WO2021228235A1 - 光电探测采集系统和基于单像素探测器的质心探测方法 - Google Patents

光电探测采集系统和基于单像素探测器的质心探测方法 Download PDF

Info

Publication number
WO2021228235A1
WO2021228235A1 PCT/CN2021/093879 CN2021093879W WO2021228235A1 WO 2021228235 A1 WO2021228235 A1 WO 2021228235A1 CN 2021093879 W CN2021093879 W CN 2021093879W WO 2021228235 A1 WO2021228235 A1 WO 2021228235A1
Authority
WO
WIPO (PCT)
Prior art keywords
centroid
target object
light
target
matrix
Prior art date
Application number
PCT/CN2021/093879
Other languages
English (en)
French (fr)
Inventor
王英俭
时东锋
苑克娥
黄见
查林彬
Original Assignee
中国科学院合肥物质科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院合肥物质科学研究院 filed Critical 中国科学院合肥物质科学研究院
Priority to US17/628,631 priority Critical patent/US20220365211A1/en
Publication of WO2021228235A1 publication Critical patent/WO2021228235A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M1/00Testing static or dynamic balance of machines or structures
    • G01M1/12Static balancing; Determining position of centre of gravity
    • G01M1/122Determining position of centre of gravity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/15Correlation function computation including computation of convolution operations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4816Constructional features, e.g. arrangements of optical elements of receivers alone

