WO2021230220A1 - 細胞培養容器、固定具、観察装置、顕微鏡および観察方法 - Google Patents

細胞培養容器、固定具、観察装置、顕微鏡および観察方法 Download PDF

Info

Publication number
WO2021230220A1
WO2021230220A1 PCT/JP2021/017794 JP2021017794W WO2021230220A1 WO 2021230220 A1 WO2021230220 A1 WO 2021230220A1 JP 2021017794 W JP2021017794 W JP 2021017794W WO 2021230220 A1 WO2021230220 A1 WO 2021230220A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell culture
cell
culture vessel
polyhedral shape
shaft portion
Prior art date
Application number
PCT/JP2021/017794
Other languages
English (en)
French (fr)
Inventor
将也 萩原
Original Assignee
国立研究開発法人理化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人理化学研究所 filed Critical 国立研究開発法人理化学研究所
Priority to US17/924,159 priority Critical patent/US20230174911A1/en
Priority to EP21803722.4A priority patent/EP4151715A1/en
Priority to JP2022521918A priority patent/JPWO2021230220A1/ja
Publication of WO2021230220A1 publication Critical patent/WO2021230220A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/36Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of biomass, e.g. colony counters or by turbidity measurements
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/22Transparent or translucent parts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/14Scaffolds; Matrices
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/12Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/34Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of gas
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/26Stages; Adjusting means therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/34Microscope slides, e.g. mounting specimens on microscope slides

