WO2021228180A1 - 业务数据分流方法、装置、基站和存储介质 - Google Patents

业务数据分流方法、装置、基站和存储介质 Download PDF

Info

Publication number
WO2021228180A1
WO2021228180A1 PCT/CN2021/093519 CN2021093519W WO2021228180A1 WO 2021228180 A1 WO2021228180 A1 WO 2021228180A1 CN 2021093519 W CN2021093519 W CN 2021093519W WO 2021228180 A1 WO2021228180 A1 WO 2021228180A1
Authority
WO
WIPO (PCT)
Prior art keywords
offload
load
shunt
current
adjustment information
Prior art date
Application number
PCT/CN2021/093519
Other languages
English (en)
French (fr)
Inventor
刘学斌
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2021228180A1 publication Critical patent/WO2021228180A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0876Network utilisation, e.g. volume of load or congestion level
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/16Threshold monitoring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints

Definitions

  • This application relates to the field of mobile communication technology, for example, to a method, device, base station, and storage medium for offloading service data.
  • the 5th Generation mobile communication system (the 5th Generation mobile communication system, 5G) has begun commercial deployment in many countries, and the 4G mobile communication system (4G) and 5G converged networking is a major networking method .
  • user equipment User Equipment, UE
  • 4G and 5G converged networking user equipment can connect to 4G base stations and 5G base stations at the same time, that is, the evolved universal terrestrial radio access network new wireless dual connection (Evolved-Universal Terrestrial Radio Access Network-New) Radio Dual Connectivity, E-UTRA-NR Dual Connectivity, EN-DC) UE, generally referred to as dual connectivity UE.
  • the air interface transmission of the control plane signaling (such as access or handover, etc.) between the dual-connected UE and the mobile network (including the base station and the core network) passes through the master node (Master Node, MN) (MN is also called anchor point, which belongs to 4G base station), and the air interface transmission of user plane service data may pass through the MN alone, or through a secondary node (Secondary Node, SN) (SN belongs to a 5G base station), or through the MN and SN at the same time.
  • Master Node, MN Master Node
  • SN secondary node
  • 5G base station 5G base station
  • the service data of dual-connected UEs can pass through the 5G base station alone, but when the 5G base station has a high load, or the dual-connected UE has a large traffic volume, or dual-connected UEs After the deterioration of the 5G air interface channel conditions and other situations, the 5G base station may not be able to meet the service requirements of the dual-connected UE. At this time, some service data can be considered to be offloaded to the 4G base station for transmission.
  • the ping-pong problem that repeatedly causes offloading is prone to occur.
  • the improved methods to solve the ping-pong problem usually require the bottom layer of the 4G base station to identify 4G-UEs (UEs that only support 4G but not dual connectivity and UEs that support dual connectivity but currently only connected to 4G) and dual connectivity UEs, and make differences. ⁇ Treatment.
  • This processing has a greater impact on the Medium Access Control (MAC) layer algorithm framework, which is the basic core of the 4G base station and has matured for commercial use.
  • MAC Medium Access Control
  • the offload point of the protocol is set at the upper-layer Packet Data Convergence Protocol (PDCP) layer
  • PDCP Packet Data Convergence Protocol
  • the cross-layer to the bottom layer is used for linkage offload processing, and considering that in the actual network, the UE that supports dual connectivity will be Under the two UE modes of 4G-UE and dual-connected UE, it is dynamically switched, and the change of the state of the upper layer must be notified to the lower layer to make corresponding adjustments, which increases the complexity and processing overhead.
  • PDCP Packet Data Convergence Protocol
  • a business data distribution method which is applied to the receiving end, including:
  • the current load information includes at least one of the current statistical load and the current measured load; according to the numerical relationship between the current load information and the load threshold, and the current load
  • the load correlation period of the information matching determines the offload adjustment information; the offload adjustment information is sent to the offload end, so that the offload end adjusts the offload service data volume of the offloaded end in stages according to the offload adjustment information.
  • a business data distribution method is also provided, which is applied to the distribution end, including:
  • the offloading adjustment information is determined by the stream receiving end according to the numerical relationship between the current load information of the service data and the load threshold threshold, and the load association matched by the current load information Periodic determination; the current load information includes at least one of the current statistical load and the current measurement load; and the data volume of the offload service at the flow receiving end is adjusted in stages according to the offload adjustment information.
  • a service data distribution device is also provided, which is configured at the receiving end, and includes:
  • the current load information acquiring module is configured to acquire current load information of the business data; wherein the current load information includes at least one of the current statistical load and the current measured load; the shunt adjustment information determining module is configured to be based on the current load The numerical relationship between the information and the load threshold threshold, and the load correlation period matched by the current load information determines the shunt adjustment information; the shunt adjustment information sending module is configured to send the shunt adjustment information to the shunt end, so that the The offload end adjusts the offload service data volume of the offload end in stages according to the offload adjustment information.
  • a service data distribution device is also provided, which is configured at the distribution end, and includes:
  • the offload adjustment information receiving module is configured to receive offload adjustment information sent by the stream receiver; wherein the offload adjustment information is determined by the stream receiver according to the numerical relationship between the current load information of the service data and the load threshold threshold, and The load correlation period matched by the current load information is determined; the current load information includes at least one of the current statistical load and the current measured load; the business data volume adjustment module is configured to adjust the receiving load in stages according to the shunt adjustment information. The amount of offloaded business data at the stream end.
  • a base station is also provided, and the base station includes:
  • One or more processors a storage device configured to store one or more programs; when the one or more programs are executed by the one or more processors, the one or more processors can realize the above The business data distribution method applied to the stream receiving end.
  • a computer storage medium is also provided, on which a computer program is stored, and when the program is executed by a processor, the above-mentioned service data distribution method applied to the distribution terminal is realized.
  • a base station is also provided, and the base station includes:
  • One or more processors a storage device configured to store one or more programs; when the one or more programs are executed by the one or more processors, the one or more processors can realize the above The business data distribution method applied to the stream receiving end.
  • a computer storage medium is also provided, on which a computer program is stored, and when the program is executed by a processor, the above-mentioned service data distribution method applied to the stream receiving end is realized.
  • FIG. 1 is a schematic diagram of an Option 3 sequence in a 5G networking standard provided by an embodiment of this application;
  • FIG. 2 is a schematic diagram of Option 7 sequence in a 5G networking standard provided by an embodiment of this application;
  • FIG. 3 is a schematic diagram of the Option 4 sequence in a 5G networking standard provided by an embodiment of this application;
  • FIG. 5 is a schematic diagram of the service bearer and service data distribution of Option 7, Option 7x, and Option 4 in a 5G networking standard provided by an embodiment of the application;
  • FIG. 6 is a schematic flowchart of a service data offloading method provided by an embodiment of this application.
  • FIG. 8 is a schematic flowchart of another service data offloading method provided by an embodiment of this application.
  • FIG. 9 is a schematic flowchart of another service data offloading method provided by an embodiment of this application.
  • FIG. 10 is a schematic diagram of a network composed of a distribution end, a flow receiving end, and a dual-link UE according to an embodiment of the application;
  • FIG. 11 is a schematic diagram of a flow splitting method between a flow splitting end S and a flow receiving end R according to an embodiment of the application;
  • FIG. 12 is a flowchart of service data offloading processing at the stream receiving end according to an embodiment of the application
  • FIG. 13 is a flowchart of a service data offloading process at an offload terminal provided by an embodiment of the application
  • FIG. 14 is a schematic flowchart of a service data offloading method provided by an embodiment of this application.
  • FIG. 15 is a schematic diagram of a service data offloading device provided by an embodiment of this application.
  • FIG. 16 is a schematic diagram of another service data offloading device provided by an embodiment of this application.
  • FIG. 18 is a schematic structural diagram of another base station provided by this application.
  • FIG. 1 is a schematic diagram of the Option 3 sequence in a 5G networking standard provided by an embodiment of this application.
  • Figure 2 is a schematic diagram of the Option 7 sequence in a 5G networking standard provided by an embodiment of this application.
  • Figure 3 is a schematic diagram of the Option 7 sequence in a 5G networking standard provided by an embodiment of this application.
  • the application embodiment provides a schematic diagram of the Option 4 sequence in a 5G networking standard.
  • Representatives of NSA include Option 3 sequence and Option 7 sequence, as shown in Figure 1 and Figure 2, where Option 3x is a commonly used 5G networking deployment method.
  • the core network is upgraded from 4G's Evolved Packet Core (EPC) to 5G's 5G Core Network (5GC), then the corresponding Option 3x will evolve into Option 7x.
  • the representative of SA has the Option 4 sequence, as shown in Figure 3.
  • the Long Term Evolution (LTE) in Figure 1 to Figure 3 is the Universal Mobile Telecommunications System (UMTS) developed by the 3rd Generation Partnership Project (3GPP) organization.
  • UMTS Universal Mobile Telecommunications System
  • NR stands for New Wireless.
  • Evolved LTE evolved LTE, eLTE
  • eLTE represents a combination of wireless communication solutions.
  • a UE that supports dual connectivity and has established dual connectivity is defined as a dual-connected UE, a UE that only supports 4G but does not support dual-connectivity (mainly the existing old 4G user terminals in the existing network) and supports dual-connectivity.
  • a UE that is connected but currently only connected to 4G is defined as 4G-UE, a UE that only supports 5G but not dual connectivity, and a UE that supports dual connectivity but currently only connected to 5G is defined as 5G-UE.
  • Both 4G-UE and 5G-UE are single-connection UEs.
  • the above-mentioned offloading of the service data is performed in the PDCP layer functional entity of the base station.
  • the PDCP layer of the offloading base station responsible for the offloading of the service data will offload the data to the radio link control of the offloaded base station. RLC) layer for transmission.
  • RLC radio link control of the offloaded base station.
  • MCG split bear the splitting end is MN, and the receiving end is SN.
  • SCG split bearer the splitting end is SN, and the receiving end is MN.
  • Figure 4 is a schematic diagram of the service bearer and service data offloading of Option 3 and Option 3x in a 5G networking standard provided by an embodiment of this application.
  • Figure 5 is a schematic diagram of Option 7 and Option 7 in a 5G networking standard provided by an embodiment of this application. Schematic diagram of Option 7x and Option 4 service bearer and service data offload.
  • SDAP in Figure 5 represents Service Discovery Application Profile.
  • the offload bearer type of Option 3 is MCG split bearer, and service data is offloaded from the 4G base station as the MN to the 5G base station as the SN.
  • the commonly deployed Option 3x offload bearer type is SCG split bearer, and service data is offloaded from the 5G base station serving as the SN to the 4G base station serving as the MN. That is, under Option 3x, the offload end is a 5G base station and the receiver end is a 4G base station.
  • the design of the service data offloading mechanism will have a greater impact on system performance, when performing service data offloading, it is necessary to consider the 4G-UE service load under the 4G base station, the transmission bandwidth, delay and time between the 4G base station and the core network. Factors such as jitter and 4G air interface channel quality of dual-connected UEs. If the service load of the 4G-UE under the 4G base station is already high and the user perception of the 4G-UE starts to be affected, it is not suitable to offload the service data of the dual-connected UE to the 4G base station to avoid affecting the user perception of the 4G-UE.
  • TCP Transmission Control Protocol
  • 4G/5G service shunting must be able to bring a better perception experience to dual-connected UEs, such as service rate increase or delay reduction, etc., while taking into account the overall performance of the shunt end, otherwise it should be rolled back (such as reducing or even closing ) Business diversion.
  • the 4G base station after the 4G base station allows the dual-connected UE to perform 4G/5G offload, it will cause the 4G base station Load to rise, causing the 4G base station Load to exceed THR_High and exit the offload. After exiting the offload, the 4G base station Load will drop again, which may be lower than THR_Low and start off again. This repeatedly causes the ping-pong problem of the offload. Although the timer or counter method to suppress the ping-pong problem can be used, the ping-pong problem cannot be solved fundamentally. .
  • Another improved method is that the 4G base station estimates in real time the amount of service data that can be carried by the remaining resources that the Load does not exceed THR_High according to the 4G status of the dual-connected UE, such as the quality of the air interface channel, so as to determine and control the 4G offloaded service data
  • this method also involves the adjustment of the underlying MAC layer algorithm of the 4G base station, which is more complicated and has a greater impact on the underlying technology of the 4G base station.
  • the above three improved methods all require the bottom layer of the 4G base station to identify 4G-UE and dual-connected UE, and perform differentiated processing, which has a greater impact on the MAC layer algorithm framework that is the basic core of 4G base stations and has been mature and commercialized.
  • the offload point in the protocol is set at the high-level PDCP layer, cross-layer to the bottom layer to perform linkage offload processing, and considering the actual network, the UE supporting dual connectivity will be dynamic under the two UE forms of 4G-UE and dual-connection UE. Transition, the change of high-level state must be notified to the bottom layer to make corresponding adjustments, which increases the complexity and processing overhead.
  • the PDCP layer of the base station performs shunt control of the service data, and adjusts the amount of shunted service data in stages according to the shunt adjustment information.
  • the ping-pong problem is simple and effective, applicable to all 4G/5G converged networking types, simplifies the service data distribution mechanism, and improves the efficiency and applicability of the service data distribution mechanism.
  • FIG. 6 is a schematic flowchart of a service data offloading method provided by an embodiment of this application. This method is suitable for the case of adaptively shunting business data without changing the underlying technology.
  • the method can be executed by the service data offloading device provided by the present application.
  • the service data offloading device can be implemented by software and/or hardware and integrated in a base station.
  • the base station can be used as a stream receiving end.
  • the stream receiving end can be For 4G base stations, the embodiment of this application does not limit the type of base station at the receiving end.
  • the service data offloading method provided by the embodiment of the present application includes:
  • the service data may be the service data of the user plane between the dual-connected UE and the mobile network.
  • the current load information may be the statistical load and/or the load information measured in real time by the flow receiving end according to the shunt control period, and may include, but is not limited to, at least one of the current statistical load and the current measured load. Among them, the current statistical load may be the load calculated according to the shunt control period.
  • the shunt control period may be a period set at the shunt end for shunt processing, and the period value of the shunt control period can be set according to actual requirements. The embodiment of the present application does not limit the period value of the shunt control period.
  • the current measurement load may be the load measured in real time at the receiving end.
  • the current load information of the service data can be obtained by the stream receiver.
  • the number of receiving ends may be multiple, and each receiving end may establish a shunt relationship with one or more shunt ends.
  • the current load information can be counted or measured by the MAC layer of the receiver and reported to the RLC layer of the receiver.
  • S120 Determine diversion adjustment information according to the numerical relationship between the current load information and the load threshold threshold, and the load association period matched by the current load information.
  • the offload adjustment information may be generated by the receiving end and sent to the offending end, and used for the information for the offending end to periodically adjust the amount of offloaded service data that is offloaded to the receiving end.
  • the load threshold may be a threshold set by the flow receiver for the current load information.
  • the number of load threshold thresholds may be multiple, such as 3 or more.
  • the embodiment of the present application does not limit the value and number of load threshold thresholds.
  • the load correlation period may be a period that matches the current load information, such as a shunt control period for periodic statistics load, or a super-high load duration period set for super-high loads.
  • the embodiment of the application also does not correlate loads. The content of the cycle is limited.
  • the RLC layer at the receiver side After the RLC layer at the receiver side obtains the current load information reported by the MAC layer, it can determine the offload adjustment information based on the numerical relationship between the current load information and the load threshold, and the load association period matched by the current load information. For example, when the current statistical load is less than one of the multiple load threshold thresholds, the diversion adjustment information for increasing the diversion is determined. When the current statistical load or the current measured load is greater than one of the multiple load threshold thresholds, the diversion adjustment information of the downward adjustment is determined. When the current statistical load is between two load threshold thresholds, or the current measured load is less than one of the multiple load threshold thresholds, the diversion adjustment information that is not adjusted is determined.
  • the amount of offloaded business data may be the amount of business data that is offloaded from the offloading end to the receiving end.
  • the shunt adjustment information can be sent to the shunt end.
  • the number of split ends may be multiple, and each split end may establish a split relationship with one or more receiving ends.
  • the offload end may receive offload adjustment information of each receiving end through the PDCP layer, and at the same time, the PDCP layer adjusts the offload service data volume of the offload end corresponding to the offload adjustment information in stages according to the offload adjustment information.
  • the step-by-step adjustment involved in the embodiments of the present application may be step-by-step adjustments up, down, or no adjustments according to a set step, instead of allowing or prohibiting offloading and other rigid control operations for offloaded service data volume.
  • the shunting end when the current statistical load counted by the receiving end exceeds the high load threshold, the shunting end will gradually reduce the shunting service data sent to the receiving end according to the shunt adjustment information determined and sent by the receiving end.
  • the shunting end When the current statistical load counted by the receiving end is lower than the low load threshold, the shunting end will gradually increase the shunting service sent to the receiving end according to the shunt adjustment information determined and sent by the receiving end. Data volume, thereby avoiding the ping-pong problem caused by directly allowing or prohibiting shunting.
  • the offload end of the embodiment of the present application can adjust the amount of offload service data sent to the stream receiving end only through the PDCP layer, without the need to link the bottom layer, and the implementation is simple and efficient.
  • the offloading terminal can periodically adjust the amount of offloaded service data sent to the receiving terminal according to the offloading adjustment information, thereby solving the ping-pong problem existing in the service data offloading mechanism and realizing adaptive offloading of service data.
  • the service data offloading method provided in the embodiments of the present application is applicable to all 4G/5G converged networking types, such as the Option 3/Option 4/Option 7 sequence, which improves the applicability of the service data offloading mechanism.
  • the flow receiving terminal obtains the current load information of the service data, determines the shunt adjustment information according to the numerical relationship between the current load information and the load threshold threshold, and the load correlation period matched by the current load information, and sets the shunt adjustment information Sent to the offloading end, so that the offloading end adjusts the amount of offloaded service data at the receiving end in stages according to the offloading adjustment information, solves the ping-pong problem in the offloading of business data, and realizes the adaptive offloading of business data, thereby simplifying the offloading operation of business data and improving The efficiency and applicability of business data offloading.
  • FIG. 7 is a schematic flowchart of another service data offloading method provided by an embodiment of the application. This embodiment is described on the basis of the above-mentioned embodiment.
  • the current load information for obtaining service data and the numerical relationship between the current load information and the load threshold threshold are given, and the current load
  • the load correlation period of the information matching determines an optional implementation of the shunt adjustment information.
  • the method of this embodiment may include:
  • S210 may include at least one of the following:
  • the flow receiving end may obtain the current statistical load of the service data according to the offload control period, so as to determine the matching offload adjustment information according to the current statistical load.