Definitions

  • the invention relates to the field of computational imaging, in particular to a photoelectric detection acquisition system and a centroid detection method based on a single-pixel detector.
  • Centroid detection technology is generally used in tracking moving target objects and Shack-Hartman sensors.
  • the centroid detection method can capture the position change of the target object's center of mass, thereby delineating the movement trajectory of the target object .
  • the position of the center of mass of the light spot is mainly obtained through a microlens array and a CCD image sensor.
  • the signal-to-noise ratio of the target image acquired by the CCD image sensor determines the accuracy of acquiring the target centroid position. In some cases, such as weak signal light and strong background light interference, the signal-to-noise ratio of the target image acquired by the traditional CCD image sensor will be greatly reduced, thereby affecting the detection accuracy of the target centroid.
  • the single-pixel imaging method illuminates an object with a light field transformed in time and space, and uses a detector with only one pixel to sample physical information, and finally uses a corresponding algorithm to obtain target information. Because single-pixel detectors have strong light sensitivity and a wide spectral response range, single-pixel imaging has great application prospects in low-light imaging, invisible light imaging and other fields. But how to use the single-pixel imaging method to directly detect the position of the center of mass of the target object, so far, there is no relevant research report.
  • the present invention provides a photoelectric detection acquisition system and a centroid detection method based on a single-pixel detector.
  • the present invention provides the following solutions:
  • a photoelectric detection and collection system including: a light generating component that transmits along an optical path, a digital micromirror DMD, a lens, a photodetector, and a data collection unit;
  • the light generating component generates three two-dimensional array matrices A, B, and C.
  • centroid detection method based on the single-pixel detector implemented based on the photoelectric detection acquisition system includes the following steps:
  • the light generating component in the photodetection system generates three two-dimensional array matrices A, B, and C;
  • the illumination light is modulated according to the two-dimensional modulation information mode to illuminate the target object or the image formed by the target object is modulated according to the two-dimensional modulation information mode;
  • the first solution of the photoelectric detection collection system is: the photodetection collection system includes a light generating component, a digital micromirror DMD, a lens, a photodetector, and a data collection unit, and the light beam of the light generating component irradiates the digital micromirror DMD
  • the light modulated by the digital micromirror DMD irradiates the target object after passing through the lens, and the light signal reflected by the target object is converted into an electric signal by the photodetector, and the electric signal is sent to the data acquisition unit.
  • the second solution of the photodetection collection system is: the photodetection collection system includes a light generation component, a digital micromirror DMD, a lens, a photodetector, and a data collection unit, and the light beam of the light generation component irradiates the target object, Then the light reflected by the target object is irradiated on the digital micromirror DMD through the lens, and the optical signal modulated by the digital micromirror DMD is converted into an electric signal by the photodetector, and the electric signal is sent to the data acquisition unit.
  • the photodetection collection system includes a light generation component, a digital micromirror DMD, a lens, a photodetector, and a data collection unit, and the light beam of the light generation component irradiates the target object, Then the light reflected by the target object is irradiated on the digital micromirror DMD through the lens, and the optical signal modulated by the digital micromirror DMD
  • step S4 specifically includes the following steps:
  • the data acquisition unit obtains the intensity value of the reflected light from the target object by the following expression: Where f(x,y) is the two-dimensional distribution function of the target object or the image formed by the target object, and I 1 , I 2 and I 3 are the intensity values obtained by the data acquisition unit;
  • the present invention discloses the following technical effects:
  • the photoelectric detection acquisition system and the centroid detection method based on the single-pixel detector provided by the present invention can realize the position parameter of the centroid of the detected target by fusing the single-pixel imaging method and the centroid detection technology, thereby providing a new method for the field of centroid detection . Especially in some bands where area array detectors cannot respond or are expensive to build, it will promote the practical application of centroid detection.
  • Figure 1 is a flow chart of detecting the center of mass using the single-pixel imaging method
  • Fig. 2 is a two-dimensional projection pattern generated according to a specific implementation case of the present invention; among them, part (a) of Fig. 2 is a two-dimensional projection pattern of matrix A; part (b) of Fig. 2 is a two-dimensional projection pattern of matrix B Projection pattern; part (c) of Figure 2 is a two-dimensional projection pattern of matrix C;
