WO2021228121A1 - 确定搜索空间集配置的方法及装置、计算机可读存储介质 - Google Patents

确定搜索空间集配置的方法及装置、计算机可读存储介质 Download PDF

Info

Publication number
WO2021228121A1
WO2021228121A1 PCT/CN2021/093257 CN2021093257W WO2021228121A1 WO 2021228121 A1 WO2021228121 A1 WO 2021228121A1 CN 2021093257 W CN2021093257 W CN 2021093257W WO 2021228121 A1 WO2021228121 A1 WO 2021228121A1
Authority
WO
WIPO (PCT)
Prior art keywords
search space
space set
determining
user equipment
type
Prior art date
Application number
PCT/CN2021/093257
Other languages
English (en)
French (fr)
Inventor
周化雨
赵思聪
潘振岗
Original Assignee
展讯通信(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 展讯通信(上海)有限公司 filed Critical 展讯通信(上海)有限公司
Priority to US17/925,467 priority Critical patent/US20230180251A1/en
Publication of WO2021228121A1 publication Critical patent/WO2021228121A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority

Definitions

  • the present invention relates to the field of wireless communication technology, and in particular to a method and device for determining the configuration of a search space set, and a computer-readable storage medium.
  • the low-complexity UE has a lower cost and can be applied to machine type communication (MTC) or Internet of Things (IoT).
  • MTC machine type communication
  • IoT Internet of Things
  • low-complexity UEs have smaller bandwidth, fewer antennas, weaker capabilities, and relaxed UE processing time.
  • Smaller bandwidth means that the bandwidth is reduced from 100MHz to 50MHz or 20MHz or 10MHz or 5MHz.
  • the reduction in the number of antennas means that the number of receiving antennas has been reduced from 4 antennas to 2 or 1 antenna.
  • the reduction in bandwidth and the number of antennas will reduce the coverage or the effective cell radius. This is because the reduction in bandwidth will reduce the maximum aggregation level (AL) of the physical downlink control channel (Physical Downlink Control Channel, PDCCH). This leads to a reduction in coding gain, and a reduction in the number of receiving antennas will result in a reduction in receiving diversity gain.
  • A aggregation level
  • the mechanism of PDCCH coverage recovery includes increasing the duration of Control Resource Set (CORESET), thereby increasing the maximum aggregation level; and PDCCH repeated transmission, the UE can combine multiple PDCCHs to indirectly increase PDCCH time domain resources.
  • CORESET Control Resource Set
  • the UE monitors the public PDCCH configured by the Master Information Block (MIB), and the search space set corresponding to the public PDCCH configured by the MIB is generally called the search space set. 0 (because it is identified as 0). Since low-complexity UEs need coverage recovery, search space set 0 of low-complexity UEs needs to correspond to different coverage recovery configurations. For example, when the coverage loss is 3dB, a configuration corresponding to 3dB coverage recovery is required, and when the coverage loss is 6dB, a configuration corresponding to 6dB coverage recovery is required.
  • MIB Master Information Block
  • the embodiment of the present invention solves the technical problem of how the low-complexity UE can adaptively determine the configuration of the search space set according to the coverage recovery requirements.
  • an embodiment of the present invention provides a method for determining the configuration of a search space set, including: receiving signaling; and determining the configuration of the search space set according to the signaling.
  • the signaling is MIB signaling.
  • the determining the configuration of the search space set includes: determining the PDCCH configuration of the search space set.
  • the determining the PDCCH configuration of the search space set includes: determining the PDCCH configuration of the search space set identified as 0.
  • the determining the PDCCH configuration of the search space set identified as 0 includes: determining the number of PDCCH repetitions of the search space set identified as 0.
  • the determining the configuration of the search space set includes: determining the number of PDCCH repetitions of the search space set.
  • the determining the number of PDCCH repetitions in the search space set includes at least one of the following: determining the number of PDCCH repetitions in the search space set according to the coverage recovery value; and according to the bandwidth of the user equipment and the number of receiving antennas At least one of: determining the number of PDCCH repetitions of the search space set; determining the number of PDCCH repetitions of the search space set according to the bandwidth of the control resource set, the duration of the control resource set, and the number of receiving antennas of the user equipment; according to The maximum aggregation level and the number of receiving antennas of the user equipment determine the number of PDCCH repetitions in the search space set; and determine the number of PDCCH repetitions in the search space set according to the type of the user equipment.
  • the determining the number of PDCCH repetitions of the search space set according to the coverage recovery value includes at least one of the following: when the coverage recovery value is 3dB, determining that the number of PDCCH repetitions of the search space set is 2 When the coverage recovery value is 6dB, it is determined that the PDCCH repetition number of the search space set is 4; when the coverage recovery value is 9dB, it is determined that the PDCCH repetition number of the search space set is 8.
  • the determining the number of PDCCH repetitions in the search space set according to at least one of the bandwidth of the user equipment and the number of receiving antennas includes at least one of the following: when the bandwidth of the user equipment is less than X physical resources When the number of receiving antennas is equal to Z, it is determined that the number of PDCCH repetitions of the search space set is W.
  • the determining that the number of PDCCH repetitions of the search space set is W includes at least one of the following: when the bandwidth of the user equipment is less than 48 physical resource blocks, and the number of receiving antennas is equal to 2, determining The number of PDCCH repetitions in the search space set is 2; when the bandwidth of the user equipment is less than 48 physical resource blocks, and the number of receiving antennas is equal to 1, it is determined that the number of PDCCH repetitions in the search space set is 4 or 8. .
  • the type of the user equipment is determined by at least one of the following: the coverage recovery value; at least one of the bandwidth of the user equipment and the number of receiving antennas; the maximum aggregation level and the number of the user equipment The number of receiving antennas.
  • the type of the user equipment is determined in at least one of the following ways: when the coverage recovery value is 3dB, the type of the user equipment It is type 3; when the coverage recovery value is 6 dB, the type of the user equipment is type 6; when the coverage recovery value is 9 dB, the type of the user equipment is type 9.
  • the type of the user equipment is determined by at least one of the bandwidth of the user equipment and the number of receiving antennas
  • the type of the user equipment is determined in the following manner: when the bandwidth of the user equipment is less than X
  • the number of physical resource blocks is Z and the number of receiving antennas is Z, it is determined that the type of the user equipment is type N.
  • the determining that the type of the user equipment is type N includes at least one of the following: when the bandwidth of the user equipment is less than 48 physical resource blocks and the number of receiving antennas is 2, determining that the user equipment The type of the user equipment is type 3; when the bandwidth of the user equipment is less than 48 physical resource blocks and the number of receiving antennas is 1, it is determined that the type of the user equipment is type 6 or type 9.
  • the type of the user equipment is determined by the maximum aggregation level and the number of receiving antennas of the user equipment, the type of the user equipment is determined in the following manner: when the maximum aggregation level is Y, and When the number of receiving antennas is Z, it is determined that the type of the user equipment is type N.
  • the determining that the type of the user equipment is type N includes at least one of the following: when the maximum aggregation level is 16 and the number of receiving antennas is 1, determining that the type of the user equipment is Type 3; when the maximum aggregation level is 8 and the number of receiving antennas is 2, it is determined that the type of the user equipment is type 3; when the maximum aggregation level is 4, and the number of receiving antennas is 4
  • the type of the user equipment is determined to be type 3; when the maximum aggregation level is 8 and the number of receiving antennas is 1, it is determined that the type of the user equipment is type 6; when the maximum aggregation level is 4.
  • the number of receiving antennas is 2, it is determined that the type of the user equipment is type 6; when the maximum aggregation level is 4 and the number of receiving antennas is 1, it is determined that the type of the user equipment is Type 9.
  • the maximum aggregation level is determined by the bandwidth of the control resource set and the duration of the control resource set.
  • the determining the number of PDCCH repetitions of the search space set according to the type of the user equipment includes at least one of the following: when the type of the user equipment is type 3, determining the PDCCH repetition of the search space set The number of times is 2; when the type of the user equipment is type 6, it is determined that the PDCCH repetition times of the search space set is 4; when the type of the user equipment is type 9, it is determined that the PDCCH repetitions of the search space set are The number of times is 8.
  • the determining the number of PDCCH repetitions of the search space set includes: determining the number of PDCCH repetitions of the search space set according to table parameters of the search space set.
  • the determining the number of PDCCH repetitions of the search space set according to the table parameters of the search space set includes: determining the number of repetitions of the search space set according to the parameter M in the table corresponding to the search space set PDCCH repetition times.
  • the determining the PDCCH repetition times of the search space set according to the parameter M in the table corresponding to the search space set includes: determining the PDCCH repetition times of the search space set as: the search space set The parameter M in the corresponding table.
  • the method further includes: determining the start slot offset of the scheduled PDSCH according to the number of PDCCH repetitions of the search space set.
  • the determining the start time slot offset of the scheduled PDSCH includes: determining the start time slot offset of the scheduled PDSCH as M; or determining the start time slot offset of the scheduled PDSCH The start time slot offset is M-1.