  • the receiving end may also measure the current load in real time to obtain the current measured load. Therefore, the receiver can determine the matching shunt adjustment information according to the current measurement load.
  • Step S211 can be implemented first, and then step S212 can be implemented, or step S212 can be implemented first, and then step S211 can be implemented. Implemented in parallel.
  • S220 Determine diversion adjustment information according to the numerical relationship between the current load information and the load threshold threshold, and the load association period matched by the current load information.
  • the load threshold threshold may include a low load threshold threshold and a high load threshold threshold; the load correlation period may include a shunt control period.
  • the low load threshold may be a threshold threshold for limiting the amount of offloaded service data
  • the high load threshold may be a threshold value for limiting the amount of offloaded service data.
  • the low load threshold threshold may be set to 60%
  • the high load threshold threshold may be set to 80%.
  • the embodiment of the application does not limit the values of the low load threshold and the high load threshold.
  • the offload adjustment information is rejected as the offload adjustment information, or, Set the shunt adjustment information to be empty; at the time of the shunt control period, when it is determined that the current statistical load is less than the low load threshold, the upward shunt adjustment information is used as the shunt adjustment information; at the time of the shunt control period, when the current statistical load is determined to be greater than the high In the case of the load threshold threshold, the down-regulated shunt adjustment information is used as the shunt adjustment information.
  • Up-regulation and diversion adjustment information can be information that periodically increases the amount of diversion service data
  • down-regulation and diversion adjustment information can be information that periodically decreases the amount of diversion service data
  • refusal of diversion adjustment information can be to keep the current diversion service data volume unchanged, that is, it is incorrect. Information about the adjustment of the data volume of the current offloading service.
  • the receiver can generate offload adjustment rejection information and send it to the offload. Or directly do not send any adjustment information to the diversion end; if the current statistical load is less than the low load threshold, the receiver can generate up-regulation diversion adjustment information and send it to the diversion end; if the current statistical load is greater than the high load threshold, the receiver can The down-regulation and shunt adjustment information can be generated and sent to the shunt end.
  • the load threshold threshold may also include an ultra-high load threshold threshold; the load correlation period may also include an ultra-high load duration period.
  • the ultra-high load threshold may be a threshold value used to limit the amount of down-regulated traffic data, and its value must be greater than the high load threshold.
  • the super-high load threshold is mainly used to determine whether there is a sudden super-high load.
  • the ultra-high load threshold may be set to a value of 90%.
  • S220 may also include:
  • FIG. 7 is only a schematic diagram of an implementation mode. There is no sequence relationship between steps S221-S225 and steps S226-S228. Steps S221-S225 can be implemented first, and then steps S226-S228, or step S226- S228, then implement steps S221-S225, or both can be implemented in parallel.
  • the sending the shunt adjustment information to at least one shunt end may include: sending the shunt adjustment information to all users according to a shunt control period or an ultra-high load duration period.
  • the receiving end can send the shunt adjustment information to the shunting end according to a fixed shunt control period. Once a sudden over-high load occurs in the network of the receiving end, the receiving end can immediately send the down-regulation shunt adjustment information to the shunt end after determining that the duration of the sudden over-high load reaches the super-high load duration period.
  • the receiver can send the diversion adjustment information to all diversion terminals that have established a diversion relationship with the receiver, or the receiver can also send diversion adjustment information only to the diversion control period (super high load duration period). Control period) or the shunt end that established a shunt relationship with the receiver during the last shunt control period.
  • the receiving end determines the shunt adjustment information through a fixed shunt control period, so that the shunting end periodically adjusts the amount of shunt service data sent to the receiving end; and a burst super high is detected at the receiving end
  • the receiving end immediately sends down-adjustment and shunt adjustment information to the shunt end, so that the shunt end immediately adjusts the amount of shunt service data sent to the receiving end in response to a sudden over-high load situation, and realizes the reduction of the amount of shunt service data at the receiving end.
  • the fine adjustment can effectively avoid the ping-pong problem, realize the adaptive shunt of business data, simplify the service data shunt mechanism, and improve the efficiency and applicability of the service data shunt mechanism.
  • FIG. 8 is a schematic flowchart of another service data offloading method provided by an embodiment of this application.
  • This method is suitable for the case of adaptively shunting business data without changing the underlying technology.
  • the method can be executed by the service data offloading device provided in the present application.
  • the service data offloading device can be implemented by software and/or hardware and integrated in the base station.
  • the base station can be used as the offload terminal.
  • the offload terminal can be a 4G base station. Or a 5G base station, the embodiment of this application does not limit the type of the base station at the offload end.
  • S310 Receive the offload adjustment information sent by the stream receiver; wherein the offload adjustment information is determined by the stream receiver according to the numerical relationship between the current load information of the service data and the load threshold, and the load association matched by the current load information Periodic determination; the current load information includes at least one of the current statistical load and the current measured load.
  • S320 Adjust the data volume of the offload service at the stream receiving end in stages according to the offload adjustment information.
  • the offload end may receive offload adjustment information sent by the offload end through the PDCP layer, and at the same time, the PDCP layer adjusts the offload service data volume of the offload end according to the offload adjustment information in stages. For example, when the current statistical load of the receiving end exceeds the high load threshold, the shunting end will gradually reduce the amount of shunt service data sent to the receiving end according to the set step. When the current statistical load of the receiving end is lower than the low load threshold, the shunting end will gradually increase the amount of shunt service data sent to the receiving end according to the set step, thereby avoiding the ping-pong problem caused by directly allowing or prohibiting shunting.
  • the current load information of the service data is obtained through the flow receiving terminal to determine the shunt adjustment information according to the numerical relationship between the current load information and the load threshold threshold, and the load association period matched by the current load information, and the shunt adjustment information Send to at least one shunt end.
  • the shunt end receives the shunt adjustment information sent by the receiver, it adjusts the shunt service data volume of the receiver in stages according to the shunt adjustment information, solves the ping-pong problem of the service data shunt mechanism, and realizes the adaptive shunt of the service data, thereby simplifying the service Data distribution mechanism, and improve the efficiency and applicability of the business data distribution mechanism.
  • FIG. 9 is a schematic flowchart of another service data offloading method provided by an embodiment of this application. This embodiment is described on the basis of the above-mentioned embodiment.
  • a method of receiving offload adjustment information sent by the stream receiving end and adjusting the offload service data volume of the stream receiving end according to the offload adjustment information is given.
  • Optional implementation is given.
  • an optional implementation method for adjusting the current offload service data volume of multiple offload terminals is given. As shown in FIG. 9, the method of this embodiment may include:
  • the receiving the offload adjustment information sent by the stream receiving end may include: receiving the offload adjustment information sent by the stream receiving end according to the offload control period; or, receiving the stream receiving end Diversion adjustment information sent in accordance with the ultra-high load continuous period.
  • the shunting end may receive the shunt adjustment information sent by the receiving end according to a fixed shunt control period. If a sudden over-high load occurs at the receiving end, the shunting end can receive the shunt adjustment information immediately sent by the receiving end according to the super-high load duration period.
  • the current shunt service data volume of the receiving end may not be adjusted.
  • Make adjustments If the shunt end receives the up-regulation shunt adjustment information at the time of the shunt control period, it can increase the current shunt service data volume of the receiving end according to the shunt data adjustment step. If the shunt end receives the down-regulation shunt adjustment information at the time of the shunt control period, it can lower the current shunt service data volume of the stream-receiving end according to the shunt data adjustment step.
  • FIG. 9 is only a schematic diagram of an implementation manner, and there is no sequential execution sequence among the multiple sub-steps included in step S420.
  • the offload terminal may be a dual-connected UE participating in offload.
  • the current shunt gain may be the gain brought about by the shunt operation of the shunt terminal.
  • the current shunt gain may include: a current rate shunt gain, a current delay shunt gain, or a current spectral efficiency shunt gain.
  • the current rate split gain may be the current rate gain of the split terminal
  • the current delay split gain may be the current delay gain of the split terminal
  • the current spectral efficiency split gain may be the current spectrum efficiency gain of the split terminal.
  • the offload terminal may also determine the current offload gain of each offload terminal participating in offloading in real time, so as to adjust the current offload service data volume of each offload terminal according to the current offload gain of each offload terminal. In order to obtain a better overall shunt gain, thereby improving the processing efficiency of business data.
  • the current shunt gain may include a high shunt positive gain, a low shunt positive gain, a low shunt negative gain, or a zero gain; the current shunt gain of each shunt terminal is The adjustment of the current offload service data volume of each offload terminal may include: increasing the current offload service data volume of the offload terminal corresponding to the high offload positive gain under the condition that the upper threshold of the offload service data amount is guaranteed; The current offload service data volume of the offload terminal corresponding to the low offload positive gain; stop the current offload service data volume of the offload terminal corresponding to the low offload negative gain, and maintain the set off stop time; set the offload terminal corresponding to the zero gain Perform gain processing in accordance with the set gain processing method.
  • the set shunt stop duration may be a duration set according to actual requirements, and the embodiment of the present application does not limit the value of the set shunt stop duration.
  • the set gain processing method may be a manner of performing gain processing on the offload terminal corresponding to zero gain. For example, the offload terminal corresponding to zero gain is set to process the current offload service data volume according to the average gain, the predicted gain or the high gain.
  • the current offload service data volume of each offload terminal participating in offloading can also be adjusted.
  • the offload terminal needs to increase the high offload positive gain while ensuring the upper threshold of the offload service data volume.
  • the current offload service data volume of the corresponding offload terminal reduce the current offload service data volume of the offload terminal corresponding to the low offload positive gain, and stop the current offload service data volume of the offload terminal corresponding to the low offload negative gain, and maintain the set offload stop
  • the shunt terminal corresponding to zero gain is subjected to gain processing in accordance with the set gain processing mode.
  • Newly-entered dual-connected UEs can distribute the traffic data volume according to average gain, predicted gain, or high gain, and allocate it under the principle of fairness and efficiency.
  • the base station responsible for controlling offloading is defined as the offloading end, and the base station receiving the offloading is defined as the receiving end.
  • Multiple split ends and multiple receivers can be set up in the network. Each splitter can establish a split relationship with one or more receivers, and each receiver can also establish a split relationship with one or more splitter. .
  • Multiple types of UEs can be accessed in the network. Some UEs are dual-connected to a shunt end and a stream-receiving end, and some of the dual-connected UEs in this part of the UE perform service shunting. The receiving end can set the shunt control period to periodically perform shunt processing.
  • the receiver can also set the step size of the offload data adjustment.
  • the amount of offload business data that needs to be adjusted can be adjusted in stages according to the offload data adjustment step size, including up or down; for the amount of offload business data that does not need to be adjusted, no adjustment is required. .
  • the receiving end sets the high-load threshold of periodically down-adjusting the shunt and the low-load threshold of periodically increasing the shunt to realize the periodic and stage adjustment of the shunt service data.
  • the receiver can also set the super-high load threshold threshold that prohibits shunting suddenly.
  • the super-high load threshold is higher than the high-load threshold.
  • the super-high load duration corresponding to the super-high load threshold can be set.
  • the duration of the period is less than the shunt control period.
  • the ultra-high load duration period can be set by means of a timer.
  • the receiving end needs to obtain its own load in real time and perform statistics according to the shunt control cycle.
  • the receiving end finds that the current measured load reaches or exceeds the ultra-high load threshold, and the duration reaches the ultra-high load duration period, it will immediately send to all the shunt ends that have established a shunt relationship with the receiving end or the last shunt control period has expired.
  • the shunt end that actually has a shunt relationship with the stream receiving end at the current moment sends down-regulation shunt adjustment information. After the relevant shunt end receives the down-regulation shunt adjustment information, it can lower the shunt service data volume according to the shunt data adjustment step.
  • the current statistical load counted by the receiving end according to the shunt control period reaches or exceeds the high load threshold, it will be distributed to all shunt ends that have established a shunt relationship with the receiving end or the statistical shunt control according to the time point of the shunt control period.
  • the shunt end that actually has a shunt relationship with the receiving end during the cycle sends down-adjust shunt adjustment information.
  • the relevant shunt end After the relevant shunt end receives the down-regulation shunt adjustment information, it can lower the shunt business data volume according to the shunt data adjustment step; if the current statistical load counted by the stream-receiving end according to the shunt control cycle reaches or falls below the low load threshold, it will follow the shunt At the time point of the control cycle, the up-regulation diversion adjustment information is sent to all diversion ends that have established a diversion relationship with the flow receiving end or the diversion ends that actually have a diversion relationship with the flow receiving end during the statistical diversion control period.
  • the relevant shunt end After the relevant shunt end receives the up-scale shunt adjustment information, it can increase the shunt service data volume according to the shunt data adjustment step; if the current statistical load counted by the receiver according to the shunt control cycle is between the high load threshold and the low load threshold.
  • the receiving end does not send shunt adjustment information at the time of the shunt control period, or to all shunt ends that have established a shunt relationship with the receiving end at the time of the shunt control period, or the actual statistics of the shunt control period and the receiving end.
  • the shunt end that has a shunt relationship sends a shunt adjustment rejection message. After the relevant offload terminal receives the offload adjustment rejection information, it may not adjust the offload service data volume.
  • the shunt end adjusts the amount of service data shunted to the shunt end according to the shunt adjustment information sent by an associated stream end at the current moment, as the subsequent upper limit threshold for the shunt service data volume to be adjusted, and the minimum value of the upper limit threshold for the shunt service data volume It is 0, that is, if the current offload service data volume is 0, the offload service data volume will not be reduced.
  • the offload end may also perform offload adjustment according to the current offload gain of the dual-connected UE participating in the offload. If the current offload gain of a dual-connected UE is low, such as lower than the average offload gain, reduce the proportion of the offload service data volume of this UE. If the current shunt gain of a pair of connected UEs is negative, the shunt is stopped and the set shunt stop duration is maintained. The dual-connected EU can be re-distributed after the set off-stop duration ends, so as to improve the processing efficiency of service data. If the current offload gain is a positive gain and the gain value is relatively high, the proportion of the offload service data volume can be increased, but it must be ensured that the total offload service data volume cannot exceed the upper limit threshold of the offload service data volume.
  • FIG. 10 is a schematic diagram of a network composed of a distribution terminal, a flow receiving terminal, and a dual-link UE provided in an embodiment of the application.
  • a network composed of a distribution terminal, a flow receiving terminal, and a dual-link UE provided in an embodiment of the application.
  • There is a shunt relationship between the shunt end and the receiver end, and 4 of them are connected to this network and established
  • dual-connected UE1, UE2, UE3, and UE4 they are dual-connected to different combinations of the splitter and receiver respectively, and these dual-linked UEs can all perform business data splitting.
  • FIG. 11 is a schematic diagram of a flow splitting method between the flow splitting end S and the flow receiving end R according to an embodiment of the application.
  • the PDCP of the offloading terminal S is responsible for controlling the amount of offloaded service data, and performs the sending and receiving of offloaded service data with the RLC layer of the receiving terminal R.
  • the receiving end R counts its own load, and generates shunt adjustment information to feed back to the shunt end S.
  • the shunt end S determines the amount of data that can be shunted to R at the next cycle time or the current time according to the shunt adjustment information of the receiver R, and combines the current service requirements of the UE that has a dual connection relationship with the shunt end S and the receiver R And some other conditions, such as offload gain, etc., redistribute to determine the amount of offload service data for each UE.
  • FIG. 12 is a flow chart of the service data offloading processing at the receiving end according to an embodiment of the application.
  • the receiving end R can count its own load in real time and compare it with the low load threshold.
  • the threshold, the high load threshold and the ultra-high load threshold are compared to generate periodic shunt adjustment information or burst shunt adjustment information, and send it to all shunt ends or shunt ends that have shunts at the current moment.
  • FIG. 13 is a flowchart of service data offload processing at the offload terminal provided by an embodiment of the application. As shown in FIG.
  • the offloading terminal S can calculate the offloading gain of each dual-connected UE and receive the periodic offloading adjustment information or the bursty offloading adjustment information of the receiving end R.
  • the shunt end S needs to reallocate the shunt data volume of each UE according to the current UE’s service data shunt requirements and the current shunt gain of each UE.
  • Newly entered dual-connected UEs can be processed according to average gain, predicted gain, or high gain, and the amount of offloaded service data can be allocated under the principle of fairness and efficiency.
  • the shunt data adjustment step of the receiving end R is set as Indicates that in the new shunt control cycle, compared to the previous cycle, the amount of data that needs to be adjusted every 1 second is evenly spread.
  • the network has one offloading terminal S and one receiving terminal R, and one dual-connected UE, and there is no burst super high load.
  • the UE has been dual-connected to the shunting end S and the receiving end R at time t and performing service data shunting.
  • the flow receiving end R sends the down-regulating and shunting adjustment information to the shunting end S. After receiving this information, the offloading terminal S adjusts the amount of offloaded business data in the previous cycle according to the offloaded data. Decrease it as the upper threshold for the amount of offloaded business data in the next cycle.
  • the flow receiving end R sends the up-regulation and diversion adjustment information to the diversion end S.
  • the shunt end S adjusts the amount of shunt data according to the shunt data. Make an upward adjustment.
  • the network has one offloading terminal S and one receiving terminal R, one dual-connected UE, and there is a burst of super-high load.
  • the UE has been dual-connected to perform service data offloading on the offloading end S and the receiving end R.
  • the flow receiving end R sends the down-regulating and shunting adjustment information to the shunting end S. After receiving this information, the offloading terminal S adjusts the amount of offloaded business data in the previous cycle according to the offloaded data. Decrease it as the upper threshold for the amount of offloaded business data in the next cycle.
  • the shunt end S After receiving this information, the shunt end S immediately adjusts the amount of shunted business data according to the shunt data. Make a downward adjustment.
  • the flow receiving end R sends the up-regulation and diversion adjustment information to the diversion end S.
  • the shunt end S adjusts the amount of shunted business data according to the shunt data. Make an upward adjustment.
  • UE1, UE2, and UE3 are dual-connected at time t to perform service offloading on the offloading end S and the receiving end R.