  • Fig. 3 is a simulation result of detecting the centroid position error of the target using the single-pixel imaging method; among them, the part (a) of Fig. 3 is the original target image; the part (b) of Fig. 3 is the position of the target centroid when the signal-to-noise ratio is 0.5 Error simulation result graph; Fig. 3(c) is the simulation result graph of the target centroid position error when the signal-to-noise ratio is 1; Fig. 3(d) is the simulation result graph of the target centroid position error when the signal-to-noise ratio is 1.5 Fig. 3(e) is the simulation result of the target centroid position error when the signal-to-noise ratio is 2; Fig.
  • 3(f) is the simulation result of the target centroid position error when the signal-to-noise ratio is 3;
  • the part (g) is the simulation result of the target centroid position error when the signal-to-noise ratio is 5;
  • the part (h) of Fig. 3 is the simulation result of the target centroid position error when the signal-to-noise ratio is 7;
  • part (i) of Fig. 3 Is the simulation result of the target centroid position error when the signal-to-noise ratio is 9;
  • part (j) of Fig. 3 is the simulation result of the target centroid position error when the signal-to-noise ratio is 10;
  • Fig. 4 is a simulation curve diagram of the position error of the centroid of the target detected by the single-pixel imaging method.
  • the object of the present invention is to provide a photoelectric detection acquisition system capable of detecting the position of the target centroid by using single-pixel imaging and a centroid detection method based on a single-pixel detector.
  • the photoelectric detection and acquisition system includes: a light generating component that transmits along an optical path, a digital micromirror DMD, a lens, a photodetector, and a data acquisition unit;
  • the light generating component generates three two-dimensional array matrices A, B, and C.
  • centroid detection method based on the single-pixel detector implemented based on the photoelectric detection acquisition system includes the following steps:
  • the photoelectric detection and acquisition system includes two solutions:
  • the first option is:
  • the photoelectric detection collection system includes a light generating component, a digital micromirror DMD, a lens, a photodetector, and a data collection unit.
  • the light beam of the light generating component irradiates the digital micromirror DMD, and the light modulated by the digital micromirror DMD passes through
  • the target object is irradiated after the lens, and the light signal reflected by the target object is converted into an electric signal by a photodetector, and the electric signal is sent to the data acquisition unit.
  • the second option is:
  • the photodetection collection system includes a light generating component, a digital micromirror DMD, a lens, a photodetector, and a data collection unit.
  • the light beam of the light generating component irradiates the target object, and then the light reflected by the target object is irradiated to the target object through the lens.
  • the optical signal modulated by the digital micromirror DMD is converted into an electrical signal by a photodetector, and the electrical signal is sent to the data acquisition unit.
  • the illuminating light is modulated according to the two-dimensional modulation information mode to illuminate the target object.
  • the image formed by the target object is in accordance with two Dimensional modulation information mode for modulation.
  • the intensity value of the reflected light of the target object acquired by the data acquisition unit is obtained by the following expression: Where f(x,y) is the two-dimensional distribution function of the target object, and I 1 , I 2 and I 3 are the intensity values obtained by the photoelectric detection acquisition system;
  • (x c , y c ) are the position coordinates of the center of mass of the target object.
  • centroid position of the target object can be directly obtained by using the single-pixel imaging method, without the need to reconstruct the image of the target object first.
  • the accuracy of the method proposed by the present invention is evaluated by using the relationship between the centroid position error and the peak signal-to-noise ratio.
  • the centroid position error CEE and the peak signal-to-noise ratio PSNR are respectively calculated using the following expressions:
  • CEE is the centroid position error
  • MAX is the maximum gray scale in the target image
  • MSE is the mean square error
  • x 0 and y 0 are the real centroid positions of the object in the simulation.
  • Figure 3 (a)-(j) shows the variation of the centroid position error under different signal-to-noise ratios.
  • the line graph of Figure 4 is obtained from multiple sets of data. It can be seen from Figure 4 that even in the case of low signal-to-noise ratio, the centroid position error can still be stabilized within 1 pixel with the single-pixel imaging method. As the ratio increases, the position error of the center of mass is gradually reduced, and the accuracy is also improved.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mathematical Analysis (AREA)
  • Data Mining & Analysis (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Algebra (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种基于单像素探测器的质心探测方法。其包括:S1、建立光电探测采集系统,生成三个二维阵列矩阵A、B和C;S2、令矩阵A每列的元素值等于所在列对应的列数,B矩阵每行的元素值等于所在行对应的行数,C矩阵的元素值恒为1,生成具有A、B和C矩阵分布的二维调制信息;S3、照明光按照二维调制信息模式调制后照射目标物体或者对目标物体所成的图像按照二维调制信息模式进行调制;S4、利用光电探测采集系统中的数据采集单元获取关于目标反射光的强度值,代入到质心求解算法中,解算目标质心位置参数。通过融合单像素成像方法和质心探测技术,能够实现高准确度探测目标质心的位置参数,为质心探测领域提供了一种新方法。