  • the determining the PDCCH repetition times of the search space set according to the parameter M in the table corresponding to the search space set includes: determining the PDCCH repetition times of the search space set as: the search space set 1/2 of the parameter M in the corresponding table.
  • the method further includes: determining the start slot offset of the scheduled PDSCH according to the number of PDCCH repetitions of the search space set.
  • the determining the start time slot offset of the scheduled PDSCH includes: determining the start time slot offset of the scheduled PDSCH is M/2; or, determining the scheduled start time slot offset The start time slot offset of PDSCH is M/2-1.
  • the determining the number of PDCCH repetitions of the search space set according to the table parameters of the search space set includes: determining the search space according to the QCL parameters of the synchronization signal block in the table of the search space set The number of PDCCH repetitions of the set.
  • the determining the number of PDCCH repetitions of the search space set identified as 0 according to the QCL parameters of the synchronization signal block in the table of the search space set includes: determining the number of PDCCH repetitions associated with the synchronization signal block having a QCL relationship The PDCCH monitoring timing is repeated.
  • the method further includes: determining a PDCCH monitoring time.
  • the determining the monitoring timing of the PDCCH includes: determining the start time slot and the start symbol corresponding to the monitoring timing of the PDCCH, and determining to perform W consecutive monitoring, where W is the PDCCH repetition of the search space set frequency.
  • an embodiment of the present invention also provides an apparatus for determining the configuration of a search space set, including: a receiving unit, configured to receive signaling; and a determining unit, configured to determine the search space set configuration based on the signaling Configuration.
  • An embodiment of the present invention also provides a computer-readable storage medium on which a computer program is stored, wherein the computer program executes any one of the above-mentioned methods for determining the configuration of a search space set when the computer program is run by a processor A step of.
  • the embodiment of the present invention also provides another device for determining the configuration of a search space set, including a memory and a processor, the memory stores a computer program that can run on the processor, and the processor runs the computer The program executes any of the steps of the method for determining the configuration of the search space set described above.
  • the configuration of the search space set is determined according to the received signaling, so that a low-complexity UE can adaptively determine the configuration of the search space set.
  • FIG. 1 is a flowchart of a method for determining the configuration of a search space set in an embodiment of the present invention
  • Fig. 2 is a schematic structural diagram of an apparatus for determining the configuration of a search space set in an embodiment of the present invention.
  • the configuration of the search space set is determined according to the received signaling, so that a low-complexity UE can adaptively determine the configuration of the search space set.
  • the embodiment of the present invention provides a method for determining the configuration of a search space set. Referring to FIG. 1, a detailed description will be given below through specific steps.
  • the method for determining the configuration of the search space set provided in the following steps S101 to S102 can be executed by a chip with data processing functions in the user equipment (such as a baseband chip), or by a data processing function included in the user equipment
  • the chip module of the chip (such as the baseband chip) is executed.
  • Step S101 receiving signaling.
  • the UE can receive the signaling sent by the network side.
  • the signaling sent by the network side may be MIB signaling.
  • the UE may be a low-complexity UE.
  • a low-complexity UE has a smaller bandwidth, fewer antennas, weaker capabilities, and a relaxed UE processing time.
  • Smaller bandwidth means that the bandwidth is reduced from 100MHz to 50MHz or 20MHz or 10MHz or 5MHz.
  • the reduction in the number of antennas means that the number of receiving antennas has been reduced from 4 antennas to 2 or 1 antenna.
  • Step S102 Determine the configuration of the search space set according to the signaling.
  • the UE may determine the configuration of the search space set according to the received signaling.
  • the configuration of the search space set determined by the UE may be the number of PDCCH repetitions of the search space set.
  • the UE when determining the configuration of the search space set, can determine the PDCCH configuration of the search space set identified as 0, and the search space set identified as 0 is search space set 0.
  • the search space set (or search space) identified as 0 is the search space set (or search space) configured by MIB, or the search space set (or search space) configured by PDCCH-ConfigSIB1, or the search space set (or search space) configured by SearchSpaceZero
  • the PDCCH configuration of the search space set identified by the UE may be: the number of PDCCH repetitions of the search space set identified by 0.
  • the UE may determine the number of PDCCH repetitions in the search space set according to parameters and/or signaling.
  • the parameters and/or signaling may include at least one of the following: coverage recovery value; at least one of the bandwidth of the UE and the number of receiving antennas; the bandwidth of the control resource set, the duration of the control resource set, and the number of receiving antennas of the UE; the maximum Aggregation level and the number of receiving antennas of the UE; the type of UE.
  • the bandwidth of the UE may also be referred to as the bandwidth supported by the UE, the maximum bandwidth supported by the UE, the channel bandwidth of the UE, the channel bandwidth supported by the UE, or the maximum channel bandwidth supported by the UE.
  • the UE may obtain the bandwidth of the control resource set and the duration of the control resource set through signaling, where the control resource set may be a control resource set identified as 0, referred to as CORESET0 for short.
  • the control resource set identified as 0 is the control resource set configured by the MIB, or the control resource set configured by PDCCH-ConfigSIB1, or the control resource set configured by ControlResourceSetZero.
  • the UE can obtain the maximum aggregation level through signaling.
  • the maximum aggregation level can be obtained through the configuration of the control resource set.
  • the configuration of the control resource set includes the bandwidth of the control resource set and the duration of the control resource set.
  • the control resource set may be a control resource set identified as 0.
  • the UE can obtain the type of the UE through at least one of the bandwidth of the UE and the number of receiving antennas.
  • the UE may also use the above-mentioned parameters and/or signaling to determine the number of PDCCH repetitions of the search space set identified as 0.
  • the corresponding relationship between the parameters and the number of PDCCH repetitions of the search space set will be described below.
  • the coverage recovery value may be related to the number of PDCCH repetitions in the search space set. That is, the greater the coverage recovery value, the greater the number of PDCCH repetitions in the search space set.
  • the coverage recovery value when the coverage recovery value is 3dB, it can be determined that the number of PDCCH repetitions in the search space set is 2. When the coverage recovery value is 6dB, it can be determined that the number of PDCCH repetitions in the search space set is 4. When the coverage recovery value is 9dB, it can be determined that the number of PDCCH repetitions in the search space set is 8.
  • the coverage recovery value and the number of PDCCH repetitions of the search space set identified as 0 may also be related.
  • the coverage recovery value when the coverage recovery value is 3dB, it can be determined that the number of PDCCH repetitions of the search space set identified as 0 is 2.
  • the coverage recovery value when the coverage recovery value is 6dB, it can be determined that the number of PDCCH repetitions of the search space set identified as 0 is 4.
  • the coverage recovery value is 9dB, it can be determined that the number of PDCCH repetitions of the search space set identified as 0 is 8.
  • the user equipment may also determine the number of PDCCH repetitions in the search space set according to at least one of the bandwidth and the number of receiving antennas.
  • the user equipment can determine the number of PDCCH repetitions in the search space set only according to its own bandwidth; the user equipment can also determine the number of PDCCH repetitions in the search space set according to its own receiving antenna number; the user equipment can also determine the number of PDCCH repetitions in the search space set according to its own bandwidth and the number of receiving antennas To determine the number of PDCCH repetitions in the search space set.
  • the bandwidth of the user equipment is less than X physical resource blocks (Physical Resource Block, PRB), and the number of receiving antennas is equal to Z, it can be determined that the number of PDCCH repetitions in the search space set is W.
  • PRB Physical Resource Block
  • the bandwidth of the user equipment is less than X physical resource blocks and the number of receiving antennas is equal to Z, it can be determined that the number of PDCCH repetitions in the search space set is 2.
  • X can take a value of 48 and Z can take a value of 2, so that the number of physical resource blocks in the control resource set can be 24.
  • the maximum aggregation level is 4. If the number of PDCCH repetitions in the search space set is 2, the equivalent maximum aggregation level (that is, the equivalent of the two control resource sets The maximum aggregation level) can be 8. When the duration of the control resource set is 2 symbols in length, the maximum aggregation level is 8. If the number of PDCCH repetitions of the search space set is 2, the equivalent maximum aggregation level can be 16.
  • the bandwidth of the user equipment is less than X PRBs and the number of receiving panel antennas is equal to Z, it can be determined that the number of PDCCH repetitions in the search space set is 4.
  • X can take a value of 48
  • Z can take a value of 1, so that the number of physical resource blocks in the control resource set can be 24.
  • the maximum aggregation level is 4. If the PDCCH repetition number of the search space set is 4 at this time, the equivalent maximum aggregation level (that is, the equivalent of the four control resource sets The maximum aggregation level) can be 16. When the duration of the control resource set is 2 symbols in length, the maximum aggregation level is 8. If the number of PDCCH repetitions in the search space set is 4 at this time, the equivalent maximum aggregation level can be 32.
  • the bandwidth of the user equipment is less than X PRBs and the number of receiving panel antennas is equal to Z, it can be determined that the number of PDCCH repetitions in the search space set is 8.
  • X can take a value of 48
  • Z can take a value of 1, so that the number of physical resource blocks in the control resource set can be 24.