  • the offloading terminal S actively stops the offloading of the service data of the UE3 and maintains the set offload stop duration T1, and redistributes the amount of offloaded service data between UE1 and UE2.
  • the ratio of the current offload service data volume that can be allocated by UE1 to the current offload service data volume that can be allocated by UE2 can be adjusted upward with reference to the gain ratio on the basis of the corresponding ratio at the time of the previous cycle.
  • the ratio of the current offload service data volume of UE1, UE2, and UE3 at the last cycle time is 1:1:1, and the current offload service data volume ratio of UE1 and UE2 at the current cycle time can be set to 2:1.
  • the flow receiving end R sends the down-regulating and shunting adjustment information to the shunting end S. After receiving this information, the offloading terminal S adjusts the amount of offloaded business data in the previous cycle according to the offloaded data. Decrease it as the upper threshold for the amount of offloaded business data in the next cycle.
  • the data volume of the offload service is re-allocated for each UE based on the UE entry or exit and offload gain counted at time t+T.
  • the split gain of UE1 becomes 10%
  • the split gain of UE2 becomes 30%
  • UE3 has exited the dual connection, and a new UE4 enters.
  • the split gain is the average gain, that is, 20%.
  • the shunt end S re-allocates the shunt data volume from time t+T to t+2 ⁇ T based on the shunt gains of the three UEs.
  • the UE with a higher gain allocates a higher amount of shunt service data
  • the UE with a lower gain allocates a higher volume of shunt data. The amount of data is lower.
  • the network has a split end S1, a split end S2, a receiver R, and 2 dual-connected UEs.
  • UE1 is dual-connected to split service data on the splitting end S1 and the flow receiving end R
  • UE2 is dual-connected to splitting service data on the splitting end S2 and the flow receiving end R at time t.
  • the shunt end S1 and the shunt end S2 each adjust the amount of shunt business data in the previous cycle according to the shunt data. Decrease it as the upper threshold for the amount of offloaded business data in the next cycle.
  • the shunt end S1 After the shunt end S1 receives this information, it adjusts the amount of shunt business data in the previous cycle according to the shunt data. Increase it as the upper limit threshold for the amount of offloaded business data in the next cycle.
  • the flow receiving end R may also send the up-regulation and diversion adjustment information to the diversion end S1 and the diversion end S2 at the same time. After receiving this information, the shunt end S1 and the shunt end S2 each adjust the amount of shunt business data in the previous cycle according to the shunt data. Increase it as the upper limit threshold for the amount of offloaded business data in the next cycle.
  • the business load in commercial networks changes dynamically, and most of them have relatively stable business models.
  • the service shunting of dual-connected UEs needs to be reduced, and the service requirements of its own single-connected UE are guaranteed first. If the load of its own single-connected UE continues to rise, the resources released by the dual-connected UE shunt reduction will be occupied by the single-connected UE in time, making the load on the receiving end remain high, and the amount of shunt service data will continue to decrease according to the step length , It is reduced to 0 at most.
  • the offload end can reallocate the offload service data volume of each UE according to the offload gain of each dual-connected UE under its own, so that the offload can obtain the maximum gain.
  • the service data offloading method restricts the offloading control of the business data at the PDCP layer of the base station, and adjusts the amount of offloaded data according to an appropriate period and step length, does not generate a ping-pong phenomenon, and can cope with sudden changes.
  • the load is adjusted in time.
  • adjusting the data volume of the offload service based on the offload gain of the user terminal can obtain a better overall offload gain.
  • the service data offloading method provided by the embodiments of this application does not need to modify the underlying technology of the base station, is simple and effective, and is suitable for all 4G/5G converged networking types, such as Option 3/Option 4/Option 7 sequence, namely MCG Split bear or SCG split bear, the type of base station where the shunt point is located can be any type, such as 4G base stations and/or 5G base stations.
  • FIG. 14 is a schematic flowchart of a service data offloading method provided by an embodiment of this application. As shown in FIG. 14, the method in this embodiment may include:
  • the receiver obtains the current load information of the service data.
  • the flow receiver determines the diversion adjustment information according to the numerical relationship between the current load information and the load threshold threshold, and the load association period matched by the current load information.
  • the receiving end sends the offload adjustment information to at least one offloading end, so that the offending end adjusts the amount of offloaded service data of the receiving end in stages according to the offloading adjustment information.
  • the offload terminal adjusts the offload service data volume of the traffic receiving terminal in stages according to the offload adjustment information.
  • the current load information of the service data is obtained through the flow receiving terminal to determine the shunt adjustment information according to the numerical relationship between the current load information and the load threshold threshold, and the load association period matched by the current load information, and the shunt adjustment information Send to at least one shunt end.
  • the shunt end receives the shunt adjustment information sent by the receiver, it adjusts the shunt service data volume of the receiver in stages according to the shunt adjustment information, solves the ping-pong problem of the service data shunt mechanism, and realizes the adaptive shunt of the service data, thereby simplifying the service Data distribution mechanism, and improve the efficiency and applicability of the business data distribution mechanism.
  • FIG. 15 is a schematic diagram of a service data offloading device provided by an embodiment of this application.
  • the device can be implemented by software and/or hardware and integrated in a base station.
  • the base station can be used as a stream receiver.
  • the receiving end may be a 4G base station, and the embodiment of the application does not limit the type of the receiving end of the base station.
  • the service data distribution device includes: a current load information acquisition module 510, a distribution adjustment information determination module 520, and a distribution adjustment information sending module 530, where:
  • the current load information acquisition module 510 is configured to acquire current load information of the service data; wherein the current load information includes current statistical load and current measurement load; the shunt adjustment information determination module 520 is configured to obtain current load information and load information according to the current load information. The numerical relationship between the threshold thresholds and the load correlation period matched by the current load information determines the shunt adjustment information; the shunt adjustment information sending module 530 is configured to send the shunt adjustment information to at least one shunt end, so that the The offload end adjusts the offload service data volume of the offload end in stages according to the offload adjustment information.
  • the current load information of the service data is obtained through the flow receiving terminal to determine the shunt adjustment information according to the numerical relationship between the current load information and the load threshold threshold, and the load association period matched by the current load information, and the shunt adjustment information Sent to at least one offload end, so that the offload end adjusts the amount of offloaded service data at the receiving end in stages according to the offload adjustment information, solves the ping-pong problem in the service data offloading mechanism, and realizes the adaptive offloading of service data, thereby simplifying the service data offloading mechanism , And improve the efficiency and applicability of the business data distribution mechanism.
  • the current load information obtaining module 510 is configured to obtain the current statistical load of the service data according to the offload control period, or to measure the current load in real time to obtain the current measured load.
  • the load threshold threshold includes a low load threshold threshold and a high load threshold threshold;
  • the load correlation period includes a shunt control period;
  • the shunt adjustment information determining module 520 is set to: at the time of the shunt control period, when the current is determined When the statistical load is greater than or equal to the low-load threshold and less than or equal to the high-load threshold, the shunt adjustment information is rejected as the shunt adjustment information, or the shunt adjustment information is set to be empty; at the time of the shunt control period In the case where it is determined that the current statistical load is less than the low-load threshold threshold, increase the diversion adjustment information as the diversion adjustment information; at the time of the diversion control period, when it is determined that the current statistical load is greater than the high-load threshold threshold , Use the down-regulated shunt adjustment information as the shunt adjustment information.
  • the load threshold threshold includes an ultra-high load threshold threshold; the load correlation period includes an ultra-high load duration period; the shunt adjustment information determining module 520 is configured to: determine the current measured load during the shunt control period When the current measured load is greater than or equal to the super-high load threshold threshold, and the duration of the current measured load greater than or equal to the super-high load threshold reaches the super-high load duration period, the down-regulated shunt adjustment information is used as the shunt adjustment information.
  • the shunt adjustment information sending module 530 is configured to send the shunt adjustment information to all shunt terminals that have a shunt relationship with the stream receiving end according to the shunt control period or the ultra-high load duration period, or according to the shunt control period Or the ultra-high load duration period, the shunt adjustment information is sent to the shunt end that has established a shunt relationship with the receiver in the current shunt control period or the previous shunt control period.
  • the above-mentioned service data distribution device can execute the service data distribution method applied to the stream receiving end provided by the embodiments of the present application, and has the corresponding functional modules and effects of the execution method.
  • the service data offloading method applied to the stream receiving end provided in the embodiment of this application.
  • FIG. 16 is a schematic diagram of another service data offloading device provided by an embodiment of the application.
  • the device can be implemented by software and/or hardware and integrated in a base station.
  • the base station can be used as a offloading terminal.
  • the offload end may be a 4G base station or a 5G base station, and the embodiment of the present application does not limit the type of the offload end base station.
  • the service data distribution device includes: a distribution adjustment information receiving module 610 and a service data volume adjustment module 620, where:
  • the offload adjustment information receiving module 610 is configured to receive offload adjustment information sent by the stream receiver; wherein the offload adjustment information is determined by the stream receiver according to the numerical relationship between the current load information of the service data and the load threshold threshold, and the The load correlation period matched by the current load information is determined; the current load information includes the current statistical load and the current measurement load; the service data volume adjustment module 620 is configured to periodically adjust the offload service data of the receiving end according to the offload adjustment information quantity.
  • the current load information of the service data is obtained through the flow receiving terminal to determine the shunt adjustment information according to the numerical relationship between the current load information and the load threshold threshold, and the load association period matched by the current load information, and the shunt adjustment information Send to at least one shunt end.
  • the shunt end receives the shunt adjustment information sent by the receiver, it adjusts the shunt service data volume of the receiver in stages according to the shunt adjustment information, solves the ping-pong problem of the service data shunt mechanism, and realizes the adaptive shunt of the service data, thereby simplifying the service Data distribution mechanism, and improve the efficiency and applicability of the business data distribution mechanism.
  • the offload adjustment information receiving module 610 is configured to: receive offload adjustment information sent by the stream receiver according to the offload control period; or receive offload adjustment information sent by the stream receiver according to the super-high load continuous period.
  • the diversion adjustment information includes refusal diversion adjustment information, empty diversion adjustment information, upward diversion adjustment information, or downward diversion adjustment information;
  • the service data volume adjustment module 620 is set to: at the time of the diversion control period, according to the Reject the offload adjustment information or the empty offload adjustment information, and refuse to adjust the current offload service data volume of the flow receiving end; at the time of the offload control period, according to the up-adjusted offload adjustment information, increase the amount of data according to the offload data adjustment step.
  • the current offload service data volume; at the moment of the offload control period, the current offload service data volume is reduced according to the offload data adjustment step according to the down-adjusted offload adjustment information.
  • the shunt adjustment information includes down-adjustment shunt adjustment information; the service data volume adjustment module 620 is configured to: at the time of the super-high load duration period, according to the down-adjust shunt adjustment information, down-adjust the data according to the shunt data adjustment step. Describe the current volume of offloaded business data.
  • the service data offloading device further includes: a current offload gain determining module configured to determine the current offload gain of each offload terminal participating in offloading; a current offload service data volume adjustment module set to be based on the current offloading of each offload terminal Gain to adjust the current offload service data volume of each offload terminal.
  • a current offload gain determining module configured to determine the current offload gain of each offload terminal participating in offloading
  • a current offload service data volume adjustment module set to be based on the current offloading of each offload terminal Gain to adjust the current offload service data volume of each offload terminal.
  • the current shunt gain includes a high shunt positive gain, a low shunt positive gain, a low shunt negative gain, or a zero gain;
  • the current shunt service data volume adjustment module is set to: under the condition that the upper threshold of the shunt service data volume is guaranteed, Increase the current offload service data volume of the offload terminal corresponding to the high offload positive gain; reduce the current offload service data volume of the offload terminal corresponding to the low offload positive gain; stop the current offload of the offload terminal corresponding to the low offload negative gain
  • the amount of service data is maintained, and the set shunt stop duration is maintained; the shunt terminal corresponding to the zero gain is subjected to gain processing according to the set gain processing mode.
  • the current shunt gain includes: a current rate shunt gain, a current delay shunt gain, or a current spectral efficiency shunt gain.
  • the above-mentioned service data distribution device can execute the service data distribution method applied to the distribution terminal provided by the embodiment of the present application, and has the corresponding functional modules and effects of the execution method.
  • the service data offloading method applied to the offload terminal provided in the embodiment of this application.
  • FIG. 17 is a schematic structural diagram of a base station provided in this application.
  • the base station provided in this application includes: one or more base stations.
  • the processor 710 and the storage device 720 in the base station may be connected through a bus or other methods.
  • the connection through a bus is taken as an example.
  • the storage device 720 can be configured to store software programs, computer-executable programs, and modules, such as the program instructions/modules ( For example, it is applied to the current load information acquisition module 510, the offload adjustment information determining module 520, and the offload adjustment information sending module 530 in the service data offload device of the stream receiving end).
  • the storage device 720 may include a storage program area and a storage data area.
  • the storage program area may store an operating system and an application program required by at least one function; the storage data area may store data created according to the use of the device, and the like.
  • the storage device 720 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the storage device 720 may include memories remotely provided with respect to the processor 710, and these remote memories may be connected to a communication node through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • FIG. 18 is a schematic structural diagram of another base station provided in this application.
  • the base station provided in this application includes: one or more processors 810 and a storage device 820
  • the processor 810 of the base station may be one or more.
  • one processor 810 is taken as an example; the storage device 820 is configured to store one or more programs; the one or more programs are controlled by the one or more Each processor 810 executes, so that the one or more processors 810 implement the service data offload method applied to the offload terminal as described in the embodiment of the present application.
  • the processor 810 and the storage device 820 in the base station may be connected through a bus or other methods.
  • the connection through a bus is taken as an example.
  • the storage device 820 can be configured to store software programs, computer-executable programs, and modules, such as program instructions/modules (for example, , Applied to the offload adjustment information receiving module 610 and the business data volume adjustment module 620 in the business data offload device at the offload end).
  • the storage device 820 may include a storage program area and a storage data area, where the storage program area may store an operating system and an application program required by at least one function; the storage data area may store data created according to the use of the device, and the like.
  • the storage device 820 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the storage device 820 may include memories remotely provided with respect to the processor 810, and these remote memories may be connected to a communication node through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the embodiment of the present application also provides a storage medium that stores a computer program that, when executed by a processor, implements the service data offloading method applied to the stream receiving end in the embodiment of the present application, or implements the implementation of the present application In the example, it is applied to the service data distribution method of the distribution terminal.
  • the business data distribution method applied to the receiving end includes:
  • the current load information includes current statistical load and current measured load; according to the numerical relationship between the current load information and the load threshold threshold, and the load association matched by the current load information Periodically determine the offload adjustment information; send the offload adjustment information to at least one offload end, so that the offload end adjusts the amount of offloaded service data of the stream receiving end in stages according to the offload adjustment information.
  • the business data distribution method applied to the distribution terminal includes:
  • the current load information includes the current statistical load and the current measurement load; according to the offload adjustment information, the data volume of the offload service at the receiving end is adjusted in stages.
  • the computer executable instruction when executed by a computer processor, it can also be used to implement the service data offloading method described in any of the embodiments of the present application.
  • this application can be implemented by software and necessary general-purpose hardware, or can be implemented by hardware.
  • the technical solution of this application can essentially be embodied in the form of a software product.
  • the computer software product can be stored in a computer-readable storage medium, such as a computer floppy disk, read-only memory (ROM), random access Memory (Random Access Memory, RAM), flash memory (FLASH), hard disk or optical disk, etc., including multiple instructions to make a communication device (which can be a personal computer, server, or network device, etc.) execute the embodiments described in this application Methods.
  • the multiple units and modules included are only divided according to the functional logic, but are not limited to the above Division, as long as the corresponding function can be realized; in addition, the names of multiple functional units are only for the convenience of distinguishing each other, and are not used to limit the scope of protection of the present application.
  • the various embodiments of the present application can be implemented in hardware or dedicated circuits, software, logic or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software that may be executed by a controller, microprocessor, or other computing device, although the present application is not limited thereto.
  • Computer program instructions can be assembly instructions, Instruction Set Architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or written in any combination of one or more programming languages Source code or object code.
  • ISA Instruction Set Architecture
  • the block diagram of any logic flow in the drawings of the present application may represent program steps, or may represent interconnected logic circuits, modules, and functions, or may represent a combination of program steps and logic circuits, modules, and functions.
  • the computer program can be stored on the memory.
  • the memory can be of any type suitable for the local technical environment and can be implemented using any suitable data storage technology, such as but not limited to read-only memory (ROM), random access memory (RAM), optical storage devices and systems (digital multi-function optical discs) (Digital Video Disc, DVD) or Compact Disk (CD)), etc.
  • Computer-readable media may include non-transitory storage media.
  • the data processor can be of any type suitable for the local technical environment, such as but not limited to general-purpose computers, special-purpose computers, microprocessors, digital signal processors (Digital Signal Processing, DSP), application specific integrated circuits (ASICs) ), programmable logic devices (Field-Programmable Gate Array, FPGA), and processors based on multi-core processor architecture.
  • DSP Digital Signal Processing
  • ASICs application specific integrated circuits
  • FPGA Field-Programmable Gate Array