Description

光电探测采集系统和基于单像素探测器的质心探测方法
本申请要求于2020年5月15日提交中国专利局、申请号为202010412816.0、发明名称为“一种基于单像素探测器的质心探测方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及计算成像领域,特别是涉及一种光电探测采集系统和基于单像素探测器的质心探测方法。
背景技术
质心探测技术一般用在追踪运动的目标物体和Shack-Hartman传感器中,在追踪快速运动的目标物体时,利用质心探测方法可以捕捉到目标物体质心的位置变化,从而勾勒出目标物体的运动轨迹。而在Shack-Hartman传感器中,主要是通过微透镜阵列和CCD图像传感器来获取光斑质心的位置。CCD图像传感器获取目标图像的信噪比就决定了获取目标质心位置的准确度。而在某些情况下,例如信号光比较弱并且有强背景光的干扰,传统的CCD图像传感器获取目标图像的信噪比就会大大降低,从而影响目标质心的探测准确度。近几年来,一种新兴的成像方法单像素成像技术越来越受到研究学者们的重视。单像素成像的方法使用时空变换的光场照射物体,通过仅有一个像素的探测器来进行物理信息的采样,最后利用相应的算法获得目标信息。由于单像素探测器具有较强的光敏感度和较宽的光谱响应范围,因此单像素成像在微弱光成像、不可见光成像等领域有着很大的应用前景。但如何利用单像素成像的方法直接探测目标物体的质心位置,截至目前为止,未见相关研究报道。
发明内容
为了实现利用单像素成像来探测目标质心位置,本发明提供一种光电探测采集系统和基于单像素探测器的质心探测方法。
为实现上述目的,本发明提供了如下方案:
一种光电探测采集系统,包括:沿光路传输的光产生组件、数字微镜DMD、透镜、光电探测器和数据采集单元;
所述光产生组件生成三个二维阵列矩阵A、B和C。
基于该光电探测采集系统实施的基于单像素探测器的质心探测方法,包括以下步骤:
S1、建立光电探测采集系统,所述光电探测系统中的光产生组件生成三个二维阵列矩阵A、B和C;
S2、令矩阵A每列的元素值等于所在列对应的列数,B矩阵每行的元素值等于所在行对应的行数,C矩阵的元素值恒为1,生成具有A、B和C矩阵分布的二维调制信息;
S3、照明光按照二维调制信息模式调制后照射目标物体或者对目标物体所成的图像按照二维调制信息模式进行调制;
S4、利用光电探测采集系统中的数据采集单元获取关于目标反射光的强度值,代入到质心求解算法中,解算目标质心位置参数。
所述光电探测采集系统的第一种方案为:光电探测采集系统包括光产生组件、数字微镜DMD、透镜、光电探测器和数据采集单元,所述光产生组件的光束照射到数字微镜DMD上,经过数字微镜DMD调制的光经 过透镜后对目标物体进行照射,目标物体反射后的光信号由光电探测器转换成电信号,所述电信号发送到数据采集单元中。
所述光电探测采集系统的第二种方案为:光电探测采集系统包括光产生组件、数字微镜DMD、透镜、光电探测器和数据采集单元,所述光产生组件的光束照射到目标物体上,然后目标物体反射后的光经过透镜照射到数字微镜DMD上,经过数字微镜DMD调制的光信号由光电探测器转换成电信号,所述电信号发送到数据采集单元中。
具体地说,步骤S2中,令二维调制信息中关于矩阵A、B和C的元素值分别满足以下表达式:S 1(x,y)=x,S 2(x,y)=y,S 3(x,y)=1,式中函数S(x,y)表示二维矩阵中对应着坐标(x,y)处的元素值。
具体地说,步骤S4中具体包括以下步骤:
S41、所述数据采集单元获取关于目标物体反射光的强度值由以下表达式得到:
Figure PCTCN2021093879-appb-000001
其中f(x,y)为目标物体或目标物体所成的图像的二维分布函数,I 1、I 2和I 3为通过数据采集单元所获取的强度值;
S42、得到强度值之后,代入到质心算法中,得到目标物体的质心位置表达式为:x c=I 1/I 3,y c=I 2/I 3,式中(x c,y c)为目标质心的位置坐标。
根据本发明提供的具体实施例,本发明公开了以下技术效果:
本发明提供的光电探测采集系统和基于单像素探测器的质心探测方法,通过融合单像素成像方法和质心探测技术,能够实现探测目标质心的位置参数,进而为质心探测领域提供了一种新方法。尤其是在某些面阵探 测器无法响应或者造价昂贵的波段,对质心探测的实际应用有着推动作用。
说明书附图
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为利用单像素成像方法探测质心的流程图;
图2为根据本发明的一个具体实施案例而生成的二维投影图案;其中,图2的(a)部分为矩阵A的二维投影图案;图2的(b)部分为矩阵B的二维投影图案;图2的(c)部分为矩阵C的二维投影图案;