  • the maximum aggregation level is 4. If the number of PDCCH repetitions in the search space set is 8, the equivalent maximum aggregation level (that is, the equivalent of eight control resource sets The maximum aggregation level) can be 32. When the duration of the control resource set is 2 symbols in length, the maximum aggregation level is 8. If the number of PDCCH repetitions of the search space set is 8 at this time, the equivalent maximum aggregation level can be 64.
  • the duration of the search space set can also be determined according to the number of receiving antennas. In the embodiment of the present invention, if the number of receiving antennas of the user equipment is equal to Z, it can be determined that the number of PDCCH repetitions in the search space set is W.
  • the number of receiving antennas of the user equipment is equal to Z, it can be determined that the number of PDCCH repetitions in the search space set is 2.
  • the value of Z can be 2, and the number of physical resource blocks in the control resource set is 24.
  • the maximum aggregation level is 4. If the PDCCH of the space set is searched at this time The number of repetitions is 2, and the equivalent maximum aggregation level (that is, the maximum aggregation level equivalent to two control resource sets) may be 8. When the duration of the control resource set is 2 symbols in length, the maximum aggregation level is 8. If the number of PDCCH repetitions of the search space set is 2, the equivalent maximum aggregation level can be 16.
  • the number of receiving antennas of the user equipment is equal to Z, it can be determined that the number of PDCCH repetitions in the search space set is 4.
  • the value of Z can be 1, and the number of physical resource blocks in the control resource set is 24.
  • the maximum aggregation level is 4.
  • the number of PDCCH repetitions is 4, and the equivalent maximum aggregation level (that is, the maximum aggregation level equivalent to four control resource sets) may be 16.
  • the duration of the control resource set is 2 symbols in length, the maximum aggregation level is 8. If the number of PDCCH repetitions in the search space set is 4 at this time, the equivalent maximum aggregation level can be 32.
  • the number of receiving antennas of the user equipment is equal to Z, it can be determined that the number of PDCCH repetitions in the search space set is 8.
  • the value of Z can be 1, and the number of physical resource blocks in the control resource set is 24.
  • the maximum aggregation level is 4. If the number of PDCCH repetitions of the search space set is 8, the equivalent maximum aggregation level (that is, the equivalent of eight control resource sets The maximum aggregation level) can be 32. When the duration of the control resource set is 2 symbols in length, the maximum aggregation level is 8. If the number of PDCCH repetitions of the search space set is 8 at this time, the equivalent maximum aggregation level can be 64.
  • the user equipment may determine the number of PDCCH repetitions of the search space set identified as 0 according to at least one of the bandwidth and the number of receiving antennas.
  • the user equipment can determine the number of PDCCH repetitions of the search space set identified as 0 based on its own bandwidth only; the user equipment can also determine the number of PDCCH repetitions of the search space set identified as 0 based on the number of its own receiving antennas; the user equipment can also According to its own bandwidth and the number of receiving antennas, the number of PDCCH repetitions in the search space set identified as 0 is determined.
  • the bandwidth of the user equipment is less than X physical resource blocks and the number of receiving antennas is equal to Z, it can be determined that the number of PDCCH repetitions of the search space set identified as 0 is W.
  • the bandwidth of the user equipment is less than X physical resource blocks and the number of receiving antennas is equal to Z, it can be determined that the number of PDCCH repetitions of the search space set identified as 0 is 2.
  • X can take a value of 48 and Z can take a value of 2, so that the number of physical resource blocks in the control resource set can be 24.
  • the maximum aggregation level is 4. If the number of PDCCH repetitions in the search space set is 2, the equivalent maximum aggregation level (that is, the equivalent of the two control resource sets The maximum aggregation level) can be 8. When the duration of the control resource set is 2 symbols in length, the maximum aggregation level is 8. If the number of PDCCH repetitions of the search space set is 2, the equivalent maximum aggregation level can be 16.
  • the bandwidth of the user equipment is less than 48 PRBs, and the number of receiving plate antennas is equal to Z, it can be determined that the number of PDCCH repetitions of the search space set identified as 0 is 4.
  • X can take a value of 48
  • Z can take a value of 1, so that the number of physical resource blocks in the control resource set can be 24.
  • the maximum aggregation level is 4. If the number of PDCCH repetitions in the search space set is 4 at this time, the equivalent maximum aggregation level (that is, the equivalent of the four control resource sets The maximum aggregation level) can be 16. When the duration of the control resource set is 2 symbols in length, the maximum aggregation level is 8. If the number of PDCCH repetitions in the search space set is 4 at this time, the equivalent maximum aggregation level can be 32.
  • the bandwidth of the user equipment is less than 48 PRBs, and the number of receiving plate antennas is equal to Z, it can be determined that the number of PDCCH repetitions of the search space set identified as 0 is 8.
  • X can take a value of 48
  • Z can take a value of 1, so that the number of physical resource blocks in the control resource set can be 24.
  • the maximum aggregation level is 4. If the number of PDCCH repetitions of the search space set is 8, the equivalent maximum aggregation level (that is, the equivalent of eight control resource sets The maximum aggregation level) can be 32. When the duration of the control resource set is 2 symbols in length, the maximum aggregation level is 8. If the number of PDCCH repetitions of the search space set is 8 at this time, the equivalent maximum aggregation level can be 64.
  • the number of PDCCH repetitions of the search space set identified as 0 can also be determined according to the number of receiving antennas.
  • the number of receiving antennas of the user equipment is equal to Z, it can be determined that the number of PDCCH repetitions of the search space set identified as 0 is W.
  • the number of receiving antennas of the user equipment is equal to Z, it can be determined that the number of PDCCH repetitions of the search space set identified as 0 is 2.
  • Z can take the value 2, and the number of physical resource blocks in the control resource set is 24.
  • the maximum aggregation level is 4. If the PDCCH of the space set is searched at this time The number of repetitions is 2, and the equivalent maximum aggregation level (that is, the maximum aggregation level equivalent to two control resource sets) may be 8. When the duration of the control resource set is 2 symbols in length, the maximum aggregation level is 8. If the number of PDCCH repetitions of the search space set is 2, the equivalent maximum aggregation level can be 16.
  • Z can take the value 1, and the number of physical resource blocks in the control resource set is 24.
  • the maximum aggregation level is 4. If the PDCCH of the space set is searched at this time The number of repetitions is 4, and the equivalent maximum aggregation level (that is, the maximum aggregation level equivalent to four control resource sets) may be 16. When the duration of the control resource set is 2 symbols in length, the maximum aggregation level is 8. If the number of PDCCH repetitions in the search space set is 4 at this time, the equivalent maximum aggregation level can be 32.
  • Z can take the value 1, and the number of physical resource blocks in the control resource set is 24.
  • the maximum aggregation level is 4. If the PDCCH of the space set is searched at this time The number of repetitions is 8, and the equivalent maximum aggregation level (that is, the maximum aggregation level equivalent to eight control resource sets) may be 32. When the duration of the control resource set is 2 symbols in length, the maximum aggregation level is 8. If the number of PDCCH repetitions of the search space set is 8 at this time, the equivalent maximum aggregation level can be 64.
  • the number of PDCCH repetitions in the search space set may also be determined according to the bandwidth of the control resource set (CORESET), the duration of the control resource set, and the number of receiving antennas of the user equipment.
  • the number of PDCCH repetitions of the search space set identified as 0 can also be determined according to the bandwidth of the control resource set identified as 0 (CORESET), the duration of the control resource set identified as 0, and the number of receiving antennas of the user equipment.
  • the number of PDCCH repetitions of the search space set identified as 0 can also be determined according to the bandwidth of the control resource set (CORESET), the duration of the control resource set, and the number of receiving antennas of the user equipment.
  • the user equipment may also determine the number of PDCCH repetitions in the search space set according to the maximum aggregation level and the number of receiving antennas of the user equipment.
  • the maximum aggregation level can be determined by the bandwidth of the control resource set and the duration of the control resource set, or the maximum aggregation level can be determined by the bandwidth of the control resource set and the duration of the control resource set, or the frequency of the control resource set. Domain resources (such as the number of control resource units) and the duration of the control resource set determine the maximum aggregation level.
  • the maximum aggregation level is Y and the number of receiving antennas is Z, it can be determined that the number of PDCCH repetitions in the search space set is W.
  • the maximum aggregation level is Y and the number of receiving antennas is Z
  • Y can take a value of 16
  • Z can take a value of 1. If the number of PDCCH repetitions in the search space set is 2, the equivalent maximum aggregation level (that is, the maximum aggregation level equivalent to two control resource sets) can be 32.
  • the maximum aggregation level is Y and the number of receiving antennas is Z, it can be determined that the number of PDCCH repetitions in the search space set is 2. Y can take a value of 8, and Z can take a value of 2. If the number of PDCCH repetitions in the search space set is 2, the equivalent maximum aggregation level (that is, the maximum aggregation level equivalent to two control resource sets) can be 16.
  • the maximum aggregation level is Y and the number of receiving antennas is Z, it can also be determined that the number of PDCCH repetitions in the search space set is 2. Y can take a value of 4, and Z can take a value of 4. If the number of PDCCH repetitions in the search space set is 2, the equivalent maximum aggregation level (that is, the maximum aggregation level equivalent to two control resource sets) can be 8.
