WO2021228235A1 - 光电探测采集系统和基于单像素探测器的质心探测方法 - Google Patents
光电探测采集系统和基于单像素探测器的质心探测方法 Download PDFInfo
- Publication number
- WO2021228235A1 WO2021228235A1 PCT/CN2021/093879 CN2021093879W WO2021228235A1 WO 2021228235 A1 WO2021228235 A1 WO 2021228235A1 CN 2021093879 W CN2021093879 W CN 2021093879W WO 2021228235 A1 WO2021228235 A1 WO 2021228235A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- centroid
- target object
- light
- target
- matrix
- Prior art date
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 46
- 239000011159 matrix material Substances 0.000 claims abstract description 23
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 9
- 238000013480 data collection Methods 0.000 claims abstract description 7
- 238000005286 illumination Methods 0.000 claims abstract description 3
- 230000014509 gene expression Effects 0.000 claims description 8
- 230000003287 optical effect Effects 0.000 claims description 8
- 238000005315 distribution function Methods 0.000 claims description 3
- 230000005611 electricity Effects 0.000 claims 1
- 238000003384 imaging method Methods 0.000 abstract description 17
- 238000000034 method Methods 0.000 abstract description 8
- 238000004088 simulation Methods 0.000 description 12
- 238000005516 engineering process Methods 0.000 description 3
- 206010034960 Photophobia Diseases 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 208000013469 light sensitivity Diseases 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M1/00—Testing static or dynamic balance of machines or structures
- G01M1/12—Static balancing; Determining position of centre of gravity
- G01M1/122—Determining position of centre of gravity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/15—Correlation function computation including computation of convolution operations
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/481—Constructional features, e.g. arrangements of optical elements
- G01S7/4816—Constructional features, e.g. arrangements of optical elements of receivers alone
Definitions
- the invention relates to the field of computational imaging, in particular to a photoelectric detection acquisition system and a centroid detection method based on a single-pixel detector.
- Centroid detection technology is generally used in tracking moving target objects and Shack-Hartman sensors.
- the centroid detection method can capture the position change of the target object's center of mass, thereby delineating the movement trajectory of the target object .
- the position of the center of mass of the light spot is mainly obtained through a microlens array and a CCD image sensor.
- the signal-to-noise ratio of the target image acquired by the CCD image sensor determines the accuracy of acquiring the target centroid position. In some cases, such as weak signal light and strong background light interference, the signal-to-noise ratio of the target image acquired by the traditional CCD image sensor will be greatly reduced, thereby affecting the detection accuracy of the target centroid.
- the single-pixel imaging method illuminates an object with a light field transformed in time and space, and uses a detector with only one pixel to sample physical information, and finally uses a corresponding algorithm to obtain target information. Because single-pixel detectors have strong light sensitivity and a wide spectral response range, single-pixel imaging has great application prospects in low-light imaging, invisible light imaging and other fields. But how to use the single-pixel imaging method to directly detect the position of the center of mass of the target object, so far, there is no relevant research report.
- the present invention provides a photoelectric detection acquisition system and a centroid detection method based on a single-pixel detector.
- the present invention provides the following solutions:
- a photoelectric detection and collection system including: a light generating component that transmits along an optical path, a digital micromirror DMD, a lens, a photodetector, and a data collection unit;
- the light generating component generates three two-dimensional array matrices A, B, and C.
- centroid detection method based on the single-pixel detector implemented based on the photoelectric detection acquisition system includes the following steps:
- the light generating component in the photodetection system generates three two-dimensional array matrices A, B, and C;
- the illumination light is modulated according to the two-dimensional modulation information mode to illuminate the target object or the image formed by the target object is modulated according to the two-dimensional modulation information mode;
- the first solution of the photoelectric detection collection system is: the photodetection collection system includes a light generating component, a digital micromirror DMD, a lens, a photodetector, and a data collection unit, and the light beam of the light generating component irradiates the digital micromirror DMD
- the light modulated by the digital micromirror DMD irradiates the target object after passing through the lens, and the light signal reflected by the target object is converted into an electric signal by the photodetector, and the electric signal is sent to the data acquisition unit.