Definitions

  • the present invention relates to a cell culture vessel, a fixture, an observation device, a microscope and an observation method.
  • the present invention is housed in a cell culture container, a fixture for the cell culture container, an observation device provided with the cell culture container, a microscope and a cell culture container provided with the observation device, which can reduce the burden on the observer. It is an object of the present invention to provide a method for observing cells or cell tissues.
  • the cell culture vessel is a cell culture vessel for accommodating cells or cell tissues, and is provided at a position corresponding to each side of the polyhedral shape. From any of the frame portion, the translucent window portion provided at a position corresponding to each of the plurality of surfaces among the surfaces of the polyhedral shape, and the apex of the polyhedral shape, the above-mentioned It is provided with a shaft portion extending in a direction not parallel to the normal line of any surface of the polyhedral shape.
  • the observation device is a cell culture container for accommodating cells or cell tissues, and is a frame provided at a position corresponding to each side of the polyhedral shape.
  • the polyhedron from either the portion, the translucent window portion provided at a position corresponding to each of the plurality of faces among the faces of the polyhedron shape, and the apex of the polyhedron shape toward the outside.
  • a rotation mechanism that grips the shaft portion of a cell culture vessel provided with a shaft portion that extends in a direction that is not parallel to the normal line of any surface of the shape, and rotates the cell culture vessel with the shaft portion as a rotation axis. It is equipped with.
  • the fixing tool is a fixing tool for a cell culture container for accommodating cells or cell tissues, and the cell culture container has each side of a polyhedral shape.
  • the fixture comprises a frame portion provided at a position corresponding to the above, and a translucent window portion provided at a position corresponding to each of a plurality of surfaces among the surfaces of the polyhedral shape.
  • the observation device is an observation device provided with a fixing tool for the cell culture container and a rotation mechanism for rotating the cell culture container.
  • a frame portion provided at a position corresponding to each side of the polyhedral shape, and a translucent window portion provided at a position corresponding to each of a plurality of surfaces among the surfaces of the polyhedral shape.
  • the fixture is a grip portion that grips the cell culture container and a shaft portion connected to the grip portion, and the polyhedral shape has the polyhedral shape from any of the apex of the polyhedral shape toward the outside.
  • the cell culture vessel is provided with a shaft portion extending in a direction not parallel to the normal line of any surface, and the rotation mechanism grips the shaft portion and is gripped by the fixture with the shaft portion as a rotation axis. To rotate.
  • the observation method is a method for observing a cell culture container for accommodating cells or cell tissues, and the cell culture container has each side of a polyhedral shape. Which of the frame portion provided at the position corresponding to the above, the translucent window portion provided at the position corresponding to each of the plurality of surfaces among the surfaces of the polyhedral shape, and the apex of the polyhedral shape.
  • the observation method includes a shaft portion extending outward from the polyhedron shape in a direction not parallel to the normal line of any surface of the polyhedral shape, and the observation method grips the shaft portion of the cell culture vessel and the cells.
  • the polyhedral shape has cells or cell tissues while rotating the cell culture vessel and the step of rotating around an axis that is not parallel to the normal line of any of the surfaces. It includes a step of observing from a plurality of surfaces among the surfaces.
  • the observation method is a method for observing cells or cell tissues contained in a cell culture container, and the cell culture container is provided on each side of a polyhedron shape.
  • a frame portion provided at a corresponding position and a translucent window portion provided at a position corresponding to each of a plurality of surfaces among the surfaces of the polyhedron shape are provided, and the cell culture vessel is fixed.
  • the tool is a grip portion that grips the cell culture container and a shaft portion connected to the grip portion, and any surface of the polyhedron shape toward the outside from any of the apex of the polyhedron shape.
  • the observation method comprises a step of grasping the cell culture vessel with the fixture and rotating the cell culture vessel with the shaft portion as a rotation axis. include.
  • the present invention it is possible to realize a cell culture vessel, a fixture thereof, an observation device, a microscope, and an observation method that can reduce the burden on the observer.
  • FIG. 1 It is a perspective view which shows an example of the cell culture container and the fixture which concerns on Embodiment 1 of this invention. It is a figure which shows an example of the fixture of the cell culture container which concerns on Embodiment 1 of this invention. It is a figure which shows the state which attached the fixture of FIG. 2 to a cell culture container. It is a perspective view which shows the state which installed the observation apparatus which concerns on Embodiment 1 of this invention on a microscope. It is a figure which shows the state of rotation of the cell culture container which concerns on Embodiment 1 of this invention. It is a figure which shows the state of rotation of the cell culture container which concerns on Embodiment 1 of this invention.
  • FIG. 1 It is a figure which shows the state of rotation of the cell culture container which concerns on Embodiment 1 of this invention. It is an example of the image of the cell tissue (the image observed from the xy direction, the yz direction, and the xy direction in the local coordinate system of the cell culture vessel) acquired by the observation device according to the first embodiment of the present invention. This is an example of an image of a cell tissue (an image observed from the xy direction, the yz direction, and the xy direction in the local coordinate system of the cell culture vessel) acquired by the observation device according to the first embodiment of the present invention at another time. .. It is a figure for demonstrating the principle of the microscope which concerns on Embodiment 2 of this invention.
  • FIG. 11 is a diagram showing a closed state after the cell culture container is housed in the chamber in the observation device in FIG. 11. It is a block which shows an example of the hardware composition of the observation apparatus which concerns on Embodiment 3 of this invention.
  • Observation device according to the third embodiment of the present invention It is an example of the image of the cell tissue at a certain time (the image observed from the xy direction, the yz direction, and the xy direction in the local coordinate system of the cell culture vessel) acquired by the observation device according to the third embodiment of the present invention. It is an image in which the locus of the cell tissue is overlapped with the image after 7 hours of the cell tissue in FIG.
  • FIG. 1 is a perspective view showing an example of a cell culture container 10 and a fixture 20 according to the first embodiment of the present invention. First, the cell culture vessel 10 according to the present embodiment will be described with reference to FIG.
  • the cell culture container 10 is a container for containing and culturing cells or cell tissues.
  • the cell culture vessel 10 according to the present invention is configured in a substantially cubic shape, for example, as shown in FIG. More specifically, as shown in FIG. 1, the cell culture vessel 10 has a substantially cubic shape having eight vertices V1, V2, V3, V4, V5, V6, V7, and V8.
  • the shape of the cell culture vessel 10 is not limited to the cube shape, and may be another polyhedron such as a rectangular parallelepiped or a spherical shape.
  • the shape of the cell culture vessel 10 is preferably a hexahedron shape, and more preferably a cube shape, from the viewpoint of ease of handling of the cell culture vessel 10 and the ability to appropriately obtain image information in the z-axis direction.
  • the size of the cell culture vessel 10 for example, the outer dimension of each side of the cube can be about 4 mm and the inner dimension can be about 3 mm, but the specific size of the cell culture vessel 10 limits the present embodiment. It's not a thing.
  • the cell culture vessel 10 has a frame portion 11 provided at a position corresponding to each side of the polyhedral shape (cube shape), and each of a plurality of surfaces of the polyhedral shape.
  • a translucent window portion 12 provided at a corresponding position is provided. That is, the frame portion 11 of the cell culture vessel 10 has a total of 12 sides (vertices V1 and V2, V2 and V3, V3 and V4, V4 and V1, V5 and V6, V6) constituting the cubic shape shown in FIG. And V7, V7 and V8, V8 and V5, V1 and V5, V2 and V6, V3 and V7, V4 and V8).
  • the material of the frame portion 11 may be, for example, a biocompatible resin such as polycarbonate.
  • the window portion 12 is surrounded by the twelve sides constituting the frame portion 11. That is, the window portion 12 has six surfaces constituting the cubic shape shown in FIG. 1 (that is, a surface composed of V1, V2, V3, V4, a surface composed of V1, V2, V6, V5, V2, Surface composed of V3, V7, V6, surface composed of V3, V4, V8, V7, surface composed of V1, V4, V8, V5, surface composed of V5, V6, V7, V8) Consists of.
  • the material of the window portion 12 is transparent and allows nutrients, stimulating factors, etc. necessary for culturing cells or cell tissues (hereinafter, also referred to as samples) contained in the cell culture vessel 10 to permeate. It is preferably a material that can be produced.
  • Specific materials for the window portion 12 preferably include, for example, agarose gel, polyacrylamide gel, sodium alginate or collagen gel.
  • agarose gel polyacrylamide gel
  • sodium alginate or collagen gel a material having nutrient permeability
  • the window portion 12 by forming the window portion 12 with a translucent material, the cells or cell tissue 13 housed inside the cell culture vessel 10 are oriented in the directions of a plurality of surfaces constituting the cubic shape. It can be observed from.
  • the cell or cell tissue 13 and the culture gel 14 that embeds the cell or cell tissue 13 are housed inside the cell culture container 10.
  • the culture gel 14 can contain, for example, collagen, laminin, entactin, proteoglycan and the like.
  • the culture gel 14 can contain TGF- ⁇ , fibroblast growth factor, tissue plasminogen activator and the like.
  • Matrigel registered trademark
  • the cells or cell tissue 13 housed in the cell culture vessel 10 are three-dimensionally cultured using the culture gel 14 as a scaffold.
  • the window portion 12 is made of a material having an appropriate strength, it can be prevented from being deformed by the weight of the culture gel 14. Further, since the culture gel 14 is filled in the space inside the window portion 12 without any gap, it is possible to suppress the relative position of the embedded cell or cell tissue 13 from shifting.
  • the space between the cell or cell tissue (sample) 13 and the surrounding liquid medium is covered only with the agarose gel constituting the window portion 12 and the extracellular matrix constituting the culture gel 14. Therefore, since the liquid medium and the sample 13 are efficiently circulated, the sample 13 can be cultured without deteriorating the activity even in long-term observation.
  • the cell culture container 10 may have a convex portion 15 projecting from each apex of the frame portion 11 toward the inside of the cell culture container 10.
  • the convex portion 15 may be entirely made of a material that emits autofluorescence.
  • only the tip portion 16 of the convex portion 15 may be made of a material that emits autofluorescence.
  • the convex portion 15 has a triangular pyramid shape, but the shapes of the convex portion 15 and the tip portion 16 are not particularly limited. The function of the convex portion 15 will be described below.
  • the autofluorescence of the convex portion 15 or the tip portion 16 is detected in a plurality of directions. Images of cells or cell tissues 13 obtained from can be aligned with each other with high accuracy.
  • the convex portion 15 or the tip portion 16 projects from each apex of the frame portion 11 toward the inside of the cell culture vessel 10, the growth of the embedded cell or cell tissue 13 is far from the central portion of the cell culture vessel 10. Does not interfere.
  • the protrusion 15 may be embedded in the culture gel 14 at a position that does not hinder the growth of the cell or cell tissue 13.
  • the cell culture vessel 10 extends outward from any of the vertices of the polyhedral shape in a direction not parallel to the normal of any surface of the polyhedral shape.
  • a shaft portion 17 is provided.
  • the shaft portion 17 is formed in a direction along a straight line l connecting the apex V1 and the apex V7 at a diagonal position from one apex V1 of the cell culture vessel 10 having a cubic shape, as shown in FIG. It is stretched. Further, a bearing 18 may be provided at the apex V7 diagonally to the apex V1.
  • the shaft portion 17 may be stretched along a straight line passing through the center of the cell culture vessel 10.
  • the center of the cell culture container 10 refers to, for example, the center of gravity of the cell culture container 10, but is not limited to this.
  • the center may refer to the intersection of a plurality of diagonal lines among the diagonal lines connecting the vertices of the cell culture vessel 10 having a polyhedral shape.
  • the shape of the shaft portion 17 is not particularly limited, but as an example, it can be a rod shape as shown in FIG. Further, the material of the shaft portion 17 may be a material having no biocompatibility as long as it has a certain strength.
  • the shaft portion 17 may be connected to a rotation mechanism such as a stepping motor 38 that can rotate the cell culture vessel 10 in a predetermined direction and at a predetermined rotation speed with the shaft portion 17 as a rotation axis.
  • the rotation direction, rotation speed, and rotation duration of the stepping motor 38 are adjusted by the controller 39. If the cell culture vessel 10 is rotated around the axis of the shaft portion 17 by a uniaxial rotation mechanism as in the present embodiment, the cell culture vessel 10 is rotated around the axis of the shaft portion 17 by the microscope 40. Can be observed.
  • the observer may grasp the shaft portion 17 of the cell culture vessel 10 with tweezers or the like and rotate it manually.
  • the cell culture vessel 10 includes a shaft portion 17 extending in a direction not parallel to the normal of any surface of the polyhedral shape formed by the cell culture vessel 10.
  • a shaft portion 17 extending in a direction not parallel to the normal of any surface of the polyhedral shape formed by the cell culture vessel 10.
  • the surfaces facing the lens barrel 41 are V5, V6, and so on.