  • the equivalent maximum aggregation level (that is, the maximum aggregation level equivalent to four control resource sets) can be 32.
  • the equivalent maximum aggregation level (that is, the maximum aggregation level equivalent to four control resource sets) can be 16.
  • the equivalent maximum aggregation level (that is, the maximum aggregation level equivalent to eight control resource sets) can be 32.
  • the user equipment can determine the number of PDCCH repetitions of the search space set identified as 0 according to the maximum aggregation level and the number of receiving antennas of the user equipment.
  • the maximum aggregation level can be determined by the bandwidth of the control resource set identified as 0 and the duration of the control resource set identified as 0, or it can be determined by the bandwidth of the control resource set identified as 0 and the control resource set identified as 0
  • the maximum aggregation level is determined by the duration of, and the maximum aggregation level can also be determined by the frequency domain resources of the control resource set identified as 0 (such as the number of control resource units) and the duration of the control resource set identified as 0.
  • the maximum aggregation level can be determined by the bandwidth of the control resource set and the duration of the control resource set, or the maximum aggregation level can be determined by the bandwidth of the control resource set and the duration of the control resource set, or the frequency domain of the control resource set Resources (such as the number of control resource units) and the duration of the control resource set determine the maximum aggregation level.
  • the maximum aggregation level when the maximum aggregation level is Y and the number of receiving antennas is Z, it can be determined that the number of PDCCH repetitions of the search space set identified as 0 is 2. Y can take the value 16, and Z can take the value 2. If the number of PDCCH repetitions in the search space set is 2, the equivalent maximum aggregation level (that is, the maximum aggregation level equivalent to two control resource sets) can be 32.
  • the maximum aggregation level is Y and the number of receiving antennas is Z, it can be determined that the number of PDCCH repetitions of the search space set identified as 0 is 2. Y can take a value of 8, and Z can take a value of 2. If the number of PDCCH repetitions in the search space set is 2, the equivalent maximum aggregation level (that is, the maximum aggregation level equivalent to two control resource sets) can be 16.
  • the maximum aggregation level is Y and the number of receiving antennas is Z, it can also be determined that the number of PDCCH repetitions of the search space set identified as 0 is 2. Y can take a value of 4, and Z can take a value of 4. If the number of PDCCH repetitions in the search space set is 2, the equivalent maximum aggregation level (that is, the maximum aggregation level equivalent to two control resource sets) can be 8.
  • the equivalent maximum aggregation level (that is, the maximum aggregation level equivalent to four control resource sets) can be 32.
  • the equivalent maximum aggregation level (that is, the maximum aggregation level equivalent to four control resource sets) can be 16.
  • the maximum aggregation level is Y and the number of receiving antennas is Z, it can be determined that the number of PDCCH repetitions of the search space set identified as 0 is 8. Y can take a value of 4 and Z can take a value of 1. If the number of PDCCH repetitions in the search space set is 8, the equivalent maximum aggregation level (that is, the maximum aggregation level equivalent to eight control resource sets) can be 32.
  • the number of PDCCH repetitions in the search space set can also be determined according to the type of user equipment.
  • the number of PDCCH repetitions in the search space set can also be determined according to the type of user equipment.
  • the type of user equipment may be determined by a preset coverage recovery value, or may be determined by at least one of the bandwidth of the user equipment and the number of receiving antennas, and may also be determined by the maximum aggregation level and the reception of the user equipment.
  • the number of antennas is determined. It is understandable that the type of user equipment may also be determined by at least two of the above three parameters.
  • the preset coverage restoration value when used to determine the type of user equipment, if the preset coverage restoration value is 3dB, the type of the user equipment can be determined to be type 3; if the preset coverage restoration value is If it is 6dB, it can be determined that the type of user equipment is type 6; if the preset coverage recovery value is 9dB, it can be determined that the type of user equipment is type 9.
  • the type of the user equipment may also be determined by at least one of the bandwidth of the user equipment and the number of receiving antennas.
  • the bandwidth of the user equipment is less than X PRBs and the number of receiving antennas is Z
  • it can be determined that the type of the user equipment is type 3, where X can be 48 and Z can be 2; when the bandwidth of the user equipment is less than X PRBs, and
  • the number of receiving antennas is Z, it can be determined that the type of the user equipment is type 6 or type 9, where X can be 48 and Z can be 1.
  • the number of receiving antennas of the user equipment is Z, it can be determined that the type of the user equipment is type 3, where Z can be 2; when the number of receiving antennas of the user equipment is Z, it can be determined that the type of the user equipment is type 6 or type 9 , Where Z can be 1.
  • the type of user equipment may also be determined by the maximum aggregation level and the number of receiving antennas of the user equipment.
  • the maximum aggregation level is Y and the number of receiving antennas is Z
  • it can be determined that the type of the user equipment is type 3, where Y can be 8, and Z can be 2.
  • the maximum aggregation level is Y and the number of receiving antennas is Z
  • it can be determined that the type of the user equipment is type 3, where Y can be 4 and Z can be 4.
  • the maximum aggregation level is Y and the number of receiving antennas is Z
  • it can be determined that the type of the user equipment is type 6, where Y can be 8, and Z can be 1.
  • the maximum aggregation level is Y and the number of receiving antennas is Z
  • it can be determined that the type of the user equipment is type 6, where Y can be 4 and Z can be 2.
  • the maximum aggregation level is Y and the number of receiving antennas is Z
  • it can be determined that the type of the user equipment is type 9, where Y can be 4 and Z can be 1.
  • the type of the user equipment when the type of the user equipment is type 3, it can be determined that the number of PDCCH repetitions in the search space set is 2. When the type of the user equipment is type 6, it can be determined that the number of PDCCH repetitions in the search space set is 4. When the type of the user equipment is type 9, it can be determined that the number of PDCCH repetitions in the search space set is 8.
  • the type of the user equipment when the type of the user equipment is type 3, it can be determined that the number of PDCCH repetitions of the search space set identified as 0 is 2.
  • the type of the user equipment when the type of the user equipment is type 6, it can be determined that the number of PDCCH repetitions of the search space set identified as 0 is 4.
  • the type of the user equipment is type 9, it can be determined that the number of PDCCH repetitions of the search space set identified as 0 is 8.
  • the number of PDCCH repetitions of the search space set may also be determined according to the table parameters corresponding to the search space set.
  • the PDCCH repetition times of the search space set can be determined according to the parameter M in the table corresponding to the search space set as: the parameter M in the table corresponding to the search space set.
  • the parameter M is the time expansion factor corresponding to the start time slot of the PDCCH monitoring occasion.
  • the user equipment determines the starting time slot n 0 of the PDCCH monitoring opportunity as Among them, i is the candidate synchronization signal block index, the parameter O represents the offset, ⁇ 0,1,2,3 ⁇ is the parameter corresponding to the subcarrier spacing of the PDCCH, and the parameter M represents the time expansion factor.
  • the number of PDCCH repetitions of the search space set identified as 0 can be determined according to the table parameter M of the search space set identified as 0. At this time, it can be determined that the number of PDCCH repetitions of the search space set identified as 0 is M.
  • the start time slot offset of the scheduled PDSCH can also be determined. In the embodiment of the present invention, it can be determined that the start time slot offset of the scheduled PDSCH is M, and it can also be determined that the start time slot offset of the scheduled PDSCH is M-1.
  • the PDCCH repetition times of the search space set can also be determined according to the parameter M in the table corresponding to the search space set as: 1/2 of the parameter M in the table corresponding to the search space set, that is, M /2.
  • the number of PDCCH repetitions of the search space set identified as 0 can be determined according to the table parameter M of the search space set identified as 0. At this time, it can be determined that the number of PDCCH repetitions of the search space set identified as 0 is M/2.
  • the start time slot offset of the scheduled PDSCH can also be determined. In the embodiment of the present invention, it can be determined that the start time slot offset of the scheduled PDSCH is M/2, and it can also be determined that the start time slot offset of the scheduled PDSCH is M/2-1.
  • the user equipment can also determine the number of PDCCH repetitions in the search space set according to the QCL (Quasi Co-Location) parameter of the synchronization signal block. Specifically, it can be determined that the PDCCH listening timings associated with the synchronization signal blocks having the QCL relationship are repeated.
  • QCL parameters are also called parameters Q, which can be written as
  • the user equipment obtains QCL parameters through signaling ssbPositionQCL-Relationship or MIB signaling.
  • the user equipment can learn whether the synchronization signal blocks have a QCL relationship through the QCL parameter, and can also obtain the synchronization signal block index.
  • the user equipment can determine the number of PDCCH repetitions of the search space set identified as 0 according to the QCL parameter of the synchronization signal block: determine that the PDCCH listening timing associated with the synchronization signal block having a QCL relationship is repeated.
  • the PDCCH monitoring timing can also be determined.
  • the user equipment can determine the start time slot and the start symbol corresponding to the PDCCH monitoring opportunity, and determine to perform W consecutive monitoring, where W is the number of PDCCH repetitions in the search space set.
