WO2021228202A1 - 一种井盖结构、倒台阶式竖井结构、以及井喷减免方法 - Google Patents

一种井盖结构、倒台阶式竖井结构、以及井喷减免方法 Download PDF

Info

Publication number
WO2021228202A1
WO2021228202A1 PCT/CN2021/093639 CN2021093639W WO2021228202A1 WO 2021228202 A1 WO2021228202 A1 WO 2021228202A1 CN 2021093639 W CN2021093639 W CN 2021093639W WO 2021228202 A1 WO2021228202 A1 WO 2021228202A1
Authority
WO
WIPO (PCT)
Prior art keywords
manhole cover
shaft
blowout
cover
cavity
Prior art date
Application number
PCT/CN2021/093639
Other languages
English (en)
French (fr)
Inventor
王芳芳
吴时强
吴修锋
戴江玉
高昂
杨倩倩
张宇
黄标
王小东
崔鹏飞
徐鹏
俞雷
赵宇航
徐准
何建明
樊顾飞
沙海明
Original Assignee
水利部交通运输部国家能源局南京水利科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010403854.XA external-priority patent/CN111705841B/zh
Priority claimed from CN202010403775.9A external-priority patent/CN111705839B/zh
Application filed by 水利部交通运输部国家能源局南京水利科学研究院 filed Critical 水利部交通运输部国家能源局南京水利科学研究院
Publication of WO2021228202A1 publication Critical patent/WO2021228202A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D29/00Independent underground or underwater structures; Retaining walls
    • E02D29/12Manhole shafts; Other inspection or access chambers; Accessories therefor
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03FSEWERS; CESSPOOLS
    • E03F5/00Sewerage structures
    • E03F5/02Manhole shafts or other inspection chambers; Snow-filling openings; accessories