  • a surface composed of V7 and V8 also called an E surface
  • a surface composed of V3, V4, V8, and V7 also called an F surface
  • a surface composed of V2, V3, V7, and V6 also called a D surface
  • the cells or cell tissue 13 housed inside the cell culture vessel 10 can be suitably observed three-dimensionally by rotation around one axis called the shaft portion 17.
  • the cell culture vessel 10 provided with the shaft portion 17 has been described.
  • the cell culture vessel 10'without the shaft portion 17 may be used for observing the cells or the cell tissue 13.
  • FIG. 2 shows an example of a fixture 20 used for fixing a cell culture container 10'without a shaft portion 17
  • FIG. 3 shows an example of a state in which the fixture 20 is attached to the cell culture container 10'. ..
  • the fixture 20 includes a grip portion 22 that grips the cell culture container 10 and a shaft portion 25 connected to the grip portion 22.
  • the grip portion 22 further includes three grip portions 22a, 22b, and 22c that extend in directions perpendicular to each other and have substantially the same length.
  • the tips of the three grips 22a, 22b, and 22c are provided with claws 22d, 22e, and 22f, respectively.
  • the grip portions 22a, 22b, and 22c have three sides (V1, V4, V1) forming the apex V1 of the cell culture vessel 10, respectively. It is arranged along the portion of the frame portion 11 provided at the position corresponding to (the side connecting V1 and V2, and V1 and V5). Further, the claws 22d, 22e, and 22f grip the vertices V4, V2, and V5 of the frame portion adjacent to the apex V1 of the cell culture vessel 10', respectively.
  • the shaft portion 25 of the fixture 20 When the fixture 20 is fixed to the cell culture vessel 10', the shaft portion 25 of the fixture 20 has the polyhedral shape from the apex V1 of the polyhedral shape (cube shape) of the cell culture vessel 10'toward the outside. Stretch in a direction that is not parallel to the normal of any surface.
  • the cells provided with the shaft portion 17 are rotated by rotating the cell culture vessel 10'with the shaft portion 25 of the fixture 20 as the axis of rotation.
  • the culture vessel 10 it is possible to obtain a high-resolution image of the cell or cell tissue 13 in the Z-axis direction.
  • FIG. 4 is a perspective view showing a state in which the observation device 30 according to the first embodiment of the present invention is installed in the microscope 40.
  • the coordinate axis shown in FIG. 4 is a resting coordinate system represented by the XYZ axis with the Z axis as the vertical direction.
  • the observation device 30 according to the first embodiment of the present invention and the microscope 40 in which the observation device 30 is installed will be described with reference to FIG.
  • the observation device 30 includes a cell culture vessel 10 (or 10', the same applies hereinafter) and a rotation mechanism that grips the shaft portion 17 of the cell culture vessel 10 and rotates the cell culture vessel 10 with the shaft portion 17 as a rotation axis. ..
  • the observation device 30 includes a Z-axis fine movement stage 31, an oblique fixed holder 34, a rotary stage 35, a stretched portion 36, a collet chuck 37, a stepping motor 38, and a stepping motor 38.
  • a cell culture vessel 10 is provided.
  • the rotation mechanism described above includes, for example, an oblique fixing holder 34, an extension portion 36, a collet chuck 37, and a stepping motor 38.
  • the observation device 30 according to the present embodiment is installed on the microscope stage 42 of the microscope 40.
  • the Z-axis fine movement stage 31 of the observation device 30 includes a base 32 installed on the microscope stage 42 of the microscope 40, and a pedestal portion 33 extending vertically upward with respect to the base 32.
  • the height of the pedestal portion 33 in the Z-axis direction can be adjusted. This makes it possible to finely adjust the position of the cell culture vessel 10 held by the collet chuck 37, which will be described later, in the Z-axis direction.
  • the oblique fixed holder 34 is a plate-shaped member.
  • the oblique fixing holder 34 is connected to the pedestal portion 33 of the Z-axis fine movement stage 31 at an angle.
  • the angle between the oblique fixed holder 34 and the pedestal 33 of the Z-axis fine movement stage 31 is such that the normal of the surface formed by at least one of the windows of the cell culture vessel 10 (or 10') is the light of the lens barrel 41. It is set so that it can be parallel to the axis.
  • the orthorhombic fixed holder 34 is 135 degrees with respect to the pedestal portion 33 of the Z-axis fine movement stage 31.
  • the oblique fixing holder 34 is fixed to the pedestal portion 33 of the Z-axis fine movement stage 31 at an angle of 45 degrees with respect to the horizontal direction (XY direction).
  • a rotary stage 35 having a disk shape is provided on the lower surface of the oblique fixed holder 34.
  • the rotary stage 35 is driven by a stepping motor 38 so as to rotate in both clockwise and counterclockwise directions.
  • the member attached to the tip of the rotary stage 35 can be rotated both clockwise and counterclockwise.
  • the rotation stage 35 may be automatically rotated by using a stepping motor 38 or the like as described above, or may be manually rotated by the observer.
  • the oblique fixed holder 34 and the stretched portion 36 extending linearly in the direction perpendicular to the rotary stage 35, that is, in the direction of 45 degrees with respect to the horizontal direction (XY direction) are connected.
  • a collet chuck 37 is connected to the tip of the stretched portion 36.
  • the collet chuck 37 grips the shaft portion 17 of the cell culture vessel 10.
  • the collet chuck 37 with the cell culture vessel 10 attached may be held at an angle of 45 degrees with respect to the horizontal plane, and the cell culture vessel 10 may be held in the horizontal direction.
  • the cell culture vessel 10 is attached to the collet chuck 37 while being immersed in the liquid medium of the dish (or well) 51.
  • the fixture 20 to which the cell culture container 10'without the shaft portion 17 is attached may be attached to the extension portion 36.
  • the rotation stage 35 rotates, the cell culture vessel 10 attached to the tip of the collet chuck 37 has a predetermined speed with the shaft portion 17 as the rotation axis while keeping the stretched portion 36 at an angle of 45 degrees with respect to the horizontal direction. Can be rotated with.
  • the rotation speed and rotation duration of the rotation stage 35 (that is, the rotation speed, stop time, and rotation duration of the cell culture vessel 10) can be arbitrarily set, and the intermittent operation that repeats continuous rotation and rotation / stop is repeated. Is also possible.
  • the cell culture vessel 10 is set to a clockwise rotation speed of 2 times / minute (that is, 120 degree rotation in 10 seconds), stopped for 110 seconds after 120 degree rotation, and repeats a cycle of 120 degree rotation in the clockwise direction again.
  • the rotation duration may be set to 3 days.
  • a method of immersing the cell culture vessel 10 in a liquid medium and connecting it to the observation device 30 and installing the cell culture container 10 in the microscope 40 for observation will be described.
  • the microscope 40 a conventional microscope can be used.
  • a confocal laser scanning microscope, a two-photon microscope, or the like can be used.
  • FIG. 4 an inverted microscope will be described as an example, but an upright microscope may be used.
  • the cell culture vessel 10 is immersed in the liquid medium of the dish (or well) 51.
  • the Z-axis fine movement stage 31 of the observation device 30 is installed at a predetermined position of the microscope stage 42 of the microscope 40. Subsequently, the tip of the stretched portion 36 of the observation device 30 is connected to the cell culture vessel 10 in a state of being horizontally immersed in the dish 51 via a collet chuck 37. Then, in the Z-axis fine movement stage 31, the installation position of the cell culture vessel 10 in the Z-axis direction is finely adjusted.
  • the rotation speed of the rotation stage 35, the stop time of the intermittent operation and the rotation duration are set, and the cells or the cell tissue 13 are observed (that is, image acquisition) while the rotation is stopped. Repeat what you do.
  • ⁇ Rotation of cell culture container> 5 to 7 show how the cell culture vessel 10 rotates during the observation operation of the cell or the cell tissue 13.
  • the coordinate system shown in FIGS. 5 to 7 is a local coordinate system represented by the xyz axis connected to the cell culture vessel 10.
  • the cell culture vessel 10 is set to rotate clockwise by 120 degrees every 2 minutes with the shaft portion 17 as the axis of rotation, and the rotation is maintained for 3 days.
  • the A surface (the surface composed of the vertices V1, V4, V8, and V5) is located in front of the six surfaces constituting the cube shape of the cell culture vessel 10.
  • the E surface ((the surface composed of vertices V5, V6, V7, and V8) faces the lens barrel 41.
  • the image of the sample 13 scanned in the z-axis direction of the cell culture vessel 10 is acquired. be able to.
  • the B surface (plane composed of the apex V2, V3, V4, and V1) is formed. ) Is located in front, and the F surface (the surface composed of (vertices V3, V4, V8, and V7) faces the lens barrel 41.
  • the sample 13 scanned in the x-axis direction of the cell culture vessel 10). You can get the image of.
  • the C plane (the plane composed of the vertices V1, V4, V8, and V5) is as shown in FIG. Is located in front, and the D surface (the surface composed of the vertices V2, V3, V7, and V6) faces the lens barrel 41.
  • the D surface the surface composed of the vertices V2, V3, V7, and V6 faces the lens barrel 41.
  • the cell culture vessel 10 when the cell culture vessel 10 is rotated 120 degrees clockwise with the shaft portion 17 as the rotation axis, it returns to the state where the A surface is located in front as shown in FIG. Hereinafter, the same operation is repeated.
  • the plane, the B plane, and the C plane are sequentially located in front of each other.
  • the images of the sample 13 obtained by scanning the images sliced in the xy direction, the yz direction, and the zx plane of the cell culture vessel 10 in the z-axis direction, the x-axis direction, and the y-axis direction can be sequentially acquired. ..
  • By performing the synthesis processing of the image data acquired from these plurality of surfaces it is possible to acquire the three-dimensional structure of the sample 13 having high resolution in all the x-axis direction, the y-axis direction, and the z-axis direction.
  • observation was performed using zebrafish as sample 13.
  • the cell culture vessel 10 containing the zebrafish was placed in a predetermined position of the microscope 40 in a state of being immersed in the dish 51, and the cell culture vessel 10 was rotated by the stepping motor 38.
  • the rotation speed is set to 2 times / minute (that is, 120 degree rotation in 10 seconds)
  • the operation is set to stop for 110 seconds after 120 degree rotation, and repeat the cycle of rotating 120 degrees clockwise again for 3 days.
  • the image of the zebra fish was scanned and acquired in the axial direction of the lens barrel 41.
  • the three images shown in FIG. 8 are a projected image of the zebrafish in the xy direction at a certain time t1, a projected image of the zebrafish in the yz direction at a time t2 2 minutes after the time t1, and 2 minutes after the time t2.
  • the projected images of the zebrafish in the zx direction at time t3 are shown respectively.
  • the three images shown in FIG. 9 the image of the zebrafish in the xy direction at the time t4 2 minutes after the time t3, the image of the zebrafish in the yz direction at the time t5 2 minutes after the time t4, and the time t5.
  • the images of the zebrafish in the zx direction at time t6 2 minutes after the above are shown respectively.
  • the cell culture vessel 10 containing the zebrafish was continuously rotated clockwise by 120 degrees every 2 minutes for 3 days, during which the images of the zebrafish in the xy, yz, and zx directions were taken every 2 minutes. was able to be obtained continuously.
  • the sample 13 (zebrafish in the present embodiment) is obtained.
  • the time lapse can be measured, and the intracellular dynamics can be observed live using the observation device 30.
  • the observation device 30 is separate from the microscope 40, but the microscope 40 may include the observation device 30 having the above configuration.
  • the present invention is not limited to the microscope having the above configuration, and can be applied to all types of microscopes.
  • the present invention can also be applied to a light sheet microscope 60 as shown in FIG.
  • the laser from the laser irradiation unit 63 arranged under the cell culture vessel 10 is reflected by the two mirrors 61, and the cells or the cells containing the cell tissue as the sample 13 are contained.
  • a sheet-shaped laser (light sheet 62) is irradiated from two opposite sides of the culture vessel 10. Then, the image of the sample 13 is obtained by scanning in the direction orthogonal to the light sheet 62. Therefore, for example, if the observation device 30 provided with the cube-shaped cell culture vessel 10 described above is installed in the light sheet microscope 60 and the sample 13 is observed, the cell culture vessel 10 forming the cube can be observed from all six directions. , Sample 13 can be observed. Therefore, it is possible to obtain a three-dimensional image of the observation target having a higher resolution.
  • the light sheet microscope according to the present embodiment is not limited to the configuration shown in FIG.
  • the light sheet microscope 60 may be configured not to include two mirrors 61, and may be configured to irradiate a sheet-shaped laser from a laser irradiation unit arranged on the side surface side of the cell culture vessel 10.
  • an observation device used for observing cells or cell tissues of an organism that can be cultured without strictly controlling the culture conditions such as zebrafish has been described.
  • an observation device 130 capable of observing cells or cell tissues for which it is necessary to strictly control culture conditions such as temperature around cells or cell tissues and CO 2 (carbon dioxide) concentration is provided.
  • the culture conditions are that the temperature around the cell or cell tissue is 36 to 37 ° C and the CO 2 concentration is 4.0 to 5.0%. It is desirable to keep the temperature within the range, and in particular, it is most desirable to keep the temperature around the cell or cell tissue at 37 ° C.
  • the temperature around the cell or cell tissue is defined as body temperature. By keeping the temperature at 37 ° C. to the same level, the action of the enzymes added to the medium can be activated. Also, by keeping the CO 2 concentration at about 5%, the pH of the medium is neutral (7). It can be held at .2-7.4).
  • FIG. 11 is a perspective view showing an example of the observation device 130 according to the present embodiment, and is a diagram showing how the cell culture container 10 is housed in the chamber 137 of the observation device 130.
  • FIG. 12 is a diagram showing a state in which the cell culture container 10 is sealed in the chamber 137 after the cell culture container 10 is housed in the dish 51 in the observation device 130 shown in FIG.