图3为利用单像素成像的方法探测目标质心位置误差仿真结果图;其中,图3的(a)部分为原始目标图像;图3的(b)部分为信噪比为0.5时的目标质心位置误差仿真结果图;图3的(c)部分为信噪比为1时的目标质心位置误差仿真结果图;图3的(d)部分为信噪比为1.5时的目标质心位置误差仿真结果图;图3的(e)部分为信噪比为2时的目标质心位置误差仿真结果图;图3的(f)部分为信噪比为3时的目标质心位置误差仿真结果图;图3的(g)部分为信噪比为5时的目标质心位置误差仿真结果图;图3的(h)部分为信噪比为7时的目标质心位置误差仿真结果图;图3的(i)部分为信噪比为9时的目标质心位置误差仿真结果图;图3的(j)部分为信噪比为10时的目标质心位置误差仿真结果图;
图4为利用单像素成像的方法探测目标质心位置误差仿真曲线图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的目的是提供一种能够实现利用单像素成像来探测目标质心位置的光电探测采集系统和基于单像素探测器的质心探测方法。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
本发明提供的光电探测采集系统,包括:沿光路传输的光产生组件、数字微镜DMD、透镜、光电探测器和数据采集单元;
所述光产生组件生成三个二维阵列矩阵A、B和C。
基于该光电探测采集系统实施的基于单像素探测器的质心探测方法,如图1所示,包括以下步骤:
S1、建立光电探测采集系统,所述光电探测系统中的光产生组件生成三个二维阵列矩阵A、B和C。
所述光电探测采集系统包括两种方案:
第一种方案为:
所述光电探测采集系统包括光产生组件、数字微镜DMD、透镜、光电探测器和数据采集单元,所述光产生组件的光束照射到数字微镜DMD 上,经过数字微镜DMD调制的光经过透镜后对目标物体进行照射,目标物体反射后的光信号由光电探测器转换成电信号,所述电信号发送到数据采集单元中。
第二种方案为:
所述光电探测采集系统包括光产生组件、数字微镜DMD、透镜、光电探测器和数据采集单元,所述光产生组件的光束照射到目标物体上,然后目标物体反射后的光经过透镜照射到数字微镜DMD上,经过数字微镜DMD调制的光信号由光电探测器转换成电信号,所述电信号发送到数据采集单元中。
S2、令矩阵A每列的元素值等于所在列对应的列数,B矩阵每行的元素值等于所在行对应的行数,C矩阵的元素值恒为1,生成具有A、B和C矩阵分布的二维调制信息;其中三张二维投影图案如图2中的(a)、(b)和(c)部分所示,具体地说,令二维矩阵A、B和C的元素值分别满足以下表达式:S 1(x,y)=x,S 2(x,y)=y,S 3(x,y)=1,式中函数S(x,y)表示二维矩阵中对应着坐标(x,y)处的元素值。
S3、当使用光电探测采集系统的第一种方案时,照明光按照二维调制信息模式调制后照射目标物体,当使用光电探测采集系统的第二种方案时,目标物体所成的图像按照二维调制信息模式进行调制。
S4、利用光电探测采集系统中的数据采集单元获取关于目标反射光的强度值,代入到质心求解算法中,解算目标质心位置参数。具体包括以下步骤:
S41、所述数据采集单元获取目标物体反射光的强度值由以下表达式得到:
Figure PCTCN2021093879-appb-000002
其中f(x,y)为目标物体二维分布函数,I 1、I 2和I 3为通过光电探测采集系统所获取的强度值;
S42、得到强度值之后,代入到质心算法中,可以得到目标物体的质心位置表达式为:x c=I 1/I 3,y c=I 2/I 3,式中(x c,y c)为目标质心的位置坐标。
为了获取目标质心的位置参数,目标质心的算法表示如下:
Figure PCTCN2021093879-appb-000003
其中,(x c,y c)为目标物体质心的位置坐标。
从上述计算过程可以看出,利用单像素成像的方法可以直接求出目标物体的质心位置,不需要先重建目标物体的图像。
在本发明实施案例中,以一个M×N的目标图像为例,利用质心位置误差和峰值信噪比之间的关系对本发明提出的方法的准确性进行评估。质心位置误差CEE和峰值信噪比PSNR分别利用以下表达式进行计算:
Figure PCTCN2021093879-appb-000004
Figure PCTCN2021093879-appb-000005
Figure PCTCN2021093879-appb-000006
其中CEE为质心位置误差,MAX为目标图像中灰度的最大值,MSE为均方误差,x 0和y 0为仿真中物体真实质心位置。图3中(a)-(j)部分 显示了不同信噪比下质心位置误差的变化。根据多组数据获得图4的线形图,从图4可以看出,使用单像素成像的方法即使在低信噪比情况下,质心位置误差依然能稳定在1个像素以内,随着峰值信噪比的增大,质心的位置误差慢慢减小,准确度也随之提高。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的系统而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (7)