  • an embodiment of the present invention also provides an apparatus 20 for determining the configuration of a search space set, including a receiving unit 201 and a determining unit 202, wherein:
  • the receiving unit 201 is used to receive signaling
  • the determining unit 202 is configured to determine the configuration of the search space set according to the signaling.
  • the specific execution process of the receiving unit 201 and the determining unit 202 can be referred to the foregoing step S101 to step S102 correspondingly, and details are not described in this embodiment of the present invention.
  • the above-mentioned means 20 for determining the configuration of the search space set may correspond to a chip with a data processing function in the user equipment (such as a baseband chip), or corresponding to a chip with a data processing function (such as a baseband chip) in the user equipment.
  • Chip module or corresponding to user equipment.
  • modules/units contained in the various devices and products described in the above embodiments may be software modules/units, hardware modules/units, or part software modules/units, and partly software modules/units. It is a hardware module/unit.
  • the various modules/units contained therein can be implemented in the form of hardware such as circuits, or at least part of the modules/units can be implemented in the form of software programs. Runs on the integrated processor inside the chip, and the remaining (if any) part of the modules/units can be implemented by hardware methods such as circuits; for each device and product applied to or integrated in the chip module, the modules/units contained therein can be All are implemented by hardware such as circuits. Different modules/units can be located in the same component (such as a chip, circuit module, etc.) or different components of the chip module, or at least part of the modules/units can be implemented by software programs.
  • the software program runs on the processor integrated inside the chip module, and the remaining (if any) part of the modules/units can be implemented by hardware methods such as circuits; for each device and product that is applied to or integrated in the terminal, the modules contained therein All modules/units can be implemented in hardware such as circuits, and different modules/units can be located in the same component (for example, chip, circuit module, etc.) or different components in the terminal, or at least part of the modules/units can be implemented in the form of software programs Implementation, the software program runs on the processor integrated inside the terminal, and the remaining (if any) part of the modules/units can be implemented in hardware such as circuits.
  • the embodiment of the present invention also provides a computer-readable storage medium on which a computer program is stored.
  • the steps of the method for determining the configuration of the search space set provided by any of the foregoing embodiments of the present invention are executed. .
  • the embodiment of the present invention also provides another device for determining the configuration of a search space set, which includes a memory and a processor.
  • the memory stores a computer program that can run on the processor, and the processor executes this Inventing the steps of the method for determining the configuration of the search space set provided by any of the foregoing embodiments.
  • the program can be stored in a computer-readable storage medium, and the storage medium can include: ROM, RAM, magnetic disk or CD, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种确定搜索空间集配置的方法及装置、计算机可读存储介质,所述确定搜索空间集配置的方法包括:接收信令;根据所述信令,确定搜索空间集的配置。上述方案能够实现低复杂度UE根据覆盖恢复需求以自适应的确定搜索空间集的配置。

Description

确定搜索空间集配置的方法及装置、计算机可读存储介质
本申请要求于2020年5月15日提交中国专利局、申请号为202010413837.4、发明名称为“确定搜索空间集配置的方法及装置、计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及无线通信技术领域,尤其涉及一种确定搜索空间集配置的方法及装置、计算机可读存储介质。
背景技术
随着通信技术的发展,未来的新空口(New Radio,NR)可以支持低复杂度的用户设备(User Equipment,UE)。低复杂度UE的成本较低,可以适用于机器类型通信(Machine Type Communication,MTC)或者物联网通信(Internet of Thing,IoT)。
相对于常规的UE,低复杂度的UE的带宽较小、天线数较少、能力较弱且UE处理时间放松。带宽较小意味着带宽从100MHz缩减为50MHz或20MHz或10MHz或5MHz。天线数减少意味着接收天线数从4根天线缩减为2根或1根天线。带宽缩减和天线数减少会引起覆盖缩小或者有效的小区半径缩小,这是因为:带宽缩减会导致物理下行控制信道(Physical Downlink Control Channel,PDCCH)的最大聚合等级(Aggregation Level,AL)减少,从而导致编码增益的减少,接收天线数减少会导致接收分集增益的减少。