  • FIG. 13 is a diagram showing an example of a three-axis adjustment mechanism 140 that adjusts the position of the observation device 130 according to the third embodiment of the present invention.
  • FIG. 14 is a block diagram showing a hardware configuration of the observation device 130.
  • the observation device 130 is a control unit that controls the culture conditions in the chamber 137 and the chamber 137 that house the culture vessel 10 (culturing human normal bronchial epithelial cells) in addition to the components included in the observation device 30 in the first embodiment. 131 is further provided. Further, as shown in FIG. 14, the observation device 130 further includes a temperature sensor 132, a heater 133, a cooler 134, a CO 2 concentration sensor 135, and a CO 2 regulator 136. As shown in FIG. 11, the chamber 137 is installed in a predetermined position on the microscope stage 42.
  • the microscope is provided with a 3-axis adjustment mechanism 140 as shown in FIG.
  • the 3-axis adjustment mechanism 140 is connected to the stepping motor 38 of the observation device 130, and makes the observation device 130 orthogonal to the y-axis at 45 degrees with respect to the y-axis direction, the z-axis direction, and the z-axis direction. It can be moved in a direction (that is, in a direction parallel to the axis 17 of the cell culture vessel).
  • a culture vessel 10 in a state of being immersed in the liquid medium of the dish (or well) 51 is attached to the tip of the shaft portion 17 of the observation device 130.
  • the control unit 131 accommodates the culture container 10 attached to the tip of the shaft portion 17 of the observation device 130 in the chamber 137 from the slit 138.
  • a person may manually house the culture vessel 10 in the chamber 137.
  • the control unit 131 seals the chamber 137. By sealing the chamber 137, the culture conditions in the chamber 137 can be strictly controlled.
  • silicone oil is used in order to prevent evaporation from the surface of the liquid medium.
  • the control unit 131 controls the culture condition of the cell around the cell in the chamber or the culture condition of the cell tissue around the cell tissue.
  • the control unit 131 controls at least one of the ambient temperature and CO 2 (carbon dioxide concentration) of the cell, or at least one of the ambient temperature and CO 2 concentration of the cell tissue.
  • the observation device 130 further includes a heater 133, a cooler 134, a temperature sensor 132, a CO 2 concentration sensor 135, and a CO 2 regulator 136.
  • the control unit 131 controls the temperature around the human normal bronchial epithelial cells to be maintained at 36 ° C to 37 ° C. In particular, it is preferable to control the temperature around the normal human bronchial epithelial cells to be maintained at 37 ° C.
  • a heater 133 and a cooler 134 are provided on the top plate or bottom plate surface of the observation device 130.
  • the control unit 131 keeps the temperature around the cell or cell tissue in an appropriate temperature range by switching on and off the heater 133 or the cooler 134 based on the temperature measured by the temperature sensor 132. For example, the control unit 131 turns on the heater 133 when the measurement result of the temperature sensor 132 becomes 36 ° C. or lower, and when the measurement result of the temperature sensor 132 becomes 37 ° C. or higher, the cooler 134 It may be set to switch on.
  • control unit 131 controls the CO 2 concentration around the normal human bronchial epithelial cells to be maintained at 4.0% to 5.0%.
  • the control unit 131 most preferably maintains the CO 2 concentration around the cell or cell tissue at 5%.
  • the CO 2 concentration sensor a known CO 2 concentration sensor such as an optical type, an electrochemical type, or a semiconductor type can be used.
  • the control unit 131 may operate the CO 2 regulator 136 to adjust the CO 2 concentration.
  • the CO 2 concentrations may be adjusted the pH value of the medium, for example, when the pH value is outside the range of 7.2-7.4, the CO 2 concentration by CO 2 regulator 136 It may be adjusted and, as a result, controlled to adjust the pH value of the medium to an appropriate range.
  • the medium may contain phenol red, and a person may judge the pH value based on the change in the color of the medium.
  • human normal bronchial epithelial cells are appropriately cultured by keeping the temperature and CO 2 concentration around the cell or cell tissue to be cultured within an appropriate range. And it is possible to observe over time.
  • the observation device 130 of the present embodiment it can be applied to the culture and temporal observation of other cells or cell tissues that require strict culture conditions, depending on the type of each cell or cell tissue. It can be set to an appropriate temperature and CO 2 concentration.
  • the control unit 131 may be configured to receive information on the type of cell or cell tissue to be observed and set the temperature and the concentration of carbon dioxide according to the information.
  • a groove-shaped space may be provided in the chamber 137, and pure water may be constantly put in the space to maintain the humidity in the chamber 137 at 90 to 98%. According to the above configuration, evaporation from the medium in the dish 51 can be prevented, and long-term time-lapse observation can be performed.
  • FIG. 12 shows a state in which the chamber 137 is closed after the observation device 130 is set in the chamber 137.
  • normal human bronchial epithelial cells were cultured at a temperature of 37 ° C. and a CO 2 concentration of 5%.
  • the culture vessel 10 was rotated to obtain an image continuously scanned from the three plane directions by the photographing unit 139.
  • Human normal bronchial epithelial cells were labeled with GFP (Green Fluorescent Protein).
  • GFP Green Fluorescent Protein
  • FIG. 15 is an example of an image of normal human bronchial epithelial cells at a certain time (image observed from the xy direction, yz direction, and xy direction in the local coordinate system of the cell culture vessel 10) obtained as a result of the above.
  • FIG. 15-1 is an image of the cell tissue taken from the z-axis direction
  • FIG. 15-2 is an image of the cell tissue taken from the y-axis direction
  • FIG. 15-3 is an image of the cell tissue taken from the x-axis direction. This is an image taken from the direction.
  • FIG. 16 is an image in which the locus of the cell tissue is overlapped with the image of the cell tissue in FIG. 15 after 7 hours.
  • FIG. 15-1 is an image of the cell tissue taken from the z-axis direction
  • FIG. 15-2 is an image of the cell tissue taken from the y-axis direction
  • FIG. 15-3 is an image of the cell tissue taken from the x-axis direction. This is an image taken from the direction.
  • FIG. 16-1 is an image of the cell tissue taken from the z-axis direction
  • FIG. 16-2 is an image of the cell tissue taken from the y-axis direction
  • FIG. 16-3 is the cell tissue. Is an image taken from the x-axis direction.
  • the cell culture vessel 10 is a cell culture vessel for accommodating cells or cell tissues, and has a frame portion 11 provided at a position corresponding to each side of the polyhedral shape and the polyhedral shape.
  • the translucent window portion 12 provided at a position corresponding to each of the plurality of surfaces and any of the apexes of the polyhedral shape toward the outside, whichever the polyhedral shape has. It is provided with a shaft portion 17 extending in a direction not parallel to the normal line of the surface.
  • the burden on the observer can be reduced.
  • the burden on the observer is suppressed by observing the contained cells or cell tissues from a plurality of directions while rotating the cell culture vessel with the shaft portion as a rotation axis. While doing so, a suitable observation image can be obtained.
  • the shaft portion may be extended along a straight line passing through any of the apex and the center of the cell culture vessel.
  • the cells or cell tissues are displaced in the z-axis direction. Not multiple images can be obtained. By complementing each other with these plurality of image data, it is possible to further obtain a highly accurate image of the cell tissue.
  • the polyhedral shape may be a hexahedral shape in the first or second aspect.
  • the observation device is a cell culture container for accommodating cells or cell tissues, and has a frame portion provided at a position corresponding to each side of the polyhedral shape and a surface of the polyhedral shape.
  • the translucent window portion provided at a position corresponding to each of the plurality of surfaces and the normal line of any surface of the polyhedral shape toward the outside from any of the apex of the polyhedral shape.
  • It is provided with a rotation mechanism for gripping the shaft portion of the cell culture vessel having a shaft portion extending in a direction not parallel to the shaft portion and rotating the cell culture vessel with the shaft portion as a rotation axis. According to this configuration, observation can be preferably performed using the cell culture vessel.
  • the observation device further includes a chamber for accommodating the cell culture vessel and a control unit for controlling the culture conditions of the cells or cell tissues around the cells or cell tissues in the chamber. According to this configuration, even cells such as human normal bronchial epithelial cells that require strict control of culture conditions can be suitably observed over time using a cell culture vessel.
  • control unit controls at least one of the ambient temperature and the CO 2 concentration of the cell or cell tissue. According to this configuration, even cells such as human normal bronchial epithelial cells that require strict control of culture conditions can be suitably observed over time using a cell culture vessel.
  • control unit controls the ambient temperature of the cell or cell tissue to be maintained at 36 to 37 ° C. According to this configuration, even cells such as human normal bronchial epithelial cells that require strict control of culture conditions can be suitably observed over time using a cell culture vessel.
  • control unit controls the control unit so as to maintain the CO 2 concentration around the cell or cell tissue at 4.0 to 5.0%. According to this configuration, even cells such as human normal bronchial epithelial cells that require strict control of culture conditions can be suitably observed over time using a cell culture vessel.
  • the observation device may further include the cell culture vessel according to the fourth aspect. According to this configuration, observation can be preferably performed using the cell culture vessel.
  • the fixture according to aspect 10 of the present invention is a fixture for a cell culture vessel for accommodating cells or cell tissues, and the cell culture vessel is a frame provided at a position corresponding to each side of a polyhedral shape.
  • the fixture is provided with a portion and a translucent window portion provided at a position corresponding to each of the plurality of surfaces among the surfaces of the polyhedral shape, and the fixture is a grip portion that grips the cell culture container.
  • a shaft portion connected to the grip portion and extending outward from any of the apex of the polyhedral shape in a direction not parallel to the normal line of any surface of the polyhedral shape. And.
  • the cell culture container can be rotated around the shaft portion of the fixture while being appropriately fixed by the fixture, as in the first aspect. Can produce the effect of. Further, since the cell culture vessel does not have a shaft portion, it is convenient for culturing by immersing it in a dish or the like.
  • the observation device is an observation device including a fixing tool for the cell culture container and a rotation mechanism for rotating the cell culture container, and the cell culture container corresponds to each side of the polyhedral shape.
  • the fixture is provided with a frame portion provided at a position and a translucent window portion provided at a position corresponding to each of the plurality of surfaces among the surfaces of the polyhedral shape, and the fixture is the cell culture.
  • the grip portion that grips the container and the shaft portion connected to the grip portion, and are not parallel to the normal line of any surface of the polyhedral shape toward the outside from any of the apex of the polyhedral shape.
  • the rotation mechanism includes a shaft portion extending in a direction, and the rotation mechanism grips the shaft portion and rotates the cell culture container gripped by the fixture with the shaft portion as a rotation axis.
  • the observation device according to the 12th aspect of the present invention may further include the cell culture vessel according to the 11th aspect.
  • the observation device has a chamber for accommodating the cell culture vessel and conditions for culturing the cells around the cells in the chamber, or conditions for culturing the cell tissue around the cell tissue. It further includes a control unit for controlling.
  • the microscope according to aspect 14 of the present invention may be provided with the observation device according to any one of aspects 4-9 and 11-12. According to the configuration, the same effect as that of the aspect 4 or 7 can be obtained.
  • the observation method according to aspect 15 of the present invention is a method for observing a cell culture vessel for accommodating cells or cell tissues, and the cell culture vessel is a frame provided at a position corresponding to each side of a polyhedral shape.
  • the polyhedron is outward from any of the translucent window portion provided at a position corresponding to each of the plurality of faces among the faces of the polyhedron shape and the apex of the polyhedron shape.
  • the observation method includes a step of rotating the cell culture vessel with the shaft portion of the cell culture vessel as a rotation axis, which comprises a shaft portion extending in a direction not parallel to the normal line of any surface of the shape.
  • the observation method according to aspect 16 of the present invention is a method for observing cells or cell tissues contained in a cell culture container, wherein the cell culture container has a frame portion provided at a position corresponding to each side of the polyhedron shape. And a translucent window portion provided at a position corresponding to each of the plurality of surfaces among the surfaces of the polyhedron shape, and the fixing tool of the cell culture container grips the cell culture container.
  • the grip portion and the shaft portion connected to the grip portion extend outward from any of the apex of the polyhedron shape in a direction not parallel to the normal line of any surface of the polyhedron shape.
  • the observation method includes a step of grasping the cell culture vessel with the fixture and rotating the cell culture vessel with the shaft portion as a rotation axis.
  • the observation method according to aspect 17 of the present invention further includes a control step of controlling the culture condition of the cell around the cell in the chamber or the culture condition of the cell tissue around the cell tissue.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Sustainable Development (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Clinical Laboratory Science (AREA)
  • Thermal Sciences (AREA)
  • Immunology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

