WO2021230143A1 - Organosilicon compound and method for producing same - Google Patents

Organosilicon compound and method for producing same Download PDF

Info

Publication number
WO2021230143A1
WO2021230143A1 PCT/JP2021/017462 JP2021017462W WO2021230143A1 WO 2021230143 A1 WO2021230143 A1 WO 2021230143A1 JP 2021017462 W JP2021017462 W JP 2021017462W WO 2021230143 A1 WO2021230143 A1 WO 2021230143A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
organosilicon compound
polyhydric alcohol
formula
carbon atoms
Prior art date
Application number
PCT/JP2021/017462
Other languages
French (fr)
Japanese (ja)
Inventor
大樹 片山
利之 小材
晶 坂本
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to JP2022521868A priority Critical patent/JPWO2021230143A1/ja
Publication of WO2021230143A1 publication Critical patent/WO2021230143A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere

Definitions

  • the present invention relates to a novel organosilicon compound, and is particularly suitably used as a wetter (dispersant) capable of highly filling a silicone composition (organopolysiloxane composition) with a filler such as a heat conductive filler.
  • a wetter dispenser
  • the present invention relates to an organosilicon compound which can be used and a method for producing the same.
  • Patent Documents Many methods have been proposed as a means of removing this heat.
  • a method has been proposed in which a heat conductive material such as a heat conductive grease or a heat conductive sheet is interposed between the electronic parts and a member such as a heat sink to dissipate heat (Patent Documents). 1, 2).
  • the heat conductive grease has an amorphous shape and is preferably used because it exhibits high heat conductivity by adhering to the base material after curing.
  • a heat radiating grease or a heat radiating adhesive which is based on silicone (organopolysiloxane) and contains zinc oxide or alumina powder is known (Patent Documents 3 and 4).
  • heat conductive filler In order to make a heat conductive material based on silicone and having high heat conductivity, it is necessary to highly fill the heat conductive filler. However, if only a high filling is attempted, the fluidity of the heat conductive material is significantly reduced, workability such as coatability (dispensability, screen printability) is deteriorated, and the surface of electronic parts and heat sinks is fine. There is a problem that it cannot follow the unevenness. Therefore, in order to solve this problem, the heat conductive filler surface-treated with a wetter (dispersant) is dispersed in the base polymer silicone (organopolysiloxane) to maintain the fluidity of the heat conductive material. The method is proposed.
  • Patent Documents 5 and 6 Currently, as wetters frequently used, there are methylpolysiloxane having a hydrolyzable group and oligosiloxane having a hydrolyzable group (Patent Documents 5 and 6). Although good fluidity can be obtained by using these wetters, unreacted hydrolyzable groups have a great influence on the adhesiveness between electronic components and substrates under high temperature and high humidity conditions, and the adhesive strength changes. As a result, when movement is applied to the electronic components, stress is also generated on the base material, which causes the electronic components and the substrate to crack or shift.
  • the present invention makes it possible to highly fill a silicone composition with a filler, and there is little change in adhesiveness even under high temperature and high humidity conditions, and in particular, the amount of change in tensile shear adhesive strength from the initial value is doubled. It is an object of the present invention to provide an organosilicon compound suitable as a wetter having a composition of less than or less than that, and a method for producing the same.
  • an organosilicon compound having a specific polyhydric alcohol structure is useful for solving the above-mentioned problems, and completed the present invention.
  • the present invention provides the following organosilicon compound and a method for producing the same.
  • R 1 is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 12 carbon atoms
  • R 2 is an unsubstituted or substituted divalent hydrocarbon group having 1 to 12 carbon atoms.
  • A is a polyhydric alcohol residue having two or more residual hydroxyl groups, and n is a number having a viscosity of this organic silicon compound at 23 ° C. of 1 to 1,000 mPa ⁇ s.
  • the polyhydric alcohol residue of A is a residue derived from a polyhydric alcohol having at least 3 hydroxyl groups, and at least one hydroxyl group in the polyhydric alcohol forms an ether bond with an adjacent R 2.
  • [3] The organosilicon compound according to [2], wherein the polyhydric alcohol residue of A is a residue of glycerol or pentaerythritol.
  • [4] The organosilicon compound according to any one of [1] to [3], which is a wetter for highly filling a curable silicone composition with a filler.
  • [5] The following formula (II) (In the formula, A is a polyhydric alcohol residue having two or more residual hydroxyl groups, and Y is an alkenyl group having 2 to 10 carbon atoms.)
  • R 1 is a heterologous or homogeneous unsubstituted or substituted monovalent hydrocarbon group having 1 to 12 carbon atoms independently of each other, and n is the viscosity of this organopolysiloxane at 23 ° C. of 1 to 1, It is a number of 000 mPa ⁇ s.
  • the organosilicon compound of the present invention makes it possible to highly fill a silicone composition with a filler such as a heat conductive filler, and provides a composition having little change in adhesiveness even under high temperature and high humidity conditions. It is useful as a wetter for.
  • the organosilicon compound according to the present invention is represented by the following formula (I).
  • R 1 is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 12 carbon atoms
  • R 2 is an unsubstituted or substituted divalent hydrocarbon group having 1 to 12 carbon atoms.
  • A is a group
  • A is a polyhydric alcohol residue having two or more residual hydroxyl groups
  • n is a number having a viscosity of this organic silicon compound at 23 ° C. of 1 to 1,000 mPa ⁇ s.
  • Examples of the unsubstituted or substituted monovalent hydrocarbon group having 1 to 12 carbon atoms of R 1 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a tert-butyl group, a pentyl group and a hexyl.
  • Alkyl group such as group, heptyl group, octyl group, nonyl group, decyl group, dodecyl group; cycloalkyl group such as cyclopentyl group and cyclohexyl group; alkenyl group such as vinyl group, allyl group, butenyl group, pentenyl group and hexenyl group.
  • Aryl groups such as phenyl group, trill group, xsilyl group, ⁇ -, ⁇ -naphthyl group; aralkyl groups such as benzyl group, 2-phenylethyl group and 3-phenylpropyl group; and hydrogen atoms of these groups
  • an alkyl group such as a methyl group or an ethyl group is preferable, and a methyl group is particularly preferable.
  • Examples of the unsubstituted or substituted divalent hydrocarbon group having 1 to 12 carbon atoms of R 2 include a methylene group, an ethylene group (dimethylene group), a propylene group (ethylmethylene group, trimethylene group), an isopropylene group and a butylene group.
  • an alkylene group such as an ethylene group (dimethylene group) and a propylene group (ethylmethylene group, trimethylene group) is preferable, and an ethylene group (dimethylene group) and a trimethylene group are particularly preferable.
  • Examples of the polyhydric alcohol residue having two or more residual hydroxyl groups in A above include ethylene glycol, propylene glycol, diethylene glycol, glycerol (glycerin), 1, 2,4-butanetriol, pentaerythritol, erythritol, arabinitol, and xylitol. , Ribitol, mannitol and the like, a residue obtained by removing one hydrogen atom from one hydroxyl group existing in a polyhydric alcohol having three or more hydroxyl groups in one molecule can be exemplified.
  • residues of glycerol, pentaerythritol, 1,2,4-butanetriol and erythritol are preferable because they have three or more hydroxyl groups and are easily available for themselves and their derivatives, and particularly glycerol and pentaerythritol. Residues are preferred.
  • n is a number having a viscosity of this organosilicon compound at 23 ° C. of 1 to 1,000 mPa ⁇ s, and therefore n is preferably a number of 1 to 200, more preferably 3 to 100. , More preferably 5 to 50, and particularly preferably 9 to 30.
  • the viscosity of the organosilicon compound at 23 ° C. is 1 to 1,000 mPa ⁇ s, preferably 5 to 500 mPa ⁇ s, and more preferably 10 to 300 mPa ⁇ s.
  • the viscosity is a numerical value measured by a rotational viscometer (for example, BL type, BH type, BS type, cone plate type, etc.) (hereinafter, the same applies).
  • a rotational viscometer for example, BL type, BH type, BS type, cone plate type, etc.
  • the number of repetitions (n) or the degree of polymerization of the diorganosiloxane unit in the organosilicon compound represented by the above formula (I) is the number average in terms of polystyrene in gel permeation chromatography (GPC) analysis using toluene or the like as a developing solvent. It can be determined as the degree of polymerization (or number average molecular weight) or the like.
  • the organosilicon compound represented by the above formula (I) of the present invention can be produced by a conventionally known method.
  • it has an alkenyl group of a polyvalent alcohol derivative having an alkenyl group in the molecule represented by the following formula (II) and a hydrogen atom bonded to a silicon atom at one end of the molecular chain represented by the following formula (III).
  • a hydrosilyl group (Si—H group) of an organopolysiloxane a linear diorganopolysiloxane having one end of the molecular chain sealed with a triorganosyloxy group and the other end closed with a diorganohydrogensiloxy group).
  • a hydrosilylation addition reaction is carried out in the presence of a platinum compound-containing catalyst, and a hydrosilylation group is added to the alkenyl group to form a carbon-silicon bond (that is, the alkenyl group Y in the following formula (II) and the following formula (III).
  • the addition reaction between hydrogen atoms bonded (Si-H groups) to the silicon atom in) by forming a divalent hydrocarbon group R 2 in the above formula (I) is represented by the above formula (I) Manufacture organic silicon compounds.
  • A represents the same meaning as above
  • Y represents an alkenyl group having 2 to 10 carbon atoms.
  • R 1, n represents the same meaning as above.
  • Examples of the alkenyl group having 2 to 10 carbon atoms of Y include a linear alkenyl group such as a vinyl group, an allyl group, a propenyl group, and a butenyl group.
  • a vinyl group and an allyl group are preferable, and an allyl group is particularly preferable, because of ease of synthesis and production.
  • the hydroxyl group of the polyhydric alcohol derivative having the alkenyl ether structure represented by the above formula (II) may have a protecting group, which becomes a hydroxyl group through the deprotection step after the hydrosilylation reaction. ..
  • the protection and deprotection of the hydroxyl group can be performed by a known method.
  • the platinum compound-containing catalyst used in the hydrosilylation reaction is not particularly limited, and specific examples thereof include platinum chloride, an alcohol solution of platinum chloride, and platinum-1,3-divinyl-1,1,3. , 3-Tetramethyldisiloxane complex in toluene or xylene solution, tetraxtriphenylphosphine platinum, dichlorobistriphenylphosphine platinum, dichlorobis acetonitrile platinum, dichlorobisbenzonitrile platinum, dichlorocyclooctadiene platinum, platinum-carbon, platinum-alumina , Platinum-supporting catalysts such as silica, and the like.