Definitions

  • the invention belongs to the technical field of municipal engineering and water conservancy engineering, and specifically relates to a well cover structure, an inverted stepped shaft structure, and a blowout reduction and exemption method.
  • the underground pipe network is crisscrossed, including sewage pipe network, cable pipe network, water supply pipe network, etc.
  • the street surface is often equipped with a manhole cover to block the entrance of the pipe network, and the structure connecting the ground and the underground pipe network is often called It is a vertical well, which usually has the functions of collecting water, aeration, and people.
  • these shafts are designed as well-shaped pipes with upright walls, and the upper part is sealed with a manhole cover.
  • the present invention aims to propose an inverted stepped shaft structure, and further proposes a blowout reduction method based on the structure, so as to solve the above-mentioned problems in the prior art.
  • a well cover structure for reducing drainage shaft blowouts including a shaft connecting ground atmosphere and underground pipelines, and a well cover assembly arranged on the top of the shaft; the well cover assembly includes a well cover structure and its installation components.
  • the manhole cover structure is an inverted cone with a cavity
  • the bottom surface of the inverted cone is a flat plate component that is a cone with a flat plate at one end
  • the flat plate of the manhole cover structure is placed horizontally when in use , Flush with the ground, with the top of the cone facing down.
  • the material of the manhole cover structure is cast iron, plastic, concrete or synthetic material, and the gravity is G.
  • the central cross-sectional shape of the cavity of the manhole cover is an inverted isosceles triangle, and the base angle of the isosceles triangle is less than 60° and is set at 30°-50°.
  • the manhole cover can be opened freely without touching the wall of the shaft; There are many ventilation holes and temporary overhaul holes around the cavity of the manhole cover, which connect the bottom surface and the inside of the shaft.
  • the manhole cover assembly includes a manhole cover cavity, a middle hole opened at the center of a flat plate on the bottom surface of the manhole cover cavity, and a plurality of vent holes arranged in an array around the middle hole.
  • the vent holes can also converge, and the hole diameter is set to 1cm ⁇ 5cm; the middle hole is located in the center of the cone bottom plate, and a top cover is arranged on the top of the hole. It can be opened automatically when the pressure in the cavity is high.
  • the diameter of the mesopore is larger than that of the vent hole, and the diameter of the mesopore is between 1/10 to 1/20 of the diameter of the manhole cover.
  • a plurality of vent holes are opened on the side surface of the manhole cover cavity, the direction of the vent hole axis is perpendicular to the wall surface, and the set of vent holes communicate with the manhole cover cavity and the inside of the shaft;
  • a vertical hole is opened at the apex of the cone of the cavity.
  • the total area of the side vent holes of the well cover cavity is slightly larger than the total area of the ground plate vent holes.
  • the manhole cover is fixed to the ground by a manhole cover support
  • the manhole cover hinge is fixed on the manhole cover support
  • the outer edge of the manhole cover is provided with a manhole cover rib
  • the manhole cover rib is provided with an "S"-shaped rib.
  • Track the manhole cover hinge slides in the "S"-shaped rib track. That is, when the manhole cover is horizontal, the manhole cover hinge is located on one side of the rib track.
  • the manhole cover hinge can slide along the rib rail.
  • the manhole cover hinge moves to the other side of the rib track. It is fixed on one side of the shaft; on the contrary, when the manhole cover is closed, the manhole cover is lifted, and then the manhole cover hinge slides with the rib track.
  • an opening hole is provided on the upper side of the manhole cover; a limit soft rope is provided at the bottom of the manhole cover rib at the other end of the support hinge, and the limit soft rope is fixed to the soft rope support through a movable hook.
  • the maximum opening range of the limit manhole cover is 15° ⁇ 45°. If you need to fully open it, just let go of the soft rope hook.
  • the manhole cover assembly includes a manhole cover base, reinforcing ribs symmetrically welded to the two side walls of the manhole cover base, and two flaps rotatably arranged inside the manhole cover base; two reinforcements;
  • the ribs respectively form a driving part for connecting the driving link and a driven part for connecting the flap;
  • the flap includes a rotating shaft and a semi-circular plate body, and the two semi-circular plate bodies completely cover the well cover when closed Inside the base, a plurality of reinforcing plates that are symmetrical to the axis of the rotation shaft at 90° are provided between the rotation shaft and the plate body;
  • the driving link includes an interference fit connection with the rotation shafts of the two flaps respectively The first link and the second link, and the third link hinged between the first link and the second link, the first link, the second link, and the third link
  • the length ratio is 1:1:2.
  • a design principle of the manhole cover structure to reduce blowout of drainage shaft including the response to the following three scenarios:
  • the water and gas mixture in the manhole cover cavity not only separates through the side of the cavity cone, but also overflows the ground through the vent hole of the manhole cover roof.
  • the top cover of the middle hole is opened to increase the overflow channel of the water flow;
  • the opening and closing of the manhole cover includes the following steps: when the manhole cover is opened, the handle of the manhole cover is lifted until the manhole cover is off the ground, the limit cord hook is taken off, and the manhole cover is continued to be lifted to the vertical ground position.
  • the manhole cover Under the action of its own weight, the manhole cover hinge slides from one end of the rib track to the other end, and is stuck in the support and fixed; when the manhole cover is closed, the manhole cover is lifted, and the manhole cover hinge slides with the rib track, which is the opposite of the opening process.
  • An inverted stepped shaft structure includes a shaft cavity provided on the top of an underground pipeline, a manhole cover provided on the top of the shaft, and multi-level inverted step wall surfaces provided on both sides of the shaft.
  • the wall surface of the inverted step is mirrored along the opening axis of the shaft, and the width of the step is greater than the width of the underground pipeline.
  • the first step of the multi-step inverted steps is flush with the ground, and a cylinder is dug at the center, which is the shaft head; the last step is connected to the top of the underground pipeline, and the gradient of the middle step is 30°-60° ° between; the backfill above the steps is flush with the ground.
  • the manhole cover is provided with vent holes and vent holes, and the vent holes are connected to the underground pipeline and the ground atmosphere; the vent holes are arranged in an array with a diameter of 2cm-5cm; the vent holes are located in the manhole cover In the center, the hole diameter is larger than the vent hole and is 10cm-30cm.
  • the vent hole is provided with a top cover, one end of the top cover is hinged, and the other end is clamped into the card slot.
  • the manhole cover is fixed on the shaft base by a manhole cover support, the manhole cover hinge is fixed on the manhole cover, and the manhole cover hinge is installed on the manhole cover support; the upper side of the manhole cover is provided with a lifting handle.
  • the manhole cover is an inverted cone-shaped platform, which is placed horizontally when in use, and the top surface is flush with the ground.
  • the section of the manhole cover is an inverted isosceles triangle, and the base angle of the triangle is 30°-50 °;
  • the side of the manhole cover cavity is provided with a plurality of vent holes of the same specification as the foregoing, the direction of the vent hole axis is perpendicular to the wall surface, and the set of vent holes connect the manhole cover cavity and the inside of the shaft; the manhole cover A vertical hole is opened at the apex of the cone of the cavity.
  • the total area of the side vent holes of the well cover cavity is slightly larger than the total area of the vent holes on the ground plate.
  • the manhole cover is fixed to the ground by a manhole cover support
  • the manhole cover hinge is fixed on the manhole cover support
  • the outer edge of the manhole cover is provided with a manhole cover rib
  • the manhole cover rib is provided with an "S"-shaped rib track. The manhole cover hinge slides in the "S"-shaped track.
  • a method for releasing trapped airbags with an inverted stepped shaft structure includes the following three scenarios and corresponds to the following steps:
  • Scenario 1 Multi-stage gas pressure release: When the underground pipeline water flows and the shaft is transitioned, the multi-stage inverted step body with a sudden expansion at the top is used to connect.
  • the inverted step body structure is conducive to the gas overflow in the pipeline and the release of airbags, and it is not easy to be involved in the gas when the flow is reversed. , Mechanically release the trapped airbags at the top of the mainstream smoothly and inhibit the formation of new large airbags. Therefore, the multi-stage inverted step body can achieve the effect of multi-stage release of non-constant gas pressure, and at the same time, the pressure extremes of time continuous and spatial concentration are dispersed. It is a non-continuous pressure extreme with multiple points in space, so as to inhibit the formation of extreme pressure conditions that occur when blowouts occur;
  • Scenario 2 Air pressure balance inside the shaft: The manhole cover is provided with vents to connect the underground pipeline and the ground atmosphere to timely supplement and balance the non-constant air pressure in the shaft and underground pipeline to smooth the extreme value of the driving pressure difference that forms the blowout phenomenon, and further suppress the blowout. condition;
  • Scenario 3 When the blowout phenomenon is unavoidable, the well cover activates the water-gas separation function to deal with blowouts of different strengths.
  • the blowout height is lower than the height of the well cover, it is scenario 2; when the blowout height touches the height of the well cover, the impact force
  • the weight of the manhole cover is not sufficient to balance the weight of the manhole cover, the sprayed water vapor mixture hits the step wall or the manhole cover, part of the water vapor mixture falls back to the underground pipe, and the other part is separated by the manhole cover vent hole and then overflows or falls back to the underground pipe; if the blowout intensity is greater than the preset value, it may even be pushed
  • the middle hole emergency device or limit device is activated to quickly release unstable air pressure and reduce blowout.
  • Multi-stage inverted steps are used to connect the water flow of the underground pipeline to the shaft, which is conducive to gas overflow in the pipeline and the release of airbags, and it is not easy to be involved in the gas when the flow is reversed, which prevents the formation of large-scale trapped airbags from the mechanism.
  • the stage releases the non-constant gas pressure, and disperses the time continuous and spatially concentrated pressure extremes into the discontinuous pressure extremes at multiple points in space, thereby inhibiting the formation of conditions for blowout occurrence.
  • the present invention scales the driving pressure difference of the blowout.
  • the manhole cover is provided with vents to connect the underground pipeline and the ground atmosphere, balances the unsteady air pressure in the shaft and the underground pipeline, balances the pressure in the pipeline in advance, and scales the driving pressure for the blowout phenomenon Difference extreme value, restrain the formation of blowout conditions.
  • the existing urban drainage pipe shaft covers are directly closed by solid covers. Most of the covers are separate bodies (not fixed). The air pressure in the shafts and underground pipes is unstable and fluctuates. The blowout is more likely to occur and the blowout intensity is greater. It is prone to "flying" hazards of manhole covers.
  • the vertical shaft structure of the present invention is used in combination with the well cover with vent holes, and multi-level measures are adopted to ensure the stable air pressure inside the shaft and reduce the occurrence of shaft blowout.
  • the manhole cover structure of the present invention can suppress the necessary conditions for the formation of vertical well blowout to a large extent, and avoid the blowout phenomenon to the greatest extent. If the blowout is unavoidable, the pressure is released through multi-stage water and gas separation and large channels to smoothly form the vertical well blowout.
  • the driving pressure extreme value of, thereby weakening the intensity of blowout or suppressing blowout Specifically, the manhole cover structure of the present invention is provided with multi-stage channels to connect the underground pipeline with the ground atmosphere, balance the non-constant air pressure in the shaft and the underground pipeline, on the one hand, balance the pipeline in advance Atmospheric pressure, the extreme value of the driving pressure difference that forms the blowout phenomenon is reduced, which reduces the possibility of blowout formation.
  • the manhole cover structure of the present invention is equipped with multi-stage water and gas separation measures, automatically grading to deal with blowouts of different intensities. Once the blowout phenomenon occurs, it effectively separates the gas in the water and gas mixture, and releases the separated substances in multiple channels, alleviating and smoothing the spray water column on the well cover.