Z軸方向に解像度の高い細胞培養容器を提供する。細胞又は細胞組織を収容するための細胞培養容器(1)であって、細胞培養容器は、多面体形状の各辺に対応する位置に設けられた枠部(11)と、前記多面体形状が有する面のうち、複数の面の各々に対応する位置に設けられた透光性の窓部(12)と、前記多面体形状が有する頂点の何れかから外側に向かって、前記多面体形状が有する何れの面の法線とも平行でない方向に延伸する軸部(17)とを備えている。

Description

細胞培養容器、固定具、観察装置、顕微鏡および観察方法
 本発明は、細胞培養容器、固定具、観察装置、顕微鏡および観察方法に関する。
 細胞又は細胞組織の3次元構造を観察する方法として、立方体形状を有し、立方体形状の各面に対応する位置に設けられた透光性を有する窓部を備える細胞培養容器に観察対象である細胞又は細胞組織を収容し、各窓部から対象を観察する方法が提案されている。この観察方法においては、立方体形状を有する細胞培養容器の水平方向(以下では、XY方向とも呼ぶ)に対象をスライスした画像を垂直方向(以下では、Z方向とも呼ぶ)にスキャニングして対象の3次元画像を取得する(特許文献1参照)。
 前記観察方法では、オルガノイド等の比較的大きな細胞組織を対象とする場合、倍率の低い対物レンズしか使用することができない。このため、焦点深度が深くなってしまい、Z軸方向における解像度が低い不鮮明な画像しか得ることができない。この問題を解決するために、立方体形状の細胞培養容器をピンセット等で把持し手動で回転させながら、立方体形状を構成する複数の面から対象の観察を行う。この結果、複数の面から観察した画像データ同士で補間し合うことにより、Z軸方向における画像の解像度を向上させることができる。
 しかし、上述の観察方法では、細胞培養容器をピンセット等で把持して回転させる必要があるため、観察者にとっての負担が大きかった。
国際公開2017-094451号公報(2017年6月8日公開)
 本発明は、前記事情に鑑み、観察者の負担を軽減することのできる細胞培養容器、細胞培養容器の固定具、細胞培養容器を備える観察装置、観察装置を備える顕微鏡および細胞培養容器に収容された細胞または細胞組織の観察方法を提供することを目的とする。
 前記の課題を解決するために、本発明の一態様に係る細胞培養容器は、細胞又は細胞組織を収容するための細胞培養容器であって、多面体形状の各辺に対応する位置に設けられた枠部と、前記多面体形状が有する面のうち、複数の面の各々に対応する位置に設けられた透光性の窓部と、前記多面体形状が有する頂点の何れかから外側に向かって、前記多面体形状が有する何れの面の法線とも平行でない方向に延伸する軸部とを備えている。
 前記の課題を解決するために、本発明の一態様に係る観察装置は、細胞又は細胞組織を収容するための細胞培養容器であって、多面体形状の各辺に対応する位置に設けられた枠部と、前記多面体形状が有する面のうち、複数の面の各々に対応する位置に設けられた透光性の窓部と、前記多面体形状が有する頂点の何れかから外側に向かって、前記多面体形状が有する何れの面の法線とも平行でない方向に延伸する軸部とを備えている細胞培養容器の前記軸部を把持し、前記軸部を回転軸として前記細胞培養容器を回転させる回転機構を備えている。
 前記の課題を解決するために、本発明の一態様に係固定具は、細胞又は細胞組織を収容するための細胞培養容器の固定具であって、前記細胞培養容器は、多面体形状の各辺に対応する位置に設けられた枠部と、前記多面体形状が有する面のうち、複数の面の各々に対応する位置に設けられた透光性の窓部と、を備え、前記固定具は、前記細胞培養容器を把持する把持部と、前記把持部に接続された軸部であって、前記多面体形状が有する頂点の何れかから外側に向かって、前記多面体形状が有する何れの面の法線とも平行でない方向に延伸する軸部とを備える。
 前記の課題を解決するために、本発明の一態様に係る観察装置は、細胞培養容器の固定具と、前記細胞培養容器を回転する回転機構を備える観察装置であって、前記細胞培養容器は、多面体形状の各辺に対応する位置に設けられた枠部と、前記多面体形状が有する面のうち、複数の面の各々に対応する位置に設けられた透光性の窓部と、を備え、前記固定具は、前記細胞培養容器を把持する把持部と、前記把持部に接続された軸部であって、前記多面体形状が有する頂点の何れかから外側に向かって、前記多面体形状が有する何れの面の法線とも平行でない方向に延伸する軸部と、を備え、前記回転機構は、前記軸部を把持し、前記軸部を回転軸として前記固定具に把持された前記細胞培養容器を回転させる。
 前記の課題を解決するために、本発明の一態様に係る観察方法は、細胞又は細胞組織を収容するための細胞培養容器の観察方法であって、前記細胞培養容器は、多面体形状の各辺に対応する位置に設けられた枠部と、前記多面体形状が有する面のうち、複数の面の各々に対応する位置に設けられた透光性の窓部と、前記多面体形状が有する頂点の何れかから外側に向かって、前記多面体形状が有する何れの面の法線とも平行でない方向に延伸する軸部と、を備え、前記観察方法は、前記細胞培養容器の軸部を把持し、前記細胞培養容器の前記多面体形状が有する面のうち、いずれの面の法線とも平行でない軸を中心に回転させる工程と、前記細胞培養容器を回転させながら、細胞又は細胞組織を、前記多面体形状が有する面のうち、複数の面から観察する工程と、を含む。
 前記の課題を解決するために、本発明の一態様に係る観察方法は、細胞培養容器に収容された細胞又は細胞組織の観察方法であって、前記細胞培養容器は、多面体形状の各辺に対応する位置に設けられた枠部と、前記多面体形状が有する面のうち、複数の面の各々に対応する位置に設けられた透光性の窓部と、を備え、前記細胞培養容器の固定具は、前記細胞培養容器を把持する把持部と、前記把持部に接続された軸部であって、前記多面体形状が有する頂点の何れかから外側に向かって、前記多面体形状が有する何れの面の法線とも平行でない方向に延伸する軸部と、を備え、前記観察方法は、前記固定具で前記細胞培養容器を把持し、前記軸部を回転軸として前記細胞培養容器を回転させる工程を含む。
 本発明の一態様によれば、観察者の負担を低減することができる細胞培養容器、その固定具、観察装置、顕微鏡および観察方法を実現することができる。
本発明の実施形態1に係る細胞培養容器および固定具の一例を示す斜視図である。 本発明の実施形態1に係る細胞培養容器の固定具の一例を示す図である。 図2の固定具を細胞培養容器に装着した状態を示す図である。 本発明の実施形態1に係る観察装置を顕微鏡に設置した状態を示す斜視図である。 本発明の実施形態1に係る細胞培養容器の回転の様子を示す図である。 本発明の実施形態1に係る細胞培養容器の回転の様子を示す図である。 本発明の実施形態1に係る細胞培養容器の回転の様子を示す図である。 本発明の実施形態1に係る観察装置により、取得されたある時刻における細胞組織の画像(細胞培養容器の局所座標系でのxy方向、yz方向、xy方向から観察した画像)の一例である。 本発明の実施形態1に係る観察装置により、取得された他の時刻における細胞組織の画像(細胞培養容器の局所座標系でのxy方向、yz方向、xy方向から観察した画像)の一例である。 本発明の実施形態2に係る顕微鏡の原理を説明するための図である。 本発明の実施形態3に係る観察装置の一例を示す斜視図であって、細胞培養容器をチャンバに収容する様子を図である。 図11における観察装置において、細胞培養容器をチャンバに収容した後に、密閉した状態を示す図である。 本発明の実施形態3に係る観察装置のハードウエア構成の一例を示すブロックである。 本発明の実施形態3に係る観察装置 本発明の実施形態3に係る観察装置により取得された、ある時刻における細胞組織の画像(細胞培養容器の局所座標系でのxy方向、yz方向、xy方向から観察した画像)の一例である。 図15における細胞組織の7時間後における画像に細胞組織の軌跡をオーバーラップした画像である。
 〔実施形態1〕
 以下、本発明の一実施形態について、詳細に説明する。
 <細胞培養容器>
 図1は本発明の実施形態1に係る細胞培養容器10および固定具20の一例を示す斜視図である。まず、図1を参照して、本実施形態に係る細胞培養容器10について説明する。
 細胞培養容器10は、細胞又は細胞組織を収容し培養するための容器である。本発明に係る細胞培養容器10は、例えば、図1に示すように、略立方体形状に構成される。より具体的には、細胞培養容器10は、図1に示すように、頂点V1、V2、V3、V4、V5、V6、V7、およびV8の8つの頂点を有する略立方体形状となっている。但し、細胞培養容器10の形状は立方体形状に限るものではなく、直方体等その他の多面体あるいは球体形状であってもよい。なお、細胞培養容器10のハンドリングの容易性およびz軸方向の画像情報が適切に得られる点から、細胞培養容器10の形状としては6面体形状が好ましく、立方体形状が更に好ましい。細胞培養容器10のサイズとしては、例えば、立方体の各辺の外側寸法が約4mm、内側寸法が約3mmとすることができるが、細胞培養容器10の具体的なサイズは本実施形態を限定するものではない。
 図1に示すように、細胞培養容器10は、多面体形状(立方体形状)の各辺に対応する位置に設けられた枠部11と、前記多面体形状が有する面のうち、複数の面の各々に対応する位置に設けられた透光性の窓部12と、を備える。即ち、細胞培養容器10の枠部11は、図1に示す立方体形状を構成する全部で12本の辺(頂点V1とV2、V2とV3、V3とV4、V4とV1、V5とV6、V6とV7、V7とV8、V8とV5、V1とV5、V2とV6、V3とV7、V4とV8で規定される辺)に対応する部分から構成される。枠部11の材料としては、例えば、ポリカーボネート等の生体適合性を有する樹脂としてもよい。
 窓部12は、枠部11を構成する前記12本の辺に囲まれている。即ち、窓部12は、図1に示す立方体形状を構成する6つ面(即ち、V1、V2、V3、V4から構成される面、V1、V2、V6、V5から構成される面、V2、V3、V7、V6から構成される面、V3、V4、V8、V7から構成される面、V1、V4、V8、V5から構成される面、V5、V6、V7、V8から構成される面)から構成される。窓部12の材料としては、透光性を有し、かつ、細胞培養容器10に収容した細胞又は細胞組織(以下、サンプルとも呼ぶ)の培養に必要な栄養素、刺激因子などが透過させることのできる材料であることが好ましい。窓部12の具体的な材料としては、例えば、アガロースゲル、ポリアクリルアミドゲル、アルギン酸ナトリウム又はコラーゲンゲルを含むことが好ましい。このように、栄養分透過性を有する材料で窓部12を構成することにより、細胞培養容器10を液体培地に浸漬すれば、液体培地に含まれる栄養素、刺激因子などが窓部12を通って、細胞培養容器10に収容された細胞又は細胞組織13に供給される。
 また、上述のように、窓部12を透光性を有する材料で構成することにより、細胞培養容器10の内部に収容された細胞又は細胞組織13を、立方体形状を構成する複数の面の方向から観察することができる。
 前記細胞培養容器10の内側には、細胞または細胞組織13と、これを包埋する培養ゲル14が収容されている。培養ゲル14は、例えば、コラーゲン、ラミニン、エンタクチン、プロテオグリカンなどを含むことができる。また、培養ゲル14は、TGF-β、線維芽細胞増殖因子、組織プラスミノーゲン活性化因子などを含むことができる。さらに、培養ゲル14には、例えば、マトリゲル(登録商標)を用いることができる。細胞培養容器10内に収容された細胞又は細胞組織13は、培養ゲル14を足場として立体培養される。
 前記窓部12は、適度な強度のある材料から構成されているため、培養ゲル14の重みで変形することを防ぐことができる。さらに、窓部12内部の空間に培養ゲル14が隙間なく充填されていることから、包埋されている細胞又は細胞組織13の相対位置がずれることを抑制することができる。
 また、細胞培養器10には、細胞又は細胞組織(サンプル)13と周囲の液体培地との間が窓部12を構成するアガロースゲル及び培養ゲル14を構成する細胞外マトリックスのみで覆われているため、液体培地とサンプル13の循環が効率よく行われるため、長期間の観察においても活性が衰えることなくサンプル13を培養することができる。
 また、細胞培養容器10は、枠部11の各頂点から細胞培養容器10の内部側に突出する凸部15を有してもよい。凸部15は、全体が自家蛍光を発する材料から構成されていてもよい。あるいは、凸部15の先端部16だけが自家蛍光を発する材料から構成されていてもよい。本実施形態では、図1に示すように、凸部15は三角錐形状を有するが、凸部15および先端部16の形状は特に限定されない。凸部15の機能については、以下に述べる。
 細胞培養容器10を回転させて複数の方向から内部に収容されている細胞又は細胞組織13を観察する際には、前記凸部15または先端部16の自家蛍光を検出することにより、複数の方向から取得された細胞又は細胞組織13の画像同士を高精度で位置合わせすることができる。
 凸部15または先端部16は、枠部11の各頂点から細胞培養容器10の内部側に突出するため、細胞培養容器10の中心部から遠く、包埋されている細胞又は細胞組織13の成長を妨げることがない。凸部15は培養ゲル14の中の細胞又は細胞組織13の成長を妨げない位置に埋め込んでもよい。
 図1に示すように、本実施形態に係る細胞培養容器10は、多面体形状が有する頂点の何れかから外側に向かって、前記多面体形状が有する何れの面の法線とも平行でない方向に延伸する軸部17を備えている。
 軸部17は、一例として、図1に示すように、立方体形状を有する細胞培養容器10の1つの頂点V1から、頂点V1と対角位置にある頂点V7とを結ぶ直線lに沿った方向に延伸している。また、頂点V1と対角位置にある頂点V7には、軸受け18が設けられていてもよい。
 また、軸部17は、一例として、細胞培養容器10の中心を通る直線に沿って延伸してもよい。ここで、細胞培養容器10の中心とは、一例として細胞培養容器10の重心のことを指すが、これに限定されるものではない。例えば、前記中心は、多面体形状を有する細胞培養容器10の頂点同士を結ぶ対角線のうち、複数の対角線の交点のことを指すものとしてもよい。
 また、軸部17の形状は特に限定されないが、一例として図1に示すように棒状とすることができる。また、軸部17の材料はある程度の強度を持つ材料であれば、生体適合性のない材料であってもよい。
 軸部17は、ステッピングモータ38など、軸部17を回転軸にして、細胞培養容器10を所定の方向及び所定の回転速度で回転させることができる回転機構に接続されてもよい。ステッピングモータ38の回転方向、回転速度、及び回転持続時間は、コントローラ39により調節される。本実施形態のように1軸の回転機構によって、軸部17の軸周りに細胞培養容器10を回転させる構成とすれば、細胞培養容器10を軸部17の軸周りに回転させながら顕微鏡40によって観察することができる。
 但し、本実施形態において、ステッピングモータ38に代えて、観察者が細胞培養容器10の軸部17をピンセット等で把持して、手動で回転させてもよい。
 本実施形態に係る細胞培養容器10は、上述のように細胞培養容器10が構成する多面体形状が有する何れの面の法線とも平行でない方向に延伸する軸部17を備えているため、当該軸部17の軸周りの手動又は自動の回転によって、図1に示す顕微鏡40の鏡筒41に対向する面を3次元的に次々と変更することができる。
 一例として、細胞培養容器10が図1に示すように略立方体形状である場合、軸部17の軸周りの120度回転を次々に行うことによって、鏡筒41に対向する面を
  V5、V6、V7、V8から構成される面(E面とも呼ぶ)、
  V3、V4、V8、V7から構成される面(F面とも呼ぶ)、