  • a toluene or xylene solution of platinum-1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex is preferable from the viewpoint of selectivity.
  • the amount of the platinum compound-containing catalyst used is not particularly limited, but it is contained in 1 mol of the polyvalent alcohol derivative having an alkenyl group in the molecule represented by the formula (II) from the viewpoint of reactivity and productivity.
  • the amount of the platinum atom to be formed is preferably 1 ⁇ 10 -7 to 1 ⁇ 10 ⁇ 2 mol, more preferably 1 ⁇ 10 -7 to 1 ⁇ 10 -3 mol.
  • a co-catalyst may be used to improve the reactivity of the hydrosilylation reaction.
  • a co-catalyst generally used for the hydrosilylation reaction can be used, but in the present invention, an ammonium salt of an inorganic acid, an acid amide compound, and a carboxylic acid are preferable.
  • ammonium salts of inorganic acids include ammonium chloride, ammonium sulfate, ammonium ammonium sulfate, ammonium nitrate, monoammonium dihydrogen phosphate, diammonium hydrogen phosphate, triammonium phosphate, ammonium diaphosphate, ammonium carbonate, and hydrogen carbonate.
  • Ammonium, ammonium sulfide, ammonium borate, ammonium borofluoride and the like can be mentioned. Of these, ammonium carbonate and ammonium hydrogen carbonate are preferable.
  • the acid amide compound examples include formamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, propionamide, acrylamide, malonamide, succinamide, maleamide, fumalamide, benzamide, phthalamide, palmitate amide, stearate amide and the like.
  • formamide and stearic acid amide are preferable, and formamide is more preferable.
  • carboxylic acids include formic acid, acetic acid, propionic acid, butyric acid, methoxyacetic acid, pentanic acid, caproic acid, heptanic acid, octanoic acid, lactic acid, glycolic acid, trifluoroacetic acid, maleic acid, fumaric acid, and succinic acid.
  • carboxylic acids include formic acid, acetic acid, propionic acid, butyric acid, methoxyacetic acid, pentanic acid, caproic acid, heptanic acid, octanoic acid, lactic acid, glycolic acid, trifluoroacetic acid, maleic acid, fumaric acid, and succinic acid.
  • tartrate acid and oxalic acid examples include tartrate acid and oxalic acid.
  • formic acid, acetic acid, lactic acid, maleic acid, fumaric acid, succinic acid and trifluoroacetic acid are preferable, and acetic acid and trifluor
  • the amount of the co-catalyst used is not particularly limited, but from the viewpoint of reactivity, selectivity, cost, etc., with respect to 1 mol of the polyhydric alcohol derivative having an alkenyl group in the molecule represented by the formula (II).
  • 1 ⁇ 10 -5 to 1 ⁇ 10 -1 mol is preferable, and 1 ⁇ 10 -4 to 5 ⁇ 10 -1 mol is more preferable.
  • a solvent can also be used.
  • the solvent that can be used include hydrocarbon solvents such as pentane, hexane, cyclohexane, heptane, isooctane, benzene, toluene and xylene; ether solvents such as diethyl ether, tetrahydrofuran and dioxane; ethyl acetate, butyl acetate and the like.
  • Ester-based solvents such as N, N-dimethylformamide; chlorinated hydrocarbon-based solvents such as dichloromethane and chloroform, and the like, even if one of these solvents is used alone, 2 A mixture of seeds or more may be used.
  • the reaction temperature in the hydrosilylation reaction is not particularly limited and can be carried out from room temperature (23 ° C.) under heating, but room temperature (23 ° C.) to 200 ° C. is preferable. In order to obtain an appropriate reaction rate, it is preferable to carry out the reaction under heating, and from such a viewpoint, the reaction temperature is more preferably 40 to 110 ° C., and even more preferably 40 to 90 ° C. Further, the reaction time is not particularly limited, and is preferably 1 to 60 hours, more preferably 1 to 30 hours, still more preferably 1 to 20 hours.
  • the reaction ratio between the alkenyl group of the polyhydric alcohol derivative having an alkenyl group in the molecule represented by the above formula (II) and the hydrosilyl group of the organopolysiloxane represented by the above formula (III) is the hydrosilylation reaction.
  • the ratio of the alkenyl group to 1 mol of the hydrosilyl group is preferably 0.8 to 1.3 mol. A ratio of 0.9 to 1.2 mol is more preferable.
  • Examples of the compound represented by the above formula (I) thus obtained include, but are not limited to, those represented by the following formula.
  • n is a number having a viscosity of these organosilicon compounds at 23 ° C. of 1 to 1,000 mPa ⁇ s, and n is preferably a number of 1 to 200, more preferably. Is a number of 3 to 100, more preferably a number of 5 to 50, and particularly preferably a number of 9 to 30.
  • the organosilicon compound of the present invention can be suitably used as a wetter (dispersant) for the filler in the silicone composition (organopolysiloxane composition) containing the filler.
  • the silicone composition include an addition reaction curing type silicone composition, an organic peroxide curing type silicone composition, a condensation reaction curing type silicone composition, and a non-curing type silicone composition such as silicone grease.
  • the filler to be filled in the silicone composition may be any of an inorganic filler, a metal filler, an organic resin filler and the like, and for example, fuming silica, precipitate silica, quartz powder and alumina (oxidation).
  • Aluminum aluminum hydroxide, boron nitride, aluminum nitride, silicon nitride, iron oxide, magnesium oxide, titanium oxide, zinc oxide, zirconium oxide, calcium carbonate, carbon black, graphite, aluminum, gold, silver, copper, nickel, etc. Can be applied to the filler of.
  • the tensile shear adhesive strength may be measured according to the provisions of JIS K 6850.
  • the viscosity is a value measured by a rotational viscometer at 23 ° C.
  • the molecular weight indicates a number average molecular weight in terms of polystyrene in GPC measurement using toluene as a developing solvent.
  • Organosilicon compounds [Example 1] Synthesis of organosilicon compound 18.1 g of glycerin derivative having an alkenyl group represented by the following formula (IV), platinum-1, platinum-1, in a 500 mL separable flask equipped with a stirrer, a reflux condenser, a dropping funnel and a thermometer. 0.1 g of a toluene solution of 3-divinyl-1,1,3,3-tetramethyldisiloxane complex was placed and heated to 80 ° C. 100.0 g of an organopolysiloxane represented by the following formula (V) was added dropwise thereto, and the mixture was heated and stirred at 80 ° C. for 3 hours.
  • organopolysiloxane represented by the following formula (V) was added dropwise thereto, and the mixture was heated and stirred at 80 ° C. for 3 hours.
  • Example 2 Synthesis of organosilicon compound 2 Performed except that 24.1 g of a pentaerythritol derivative having an alkenyl group represented by the following formula (VI) was used instead of the glycerin derivative having an alkenyl group represented by the above formula (IV).
  • Organosilicon compound 2 (viscosity: 275 mPa ⁇ s, number average molecular weight: 1140) was obtained in the same manner as in Example 1.
  • Example 3 Synthesis of Organosilicon Compound 3 In the same manner as in Example 1 except that 281.5 g of the organopolysiloxane represented by the following formula (VII) was used instead of the organopolysiloxane represented by the above formula (V). Organosilicon compound 3 (viscosity: 32 mPa ⁇ s, number average molecular weight: 2720) was obtained.
  • Example 4 Synthesis of Organosilicon Compound 2 In place of the glycerin derivative having an alkenyl group represented by the above formula (IV), 24.1 g of a pentaerythritol derivative having an alkenyl group represented by the above formula (VI), the above formula (V) In the same manner as in Example 1 except that 281.5 g of the organopolysiloxane represented by the above formula (VII) was used instead of the organopolysiloxane represented by the above formula (VII), the organosilicon compound 4 (viscosity: 138 mPa ⁇ s, Number average molecular weight: 2770) was obtained.
  • the molecular chain has a viscosity of 400 mPa ⁇ s, both ends of the molecular chain are dimethylvinylsiloxy group-sealed dimethylpolysiloxane (vinyl group content; 0.44% by mass), 8 parts by mass, and the average particle size (BET method) is 20 ⁇ m. 67.5 parts by mass of spherical alumina powder, 22.5 parts by mass of amorphous alumina powder having an average particle size (BET method) of 2.2 ⁇ m, and an organosilicon compound synthesized in Example 1 as a dispersant (wetter).
  • this rubber base has a viscosity of 25 mPa ⁇ s and has a hydrogen atom (SiH group) bonded to an average of 4 silicon atoms in one molecule.
  • thermally conductive silicone rubber composition 1 was prepared by mixing parts by mass.
  • thermoly conductive silicone rubber composition 2 was obtained in the same manner as in Reference Example 1 except that 1.5 parts by mass of organosilicon compound 2 was used instead of the organosilicon compound 1.
  • thermoly conductive silicone rubber composition 3 was obtained in the same manner as in Reference Example 1 except that 1.5 parts by mass of the organosilicon compound 3 was used instead of the organosilicon compound 1.
  • thermoly conductive silicone rubber composition 4 was obtained in the same manner as in Reference Example 1 except that 1.5 parts by mass of the organosilicon compound 4 was used instead of the organosilicon compound 1.
  • the heat conductive silicone rubber composition 1, 2, 3, 4 or 5 is sandwiched between the adherends ⁇ aluminum plate manufactured by Partech Co., Ltd. (JIS H 4000, A1050P) ⁇ and then heated at 120 ° C. for 60 minutes. Then, it was cured to obtain a heat-conducting silicone rubber, which was used as an initial test piece.
  • the adhesive area was 25 mm ⁇ 10 mm, and the thickness of the adhesive layer was 2 mm.
  • the tensile shear adhesive strength of this thermally conductive silicone rubber was measured according to JIS K 6850. Further, the obtained heat-conducting silicone rubber was allowed to stand in a constant temperature and humidity chamber at 85 ° C.
  • Reference Examples 1 to 4 have less change in adhesive strength between the initial stage and after the high temperature and high humidity test, and the organosilicon compound of the present invention has the adhesiveness of the heat conductive silicone rubber. It was shown that it can be suitably used as a wetter that reduces the change in the amount of silicon.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided are: an organosilicon compound that is suitable as a wetter that enables a silicone composition to be highly filled with a filler, that undergoes less change in adhesiveness even under a high temperature and humidity condition, and that enables obtaining a composition in which the amount of change particularly in tensile shear adhesion strength from an initial value is less than two-fold; and a method for producing the organosilicon compound. This organosilicon compound is represented by formula (I) (in the formula, each R1 independently represents an unsubstituted or substituted monovalent hydrocarbon group having 1-12 carbon atoms, R2 represents an unsubstituted or substituted divalent hydrocarbon group having 1-12 carbon atoms, A represents a polyhydric alcohol residue having two or more residual hydroxyl groups, and n is a number that sets the viscosity of the organosilicon compound to 1-1,000 mPa·s at 23°C).