  • the impact pressure can effectively suppress and weaken the blowout intensity that has formed, and at the same time reduce the difference between the unsteady air pressure and the atmospheric pressure in the underground pipeline, and inhibit the deterioration of the unfavorable flow pattern.
  • the manhole cover structure of the present invention is based on the principle of lever balance. By rationally designing the weight of the manhole cover, the conditions for the activation of the third-stage water-gas separation facility are artificially set. When a high-intensity blowout occurs, the large channel releases the spray mixture to avoid harm to the greatest extent. The blowout phenomenon under the scenario is tailor-made.
  • the "S"-shaped rib track proposed in the manhole cover structure of the present invention can temporarily fix the manhole cover when the manhole cover is fully opened, and loosen after lifting and automatically release the restraint to close the manhole cover, which is convenient for normal maintenance operations.
  • Figure 1 is a cross-sectional view of an inverted stepped shaft structure.
  • Figure 2 is a top view of an inverted stepped shaft structure.
  • Figure 3 is a cross-sectional view of an inverted stepped shaft cover.
  • Figure 4 is a top view of an inverted stepped shaft cover.
  • Figure 5 is a cross-sectional view of a schematic diagram of the structure and installation method of the manhole cover assembly.
  • Figure 6 is a detailed view of the structure and working principle of the manhole cover assembly.
  • Figure 7 is a cross-sectional view of the installation of the well cover structure for reducing and avoiding vertical well blowout.
  • the reference signs in the figure are: underground pipeline 1, ground 2, shaft 3, backfill 4, manhole cover 5, manhole cover rib 501, rib track 502, limit cord 503, manhole cover cavity 504, manhole cover support 505 , Manhole cover hinge 506, soft rope support 507, cushion 508, trapped airbag 6, shaft base 7, shaft step 8, vent 10, vent hole 11, middle hole cover 12, shaft support hinge 13, support hinge base 14. Lifting handle 15.
  • the flow pattern of urban drainage pipe network system is designed as a pressureless flow with free water surface.
  • the flow of the drainage pipe network increases sharply.
  • the flow pattern of the water flows from the open channel. Transitioning to full flow may form a larger volume of trapped airbags at the slope change and the junction of the branch pipes.
  • the air is transferred to the shaft and rises along the shaft to form a water column or a mixed jet of water and air, forming a blowout phenomenon.
  • Blowout can not only generate large instantaneous pressure, induce pipeline vibration and even structural failure, but also lift the shaft cover and endanger the safety of pedestrians and vehicles.
  • extreme severe weather has been frequent, and it is very easy to form urban short-term heavy rainfall disasters.
  • the frequency of urban sewage pipe drainage shaft blowout accidents is also increasing. Therefore, it is necessary to take measures to reduce the blowout phenomenon and ensure public safety.
  • the present invention designs an inverted stepped shaft structure, which aims to improve the flow pattern of the water flow at the interface between the shaft 3 and the underground pipeline 1 from the source, suppress the conditions for blowout occurrence, and avoid blowout phenomenon.
  • FIG. 1 A schematic diagram of the structure of a multi-stage connected urban drainage pipe shaft is shown in Figure 1.
  • the shaft 3 is set on the top of the underground pipe 1 and connects the underground pipe 1 with the ground 2, and the manhole cover 5 is set on the top of the shaft 3.
  • the shape of one side of the shaft 3 is stepped (shaft steps 8) and mirrored along the axis of the opening.
  • the width of the steps is larger than that of the underground pipeline 1.
  • the material is steel frame, reinforced concrete, high-strength synthetic materials, etc., which can be integrally formed or assembled .
  • the structure and installation method of the manhole cover 5 are shown in Figure 2.
  • the manhole cover 5 is provided with vent holes 10 and vent holes 11, and the vent holes 10 are connected to the underground pipeline 1 and the ground 2 atmosphere; the vent holes 10 are distributed in an array with a Generally 2cm ⁇ 5cm;
  • the vent hole 11 is located in the center of the well cover 5, and the diameter is larger than the vent hole 10, generally 10cm ⁇ 30cm.
  • the vent hole 11 is provided with a top cover, one end of the top cover is hinged, and the other end is inserted into the card slot. It can be opened automatically when the pressure in the hole is high.
  • the well cover 5 is an inverted cone-shaped table, which is placed horizontally when in use, and the top surface is flush with the ground 2.
  • the material is generally cast iron, plastic, concrete or synthetic material, and the gravity is G.
  • the manhole cover 5 is fixed on the shaft base 7 by a manhole cover support 505, and a manhole cover hinge 506 is fixed on the manhole cover 5.
  • the manhole cover hinge 506 can be rotated on the manhole cover support 505 to open or close the manhole cover 5; the upper side of the manhole cover 5
  • a lifting handle 15 is provided for opening or closing the well cover 5.
  • the shaft 3 connects the ground 2 with the atmosphere and the underground pipeline 1, and the manhole cover 5 assembly is arranged on the top of the shaft 3.
  • the structure of the manhole cover 5 assembly is shown in Figures 5 to 6, and it mainly includes the following components: manhole cover cavity 504, manhole cover 5 base, manhole cover support 505, manhole cover hinge 506, manhole cover rib 501, rib rail 502, pass The air hole 10, the middle hole, the lifting handle 15, the limit soft rope 503, the hook, and the soft pad 508.
  • the manhole cover 5 is a cone with a round (or square) flat plate. The flat plate is placed horizontally and flush with the ground 2 during use.
  • the material is generally cast iron, plastic, concrete or synthetic material, and the gravity is G.
  • the cavity shape of the manhole cover cavity 504 is an inverted cone, and the cross-sectional shape is an inverted isosceles triangle. It hits the wall of the shaft 3; there are many vent holes 10 and temporary overhaul holes around the cavity 504 of the manhole cover, connecting the bottom surface and the inside of the shaft 3.
  • the bottom surface of the well cover cavity 504 is provided with a large number of arrayed vent holes 10 and middle holes communicating with the ground 2.
  • the vent holes 10 can also flow, and the hole diameter is set to 1cm ⁇ 5cm; the middle hole is located in the center of the cone bottom plate with a diameter It is larger than the general vent hole 10, about 1/10 to 1/20 of the diameter of the well cover 5; an inspection cover is arranged on the top of the hole, one end of the inspection cover is hinged, and the other end is clamped into the slot.
  • the pressure in the well cover cavity 504 is relatively high. It can be opened automatically when large.
  • the side surface of the manhole cover cavity 504 is also provided with a large number of vent holes 10, the direction of the opening axis is perpendicular to the wall surface, these vent holes 10 communicate with the cavity and the inside of the shaft 3; These vent holes 10 enter the interior of the shaft 3.
  • the total area of the side vent holes 10 of the manhole cover cavity 504 is larger than the total area of the ground 2 flat holes.
  • the manhole cover 5 is fixed to the ground 2 by the manhole cover support 505, the manhole cover hinge 506 is fixed on the manhole cover support 505, the outer edge of the manhole cover 5 is provided with a manhole cover rib 501, and the manhole cover rib 501 is provided with an "S"-shaped rib track 502,
  • the rib track 502 is installed on the manhole cover hinge 506 and can slide along the "S" type track, that is, when the manhole cover 5 is horizontal, the manhole cover hinge 506 is located on one side of the rib rail 502, and the manhole cover hinge 506 can be used when the manhole cover 5 is opened.
  • the upper side of the manhole cover 5 is provided with an opening hole; the bottom of the manhole cover rib 501 at the other end of the support hinge is provided with a limit soft rope 503, the limit soft rope 503 is fixed to the soft rope support 507 through a movable hook, and the length of the soft rope is completely stretched.
  • the maximum opening range of the limit manhole cover 5 is 15° ⁇ 45°. If you need to open it completely, just let go of the soft rope hook.
  • Manhole cover 5 is equipped with multi-stage water and gas separation measures to deal with different degrees of blowout intensity:
  • the water vapor mixture in the well cover cavity 504 not only separates through the side of the cavity cone, but also overflows the ground 2 through the top plate ventilation hole 10 of the well cover 5, and the water flow impacts or the air pressure is greater than the middle hole
  • the middle hole top cover is opened to increase the water flow overflow channel, which is the second stage of water-gas separation.
  • the cavity in the shaft 3 communicates with the atmosphere on the ground 2 through the vent hole 10 of the manhole cover 5, which can better balance the instantaneous pressure change (exhaust or inhale) in the shaft 3, smooth out the pressure difference extreme value of the blowout phenomenon, and avoid the need to form a blowout.
  • the conditions of occurrence can better balance the instantaneous pressure change (exhaust or inhale) in the shaft 3, smooth out the pressure difference extreme value of the blowout phenomenon, and avoid the need to form a blowout.
  • the middle hole and its top cover are measures for emergency automatic opening of the top cover, and can be used as a daily inspection port.
  • the design method of the top cover can also refer to the joint use of hinge and limit soft rope 503 or other buckle methods to ensure that it is in place. It can be automatically opened under the action of the set pressure.
  • the structure diagram of the well cover 5 for reducing the blowout of the drainage shaft 3 is shown in Figure 2 and Figure 7.
  • the structure of the manhole cover 5 assembly is shown in Figures 5 to 6, and it mainly includes the following components: manhole cover cavity 504, manhole cover 5 base, manhole cover support 505, manhole cover hinge 506, manhole cover rib 501, rib rail 502, pass The air hole 10, the ventilation hole 11, the lifting handle 15, the limit soft rope 503, the hook, and the cushion 508.
  • the manhole cover 5 is a cone with a round (or square) flat plate. The flat plate is placed horizontally and flush with the ground 2 during use.
  • the material is generally cast iron, plastic, concrete or synthetic material, and the gravity is G.
  • the cavity shape of the manhole cover cavity 504 is an inverted cone, and the cross-sectional shape is an inverted isosceles triangle. It hits the wall of the shaft 3; there are many vent holes 10 and temporary overhaul holes around the cavity 504 of the manhole cover, connecting the bottom surface and the inside of the shaft 3.
  • the bottom surface of the well cover cavity 504 is provided with a large number of arrayed vent holes 10 and middle holes communicating with the ground 2.
  • the vent holes 10 can also flow, and the hole diameter is set to 1cm ⁇ 5cm; the middle hole is located in the center of the cone bottom plate with a diameter It is larger than the general vent hole 10, about 1/10 to 1/20 of the diameter of the well cover 5; an inspection cover is arranged on the top of the hole, one end of the inspection cover is hinged, and the other end is clamped into the slot.
  • the pressure in the well cover cavity 504 is relatively high. It can be opened automatically when large.
  • the side surface of the manhole cover cavity 504 is also provided with a large number of vent holes 10, the direction of the opening axis is perpendicular to the wall surface, these vent holes 10 communicate with the cavity and the inside of the shaft 3; These vent holes 10 enter the interior of the shaft 3.
  • the total area of the side vent holes 10 of the manhole cover cavity 504 is larger than the total area of the ground 2 flat holes.
  • the manhole cover 5 is fixed to the ground 2 by the manhole cover support 505, the manhole cover hinge 506 is fixed on the manhole cover support 505, the outer edge of the manhole cover 5 is provided with a manhole cover rib 501, and the manhole cover rib 501 is provided with an "S"-shaped rib track 502,
  • the rib track 502 is installed on the manhole cover hinge 506 and can slide along the "S" type track, that is, when the manhole cover 5 is horizontal, the manhole cover hinge 506 is located on one side of the rib rail 502, and the manhole cover hinge 506 can be used when the manhole cover 5 is opened.
  • the upper side of the manhole cover 5 is provided with an opening hole; the bottom of the manhole cover rib 501 at the other end of the support hinge is provided with a limit soft rope 503, the limit soft rope 503 is fixed to the soft rope support 507 through a movable hook, and the length of the soft rope is completely stretched.
  • the maximum opening range of the limit manhole cover 5 is 15° ⁇ 45°. If you need to open it completely, just let go of the soft rope hook.
  • the working characteristics of the manhole cover 5 structure are:
  • Manhole cover 5 is equipped with multi-stage water and gas separation measures to deal with different degrees of blowout intensity:
  • the water and gas mixture in the well cover cavity 504 not only separates through the side of the cavity cone, but also overflows the ground 2 through the top plate vent 10 of the well cover 5, water impact or air pressure
  • the top cover of the middle hole is opened to increase the water flow overflow channel, which is the second stage of water-gas separation.
  • the middle hole and its top cover are measures for emergency automatic opening of the top cover, and can be used as a daily inspection port.
  • the design method of the top cover can also refer to the joint use of hinge and limit soft rope 503 or other buckle methods to ensure that it is in place. It can be automatically opened under the action of the set pressure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Civil Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)