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本文公开了一种业务数据分流方法、装置、基站和存储介质。该业务数据分流方法包括:获取业务数据的当前负荷信息;其中,所述当前负荷信息包括当前统计负荷和当前测量负荷中的至少之一;根据所述当前负荷信息与负荷门限阈值之间的数值关系,以及所述当前负荷信息匹配的负荷关联周期确定分流调整信息;将所述分流调整信息发送至分流端,以使所述分流端根据所述分流调整信息按照设定步长阶段性调整所述受流端的分流业务数据量。

Description

业务数据分流方法、装置、基站和存储介质 技术领域
本申请涉及移动通信技术领域,例如涉及一种业务数据分流方法、装置、基站和存储介质。
背景技术
第5代移动通信系统(the 5th Generation mobile communication system,5G)已经在多个国家开始商用部署,并且第4代移动通信系统(4G)和5G融合组网的方式是一种主要的组网方式。在4G和5G融合组网中,用户终端(User Equipment,UE)可以同时连接上4G基站和5G基站,即演进的通用陆地无线接入网络新无线双连接(Evolved-Universal Terrestrial Radio Access Network-New Radio Dual Connectivity,E-UTRA-NR Dual Connectivity,EN-DC)UE,一般称为双连接UE。
双连接UE与移动网络(包括基站及核心网)之间的控制面的信令(如接入或切换等)的空口传输都经过主节点(Master Node,MN)(MN又称锚点,属于4G基站),而用户面的业务数据的空口传输,既可以单独经过MN,也可以单独经过辅节点(Secondary Node,SN)(SN属于5G基站),或者同时经过MN和SN。通常情况下,由于5G带宽更大、频谱效率和速率更高,双连接UE的业务数据单独经过5G基站即可,但是当出现5G基站负荷高,或者双连接UE业务量大,或者双连接UE的5G空口信道条件恶化等情况后,5G基站可能无法满足此双连接UE的业务需求,此时,可以考虑将一部分业务数据分流给4G基站进行传输。
在业务数据分流机制中,容易出现反复引起分流的乒乓问题。而解决乒乓问题的改进方法通常都需要4G基站的底层识别4G-UE(只支持4G而不支持双连接的UE以及支持双连接但当前只连接到4G的UE)和双连接UE,并进行差异化处理。该处理对作为4G基站基础核心且已经成熟商用的媒体接入控制(Medium Access Control,MAC)层算法框架冲击较大。同时,由于协议上的分流点是设置在高层的分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层,跨层到底层进行联动分流处理,再考虑到实际网络中,支持双连接的UE会在4G-UE和双连接UE两种UE形态下动态转换,高层状态的变化还要通知到底层进行相应调整,更是增大了复杂性和处理开销。
发明内容
本申请实施例提供了一种业务数据分流方法、装置、基站和存储介质,以实现业务数据的自适应分流,从而简化业务数据分流机制,并提高业务数据分流机制的高效性和适用性。
提供了一种业务数据分流方法,应用于受流端,包括:
获取业务数据的当前负荷信息;其中,所述当前负荷信息包括当前统计负荷和当前测量负荷中的至少之一;根据所述当前负荷信息与负荷门限阈值之间的数值关系,以及所述当前负荷信息匹配的负荷关联周期确定分流调整信息;将所述分流调整信息发送至分流端,以使所述分流端根据所述分流调整信息阶段性调整受流端的分流业务数据量。
还提供了一种业务数据分流方法,应用于分流端,包括:
接收受流端发送的分流调整信息;其中,所述分流调整信息由所述受流端根据业务数据的当前负荷信息与负荷门限阈值之间的数值关系,以及所述当前负荷信息匹配的负荷关联周期确定;所述当前负荷信息包括当前统计负荷和当前测量负荷中的至少之一;根据所述分流调整信息阶段性调整所述受流端的分流业务数据量。
还提供了一种业务数据分流装置,配置于受流端,包括:
当前负荷信息获取模块,设置为获取业务数据的当前负荷信息;其中,所述当前负荷信息包括当前统计负荷和当前测量负荷中的至少之一;分流调整信息确定模块,设置为根据所述当前负荷信息与负荷门限阈值之间的数值关系,以及所述当前负荷信息匹配的负荷关联周期确定分流调整信息;分流调整信息发送模块,设置为将所述分流调整信息发送至分流端,以使所述分流端根据所述分流调整信息阶段性调整受流端的分流业务数据量。
还提供了一种业务数据分流装置,配置于分流端,包括:
分流调整信息接收模块,设置为接收受流端发送的分流调整信息;其中,所述分流调整信息由所述受流端根据业务数据的当前负荷信息与负荷门限阈值之间的数值关系,以及所述当前负荷信息匹配的负荷关联周期确定;所述当前负荷信息包括当前统计负荷和当前测量负荷中的至少之一;业务数据量调整模块,设置为根据所述分流调整信息阶段性调整所述受流端的分流业务数据量。
还提供了一种基站,所述基站包括:
一个或多个处理器;存储装置,设置为存储一个或多个程序;当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现上 述的应用于受流端的业务数据分流方法。
还提供了一种计算机存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述的应用于分流端的业务数据分流方法。
还提供了一种基站,所述基站包括:
一个或多个处理器;存储装置,设置为存储一个或多个程序;当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现上述的应用于受流端的业务数据分流方法。
还提供了一种计算机存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述的应用于受流端的业务数据分流方法。
附图说明
图1为本申请实施例提供的一种5G组网标准中的选项3(Option 3)序列的示意图;
图2为本申请实施例提供的一种5G组网标准中的Option 7序列的示意图;
图3为本申请实施例提供的一种5G组网标准中的Option 4序列的示意图;
图4为本申请实施例提供的一种5G组网标准中Option 3和Option 3x的业务承载及业务数据分流的示意图;
图5为本申请实施例提供的一种5G组网标准中Option 7和Option 7x以及Option 4的业务承载及业务数据分流的示意图;
图6为本申请实施例提供的一种业务数据分流方法的流程示意图;
图7为本申请实施例提供的另一种业务数据分流方法的流程示意图;
图8为本申请实施例提供的另一种业务数据分流方法的流程示意图;
图9为本申请实施例提供的另一种业务数据分流方法的流程示意图;
图10为本申请实施例提供的一种分流端、受流端和双链接UE组成网络的示意图;
图11为本申请实施例提供的一种分流端S和受流端R之间的分流方法示意图;
图12为本申请实施例提供的一种受流端的业务数据分流处理的流程图;
图13为本申请实施例提供的一种分流端的业务数据分流处理的流程图;
图14为本申请实施例提供的一种业务数据分流方法的流程示意图;
图15为本申请实施例提供的一种业务数据分流装置的示意图;
图16为本申请实施例提供的另一种业务数据分流装置的示意图;
图17为本申请提供的一种基站的结构示意图;
图18为本申请提供的另一种基站的结构示意图。
具体实施方式
在后续的描述中,使用用于表示元件的诸如“模块”、“部件”或“单元”的后缀仅为了有利于本申请的说明,其本身没有特有的意义。因此,“模块”、“部件”或“单元”可以混合地使用。
下文中将结合附图对本申请的实施例进行说明。
5G已经开始商用部署,其中非独立组网(Non-standalone,NSA)比独立组网(Standalone,SA)部署更早更多。图1为本申请实施例提供的一种5G组网标准中的Option 3序列的示意图,图2为本申请实施例提供的一种5G组网标准中的Option 7序列的示意图,图3为本申请实施例提供的一种5G组网标准中的Option 4序列的示意图。NSA的代表有Option 3序列和Option 7序列,如图1和图2所示,其中Option 3x是通常采用的5G组网部署的方式。如果核心网从4G的演进的分组核心网(Evolved Packet Core,EPC)升级到5G的5G核心网(5GC),那么相应的Option 3x就会演进成Option 7x。SA的代表有Option 4序列,如图3所示。其中,图1-图3中的长期演进(Long Term Evolution,LTE)是由第三代合作伙伴计划(The 3rd Generation Partnership Project,3GPP)组织制定的通用移动通信系统(Universal Mobile Telecommunications System,UMTS)技术标准的长期演进,NR表示新无线。演进的LTE(evolved LTE,eLTE)表示无线通信解决方案组合。
上述三种组网方式均融合了4G和5G的组网方式,UE可以同时连接上4G基站和5G基站。在本申请实施例中,定义支持双连接并且建立了双连接的UE为双连接UE,只支持4G而不支持双连接的UE(主要是现网中已有的老4G用户终端)以及支持双连接但当前只连接到4G的UE定义为4G-UE,只支持5G而不支持双连接的UE以及支持双连接但当前只连接到5G的UE定义为5G-UE。4G-UE和5G-UE都是单连接UE。以NSA的Option 3x为例,支持此组网的UE必须先接入作为MN的4G基站,完成控制面的信令接入后,然后由MN控制此UE接入作为SN的5G基站,此时UE就与4G和5G基站建立了双连接。
双连接UE与移动网络之间的控制面的信令的空口传输都经过MN,而用户 面的业务数据的空口传输,既可以单独经过MN,也可以单独经过SN,或者同时经过MN和SN。5G标准协议在业务面定义了四种承载(bearer)类型:主小区组(Master Cell Group,MCG)bearer,辅小区组(Secondary Cell Group,SCG)bearer,MCG split bearer,SCG split bearer。MCG split bear和SCG split bearer都是指可以在MN和SN同时进行业务数据的分流传输,MCG split bear是MN负责将业务数据分流给SN,而SCG split bearer是SN负责将业务数据分流给MN。上述业务数据的分流操作是在基站的PDCP层功能实体完成的,由负责业务数据分流的分流端基站的PDCP层将数据分流到被分流的受流端基站的无线链路控制(Radio Link Control,RLC)层进行传输。在MCG split bear下,分流端是MN,受流端是SN。在SCG split bearer下,分流端是SN,受流端是MN。图4为本申请实施例提供的一种5G组网标准中Option 3和Option 3x的业务承载及业务数据分流的示意图,图5为本申请实施例提供的一种5G组网标准中Option 7和Option 7x以及Option 4的业务承载及业务数据分流的示意图。图5中的SDAP表示服务发现应用规范(Service Discovery Application Profile)。图4中的X2和图5中的Xn表示分流的业务数据。
示例性的,以Option 3序列为例,Option 3的分流承载类型是MCG split bearer,业务数据从作为MN的4G基站分流给作为SN的5G基站。通常部署的Option 3x的分流承载类型是SCG split bearer,业务数据从作为SN的5G基站分流给作为MN的4G基站,即在Option 3x下,分流端是5G基站,受流端是4G基站。由于业务数据分流机制的设计对系统性能会有较大影响,因此,在进行业务数据分流时,需要考虑4G基站下4G-UE的业务负荷、4G基站和核心网间的传输带宽、时延及抖动、双连接UE的4G空口信道质量等因素。如果4G基站下的4G-UE的业务负荷已经较高,4G-UE的用户感知开始受到影响,则不适合将双连接UE的业务数据分流至4G基站,以避免影响4G-UE的用户感知。如果4G基站和核心网间的传输带宽较小、时延及抖动较大、或者双连接UE的4G空口信道质量较差,而分流算法与4G/5G的时延、宽带匹配较差,分流的业务数据在两条链路的时延不一致导致传输控制协议(Transmission Control Protocol,TCP)乱序、缓冲和重排,触发TCP超时而收缩窗口,就会引起双连接UE业务性能恶化,用户体验速率反而比不分流更低,所以要慎重考虑是否进行双连接UE的业务数据分流。4G/5G业务分流,必须要能给双连接UE带来更好的感知体验,如业务的速率提升或时延下降等,同时考虑兼顾分流端的整体性能,否则就应该回退(如减少甚至关闭)业务分流。
以业界5G网络通常部署的Option 3x为例,4G/5G业务分流采用SCG Split bearer,即5G基站是分流端,4G基站是受流端,5G基站负责将业务数据分流给4G基站分流。在考虑4G基站下4G-UE负荷的方案中,设置了1个允许分流 的低负荷门限THR_Low和1个禁止分流的高负荷门限THR_High,且THR_High>THR_Low。当4G基站统计到自己的负荷Load(包含了4G-UE和双连接UE的总负荷)降到THR_Low以下时,4G基站允许双连接UE进行4G/5G业务分流。而当Load达到或超过THR_High后,则会停止已有的4G/5G业务分流,并且禁止新的4G/5G业务分流。上述业务数据分流机制原理简单,但是会引发乒乓问题。示例性的,4G基站允许双连接UE进行4G/5G分流后,会引起4G基站Load抬升,使得4G基站Load超过THR_High而退出分流。退出分流后,4G基站Load又会下降,可能低于THR_Low而又重新开始分流,如此反复引起分流的乒乓问题,虽然可采用抑制乒乓问题的定时器或计数器方式,但不能从根本上解决乒乓问题。
针对上述业务数据分流机制中存在的乒乓问题,一种改进方法是当4G基站的Load达到或超过THR_High后,4G基站的底层MAC层对双连接UE减少资源分配和降低调度优先级,以此来降低分流带来的负荷。这种方法涉及对4G基站的底层MAC层算法的调整,对4G基站底层技术冲击较大。
另一种改进方法是4G基站对4G-UE和双连接UE所占用的负荷分别进行实时统计和控制,如果发现当前Load达到或超过THR_High,且双连接UE所占用的负荷超过一个预设门限THR_High_EN-DC,例如THR_High_EN-DC为THR_High的50%,则减少和限制双连接UE占用的资源。但这种方法需要4G基站在底层MAC层实时进行两类UE负荷的区分统计和资源调度调整,需要对4G基站的底层MAC层算法进行调整,同样对4G基站底层技术冲击较大。
还有一种改进方法是4G基站根据双连接UE的4G状态,如空口信道的质量,实时估算占用使得Load不超过THR_High的剩余资源可以承载的业务数据量,以此确定和控制4G分流的业务数据量,但这种方式同样涉及到对4G基站底层MAC层算法的调整,复杂度较高,对4G基站底层技术冲击较大。
由此可见,上述3种改进方法都需要4G基站的底层识别4G-UE和双连接UE,并进行差异化处理,对作为4G基站基础核心且已经成熟商用的MAC层算法框架冲击较大,而协议上的分流点是设置在高层的PDCP层,跨层到底层去进行联动分流处理,再考虑到实际网络中,支持双连接的UE会在4G-UE和双连接UE两种UE形态下动态转换,高层状态的变化还要通知到底层进行相应调整,更是增大了复杂性和处理开销。
为了解决业务数据分流机制中的乒乓问题,同时改进对4G基站底层技术冲击较大的缺陷。本申请中,在基站的PDCP层对业务数据进行分流控制,根据分流调整信息阶段性调整分流的业务数据量,无需对基站底层技术进行改动,不仅能够实现业务数据的自适应分流,而且不会产生乒乓问题,简单而有效, 适用于所有4G/5G融合组网类型,简化了业务数据分流机制,并提高了业务数据分流机制的高效性和适用性。
在一个示例性实施方式中,图6为本申请实施例提供的一种业务数据分流方法的流程示意图。该方法适用于在不改动底层技术的前提下,对业务数据自适应分流的情况。该方法可以由本申请提供的业务数据分流装置执行,该业务数据分流装置可以由软件和/或硬件实现,并集成在基站中,该基站可以作为受流端,可选的,受流端可以是4G基站,本申请实施例并不对受流端的基站类型进行限定。
如图6所示,本申请实施例提供的业务数据分流方法,包括:
S110、获取业务数据的当前负荷信息;其中,所述当前负荷信息包括当前统计负荷和当前测量负荷中的至少之一。
业务数据可以是双连接UE与移动网络之间的用户面的业务数据。当前负荷信息可以是受流端按照分流控制周期统计的统计负荷和/或实时测量的负荷信息,可以包括但不限于当前统计负荷和当前测量负荷中的至少之一。其中,当前统计负荷可以是根据分流控制周期所统计的负荷。分流控制周期可以是分流端设置的用于进行分流处理的周期,该分流控制周期的周期数值可以根据实际需求设定,本申请实施例并不对分流控制周期的周期数值进行限定。当前测量负荷可以是受流端实时测量的负荷。
在本申请实施例中,可以由受流端来获取业务数据的当前负荷信息。可选的,受流端的数量可以是多个,每个受流端可以和一个或多个分流端建立分流关系。可选的,可以由受流端的MAC层统计或测量当前负荷信息,并上报至受流端的RLC层。
S120、根据所述当前负荷信息与负荷门限阈值之间的数值关系,以及所述当前负荷信息匹配的负荷关联周期确定分流调整信息。
分流调整信息可以是受流端生成并发送给分流端的,用于分流端对分流给该受流端的分流业务数据量进行阶段性调整的信息。负荷门限阈值可以是受流端针对当前负荷信息所设定的门限阈值。可选的,负荷门限阈值的数量可以是多个,如3个或以上,本申请实施例并不对负荷门限阈值的取值以及数量进行限定。负荷关联周期可以是与当前负荷信息相匹配的周期,如用于周期性统计负荷的分流控制周期,或针对超高负荷所设定的超高负荷持续周期等,本申请实施例同样不对负荷关联周期的内容进行限定。
当受流端的RLC层获取到MAC层上报的当前负荷信息后,可以根据当前 负荷信息与负荷门限阈值之间的数值关系,以及当前负荷信息匹配的负荷关联周期确定分流调整信息。例如,当当前统计负荷小于多个负荷门限阈值中一个负荷门限阈值时,确定上调分流的分流调整信息。当当前统计负荷或当前测量负荷大于多个负荷门限阈值中一个负荷门限阈值时,确定下调分流的分流调整信息。当当前统计负荷位于两个负荷门限阈值之间,或当前测量负荷小于多个负荷门限阈值中一个负荷门限阈值时,确定不作调整的分流调整信息。
S130、将所述分流调整信息发送至分流端,以使所述分流端根据所述分流调整信息阶段性调整受流端的分流业务数据量。
分流业务数据量可以是分流端分流给受流端的业务数据量。
当受流端确定了分流调整信息后,可以将分流调整信息发送至分流端。可选的,分流端的数量可以是多个,每个分流端可以和一个或多个受流端建立分流关系。分流端可以通过PDCP层接收每个受流端的分流调整信息,同时通过PDCP层根据该分流调整信息阶段性调整该分流调整信息对应的受流端的分流业务数据量。
本申请实施例所涉及到的阶段性调整可以是按照设定步长阶段性地进行上调、下调或不作调整,而不是允许分流或禁止分流等针对分流业务数据量进行的刚性控制操作。例如,当受流端统计的当前统计负荷超过高负荷门限阈值时,分流端将根据该受流端确定并发送的分流调整信息、按照设定步长逐步下调发送给该受流端的分流业务数据量;当受流端统计的当前统计负荷低于低负荷门限阈值时,分流端将根据该受流端确定并发送的分流调整信息、按照设定步长逐步上调发送给该受流端的分流业务数据量,从而避免因直接允许或禁止分流导致的乒乓问题。
本申请实施例的分流端可以仅通过PDCP层对发送给受流端的分流业务数据量进行调整,而无需联动底层,实现简单且高效。同时,在本申请实施例中,分流端可以根据分流调整信息阶段性调整发送给受流端的分流业务数据量,从而解决业务数据分流机制存在的乒乓问题,实现业务数据的自适应分流。另外,本申请实施例所提供的业务数据分流方法适用于所有4G/5G融合组网类型,如Option 3/Option 4/Option 7序列,提高了业务数据分流机制的适用性。
本申请实施例中,受流端获取业务数据的当前负荷信息,根据当前负荷信息与负荷门限阈值之间的数值关系、以及当前负荷信息匹配的负荷关联周期确定分流调整信息,并将分流调整信息发送至分流端,以使分流端根据分流调整信息阶段性调整受流端的分流业务数据量,解决业务数据分流时的乒乓问题,实现业务数据的自适应分流,从而简化业务数据分流操作,并提高业务数据分流的高效性和适用性。
在一个示例性实施方式中,图7为本申请实施例提供的另一种业务数据分流方法的流程示意图。本实施例以上述实施例为基础进行说明,在本实施例中,给出了获取业务数据的当前负荷信息以及根据所述当前负荷信息与负荷门限阈值之间的数值关系,以及所述当前负荷信息匹配的负荷关联周期确定分流调整信息的一种可选的实现方式。如图7所示,本实施例的方法可以包括:
S210、获取业务数据的当前负荷信息。
S210可以包括以下至少之一:
S211、根据分流控制周期获取业务数据的所述当前统计负荷。
S212、实时测量当前负荷,以获取所述当前测量负荷。
在本申请实施例中,为了实现对受流端的周期性分流控制,受流端可以根据分流控制周期获取业务数据的当前统计负荷,以根据当前统计负荷确定匹配的分流调整信息。可选地,为了实现对受流端超高负荷的实时监控,受流端还可以实时测量当前负荷,以获取当前测量负荷。从而受流端可以根据当前测量负荷确定匹配的分流调整信息。
图7仅是一种实现方式的示意图,步骤S211和步骤S212之间并没有先后顺序关系,可以先实施步骤S211,再实施步骤S212,也可以先实施步骤S212,再实施步骤S211,还可以两者并行实施。
S220、根据所述当前负荷信息与负荷门限阈值之间的数值关系,以及所述当前负荷信息匹配的负荷关联周期确定分流调整信息。
所述负荷门限阈值可以包括低负荷门限阈值及高负荷门限阈值;所述负荷关联周期可以包括分流控制周期。
低负荷门限阈值可以是用于限定上调分流业务数据量的门限阈值,高负荷门限阈值可以是用于限定下调分流业务数据量的门限阈值。示例性的,可以设置低负荷门限阈值取值为60%,高负荷门限阈值取值为80%,本申请实施例并不对低负荷门限阈值及高负荷门限阈值的取值进行限定。
S220可以包括:
S221、在分流控制周期时刻,判断当前统计负荷是否小于低负荷门限阈值,若当前统计负荷小于低负荷门限阈值,则执行S222,若当前统计负荷不小于低负荷门限阈值,执行S223。
S222、将上调分流调整信息作为所述分流调整信息。
S223、判断当前统计负荷是否大于高负荷门限阈值,若当前统计负荷大于 高负荷门限阈值,则执行S224,若当前统计负荷不大于高负荷门限阈值,执行S225。
S224、将下调分流调整信息作为所述分流调整信息。
S225、将拒绝分流调整信息作为所述分流调整信息,或,设置所述分流调整信息为空。
分流控制周期时刻可以是一个完整的分流控制周期对应的周期终止时间点。
在本申请实施例中,在分流控制周期时刻,在确定当前统计负荷大于或等于低负荷门限阈值,且小于或等于高负荷门限阈值的情况下,将拒绝分流调整信息作为分流调整信息,或,设置分流调整信息为空;在分流控制周期时刻,在确定当前统计负荷小于低负荷门限阈值的情况下,将上调分流调整信息作为分流调整信息;在分流控制周期时刻,在确定当前统计负荷大于高负荷门限阈值的情况下,将下调分流调整信息作为分流调整信息。
上调分流调整信息可以是阶段性上调分流业务数据量的信息,下调分流调整信息可以是阶段性下调分流业务数据量的信息,拒绝分流调整信息可以是保持当前分流业务数据量不变,也即不对当前分流业务数据量进行调整的信息。
在本申请实施例中,如果到达分流控制周期时刻,且当前统计负荷大于或等于低负荷门限阈值,且小于或等于高负荷门限阈值,则受流端可以生成拒绝分流调整信息发送给分流端,或直接不向分流端发送任何调整信息;如果当前统计负荷小于低负荷门限阈值,则受流端可以生成上调分流调整信息发送给分流端;如果当前统计负荷大于高负荷门限阈值,则受流端可以生成下调分流调整信息发送给分流端。
所述负荷门限阈值还可以包括超高负荷门限阈值;所述负荷关联周期还可以包括超高负荷持续周期。
超高负荷门限可以是用于限定下调分流业务数据量的门限阈值,其取值要大于高负荷门限阈值。超高负荷门限阈值主要用于判断是否存在突发超高负荷的情况。示例性的,可以设置超高负荷门限阈值取值为90%。
S220还可以包括:
S226、判断当前测量负荷是否大于或等于超高负荷门限阈值,若当前测量负荷大于或等于超高负荷门限阈值,则执行S228,若当前测量负荷小于超高负荷门限阈值,执行S227。
受流端还可以在分流控制周期内,实时判断测量负荷是否大于或等于超高负荷门限阈值。其中,分流控制周期内可以是分流控制周期对应的周期时间段。
S227、保持当前分流控制周期的分流调整信息。
S228、判断当前测量负荷大于或等于超高负荷门限阈值的持续时间是否达到超高负荷持续周期,若当前测量负荷大于或等于超高负荷门限阈值的持续时间达到超高负荷持续周期,则执行S224,若当前测量负荷大于或等于超高负荷门限阈值的持续时间未达到超高负荷持续周期,执行S227。
超高负荷持续周期可以用于判断超高负荷的持续时间是否超过一定范围。可选的,超高负荷持续周期的周期时间要小于分流控制周期的周期时间。
如果受流端在分流控制周期内检测到当前测量负荷大于或等于超高负荷门限阈值,且当前测量负荷大于或等于超高负荷门限阈值的持续时间达到超高负荷持续周期,表明网络中发生了突发超高负荷的情况,此时可能未到达分流控制周期的终止时间点。因此,针对突发超高负荷,需要立即生成下调分流调整信息并发送至分流端,以使分流端立即根据下调分流调整信息下调受流端的分流业务数据量,避免影响用户感知。如果受流端检测到当前测量负荷小于超高负荷门限阈值,或者,当前测量负荷大于或等于超高负荷门限阈值的持续时间没有达到超高负荷持续周期,则表明网络中没有发生突发超高负荷的情况,此时可以保持当前分流控制周期的分流调整信息。也即,不向分流端发送任何分流调整信息。
图7仅是一种实现方式的示意图,步骤S221-S225和步骤S226-S228之间并没有先后顺序关系,可以先实施步骤S221-S225,再实施步骤S226-S228,也可以先实施步骤S226-S228,再实施步骤S221-S225,还可以两者并行实施。
S230、将所述分流调整信息发送至分流端,以使所述分流端根据所述分流调整信息阶段性调整受流端的分流业务数据量。
在本申请的一个可选实施例中,所述将所述分流调整信息发送至至少一个分流端,可以包括:按照分流控制周期或超高负荷持续周期,将所述分流调整信息发送至所有与受流端建立分流关系的分流端,或,按照分流控制周期或超高负荷持续周期,将所述分流调整信息发送至在当前分流控制周期或上一个分流控制周期内与受流端建立分流关系的分流端。
如果受流端的网络中没有发生突发超高负荷的情况,则受流端可以按照固定的分流控制周期发送分流调整信息至分流端。一旦受流端的网络中发生突发超高负荷的情况,则受流端可以在确定突发超高负荷的持续时间到达超高负荷持续周期后,立即将下调分流调整信息发送至分流端。受流端可以将分流调整信息发送至所有与受流端建立分流关系的分流端,或者,受流端还可以将分流调整信息仅发送至在当前分流控制周期(超高负荷持续周期所在的分流控制周 期)或上一个分流控制周期内与受流端建立分流关系的分流端。
采用上述技术方案,受流端通过固定的分流控制周期确定分流调整信息,以使分流端对发送至受流端的分流业务数据量进行周期性的调整;并在受流端检测到突发超高负荷时,受流端立即向分流端发送下调分流调整信息,以使分流端立即针对突发超高负荷情况下调发送至受流端的分流业务数据量,实现了对受流端分流业务数据量的精细化调整,能够有效避免乒乓问题,实现了业务数据的自适应分流,简化了业务数据分流机制,并提高了业务数据分流机制的高效性和适用性。
在一个示例性实施方式中,图8为本申请实施例提供的另一种业务数据分流方法的流程示意图。该方法适用于在不改动底层技术的前提下,对业务数据自适应分流的情况。该方法可以由本申请提供的业务数据分流装置执行,该业务数据分流装置可以由软件和/或硬件实现,并集成在基站中,该基站可以作为分流端,可选的,分流端可以是4G基站或5G基站,本申请实施例并不对分流端的基站类型进行限定。
如图8所示,本申请实施例提供的业务数据分流方法,包括:
S310、接收受流端发送的分流调整信息;其中,所述分流调整信息由受流端根据业务数据的当前负荷信息与负荷门限阈值之间的数值关系,以及所述当前负荷信息匹配的负荷关联周期确定;所述当前负荷信息包括当前统计负荷和当前测量负荷中的至少之一。
S320、根据所述分流调整信息阶段性调整所述受流端的分流业务数据量。
在本申请实施例中,分流端可以通过PDCP层接收受流端发送的分流调整信息,同时通过PDCP层根据分流调整信息阶段性调整受流端的分流业务数据量。例如,当受流端的当前统计负荷超过高负荷门限阈值时,分流端会按照设定步长逐步下调发送给受流端的分流业务数据量。当受流端的当前统计负荷低于低负荷门限阈值时,分流端会按照设定步长逐步上调发送给受流端的分流业务数据量,从而避免因直接允许或禁止分流导致的乒乓问题。
本申请实施例的分流端可以仅通过PDCP层对发送给受流端的分流业务数据量进行调整,而无需联动底层技术,实现简单且高效。同时,在本申请实施例中,分流端可以根据分流调整信息阶段性调整受流端的分流业务数据量,从而解决业务数据分流机制存在的乒乓问题,实现业务数据的自适应分流。另外,本申请实施例所提供的业务数据分流方法适用于所有4G/5G融合组网类型,如Option 3/Option 4/Option 7序列,提高了业务数据分流机制的适用性。
本申请实施例通过受流端获取业务数据的当前负荷信息,以根据当前负荷信息与负荷门限阈值之间的数值关系,以及当前负荷信息匹配的负荷关联周期确定分流调整信息,并将分流调整信息发送至至少一个分流端。分流端接收到受流端发送的分流调整信息后,根据分流调整信息阶段性调整受流端的分流业务数据量,解决业务数据分流机制存在的乒乓问题,实现业务数据的自适应分流,从而简化业务数据分流机制,并提高业务数据分流机制的高效性和适用性。
在一个示例性实施方式中,图9为本申请实施例提供的另一种业务数据分流方法的流程示意图。本实施例以上述实施例为基础进行说明,在本实施例中,给出了接收受流端发送的分流调整信息以及根据所述分流调整信息调整所述受流端的分流业务数据量的一种可选的实现方式。同时给出了对多个分流终端的当前分流业务数据量进行调整的一种可选的实现方式。如图9所示,本实施例的方法可以包括:
S410、接收受流端发送的分流调整信息。
在本申请的一个可选实施例中,所述接收受流端发送的分流调整信息,可以包括:接收所述受流端按照分流控制周期发送的分流调整信息;或,接收所述受流端按照超高负荷持续周期发送的分流调整信息。
示例性的,在受流端不发生突发超高负荷的情况下,分流端可以接收受流端按照固定的分流控制周期发送的分流调整信息。如果受流端发生突发超高负荷的情况,则分流端可以接收受流端按照超高负荷持续周期立即发送的分流调整信息。
S420、根据所述分流调整信息阶段性调整所述受流端的分流业务数据量。
所述分流调整信息包括拒绝分流调整信息、空分流调整信息、上调分流调整信息或下调分流调整信息;S420可以包括:
S421、在所述分流控制周期时刻,根据所述拒绝分流调整信息或空分流调整信息,拒绝调整所述受流端的当前分流业务数据量。
S422、在所述分流控制周期时刻,根据所述上调分流调整信息,按照分流数据调整步长上调所述当前分流业务数据量。
S423、在所述分流控制周期时刻,根据所述下调分流调整信息,按照分流数据调整步长下调所述当前分流业务数据量。
当前分流业务数据量也即分流端当前时刻分配给受流端的业务数据量。分流数据调整步长可以用于阶段性调整受流端的分流业务数据量。示例性的,分 流数据调整步长可以取值为10Mbps等。分流数据调整步长可以是固定值,也可以根据实际需求设置为可变值,本申请实施例并不对分流数据调整步长的取值以及取值方式进行限定。
示例性的,在受流端没有发生突发超高负荷的情况下,如果分流端在分流控制周期时刻接收到拒绝分流调整信息或空分流调整信息,则可以不对受流端的当前分流业务数据量进行调整。如果分流端在分流控制周期时刻接收到上调分流调整信息,则可以按照分流数据调整步长上调受流端的当前分流业务数据量。如果分流端在分流控制周期时刻接收到下调分流调整信息,则可以按照分流数据调整步长下调受流端的当前分流业务数据量。
S424、在所述超高负荷持续周期时刻,根据所述下调分流调整信息,按照分流数据调整步长下调所述当前分流业务数据量。
示例性的,在受流端发生突发超高负荷的情况下,分流端接收到受流端实时发送的下调分流调整信息后,可以按照分流数据调整步长下调当前分流业务数据量。
图9仅是一种实现方式的示意图,步骤S420包括的多个子步骤之间并没有先后执行顺序。
S430、确定参与分流的每个分流终端的当前分流增益。
S440、根据每个分流终端的当前分流增益,对所述每个分流终端的当前分流业务数据量进行调整。