Description

有機ケイ素化合物およびその製造方法Organosilicon compounds and their manufacturing methods
 本発明は、新規な有機ケイ素化合物に関し、特にシリコーン組成物(オルガノポリシロキサン組成物)に熱伝導性充填剤等の充填剤を高充填することを可能とするウエッター(分散剤)として好適に用いることのできる有機ケイ素化合物及びその製造方法に関する。 The present invention relates to a novel organosilicon compound, and is particularly suitably used as a wetter (dispersant) capable of highly filling a silicone composition (organopolysiloxane composition) with a filler such as a heat conductive filler. The present invention relates to an organosilicon compound which can be used and a method for producing the same.
 電子部品の多くは使用中に熱を発生させることから、その電子部品を適切に機能させるためには、熱を取り除くことが必要である。特にパーソナルコンピューターに使用されているCPU等の集積回路素子は、動作周波数の高速化により発熱量が増大し続け、熱に対する対策が重要な問題となっている。また、近年は自動車にも多くの電子部品が使われるようになり、高温高湿条件下などより過酷な条件で電子部品が使用されることがある。 Since many electronic components generate heat during use, it is necessary to remove the heat in order for the electronic components to function properly. In particular, integrated circuit elements such as CPUs used in personal computers continue to increase the amount of heat generated due to the increase in operating frequency, and countermeasures against heat have become an important problem. In recent years, many electronic components have been used in automobiles, and electronic components may be used under more severe conditions such as high temperature and high humidity conditions.
 この熱を除去する手段として多くの方法が提案されている。特に発熱量の多い電子部品では、電子部品とヒートシンク等の部材との間に熱伝導性グリースや熱伝導性シートなどの熱伝導性材料を介在させて放熱する方法が提案されている(特許文献1、2)。特に熱伝導性グリースは不定形で、硬化後に基材に密着することで高い熱伝導性を示すことから好適に用いられている。また、このような熱伝導性材料としては、シリコーン(オルガノポリシロキサン)をベースとし、酸化亜鉛やアルミナ粉末を配合した放熱グリースや放熱接着剤が知られている(特許文献3、4)。 Many methods have been proposed as a means of removing this heat. Especially for electronic components that generate a large amount of heat, a method has been proposed in which a heat conductive material such as a heat conductive grease or a heat conductive sheet is interposed between the electronic parts and a member such as a heat sink to dissipate heat (Patent Documents). 1, 2). In particular, the heat conductive grease has an amorphous shape and is preferably used because it exhibits high heat conductivity by adhering to the base material after curing. Further, as such a heat conductive material, a heat radiating grease or a heat radiating adhesive which is based on silicone (organopolysiloxane) and contains zinc oxide or alumina powder is known (Patent Documents 3 and 4).
 シリコーンをベースとし、高い熱伝導性を有する熱伝導性材料とするためには、熱伝導性充填剤を高充填することが必要である。しかし、ただ単に高充填しようとすると、熱伝導性材料の流動性が著しく低下し、塗布性(ディスペンス性、スクリーンプリント性)等の作業性が悪くなり、さらには電子部品やヒートシンク表面の微細な凹凸に追従できなくなるという問題が生じる。
 そこで、この問題を解決するために、熱伝導性充填剤をウエッター(分散剤)で表面処理したものをベースポリマーであるシリコーン(オルガノポリシロキサン)に分散させ、熱伝導性材料の流動性を保つという方法が提案されている。現在、頻繁に用いられるウエッターとして、加水分解性基を有するメチルポリシロキサンや、加水分解性基を有するオリゴシロキサンがある(特許文献5、6)。これらのウエッターを使用することで、良好な流動性が得られるものの、高温高湿条件下では未反応の加水分解性基が電子部品と基板の接着性に大きな影響を及ぼし、接着強度が変化することで、電子部品に動きが加わった際に基材へも応力が生じ、電子部品や基板が割れたり、ズレたりする原因となっていた。
In order to make a heat conductive material based on silicone and having high heat conductivity, it is necessary to highly fill the heat conductive filler. However, if only a high filling is attempted, the fluidity of the heat conductive material is significantly reduced, workability such as coatability (dispensability, screen printability) is deteriorated, and the surface of electronic parts and heat sinks is fine. There is a problem that it cannot follow the unevenness.
Therefore, in order to solve this problem, the heat conductive filler surface-treated with a wetter (dispersant) is dispersed in the base polymer silicone (organopolysiloxane) to maintain the fluidity of the heat conductive material. The method is proposed. Currently, as wetters frequently used, there are methylpolysiloxane having a hydrolyzable group and oligosiloxane having a hydrolyzable group (Patent Documents 5 and 6). Although good fluidity can be obtained by using these wetters, unreacted hydrolyzable groups have a great influence on the adhesiveness between electronic components and substrates under high temperature and high humidity conditions, and the adhesive strength changes. As a result, when movement is applied to the electronic components, stress is also generated on the base material, which causes the electronic components and the substrate to crack or shift.
特開昭56-28264号公報Japanese Unexamined Patent Publication No. 56-28264 特開昭61-157587号公報Japanese Unexamined Patent Publication No. 61-157587 特公昭52-33272号公報Special Publication No. 52-33272 特公昭59-52195号公報Special Publication No. 59-52195 特開2000-256558号公報Japanese Unexamined Patent Publication No. 2000-256558 特開2001-139815号公報Japanese Unexamined Patent Publication No. 2001-139815
 したがって、本発明は、シリコーン組成物に充填剤を高充填することを可能とし、高温高湿条件下でも接着性に変化の少ない、特に引張りせん断接着強さの初期値からの変化量が2倍未満の組成物とすることが可能なウエッターとして好適な有機ケイ素化合物及びその製造方法を提供することを目的とする。 Therefore, the present invention makes it possible to highly fill a silicone composition with a filler, and there is little change in adhesiveness even under high temperature and high humidity conditions, and in particular, the amount of change in tensile shear adhesive strength from the initial value is doubled. It is an object of the present invention to provide an organosilicon compound suitable as a wetter having a composition of less than or less than that, and a method for producing the same.
 本発明者らは、上記目的を達成するために鋭意研究した結果、特定の多価アルコール構造を有する有機ケイ素化合物が、上述した課題の解決に有用であることを見出し、本発明を完成した。 As a result of diligent research to achieve the above object, the present inventors have found that an organosilicon compound having a specific polyhydric alcohol structure is useful for solving the above-mentioned problems, and completed the present invention.
 即ち、本発明は下記の有機ケイ素化合物およびその製造方法を提供するものである。 That is, the present invention provides the following organosilicon compound and a method for producing the same.
[1]
 下記式(I)で表される有機ケイ素化合物。
Figure JPOXMLDOC01-appb-C000004
(式中、R1は互いに独立に、非置換又は置換の炭素数1~12の一価炭化水素基であり、R2は非置換又は置換の炭素数1~12の二価炭化水素基であり、Aは2個以上の残存水酸基を有する多価アルコール残基であり、nはこの有機ケイ素化合物の23℃における粘度を1~1,000mPa・sとする数である。)

[2]
 Aの多価アルコール残基が少なくとも3個の水酸基を有する多価アルコールから誘導される残基であり、該多価アルコール中の少なくとも1個の水酸基が隣接するR2とエーテル結合を形成しているものである[1]に記載の有機ケイ素化合物。

[3]
 Aの多価アルコール残基が、グリセロール又はペンタエリスリトールの残基である[2]に記載の有機ケイ素化合物。

[4]
 硬化性シリコーン組成物に充填剤を高充填するためのウエッターである[1]~[3]のいずれか1つに記載の有機ケイ素化合物。

[5]
 下記式(II)
Figure JPOXMLDOC01-appb-C000005
(式中、Aは2個以上の残存水酸基を有する多価アルコール残基であり、Yは炭素数2~10のアルケニル基である。)
で表される分子中にアルケニル基を有する多価アルコール誘導体と、下記式(III)
Figure JPOXMLDOC01-appb-C000006
(式中、R1は互いに独立に、異種または同種の非置換又は置換の炭素数1~12の一価炭化水素基であり、nはこのオルガノポリシロキサンの23℃における粘度を1~1,000mPa・sとする数である。)
で表される分子鎖片末端にケイ素原子結合水素原子を有するオルガノポリシロキサンとを、白金化合物含有触媒存在下でヒドロシリル化反応させる工程を含む[1]~[4]のいずれか1つに記載の有機ケイ素化合物の製造方法。
[1]
An organosilicon compound represented by the following formula (I).
Figure JPOXMLDOC01-appb-C000004
(In the formula, R 1 is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 12 carbon atoms, and R 2 is an unsubstituted or substituted divalent hydrocarbon group having 1 to 12 carbon atoms. A is a polyhydric alcohol residue having two or more residual hydroxyl groups, and n is a number having a viscosity of this organic silicon compound at 23 ° C. of 1 to 1,000 mPa · s.)