Abstract

本发明涉及一种井盖结构、倒台阶式竖井结构、以及井喷减免方法,竖井设置于地下管道顶部,连通地下管道与地面,井盖设置于竖井顶部。所述竖井一侧外形为台阶状,并沿洞口轴线镜像,台阶宽度大于地下管道宽度,可整体成型亦可组装。所述竖井台阶第一级台阶与地面齐平,中心挖出一圆柱体,为竖井口;最后一级台阶与地下管道顶部衔接,中间台阶坡度为30°至60°为;台阶上方回填料与地面齐平。本发明坦化形成井喷的驱动压力差值,井盖设置通气孔连通地下管道与地面大气,平衡竖井和地下管道内的非恒定气压,提前平衡管道内气压,坦化形成井喷现象的驱动压力差极值,有效抑制井喷发生条件形成。

Description

一种井盖结构、倒台阶式竖井结构、以及井喷减免方法 技术领域
本发明属于市政工程和水利工程技术领域,具体涉及一种井盖结构、倒台阶式竖井结构、以及井喷减免方法。
背景技术
市政工程中,地下管网纵横交错,有排污管网、电缆管网、供水管网等,街道地面常常设有井盖用以封堵管网的入口,其中连通地面和地下管网的结构常称为竖井,通常具有集水、通气、通人等作用。一般地,这些竖井被设计为一种洞壁直立的井状管道,上部采用井盖封住。
目前较为常见的城市管网竖井3井喷减免措施通常有以下三种方式:
1、增加竖井管径、以减小井喷发生时瞬时极值压力,然而这种方法在实际应用时竖井口径不可能无限制的增大,实际应用时存在局限性,且并不能免除井喷发生的可能性;
2、在井盖下方设置缓冲结构,如弹性支承的橡胶球或折流板等,其原理在于对喷射水流消能和水气分离,但是遇到强烈瞬变流变化时效果较差,甚至阻碍了气体排出,恶化主管道流态,同时也会给竖井检修带来麻烦。
3、在竖井顶部设置带孔和限位井盖,此方法原理在于降低水流压力极值,多级分离水汽混合物,这种方法为形成井喷后的缓解措施,并不是从源头上抑制井喷发生。
发明内容
发明目的:本发明旨在提出一种倒台阶式竖井结构,并进一步提出基于该结构的井喷减免方法,以解决现有技术存在的上述问题。
技术方案:一种减免排水竖井井喷的井盖结构,包括连通地面大气与地下管道的竖井,以及设置于所述竖井顶部的井盖组件;所述井盖组件包括井盖结构和其安装组件。
在进一步的实施例中,所述井盖结构为带有空腔的倒锥体,所述倒锥体底面为一平板组件为一端带有平板的锥体,使用时所述井盖结构的平板水平放置,与地面平齐,锥体顶端朝下。所述井盖结构制作材料为铸铁、塑料、混凝土或合成材料,重力为G。所述井盖空腔腔体中心剖面形状为倒置等腰三角形,所述等腰三角形底角小于60°,设置为30°~50°,此时井盖可自由打开而不碰到竖井壁面;所述井盖空腔四周开有众多通气孔和临时检修孔,连通底面与竖井内部。所述井盖组件包括井盖空腔,开设在所述井 盖空腔底面平板的中心处的中孔,以及绕所述中孔阵列排布的多个通气孔。所述通气孔亦可汇流,孔径设置为1cm~5cm;所述中孔位于锥体底板中心,孔顶设置一顶盖,该顶盖一端铰支,另一端卡入卡槽内,在井盖空腔内压力较大时可自动打开。
在进一步的实施例中,所述中孔的直径大于通气孔,所述中孔的直径介于井盖直径的1/10~1/20。
在进一步的实施例中,所述井盖空腔的侧面开多个通气孔,该通气孔的开孔轴线方向与壁面垂直,该组通气孔连通所述井盖空腔与竖井内部;所述井盖空腔的锥体顶点处竖直开孔。
在进一步的实施例中,所述井盖空腔的侧面通气孔总面积略大于其地面平板通气孔总面积。
在进一步的实施例中,所述井盖通过井盖支座固定于地面,井盖支铰固定于所述井盖支座上,井盖外缘设置井盖肋板,所述井盖肋板设置“S”型肋板轨道,所述井盖支铰在“S”型肋板轨道内滑动。即井盖水平时井盖支铰位于肋板轨道的一侧,井盖打开过程中井盖支铰可沿肋板轨道滑动,井盖垂直地面位置时井盖支铰移动至肋板轨道的另一侧,此时井盖被固定于竖井一侧;反之,井盖关闭时,上提井盖,然后井盖支铰滑随肋板轨道滑动。
在进一步的实施例中,所述井盖上侧设有开启孔;支座支铰另一端井盖肋板底部设置限位软绳,所述限位软绳通过活动挂钩固定于软绳支座,软绳长度完全张开时限位井盖最大打开范围为15°~45°,若需要完全打开,只要放开软绳挂钩即可。
在进一步的实施例中,所述井盖组件包括井盖基座,对称焊接在所述井盖基座两侧壁的加强筋,以及转动设置在所述井盖基座内部的两片翻板;两个加强筋分别形成用于连接驱动连杆的驱动部和用于连接翻板的从动部;所述翻板包括转动轴和半圆形的板体,两半圆形的板体闭合时完全覆盖井盖基座内部,所述转动轴和板体之间还设有多个与转动轴的轴线互称90°的加强板;所述驱动连杆包括分别与两个翻板的转动轴过盈配合连接的第一连杆和第二连杆,以及铰接在所述第一连杆和第二连杆之间的第三连杆,所述第一连杆、第二连杆、第三连杆的长度之比为1:1:2。
一种减免排水竖井井喷的井盖结构的设计原理,包括针对以下三种情景的响应:
S1、设计第一级水气分离:当井喷高度低于井盖底部时,此时竖井内与地面大气压压差通过井盖通气孔连通平衡压差;
S2、设计第二级水气分离:当井喷高度接触到井盖,且冲击力不足以平衡井盖重量时,所喷射水气混合物碰撞井盖,部分水气混合物落回地下管道,另一部分通过通气孔进入井盖空腔,气液分离后液体通过通气孔亦回落至地下管道,多余气体依据当地气压高低排出或吸入,此为第一级水气分离;若水气混合物进入井盖空腔内后仍有大量能量,继续喷射到达井盖顶板或空腔满溢,此时井盖空腔内水气混合物不仅通过空腔锥体侧面分离,亦通过井盖顶板通气孔溢出地面,水流冲击或气压大于中孔顶盖打开的临界压力时,中孔顶盖打开,增大水流溢出通道;
S3、设计第三级水气分离:当井喷强度足够大,喷射冲击力冲开井盖时,由于限位软绳作用,井盖打开较小的角度,大大增加喷射混合物通道面积,在第二阶段水气分离的基础上,大量气体溢出,从而削减井喷强度。
在进一步的实施例中,井盖打开和关闭时包括以下步骤:打开井盖时,提拉井盖把手至井盖脱离地面,脱掉限位软绳挂钩,继续提拉井盖至垂直地面位置,此过程中井盖在自重作用下井盖支铰从肋板轨道一端滑动至另一端,卡在支座内并固定;关闭井盖时,上提井盖,井盖支铰随肋板轨道滑动,与打开流程相反。
一种倒台阶式竖井结构,包括设置于地下管道顶部的竖井腔体,设置于所述竖井顶部的井盖,以及设置在所述竖井两侧的多级倒台阶壁面。
在进一步的实施例中,所述倒台阶壁面沿所述竖井的洞口轴线镜像,台阶宽度大于地下管道宽度。
在进一步的实施例中,多级倒台阶中第一级台阶与地面齐平,中心挖出一圆柱体,为竖井口;最后一级台阶与地下管道顶部衔接,中间台阶坡度在30°~60°之间;所述台阶上方的回填料与地面齐平。
在进一步的实施例中,所述井盖设有通气孔和通气中孔,通气孔均连通地下管道与地面大气;所述通气孔呈阵列分布,孔径为2cm~5cm;所述通气中孔位于井盖中心,孔径大于通气孔,为10cm~30cm,通气中孔设置顶盖,该顶盖一端铰支,另一端卡入卡槽内。
在进一步的实施例中,所述井盖通过井盖支座固定于竖井底座上,井盖支铰固定于井盖上,井盖支铰安装在井盖支座上;所述井盖上侧设有提拉把手。
在进一步的实施例中,所述井盖为一倒置锥形台,使用时水平放置,顶面与地面平齐,所述井盖的剖面为倒置等腰三角形、且三角形的底角为30°~50°;所述井盖空腔 的侧面开设有多个与前述相同规格的通气孔,该通气孔的开孔轴线方向与壁面垂直,该组通气孔连通所述井盖空腔与竖井内部;所述井盖空腔的锥体顶点处竖直开孔。
在进一步的实施例中,所述井盖空腔的侧面通气孔总面积略大于其地面平板开通气孔总面积。
在进一步的实施例中,所述井盖通过井盖支座固定于地面,井盖支铰固定于井盖支座上,井盖外缘设置井盖肋板,井盖肋板设置“S”型肋板轨道,所述井盖支铰在“S”型轨道内滑动。
一种倒台阶式竖井结构的截留气囊释放方法,即井喷减免方法,包括以下三种情景并对应以下步骤:
情景1:多级气体压力释放:地下管道水流与竖井过渡时采用顶部突扩的多级倒台阶体型衔接,倒台阶体型结构利于管道中气体溢出和气囊释放,且流动反向时不易卷入气体,从机理上平稳释放主流顶部已有截留气囊并抑制形成新的大气囊,因此,多级倒台阶体型达到多级释放非恒定气体压力的作用,同时将时间连续和空间集中的压力极值分散为空间多点的非连续性的压力极值,从而抑制井喷发生的极值压力条件形成;
情景2:竖井内部气压平衡:井盖设置通气孔连通地下管道与地面大气,及时补充、平衡竖井和地下管道内的非恒定气压,坦化形成井喷现象的驱动压力差极值,进一步抑制井喷发生的条件;