  1. 一种光电探测采集系统,其特征在于,包括:沿光路传输的光产生组件、数字微镜DMD、透镜、光电探测器和数据采集单元;
    所述光产生组件生成三个二维阵列矩阵A、B和C。
  2. 一种基于单像素探测器的质心探测方法,其特征在于,包括以下步骤:
    S1、建立光电探测采集系统,所述光电探测系统为如权利要求1中所述的光电探测采集系统;所述光电探测采集系统中的光产生组件生成三个二维阵列矩阵A、B和C;
    S2、令矩阵A每列的元素值等于所在列对应的列数,B矩阵每行的元素值等于所在行对应的行数,C矩阵的元素值恒为1,生成具有A、B和C矩阵分布的二维调制信息;
    S3、照明光按照二维调制信息模式调制后照射目标物体或者对目标物体所成的图像按照二维调制信息模式进行调制;
    S4、利用光电探测采集系统中的数据采集单元获取关于目标反射光的强度值,代入到质心求解算法中,解算目标质心位置参数。
  3. 根据权利要求2所述的一种基于单像素探测器的质心探测方法,其特征在于,所述光电探测采集系统包括沿光路传输的光产生组件、数字微镜DMD、透镜、光电探测器和数据采集单元。
  4. 根据权利要求3所述的一种基于单像素探测器的质心探测方法,其特征在于,所述光产生组件的光束照射到所述数字微镜DMD上,经过所述数字微镜DMD调制后的光经过所述透镜后对目标物体进行照射;目标 物体反射后的光信号由所述光电探测器转换成电信号后,将所述电信号发送到所述数据采集单元中。
  5. 根据权利要求3所述的一种基于单像素探测器的质心探测方法,其特征在于,所述光产生组件的光束照射到目标物体上,经所述目标物体反射后的光再经过所述透镜照射到所述数字微镜DMD上;所述数字微镜DMD对其接受的光进行调制后生成光信号后,传输给所述光电探测器;所述光电探测器将所述光信号转换成电信号后,发送到所述数据采集单元中。
  6. 根据权利要求4或5所述的一种基于单像素探测器的质心探测方法,其特征在于,步骤S2中,令二维调制信息中关于矩阵A、B和C的元素值分别满足以下表达式:S 1(x,y)=x,S 2(x,y)=y,S 3(x,y)=1,式中函数S(x,y)表示二维矩阵中对应着坐标(x,y)处的元素值。
  7. 根据权利要求6所述的一种基于单像素探测器的质心探测方法,其特征在于,步骤S4中具体包括以下步骤:
    S41、所述数据采集单元获取关于目标物体反射光的强度值由以下表达式得到:
    Figure PCTCN2021093879-appb-100001
    其中f(x,y)为目标物体或目标物体所成的图像的二维分布函数,I1、I2和I3为通过数据采集单元所获取的强度值;
    S42、得到强度值之后,代入到质心算法中,可以得到目标物体的质心位置表达式为:x c=I 1/I 3,y c=I 2/I 3,式中(x c,y c)为目标质心的位置坐标。
PCT/CN2021/093879 2020-05-15 2021-05-14 光电探测采集系统和基于单像素探测器的质心探测方法 WO2021228235A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/628,631 US20220365211A1 (en) 2020-05-15 2021-05-14 Photoelectric detection and acquisition system and centroid detection method based on single-pixel detector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010412816.0A CN111707413B (zh) 2020-05-15 2020-05-15 一种基于单像素探测器的质心探测方法
CN202010412816.0 2020-05-15