  V2、V3、V7、V6から構成される面(D面とも呼ぶ)、
に次々と変更することができる。
 これにより、細胞培養容器10の内部に収容された細胞又は細胞組織13を、軸部17という1つの軸周りの回転によって3次元的に好適に観察することができる。
 <固定具>
 前記では、軸部17を備える細胞培養容器10について説明した。しかし、軸部17を備えない細胞培養容器10’を、細胞又は細胞組織13の観察に用いてもよい。
 以下では、軸部17を備えない細胞培養容器10’の固定に用いられる固定具20について説明する。細胞培養容器10’は軸部17を備えないこと以外は、前記で説明した細胞培養容器10と同様の構成を備える。図2には、軸部17を備えない細胞培養容器10’の固定に使用する固定具20の一例を示し、図3には固定具20を細胞培養容器10’に装着した状態の一例を示す。
 図2に示すように、固定具20は、細胞培養容器10を把持する把持部22と、把持部22に接続された軸部25を備える。
 把持部22は、更に、互いに直角をなす方向に延伸し、ほぼ等しい長さを有する3つの把持部22a、22b、及び22cを備える。3つの把持部22a、22b、および22cの先端には、かぎ爪22d、22e、及び22fがそれぞれ備わっている。
 図3に示すように、固定具20を細胞培養容器10’に装着した状態では、把持部22a、22b、および22cはそれぞれ細胞培養容器10の頂点V1を形成する3辺(V1とV4、V1とV2、及びV1とV5を結ぶ辺)に対応する位置に設けられた枠部11の部分に沿って配置される。また、かぎ爪22d、22e、及び22fは、細胞培養容器10’の頂点V1と隣接ずる枠部の頂点V4、V2、及びV5をそれぞれ把持する。
 固定具20の軸部25は、固定具20を細胞培養容器10’に固定した状態では、細胞培養容器10’の多面体形状(立方体形状)が有する頂点V1から外側に向かって、多面体形状が有する何れの面の法線とも平行でない方向に延伸する。
 細胞培養容器10’に収容された細胞又は細胞組織13を観察する際には、固定具20の軸部25を回転軸として、細胞培養容器10’を回転することにより、軸部17を備える細胞培養容器10の場合と同様に、Z軸方向における解像度の高い細胞又は細胞組織13の画像を取得することができる。
 <観察装置、顕微鏡>
 上述した細胞培養容器10又は10’を固定具20で固定したものに回転機構を備えた観察装置30を顕微鏡40に設置することにより、細胞又は細胞組織13のタイムラプス画像を取得することができる。以下では、このような実施形態について説明する。
 図4は、本発明の実施形態1に係る観察装置30を顕微鏡40に設置した状態を示す斜視図である。図4に示す座標軸は、Z軸を鉛直方向とするXYZ軸で表現した静止座標系である。以下では、図4を参照して、本発明の実施形態1に係る観察装置30および観察装置30を設置する顕微鏡40について説明する。
 観察装置30は、細胞培養容器10(又は10’、以下同じ)と、細胞培養容器10の軸部17を把持し、軸部17を回転軸として細胞培養容器10を回転させる回転機構とを備える。
 より詳細には、図4に示すように、本実施形態に係る観察装置30は、Z軸微動ステージ31、斜方固定ホルダ34、回転ステージ35、延伸部36、コレットチャック37、ステッピングモータ38及び細胞培養容器10を備える。ここで、上述した回転機構は、一例として、斜方固定ホルダ34、延伸部36、コレットチャック37、及びステッピングモータ38を備えて構成される。
 本実施形態に係る観察装置30は、顕微鏡40の顕微鏡ステージ42の上に設置される。
 観察装置30のZ軸微動ステージ31は、顕微鏡40の顕微鏡ステージ42上に設置される基台32と、基台32に対して垂直上方に延伸する台座部33とを備える。台座部33のZ軸方向の高さは調節することができる。これにより、後述するコレットチャック37に把持された細胞培養容器10のZ軸方向の位置を微調整することができる。
 斜方固定ホルダ34は板状の部材である。斜方固定ホルダ34は、Z軸微動ステージ31の台座部33に対して、角度をなして接続される。斜方固定ホルダ34とZ軸微動ステージ31の台座部33のなす角度は、細胞培養容器10(又は10’)が備える少なくとも何れかの窓部のなす面の法線が、鏡筒41の光軸に平行になり得るように設定される。一例として、立方体形状を有する細胞培養容器10(又は10’)を用いる場合には、図4に示すように、斜方固定ホルダ34は、Z軸微動ステージ31の台座部33に対して135度の角度で、Z軸微動ステージ31の台座部33の上方側に連結される。すなわち、図4に示す実施形態では、斜方固定ホルダ34は、水平方向(XY方向)に対して45度の角度でZ軸微動ステージ31の台座部33に固定されている。
 斜方固定ホルダ34の下側の面には、円盤形状を有する回転ステージ35が備えられている。回転ステージ35は、ステッピングモータ38により、時計回りおよび反時計回りどちらの方向にも自転するように駆動される。回転ステージ35の回転に伴って、回転ステージ35の先端に取り付けられる部材を時計回り、反時計回りどちらにも回転させることができる。なお、回転ステージ35は、上述したようにステッピングモータ38等を用いて自動で回転する構成としてもよいが、観察者が手動で回転させる構成としてもよい。
 回転ステージ35の中心からは、斜方固定ホルダ34及び回転ステージ35に対して垂直な方向、すなわち、水平方向(XY方向)に対して45度の方向に直線状に延伸する延伸部36が接続されている。延伸部36の先端には、コレットチャック37が接続される。コレットチャック37は、細胞培養容器10の軸部17を把持する。例えば、細胞培養容器10を取り付けた状態のコレットチャック37を水平面に対し45度の角度で保持し、細胞培養容器10を水平方向に保持してもよい。図4に示すように、細胞培養容器10はディッシュ(又はウェル)51の液体培地に浸漬したままの状態でコレットチャック37に取り付けられる。
 なお、前記細胞培養容器10を取り付けたコレットチャック37の代わりに、軸部17を有しない細胞培養容器10’を取り付けた固定具20を延伸部36に取り付けてもよい。
 したがって、回転ステージ35が回転すると、延伸部36を水平方向に対して45度の角度に保ちながら、コレットチャック37の先端に取り付けられた細胞培養容器10を軸部17を回転軸として所定の速度で回転させることができる。回転ステージ35の回転速度及び回転持続時間(即ち、細胞培養容器10の回転速度、停止時間及び回転持続時間)は、任意に設定することができ、連続的な回転及び回転・停止を繰り返す断続運転も可能とする。例えば、細胞培養容器10を時計回りの回転速度2回/分(すなわち、10秒で120度回転)に設定し、120度回転後に110秒間停止し、再び時計方向に120度回転するサイクルを繰り返しながら回転持続時間を3日間のように設定してもよい。
 <顕微鏡による細胞又は細胞組織の観察>
 以下では、細胞培養容器10を液体培地に浸漬し観察装置30に連結した状態で、顕微鏡40に設置して観察する方法について説明する。顕微鏡40は、従来から使用される顕微鏡を用いることができる。例えば、顕微鏡40として、共焦点レーザー顕微鏡または2光子顕微鏡等を用いることができる。また、図4では、倒立型顕微鏡を例に説明するが、正立型顕微鏡であってもよい。
 図4に示すように、細胞培養容器10はディッシュ(又はウェル)51の液体培地に浸漬しておく。
 細胞培養容器10を観察する場合には、細胞培養容器10をディッシュ51に浸漬した状態で、顕微鏡ステージ42上の、顕微鏡40の鏡筒41の視野の範囲に細胞培養容器10に収容した細胞又は細胞組織13が収まるように載置する。
 続いて、観察装置30のZ軸微動ステージ31を、顕微鏡40の顕微鏡ステージ42の所定位置に設置する。続いて、観察装置30の延伸部36の先端にコレットチャック37を介して、ディッシュ51に水平に浸漬された状態の細胞培養容器10に接続する。その後、Z軸微動ステージ31で、細胞培養容器10のZ軸方向の設置位置を微調整する。
 細胞培養容器10の設定位置が定まったら、回転ステージ35の回転速度、断続運転の停止時間及び回転持続時間を設定し、回転が停止中に細胞又は細胞組織13の観察(即ち、画像取得)を行うことを繰り返す。
 <細胞培養容器の回転>
 図5から図7は、細胞又は細胞組織13の観察動作中に細胞培養容器10が回転する様子を示している。図5から図7に示す座標系は、細胞培養容器10に結び付けられた、xyz軸で表現された局所座標系である。本実施形態ででは、細胞培養容器10が軸部17を回転軸にして時計回りに2分ごとに120度ずつ回転し、3日間回転が持続するように設定している。
 図5に示すように、画像取得開始時では、細胞培養容器10の立方体形状を構成する6面のうち、A面(頂点V1、V4、V8、及びV5から構成される面)が正面に位置し、E面((頂点V5、V6、V7、及びV8から構成される面)が鏡筒41に対向する。この時、細胞培養容器10のz軸方向にスキャンしたサンプル13の画像を取得することができる。
 続いて、細胞培養容器10を、軸部17を回転軸にして時計回りに120度回転させると、図6に示すように、B面(頂点V2、V3、V4、及びV1から構成される面)が正面に位置し、F面((頂点V3、V4、V8、及びV7から構成される面)が鏡筒41に対向する。この時、細胞培養容器10のx軸方向にスキャンしたサンプル13の画像を取得することができる。
 さらに、細胞培養容器10を、軸部17を回転軸にして時計回りに120度回転させると、図7に示すように、C面(頂点V1、V4、V8、及びV5から構成される面)が正面に位置し、D面(頂点V2、V3、V7、及びV6から構成される面)が鏡筒41に対向する。この時、細胞培養容器10のy軸方向にスキャンしたサンプル13の画像を取得することができる。
 さらに、細胞培養容器10を、軸部17を回転軸にして時計回りに120度回転させると、図5に示すように、A面が正面に位置する状態に戻る。以下、同じ動作を繰り返す。
 すなわち、細胞培養容器10を軸部17を回転軸として時計回りに120度ずつ回転させることにより、軸部17の延伸する起点である細胞培養容器10の頂点V1を形成する3つの面であるA面、B面、およびC面が、順番に正面に位置する。
 以上により、細胞培養容器10のxy方向、yz方向、およびzx平面にスライスした画像をz軸方向、x軸方向、及びy軸方向にそれぞれスキャンしたサンプル13の画像を順番に取得することができる。これら複数面から取得した画像データの合成処理を行うことにより、x軸方向、y軸方向、およびz軸方向の全ての方向において高解像度を有するサンプル13の3次元構造を取得することができる。
 <観察結果>
 本実施形態では、サンプル13としてゼブラフィッシュを用いて、観察を行った。ゼブラフィッシュを収容した細胞培養容器10をディッシュ51に浸漬した状態で顕微鏡40の所定位置に設置し、細胞培養容器10をステッピングモータ38で回転させた。このとき、回転速度を2回/分(すなわち、10秒で120度回転)に設定し、120度回転後110秒間停止し、再び時計回りに120度回転するサイクルを繰り返す動作を3日間に設定して、2分ごとの回転が停止中にゼブラフィッシュの画像を鏡筒41の軸方向にスキャンして取得した。以下では、本実施形態に係る観察装置30を使用して得られた細胞組織の画像について、図8および図9を参照して説明する。
 図8に示す3枚の画像は、ある時刻t1におけるゼブラフィッシュのxy方向の投影画像、時刻t1から2分後の時刻t2におけるゼブラフィッシュのyz方向における投影画像、及び時刻t2から2分後の時刻t3におけるゼブラフィッシュのzx方向における投影画像をそれぞれ示す。また、図9に示す3枚の画像、時刻t3から2分後の時刻t4におけるゼブラフィッシュのxy方向の画像、時刻t4から2分後の時刻t5におけるゼブラフィッシュのyz方向の画像、および時刻t5から2分後の時刻t6におけるゼブラフィッシュのzx方向の画像をそれぞれ示す。このように、ゼブラフィッシュを収容した細胞培養容器10を2分ごとに120度ずつ時計回りに3日間回転し続け、この間、2分ごとにxy方向、yz方向、及びzx方向におけるゼブラフィッシュの画像を連続的に取得することができた。
 上述したように、本発明の細胞培養容器10をステッピングモータ38などにより自動的に回転させながら一定時間間隔でサンプル13の画像を連続的に取得すると、サンプル13(本実施形態では、ゼブラフィッシュ)のタイムラプス計測を行うことができ、観察装置30を用いて、細胞内動態のライブ観察を行うことができる。
 なお、本実施形態では、観察装置30は顕微鏡40とは別体であったが、顕微鏡40が前記構成の観察装置30を備えていてもよい。
 〔実施形態2〕
 本発明の実施形態2について、以下に説明する。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
 前記実施形態では、サンプル(細胞又は細胞組織)13に1方向から光を当てて観察するタイプの顕微鏡40を用いて、サンプル13を観察する場合を例にして説明した。しかし、本発明は、前記構成の顕微鏡に限定されるものではなく、あらゆるタイプの顕微鏡に適用することができる。
 たとえば、本発明は、図10に示すようなライトシート顕微鏡60に適用することもできる。図10に示すライトシート顕微鏡60では、細胞培養容器10の下側に配置されたレーザー照射部63からのレーザーを、2つのミラー61で反射させ、サンプル13である細胞又は細胞組織を収容した細胞培養容器10の対向する2側面からシート状のレーザー(ライトシート62)を照射する。そして、ライトシート62に直交する方向にスキャンすることによって、サンプル13の画像を得る。このため、例えば、上述した立方体形状の細胞培養容器10を備える観察装置30をライトシート顕微鏡60に設置してサンプル13を観察すれば、立方体を形成する細胞培養容器10の6面全ての方向から、サンプル13を観察することができる。このため、より解像度の高い観察対象の3次元画像を得ることができる。
 なお、本実施形態に係るライトシート顕微鏡は、図10に示した構成に限定されるものではない。ライトシート顕微鏡60は、一例として、2つのミラー61を備えない構成とし、細胞培養容器10の側面側に配置されたレーザー照射部からシート状のレーザーを照射する構成としてもよい。
 〔実施形態3〕
 実施形態1では、ゼブラフィッシなどの培養条件を厳密に管理しなくとも培養可能な生物の細胞または細胞組織の観察に用いる観察装置について説明した。これに対し、本実施形態では、細胞または細胞組織の周辺の温度、CO(二酸化炭素)濃度等の培養条件を厳密に管理する必要のある細胞または細胞組織の観察が可能な観察装置130を使用する。例えば、ヒト正常気管支上皮細胞(NHBE(Normal Human Bronchial Epithelial Cell)については、培養条件として、細胞または細胞組織の周辺の温度が36~37℃、CO濃度が4.0~5.0%の範囲に保持されることが望ましく、特に、細胞または細胞組織の周辺の温度が37℃、CO濃度が5%程度に保持されることがもっとも望ましい。細胞または細胞組織の周辺の温度を体温と同程度の37℃に保持することによって、培地に加えられた酵素の働きを活発化することができる。また、CO濃度を5%程度に保持することによって、培地のpHを中性(7.2~7.4)に保持することができる。
 <観察装置の構成>
 図11~図14を参照して、本実施形態に係る観察装置130の構成について説明する。但し、実施形態1で説明した観察装置13と異なる点のみ説明し、同様の構成については、同じ参照符号を使用し、その説明を省略する。