情景3:当不可避免仍出现井喷现象时,井盖启动水气分离功能,应对不同强度井喷,当井喷高度低于井盖高度时,即为情景2;当井喷高度接触到井盖高度时,且冲击力不足以平衡井盖重量时,所喷射水汽混合物碰撞台阶壁面或井盖,部分水汽混合物落回地下管道,另一部分通过井盖通气孔分离后溢出或回落至地下管道;若井喷强度大于预设值,甚至推开井盖或中孔顶盖时,中孔应急装置或限位装置启动,快速释放不稳定气压,减免井喷发生。
有益效果:
1、地下管道水流与竖井过渡时采用多级倒台阶体型衔接,利于管道中气体溢出和气囊释放,且流动反向时不易卷入气体,从机理上抑制大尺度截留气囊的形成,并可以多级释放非恒定气体压力,将时间连续和空间集中的压力极值分散为空间多点的非连续性的压力极值,从而抑制井喷发生条件的形成。
2、将截留气囊释放发生位置平移错开竖井井口,即使发生喷溅现象亦不会直接喷 出竖井井口,同时扩大竖井底部空间意味着明流段长度增加,利于有压流和无压流流态之间的转换,避免竖井出口位置多重复杂流态。
3、本发明坦化形成井喷的驱动压力差值,井盖设置通气孔连通地下管道与地面大气,平衡竖井和地下管道内的非恒定气压,提前平衡管道内气压,坦化形成井喷现象的驱动压力差极值,抑制井喷发生条件形成。现有城市排水管竖井井盖直接采用实体井盖封闭,多数井盖为单独体(未固定),竖井和地下管道内气压不稳定,波动较大,发生井喷现象的可能性较大,且井喷强度较大时容易出现井盖“飞起”危害。
4、本发明竖井结构与带通气孔井盖结合使用,采用多级措施保障竖井内部气压平稳,减免竖井井喷发生。
5、本发明井盖结构能较大程度抑制形成竖井井喷发生的必要条件,最大限度避免井喷现象发生,若井喷不可避免发生后,通过多级水气分离和大通道释放压力,坦化形成竖井井喷的驱动压力极值,从而削弱井喷强度或抑制井喷发生:具体地,本发明井盖结构设置多级通道连通地下管道与地面大气,平衡竖井和地下管道内的非恒定气压,一方面提前平衡管道内气压,坦化形成井喷现象的驱动压力差极值,减小井喷形成的可能性,另一方面井喷形成后,最大能力分级分离水气混合物,同时避免井盖“飞起”或完全打开,确保安全;而现有城市下水管竖井井盖直接采用实体井盖封闭,且多数井盖为单独体(未固定),竖井和地下管道内气压不稳定,波动较大,发生井喷现象的可能性较大,且井喷强度较大时容易出现井盖“飞起”危害。
6、本发明井盖结构设置多级水气分离措施,自动分级应对不同强度的井喷现象,井喷现象一旦形成,高效分离水气混合物中气体,多通道释放分离物,缓解和坦化喷射水柱对井盖的冲击压力,可有效抑制和弱化已形成的井喷强度,同时减小地下管道内非恒定气压与大气压差,抑制不利流态的恶化循环。
7、本发明井盖结构基于杠杆平衡原理,通过合理设计井盖自重,人为设定第三级水气分离设施启用条件,在高强度井喷发生时大通道释放喷射混合物,最大程度免除危害,可为不同情景下的井喷现象量身定做。
8、本发明井盖结构提出的“S”型肋板轨道,可在完全打开井盖时临时固定井盖,提拉后松动并自动释放约束而闭合井盖,方便正常检修作业。
附图说明
图1为倒台阶式竖井结构的剖面图。
图2为倒台阶式竖井结构的俯视图。
图3为倒台阶式竖井井盖的剖视图。
图4为倒台阶式竖井井盖的俯视图。
图5为井盖组件的结构及安装方法示意图的剖面图。
图6为井盖组件的结构和工作原理细部图。
图7为减免竖井井喷的井盖结构安装剖面图。
图中各附图标记为:地下管道1、地面2、竖井3、回填料4、井盖5、井盖肋板501、肋板轨道502、限位软绳503、井盖空腔504、井盖支座505、井盖支铰506、软绳支座507、软垫508、截留气囊6、竖井底座7、竖井台阶8、通气孔10、通气中孔11、中孔盖12、竖井支铰13、支铰底座14、提拉把手15。
具体实施方式
申请人认为,近年来,随着城市下垫面固化,城市排水管网排水负荷增大。一般而言,城市排水管网系统水流流态设计为具有自由水面的无压流动,当经历短时强降雨时,排水管网流量急剧增加,超出管道泄流能力时,水流流态由明渠流过渡到满流,可能在坡度变化和支管汇流处形成较大体积的截留气囊,空气经持续压缩后转移至竖井,沿竖井上升形成水柱或水气混合射流,形成井喷现象。井喷不仅能够产生较大瞬时压力,诱发管道振动甚至结构失效等问题,还可能掀飞竖井井盖,危害行人和车辆安全;对于雨污合流排水管道,井喷导致的局部洪水将造成环境污染等问题。特别是近年来极端恶劣天气频繁,极易形成城市短时强降雨灾害,城市下水管道排水竖井井喷事故发生的频率也在上升。因此,需要采取措施减免井喷现象的发生,确保公共安全。
目前较为常见的城市管网竖井3井喷减免措施通常有以下三种方式:
1、增加竖井管径、以减小井喷发生时瞬时极值压力,然而这种方法在实际应用时竖井口径不可能无限制的增大,实际应用时存在局限性,且并不能免除井喷发生的可能性;
2、在井盖下方设置缓冲结构,如弹性支承的橡胶球或折流板等,其原理在于对喷射水流消能和水气分离,但是遇到强烈瞬变流变化时效果较差,甚至阻碍了气体排出,恶化主管道流态,同时也会给竖井检修带来麻烦。
3、在竖井顶部设置带孔和限位井盖,此方法原理在于降低水流压力极值,多级分离水汽混合物,这种方法为形成井喷后的缓解措施,并不是从源头上抑制井喷发生。
为此,本发明通过设计一种倒台阶式竖井结构,旨在从源头上改善竖井3与地下管道1交界面水流流态,抑制井喷发生条件,避免发生井喷现象。
实施例一:
多级衔接式城市排水管竖井结构的示意图见图1,竖井3设置于地下管道1顶部,连通地下管道1与地面2,井盖5设置于竖井3顶部。
所述竖井3一侧外形为台阶状(竖井台阶8),并沿洞口轴线镜像,台阶宽度大于地下管道1宽度,材料为钢架、钢筋混凝土、高强度合成材料等,可整体成型亦可组装。
所述竖井台阶8第一级台阶与地面2齐平,中心挖出一圆柱体,为竖井3口;最后一级台阶与地下管道1顶部衔接,中间台阶坡度为i,一般的i=30°~60°为宜;台阶上方回填料4与地面2齐平。所述井盖5结构及安装方法如图2所示,在井盖5设置通气孔10和通气中孔11,通气孔10均连通地下管道1与地面2大气;所述通气孔10呈阵列分布,孔径一般2cm~5cm;所述通气中孔11位于井盖5中心,孔径大于通气孔10,一般10cm~30cm,通气中孔11设置顶盖,该顶盖一端铰支,另一端卡入卡槽内,在孔内压力较大时可自动打开。
所述井盖5为一倒置锥形台,使用时水平放置,顶面与地面2平齐,制作材料一般为铸铁、塑料、混凝土或合成材料,重力为G。
所述井盖5通过井盖支座505固定于竖井底座7上,井盖支铰506固定于井盖5上,井盖支铰506可在井盖支座505上旋转开启或关闭井盖5;所述井盖5上侧设有提拉把手15,用以打开或关闭井盖5。
实施例二:
竖井3连通地面2大气与地下管道1,井盖5组件设置于竖井3顶部。井盖5组件的结构如图5至图6所示,主要包括以下组成部分:井盖空腔504、井盖5底座、井盖支座505、井盖支铰506、井盖肋板501、肋板轨道502、通气孔10、中孔、提拉把手15、限位软绳503、挂钩、软垫508。所述井盖5为一带有圆形(或方形)平板的锥形体,使用时平板水平放置,与地面2平齐,制作材料一般为铸铁、塑料、混凝土或合成材料,重力为G。
所述井盖空腔504腔体形状为倒置锥体,剖面形状为倒置等腰三角形,所述等腰三角形底角小于60°,设置为30°~50°,此时井盖5可自由打开而不碰到竖井3壁面;所述井盖空腔504四周开有众多通气孔10和临时检修孔,连通底面与竖井3内部。
所述井盖空腔504底面平板开有众多阵列通气孔10及中孔与地面2相通,所述通气孔10亦可汇流,孔径设置为1cm~5cm;所述中孔位于锥体底板中心,直径大于一般通气孔10,约为井盖5直径的1/10~1/20;孔顶设置一检修盖,该检修盖一端铰支,另一端卡入卡槽内,在井盖空腔504内压力较大时可自动打开。
所述井盖空腔504侧面亦开有众多通气孔10,开孔轴线方向与壁面垂直,这些通气孔10连通空腔与竖井3内部;锥体顶点处竖直开孔,空腔内液体可通过这些通气孔10进入竖井3内部。
所述井盖空腔504侧面通气孔10总面积大于其地面2平板开孔总面积。
所述井盖5通过井盖支座505固定于地面2,井盖支铰506固定于井盖支座505上,井盖5外缘设置井盖肋板501,井盖肋板501设置“S”型肋板轨道502,肋板轨道502安装于井盖支铰506上,并可沿“S”型轨道滑动,即井盖5水平时井盖支铰506位于肋板轨道502的一侧,井盖5打开过程中井盖支铰506可沿肋板轨道502滑动,井盖5垂直地面2位置时井盖支铰506移动至肋板轨道502的另一侧,此时井盖5被固定于竖井3一侧(图6);反之,井盖5关闭时,上提井盖5,然后井盖支铰506滑随肋板轨道502滑动。