Publications (1)

Publication Number Publication Date
WO2021228235A1 true WO2021228235A1 (zh) 2021-11-18

Family

ID=72537212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/093879 WO2021228235A1 (zh) 2020-05-15 2021-05-14 光电探测采集系统和基于单像素探测器的质心探测方法

Country Status (3)

Country Link
US (1) US20220365211A1 (zh)
CN (1) CN111707413B (zh)
WO (1) WO2021228235A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111707413B (zh) * 2020-05-15 2021-11-26 中国科学院合肥物质科学研究院 一种基于单像素探测器的质心探测方法
CN112804513B (zh) * 2021-01-05 2023-02-17 暨南大学 一种光场相机及成像方法
CN113884234B (zh) * 2021-09-06 2023-06-09 中国科学院合肥物质科学研究院 一种互补单像素质心探测系统及方法
US11935299B2 (en) * 2022-04-08 2024-03-19 Cisco Technology, Inc. Decoding light-based messages to support device maintenance
CN114859377B (zh) * 2022-04-22 2023-06-09 中国科学院合肥物质科学研究院 一种运动目标实时捕获单像素成像方法及设备
CN116609794B (zh) * 2023-07-21 2023-09-26 中国人民解放军国防科技大学 基于径向切比雪夫光场的单像素成像方法、装置及设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070024839A1 (en) * 2005-07-28 2007-02-01 Canon Kabushiki Kaisha Exposure apparatus and method for manufacturing device using the exposure apparatus
CN102968801A (zh) * 2012-09-12 2013-03-13 浙江师范大学 一种光电混合联合变换相关的运动目标跟踪方法
CN106405546A (zh) * 2016-11-08 2017-02-15 中国科学院合肥物质科学研究院 基于压缩散斑的快速关联成像系统及方法
CN108895985A (zh) * 2018-06-19 2018-11-27 中国科学院合肥物质科学研究院 一种基于单像素探测器的物体定位方法
CN109151419A (zh) * 2018-10-16 2019-01-04 中国科学院合肥物质科学研究院 一种基于拉东变换的单像素成像方法
US10197677B1 (en) * 2014-03-28 2019-02-05 Analog Modules, Inc. Laser spot tracking receiver
CN111707413A (zh) * 2020-05-15 2020-09-25 中国科学院合肥物质科学研究院 一种基于单像素探测器的质心探测方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0624030B2 (ja) * 1987-09-14 1994-03-30 日本放送協会 画像解析装置
DE19722726C2 (de) * 1996-06-24 2003-08-28 Zeiss Carl Jena Gmbh Anordnung zur Erzeugung eines stereoskopischen Bildes
JPH1026724A (ja) * 1996-07-11 1998-01-27 Olympus Optical Co Ltd アクティブ式多点測距装置
AU2012232994A1 (en) * 2011-09-29 2013-04-18 Stephen William Gale Weighing system and method of weighing loads
CN103247032B (zh) * 2013-04-26 2015-12-02 中国科学院光电技术研究所 一种基于姿态补偿的微弱扩展目标定位方法
CN106530349A (zh) * 2016-10-25 2017-03-22 成都工业学院 一种基于椭圆中心的动态定位方法及装置
CN108564090B (zh) * 2018-03-30 2021-07-09 中国科学院合肥物质科学研究院 一种基于信号加权的快速傅里叶单像素成像方法
CN110672610A (zh) * 2019-10-28 2020-01-10 吉林工程技术师范学院 一种基于数字微镜阵列的显微关联成像系统及成像方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070024839A1 (en) * 2005-07-28 2007-02-01 Canon Kabushiki Kaisha Exposure apparatus and method for manufacturing device using the exposure apparatus
CN102968801A (zh) * 2012-09-12 2013-03-13 浙江师范大学 一种光电混合联合变换相关的运动目标跟踪方法
US10197677B1 (en) * 2014-03-28 2019-02-05 Analog Modules, Inc. Laser spot tracking receiver
CN106405546A (zh) * 2016-11-08 2017-02-15 中国科学院合肥物质科学研究院 基于压缩散斑的快速关联成像系统及方法
CN108895985A (zh) * 2018-06-19 2018-11-27 中国科学院合肥物质科学研究院 一种基于单像素探测器的物体定位方法
CN109151419A (zh) * 2018-10-16 2019-01-04 中国科学院合肥物质科学研究院 一种基于拉东变换的单像素成像方法
CN111707413A (zh) * 2020-05-15 2020-09-25 中国科学院合肥物质科学研究院 一种基于单像素探测器的质心探测方法

Also Published As

Publication number Publication date
US20220365211A1 (en) 2022-11-17
CN111707413A (zh) 2020-09-25
CN111707413B (zh) 2021-11-26

Similar Documents

Publication Publication Date Title
WO2021228235A1 (zh) 光电探测采集系统和基于单像素探测器的质心探测方法
Matsuda et al. Mc3d: Motion contrast 3d scanning
US10302424B2 (en) Motion contrast depth scanning
US10094927B2 (en) Detector for optically determining a position of at least one object
US6600168B1 (en) High speed laser three-dimensional imager
EP3645965A1 (en) Detector for determining a position of at least one object
KR20170122206A (ko) 적어도 하나의 물체의 광 검출용 검출기
CN107238727B (zh) 基于动态视觉传感器芯片的光电式转速传感器及探测方法
US20080212066A1 (en) Method for the detection of an object and optoelectronic apparatus
JPH0585845B2 (zh)
CN110824490A (zh) 一种动态距离测量系统及方法
CN114930192B (zh) 红外成像组件
EP4047386B1 (en) Depth detection apparatus and electronic device
CN110716190A (zh) 一种发射器及距离测量系统
CN112034485A (zh) 利用飞行时间相机的反射率感测
CN110716189A (zh) 一种发射器及距离测量系统
CN108051005A (zh) 目标空间位置和姿态的单个psd探测方法
CN113780349A (zh) 训练样本集的获取方法、模型训练方法及相关装置
Wang et al. Temporal matrices mapping-based calibration method for event-driven structured light systems
CN113884234B (zh) 一种互补单像素质心探测系统及方法
CN110322561A (zh) 用于机器人无序分拣的3d相机及其测量方法
CN107036710A (zh) 采用多探测器的光场光强分布测量方法
CN106405566A (zh) 测量精度高的激光雷达测距方法
CN111045030A (zh) 一种深度测量装置和方法
CN211148902U (zh) 一种发射器及距离测量系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21803794

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21803794

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19/06/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21803794

Country of ref document: EP

Kind code of ref document: A1