因此,引入一些针对PDCCH覆盖恢复(Coverage Level)的机制。PDCCH覆盖恢复的机制包括增加控制资源集(Control Resource Set, CORESET)的持续时间,从而提高最大聚合等级;以及PDCCH重复发送,UE可以合并多个PDCCH来间接增加PDCCH时域资源。
在初始接入(Initial Access)过程中,UE监听主系统信息块(Master Information Block,MIB)配置的公共PDCCH,MIB配置的公共PDCCH对应的搜索空间集(search space set)一般称为search space set 0(因其标识为0)。由于低复杂度UE需要覆盖恢复,因此低复杂度UE的search space set 0需要对应不同的覆盖恢复配置。例如,当覆盖损失为3dB时,需要对应3dB的覆盖恢复的配置,当覆盖损失为6dB时,需要对应6dB的覆盖恢复的配置。
然而,低复杂度UE如何根据覆盖恢复需求以自适应的确定搜索空间集的配置,是一个亟需解决的问题。
发明内容
本发明实施例解决的是低复杂度UE如何根据覆盖恢复需求以自适应的确定搜索空间集的配置的技术问题。
为解决上述技术问题,本发明实施例提供一种确定搜索空间集配置的方法,包括:接收信令;根据所述信令,确定搜索空间集的配置。
可选的,所述信令为MIB信令。
可选的,所述确定搜索空间集的配置,包括:确定搜索空间集的PDCCH配置。
可选的,所述确定搜索空间集的PDCCH配置,包括:确定标识为0的搜索空间集的PDCCH配置。
可选的,所述确定标识为0的搜索空间集的PDCCH配置,包括:确定所述标识为0的搜索空间集的PDCCH重复次数。
可选的,所述确定搜索空间集的配置,包括:确定所述搜索空间集的PDCCH重复次数。
可选的,所述确定所述搜索空间集的PDCCH重复次数,包括以下至少一种:根据覆盖恢复值,确定所述搜索空间集的PDCCH重复次数;根据用户设备的带宽与接收天线数中的至少之一,确定所述搜索空间集的PDCCH重复次数;根据控制资源集的带宽、控制资源集的持续时间以及所述用户设备的接收天线数,确定所述搜索空间集的PDCCH重复次数;根据最大聚合等级和所述用户设备的接收天线数,确定所述搜索空间集的PDCCH重复次数;根据所述用户设备的类型,确定所述搜索空间集的PDCCH重复次数。
可选的,所述根据覆盖恢复值,确定所述搜索空间集的PDCCH重复次数,包括以下至少一种:当所述覆盖恢复值为3dB时,确定所述搜索空间集的PDCCH重复次数为2;当所述覆盖恢复值为6dB时,确定所述搜索空间集的PDCCH重复次数为4;当所述覆盖恢复值为9dB时,确定所述搜索空间集的PDCCH重复次数为8。
可选的,所述根据用户设备的带宽与接收天线数中的至少之一,确定所述搜索空间集的PDCCH重复次数,包括以下至少一种:当所述用户设备的带宽小于X个物理资源块,且所述接收天线数等于Z时,确定所述搜索空间集的PDCCH重复次数为W。
可选的,所述确定所述搜索空间集的PDCCH重复次数为W,包括以下至少一种:当所述用户设备的带宽小于48个物理资源块,且所述接收天线数等于2时,确定所述搜索空间集的PDCCH重复次数为2;当所述用户设备的带宽小于48个物理资源块,且所述接收天线数等于1时,确定所述搜索空间集的PDCCH重复次数为4或8。
可选的,所述用户设备的类型由以下至少一种确定:所述覆盖恢复值;所述用户设备的带宽与接收天线数中的至少之一;所述最大聚合等级和所述用户设备的接收天线数。
可选的,当所述用户设备的类型由所述覆盖恢复值确定时,所述用户设备的类型采用如下至少一种方式确定:当所述覆盖恢复值为3dB时,所述用户设备的类型为类型3;当所述覆盖恢复值为6dB时, 所述用户设备的类型为类型6;当所述覆盖恢复值为9dB时,所述用户设备的类型为类型9。
可选的,当所述用户设备的类型由所述用户设备的带宽与接收天线数中的至少之一确定时,所述用户设备的类型采用如下方式确定:当所述用户设备的带宽小于X个物理资源块,且接收天线数为Z时,确定所述用户设备的类型为类型N。
可选的,所述确定所述用户设备的类型为类型N,包括以下至少一种:当所述用户设备的带宽小于48个物理资源块,且接收天线数为2时,确定所述用户设备的类型为类型3;当所述用户设备的带宽小于48个物理资源块,且接收天线数为1时,确定所述用户设备的类型为类型6或类型9。
可选的,当所述用户设备的类型由所述最大聚合等级和所述用户设备的接收天线数确定时,所述用户设备的类型采用如下方式确定:当所述最大聚合等级为Y,且所述接收天线数为Z时,确定所述用户设备的类型为类型N。
可选的,所述确定所述用户设备的类型为类型N,包括以下至少一种:当所述最大聚合等级为16,且所述接收天线数为1时,确定所述用户设备的类型为类型3;当所述最大聚合等级为8,且所述接收天线数为2时,确定所述用户设备的类型为类型3;当所述最大聚合等级为4,且所述接收天线数为4时,确定所述用户设备的类型为类型3;当所述最大聚合等级为8,且所述接收天线数为1时,确定所述用户设备的类型为类型6;当所述最大聚合等级为4,且所述接收天线数为2时,确定所述用户设备的类型为类型6;当所述最大聚合等级为4,且所述接收天线数为1时,确定所述用户设备的类型为类型9。
可选的,所述最大聚合等级由所述控制资源集的带宽、所述控制资源集的持续时间决定。
可选的,所述根据用户设备的类型,确定所述搜索空间集的PDCCH重复次数,包括以下至少一种:当所述用户设备的类型为类型3时,确定所述搜索空间集的PDCCH重复次数为2;当所述用户设备的类型为类型6时,确定所述搜索空间集的PDCCH重复次数为4;当所述用户设备的类型为类型9时,确定所述搜索空间集的PDCCH重复次数为8。
可选的,所述确定所述搜索空间集的PDCCH重复次数,包括:根据所述搜索空间集的表格参数,确定所述搜索空间集的PDCCH重复次数。
可选的,所述根据所述搜索空间集的表格参数,确定所述搜索空间集的PDCCH重复次数,包括:根据所述搜索空间集对应的表格中的参数M,确定所述搜索空间集的PDCCH重复次数。
可选的,所述根据所述搜索空间集对应的表格中的参数M,确定所述搜索空间集的PDCCH重复次数,包括:确定所述搜索空间集的PDCCH重复次数为:所述搜索空间集对应的表格中的参数M。
可选的,在确定所述搜索空间集的PDCCH重复次数之后,还包括:根据所述搜索空间集的PDCCH重复次数,确定被调度的PDSCH的起始时隙偏移量。
可选的,所述确定被调度的PDSCH的起始时隙偏移量,包括:确定所述被调度的PDSCH的起始时隙偏移量为M;或者,确定所述被调度的PDSCH的起始时隙偏移量为M-1。
可选的,所述根据所述搜索空间集对应的表格中的参数M,确定所述搜索空间集的PDCCH重复次数,包括:确定所述搜索空间集的PDCCH重复次数为:所述搜索空间集对应的表格中的参数M的1/2。
可选的,在确定所述搜索空间集的PDCCH重复次数之后,还包括:根据所述搜索空间集的PDCCH重复次数,确定被调度的PDSCH的起始时隙偏移量。
可选的,所述确定被调度的PDSCH的起始时隙偏移量,包括:确定所述被调度的PDSCH的起始时隙偏移量为M/2;或者,确定所述被调度的PDSCH的起始时隙偏移量为M/2-1。
可选的,所述根据所述搜索空间集的表格参数,确定所述搜索空间集的PDCCH重复次数,包括:根据所述搜索空间集的表格中同步信号块的QCL参数,确定所述搜索空间集的PDCCH重复次数。
可选的,所述根据所述搜索空间集的表格中同步信号块的QCL参数,确定所述标识为0的搜索空间集的PDCCH重复次数,包括:确定与具有QCL关系的同步信号块关联的PDCCH监听时机重复。
可选的,在确定所述搜索空间集的PDCCH重复次数之后,还包括:确定PDCCH的监听时机。
可选的,所述确定PDCCH的监听时机,包括:确定所述PDCCH的监听时机对应的起始时隙与起始符号,并确定执行连续W次监听,W为所述搜索空间集的PDCCH重复次数。
为解决上述技术问题,本发明实施例还提供了一种确定搜索空间集配置的装置,包括:接收单元,用于接收信令;确定单元,用于根据所述信令,确定搜索空间集的配置。
本发明实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器运行时执行上述任一种所述的确定搜索空间集配置的方法的步骤。
本发明实施例还提供了另一种确定搜索空间集配置的装置,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机程序,所述处理器运行所述计算机程序时执行上述任一种所述的确定搜索空间集配置的方法的步骤。
与现有技术相比,本发明实施例的技术方案具有以下有益效果:
通过接收网络侧下发的信令,根据接收到的信令确定搜索空间集 的配置,从而实现低复杂度的UE自适应地确定搜索空间集的配置。
附图说明
图1是本发明实施例中一种确定搜索空间集配置的方法流程图;
图2是本发明实施例中的一种确定搜索空间集配置的装置结构示意图。
具体实施方式
如前所述,低复杂度UE如何根据覆盖恢复需求以自适应的确定搜索空间集的配置,是一个亟需解决的问题。
在本发明实施例中,通过接收网络侧下发的信令,根据接收到的信令确定搜索空间集的配置,从而实现低复杂度的UE自适应地确定搜索空间集的配置。
为使本发明的上述目的、特征和有益效果能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
本发明实施例提供了一种确定搜索空间集配置的方法,参照图1,以下通过具体步骤进行详细说明。
在具体实施中,下述步骤S101~步骤S102所提供的确定搜索空间集配置的方法可以由用户设备中具有数据处理功能的芯片(如基带芯片)执行,或者由用户设备中包含有数据处理功能的芯片(如基带芯片)的芯片模组执行。