所述井盖5上侧设有开启孔;支座支铰另一端井盖肋板501底部设置限位软绳503,限位软绳503通过活动挂钩固定于软绳支座507,软绳长度完全张开时限位井盖5最大打开范围15°~45°,若需要完全打开,只要放开软绳挂钩即可。
实施例三:
本实施例提出本发明的工作特点和原理:
1.井盖5设置多级水气分离措施,应对不同程度井喷强度:
(a)当井喷高度低于井盖5底部时,此时竖井3内与地面2大气压压差通过井盖5通气孔10连通平衡。
(b)当井喷高度接触到井盖5,且冲击力不足以平衡井盖5重量时,所喷射水汽混合物碰撞井盖5,部分水汽混合物落回地下管道1,另一部分通过通气孔10进入井盖空腔504,气液分离后液体通过通气孔10亦回落至地下管道1,多余气体依据当地气压高低排出或吸入,此为第一级水气分离;若水汽混合物进入井盖空腔504内后仍有大量能量,继续喷射到达井盖5顶板或空腔满溢,此时井盖空腔504内水汽混合物不仅通过空腔锥体侧面分离,亦通过井盖5顶板通气孔10溢出地面2,水流冲击或气压大于中孔顶 盖打开的临界压力时,中孔顶盖打开,增大水流溢出通道,此为第二级水气分离。
(c)当井喷强度足够大,喷射冲击力冲开井盖5时,由于限位软绳503作用,井盖5打开较小的角度,大大增加喷射混合物通道面积,在第二阶段水气分离的基础上,大量气体溢出,从而削减井喷强度,此为第三级水气分离。这三级水气分离措施可以应对任何不同强度的井喷现象。
在上述三级水气分离都无法完全释放截留气囊6时,进入下一步骤:管道内的大量截留气囊6聚集在地下管道1顶部并随着水流运移,截留气囊6经过竖井台阶8时,由于顶部突扩为自由边界,气囊容易及时释放;若水位波动剧烈且水位变化剧烈,可在上一级台阶处释放,在水流瞬变压力差极值尚未充分发展时及时改变台阶处流态,避免截留气囊6在竖井3口集中释放。竖井3内空腔通过井盖5通气孔10与地面2大气相通,能较好的平衡竖井3内瞬时压力变化(排除或吸入),坦化形成井喷现象的压力差极值,避免形成井喷所必要的发生条件。
2.井盖5杠杆平衡与限位措施联合使用:井盖5自重G的设计尤为重要,决定何时开启第三级水气分离措施(假设此时井喷冲击井盖5平均压力为P),根据杠杆平衡原理,井盖5重力设置为G=P;第三级水气分离措施启动后,井盖5会打开,此时为避免井盖5突然打开对地面2造成安全影响,因此设置限位措施联合使用,仅允许井盖5打开较小的通道,供水汽混合物分离后流出。中孔及其顶盖为应急自动打开顶盖措施,同时可以作为日常检修口使用,其顶盖设计方法亦可参照采用支铰和限位软绳503联合使用或其他卡扣方式,确保其在设定压力作用下可以自动打开即可。
3.井盖5打开和关闭使用方法:如图所示,打开井盖5时,提拉提拉把手15至井盖5脱离地面2,脱掉限位软绳503挂钩,继续提拉井盖5至垂直地面2位置(90°),此过程中井盖5在自重作用下井盖支铰506从肋板轨道502一端滑动至另一端,刚好卡在支座内并固定;关闭井盖5时,与打开流程相反。
台阶突扩释放压力和平顺过渡流态的原理:管道内的大量截留气囊聚集在地下管道顶部并随着水流运移,截留气囊经过顶部台阶壁面时,由于顶部突扩为自由边界,气囊容易及时平稳释放,而反向流动时则不易形成新的大尺度气囊,带有气泡的水体经过台阶突扩处可以快速释放气体;若水位波动剧烈且水位变化剧烈,第一级台阶未充分过渡时,可在下一级台阶处继续调整,因此,可以在水流瞬变压力差极值尚未充分发展时及时改变台阶处衔接流态,抑制井喷形成的压力极值必要条件,避免截留气囊在竖井口集 中释放。
实施例四:
减免排水竖井3井喷的井盖5结构示意图见图2和图7,竖井3连通地面2大气与地下管道1,井盖5组件设置于竖井3顶部。井盖5组件的结构如图5至图6所示,主要包括以下组成部分:井盖空腔504、井盖5底座、井盖支座505、井盖支铰506、井盖肋板501、肋板轨道502、通气孔10、通气中孔11、提拉把手15、限位软绳503、挂钩、软垫508。所述井盖5为一带有圆形(或方形)平板的锥形体,使用时平板水平放置,与地面2平齐,制作材料一般为铸铁、塑料、混凝土或合成材料,重力为G。
所述井盖空腔504腔体形状为倒置锥体,剖面形状为倒置等腰三角形,所述等腰三角形底角小于60°,设置为30°~50°,此时井盖5可自由打开而不碰到竖井3壁面;所述井盖空腔504四周开有众多通气孔10和临时检修孔,连通底面与竖井3内部。
所述井盖空腔504底面平板开有众多阵列通气孔10及中孔与地面2相通,所述通气孔10亦可汇流,孔径设置为1cm~5cm;所述中孔位于锥体底板中心,直径大于一般通气孔10,约为井盖5直径的1/10~1/20;孔顶设置一检修盖,该检修盖一端铰支,另一端卡入卡槽内,在井盖空腔504内压力较大时可自动打开。
所述井盖空腔504侧面亦开有众多通气孔10,开孔轴线方向与壁面垂直,这些通气孔10连通空腔与竖井3内部;锥体顶点处竖直开孔,空腔内液体可通过这些通气孔10进入竖井3内部。
所述井盖空腔504侧面通气孔10总面积大于其地面2平板开孔总面积。
所述井盖5通过井盖支座505固定于地面2,井盖支铰506固定于井盖支座505上,井盖5外缘设置井盖肋板501,井盖肋板501设置“S”型肋板轨道502,肋板轨道502安装于井盖支铰506上,并可沿“S”型轨道滑动,即井盖5水平时井盖支铰506位于肋板轨道502的一侧,井盖5打开过程中井盖支铰506可沿肋板轨道502滑动,井盖5垂直地面2位置时井盖支铰506移动至肋板轨道502的另一侧,此时井盖5被固定于竖井3一侧;反之,井盖5关闭时,上提井盖5,然后井盖支铰506滑随肋板轨道502滑动。
所述井盖5上侧设有开启孔;支座支铰另一端井盖肋板501底部设置限位软绳503,限位软绳503通过活动挂钩固定于软绳支座507,软绳长度完全张开时限位井盖5最大打开范围15°~45°,若需要完全打开,只要放开软绳挂钩即可。
井盖5结构的工作特点为:
井盖5设置多级水气分离措施,应对不同程度井喷强度:
(a)当井喷高度低于井盖5底部时,此时竖井3内与地面2大气压压差通过井盖5通气孔10连通平衡。
(b)当井喷高度接触到井盖5,且冲击力不足以平衡井盖5重量时,所喷射水气混合物碰撞井盖5,部分水气混合物落回地下管道1,另一部分通过通气孔10进入井盖空腔504,气液分离后液体通过通气孔10亦回落至地下管道1,多余气体依据当地气压高低排出或吸入,此为第一级水气分离;若水气混合物进入井盖空腔504内后仍有大量能量,继续喷射到达井盖5顶板或空腔满溢,此时井盖空腔504内水气混合物不仅通过空腔锥体侧面分离,亦通过井盖5顶板通气孔10溢出地面2,水流冲击或气压大于中孔顶盖打开的临界压力时,中孔顶盖打开,增大水流溢出通道,此为第二级水气分离。
(c)当井喷强度足够大,喷射冲击力冲开井盖5时,由于限位软绳503作用,井盖5打开较小的角度,大大增加喷射混合物通道面积,在第二阶段水气分离的基础上,大量气体溢出,从而削减井喷强度,此为第三级水气分离。这三级水气分离措施可以应对任何不同强度的井喷现象。
井盖5杠杆平衡与限位措施联合使用:
井盖5自重G的设计尤为重要,决定何时开启第三级水气分离措施(假设此时井喷冲击井盖5平均压力为P),根据杠杆平衡原理,井盖5重力设置为G=P;第三级水气分离措施启动后,井盖5会打开,此时为避免井盖5突然打开对地面2造成安全影响,因此设置限位措施联合使用,仅允许井盖5打开较小的通道,供水气混合物分离后流出。中孔及其顶盖为应急自动打开顶盖措施,同时可以作为日常检修口使用,其顶盖设计方法亦可参照采用支铰和限位软绳503联合使用或其他卡扣方式,确保其在设定压力作用下可以自动打开即可。
井盖5打开和关闭使用方法:
如图6所示,打开井盖5时,提起提拉把手15至井盖5脱离地面2,脱掉限位软绳503挂钩,继续提拉井盖5至垂直地面2位置(90°),此过程中井盖5在自重作用下井盖支铰506从肋板轨道502一端滑动至另一端,刚好卡在支座内并固定;关闭井盖5时,与打开流程相反。
如上所述,尽管参照特定的优选实施例已经表示和表述了本发明,但其不得解释为 对本发明自身的限制。在不脱离所附权利要求定义的本发明的精神和范围前提下,可对其在形式上和细节上做出各种变化。