[2]
The polyhydric alcohol residue of A is a residue derived from a polyhydric alcohol having at least 3 hydroxyl groups, and at least one hydroxyl group in the polyhydric alcohol forms an ether bond with an adjacent R 2. The organic silicon compound according to [1].

[3]
The organosilicon compound according to [2], wherein the polyhydric alcohol residue of A is a residue of glycerol or pentaerythritol.

[4]
The organosilicon compound according to any one of [1] to [3], which is a wetter for highly filling a curable silicone composition with a filler.

[5]
The following formula (II)
Figure JPOXMLDOC01-appb-C000005
(In the formula, A is a polyhydric alcohol residue having two or more residual hydroxyl groups, and Y is an alkenyl group having 2 to 10 carbon atoms.)
A polyhydric alcohol derivative having an alkenyl group in the molecule represented by the following formula (III).
Figure JPOXMLDOC01-appb-C000006
(In the formula, R 1 is a heterologous or homogeneous unsubstituted or substituted monovalent hydrocarbon group having 1 to 12 carbon atoms independently of each other, and n is the viscosity of this organopolysiloxane at 23 ° C. of 1 to 1, It is a number of 000 mPa · s.)
Described in any one of [1] to [4], which comprises a step of hydrosilylating a organopolysiloxane having a silicon atom-bonded hydrogen atom at one end of the molecular chain represented by (1) in the presence of a platinum compound-containing catalyst. Method for producing an organosilicon compound.
 本発明の有機ケイ素化合物は、シリコーン組成物に熱伝導性充填剤等の充填剤(フィラー)を高充填することを可能とし、高温高湿条件下でも接着性に変化の少ない組成物を提供するためのウエッターとして有用である。 The organosilicon compound of the present invention makes it possible to highly fill a silicone composition with a filler such as a heat conductive filler, and provides a composition having little change in adhesiveness even under high temperature and high humidity conditions. It is useful as a wetter for.
 以下、本発明につき更に詳しく説明する。 Hereinafter, the present invention will be described in more detail.
 本発明に係る有機ケイ素化合物は、下記式(I)で表される。
Figure JPOXMLDOC01-appb-C000007
The organosilicon compound according to the present invention is represented by the following formula (I).
Figure JPOXMLDOC01-appb-C000007
 式(I)中、R1は互いに独立に、非置換又は置換の炭素数1~12の一価炭化水素基であり、R2は非置換又は置換の炭素数1~12の二価炭化水素基であり、Aは2個以上の残存水酸基を有する多価アルコール残基であり、nはこの有機ケイ素化合物の23℃における粘度を1~1,000mPa・sとする数である。 In formula (I), R 1 is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 12 carbon atoms, and R 2 is an unsubstituted or substituted divalent hydrocarbon group having 1 to 12 carbon atoms. A is a group, A is a polyhydric alcohol residue having two or more residual hydroxyl groups, and n is a number having a viscosity of this organic silicon compound at 23 ° C. of 1 to 1,000 mPa · s.
 上記R1の非置換又は置換の炭素数1~12の一価炭化水素基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基等のアルキル基;シクロペンチル基、シクロヘキシル基等のシクロアルキル基;ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基等のアルケニル基;フェニル基、トリル基、キシリル基、α-,β-ナフチル基等のアリール基;ベンジル基、2-フェニルエチル基、3-フェニルプロピル基等のアラルキル基;また、これらの基の水素原子の一部又は全部が、F、Cl、Br等のハロゲン原子やシアノ基等で置換された基、例えば、3-クロロプロピル基、3,3,3-トリフルオロプロピル基、2-シアノエチル基等を例示することができる。これらの中でも、メチル基、エチル基等のアルキル基が好ましく、メチル基が特に好ましい。 Examples of the unsubstituted or substituted monovalent hydrocarbon group having 1 to 12 carbon atoms of R 1 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a tert-butyl group, a pentyl group and a hexyl. Alkyl group such as group, heptyl group, octyl group, nonyl group, decyl group, dodecyl group; cycloalkyl group such as cyclopentyl group and cyclohexyl group; alkenyl group such as vinyl group, allyl group, butenyl group, pentenyl group and hexenyl group. Aryl groups such as phenyl group, trill group, xsilyl group, α-, β-naphthyl group; aralkyl groups such as benzyl group, 2-phenylethyl group and 3-phenylpropyl group; and hydrogen atoms of these groups A group partially or wholly substituted with a halogen atom such as F, Cl, Br, or a cyano group, for example, a 3-chloropropyl group, a 3,3,3-trifluoropropyl group, a 2-cyanoethyl group, etc. It can be exemplified. Among these, an alkyl group such as a methyl group or an ethyl group is preferable, and a methyl group is particularly preferable.
 上記R2の非置換又は置換の炭素数1~12の二価炭化水素基としては、メチレン基、エチレン基(ジメチレン基)、プロピレン基(エチルメチレン基、トリメチレン基)、イソプロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、ヘプチレン基、オクチレン基、ノニレン基、デシレン基、ドデシレン基等のアルキレン基;シクロペンチレン基、シクロヘキシレン基等のシクロアルキレン基;ビニレン基、アリレン基、ブテニレン基、ペンテニレン基、ヘキセニレン基等のアルケニレン基;また、これらの基の水素原子の一部又は全部が、F、Cl、Br等のハロゲン原子やシアノ基等で置換された基等を例示することができる。これらの中でも、エチレン基(ジメチレン基)、プロピレン基(エチルメチレン基、トリメチレン基)等のアルキレン基が好ましく、特にエチレン基(ジメチレン基)、トリメチレン基が好ましい。 Examples of the unsubstituted or substituted divalent hydrocarbon group having 1 to 12 carbon atoms of R 2 include a methylene group, an ethylene group (dimethylene group), a propylene group (ethylmethylene group, trimethylene group), an isopropylene group and a butylene group. , Pentylene group, hexylene group, heptylene group, octylene group, nonylene group, decylene group, dodecylene group and other alkylene groups; cyclopentylene group, cyclohexylene group and other cycloalkylene groups; vinylene group, allylene group, butenylene group, pentenylene Alkenylene groups such as groups and hexenylene groups; and groups in which some or all of the hydrogen atoms of these groups are substituted with halogen atoms such as F, Cl and Br, cyano groups and the like can be exemplified. Among these, an alkylene group such as an ethylene group (dimethylene group) and a propylene group (ethylmethylene group, trimethylene group) is preferable, and an ethylene group (dimethylene group) and a trimethylene group are particularly preferable.
 上記Aの、2個以上の残存水酸基を有する多価アルコール残基としては、エチレングリコール、プロピレングリコール、ジエチレングリコール、グリセロール(グリセリン)、1、2、4-ブタントリオール、ペンタエリスリトール、エリスリトール、アラビニトール、キシリトール、リビトール、マンニトール等の1分子中に3個以上の水酸基を有する多価アルコール中に存在する1個の水酸基から水素原子を1個除いた残基等を例示することができる。これらの中でも、3個以上の水酸基を有し、かつそれ自体及び誘導体の入手容易さからグリセロール、ペンタエリスリトール、1、2、4-ブタントリオール、エリスリトールの残基が好ましく、特にグリセロール、ペンタエリスリトールの残基が好ましい。 Examples of the polyhydric alcohol residue having two or more residual hydroxyl groups in A above include ethylene glycol, propylene glycol, diethylene glycol, glycerol (glycerin), 1, 2,4-butanetriol, pentaerythritol, erythritol, arabinitol, and xylitol. , Ribitol, mannitol and the like, a residue obtained by removing one hydrogen atom from one hydroxyl group existing in a polyhydric alcohol having three or more hydroxyl groups in one molecule can be exemplified. Among these, residues of glycerol, pentaerythritol, 1,2,4-butanetriol and erythritol are preferable because they have three or more hydroxyl groups and are easily available for themselves and their derivatives, and particularly glycerol and pentaerythritol. Residues are preferred.
 式(I)中、nはこの有機ケイ素化合物の23℃における粘度を1~1,000mPa・sとする数であり、このため、nは好ましくは1~200の数、より好ましくは3~100の数、さらに好ましくは5~50の数、特に好ましくは9~30の数である。ここで、該有機ケイ素化合物の23℃における粘度は、1~1,000mPa・sであり、好ましくは5~500mPa・s、より好ましくは10~300mPa・sである。なお、粘度は回転粘度計(例えば、BL型、BH型、BS型、コーンプレート型等)による数値である(以下、同じ。)。また、上記式(I)で示される有機ケイ素化合物中におけるジオルガノシロキサン単位の繰り返し数(n)又は重合度は、トルエン等を展開溶媒としてゲルパーミエーションクロマトグラフィ(GPC)分析におけるポリスチレン換算の数平均重合度(又は数平均分子量)等として求めることができる。 In the formula (I), n is a number having a viscosity of this organosilicon compound at 23 ° C. of 1 to 1,000 mPa · s, and therefore n is preferably a number of 1 to 200, more preferably 3 to 100. , More preferably 5 to 50, and particularly preferably 9 to 30. Here, the viscosity of the organosilicon compound at 23 ° C. is 1 to 1,000 mPa · s, preferably 5 to 500 mPa · s, and more preferably 10 to 300 mPa · s. The viscosity is a numerical value measured by a rotational viscometer (for example, BL type, BH type, BS type, cone plate type, etc.) (hereinafter, the same applies). Further, the number of repetitions (n) or the degree of polymerization of the diorganosiloxane unit in the organosilicon compound represented by the above formula (I) is the number average in terms of polystyrene in gel permeation chromatography (GPC) analysis using toluene or the like as a developing solvent. It can be determined as the degree of polymerization (or number average molecular weight) or the like.
製造方法
 本発明の上記式(I)で表される有機ケイ素化合物は、従来公知の方法によって製造することができる。例えば、下記式(II)で表される分子中にアルケニル基を有する多価アルコール誘導体のアルケニル基と、下記式(III)で表される分子鎖片末端にケイ素原子に結合した水素原子を有するオルガノポリシロキサン(分子鎖片末端がトリオルガノシロキシ基で封鎖され他方の末端がジオルガノハイドロジェンシロキシ基で封鎖された直鎖状ジオルガノポリシロキサン)のヒドロシリル基(Si-H基)とを、白金化合物含有触媒存在下でヒドロシリル化付加反応を行い、アルケニル基にヒドロシリル基を付加させて炭素-ケイ素結合を形成することによって(即ち、下記式(II)中のアルケニル基Yと下記式(III)中のケイ素原子に結合した水素原子(Si-H基)との付加反応により上記式(I)中の二価炭化水素基R2を形成することによって)、上記式(I)で表される有機ケイ素化合物を製造する。
Figure JPOXMLDOC01-appb-C000008
(式中、Aは、上記と同じ意味を表し、Yは炭素数2~10のアルケニル基を表す。)