- the second solution of the photodetection collection system is: the photodetection collection system includes a light generation component, a digital micromirror DMD, a lens, a photodetector, and a data collection unit, and the light beam of the light generation component irradiates the target object, Then the light reflected by the target object is irradiated on the digital micromirror DMD through the lens, and the optical signal modulated by the digital micromirror DMD is converted into an electric signal by the photodetector, and the electric signal is sent to the data acquisition unit.
- the photodetection collection system includes a light generation component, a digital micromirror DMD, a lens, a photodetector, and a data collection unit, and the light beam of the light generation component irradiates the target object, Then the light reflected by the target object is irradiated on the digital micromirror DMD through the lens, and the optical signal modulated by the digital micromirror DMD
- step S4 specifically includes the following steps:
- the data acquisition unit obtains the intensity value of the reflected light from the target object by the following expression: Where f(x,y) is the two-dimensional distribution function of the target object or the image formed by the target object, and I 1 , I 2 and I 3 are the intensity values obtained by the data acquisition unit;
- the present invention discloses the following technical effects:
- the photoelectric detection acquisition system and the centroid detection method based on the single-pixel detector provided by the present invention can realize the position parameter of the centroid of the detected target by fusing the single-pixel imaging method and the centroid detection technology, thereby providing a new method for the field of centroid detection . Especially in some bands where area array detectors cannot respond or are expensive to build, it will promote the practical application of centroid detection.
- Figure 1 is a flow chart of detecting the center of mass using the single-pixel imaging method
- Fig. 2 is a two-dimensional projection pattern generated according to a specific implementation case of the present invention; among them, part (a) of Fig. 2 is a two-dimensional projection pattern of matrix A; part (b) of Fig. 2 is a two-dimensional projection pattern of matrix B Projection pattern; part (c) of Figure 2 is a two-dimensional projection pattern of matrix C;
- Fig. 3 is a simulation result of detecting the centroid position error of the target using the single-pixel imaging method; among them, the part (a) of Fig. 3 is the original target image; the part (b) of Fig. 3 is the position of the target centroid when the signal-to-noise ratio is 0.5 Error simulation result graph; Fig. 3(c) is the simulation result graph of the target centroid position error when the signal-to-noise ratio is 1; Fig. 3(d) is the simulation result graph of the target centroid position error when the signal-to-noise ratio is 1.5 Fig. 3(e) is the simulation result of the target centroid position error when the signal-to-noise ratio is 2; Fig.
- 3(f) is the simulation result of the target centroid position error when the signal-to-noise ratio is 3;
- the part (g) is the simulation result of the target centroid position error when the signal-to-noise ratio is 5;
- the part (h) of Fig. 3 is the simulation result of the target centroid position error when the signal-to-noise ratio is 7;
- part (i) of Fig. 3 Is the simulation result of the target centroid position error when the signal-to-noise ratio is 9;
- part (j) of Fig. 3 is the simulation result of the target centroid position error when the signal-to-noise ratio is 10;
- Fig. 4 is a simulation curve diagram of the position error of the centroid of the target detected by the single-pixel imaging method.
- the object of the present invention is to provide a photoelectric detection acquisition system capable of detecting the position of the target centroid by using single-pixel imaging and a centroid detection method based on a single-pixel detector.
- the photoelectric detection and acquisition system includes: a light generating component that transmits along an optical path, a digital micromirror DMD, a lens, a photodetector, and a data acquisition unit;
- the light generating component generates three two-dimensional array matrices A, B, and C.
- centroid detection method based on the single-pixel detector implemented based on the photoelectric detection acquisition system includes the following steps:
- the photoelectric detection and acquisition system includes two solutions:
- the first option is:
- the photoelectric detection collection system includes a light generating component, a digital micromirror DMD, a lens, a photodetector, and a data collection unit.
- the light beam of the light generating component irradiates the digital micromirror DMD, and the light modulated by the digital micromirror DMD passes through
- the target object is irradiated after the lens, and the light signal reflected by the target object is converted into an electric signal by a photodetector, and the electric signal is sent to the data acquisition unit.
- the second option is:
- the photodetection collection system includes a light generating component, a digital micromirror DMD, a lens, a photodetector, and a data collection unit.