Claims (15)

  1. 一种倒台阶式竖井结构,其特征是包括:设置于地下管道顶部的竖井腔体,设置在所述竖井两侧的多级倒台阶,以及设置于所述竖井顶部的井盖。
  2. 根据权利要求1所述的一种倒台阶式竖井结构,其特征在于:所述多级倒台阶沿所述竖井的洞口轴线镜像,竖井壁面形成“人字梯”形状,支撑于地下管道上方。
  3. 根据权利要求2所述的一种倒台阶式竖井结构,其特征在于:多级倒台阶中第一级台阶与地面齐平,中心挖出一圆形或方形镂空体,为竖井口;最后一级台阶与地下管道顶部衔接,台阶整体坡角在30°~60°之间,台阶级数为3~10级;所述台阶上方的回填料与地面齐平。
  4. 一种井盖结构,其特征在于:所述井盖结构为带有空腔的倒锥体,所述倒锥体底面为一平板,使用时所述井盖结构的平板水平放置,与地面平齐,锥体顶端朝下。
  5. 根据权利要求4所述的一种井盖结构,其特征在于:所述井盖倒锥体空腔的中心剖面形状为倒置等腰三角形,所述等腰三角形底角小于60°,设置为30°~50°;所述井盖结构包括井盖空腔、井盖倒锥体和平板,所述平板中心开有中孔,以及锥体表面的多个通气孔,所述中孔和通气孔连通井盖空腔和大气。
  6. 根据权利要求5所述的一种井盖结构,其特征在于:所述中孔的直径大于通气孔,所述中孔的直径为井盖直径的1/10~1/20,所述中孔设置顶盖,所述顶盖在预定压力作用下自动打开。
  7. 根据权利要求5所述的一种井盖结构,其特征在于:所述井盖倒锥体空腔的侧壁开设有多个通气孔,该通气孔的开孔轴线方向与壁面垂直,所述井盖空腔的锥体顶点处竖直开通气孔,所述通气孔连通所述井盖空腔与竖井内部。
  8. 根据权利要求7所述的一种井盖结构,其特征在于:所述井盖空腔的侧壁通气孔总面积略大于所述平板开通气孔总面积。
  9. 根据权利要求4所述的一种井盖结构,其特征在于:还包括开启孔、井盖支座和限位措施,所述限位措施包括限位软绳、软绳挂钩和软绳支座;所述井盖通过井盖支座固定于地面,井盖支铰固定于所述井盖支座上,井盖外缘从中心辐射设置井盖肋板,连接井盖支座的井盖肋板设置“S”型肋板轨道,所述肋板轨道位于井盖支铰上、且沿“S”型肋板轨道滑动。
  10. 根据权利要求9所述的一种井盖结构,其特征在于:所述限位软绳设置于所述井盖支座另一端井盖肋板底部,所述限位软绳通过活动挂钩临时固定于软绳支座,软绳 长度完全张开时限位井盖最大打开范围为15°~45°;所述开启孔开在所述软绳支座对应的井盖结构的平板上侧。
  11. 一种井喷减免方法,其特征是包括以下步骤:
    S1、设计第一级水气分离:当井喷高度低于井盖底部时,此时竖井内与地面大气压压差通过井盖通气孔连通并平衡竖井内外压差;
    S2、设计第二级水气分离:当井喷高度接触到井盖,且冲击力不足以平衡井盖重量时,所喷射水气混合物碰撞井盖,部分水气混合物落回地下管道,另一部分通过通气孔进入井盖空腔,气液分离后液体通过通气孔亦回落至地下管道,多余气体依据当地气压高低排出或吸入,此为第一级水气分离;
    若水气混合物进入井盖空腔内后仍有大于预定值的能量,继续喷射到达井盖顶板或空腔满溢,此时井盖空腔内水气混合物通过空腔锥体侧面分离,并通过井盖顶板通气孔溢出地面,水流冲击或气压大于中孔顶盖打开的临界压力时,中孔顶盖打开;
    S3、设计第三级水气分离:当井喷强度大于预定值,喷射冲击力冲开井盖时,由于限位软绳作用,井盖打开预定角度,连通竖井内外空腔,在第二阶段水气分离的基础上,预定体积的气体溢出,削减瞬时压力极值,从而减免井喷强度。
  12. 根据权利要求11所述的一种井喷减免方法,其特征在于,井盖打开和关闭时包括以下步骤:打开井盖时,提拉井盖把手至井盖脱离地面预定角度,脱掉限位软绳挂钩,继续提拉井盖至垂直地面位置,此过程中井盖在自重作用下井盖支铰从肋板轨道一端滑动至另一端,卡在支座内并固定;关闭井盖时,上提井盖,井盖支铰随肋板轨道滑动,与打开流程相反。
  13. 根据权利要求11所述的一种井喷减免方法,其特征在于,根据预设情形采取如下步骤进行井喷减免:
    情景1、多级气体压力释放:地下管道水流与竖井过渡时采用顶部突扩的多级倒台阶体型衔接,倒台阶体型利于管道中气体溢出和气囊释放,且流动反向时顶部不易卷入气体,从机理上平稳释放主流顶部已有截留气囊并抑制新的大气囊形成;
    情景2、竖井内部气压平衡:井盖设置通气孔连通地下管道与地面大气,及时补充、平衡竖井和地下管道内的非恒定气压,坦化形成井喷现象的驱动压力差极值,进一步抑制井喷发生的条件;
    情景3、当不可避免仍出现井喷现象时,井盖启动水气分离功能,应对不同强度井 喷,当井喷高度低于井盖高度时,即为情景2;当井喷高度接触到井盖高度时,且冲击力不足以平衡井盖重量时,所喷射水汽混合物碰撞台阶壁面或井盖,部分水汽混合物落回地下管道,另一部分通过井盖通气孔分离后溢出或回落至地下管道;若井喷强度大于预设值,甚至推开井盖或中孔顶盖时,中孔应急装置或限位装置启动,快速释放不稳定气压。
  14. 根据权利要求13所述的一种井喷减免方法,其特征在于:情景1和情景2互为响应,最大程度抑制形成井喷发生的条件,当井喷仍然发生时,为情景3,此时情景1和情景2仍然发挥作用,共同减免井喷。
  15. 根据权利要求13所述的一种井喷减免方法,其特征在于:情景1中多级倒台阶将截留气囊释放发生位置平移错开竖井井口,当发生喷溅现象时不会直接喷出竖井井口,同时扩大竖井底部空间、使得明流段长度增加。
PCT/CN2021/093639 2020-05-13 2021-05-13 一种井盖结构、倒台阶式竖井结构、以及井喷减免方法 WO2021228202A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010403854.XA CN111705841B (zh) 2020-05-13 2020-05-13 一种减免排水竖井井喷的井盖结构及其响应方法
CN202010403775.9 2020-05-13
CN202010403854.X 2020-05-13
CN202010403775.9A CN111705839B (zh) 2020-05-13 2020-05-13 一种倒台阶式竖井结构及其井喷减免方法

