-10-11 Chugoku Electric Power Co Inc:The Preliminary membrane
US20120325087A1 (en) * 2010-03-22 2012-12-27 T3 Scientific Llc Hydrogen selective protective coating, coated article and method
CN103657434A (en) * 2012-09-12 2014-03-26 中国科学院大连化学物理研究所 Palladium-based membrane with surface covered by molecular sieve membrane and preparation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1085568A (en) * 1996-09-10 1998-04-07 Tonen Corp Gas separator
WO2006011619A1 (en) * 2004-07-26 2006-02-02 Ngk Insulators, Ltd. Separator and membrane reactor
JP2007260631A (en) * 2006-03-29 2007-10-11 Chugoku Electric Power Co Inc:The Preliminary membrane
US20120325087A1 (en) * 2010-03-22 2012-12-27 T3 Scientific Llc Hydrogen selective protective coating, coated article and method
CN103657434A (en) * 2012-09-12 2014-03-26 中国科学院大连化学物理研究所 Palladium-based membrane with surface covered by molecular sieve membrane and preparation method thereof

Also Published As

Publication number Publication date
JPWO2021230265A1 (en) 2021-11-18

Similar Documents

Publication Publication Date Title
Kamble et al. A review on the recent advances in mixed matrix membranes for gas separation processes
US8486179B2 (en) Method for producing carbon molecular sieve membranes in controlled atmospheres
Favvas et al. High purity multi-walled carbon nanotubes: Preparation, characterization and performance as filler materials in co-polyimide hollow fiber membranes
Tanco et al. Composite-alumina-carbon molecular sieve membranes prepared from novolac resin and boehmite. Part II: Effect of the carbonization temperature on the gas permeation properties
US8518151B2 (en) Porous hollow fiber supported dense membrane for hydrogen production, separation, or purification
WO2011152408A1 (en) Hydrogen separation membrane module and hydrogen separation method using same
JP5998022B2 (en) Separation membrane, hydrogen separation membrane provided with the same, and hydrogen separation apparatus provided with the hydrogen separation membrane
Sharma et al. A stable polymeric chain configuration producing high performance PEBAX-1657 membranes for CO 2 separation
KR20190037196A (en) Carbon molecular sieve membranes containing improved transition metals and methods for their preparation
CN106000016B (en) Gas separation system and method for producing enriched gas
US8357228B2 (en) Gas purification method
Seong et al. Polybenzimidazole-derived carbon molecular sieve hollow fiber membranes with tailored oxygen selective transport
WO2021230265A1 (en) Hydrogen gas separator
Wang et al. Externally self-supported metallic nickel hollow fiber membranes for hydrogen separation
Kapsi et al. Zeolite-templated sub-nanometer carbon nanotube arrays and membranes for hydrogen storage and separation
JP5805586B2 (en) Hydrogen purification apparatus and hydrogen purification method
Castro-Dominguez et al. The optimal point within the Robeson upper boundary
US8002875B1 (en) System and method for separating hydrogen gas from a mixed gas source using composite structure tubes
Singh et al. H2 selective membranes for precombustion carbon capture
Antunes et al. Isotopic effects on the permeation of all hydrogen isotopologues through MFI-ZSM-5 zeolite membranes
JP2007160238A (en) Gas separation membrane module and gas separation method
JP6464881B2 (en) Gas separation system and method for producing enriched gas
Kim High permeability/high diffusivity mixed matrix membranes for gas separations
Karousos et al. Polymeric, metallic and carbon membranes for hydrogen separation: A review
JP6511912B2 (en) Gas separation system and method for producing enriched gas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21805313

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022521948

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21805313

Country of ref document: EP

Kind code of ref document: A1