- the light beam of the light generating component irradiates the target object, and then the light reflected by the target object is irradiated to the target object through the lens.
- the optical signal modulated by the digital micromirror DMD is converted into an electrical signal by a photodetector, and the electrical signal is sent to the data acquisition unit.
- the illuminating light is modulated according to the two-dimensional modulation information mode to illuminate the target object.
- the image formed by the target object is in accordance with two Dimensional modulation information mode for modulation.
- the intensity value of the reflected light of the target object acquired by the data acquisition unit is obtained by the following expression: Where f(x,y) is the two-dimensional distribution function of the target object, and I 1 , I 2 and I 3 are the intensity values obtained by the photoelectric detection acquisition system;
- (x c , y c ) are the position coordinates of the center of mass of the target object.
- centroid position of the target object can be directly obtained by using the single-pixel imaging method, without the need to reconstruct the image of the target object first.
- the accuracy of the method proposed by the present invention is evaluated by using the relationship between the centroid position error and the peak signal-to-noise ratio.
- the centroid position error CEE and the peak signal-to-noise ratio PSNR are respectively calculated using the following expressions:
- CEE is the centroid position error
- MAX is the maximum gray scale in the target image
- MSE is the mean square error
- x 0 and y 0 are the real centroid positions of the object in the simulation.
- Figure 3 (a)-(j) shows the variation of the centroid position error under different signal-to-noise ratios.
- the line graph of Figure 4 is obtained from multiple sets of data. It can be seen from Figure 4 that even in the case of low signal-to-noise ratio, the centroid position error can still be stabilized within 1 pixel with the single-pixel imaging method. As the ratio increases, the position error of the center of mass is gradually reduced, and the accuracy is also improved.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Computer Networks & Wireless Communication (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Mathematical Analysis (AREA)
- Data Mining & Analysis (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Physics (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Computational Mathematics (AREA)
- Algebra (AREA)
- Aviation & Aerospace Engineering (AREA)
- Databases & Information Systems (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
Claims (7)
- 一种光电探测采集系统,其特征在于,包括:沿光路传输的光产生组件、数字微镜DMD、透镜、光电探测器和数据采集单元;所述光产生组件生成三个二维阵列矩阵A、B和C。
- 一种基于单像素探测器的质心探测方法,其特征在于,包括以下步骤:S1、建立光电探测采集系统,所述光电探测系统为如权利要求1中所述的光电探测采集系统;所述光电探测采集系统中的光产生组件生成三个二维阵列矩阵A、B和C;S2、令矩阵A每列的元素值等于所在列对应的列数,B矩阵每行的元素值等于所在行对应的行数,C矩阵的元素值恒为1,生成具有A、B和C矩阵分布的二维调制信息;S3、照明光按照二维调制信息模式调制后照射目标物体或者对目标物体所成的图像按照二维调制信息模式进行调制;S4、利用光电探测采集系统中的数据采集单元获取关于目标反射光的强度值,代入到质心求解算法中,解算目标质心位置参数。