分流终端可以是参与分流的双连接UE。当前分流增益可以是分流终端的分流操作所带来的增益。在本申请的一个可选实施例中,所述当前分流增益可以包括:当前速率分流增益、当前时延分流增益或当前频谱效率分流增益。其中,当前速率分流增益可以是分流终端当前的速率增益,当前时延分流增益可以是分流终端当前的时延增益,当前频谱效率分流增益可以是分流终端当前的频谱效率增益。
在本申请实施例中,分流端还可以实时确定参与分流的每个分流终端的当前分流增益,以根据每个分流终端的当前分流增益,对每个分流终端的当前分流业务数据量进行调整,以获取更好的整体分流增益,从而提高业务数据的处理效率。
在本申请的一个可选实施例中,所述当前分流增益可以包括高分流正增益、低分流正增益、低分流负增益或零增益;所述根据每个分流终端的当前分流增益,对所述每个分流终端的当前分流业务数据量进行调整,可以包括:在保证分流业务数据量上限阈值的情况下,提高所述高分流正增益对应的分流终端的 当前分流业务数据量;降低所述低分流正增益对应的分流终端的当前分流业务数据量;停止所述低分流负增益对应的分流终端的当前分流业务数据量,并维持设定分流停止时长;将所述零增益对应的分流终端按照设定增益处理方式进行增益处理。
高分流正增益可以是增益比较高的正分流增益,低分流正增益可以是增益比较低的正分流增益,而低分流负增益则可以是增益值为负的增益。零增益对应的分流终端既可以是新加入的需要分流的终端,也可以是一直参与分流且未退出分流而增益值为零的分流终端。分流业务数据量上限阈值可以是在上一分流控制周期中,分流端对每个受流端调整的分流业务数据量的上限值。设定分流停止时长可以是根据实际需求设定的时长,本申请实施例并不对设定分流停止时长的取值进行限定。设定增益处理方式可以是对零增益对应的分流终端进行增益处理的方式,如设定零增益对应的分流终端按照平均增益、预测增益或高增益处理当前分流业务数据量。
在本申请实施例中,还可以对参与分流的每个分流终端的当前分流业务数据量进行调整,示例性的,分流端需要在保证分流业务数据量上限阈值的情况下,提高高分流正增益对应的分流终端的当前分流业务数据量,降低低分流正增益对应的分流终端的当前分流业务数据量,并停止低分流负增益对应的分流终端的当前分流业务数据量,并维持设定分流停止时长,将零增益对应的分流终端按照设定增益处理方式进行增益处理。也即,对于增益高的UE将分配更多的分流业务数据量,增益低的UE则分配更少的分流业务数据量,增益低于预置门限的或为低分流负增益的则停止分流,并停止一定时间。新进入的双连接UE可以按平均增益或预测增益或高增益分配分流业务数据量,并在兼顾公平和效率的原则下进行分配。
本申请实施例所提供的业务数据分流方法,将负责控制分流的基站定义为分流端,将接收分流的基站定义为受流端。网络里可以设置多个分流端和多个受流端,每个分流端都可以和一个或多个受流端建立分流关系,每个受流端也可以和一个或多个分流端建立分流关系。网络里可以接入多种类型的UE,部分UE双连接到一个分流端和一个受流端,该部分UE中又有部分双连接UE进行了业务分流。受流端可以设置分流控制周期,以周期性地进行分流处理。受流端还可以设置分流数据调整步长,需要调整的分流业务数据量可以按照分流数据调整步长进行阶段性调整,包括上调或下调;对于不需要调整的分流业务数据量则可以不进行调整。
受流端设置周期性下调分流的高负荷门限阈值和周期性上调分流的低负荷 门限阈值,以实现对分流业务数据的周期性和阶段性调整。另外,受流端还可以设置突发性禁止分流的超高负荷门限阈值,超高负荷门限阈值高于高负荷门限阈值,同时设置超高负荷门限阈值对应的超高负荷持续周期,超高负荷持续周期长度小于分流控制周期。例如,通过定时器的方式设置超高负荷持续周期。受流端需要实时获取自身的负荷,并按照分流控制周期进行统计。受流端如果发现当前测量负荷达到或超过超高负荷门限阈值,且持续时间达到了超高负荷持续周期,则立即向所有与受流端建立了分流关系的分流端或上个分流控制周期到当前时刻与受流端实际发生了分流关系的分流端发送下调分流调整信息。相关分流端接收到下调分流调整信息后,可以按照分流数据调整步长下调分流业务数据量。
同时,如果受流端按照分流控制周期统计的当前统计负荷,达到或高于高负荷门限阈值,则按照分流控制周期时间点向所有与受流端建立了分流关系的分流端或所统计分流控制周期内与受流端实际发生了分流关系的分流端发送下调分流调整信息。相关分流端接收到下调分流调整信息后,可以按照分流数据调整步长下调分流业务数据量;如果受流端按照分流控制周期统计的当前统计负荷,达到或低于低负荷门限阈值,则按照分流控制周期时间点向所有与受流端建立了分流关系的分流端或所统计分流控制周期内与受流端实际发生了分流关系的分流端发送上调分流调整信息。相关分流端接收到上调分流调整信息后,可以按照分流数据调整步长上调分流业务数据量;如果受流端按照分流控制周期统计的当前统计负荷,介于高负荷门限阈值和低负荷门限阈值之间,则受流端在分流控制周期时间点不发送分流调整信息,或者在分流控制周期时间点向所有与受流端建立了分流关系的分流端或所统计分流控制周期内与受流端实际发生了分流关系的分流端发送拒绝分流调整信息。相关分流端接收到拒绝分流调整信息后,可以不调整分流业务数据量。
分流端根据当前时刻收到一关联受流端发送的分流调整信息对分流到此受流端的业务数据量进行调整,作为后续待调整分流业务数据量上限阈值,此分流业务数据量上限阈值最小值为0,即如果当前分流业务数据量为0,则不再下调分流业务数据量。
另外,分流端还可以根据参与分流的双连接UE的当前分流增益进行分流调整。如果一双连接UE当前分流增益较低,如低于平均分流增益,则降低此UE的分流业务数据量比例。如果一双连接UE当前分流增益为负值,则停止其分流并维持设定分流停止时长。当设定分流停止时长结束后可以重新对该双连接EU进行分流,以提高业务数据的处理效率。如果当前分流增益是正增益,且增益值比较高,则可以提升其分流业务数据量的比例,但须保证总的分流业务数据量不能超过分流业务数据量上限阈值。
在一个示例性实施方式中,图10为本申请实施例提供的一种分流端、受流端和双链接UE组成网络的示意图。如图所示,网络中有2个分流端S1和S2,2个受流端R1和R2,分流端和受流端两两之间都建立有分流关系,有4个接入此网络并建立了双连接的UE1、UE2、UE3、UE4,它们分别双连接到不同的分流端和受流端的组合,这些双链接UE都可以进行业务数据分流。
图11为本申请实施例提供的一种分流端S和受流端R之间的分流方法示意图。如图11所示,分流端S的PDCP负责控制分流的业务数据量,与受流端R的RLC层进行分流业务数据的收发。受流端R统计自身负荷,并生成分流调整信息反馈给分流端S。分流端S根据受流端R的分流调整信息来确定下一周期时刻或当前时刻可分流给R的数据量,并结合当前与分流端S和受流端R有双连接关系的UE的业务需求及其他一些情况,如分流增益等,重新分配确定每个UE的分流业务数据量。
在一个示例性实施方式中,图12为本申请实施例提供的一种受流端的业务数据分流处理的流程图,如图12所示,受流端R可以实时统计自身负荷并与低负荷门限阈值、高负荷门限阈值以及超高负荷门限阈值进行比较,产生周期性分流调整信息或突发性分流调整信息,发送给所有分流端或当前时刻存在分流的分流端。图13为本申请实施例提供的一种分流端的业务数据分流处理的流程图。如图13所示,分流端S可以计算每个双连接UE的分流增益并接收受流端R的周期性分流调整信息或突发性分流调整信息。考虑新进入的双连接UE或双连接UE退出,以及业务变化等情况,分流端S需要根据当前UE的业务数据分流需求以及每个UE当前分流增益情况重新分配每个UE的分流数据量,在保证不超过分流业务数据量上限阈值的前提下,增益高的UE将分配更多的分流数据量,增益低的UE则分配更少的分流数据量,增益低于预置门限的UE则停止分流,新进入的双连接UE可以按平均增益或预测增益或高增益处理,并在兼顾公平和效率的原则下分配分流业务数据量。可选的,可以设置受流端R的周期性允许分流的低负荷门限阈值:LoadTHR_Low=60%;受流端R的周期性禁止分流的的高负荷门限阈值:LoadTHR_High=80%;受流端R的突发性禁止分流的超高负荷门限阈值:LoadTHR_SupHigh=90%;受流端R的分流控制周期:Τ=60秒;受流端R的超高负荷持续定时器(也即超高负荷持续周期):Τ0=10秒。根据受流端R的容量能力,结合上述高低负荷门限阈值和分流控制周期的设置以及分流数据调整步长和高低负荷门限阈值差值的关系,设定受流端R的分流数据调整步长为
Figure PCTCN2021093519-appb-000001
表示在新的分流控制周期里,相对上一个周期,平摊到每1秒需 要调整的数据量。分流端S的主动停止分流的增益为负的UE的设定分流停止时长:Τ1=1·Τ=60秒。设定
Figure PCTCN2021093519-appb-000002
代表受流端R的底层MAC层运行的时刻;设定t=ω·Τ代表受流端R的PDCP层周期性分流处理的时刻,ω为正整数;设定
Figure PCTCN2021093519-appb-000003
代表受流端R的底层MAC层实时测量的当前测量负荷;设定Load(t)代表受流端R的PDCP层按分流控制周期统计的当前统计负荷。
在一个示例中,假设网络中具有1个分流端S和1个受流端R,1个双连接UE,并且无突发超高负荷。UE在时刻t已双连接在分流端S和受流端R上并进行了业务数据分流,受流端R在t时刻的当前统计负荷Load(t)=70%,介于高负荷门限阈值LoadTHR_High=80%和低负荷门限阈值LoadTHR_Low=60%之间。故在t时刻,受流端R不向分流端S发送分流调整信息或发送不作调整的分流调整信息。在t+Τ时刻,由于受流端R下的单连接UE的业务增加,当前统计负荷Load(t+Τ)=85%,超过高负荷门限阈值LoadTHR_High=80%。故在t+Τ时刻,受流端R向分流端S发送下调分流调整信息。分流端S收到此信息后,将上个周期内的分流业务数据量按分流数据调整步长
Figure PCTCN2021093519-appb-000004
进行下调,作为下个周期内分流业务数据量上限阈值。在t+2·Τ时刻,由于受流端R下单连接UE的业务继续增加,分流下调所释放的资源被单连接UE增加的业务所占用,使得当前统计负荷Load(t+2·Τ)=81%,仍然超过高负荷门限阈值LoadTHR_High=80%。故在t+2·Τ时刻,受流端R继续向分流端S发送下调分流调整信息。分流端S收到此信息后,将分流业务数据量按分流数据调整步长
Figure PCTCN2021093519-appb-000005
再进行下调。在t+3·Τ时刻,当前统计负荷Load(t+3·Τ)=70%,介于高负荷门限阈值LoadTHR_High=80%和低负荷门限阈值LoadTHR_Low=60%之间。故在t+3·Τ时刻,受流端R不向分流端S发送分流调整信息或发送不作调整的分流调整信息。在t+4·Τ时刻,由于受流端R下单连接UE的业务下降,使得当前统计负荷Load(t+4·Τ)=50%,低于低负荷门限阈值LoadTHR_Low=60%。故在t+4·Τ时刻,受流端R向分流端S发送上调分流调整信息。分流端S收到此信息后,将分流的数据量按分流数据调整步长
Figure PCTCN2021093519-appb-000006
进行上调。在t+5·Τ时刻,当前统计负荷Load(t+5·Τ)=70%,介于高负荷门限阈值LoadTHR_High=80%和低负荷门限阈值LoadTHR_Low=60%之间。故在t+5·Τ时刻,受流端R不向分流端S发送分流调整信息或发送不作调整的分流调整信息。
在一个示例中,假设网络中具有1个分流端S和1个受流端R,1个双连接UE,并且有突发超高负荷。UE在时刻t已双连接在分流端S和受流端R上进行了业务数据分流,受流端R在t时刻的当前统计负荷Load(t)=70%,介于高负荷门限阈值LoadTHR_High=80%和低负荷门限阈值LoadTHR_Low=60%之间。故在t时刻,受流端R不向分流端S发送分流调整信息或发送不作调整的分流调整信息。在t+Τ时刻,由于受流端R下的单连接UE的业务增加,当前统计负荷Load(t+Τ)=85%, 超过高负荷门限阈值LoadTHR_High=80%。故在t+Τ时刻,受流端R向分流端S发送下调分流调整信息。分流端S收到此信息后,将上个周期内的分流业务数据量按分流数据调整步长
Figure PCTCN2021093519-appb-000007
进行下调,作为下个周期内分流业务数据量上限阈值。在t+Τ时刻到t+2·Τ时刻之间,由于受流端R下的单连接UE的业务继续快速增加,分流下调所释放的资源被单连接UE增加的业务所占用,可能由于单连接UE的业务增加很快,或者因为信道条件恶化,受流端R发现当前测量负荷
Figure PCTCN2021093519-appb-000008
达到并超过了超高负荷门限阈值LoadTHR_SupHigh=90%,且持续时间达到超高负荷持续周期Τ0=10秒。故不等到t+2·Τ时刻的到来,受流端R启动突发事件机制,立即向分流端S发送下调分流调整信息。分流端S收到此信息后,立即将分流的业务数据量按分流数据调整步长
Figure PCTCN2021093519-appb-000009
进行下调。在t+2·Τ时刻,当前统计负荷Load(t+2·Τ)=80%,仍然达到高负荷门限阈值LoadTHR_High=80%。故在t+2·Τ时刻,受流端R继续向分流端S发送下调分流调整信息。分流端S收到此信息后,将分流的业务数据量按分流数据调整步长
Figure PCTCN2021093519-appb-000010
进行下调。在t+3·Τ时刻,当前统计负荷Load(t+3·Τ)=70%,介于高负荷门限阈值LoadTHR_High=80%和低负荷门限阈值LoadTHR_Low=60%之间。故在t+3·Τ时刻,受流端R不向分流端S发送分流调整信息或发送不作调整的分流调整信息。在t+4·Τ时刻,由于受流端R下单连接UE的业务下降,使得当前统计负荷Load(t+4·Τ)=50%,低于低负荷门限阈值LoadTHR_Low=60%。故在t+4·Τ时刻,受流端R向分流端S发送上调分流调整信息。分流端S收到此信息后,将分流的业务数据量按分流数据调整步长
Figure PCTCN2021093519-appb-000011
进行上调。在t+5·Τ时刻,当前统计负荷Load(t+5·Τ)=70%,介于高负荷门限LoadTHR_High=80%和低负荷门限LoadTHR_Low=60%之间。故在t+5·Τ时刻,受流端R不向分流端S发送分流调整信息或发送不作调整的分流调整信息。
在一个示例中,假设网络中具有1个分流端S和1个受流端R,3个双连接UE。UE1、UE2、UE3在时刻t都双连接在分流端S和受流端R上进行了业务分流,受流端R在t时刻的当前统计负荷Load(t)=70%,介于高负荷门限阈值LoadTHR_High=80%和低负荷门限阈值LoadTHR_Low=60%之间。故在t时刻,受流端R不向分流端S发送分流调整信息或发送不作调整的分流调整信息。但分流端S在t时刻,已统计得到UE1的分流增益(假设为当前速率分流增益)为30%,UE2的分流增益为10%,而UE3的分流增益为-20%,即负增益。故从t时刻到t+Τ时刻之间,分流端S主动停止UE3的业务数据分流并维持设定分流停止时长Τ1,并将分流的业务数据量在UE1和UE2之间重新进行分配。由于UE1的分流增益比UE2高,所以UE1可分配的当前分流业务数据量和UE2可分配的当前分流业务数据量之比值,可在上个周期时刻的相应比值的基础上参照增益比值进行上调。例如,上个周期时刻UE1、UE2及UE3的当前分流业务数据量比值为 1:1:1,则当前周期时刻UE1和UE2的当前分流业务数据量比值可以设置为2:1。在t+Τ时刻,由于受流端R下的单连接UE的业务增加,当前统计负荷Load(t+Τ)=85%,超过高负荷门限阈值LoadTHR_High=80%。故在t+Τ时刻,受流端R向分流端S发送下调分流调整信息。分流端S收到此信息后,将上个周期内的分流业务数据量按分流数据调整步长
Figure PCTCN2021093519-appb-000012
进行下调,作为下个周期内分流业务数据量上限阈值。同时基于t+Τ时刻统计的UE进入或退出以及分流增益等情况对每个UE重新进行分流业务数据量的分配。其中UE1的分流增益变为10%,UE2的分流增益变为30%,而UE3已经退出双连接,并且有1个新的UE4进入,默认其分流增益为平均增益,即20%。分流端S基于这3个UE的分流增益重新分配t+Τ时刻到t+2·Τ时刻的分流数据量,增益高的UE分配的分流业务数据量更高,增益低的UE分配的分流业务数据量更低。