Figure JPOXMLDOC01-appb-C000009
(式中、R1、nは、上記と同じ意味を表す。)
Production Method The organosilicon compound represented by the above formula (I) of the present invention can be produced by a conventionally known method. For example, it has an alkenyl group of a polyvalent alcohol derivative having an alkenyl group in the molecule represented by the following formula (II) and a hydrogen atom bonded to a silicon atom at one end of the molecular chain represented by the following formula (III). A hydrosilyl group (Si—H group) of an organopolysiloxane (a linear diorganopolysiloxane having one end of the molecular chain sealed with a triorganosyloxy group and the other end closed with a diorganohydrogensiloxy group). A hydrosilylation addition reaction is carried out in the presence of a platinum compound-containing catalyst, and a hydrosilylation group is added to the alkenyl group to form a carbon-silicon bond (that is, the alkenyl group Y in the following formula (II) and the following formula (III). the addition reaction between hydrogen atoms bonded (Si-H groups) to the silicon atom in) by forming a divalent hydrocarbon group R 2 in the above formula (I)), is represented by the above formula (I) Manufacture organic silicon compounds.
Figure JPOXMLDOC01-appb-C000008
(In the formula, A represents the same meaning as above, and Y represents an alkenyl group having 2 to 10 carbon atoms.)

Figure JPOXMLDOC01-appb-C000009
(Wherein, R 1, n represents the same meaning as above.)
 Yの炭素数2~10のアルケニル基は、ビニル基、アリル基、プロぺニル基、ブテニル基等の直鎖状アルケニル基等を例示することができる。この中でも、合成、製造の容易さからビニル基、アリル基が好ましく、特にアリル基が好ましい。 Examples of the alkenyl group having 2 to 10 carbon atoms of Y include a linear alkenyl group such as a vinyl group, an allyl group, a propenyl group, and a butenyl group. Among these, a vinyl group and an allyl group are preferable, and an allyl group is particularly preferable, because of ease of synthesis and production.
 上記式(II)で表されるアルケニルエーテル構造を有する多価アルコール誘導体の水酸基は、保護基を有しているものでもよく、これは、上記ヒドロシリル化反応後に脱保護の工程を経て水酸基となる。水酸基の保護、脱保護については、公知の方法によって行うことができる。 The hydroxyl group of the polyhydric alcohol derivative having the alkenyl ether structure represented by the above formula (II) may have a protecting group, which becomes a hydroxyl group through the deprotection step after the hydrosilylation reaction. .. The protection and deprotection of the hydroxyl group can be performed by a known method.
 上記ヒドロシリル化反応で用いられる白金化合物含有触媒は特に限定されるものではなく、その具体例としては、塩化白金酸、塩化白金酸のアルコール溶液、白金-1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体のトルエンまたはキシレン溶液、テトラキストリフェニルホスフィン白金、ジクロロビストリフェニルホスフィン白金、ジクロロビスアセトニトリル白金、ジクロロビスベンゾニトリル白金、ジクロロシクロオクタジエン白金、白金-炭素、白金-アルミナ、白金-シリカ等の担持触媒などが挙げられる。これらの中でも、選択性の面から、白金-1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体のトルエンまたはキシレン溶液が好ましい。 The platinum compound-containing catalyst used in the hydrosilylation reaction is not particularly limited, and specific examples thereof include platinum chloride, an alcohol solution of platinum chloride, and platinum-1,3-divinyl-1,1,3. , 3-Tetramethyldisiloxane complex in toluene or xylene solution, tetraxtriphenylphosphine platinum, dichlorobistriphenylphosphine platinum, dichlorobis acetonitrile platinum, dichlorobisbenzonitrile platinum, dichlorocyclooctadiene platinum, platinum-carbon, platinum-alumina , Platinum-supporting catalysts such as silica, and the like. Among these, a toluene or xylene solution of platinum-1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex is preferable from the viewpoint of selectivity.
 白金化合物含有触媒の使用量は特に限定されるものではないが、反応性、生産性の点から、式(II)で表される分子中にアルケニル基を有する多価アルコール誘導体1molに対し、含有される白金原子が1×10-7~1×10-2molとなる量が好ましく、1×10-7~1×10-3molとなる量がより好ましい。 The amount of the platinum compound-containing catalyst used is not particularly limited, but it is contained in 1 mol of the polyvalent alcohol derivative having an alkenyl group in the molecule represented by the formula (II) from the viewpoint of reactivity and productivity. The amount of the platinum atom to be formed is preferably 1 × 10 -7 to 1 × 10 −2 mol, more preferably 1 × 10 -7 to 1 × 10 -3 mol.
 また、ヒドロシリル化反応の反応性向上のために助触媒を使用してもよい。この助触媒としては、一般的にヒドロシリル化反応に用いられている助触媒を使用できるが、本発明では、無機酸のアンモニウム塩、酸アミド化合物、カルボン酸が好ましい。 Further, a co-catalyst may be used to improve the reactivity of the hydrosilylation reaction. As the co-catalyst, a co-catalyst generally used for the hydrosilylation reaction can be used, but in the present invention, an ammonium salt of an inorganic acid, an acid amide compound, and a carboxylic acid are preferable.
 無機酸のアンモニウム塩の具体例としては、塩化アンモニウム、硫酸アンモニウム、アミド硫酸アンモニウム、硝酸アンモニウム、リン酸二水素一アンモニウム、リン酸水素二アンモニウム、リン酸三アンモニウム、ジ亜リン酸アンモニウム、炭酸アンモニウム、炭酸水素アンモニウム、硫化アンモニウム、ホウ酸アンモニウム、ホウフッ化アンモニウム等が挙げられる。中でも、炭酸アンモニウム、炭酸水素アンモニウムが好ましい。 Specific examples of ammonium salts of inorganic acids include ammonium chloride, ammonium sulfate, ammonium ammonium sulfate, ammonium nitrate, monoammonium dihydrogen phosphate, diammonium hydrogen phosphate, triammonium phosphate, ammonium diaphosphate, ammonium carbonate, and hydrogen carbonate. Ammonium, ammonium sulfide, ammonium borate, ammonium borofluoride and the like can be mentioned. Of these, ammonium carbonate and ammonium hydrogen carbonate are preferable.
 酸アミド化合物の具体例としては、ホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、プロピオンアミド、アクリルアミド、マロンアミド、スクシンアミド、マレアミド、フマルアミド、ベンズアミド、フタルアミド、パルミチン酸アミド、ステアリン酸アミド等が挙げられ、これらの中でも、ホルムアミド、ステアリン酸アミドが好ましく、ホルムアミドがより好ましい。 Specific examples of the acid amide compound include formamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, propionamide, acrylamide, malonamide, succinamide, maleamide, fumalamide, benzamide, phthalamide, palmitate amide, stearate amide and the like. Among these, formamide and stearic acid amide are preferable, and formamide is more preferable.
 カルボン酸の具体例としては、ギ酸、酢酸、プロピオン酸、酪酸、メトキシ酢酸、ペンタン酸、カプロン酸、ヘプタン酸、オクタン酸、乳酸、グリコール酸、トリフルオロ酢酸、マレイン酸、フマル酸、コハク酸、酒石酸、シュウ酸等が挙げられ、これらの中でも、ギ酸、酢酸、乳酸、マレイン酸、フマル酸、コハク酸、トリフルオロ酢酸が好ましく、酢酸、トリフルオロ酢酸がより好ましい。 Specific examples of carboxylic acids include formic acid, acetic acid, propionic acid, butyric acid, methoxyacetic acid, pentanic acid, caproic acid, heptanic acid, octanoic acid, lactic acid, glycolic acid, trifluoroacetic acid, maleic acid, fumaric acid, and succinic acid. Examples thereof include tartrate acid and oxalic acid. Among these, formic acid, acetic acid, lactic acid, maleic acid, fumaric acid, succinic acid and trifluoroacetic acid are preferable, and acetic acid and trifluoroacetic acid are more preferable.
 助触媒の使用量は特に限定されるものではないが、反応性、選択性、コスト等の観点から、式(II)で表される分子中にアルケニル基を有する多価アルコール誘導体1molに対して1×10-5~1×10-1molが好ましく、1×10-4~5×10-1molがより好ましい。 The amount of the co-catalyst used is not particularly limited, but from the viewpoint of reactivity, selectivity, cost, etc., with respect to 1 mol of the polyhydric alcohol derivative having an alkenyl group in the molecule represented by the formula (II). 1 × 10 -5 to 1 × 10 -1 mol is preferable, and 1 × 10 -4 to 5 × 10 -1 mol is more preferable.
 なお、上記ヒドロシリル化反応は無溶媒でも進行するが、溶媒を用いることもできる。使用可能な溶媒の具体例としては、ペンタン、ヘキサン、シクロヘキサン、ヘプタン、イソオクタン、ベンゼン、トルエン、キシレン等の炭化水素系溶媒;ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル系溶媒;酢酸エチル、酢酸ブチル等のエステル系溶媒;N,N-ジメチルホルムアミド等の非プロトン性極性溶媒;ジクロロメタン、クロロホルム等の塩素化炭化水素系溶媒などが挙げられ、これらの溶媒は、1種を単独で用いても、2種以上を混合して用いてもよい。 Although the hydrosilylation reaction proceeds without a solvent, a solvent can also be used. Specific examples of the solvent that can be used include hydrocarbon solvents such as pentane, hexane, cyclohexane, heptane, isooctane, benzene, toluene and xylene; ether solvents such as diethyl ether, tetrahydrofuran and dioxane; ethyl acetate, butyl acetate and the like. Ester-based solvents; aprotonic polar solvents such as N, N-dimethylformamide; chlorinated hydrocarbon-based solvents such as dichloromethane and chloroform, and the like, even if one of these solvents is used alone, 2 A mixture of seeds or more may be used.
 上記ヒドロシリル化反応における反応温度は特に限定されるものではなく、室温(23℃)から加熱下で行うことができるが、室温(23℃)~200℃が好ましい。適度な反応速度を得るためには加熱下で反応させることが好ましく、このような観点から、反応温度は40~110℃がより好ましく、40~90℃がより一層好ましい。また、反応時間も特に限定されるものではなく、1~60時間が好ましく、1~30時間がより好ましく、1~20時間がさらに好ましい。 The reaction temperature in the hydrosilylation reaction is not particularly limited and can be carried out from room temperature (23 ° C.) under heating, but room temperature (23 ° C.) to 200 ° C. is preferable. In order to obtain an appropriate reaction rate, it is preferable to carry out the reaction under heating, and from such a viewpoint, the reaction temperature is more preferably 40 to 110 ° C., and even more preferably 40 to 90 ° C. Further, the reaction time is not particularly limited, and is preferably 1 to 60 hours, more preferably 1 to 30 hours, still more preferably 1 to 20 hours.
 上記式(II)で表される分子中にアルケニル基を有する多価アルコール誘導体のアルケニル基と、上記式(III)で表されるオルガノポリシロキサンのヒドロシリル基との反応割合は、ヒドロシリル化反応時の副生物を抑制するとともに、得られる有機ケイ素化合物の保存安定性や特性を高めることを考慮すると、上記ヒドロシリル基1molに対し、上記アルケニル基が0.8~1.3molとなる割合が好ましく、0.9~1.2molとなる割合がより好ましい。 The reaction ratio between the alkenyl group of the polyhydric alcohol derivative having an alkenyl group in the molecule represented by the above formula (II) and the hydrosilyl group of the organopolysiloxane represented by the above formula (III) is the hydrosilylation reaction. Considering that the by-products of the above are suppressed and the storage stability and properties of the obtained organosilicon compound are enhanced, the ratio of the alkenyl group to 1 mol of the hydrosilyl group is preferably 0.8 to 1.3 mol. A ratio of 0.9 to 1.2 mol is more preferable.
 このようにして得られる上記式(I)で表される化合物としては、以下の式で表されるもの等が挙げられるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000010
Examples of the compound represented by the above formula (I) thus obtained include, but are not limited to, those represented by the following formula.
Figure JPOXMLDOC01-appb-C000010
 式(1’)~(4’)中、nはこれらの有機ケイ素化合物の23℃における粘度を1~1,000mPa・sとする数であり、nは好ましくは1~200の数、より好ましくは3~100の数、さらに好ましくは5~50の数、特に好ましくは9~30の数である。 In the formulas (1') to (4'), n is a number having a viscosity of these organosilicon compounds at 23 ° C. of 1 to 1,000 mPa · s, and n is preferably a number of 1 to 200, more preferably. Is a number of 3 to 100, more preferably a number of 5 to 50, and particularly preferably a number of 9 to 30.
 上記式(1’)~(4’)で表されるものの具体例としては、以下の式(1)~(8)で表されるものが挙げられるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000011
Specific examples of those represented by the above formulas (1') to (4') include, but are not limited to, those represented by the following formulas (1) to (8).
Figure JPOXMLDOC01-appb-C000011
 本発明の有機ケイ素化合物は、充填剤を含むシリコーン組成物(オルガノポリシロキサン組成物)において、該充填剤のウエッター(分散剤)として好適に使用することができる。シリコーン組成物としては、付加反応硬化型シリコーン組成物、有機過酸化物硬化型シリコーン組成物、縮合反応硬化型シリコーン組成物、シリコーングリース等の非硬化タイプのシリコーン組成物等が挙げられる。シリコーン組成物に充填される充填剤としては、無機質充填剤、金属充填剤、有機樹脂製充填剤等のいずれであってもよく、例えば、煙霧質シリカ、沈降性シリカ、石英粉、アルミナ(酸化アルミニウム)、水酸化アルミニウム、窒化ホウ素、窒化アルミニウム、窒化ケイ素、酸化鉄、酸化マグネシウム、酸化チタン、酸化亜鉛、酸化ジルコニウム、炭酸カルシウム、カーボンブラック、グラファイト、アルミニウム、金、銀、銅、ニッケル等公知の充填剤に適用することができる。 The organosilicon compound of the present invention can be suitably used as a wetter (dispersant) for the filler in the silicone composition (organopolysiloxane composition) containing the filler. Examples of the silicone composition include an addition reaction curing type silicone composition, an organic peroxide curing type silicone composition, a condensation reaction curing type silicone composition, and a non-curing type silicone composition such as silicone grease. The filler to be filled in the silicone composition may be any of an inorganic filler, a metal filler, an organic resin filler and the like, and for example, fuming silica, precipitate silica, quartz powder and alumina (oxidation). Aluminum), aluminum hydroxide, boron nitride, aluminum nitride, silicon nitride, iron oxide, magnesium oxide, titanium oxide, zinc oxide, zirconium oxide, calcium carbonate, carbon black, graphite, aluminum, gold, silver, copper, nickel, etc. Can be applied to the filler of.
 上記シリコーン組成物の接着強度は例えばJIS K 6850の規定に従って引張りせん断接着強さを測定すればよい。 For the adhesive strength of the above silicone composition, for example, the tensile shear adhesive strength may be measured according to the provisions of JIS K 6850.
 以下、実施例および参考例を挙げて本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、粘度は23℃における回転粘度計による測定値であり、分子量はトルエンを展開溶媒としたGPC測定におけるポリスチレン換算の数平均分子量を示す。 Hereinafter, the present invention will be described in more detail with reference to Examples and Reference Examples, but the present invention is not limited to these Examples. The viscosity is a value measured by a rotational viscometer at 23 ° C., and the molecular weight indicates a number average molecular weight in terms of polystyrene in GPC measurement using toluene as a developing solvent.
有機ケイ素化合物の合成
[実施例1]
有機ケイ素化合物1の合成
 撹拌機、還流冷却器、滴下ロートおよび温度計を備えた500mLセパラブルフラスコに、下記式(IV)で表されるアルケニル基を有するグリセリン誘導体18.1g、白金-1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体のトルエン溶液0.1gを納め、80℃に加熱した。その中に、下記式(V)で表されるオルガノポリシロキサン100.0gを滴下投入し、80℃にて3時間加熱撹拌した。1H-NMR測定により原料のアルケニル基およびヒドロシリル基由来のピークが完全に消失したことを確認し、反応終了とした。反応終了後の混合物について減圧留去(80℃、5mmHg)を2時間実施し、濾過することで、有機ケイ素化合物1(粘度:13mPa・s、数平均分子量:1090)を114g得た。
Figure JPOXMLDOC01-appb-C000012