步骤S101,接收信令。
在具体实施中,UE可以接收网络侧下发的信令。网络侧下发的信令可以是MIB信令。
在本发明实施例中,UE可以为低复杂度UE。在实际应用中可知, 低复杂度的UE的带宽较小、天线数较少、能力较弱且UE处理时间放松。带宽较小意味着带宽从100MHz缩减为50MHz或20MHz或10MHz或5MHz。天线数减少意味着接收天线数从4根天线缩减为2根或1根天线。
步骤S102,根据所述信令,确定搜索空间集的配置。
在具体实施中,UE在接收到信令之后,可以根据接收到的信令,确定搜索空间集的配置。UE确定的搜索空间集的配置可以为搜索空间集的PDCCH重复次数。
在本发明实施例中,UE在确定搜索空间集的配置时,可以确定标识为0的搜索空间集的PDCCH配置,标识为0的搜索空间集即为search space set 0。一般来说,标识为0的搜索空间集(或搜索空间)为MIB配置的搜索空间集(或搜索空间),或者为由PDCCH-ConfigSIB1配置的搜索空间集(或搜索空间),或者为由SearchSpaceZero配置的搜索空间集(或搜索空间)。UE确定的标识为0的搜索空间集的PDCCH配置可以为:标识为0的搜索空间集的PDCCH重复次数。
在具体实施中,UE可以根据参数和/或信令,确定搜索空间集的PDCCH重复次数。参数和/或信令可以包括以下至少一种:覆盖恢复值;UE的带宽与接收天线数中的至少之一;控制资源集的带宽、控制资源集的持续时间以及UE的接收天线数;最大聚合等级和UE的接收天线数;UE的类型。UE的带宽,又可以称为UE支持的带宽、UE支持的最大带宽、UE的信道带宽、UE支持的信道带宽或UE支持的最大信道带宽。
UE可以通过信令获得控制资源集的带宽和控制资源集的持续时间,其中控制资源集可以为标识为0的控制资源集,简称为CORESET0。一般来说,标识为0的控制资源集为MIB配置的控制资源集,或者为由PDCCH-ConfigSIB1配置的控制资源集,或者为由ControlResourceSetZero配置的控制资源集。UE可以通过信令获得最 大聚合等级,其中最大聚合等级可以通过控制资源集的配置获得,控制资源集的配置包括控制资源集的带宽和控制资源集的持续时间。其中控制资源集可以为标识为0的控制资源集。UE可以通过UE的带宽与接收天线数中的至少之一获得UE的类型。
相应地,UE也可以采用上述参数和/或信令确定标识为0的搜索空间集的PDCCH重复次数,下面分别对参数与搜索空间集的PDCCH重复次数的对应关系进行相应说明。
在具体实施中,覆盖恢复值可以与搜索空间集的PDCCH重复次数相关。也就是说,覆盖恢复值越大,则搜索空间集的PDCCH重复次数越大。
在本发明实施例中,当覆盖恢复值为3dB时,可以确定搜索空间集的PDCCH重复次数为2。当覆盖恢复值为6dB时,可以确定搜索空间集的PDCCH重复次数为4。当覆盖恢复值为9dB时,可以确定搜索空间集的PDCCH重复次数为8。
相应地,覆盖恢复值与标识为0的搜索空间集的PDCCH重复次数也可以是相关的关系。
在本发明实施例中,当覆盖恢复值为3dB时,可以确定标识为0的搜索空间集的PDCCH重复次数为2。当覆盖恢复值为6dB时,可以确定标识为0的搜索空间集的PDCCH重复次数为4。当覆盖恢复值为9dB时,可以确定标识为0的搜索空间集的PDCCH重复次数为8。
在具体实施中,用户设备也可以根据带宽与接收天线数中的至少之一,确定搜索空间集的PDCCH重复次数。用户设备可以仅根据自身的带宽,确定搜索空间集的PDCCH重复次数;用户设备也可以根据自身的接收天线数,确定搜索空间集的PDCCH重复次数;用户设备还可以根据自身的带宽以及接收天线数,确定搜索空间集的PDCCH重复次数。
在具体实施中,若用户设备的带宽小于X个物理资源块(Physical Resource Block,PRB),且接收天线数等于Z时,可以确定搜索空间集的PDCCH重复次数为W。
在本发明实施例中,若用户设备的带宽小于X个物理资源块,且接收天线数等于Z时,可以确定搜索空间集的PDCCH重复次数为2。
此时,X可以取值48,Z可以取值2,这样控制资源集的物理资源块数量可以为24。当控制资源集的持续时间为1个符号长度时,最大聚合等级为4,如果此时将搜索空间集的PDCCH重复次数为2,等效的最大聚合等级(即两个控制资源集等效的最大聚合等级)可以为8。当控制资源集的持续时间为2个符号长度时,最大聚合等级为8,如果此时将搜索空间集的PDCCH重复次数为2,等效的最大聚合等级可以为16。
当用户设备的带宽小于X个PRB,且接收板天线数等于Z时,可以确定搜索空间集的PDCCH重复次数为4。
此时,X可以取值48,Z可以取值1,这样控制资源集的物理资源块数量可以为24。当控制资源集的持续时间为1个符号长度时,最大聚合等级为4,如果此时将搜索空间集的PDCCH重复次数为4,等效的最大聚合等级(即四个控制资源集等效的最大聚合等级)可以为16。当控制资源集的持续时间为2个符号长度时,最大聚合等级为8,如果此时将搜索空间集的PDCCH重复次数为4,等效的最大聚合等级可以为32。
当用户设备的带宽小于X个PRB,且接收板天线数等于Z时,可以确定搜索空间集的PDCCH重复次数为8。
此时,X可以取值48,Z可以取值1,这样控制资源集的物理资源块数量可以为24。当控制资源集的持续时间为1个符号长度时,最大聚合等级为4,如果此时将搜索空间集的PDCCH重复次数为8, 等效的最大聚合等级(即八个控制资源集等效的最大聚合等级)可以为32。当控制资源集的持续时间为2个符号长度时,最大聚合等级为8,如果此时将搜索空间集的PDCCH重复次数为8,等效的最大聚合等级可以为64。
在具体实施中,也可以根据接收天线数,确定搜索空间集的持续时间。在本发明实施例中,若用户设备的接收天线数等于Z时,则可以确定搜索空间集的PDCCH重复次数为W。
在本发明实施例中,若用户设备的接收天线数等于Z时,可以确定搜索空间集的PDCCH重复次数为2。
此时,Z的取值可以2,控制资源集的物理资源块数量为24,当控制资源集的持续时间为1个符号长度时,最大聚合等级为4,如果此时将搜索空间集的PDCCH重复次数为2,等效的最大聚合等级(即两个控制资源集等效的最大聚合等级)可以为8。当控制资源集的持续时间为2个符号长度时,最大聚合等级为8,如果此时将搜索空间集的PDCCH重复次数为2,等效的最大聚合等级可以为16。
在本发明实施例中,当用户设备的接收天线数等于Z时,可以确定搜索空间集的PDCCH重复次数为4。
此时,Z的取值可以为1,控制资源集的物理资源块数量为24,当控制资源集的持续时间为1个符号长度时,最大聚合等级为4,如果此时将搜索空间集的PDCCH重复次数为4,等效的最大聚合等级(即四个控制资源集等效的最大聚合等级)可以为16。当控制资源集的持续时间为2个符号长度时,最大聚合等级为8,如果此时将搜索空间集的PDCCH重复次数为4,等效的最大聚合等级可以为32。
在本发明实施例中,当用户设备的接收天线数等于Z时,可以确定搜索空间集的PDCCH重复次数为8。
此时,Z的取值可以为1,控制资源集的物理资源块数量为24。当控制资源集的持续时间为1个符号长度时,最大聚合等级为4,如 果此时将搜索空间集的PDCCH重复次数为8,等效的最大聚合等级(即八个控制资源集等效的最大聚合等级)可以为32。当控制资源集的持续时间为2个符号长度时,最大聚合等级为8,如果此时将搜索空间集的PDCCH重复次数为8,等效的最大聚合等级可以为64。
相应地,用户设备可以根据带宽与接收天线数中的至少之一,确定标识为0的搜索空间集的PDCCH重复次数。用户设备可以仅根据自身的带宽,确定标识为0的搜索空间集的PDCCH重复次数;用户设备也可以根据自身的接收天线数,确定标识为0的搜索空间集的PDCCH重复次数;用户设备还可以根据自身的带宽以及接收天线数,确定标识为0的搜索空间集的PDCCH重复次数。
在本发明实施例中,若用户设备的带宽小于X个物理资源块,且接收天线数等于Z时,可以确定标识为0的搜索空间集的PDCCH重复次数为W。
在本发明实施例中,若用户设备的带宽小于X个物理资源块,且接收天线数等于Z时,可以确定标识为0的搜索空间集的PDCCH重复次数为2。
此时,X可以取值48,Z可以取值2,这样控制资源集的物理资源块数量可以为24。当控制资源集的持续时间为1个符号长度时,最大聚合等级为4,如果此时将搜索空间集的PDCCH重复次数为2,等效的最大聚合等级(即两个控制资源集等效的最大聚合等级)可以为8。当控制资源集的持续时间为2个符号长度时,最大聚合等级为8,如果此时将搜索空间集的PDCCH重复次数为2,等效的最大聚合等级可以为16。
当用户设备的带宽小于48个PRB,且接收板天线数等于Z时,可以确定标识为0的搜索空间集的PDCCH重复次数为4。
此时,X可以取值48,Z可以取值1,这样控制资源集的物理资源块数量可以为24。当控制资源集的持续时间为1个符号长度时, 最大聚合等级为4,如果此时将搜索空间集的PDCCH重复次数为4,等效的最大聚合等级(即四个控制资源集等效的最大聚合等级)可以为16。当控制资源集的持续时间为2个符号长度时,最大聚合等级为8,如果此时将搜索空间集的PDCCH重复次数为4,等效的最大聚合等级可以为32。
当用户设备的带宽小于48个PRB,且接收板天线数等于Z时,可以确定标识为0的搜索空间集的PDCCH重复次数为8。
此时,X可以取值48,Z可以取值1,这样控制资源集的物理资源块数量可以为24。当控制资源集的持续时间为1个符号长度时,最大聚合等级为4,如果此时将搜索空间集的PDCCH重复次数为8,等效的最大聚合等级(即八个控制资源集等效的最大聚合等级)可以为32。当控制资源集的持续时间为2个符号长度时,最大聚合等级为8,如果此时将搜索空间集的PDCCH重复次数为8,等效的最大聚合等级可以为64。
相应地,也可以根据接收天线数,确定标识为0的搜索空间集的PDCCH重复次数。在本发明实施例中,若用户设备的接收天线数等于Z时,可以确定标识为0的搜索空间集的PDCCH重复次数为W。