在一个示例中,假设网络中具有分流端S1和分流端S2,受流端R,2个双连接UE。UE1在时刻t双连接在分流端S1和受流端R上进行了业务数据分流,UE2在时刻t双连接在分流端S2和受流端R上进行了业务数据分流。受流端R在t时刻的当前统计负荷Load(t)=85%,超过高负荷门限阈值LoadTHR_High=80%。故在t时刻,受流端R同时向分流端S1和分流端S2发送下调分流调整信息。分流端S1和分流端S2收到此信息后,各自将上个周期内的分流业务数据量按分流数据调整步长
Figure PCTCN2021093519-appb-000013
进行下调,作为下个周期内分流业务数据量上限阈值。在t+Τ时刻,当前统计负荷Load(t+Τ)=45%,低于低负荷门限阈值LoadTHR_Low=60%。由于在时刻t到t+Τ时刻之间,UE2退出了分流,分流端S2没有分流给受流端R。故在t+Τ时刻,受流端R可以只向分流端S1发送上调分流调整信息。分流端S1收到此信息后,将上个周期内的分流业务数据量按分流数据调整步长
Figure PCTCN2021093519-appb-000014
进行上调,作为下个周期内分流业务数据量上限阈值。或者,受流端R也可以同时向分流端S1和分流端S2发送上调分流调整信息。分流端S1和分流端S2收到此信息后,各自将上个周期内的分流业务数据量按分流数据调整步长
Figure PCTCN2021093519-appb-000015
进行上调,作为下个周期内分流业务数据量上限阈值。
商用网络里业务负荷是动态变化的,并大部分具有比较稳定的业务模型。利用上述业务数据分流机制,当受流端的业务增加或信道条件恶化导致受流端负荷抬升达到高负荷门限时,需要减少双连接UE的业务分流,优先保障自身单连接UE的业务需求。如果自身单连接UE的负荷持续攀升,双连接UE分流减少所释放的资源就会被单连接UE及时补位占用,使得受流端负荷高居不下,分流业务数据量就会按着步长不断往下降,最多降至为0。如果单连接UE负荷逐步降低,当下降到低负荷门限阈值以下时,双连接UE分流的业务数据量就可以按步长逐步提升,让受流端的资源得到充分利用,这样分流就达到了比较稳定 的动态平衡,而不会出现乒乓现象。另外,分流端可以根据自身下每个双连接UE的分流增益情况,重新分配每个UE的分流业务数据量,可以让分流获得最大增益。
由此可见,本申请实施例所提供的业务数据分流方法限制在基站的PDCP层进行业务数据的分流控制,按合适的周期和步长调整分流数据量,不会产生乒乓现象,并且可以应对突发负荷进行及时调整。同时,基于用户终端的分流增益进行分流业务数据量调整,能够获得更好的整体分流增益。另外,本申请实施例所提供的业务数据分流方法也无需对基站底层技术进行改动,简单而有效,适用于所有4G/5G融合组网类型,如Option 3/Option 4/Option 7序列,即MCG split bear或SCG split bear,分流点所在基站类型可以是任意类型,如4G基站和/或5G基站。
在一个示例性实施方式中,图14为本申请实施例提供的一种业务数据分流方法的流程示意图,如图14所示,本实施例的方法可以包括:
SA10、受流端获取业务数据的当前负荷信息。
SA20、受流端根据所述当前负荷信息与负荷门限阈值之间的数值关系,以及所述当前负荷信息匹配的负荷关联周期确定分流调整信息。
SA30、受流端将所述分流调整信息发送至至少一个分流端,以使所述分流端根据所述分流调整信息阶段性调整受流端的分流业务数据量。
SA40、分流端根据所述分流调整信息阶段性调整所述受流端的分流业务数据量。
本申请实施例通过受流端获取业务数据的当前负荷信息,以根据当前负荷信息与负荷门限阈值之间的数值关系,以及当前负荷信息匹配的负荷关联周期确定分流调整信息,并将分流调整信息发送至至少一个分流端。分流端接收到受流端发送的分流调整信息后,根据分流调整信息阶段性调整受流端的分流业务数据量,解决业务数据分流机制存在的乒乓问题,实现业务数据的自适应分流,从而简化业务数据分流机制,并提高业务数据分流机制的高效性和适用性。
在一个示例性实施方式中,图15为本申请实施例提供的一种业务数据分流装置的示意图,该装置可以由软件和/或硬件实现,并集成在基站中,该基站可以作为受流端,可选的,受流端可以是4G基站,本申请实施例并不对受流端的基站类型进行限定。
如图15所示,业务数据分流装置包括:当前负荷信息获取模块510、分流调整信息确定模块520以及分流调整信息发送模块530,其中:
当前负荷信息获取模块510,设置为获取业务数据的当前负荷信息;其中,所述当前负荷信息包括当前统计负荷和当前测量负荷;分流调整信息确定模块520,设置为根据所述当前负荷信息与负荷门限阈值之间的数值关系,以及所述当前负荷信息匹配的负荷关联周期确定分流调整信息;分流调整信息发送模块530,设置为将所述分流调整信息发送至至少一个分流端,以使所述分流端根据所述分流调整信息阶段性调整受流端的分流业务数据量。
本申请实施例通过受流端获取业务数据的当前负荷信息,以根据当前负荷信息与负荷门限阈值之间的数值关系,以及当前负荷信息匹配的负荷关联周期确定分流调整信息,并将分流调整信息发送至至少一个分流端,以使分流端根据分流调整信息阶段性调整受流端的分流业务数据量,解决业务数据分流机制存在的乒乓问题,实现业务数据的自适应分流,从而简化业务数据分流机制,并提高业务数据分流机制的高效性和适用性。
可选的,当前负荷信息获取模块510设置为:根据分流控制周期获取业务数据的所述当前统计负荷,或,实时测量当前负荷,以获取所述当前测量负荷。
可选的,所述负荷门限阈值包括低负荷门限阈值及高负荷门限阈值;所述负荷关联周期包括分流控制周期;分流调整信息确定模块520设置为:在分流控制周期时刻,在确定所述当前统计负荷大于或等于低负荷门限阈值,且小于或等于高负荷门限阈值的情况下,将拒绝分流调整信息作为所述分流调整信息,或,设置所述分流调整信息为空;在分流控制周期时刻,在确定所述当前统计负荷小于低负荷门限阈值的情况下,将上调分流调整信息作为所述分流调整信息;在分流控制周期时刻,在确定所述当前统计负荷大于高负荷门限阈值的情况下,将下调分流调整信息作为所述分流调整信息。
可选的,所述负荷门限阈值包括超高负荷门限阈值;所述负荷关联周期包括超高负荷持续周期;分流调整信息确定模块520设置为:在分流控制周期内,在确定所述当前测量负荷大于或等于超高负荷门限阈值,且所述当前测量负荷大于或等于超高负荷门限阈值的持续时间达到超高负荷持续周期的情况下,将下调分流调整信息作为所述分流调整信息。
可选的,分流调整信息发送模块530设置为:按照分流控制周期或超高负荷持续周期,将所述分流调整信息发送至所有与受流端建立分流关系的分流端,或,按照分流控制周期或超高负荷持续周期,将所述分流调整信息发送至在当前分流控制周期或上一个分流控制周期内与受流端建立分流关系的分流端。
上述业务数据分流装置可执行本申请实施例所提供的应用于受流端的业务数据分流方法,具备执行方法相应的功能模块和效果。未在本实施例中详尽描述的技术细节,可参见本申请实施例所提供的应用于受流端的业务数据分流方法。
在一个示例性实施方式中,图16为本申请实施例提供的另一种业务数据分流装置的示意图,该装置可以由软件和/或硬件实现,并集成在基站中,该基站可以作为分流端,可选的,分流端可以是4G基站或5G基站,本申请实施例并不对分流端的基站类型进行限定。
如图16所示,业务数据分流装置包括:分流调整信息接收模块610以及业务数据量调整模块620,其中:
分流调整信息接收模块610,设置为接收受流端发送的分流调整信息;其中,所述分流调整信息由受流端根据业务数据的当前负荷信息与负荷门限阈值之间的数值关系,以及所述当前负荷信息匹配的负荷关联周期确定;所述当前负荷信息包括当前统计负荷和当前测量负荷;业务数据量调整模块620,设置为根据所述分流调整信息阶段性调整所述受流端的分流业务数据量。
本申请实施例通过受流端获取业务数据的当前负荷信息,以根据当前负荷信息与负荷门限阈值之间的数值关系,以及当前负荷信息匹配的负荷关联周期确定分流调整信息,并将分流调整信息发送至至少一个分流端。分流端接收到受流端发送的分流调整信息后,根据分流调整信息阶段性调整受流端的分流业务数据量,解决业务数据分流机制存在的乒乓问题,实现业务数据的自适应分流,从而简化业务数据分流机制,并提高业务数据分流机制的高效性和适用性。
可选的,分流调整信息接收模块610设置为:接收所述受流端按照分流控制周期发送的分流调整信息;或,接收所述受流端按照超高负荷持续周期发送的分流调整信息。
可选的,所述分流调整信息包括拒绝分流调整信息、空分流调整信息、上调分流调整信息或下调分流调整信息;业务数据量调整模块620设置为:在所述分流控制周期时刻,根据所述拒绝分流调整信息或所述空分流调整信息,拒绝调整所述受流端的当前分流业务数据量;在所述分流控制周期时刻,根据所述上调分流调整信息,按照分流数据调整步长上调所述当前分流业务数据量;在所述分流控制周期时刻,根据所述下调分流调整信息,按照分流数据调整步长下调所述当前分流业务数据量。
可选的,所述分流调整信息包括下调分流调整信息;业务数据量调整模块 620设置为:在所述超高负荷持续周期时刻,根据所述下调分流调整信息,按照分流数据调整步长下调所述当前分流业务数据量。
可选的,业务数据分流装置还包括:当前分流增益确定模块,设置为确定参与分流的每个分流终端的当前分流增益;当前分流业务数据量调整模块,设置为根据每个分流终端的当前分流增益,对所述每个分流终端的当前分流业务数据量进行调整。
可选的,所述当前分流增益包括高分流正增益、低分流正增益、低分流负增益或零增益;当前分流业务数据量调整模块设置为:在保证分流业务数据量上限阈值的情况下,提高所述高分流正增益对应的分流终端的当前分流业务数据量;降低所述低分流正增益对应的分流终端的当前分流业务数据量;停止所述低分流负增益对应的分流终端的当前分流业务数据量,并维持设定分流停止时长;将所述零增益对应的分流终端按照设定增益处理方式进行增益处理。
可选的,所述当前分流增益包括:当前速率分流增益、当前时延分流增益或当前频谱效率分流增益。
上述业务数据分流装置可执行本申请实施例所提供的应用于分流端的业务数据分流方法,具备执行方法相应的功能模块和效果。未在本实施例中详尽描述的技术细节,可参见本申请实施例所提供的应用于分流端的业务数据分流方法。
在一个示例性实施方式中,本申请实施例还提供了一种基站,图17为本申请提供的一种基站的结构示意图,如图17所示,本申请提供的基站,包括:一个或多个处理器710和存储装置720;该基站的处理器710可以是一个或多个,图17中以一个处理器710为例;存储装置720设置为存储一个或多个程序;所述一个或多个程序被所述一个或多个处理器710执行,使得所述一个或多个处理器710实现如本申请实施例中所述的应用于受流端的业务数据分流方法。
基站中的处理器710、存储装置720可以通过总线或其他方式连接,图17中以通过总线连接为例。
存储装置720作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本申请实施例所述的应用于受流端的业务数据分流方法对应的程序指令/模块(例如,应用于受流端的业务数据分流装置中的当前负荷信息获取模块510、分流调整信息确定模块520以及分流调整信息发送模块530)。存储装置720可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据设备的 使用所创建的数据等。此外,存储装置720可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储装置720可包括相对于处理器710远程设置的存储器,这些远程存储器可以通过网络连接至通信节点。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
本申请实施例提供了一种基站,图18为本申请提供的另一种基站的结构示意图,如图18所示,本申请提供的基站,包括:一个或多个处理器810和存储装置820;该基站的处理器810可以是一个或多个,图18中以一个处理器810为例;存储装置820设置为存储一个或多个程序;所述一个或多个程序被所述一个或多个处理器810执行,使得所述一个或多个处理器810实现如本申请实施例中所述的应用于分流端的业务数据分流方法。
基站中的处理器810、存储装置820可以通过总线或其他方式连接,图18中以通过总线连接为例。
存储装置820作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本申请实施例所述的应用于分流端的业务数据分流方法对应的程序指令/模块(例如,应用于分流端的业务数据分流装置中的分流调整信息接收模块610以及业务数据量调整模块620)。存储装置820可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据设备的使用所创建的数据等。此外,存储装置820可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储装置820可包括相对于处理器810远程设置的存储器,这些远程存储器可以通过网络连接至通信节点。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
本申请实施例还提供一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本申请实施例中应用于受流端的业务数据分流方法,或实现本申请实施例中应用于分流端的业务数据分流方法。
应用于受流端的业务数据分流方法,包括:
获取业务数据的当前负荷信息;其中,所述当前负荷信息包括当前统计负荷和当前测量负荷;根据所述当前负荷信息与负荷门限阈值之间的数值关系,以及所述当前负荷信息匹配的负荷关联周期确定分流调整信息;将所述分流调 整信息发送至至少一个分流端,以使所述分流端根据所述分流调整信息阶段性调整受流端的分流业务数据量。
应用于分流端的业务数据分流方法,包括:
接收受流端发送的分流调整信息;其中,所述分流调整信息由受流端根据业务数据的当前负荷信息与负荷门限阈值之间的数值关系,以及所述当前负荷信息匹配的负荷关联周期确定;所述当前负荷信息包括当前统计负荷和当前测量负荷;根据所述分流调整信息阶段性调整所述受流端的分流业务数据量。
可选的,该计算机可执行指令在由计算机处理器执行时还可以用于实现本申请实施例中任一所述的业务数据分流方法。
通过以上关于实施方式的描述,本申请可借助软件及必需的通用硬件来实现,也可以通过硬件实现。本申请的技术方案本质上可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如计算机的软盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、闪存(FLASH)、硬盘或光盘等,包括多个指令用以使得一台通信设备(可以是个人计算机,服务器,或者网络设备等)执行本申请实施例所述的方法。
上述应用于受流端的业务数据分流装置,或者应用于分流端中的业务数据分流装置的实施例中,所包括的多个单元和模块只是按照功能逻辑进行划分的,但并不局限于上述的划分,只要能够实现相应的功能即可;另外,多个功能单元的名称也只是为了便于相互区分,并不用于限制本申请的保护范围。
一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(Instruction Set Architecture,ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本 地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(ROM)、随机访问存储器(RAM)、光存储器装置和系统(数码多功能光碟(Digital Video Disc,DVD)或光盘(Compact Disk,CD))等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal Processing,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Field-Programmable Gate Array,FPGA)以及基于多核处理器架构的处理器。