 図11は、本実施形態にかかる観察装置130の一例を示す斜視図であって、細胞培養容器10を観察装置130のチャンバ137に収容する様子を示す図である。図12は、図11に示した観察装置130において、細胞培養容器10をディッシュ51に収容した後に、細胞培養容器10をチャンバ137内に密閉した状態を示す図である。また、図13は、本発明の実施形態3に係る観察装置130の位置を調整する3軸調整機構140の一例を示す図である。図14は、観察装置130のハードウエア構成を示すブロック図である。
 観察装置130は、実施形態1で観察装置30が備える各構成要素に加え、培養容器10(ヒト正常気管支上皮細胞を培養)を収容するチャンバ137、およびチャンバ137内の培養条件を制御する制御部131を更に備える。また、図14に示すように、観察装置130は、更に、温度センサ132,ヒータ133、冷却器134、CO濃度センサ135およびCO調整器136を備える。図11に示すように、チャンバ137は、顕微鏡ステージ42上の所定の位置に設置される。
 ここで、チャンバ137を顕微鏡ステージ42上の所定の位置に設置するために、顕微鏡は図13に示すように、3軸調整機構140を備えている。3軸調整機構140は、観察装置130のステッピングモータ38に接続され、観察装置130を、y軸方向、z軸方向、およびz軸方向に対して45度であってy軸に対して直交する方向(即ち、細胞培養容器の軸部17に平行な方向)に移動させることができる。
 観察装置130の軸部17の先端には、ディッシュ(またはウェル)51の液体培地に浸漬したままの状態の培養容器10が取り付けられている。制御部131は、図11に示すように、スリット138から、観察装置130の軸部17の先端に取り付けられている培養容器10をチャンバ137内に収容する。但し、人が手動で、培養容器10をチャンバ137内に収容してもよい。制御部131は、培養容器10をチャンバ137内に収容した後、チャンバ137を密閉する。チャンバ137を密閉することで、チャンバ137内の培養条件を厳密に制御することができる。また、ディッシュ(またはウェル)51には、液体培地の表面からの蒸発を防ぐために、シリコンオイルを用いる。
 <培養条件の調整>
 制御部131は、当該チャンバ内における前記細胞の周囲の前記細胞の培養条件、または前記細胞組織の周囲の前記細胞組織の培養条件を制御する。例えば、制御部131は、前記細胞の周囲の温度およびCO(二酸化炭素濃度)のうち少なくとも一方、または前記細胞組織の周囲の温度およびCO濃度のうち少なくとも一方を制御する。観察装置130は、更に、ヒータ133、冷却器134、温度センサ132、CO濃度センサ135、CO調整器136を備える。
 制御部131は、ヒト正常気管支上皮細胞の周辺の温度を36℃から37℃に保つように制御する。特に、ヒト正常気管支上皮細胞の周辺の温度を37℃に保持するように制御することが好ましい。観察装置130の天板または底板面にはヒータ133および冷却器134が設けられている。制御部131は、温度センサ132により測定された温度に基づいて、ヒータ133または冷却器134のスイッチをオンオフすることにより、細胞または細胞組織の周辺の温度を適切な温度範囲に保持する。例えば、制御部131は、温度センサ132の測定結果が36℃以下になった場合に、ヒータ133のスイッチを入れ、温度センサ132の測定結果が37℃以上になった場合に、冷却器134のスイッチを入れるように設定してもよい。
 また、制御部131は、ヒト正常気管支上皮細胞の周辺のCO濃度を4.0%から5.0%に保つように制御する。制御部131は、細胞または細胞組織周辺のCO濃度を5%に保持するのが最も好ましい。CO濃度センサは光学式、電気化学式、半導体式等公知のCO濃度センサを用いることができる。CO濃度が適切な範囲を超えると、制御部131がCO調整器136を作動させてCO濃度を調整する構成としてもよい。また、CO濃度を調整する替わりに、培地のpH値を調整してもよい、例えば、pH値が7.2~7.4の範囲を超えると、CO調整器136によりCO濃度を調整し、その結果として培地のpH値を適正な範囲に調整するように制御してもよい。また、培地にフェノールレッドを含ませ、人が培地の色の変化でpH値を判断してもよい。
 このように、本実施形態の観察装置130を用いることによって、培養対象である細胞または細胞組織周辺の温度及びCO濃度を適切な範囲に保持することによって、ヒト正常気管支上皮細胞を適切に培養し、経時的な観察を行うことができる。本実施形態の観察装置130によれば、厳密な培養条件を必要とする他の細胞または細胞組織の培養および経時的観察にも応用することができ、それぞれの細胞または細胞組織の種別に応じた適切な温度およびCO濃度に設定することができる。例えば、制御部131が、観察対象の細胞または細胞組織の種別に関する情報を受付け、当該情報に応じて、温度や二酸化炭素の濃度を設定する構成としてもよい。
 更に、チャンバ137内に溝状の空間を設け、この空間内に常に純水を入れてチャンバ137内の湿度を90から98%に維持する構成としてもよい。上記構成によれば、ディッシュ51内の培地からの蒸発を防ぎ、長期間タイムラプス観察を行うことができる。
 <培養および観察結果>
 上述したように、図12は、観察装置130をチャンバ137にセットした後にチャンバ137を閉じた状態を示す。
 この状態で、ヒト正常気管支上皮細胞を温度37℃、CO濃度5%に保持して培養を行った。同時に、実施形態1で説明したと同様に、培養容器10を回転して、撮影部139により、三平面方向から連続スキャンした画像を得た。ヒト正常気管支上皮細胞には、GFP(グリーン蛍光たんぱく質)標識をした。本実施形態では、培養容器10を4分おきに120度回転させて、三平面方向から細胞の三次元トラッキングを行った。
 図15は、上記の結果取得された、ある時刻におけるヒト正常気管支上皮細胞の画像(細胞培養容器10の局所座標系でのxy方向、yz方向、xy方向から観察した画像)の一例である。詳細には、図15-1は細胞組織をz軸方向から撮影した画像であり、図15-2は細胞組織をy軸方向から撮影した画像であり、図15-3は細胞組織をx軸方向から撮影した画像である。また、図16は、図15における細胞組織の7時間後における画像に細胞組織の軌跡をオーバーラップした画像である。詳細には、図16-1は、細胞組織をz軸方向から撮影した画像であり、図16-2は、細胞組織をy軸方向から撮影した画像であり、図16-3は、細胞組織をx軸方向から撮影した画像である。
 このように、本実施形態の観察装置130を用いれば、ヒト正常気管支上皮細胞などの培養条件を厳密に管理する必要のある細胞または細胞組織であっても、経時的な観察を行うことができる。
 〔まとめ〕
 〔態様1〕
本発明の態様1に係る細胞培養容器10は、細胞又は細胞組織を収容するための細胞培養容器であって、多面体形状の各辺に対応する位置に設けられた枠部11と、前記多面体形状が有する面のうち、複数の面の各々に対応する位置に設けられた透光性の窓部12と、前記多面体形状が有する頂点の何れかから外側に向かって、前記多面体形状が有する何れの面の法線とも平行でない方向に延伸する軸部17とを備えている。
 前記構成によれば、観察者の負担を低減することができる。一例として、前記細胞培養容器を用いることにより、前記軸部を回転軸として細胞培養容器を回転させながら、収容された細胞又は細胞組織を複数の方向から観察することにより、観察者の負担を抑制しつつ、好適な観察画像を取得することができる。
 〔態様2〕
本発明の態様2に係る細胞培養容器では、態様1において、前記軸部は、前記何れかの頂点と細胞培養容器の中心を通る直線に沿って延伸してもよい。
 前記構成によれば、軸部を回転軸として細胞培養容器の中心点を固定して細胞培養容器を回転させながら、細胞又は細胞組織を複数の方向から観察することにより、z軸方向にずれのない複数の画像を得ることができる。これら複数の画像データで補完し合うことによって、更に、高精度の細胞組織の画像を取得することができる。
 〔態様3〕
 本発明の態様3に係る細胞培養容器では、態様1または2において、前記多面体形状は、6面体形状であってもよい。
 前記構成によれば、軸部を回転軸として細胞培養容器を回転させることにより、軸部が延伸する起点となる頂点を形成する3つの面の方向からの複数の画像を得ることができ、これらの画像を補完し合うことにより、高精度の細胞組織の画像を取得することができる。
 〔態様4〕
 本発明の態様4に係る観察装置は、細胞又は細胞組織を収容するための細胞培養容器であって、多面体形状の各辺に対応する位置に設けられた枠部と、前記多面体形状が有する面のうち、複数の面の各々に対応する位置に設けられた透光性の窓部と、前記多面体形状が有する頂点の何れかから外側に向かって、前記多面体形状が有する何れの面の法線とも平行でない方向に延伸する軸部とを備えている細胞培養容器の前記軸部を把持し、前記軸部を回転軸として前記細胞培養容器を回転させる回転機構を備えている。当該構成によれば、前記細胞培養容器を用いて好適に観察を行うことができる。
 〔態様5〕
 本発明の態様5に係る観察装置は、細胞培養容器を収容するチャンバと、当該チャンバ内における前記細胞又は細胞組織周囲の前記細胞又は細胞組織の培養条件を制御する制御部と、を更に備える。当該構成によれば、ヒト正常気管支上皮細胞など培養条件を厳しく管理する必要のある細胞であっても、細胞培養容器を用いて好適に経時的観察を行うことができる。
 〔態様6〕
 本発明の態様6に係る観察装置において、制御部は、前記細胞又は細胞組織の周囲の温度およびCO濃度のうち少なくとも一方を制御する。当該構成によれば、ヒト正常気管支上皮細胞など培養条件を厳しく管理する必要のある細胞であっても、細胞培養容器を用いて好適に経時的観察を行うことができる。
 〔態様7〕
 本発明の態様7に係る観察装置において、制御部は、前記細胞又は細胞組織の周囲の温度を36から37℃に保つように制御する。当該構成によれば、ヒト正常気管支上皮細胞など培養条件を厳しく管理する必要のある細胞であっても、細胞培養容器を用いて好適に経時的観察を行うことができる。
 〔態様8〕
 本発明の態様8に係る観察装置において、制御部は、制御部は、前記細胞又は細胞組織の周囲のCO濃度を4.0から5.0%に保つように制御する。当該構成によれば、ヒト正常気管支上皮細胞など培養条件を厳しく管理する必要のある細胞であっても、細胞培養容器を用いて好適に経時的観察を行うことができる。
 〔態様9〕
 本発明の態様9に係る観察装置は、態様4に係る前記細胞培養容器を更に備えてもよい。当該構成によれば、前記細胞培養容器を用いて好適に観察を行うことができる。
 〔態様10〕
 本発明の態様10に係る固定具は、細胞又は細胞組織を収容するための細胞培養容器の固定具であって、前記細胞培養容器は、多面体形状の各辺に対応する位置に設けられた枠部と、前記多面体形状が有する面のうち、複数の面の各々に対応する位置に設けられた透光性の窓部と、を備え、前記固定具は、前記細胞培養容器を把持する把持部と、前記把持部に接続された軸部であって、前記多面体形状が有する頂点の何れかから外側に向かって、前記多面体形状が有する何れの面の法線とも平行でない方向に延伸する軸部とを備える。
 前記構成によれば、軸部を持たない細胞培養容器であっても、固定具によって適切に固定しながら固定具の軸部を回転軸として細胞培養容器を回転させることができ、態様1と同様の効果を奏することができる。更に、細胞培養容器は軸部を持たないため、ディッシュなどに浸漬して培養するのに便利である。
 〔態様11〕
 本発明の態様11に係る観察装置は、細胞培養容器の固定具と、前記細胞培養容器を回転する回転機構を備える観察装置であって、前記細胞培養容器は、多面体形状の各辺に対応する位置に設けられた枠部と、前記多面体形状が有する面のうち、複数の面の各々に対応する位置に設けられた透光性の窓部と、を備え、前記固定具は、前記細胞培養容器を把持する把持部と、前記把持部に接続された軸部であって、前記多面体形状が有する頂点の何れかから外側に向かって、前記多面体形状が有する何れの面の法線とも平行でない方向に延伸する軸部と、を備え、前記回転機構は、前記軸部を把持し、前記軸部を回転軸として前記固定具に把持された前記細胞培養容器を回転させる。
 前記構成によれば、態様10と同様の効果を奏する。
 〔態様12〕
 本発明の態様12に係る観察装置は、態様11に係る細胞培養容器を更に備えてもよい。
 前記構成によれば、態様10と同様の効果を奏する。
 〔態様13〕
 本発明の態様13に係る観察装置は、前記細胞培養容器を収容するチャンバと、当該チャンバ内における前記細胞の周囲の前記細胞の培養条件、または前記細胞組織の周囲の前記細胞組織の培養条件を制御する制御部と、を更に備える。
 前記構成によれば、ヒト正常気管支上皮細胞など培養条件を厳しく管理する必要のある細胞であっても、細胞培養容器を用いて好適に経時的観察を行うことができる。
 〔態様14〕
 本発明の態様14に係る顕微鏡は、態様4―9および11-12の何れかに係る観察装置を備えていてもよい。当該構成によれば、態様4または7と同様の効果を奏することができる。
 〔態様15〕
 本発明の態様15に係る観察方法は、細胞又は細胞組織を収容するための細胞培養容器の観察方法であって、前記細胞培養容器は、多面体形状の各辺に対応する位置に設けられた枠部と、前記多面体形状が有する面のうち、複数の面の各々に対応する位置に設けられた透光性の窓部と、前記多面体形状が有する頂点の何れかから外側に向かって、前記多面体形状が有する何れの面の法線とも平行でない方向に延伸する軸部とを備え、前記観察方法は、前記細胞培養容器の前記軸部を回転軸として前記細胞培養容器を回転させる工程を含む。
 前記構成によれば、態様1と同様の効果を奏することができる。
 〔態様16〕
 本発明の態様16に係る観察方法は、細胞培養容器に収容された細胞又は細胞組織の観察方法であって、前記細胞培養容器は、多面体形状の各辺に対応する位置に設けられた枠部と、前記多面体形状が有する面のうち、複数の面の各々に対応する位置に設けられた透光性の窓部と、を備え、前記細胞培養容器の固定具は、前記細胞培養容器を把持する把持部と、前記把持部に接続された軸部であって、前記多面体形状が有する頂点の何れかから外側に向かって、前記多面体形状が有する何れの面の法線とも平行でない方向に延伸する軸部と、を備え、前記観察方法は、前記固定具で前記細胞培養容器を把持し、前記軸部を回転軸として前記細胞培養容器を回転させる工程を含む。
 前記構成によれば、態様1と同様の効果を奏することができる。
 〔態様17〕
 本発明の態様17に係る観察方法は、当該チャンバ内における前記細胞の周囲の前記細胞の培養条件、または前記細胞組織の周囲の前記細胞組織の培養条件を制御する制御工程を更に含む。
 前記構成によれば、態様5と同様の効果を奏することができる。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 10 細胞培養容器
 11 枠部
 12 窓部
 13 細胞又は細胞組織
 14 培養ゲル
 15 凸部
 16 先端部
 17 (細胞培養容器の)軸部
 18 軸受け
 20 固定具
 22 把持部
 25 (固定具の)軸部
 30 130 観察装置
 31 Z軸微動ステージ
 32 基台
 33 台座部
 34 斜方固定ホルダ
 35 回転ステージ
 36 延伸部
 37 コレットチャック
 38 ステッピングモータ
 39 コントローラ
 41 鏡筒
 42 顕微鏡ステージ
 51 ディッシュ
 60 ライトシート顕微鏡
 61 ミラー
 62 ライトシート
 63 レーザー照明部
 131 制御部
 132 温度センサ
 133 ヒータ
 134 冷却器
 135 CO濃度センサ
 136 CO調整器
 137 チャンバ
 139 撮影部
 140 3軸調整機構
 