Figure JPOXMLDOC01-appb-C000013

Figure JPOXMLDOC01-appb-C000014
Synthesis of organosilicon compounds [Example 1]
Synthesis of organosilicon compound 18.1 g of glycerin derivative having an alkenyl group represented by the following formula (IV), platinum-1, platinum-1, in a 500 mL separable flask equipped with a stirrer, a reflux condenser, a dropping funnel and a thermometer. 0.1 g of a toluene solution of 3-divinyl-1,1,3,3-tetramethyldisiloxane complex was placed and heated to 80 ° C. 100.0 g of an organopolysiloxane represented by the following formula (V) was added dropwise thereto, and the mixture was heated and stirred at 80 ° C. for 3 hours. 1 It was confirmed by 1 H-NMR measurement that the peaks derived from the alkenyl group and the hydrosilyl group of the raw materials had completely disappeared, and the reaction was terminated. After completion of the reaction, the mixture was distilled off under reduced pressure (80 ° C., 5 mmHg) for 2 hours and filtered to obtain 114 g of organosilicon compound 1 (viscosity: 13 mPa · s, number average molecular weight: 1090).
Figure JPOXMLDOC01-appb-C000012

Figure JPOXMLDOC01-appb-C000013

Figure JPOXMLDOC01-appb-C000014
[実施例2]
有機ケイ素化合物2の合成
 上記式(IV)で表されるアルケニル基を有するグリセリン誘導体の代わりに、下記式(VI)で表されるアルケニル基を有するペンタエリスリトール誘導体24.1gを使用した以外は実施例1と同様にして、有機ケイ素化合物2(粘度:275mPa・s、数平均分子量:1140)を得た。
Figure JPOXMLDOC01-appb-C000015

Figure JPOXMLDOC01-appb-C000016
[Example 2]
Synthesis of organosilicon compound 2 Performed except that 24.1 g of a pentaerythritol derivative having an alkenyl group represented by the following formula (VI) was used instead of the glycerin derivative having an alkenyl group represented by the above formula (IV). Organosilicon compound 2 (viscosity: 275 mPa · s, number average molecular weight: 1140) was obtained in the same manner as in Example 1.
Figure JPOXMLDOC01-appb-C000015

Figure JPOXMLDOC01-appb-C000016
[実施例3]
有機ケイ素化合物3の合成
 上記式(V)で表されるオルガノポリシロキサンの代わりに、下記式(VII)で表されるオルガノポリシロキサン281.5gを使用した以外は実施例1と同様にして、有機ケイ素化合物3(粘度:32mPa・s、数平均分子量:2720)を得た。
Figure JPOXMLDOC01-appb-C000017