Claims (16)

  1. 一种业务数据分流方法,应用于受流端,包括:
    获取业务数据的当前负荷信息;其中,所述当前负荷信息包括当前统计负荷和当前测量负荷中的至少之一;
    根据所述当前负荷信息与负荷门限阈值之间的数值关系,以及所述当前负荷信息匹配的负荷关联周期确定分流调整信息;
    将所述分流调整信息发送至分流端,以使所述分流端根据所述分流调整信息阶段性调整所述受流端的分流业务数据量。
  2. 根据权利要求1所述的方法,其中,所述获取业务数据的当前负荷信息,包括以下至少之一:
    根据分流控制周期获取所述业务数据的所述当前统计负荷;
    实时测量当前负荷,以获取所述当前测量负荷。
  3. 根据权利要求1所述的方法,其中,所述负荷门限阈值包括低负荷门限阈值及高负荷门限阈值;所述负荷关联周期包括分流控制周期;
    所述根据所述当前负荷信息与负荷门限阈值之间的数值关系,以及所述当前负荷信息匹配的负荷关联周期确定分流调整信息,包括:
    在所述分流控制周期时刻,在确定所述当前统计负荷大于或等于所述低负荷门限阈值,且小于或等于所述高负荷门限阈值的情况下,将拒绝分流调整信息作为所述分流调整信息,或,设置所述分流调整信息为空;
    在所述分流控制周期时刻,在确定所述当前统计负荷小于所述低负荷门限阈值的情况下,将上调分流调整信息作为所述分流调整信息;
    在所述分流控制周期时刻,在确定所述当前统计负荷大于所述高负荷门限阈值的情况下,将下调分流调整信息作为所述分流调整信息。
  4. 根据权利要求1或3所述的方法,其中,所述负荷门限阈值包括超高负荷门限阈值;所述负荷关联周期包括超高负荷持续周期;
    所述根据所述当前负荷信息与负荷门限阈值之间的数值关系,以及所述当前负荷信息匹配的负荷关联周期确定分流调整信息,包括:
    在分流控制周期内,在确定所述当前测量负荷大于或等于所述超高负荷门限阈值,且所述当前测量负荷大于或等于所述超高负荷门限阈值的持续时间达到所述超高负荷持续周期的情况下,将下调分流调整信息作为所述分流调整信息。
  5. 根据权利要求1-4中任一项所述的方法,其中,所述将所述分流调整信 息发送至分流端,包括:
    在分流控制周期时刻或在确定突发超高负荷的持续时间到达超高负荷持续周期后,将所述分流调整信息发送至与所述受流端建立分流关系的至少一个分流端;或,
    在分流控制周期时刻或在确定突发超高负荷的持续时间到达超高负荷持续周期后,将所述分流调整信息发送至在当前分流控制周期或上一个分流控制周期内与所述受流端建立分流关系的至少一个分流端。
  6. 一种业务数据分流方法,应用于分流端,包括:
    接收受流端发送的分流调整信息;其中,所述分流调整信息由所述受流端根据业务数据的当前负荷信息与负荷门限阈值之间的数值关系,以及所述当前负荷信息匹配的负荷关联周期确定;所述当前负荷信息包括当前统计负荷和当前测量负荷中的至少之一;
    根据所述分流调整信息阶段性调整所述受流端的分流业务数据量。
  7. 根据权利要求6所述的方法,其中,所述接收受流端发送的分流调整信息,包括:
    接收所述受流端按照分流控制周期发送的所述分流调整信息;或,
    接收所述受流端按照超高负荷持续周期发送的所述分流调整信息。
  8. 根据权利要求7所述的方法,其中,所述分流调整信息包括拒绝分流调整信息、空分流调整信息、上调分流调整信息或下调分流调整信息;
    所述根据所述分流调整信息阶段性调整所述受流端的分流业务数据量,包括:
    在所述分流控制周期时刻,根据所述拒绝分流调整信息或所述空分流调整信息,拒绝调整所述受流端的当前分流业务数据量;
    在所述分流控制周期时刻,根据所述上调分流调整信息,按照分流数据调整步长上调所述受流端的当前分流业务数据量;
    在所述分流控制周期时刻,根据所述下调分流调整信息,按照分流数据调整步长下调所述受流端的当前分流业务数据量。
  9. 根据权利要求7所述的方法,其中,所述分流调整信息包括下调分流调整信息;
    所述根据所述分流调整信息阶段性调整所述受流端的分流业务数据量,包括:
    在所述超高负荷持续周期时刻,根据所述下调分流调整信息,按照分流数据调整步长下调所述受流端的当前分流业务数据量。
  10. 根据权利要求6所述的方法,还包括:
    确定参与分流的多个分流终端中每个分流终端的当前分流增益;
    根据每个分流终端的当前分流增益,对所述每个分流终端的当前分流业务数据量进行调整。
  11. 根据权利要求10所述的方法,其中,所述当前分流增益包括高分流正增益、低分流正增益、低分流负增益或零增益;
    所述根据每个分流终端的当前分流增益,对所述每个分流终端的当前分流业务数据量进行调整,包括:
    在保证分流业务数据量上限阈值的情况下,提高所述高分流正增益对应的分流终端的当前分流业务数据量;
    降低所述低分流正增益对应的分流终端的当前分流业务数据量;
    停止所述低分流负增益对应的分流终端的当前分流业务数据量,并维持设定分流停止时长;
    将所述零增益对应的分流终端按照设定增益处理方式进行增益处理。
  12. 根据权利要求10或11所述的方法,其中,所述当前分流增益包括:当前速率分流增益、当前时延分流增益或当前频谱效率分流增益。
  13. 一种业务数据分流装置,配置于受流端,包括:
    当前负荷信息获取模块,设置为获取业务数据的当前负荷信息;其中,所述当前负荷信息包括当前统计负荷和当前测量负荷中的至少之一;
    分流调整信息确定模块,设置为根据所述当前负荷信息与负荷门限阈值之间的数值关系,以及所述当前负荷信息匹配的负荷关联周期确定分流调整信息;
    分流调整信息发送模块,设置为将所述分流调整信息发送至分流端,以使所述分流端根据所述分流调整信息阶段性调整所述受流端的分流业务数据量。
  14. 一种业务数据分流装置,配置于分流端,包括:
    分流调整信息接收模块,设置为接收受流端发送的分流调整信息;其中,所述分流调整信息由所述受流端根据业务数据的当前负荷信息与负荷门限阈值之间的数值关系,以及所述当前负荷信息匹配的负荷关联周期确定;所述当前负荷信息包括当前统计负荷和当前测量负荷中的至少之一;
    业务数据量调整模块,设置为根据所述分流调整信息阶段性调整所述受流 端的分流业务数据量。
  15. 一种基站,包括:
    至少一个处理器;
    存储装置,设置为存储至少一个程序;
    当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如权利要求1-5中任一项所述的业务数据分流方法,或实现如权利要求6-12中任一项所述的业务数据分流方法。
  16. 一种存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1-5中任一项所述的业务数据分流方法,或实现如权利要求6-12中任一项所述的业务数据分流方法。
PCT/CN2021/093519 2020-05-15 2021-05-13 业务数据分流方法、装置、基站和存储介质 WO2021228180A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010412431.4 2020-05-15
CN202010412431.4A CN113676418A (zh) 2020-05-15 2020-05-15 一种业务数据分流方法、装置、基站和存储介质

Publications (1)

Publication Number Publication Date
WO2021228180A1 true WO2021228180A1 (zh) 2021-11-18

Family

ID=78525345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/093519 WO2021228180A1 (zh) 2020-05-15 2021-05-13 业务数据分流方法、装置、基站和存储介质

Country Status (2)

Country Link
CN (1) CN113676418A (zh)
WO (1) WO2021228180A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024087074A1 (zh) * 2022-10-26 2024-05-02 北京小米移动软件有限公司 传输配置方法、装置、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103731883A (zh) * 2014-01-20 2014-04-16 中国联合网络通信集团有限公司 一种负载均衡的方法及装置
CN104427554A (zh) * 2013-08-29 2015-03-18 中兴通讯股份有限公司 一种协作多流传输数据的方法及基站
WO2020032844A1 (en) * 2018-08-07 2020-02-13 Telefonaktiebolaget Lm Ericsson (Publ) Tunnel modification for split bearers in multi-rat dual connectivity (mr-dc) and nr-nr dual connectivity (nr-dc)
CN111010711A (zh) * 2019-11-08 2020-04-14 京信通信系统(中国)有限公司 数据分流策略确定方法、系统、辅基站、主基站和设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104427554A (zh) * 2013-08-29 2015-03-18 中兴通讯股份有限公司 一种协作多流传输数据的方法及基站
CN103731883A (zh) * 2014-01-20 2014-04-16 中国联合网络通信集团有限公司 一种负载均衡的方法及装置
WO2020032844A1 (en) * 2018-08-07 2020-02-13 Telefonaktiebolaget Lm Ericsson (Publ) Tunnel modification for split bearers in multi-rat dual connectivity (mr-dc) and nr-nr dual connectivity (nr-dc)
CN111010711A (zh) * 2019-11-08 2020-04-14 京信通信系统(中国)有限公司 数据分流策略确定方法、系统、辅基站、主基站和设备

Also Published As

Publication number Publication date
CN113676418A (zh) 2021-11-19

Similar Documents

Publication Publication Date Title
AU2009241693B2 (en) System and method for heartbeat signal generation
US9414255B2 (en) Packet flow control in a wireless communications network based on an indication contained in a packet
US9137841B2 (en) Enhancement for scheduling request triggering based on traffic condition
US8040804B2 (en) Method of flow control for IUB-interface, apparatus and base station
EP2854446B1 (en) Access control method and device
US8611825B2 (en) Method and apparatus for providing a dynamic inactivity timer in a wireless communications network
US9629083B2 (en) Methods for UE indicating traffic-related information to network
US8611217B2 (en) Subscriber/service differentiation in advanced wireless networks
US10187819B2 (en) Access network congestion control method, base station device, and policy and charging rules function network element
EP2437542B1 (en) Bandwidth management method, evolution base station, service gateway and communication system
EP2611251B1 (en) Method and apparatus for providing differentiation services to ue
JP2004528769A (ja) 移動通信システムにおける逆方向リンクの送信制御方法
CN1761356A (zh) 一种码分多址系统中公共信道向专用信道的类型转换方法
WO2018068516A1 (zh) 一种商业wifi用户动态带宽限制方法及系统
US20160105894A1 (en) eMBMS Management Method, Multimedia Broadcast Multicast Service Coordination Entity, and Base Station
WO2011116688A1 (zh) 一种载波负荷均衡的方法和设备
WO2013097796A1 (zh) 一种调整cqi反馈周期的方法、设备和系统
US20160295579A1 (en) Systems and methods for enhancing real-time quality of experience in universal mobile telecommunications systems and long term evolution communications networks
WO2021228180A1 (zh) 业务数据分流方法、装置、基站和存储介质
US20140185441A1 (en) Transmission Timing Interval Adjusting Method and Communication System
JP4348367B2 (ja) 通信システム、通信ユニット、およびその内部における能力温存方法
JP2003348644A (ja) 移動通信システムでのサービス品質を保証する呼受諾装置及び方法
EP2594107B1 (en) Improved system for device state transition control
WO2016115846A1 (zh) 业务调度方法、装置、无线网络控制器及基站
CN107995312B (zh) 一种边界网络服务流量分流系统及动态分流方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21803297

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/04/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21803297

Country of ref document: EP

Kind code of ref document: A1