- 根据权利要求2所述的一种基于单像素探测器的质心探测方法,其特征在于,所述光电探测采集系统包括沿光路传输的光产生组件、数字微镜DMD、透镜、光电探测器和数据采集单元。
- 根据权利要求3所述的一种基于单像素探测器的质心探测方法,其特征在于,所述光产生组件的光束照射到所述数字微镜DMD上,经过所述数字微镜DMD调制后的光经过所述透镜后对目标物体进行照射;目标 物体反射后的光信号由所述光电探测器转换成电信号后,将所述电信号发送到所述数据采集单元中。
- 根据权利要求3所述的一种基于单像素探测器的质心探测方法,其特征在于,所述光产生组件的光束照射到目标物体上,经所述目标物体反射后的光再经过所述透镜照射到所述数字微镜DMD上;所述数字微镜DMD对其接受的光进行调制后生成光信号后,传输给所述光电探测器;所述光电探测器将所述光信号转换成电信号后,发送到所述数据采集单元中。
- 根据权利要求4或5所述的一种基于单像素探测器的质心探测方法,其特征在于,步骤S2中,令二维调制信息中关于矩阵A、B和C的元素值分别满足以下表达式:S 1(x,y)=x,S 2(x,y)=y,S 3(x,y)=1,式中函数S(x,y)表示二维矩阵中对应着坐标(x,y)处的元素值。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/628,631 US20220365211A1 (en) | 2020-05-15 | 2021-05-14 | Photoelectric detection and acquisition system and centroid detection method based on single-pixel detector |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010412816.0 | 2020-05-15 | ||
CN202010412816.0A CN111707413B (zh) | 2020-05-15 | 2020-05-15 | 一种基于单像素探测器的质心探测方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021228235A1 true WO2021228235A1 (zh) | 2021-11-18 |
Family
ID=72537212
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/093879 WO2021228235A1 (zh) | 2020-05-15 | 2021-05-14 | 光电探测采集系统和基于单像素探测器的质心探测方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20220365211A1 (zh) |
CN (1) | CN111707413B (zh) |
WO (1) | WO2021228235A1 (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111707413B (zh) * | 2020-05-15 | 2021-11-26 | 中国科学院合肥物质科学研究院 | 一种基于单像素探测器的质心探测方法 |
CN112804513B (zh) * | 2021-01-05 | 2023-02-17 | 暨南大学 | 一种光场相机及成像方法 |
CN113884234B (zh) * | 2021-09-06 | 2023-06-09 | 中国科学院合肥物质科学研究院 | 一种互补单像素质心探测系统及方法 |
US11935299B2 (en) * | 2022-04-08 | 2024-03-19 | Cisco Technology, Inc. | Decoding light-based messages to support device maintenance |
CN114859377B (zh) * | 2022-04-22 | 2023-06-09 | 中国科学院合肥物质科学研究院 | 一种运动目标实时捕获单像素成像方法及设备 |
CN116609794B (zh) * | 2023-07-21 | 2023-09-26 | 中国人民解放军国防科技大学 | 基于径向切比雪夫光场的单像素成像方法、装置及设备 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070024839A1 (en) * | 2005-07-28 | 2007-02-01 | Canon Kabushiki Kaisha | Exposure apparatus and method for manufacturing device using the exposure apparatus |
CN102968801A (zh) * | 2012-09-12 | 2013-03-13 | 浙江师范大学 | 一种光电混合联合变换相关的运动目标跟踪方法 |
CN106405546A (zh) * | 2016-11-08 | 2017-02-15 | 中国科学院合肥物质科学研究院 | 基于压缩散斑的快速关联成像系统及方法 |
CN108895985A (zh) * | 2018-06-19 | 2018-11-27 | 中国科学院合肥物质科学研究院 | 一种基于单像素探测器的物体定位方法 |
CN109151419A (zh) * | 2018-10-16 | 2019-01-04 | 中国科学院合肥物质科学研究院 | 一种基于拉东变换的单像素成像方法 |
US10197677B1 (en) * | 2014-03-28 | 2019-02-05 | Analog Modules, Inc. | Laser spot tracking receiver |
CN111707413A (zh) * | 2020-05-15 | 2020-09-25 | 中国科学院合肥物质科学研究院 | 一种基于单像素探测器的质心探测方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0624030B2 (ja) * | 1987-09-14 | 1994-03-30 | 日本放送協会 | 画像解析装置 |
DE19722726C2 (de) * | 1996-06-24 | 2003-08-28 | Zeiss Carl Jena Gmbh | Anordnung zur Erzeugung eines stereoskopischen Bildes |
JPH1026724A (ja) * | 1996-07-11 | 1998-01-27 | Olympus Optical Co Ltd | アクティブ式多点測距装置 |
AU2012232994A1 (en) * | 2011-09-29 | 2013-04-18 | Stephen William Gale | Weighing system and method of weighing loads |