Figure JPOXMLDOC01-appb-C000018
[Example 3]
Synthesis of Organosilicon Compound 3 In the same manner as in Example 1 except that 281.5 g of the organopolysiloxane represented by the following formula (VII) was used instead of the organopolysiloxane represented by the above formula (V). Organosilicon compound 3 (viscosity: 32 mPa · s, number average molecular weight: 2720) was obtained.
Figure JPOXMLDOC01-appb-C000017

Figure JPOXMLDOC01-appb-C000018
[実施例4]
有機ケイ素化合物4の合成
 上記式(IV)で表されるアルケニル基を有するグリセリン誘導体の代わりに、上記式(VI)で表されるアルケニル基を有するペンタエリスリトール誘導体24.1g、上記式(V)で表されるオルガノポリシロキサンの代わりに、上記式(VII)で表されるオルガノポリシロキサン281.5gを使用した以外は実施例1と同様にして、有機ケイ素化合物4(粘度:138mPa・s、数平均分子量:2770)を得た。
Figure JPOXMLDOC01-appb-C000019
[Example 4]
Synthesis of Organosilicon Compound 2 In place of the glycerin derivative having an alkenyl group represented by the above formula (IV), 24.1 g of a pentaerythritol derivative having an alkenyl group represented by the above formula (VI), the above formula (V) In the same manner as in Example 1 except that 281.5 g of the organopolysiloxane represented by the above formula (VII) was used instead of the organopolysiloxane represented by the above formula (VII), the organosilicon compound 4 (viscosity: 138 mPa · s, Number average molecular weight: 2770) was obtained.
Figure JPOXMLDOC01-appb-C000019
[参考例]
 本発明の有機ケイ素化合物の効果を参考例により詳細に説明する。なお、参考例中の特性は23℃における値である。
[Reference example]
The effect of the organosilicon compound of the present invention will be described in detail with reference to reference examples. The characteristics in the reference example are values at 23 ° C.
[参考例1]
 ミキサーにより、粘度が400mPa・sである分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン(ビニル基の含有量;0.44質量%)8質量部、平均粒径(BET法)が20μmである真球状のアルミナ粉末67.5質量部、平均粒径(BET法)が2.2μmである不定形状のアルミナ粉末22.5質量部、分散剤(ウェッター)として実施例1で合成した有機ケイ素化合物1を1.5質量部混合して熱伝導性シリコーンゴムベースを調製した。次に、このゴムベースに、粘度が25mPa・sであり、1分子中に平均4個のケイ素原子に結合した水素原子(SiH基)を有する分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサンコポリマー1.0質量部、接着付与成分としてトリアリイソシアヌレート0.03質量部、3-グリシドキシプロピルトリメトキシシラン0.2質量部、および硬化反応抑制剤として、1-エチニル-1-シクロヘキサノール0.02質量部を混合し、最後に、白金含有量が0.5質量%である白金の1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体0.02質量部を混合して熱伝導性シリコーンゴム組成物1を調製した。
[Reference Example 1]
By a mixer, the molecular chain has a viscosity of 400 mPa · s, both ends of the molecular chain are dimethylvinylsiloxy group-sealed dimethylpolysiloxane (vinyl group content; 0.44% by mass), 8 parts by mass, and the average particle size (BET method) is 20 μm. 67.5 parts by mass of spherical alumina powder, 22.5 parts by mass of amorphous alumina powder having an average particle size (BET method) of 2.2 μm, and an organosilicon compound synthesized in Example 1 as a dispersant (wetter). 1 was mixed in an amount of 1.5 parts by mass to prepare a thermally conductive silicone rubber base. Next, this rubber base has a viscosity of 25 mPa · s and has a hydrogen atom (SiH group) bonded to an average of 4 silicon atoms in one molecule. 1.0 part by mass of gensiloxane copolymer, 0.03 part by mass of trialiisocyanurate as an adhesion-imparting component, 0.2 part by mass of 3-glycidoxypropyltrimethoxysilane, and 1-ethynyl-1 as a curing reaction inhibitor. -Mix 0.02 parts by mass of cyclohexanol, and finally, 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex 0.02 of platinum having a platinum content of 0.5% by mass. The thermally conductive silicone rubber composition 1 was prepared by mixing parts by mass.
[参考例2]
 有機ケイ素化合物1の代わりに、有機ケイ素化合物2を1.5質量部使用した以外は参考例1と同様にして熱伝導性シリコーンゴム組成物2を得た。
[Reference Example 2]
A thermally conductive silicone rubber composition 2 was obtained in the same manner as in Reference Example 1 except that 1.5 parts by mass of organosilicon compound 2 was used instead of the organosilicon compound 1.
[参考例3]
 有機ケイ素化合物1の代わりに、有機ケイ素化合物3を1.5質量部使用した以外は参考例1と同様にして熱伝導性シリコーンゴム組成物3を得た。
[Reference Example 3]
A thermally conductive silicone rubber composition 3 was obtained in the same manner as in Reference Example 1 except that 1.5 parts by mass of the organosilicon compound 3 was used instead of the organosilicon compound 1.
[参考例4]
 有機ケイ素化合物1の代わりに、有機ケイ素化合物4を1.5質量部使用した以外は参考例1と同様にして熱伝導性シリコーンゴム組成物4を得た。
[Reference example 4]
A thermally conductive silicone rubber composition 4 was obtained in the same manner as in Reference Example 1 except that 1.5 parts by mass of the organosilicon compound 4 was used instead of the organosilicon compound 1.
[参考例5]
 有機ケイ素化合物1の代わりに、下記式:
Figure JPOXMLDOC01-appb-C000020
で表される有機ケイ素化合物(分子鎖片末端がトリメチルシロキシ基で封鎖され他方の末端が(トリメトキシシリルエチル)ジメチルシロキシ基で封鎖された重合度約30の直鎖状ジメチルポリシロキサン、粘度:30mPa・s)を1.5質量部使用した以外は参考例1と同様にして熱伝導性シリコーンゴム組成物5を得た。
[Reference Example 5]
Instead of organosilicon compound 1, the following formula:
Figure JPOXMLDOC01-appb-C000020
Organosilicon compound represented by (a linear dimethylpolysiloxane having a degree of polymerization of about 30 in which one end of the molecular chain is sealed with a trimethylsiloxy group and the other end is closed with a (trimethoxysilylethyl) dimethylsiloxy group, viscosity: A thermally conductive silicone rubber composition 5 was obtained in the same manner as in Reference Example 1 except that 1.5 parts by mass of 30 mPa · s) was used.
[熱伝導性シリコーンゴムの接着強さ]
 熱伝導性シリコーンゴム組成物1、2、3、4又は5を、被着体{株式会社パルテック製のアルミニウム板(JIS H 4000、A1050P)}の間に挟み込んだ後、120℃で60分間加熱することにより硬化させ、熱伝導性シリコーンゴムを得て、これを初期試験体とした。なお、接着面積は25mm×10mmとし、接着層の厚さは2mmとした。この熱伝導性シリコーンゴムの引張りせん断接着強さをJIS K 6850の規定に従って測定した。また、得られた熱伝導性シリコーンゴムを85℃ 85%RHの恒温恒湿機に1週間静置したものを高温高湿試験体とした。室温(23℃)に戻した試験体の引張りせん断接着強さを測定し、初期と高温高湿試験後の接着強さを比較、判定した。初期と高温高湿試験後の接着強さの差が2倍未満であれば〇、2倍以上であれば×とした。
[Adhesive strength of thermally conductive silicone rubber]
The heat conductive silicone rubber composition 1, 2, 3, 4 or 5 is sandwiched between the adherends {aluminum plate manufactured by Partech Co., Ltd. (JIS H 4000, A1050P)} and then heated at 120 ° C. for 60 minutes. Then, it was cured to obtain a heat-conducting silicone rubber, which was used as an initial test piece. The adhesive area was 25 mm × 10 mm, and the thickness of the adhesive layer was 2 mm. The tensile shear adhesive strength of this thermally conductive silicone rubber was measured according to JIS K 6850. Further, the obtained heat-conducting silicone rubber was allowed to stand in a constant temperature and humidity chamber at 85 ° C. and 85% RH for one week, and used as a high-temperature and high-humidity test piece. The tensile shear adhesive strength of the test piece returned to room temperature (23 ° C.) was measured, and the adhesive strength at the initial stage and after the high temperature and high humidity test were compared and judged. If the difference in adhesive strength between the initial stage and the high temperature and high humidity test was less than 2 times, it was evaluated as 〇, and if it was 2 times or more, it was evaluated as x.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
 表1の結果より、参考例1~4は参考例と5比べて、初期と高温高湿試験後の接着強さの変化が少なく、本発明の有機ケイ素化合物が熱伝導性シリコーンゴムの接着性の変化を少なくするウエッターとして好適に用いることができることが示された。 From the results in Table 1, Reference Examples 1 to 4 have less change in adhesive strength between the initial stage and after the high temperature and high humidity test, and the organosilicon compound of the present invention has the adhesiveness of the heat conductive silicone rubber. It was shown that it can be suitably used as a wetter that reduces the change in the amount of silicon.