Claims (17)

  1.  細胞又は細胞組織を収容するための細胞培養容器であって、
     多面体形状の各辺に対応する位置に設けられた枠部と、
     前記多面体形状が有する面のうち、複数の面の各々に対応する位置に設けられた透光性の窓部と、
     前記多面体形状が有する頂点の何れかから外側に向かって、前記多面体形状が有する何れの面の法線とも平行でない方向に延伸する軸部と
    を備えている
     細胞培養容器。
  2.  前記軸部は、前記何れかの頂点と前記細胞培養容器の中心とを通る直線に沿って延伸する、
     請求項1に記載の細胞培養容器。
  3.  前記多面体形状は、6面体形状である、
     請求項1又は2に記載の細胞培養容器。
  4.  細胞又は細胞組織を収容するための細胞培養容器であって、
      多面体形状の各辺に対応する位置に設けられた枠部と、
      前記多面体形状が有する面のうち、複数の面の各々に対応する位置に設けられた透光性の窓部と、
      前記多面体形状が有する頂点の何れかから外側に向かって、前記多面体形状が有する何れの面の法線とも平行でない方向に延伸する軸部と
    を備えている細胞培養容器の前記軸部を把持し、前記軸部を回転軸として前記細胞培養容器を回転させる回転機構
     を備える観察装置。
  5.  前記細胞培養容器を収容するチャンバと、
     当該チャンバ内における前記細胞の周囲の前記細胞の培養条件、または前記細胞組織の周囲の前記細胞組織の培養条件を制御する制御部と、
    を更に備える
     請求項4に記載の観察装置。
  6.  前記制御部は、前記細胞の周囲の温度およびCO(二酸化炭素濃度)のうち少なくとも一方、または前記細胞組織の周囲の温度およびCO濃度のうち少なくとも一方を制御する、
     請求項5に記載の観察装置。
  7.  前記制御部は、前記細胞又は細胞組織の周囲の温度を36から37℃に保つように制御する、
     請求項5から6の何れか1項に記載の観察装置。
  8.  前記制御部は、前記細胞又は細胞組織の周囲のCO濃度4.0~5.0%に保つように制御する、
     請求項5から7の何れか1項に記載の観察装置。
  9.  前記細胞培養容器を更に備える請求項4から8の何れかに記載の観察装置。
  10.  細胞又は細胞組織を収容するための細胞培養容器の固定具であって、
     前記細胞培養容器は、
      多面体形状の各辺に対応する位置に設けられた枠部と、
      前記多面体形状が有する面のうち、複数の面の各々に対応する位置に設けられた透光性の窓部と、を備え、
     前記固定具は、
      前記細胞培養容器を把持する把持部と、
      前記把持部に接続された軸部であって、前記多面体形状が有する頂点の何れかから外側に向かって、前記多面体形状が有する何れの面の法線とも平行でない方向に延伸する軸部と
      を備える固定具。
  11.  細胞又は細胞組織を収容するための細胞培養容器の固定具と、前記細胞培養容器を回転する回転機構を備える観察装置であって、
     前記細胞培養容器は、
      多面体形状の各辺に対応する位置に設けられた枠部と、
      前記多面体形状が有する面のうち、複数の面の各々に対応する位置に設けられた透光性の窓部と、を備え、
     前記固定具は、
      前記細胞培養容器を把持する把持部と、
      前記把持部に接続された軸部であって、前記多面体形状が有する頂点の何れかから外側に向かって、前記多面体形状が有する何れの面の法線とも平行でない方向に延伸する軸部と、を備え、
     前記回転機構は、前記軸部を把持し、前記軸部を回転軸として前記固定具に把持された前記細胞培養容器を回転させる、観察装置。
  12.  前記細胞培養容器を更に備える請求項11に記載の観察装置。
  13.  前記細胞培養容器を収容するチャンバと、
     当該チャンバ内における前記細胞の周囲の前記細胞の培養条件、または前記細胞組織の周囲の前記細胞組織の培養条件を制御する制御部と、
    を更に備える請求項12に記載の観察装置。
  14.  請求項4―9および11-12の何れか1項に記載の観察装置を備える顕微鏡。
  15.  細胞培養容器に収容された細胞又は細胞組織の観察方法であって、
      前記細胞培養容器は、
       多面体形状の各辺に対応する位置に設けられた枠部と、
       前記多面体形状が有する面のうち、複数の面の各々に対応する位置に設けられた透光性の窓部と、
       前記多面体形状が有する頂点の何れかから外側に向かって、前記多面体形状が有する何れの面の法線とも平行でない方向に延伸する軸部と、
       を備え、
     前記観察方法は、
      前記細胞培養容器の前記軸部を回転軸として前記細胞培養容器を回転させる工程
     を含む、観察方法。
  16.  細胞培養容器に収容された細胞又は細胞組織の観察方法であって、
      前記細胞培養容器は、
       多面体形状の各辺に対応する位置に設けられた枠部と、
       前記多面体形状が有する面のうち、複数の面の各々に対応する位置に設けられた透光性の窓部と、を備え、
     前記細胞培養容器の固定具は、
       前記細胞培養容器を把持する把持部と、
       前記把持部に接続された軸部であって、前記多面体形状が有する頂点の何れかから外側に向かって、前記多面体形状が有する何れの面の法線とも平行でない方向に延伸する軸部と、を備え、
     前記観察方法は、
      前記固定具で前記細胞培養容器を把持し、前記軸部を回転軸として前記細胞培養容器を回転させる工程
     を含む、観察方法。
  17.   前記細胞培養容器はチャンバに収容され、
      当該チャンバ内における前記細胞の周囲の前記細胞の培養条件、または前記細胞組織の周囲の前記細胞組織の培養条件を制御する制御工程を更に含む、請求項15または16に記載の観察方法。
     
PCT/JP2021/017794 2020-05-11 2021-05-11 細胞培養容器、固定具、観察装置、顕微鏡および観察方法 WO2021230220A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/924,159 US20230174911A1 (en) 2020-05-11 2021-05-11 Cell culture container, fixing tool, observation device, microscope and observation method
EP21803722.4A EP4151715A1 (en) 2020-05-11 2021-05-11 Cell culture container, fixing tool, observation device, microscope and observation method
JP2022521918A JPWO2021230220A1 (ja) 2020-05-11 2021-05-11

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-083426 2020-05-11
JP2020083426 2020-05-11

Publications (1)

Publication Number Publication Date
WO2021230220A1 true WO2021230220A1 (ja) 2021-11-18

Family

ID=78525876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/017794 WO2021230220A1 (ja) 2020-05-11 2021-05-11 細胞培養容器、固定具、観察装置、顕微鏡および観察方法

Country Status (4)

Country Link
US (1) US20230174911A1 (ja)
EP (1) EP4151715A1 (ja)
JP (1) JPWO2021230220A1 (ja)
WO (1) WO2021230220A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016124057A (ja) * 2014-12-26 2016-07-11 テルモ株式会社 細胞処理システムおよび把持具
WO2017094451A1 (ja) 2015-12-04 2017-06-08 公立大学法人大阪府立大学 細胞培養容器及び観察用試料セル
WO2018147032A1 (ja) * 2017-02-09 2018-08-16 公立大学法人大阪府立大学 細胞培養用流体チップ、培養容器及び培養方法
WO2018150689A1 (ja) * 2017-02-15 2018-08-23 公立大学法人大阪府立大学 細胞培養容器、観察用試料セル及び細胞培養方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016124057A (ja) * 2014-12-26 2016-07-11 テルモ株式会社 細胞処理システムおよび把持具
WO2017094451A1 (ja) 2015-12-04 2017-06-08 公立大学法人大阪府立大学 細胞培養容器及び観察用試料セル
WO2018147032A1 (ja) * 2017-02-09 2018-08-16 公立大学法人大阪府立大学 細胞培養用流体チップ、培養容器及び培養方法
WO2018150689A1 (ja) * 2017-02-15 2018-08-23 公立大学法人大阪府立大学 細胞培養容器、観察用試料セル及び細胞培養方法

Also Published As

Publication number Publication date
US20230174911A1 (en) 2023-06-08
EP4151715A1 (en) 2023-03-22
JPWO2021230220A1 (ja) 2021-11-18

Similar Documents

Publication Publication Date Title
JP4308535B2 (ja) 試料を画像化するための回転ステージ
JP6502338B2 (ja) 光シート顕微鏡検査用の装置
Reynaud et al. Light sheet‐based fluorescence microscopy: more dimensions, more photons, and less photodamage
US8482854B2 (en) Sample holder for a microscope
Berthet et al. Light sheet microscopy and live imaging of plants
EP1696024B1 (en) Device for cell culture
US20130017564A1 (en) Bioprinting station, assembly comprising such bioprinting station and bioprinting method
WO2007065711A1 (en) Miscroscope specimen holder
EP3201672A1 (en) Selective plane illumination microscopy (spim) systems and methods
CN110062599B (zh) 利用光源阵列的透射照明成像
Von Wangenheim et al. Light sheet fluorescence microscopy of plant roots growing on the surface of a gel
WO2021230220A1 (ja) 細胞培養容器、固定具、観察装置、顕微鏡および観察方法
CN111492295A (zh) 用于对样本成像的显微镜和用于这种显微镜的样本保持器
US11795424B2 (en) Cell culture vessel, sample observation cell, and cell culture method
JP2020046670A (ja) 調整可能な角度付照明を備えたハイスループット光シート顕微鏡
JP3869259B2 (ja) 生物標本の観察方法
EP3345535B1 (en) Window apparatus for obtaining microscopic image of in vivo breast tissue and method for obtaining image using same
EP3259631B1 (en) Device and method for creating an optical tomogram of a microscopic sample
JP4474663B2 (ja) ビデオ顕微鏡装置
US20230399599A1 (en) Cell culture vessel, observation device, microscope, culture method, and observation method
JP4048265B2 (ja) 一細胞長期観察装置
JP5866663B2 (ja) 顕微鏡用細胞収容器
CN212134493U (zh) 一种生物成像仪
US10261302B1 (en) Sample holder for microscopy
Kozubek et al. Automated microaxial tomography of cell nuclei after specific labelling by fluorescence in situ hybridisation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21803722

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022521918

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021803722

Country of ref document: EP

Effective date: 20221212