Publications (1)

Publication Number Publication Date
WO2021228202A1 true WO2021228202A1 (zh) 2021-11-18

Family

ID=78525317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/093639 WO2021228202A1 (zh) 2020-05-13 2021-05-13 一种井盖结构、倒台阶式竖井结构、以及井喷减免方法

Country Status (1)

Country Link
WO (1) WO2021228202A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3207670A1 (de) * 1982-03-03 1983-09-15 Oskar Vollmar GmbH, 7000 Stuttgart Reinigungsanordnung an einem abwasserbecken, regenbecken oder dergleichen
CN202099813U (zh) * 2011-04-26 2012-01-04 方三叶 一种模压组合式井体
CN202466787U (zh) * 2011-12-23 2012-10-03 温岭市旭日滚塑科技有限公司 检查井
JP5422852B1 (ja) * 2013-03-22 2014-02-19 俊哉 宮武 噴出し防止マンホール
WO2015192407A1 (zh) * 2014-06-17 2015-12-23 田艺儿 建筑工程井体结构
CN111705839A (zh) * 2020-05-13 2020-09-25 水利部交通运输部国家能源局南京水利科学研究院 一种倒台阶式竖井结构及其井喷减免方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3207670A1 (de) * 1982-03-03 1983-09-15 Oskar Vollmar GmbH, 7000 Stuttgart Reinigungsanordnung an einem abwasserbecken, regenbecken oder dergleichen
CN202099813U (zh) * 2011-04-26 2012-01-04 方三叶 一种模压组合式井体
CN202466787U (zh) * 2011-12-23 2012-10-03 温岭市旭日滚塑科技有限公司 检查井
JP5422852B1 (ja) * 2013-03-22 2014-02-19 俊哉 宮武 噴出し防止マンホール
WO2015192407A1 (zh) * 2014-06-17 2015-12-23 田艺儿 建筑工程井体结构
CN111705839A (zh) * 2020-05-13 2020-09-25 水利部交通运输部国家能源局南京水利科学研究院 一种倒台阶式竖井结构及其井喷减免方法

Similar Documents

Publication Publication Date Title
CN207499107U (zh) 一种城市道路应急排水装置
CN102852162A (zh) 一种可自动升降的排水井盖
CN108547368B (zh) 城市地下空间出入口具有阻挡涝水功能的雨水篦子
CN110093904B (zh) 一种具有分级取水功能的景观闸门及其工作方法
JP6574657B2 (ja) 雨水排水貯留設備
CN108999214B (zh) 一种带有泄压功能的井盖
CN106968225A (zh) 一种新型分级升降式挡水坝
CN111155626A (zh) 一种在下水涵洞口能自动疏通排水入口的装置
US6613228B2 (en) Manhole debris-catching system
CN111705839B (zh) 一种倒台阶式竖井结构及其井喷减免方法
WO2021228202A1 (zh) 一种井盖结构、倒台阶式竖井结构、以及井喷减免方法
US6743360B2 (en) Manhole debris-catching system
CN108193660B (zh) 一种气压式垂直升船机
CN206385741U (zh) 一种用于大型建筑物的虹吸排水系统
CN111705841B (zh) 一种减免排水竖井井喷的井盖结构及其响应方法
CN2896254Y (zh) 闭泄皮堵
CN206616561U (zh) 混合式混凝土泵送管槽
CN108755773A (zh) 一种快速排水防盗市政道路井盖
CN213805750U (zh) 一种一体化截流井
CN111894039B (zh) 用于管道工程的窨井及盖结构
CN211139264U (zh) 一种车辆自动减速及冲洗的栈桥装置
CN209585447U (zh) 一种重力流雨水系统消能装置
CN220486680U (zh) 一种带消能装置的排水检查井盖
KR20130056073A (ko) 맨홀뚜껑의 이탈제한 및 복원장치
CN216475956U (zh) 一种虹吸压力流雨水排水管道出口的消能装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21803007

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21803007

Country of ref document: EP

Kind code of ref document: A1