Claims (5)

  1.  下記式(I)で表される有機ケイ素化合物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1は互いに独立に、非置換又は置換の炭素数1~12の一価炭化水素基であり、R2は非置換又は置換の炭素数1~12の二価炭化水素基であり、Aは2個以上の残存水酸基を有する多価アルコール残基であり、nはこの有機ケイ素化合物の23℃における粘度を1~1,000mPa・sとする数である。)
    An organosilicon compound represented by the following formula (I).
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, R 1 is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 12 carbon atoms, and R 2 is an unsubstituted or substituted divalent hydrocarbon group having 1 to 12 carbon atoms. A is a polyhydric alcohol residue having two or more residual hydroxyl groups, and n is a number having a viscosity of this organic silicon compound at 23 ° C. of 1 to 1,000 mPa · s.)
  2.  Aの多価アルコール残基が少なくとも3個の水酸基を有する多価アルコールから誘導される残基であり、該多価アルコール中の少なくとも1個の水酸基が隣接するR2とエーテル結合を形成しているものである請求項1に記載の有機ケイ素化合物。 The polyhydric alcohol residue of A is a residue derived from a polyhydric alcohol having at least 3 hydroxyl groups, and at least one hydroxyl group in the polyhydric alcohol forms an ether bond with an adjacent R 2. The organic silicon compound according to claim 1.
  3.  Aの多価アルコール残基が、グリセロール又はペンタエリスリトールの残基である請求項2に記載の有機ケイ素化合物。 The organosilicon compound according to claim 2, wherein the polyhydric alcohol residue of A is a residue of glycerol or pentaerythritol.
  4.  硬化性シリコーン組成物に充填剤を高充填するためのウエッターである請求項1~3のいずれか1項に記載の有機ケイ素化合物。 The organosilicon compound according to any one of claims 1 to 3, which is a wetter for highly filling a curable silicone composition with a filler.
  5.  下記式(II)
    Figure JPOXMLDOC01-appb-C000002
    (式中、Aは2個以上の残存水酸基を有する多価アルコール残基であり、Yは炭素数2~10のアルケニル基である。)
    で表される分子中にアルケニル基を有する多価アルコール誘導体と、下記式(III)
    Figure JPOXMLDOC01-appb-C000003
    (式中、R1は互いに独立に、異種または同種の非置換又は置換の炭素数1~12の一価炭化水素基であり、nはこのオルガノポリシロキサンの23℃における粘度を1~1,000mPa・sとする数である。)
    で表される分子鎖片末端にケイ素原子結合水素原子を有するオルガノポリシロキサンとを、白金化合物含有触媒存在下でヒドロシリル化反応させる工程を含む請求項1~4のいずれか1項に記載の有機ケイ素化合物の製造方法。
    The following formula (II)
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, A is a polyhydric alcohol residue having two or more residual hydroxyl groups, and Y is an alkenyl group having 2 to 10 carbon atoms.)
    A polyhydric alcohol derivative having an alkenyl group in the molecule represented by the following formula (III).
    Figure JPOXMLDOC01-appb-C000003
    (In the formula, R 1 is a heterologous or homogeneous unsubstituted or substituted monovalent hydrocarbon group having 1 to 12 carbon atoms independently of each other, and n is the viscosity of this organopolysiloxane at 23 ° C. of 1 to 1, It is a number of 000 mPa · s.)
    The organic according to any one of claims 1 to 4, which comprises a step of hydrosilylating a organopolysiloxane having a silicon atom-bonded hydrogen atom at one end of the molecular chain represented by the above in the presence of a platinum compound-containing catalyst. A method for producing a silicon compound.
PCT/JP2021/017462 2020-05-14 2021-05-07 Organosilicon compound and method for producing same WO2021230143A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022521868A JPWO2021230143A1 (en) 2020-05-14 2021-05-07

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020085094 2020-05-14
JP2020-085094 2020-05-14

Publications (1)

Publication Number Publication Date
WO2021230143A1 true WO2021230143A1 (en) 2021-11-18

Family

ID=78525802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/017462 WO2021230143A1 (en) 2020-05-14 2021-05-07 Organosilicon compound and method for producing same

Country Status (2)

Country Link
JP (1) JPWO2021230143A1 (en)
WO (1) WO2021230143A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023167020A1 (en) * 2022-03-02 2023-09-07 信越化学工業株式会社 Hydroxyl group-containing organosilicon compound

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0539208A (en) * 1991-08-07 1993-02-19 Kao Corp Water-in-oil type emulsified cosmetic
JPH0597868A (en) * 1991-10-09 1993-04-20 Shin Etsu Chem Co Ltd One-terminal diol siloxane compound and its production
JPH05124945A (en) * 1991-11-01 1993-05-21 Kao Corp Ultraviolet ray protecting composition
JPH06135817A (en) * 1992-10-29 1994-05-17 Kao Corp Water-in-oil type emulsion cosmetic
JPH06157236A (en) * 1992-11-13 1994-06-03 Kose Corp Cosmetic
WO2007014471A1 (en) * 2005-08-02 2007-02-08 Mcmaster University Chelating silicon-based polymers
JP2008169176A (en) * 2007-01-15 2008-07-24 Shin Etsu Chem Co Ltd Low-foaming silicone composition
JP2012104429A (en) * 2010-11-12 2012-05-31 Konica Minolta Holdings Inc Method of manufacturing electrode for lithium-ion secondary battery, and lithium-ion secondary battery
JP2014526941A (en) * 2011-09-06 2014-10-09 ウニヴェルジテート・ツー・ケルン Siloxane-containing foam
JP2016196609A (en) * 2015-04-06 2016-11-24 信越化学工業株式会社 Organopolysiloxane emulsion composition for release paper or release film, manufacturing method thereof, and release paper and release film
CN109485826A (en) * 2018-11-12 2019-03-19 万华化学集团股份有限公司 A kind of branched chain type thermoplastic silicone polyurethane elastomer and preparation method thereof
JP2019076695A (en) * 2017-10-19 2019-05-23 信越化学工業株式会社 Biomedical electrode composition, biomedical electrode, and manufacturing method of biomedical electrode
JP2020055300A (en) * 2018-09-27 2020-04-09 信越化学工業株式会社 Elastic membrane, and formation method of elastic membrane

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0539208A (en) * 1991-08-07 1993-02-19 Kao Corp Water-in-oil type emulsified cosmetic
JPH0597868A (en) * 1991-10-09 1993-04-20 Shin Etsu Chem Co Ltd One-terminal diol siloxane compound and its production
JPH05124945A (en) * 1991-11-01 1993-05-21 Kao Corp Ultraviolet ray protecting composition
JPH06135817A (en) * 1992-10-29 1994-05-17 Kao Corp Water-in-oil type emulsion cosmetic
JPH06157236A (en) * 1992-11-13 1994-06-03 Kose Corp Cosmetic
WO2007014471A1 (en) * 2005-08-02 2007-02-08 Mcmaster University Chelating silicon-based polymers
JP2008169176A (en) * 2007-01-15 2008-07-24 Shin Etsu Chem Co Ltd Low-foaming silicone composition
JP2012104429A (en) * 2010-11-12 2012-05-31 Konica Minolta Holdings Inc Method of manufacturing electrode for lithium-ion secondary battery, and lithium-ion secondary battery
JP2014526941A (en) * 2011-09-06 2014-10-09 ウニヴェルジテート・ツー・ケルン Siloxane-containing foam
JP2016196609A (en) * 2015-04-06 2016-11-24 信越化学工業株式会社 Organopolysiloxane emulsion composition for release paper or release film, manufacturing method thereof, and release paper and release film
JP2019076695A (en) * 2017-10-19 2019-05-23 信越化学工業株式会社 Biomedical electrode composition, biomedical electrode, and manufacturing method of biomedical electrode
JP2020055300A (en) * 2018-09-27 2020-04-09 信越化学工業株式会社 Elastic membrane, and formation method of elastic membrane
CN109485826A (en) * 2018-11-12 2019-03-19 万华化学集团股份有限公司 A kind of branched chain type thermoplastic silicone polyurethane elastomer and preparation method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AKIMOTO T; KAWAHARA K; NAGASE Y; AOYAGI T: "Polymeric transdermal drug penetration enhancer. The enhancing effect of oligodimethylsiloxane containing a glucopyranosyl end group", JOURNAL OF CONTROLLED RELEASE, vol. 77, no. 1-2, 9 November 2001 (2001-11-09), pages 49 - 57, XP004311662, ISSN: 0168-3659, DOI: 10.1016/S0168-3659(01)00455-2 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023167020A1 (en) * 2022-03-02 2023-09-07 信越化学工業株式会社 Hydroxyl group-containing organosilicon compound

Also Published As

Publication number Publication date
JPWO2021230143A1 (en) 2021-11-18

Similar Documents

Publication Publication Date Title
TWI586799B (en) Heat-hardening type heat-conductive silicone grease composition
TWI419932B (en) Heat-conductive silicone composition and cured product thereof
JP5248033B2 (en) Silicon-containing compound, curable composition, and cured product
EP3632987B1 (en) Thermally conductive polysiloxane composition
JP5248032B2 (en) Silicon-containing compound, curable composition, and cured product
JP2007332104A (en) Organosilicon compound
WO2006118334A1 (en) Curable silicone composition and cured product therefrom
TW201816071A (en) Thermal conductive polyorganosiloxane composition
TWI650348B (en) Organic polyoxyalkylene compound, process for producing the same, and addition-hardening polyoxonium composition
KR102632046B1 (en) Method for producing thermally conductive polysiloxane composition
WO2021230143A1 (en) Organosilicon compound and method for producing same
JP6264307B2 (en) Addition-curing silicone composition
EP4053190A1 (en) Organopolysiloxane and method for producing same, and heat-conductive silicone composition
TWI797085B (en) Surface treating agent for thermal conductive polyorganosiloxane composition
CN112236482A (en) Heat-conductive silicone composition and method for producing same
JP2021167283A (en) Succinic anhydride group-containing cyclic organosiloxane, addition-curable silicone composition comprising that succinic anhydride group-containing cyclic organosiloxane, and use of them
JPH04311765A (en) Curable organopolysiloxane composition
JPWO2019031082A1 (en) Organosilicon compound and curable heat conductive silicone composition
WO2020203607A1 (en) Organopolysiloxane modified with lactate silyl at both ends and method for producing same
JP6087499B2 (en) Thermally conductive silicone composition
JP2021167282A (en) Succinic anhydride group-containing cyclic organosiloxane, addition-curable silicone composition comprising that succinic anhydride group-containing cyclic organosiloxane, and use of them
JP5621819B2 (en) Curable composition, cured product, and optical semiconductor device
JP2002265788A (en) Highly dielectric, addition-curable composition
JPH10152616A (en) Thermosetting resin composition for electrical insulation material
JP6844384B2 (en) Liquid silicon compound and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21804413

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022521868

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21804413

Country of ref document: EP

Kind code of ref document: A1