CN103247032B (zh) * | 2013-04-26 | 2015-12-02 | 中国科学院光电技术研究所 | 一种基于姿态补偿的微弱扩展目标定位方法 |
CN106530349A (zh) * | 2016-10-25 | 2017-03-22 | 成都工业学院 | 一种基于椭圆中心的动态定位方法及装置 |
CN108564090B (zh) * | 2018-03-30 | 2021-07-09 | 中国科学院合肥物质科学研究院 | 一种基于信号加权的快速傅里叶单像素成像方法 |
CN110672610A (zh) * | 2019-10-28 | 2020-01-10 | 吉林工程技术师范学院 | 一种基于数字微镜阵列的显微关联成像系统及成像方法 |
-
2020
- 2020-05-15 CN CN202010412816.0A patent/CN111707413B/zh active Active
-
2021
- 2021-05-14 US US17/628,631 patent/US20220365211A1/en active Pending
- 2021-05-14 WO PCT/CN2021/093879 patent/WO2021228235A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070024839A1 (en) * | 2005-07-28 | 2007-02-01 | Canon Kabushiki Kaisha | Exposure apparatus and method for manufacturing device using the exposure apparatus |
CN102968801A (zh) * | 2012-09-12 | 2013-03-13 | 浙江师范大学 | 一种光电混合联合变换相关的运动目标跟踪方法 |
US10197677B1 (en) * | 2014-03-28 | 2019-02-05 | Analog Modules, Inc. | Laser spot tracking receiver |
CN106405546A (zh) * | 2016-11-08 | 2017-02-15 | 中国科学院合肥物质科学研究院 | 基于压缩散斑的快速关联成像系统及方法 |
CN108895985A (zh) * | 2018-06-19 | 2018-11-27 | 中国科学院合肥物质科学研究院 | 一种基于单像素探测器的物体定位方法 |
CN109151419A (zh) * | 2018-10-16 | 2019-01-04 | 中国科学院合肥物质科学研究院 | 一种基于拉东变换的单像素成像方法 |
CN111707413A (zh) * | 2020-05-15 | 2020-09-25 | 中国科学院合肥物质科学研究院 | 一种基于单像素探测器的质心探测方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111707413A (zh) | 2020-09-25 |
US20220365211A1 (en) | 2022-11-17 |
CN111707413B (zh) | 2021-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021228235A1 (zh) | 光电探测采集系统和基于单像素探测器的质心探测方法 | |
Matsuda et al. | Mc3d: Motion contrast 3d scanning | |
US10094927B2 (en) | Detector for optically determining a position of at least one object | |
US20170108332A1 (en) | Motion Contrast Depth Scanning | |
CN106483105B (zh) | 基于强度关联成像的透射式微视觉系统及图像获取方法 | |
CN107238727B (zh) | 基于动态视觉传感器芯片的光电式转速传感器及探测方法 | |
EP3645965A1 (en) | Detector for determining a position of at least one object | |
KR20170122206A (ko) | 적어도 하나의 물체의 광 검출용 검출기 | |
US20080212066A1 (en) | Method for the detection of an object and optoelectronic apparatus | |
JPH0585845B2 (zh) | ||
CN114930192B (zh) | 红外成像组件 | |
EP4047386B1 (en) | Depth detection apparatus and electronic device | |
CN110716190A (zh) | 一种发射器及距离测量系统 | |
CN110716189A (zh) | 一种发射器及距离测量系统 | |
CN112034485A (zh) | 利用飞行时间相机的反射率感测 | |
CN108051005A (zh) | 目标空间位置和姿态的单个psd探测方法 | |
CN108169757A (zh) | 中心像素高精度识别光测量系统及方法 | |
Wang et al. | Temporal matrices mapping-based calibration method for event-driven structured light systems | |
CN113884234B (zh) | 一种互补单像素质心探测系统及方法 | |
CN110322561A (zh) | 用于机器人无序分拣的3d相机及其测量方法 | |
CN107036710A (zh) | 采用多探测器的光场光强分布测量方法 | |
CN106405566A (zh) | 测量精度高的激光雷达测距方法 | |
CN111045030A (zh) | 一种深度测量装置和方法 | |
CN211148902U (zh) | 一种发射器及距离测量系统 | |
WO2022083301A1 (zh) | 3d图像传感器测距系统及使用该系统进行测距的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21803794 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21803794 Country of ref document: EP Kind code of ref document: A1 |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19/06/2023) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21803794 Country of ref document: EP Kind code of ref document: A1 |