在本发明实施例中,若用户设备的接收天线数等于Z时,可以确定标识为0的搜索空间集的PDCCH重复次数为2。
此时,Z可以取值为2,控制资源集的物理资源块数量为24,当控制资源集的持续时间为1个符号长度时,最大聚合等级为4,如果此时将搜索空间集的PDCCH重复次数为2,等效的最大聚合等级(即两个控制资源集等效的最大聚合等级)可以为8。当控制资源集的持续时间为2个符号长度时,最大聚合等级为8,如果此时将搜索空间集的PDCCH重复次数为2,等效的最大聚合等级可以为16。
当用户设备的接收天线数等于Z时,可以确定标识为0的搜索空间集的PDCCH重复次数为4。
此时,Z可以取值为1,控制资源集的物理资源块数量为24,当控制资源集的持续时间为1个符号长度时,最大聚合等级为4,如果此时将搜索空间集的PDCCH重复次数为4,等效的最大聚合等级(即四个控制资源集等效的最大聚合等级)可以为16。当控制资源集的持续时间为2个符号长度时,最大聚合等级为8,如果此时将搜索空间集的PDCCH重复次数为4,等效的最大聚合等级可以为32。
当用户设备的接收板天线数等于Z时,可以确定标识为0的搜索空间集的PDCCH重复次数为8。
此时,Z可以取值为1,控制资源集的物理资源块数量为24,当控制资源集的持续时间为1个符号长度时,最大聚合等级为4,如果此时将搜索空间集的PDCCH重复次数为8,等效的最大聚合等级(即八个控制资源集等效的最大聚合等级)可以为32。当控制资源集的持续时间为2个符号长度时,最大聚合等级为8,如果此时将搜索空间集的PDCCH重复次数为8,等效的最大聚合等级可以为64。
在具体实施中,也可以根据控制资源集(CORESET)的带宽、控制资源集的持续时间以及用户设备的接收天线数,确定搜索空间集的PDCCH重复次数。
相应地,也可以根据标识为0的控制资源集(CORESET)的带宽、标识为0的控制资源集的持续时间以及用户设备的接收天线数,确定标识为0的搜索空间集的PDCCH重复次数。
相应地,也可以根据控制资源集(CORESET)的带宽、控制资源集的持续时间以及用户设备的接收天线数,确定标识为0的搜索空间集的PDCCH重复次数。
在具体实施中,用户设备还可以根据最大聚合等级和用户设备的接收天线数,确定搜索空间集的PDCCH重复次数。此时,最大聚合等级可以由控制资源集的带宽、控制资源集的持续时间确定,也可以通过控制资源集的带宽、控制资源集的持续时间确定最大聚合等级, 也可以通过控制资源集的频域资源(如控制资源单位的数量)、控制资源集的持续时间确定最大聚合等级。
在本发明实施例中,当最大聚合等级为Y,且接收天线数为Z时,可以确定搜索空间集的PDCCH重复次数为W。
在本发明实施例中,当最大聚合等级为Y,且接收天线数为Z时,可以确定搜索空间集的PDCCH重复次数为2。Y可以取值16,Z可以取值1,如果此时将搜索空间集的PDCCH重复次数为2,等效的最大聚合等级(即两个控制资源集等效的最大聚合等级)可以为32。
当最大聚合等级为Y,且接收天线数为Z时,可以确定搜索空间集的PDCCH重复次数为2。Y可以取值8,Z可以取值2,如果此时将搜索空间集的PDCCH重复次数为2,等效的最大聚合等级(即两个控制资源集等效的最大聚合等级)可以为16。
当最大聚合等级为Y,且接收天线数为Z时,也可以确定搜索空间集的PDCCH重复次数为2。Y可以取值4,Z可以取值4,如果此时将搜索空间集的PDCCH重复次数为2,等效的最大聚合等级(即两个控制资源集等效的最大聚合等级)可以为8。
当最大聚合等级为Y,且接收天线数为Z时,可以确定搜索空间集的PDCCH重复次数为4。Y可以取值8,Z可以取值1,如果此时将搜索空间集的PDCCH重复次数为4,等效的最大聚合等级(即四个控制资源集等效的最大聚合等级)可以为32。
当最大聚合等级为Y,且接收天线数为Z时,可以确定搜索空间集的PDCCH重复次数为4。Y可以取值4,Z可以取值2,如果此时将搜索空间集的PDCCH重复次数为4,等效的最大聚合等级(即四个控制资源集等效的最大聚合等级)可以为16。
当最大聚合等级为Y,且接收天线数为Z时,可以确定搜索空间集的PDCCH重复次数为8。Y可以取值4,Z可以取值1,如果此时将搜索空间集的PDCCH重复次数为8,等效的最大聚合等级(即八 个控制资源集等效的最大聚合等级)可以为32。
相应地,用户设备可以根据最大聚合等级和用户设备的接收天线数,确定标识为0的搜索空间集的PDCCH重复次数。此时,最大聚合等级可以由标识为0的控制资源集的带宽、标识为0的控制资源集的持续时间确定,也可以通过标识为0的控制资源集的带宽、标识为0的控制资源集的持续时间确定最大聚合等级,也可以通过标识为0的控制资源集的频域资源(如控制资源单位的数量)、标识为0的控制资源集的持续时间确定最大聚合等级。或者,最大聚合等级可以由控制资源集的带宽、控制资源集的持续时间确定,也可以通过控制资源集的带宽、控制资源集的持续时间确定最大聚合等级,也可以通过控制资源集的频域资源(如控制资源单位的数量)、控制资源集的持续时间确定最大聚合等级。
在本发明实施例中,当最大聚合等级为Y,且接收天线数为Z时,可以确定标识为0的搜索空间集的PDCCH重复次数为2。Y可以取值16,Z可以取值2,如果此时将搜索空间集的PDCCH重复次数为2,等效的最大聚合等级(即两个控制资源集等效的最大聚合等级)可以为32。
当最大聚合等级为Y,且接收天线数为Z时,可以确定标识为0的搜索空间集的PDCCH重复次数为2。Y可以取值8,Z可以取值2,如果此时将搜索空间集的PDCCH重复次数为2,等效的最大聚合等级(即两个控制资源集等效的最大聚合等级)可以为16。
当最大聚合等级为Y,且接收天线数为Z时,也可以确定标识为0的搜索空间集的PDCCH重复次数为2。Y可以取值4,Z可以取值4,如果此时将搜索空间集的PDCCH重复次数为2,等效的最大聚合等级(即两个控制资源集等效的最大聚合等级)可以为8。
当最大聚合等级为Y,且接收天线数为Z时,可以确定标识为0的搜索空间集的PDCCH重复次数为4。Y可以取值8,Z可以取值1,如果此时将搜索空间集的PDCCH重复次数为4,等效的最大聚合等 级(即四个控制资源集等效的最大聚合等级)可以为32。
当最大聚合等级为Y,且接收天线数为Z时,可以确定标识为0的搜索空间集的PDCCH重复次数为4。Y可以取值4,Z可以取值2,如果此时将搜索空间集的PDCCH重复次数为4,等效的最大聚合等级(即四个控制资源集等效的最大聚合等级)可以为16。
当最大聚合等级为Y,且接收天线数为Z时,可以确定标识为0的搜索空间集的PDCCH重复次数为8。Y可以取值4,Z可以取值1,如果此时将搜索空间集的PDCCH重复次数为8,等效的最大聚合等级(即八个控制资源集等效的最大聚合等级)可以为32。
在具体实施中,还可以根据用户设备的类型,确定搜索空间集的PDCCH重复次数。相应地,也可以根据用户设备的类型,确定搜索空间集的PDCCH重复次数。
在本发明实施例中,用户设备的类型可以由预设的覆盖恢复值确定,也可以由用户设备的带宽与接收天线数中的至少之一确定,还可以由最大聚合等级和用户设备的接收天线数确定。可以理解的是,用户设备的类型还可以由上述三种参数中的至少两组确定。
在本发明实施例中,当采用预设的覆盖恢复值确定用户设备的类型时,若预设的覆盖恢复值为3dB,则可以确定用户设备的类型为类型3;若预设的覆盖恢复值为6dB,则可以确定用户设备的类型为类型6;若预设的覆盖恢复值为9dB,则可以确定用户设备的类型为类型9。
在本发明实施例中,用户设备的类型也可以由用户设备的带宽与接收天线数中的至少之一确定。
当用户设备的带宽小于X个PRB,且接收天线数为Z时,可以确定用户设备的类型为类型3,其中X可以为48,Z可以为2;当用户设备的带宽小于X个PRB,且接收天线数为Z时,可以确定用户设备的类型为类型6或类型9,其中X可以为48,Z可以为1。
当用户设备的接收天线数为Z时,可以确定用户设备的类型为类型3,其中Z可以为2;当用户设备的接收天线数为Z时,可以确定用户设备的类型为类型6或类型9,其中Z可以为1。
在本发明实施例中,用户设备的类型还可以由最大聚合等级和用户设备的接收天线数确定。
当最大聚合等级为Y,且接收天线数为Z时,可以确定用户设备的类型为类型3,其中Y可以为8,Z可以为2。当最大聚合等级为Y,且接收天线数为Z时,可以确定用户设备的类型为类型3,其中Y可以为4,Z可以为4。当最大聚合等级为Y,且接收天线数为Z时,可以确定用户设备的类型为类型6,其中Y可以为8,Z可以为1。
或者,当最大聚合等级为Y,且接收天线数为Z时,可以确定用户设备的类型为类型6,其中Y可以为4,Z可以为2。当最大聚合等级为Y,且接收天线数为Z时,可以确定用户设备的类型为类型9,其中Y可以为4,Z可以为1。
在具体实施中,当用户设备的类型为类型3时,可以确定搜索空间集的PDCCH重复次数为2。当用户设备的类型为类型6时,可以确定搜索空间集的PDCCH重复次数为4。当用户设备的类型为类型9时,可以确定搜索空间集的PDCCH重复次数为8。
相应地,当用户设备的类型为类型3时,可以确定标识为0的搜索空间集的PDCCH重复次数为2。当用户设备的类型为类型6时,可以确定标识为0的搜索空间集的PDCCH重复次数为4。当用户设备的类型为类型9时,可以确定标识为0的搜索空间集的PDCCH重复次数为8。
在具体实施中,在确定搜索空间集的PDCCH重复次数时,还可以根据搜索空间集对应的表格参数,确定搜索空间集的PDCCH重复次数。
在本发明实施例中,可以根据搜索空间集对应的表格中的参数 M,确定搜索空间集的PDCCH重复次数为:搜索空间集对应的表格中的参数M。参数M为PDCCH监听时机的开始时隙对应的时间扩展因子。具体来说,用户设备确定PDCCH监听时机的开始时隙n 0
Figure PCTCN2021093257-appb-000001
其中,i为候选同步信号块索引,参数O表示偏移量,μ∈{0,1,2,3}为PDCCH的子载波间隔对应的参数,参数M表示时间扩展因子。
例如,M=4,则确定搜索空间集的PDCCH重复次数为4。
相应地,可以根据标识为0的搜索空间集的表格参数M,确定标识为0的搜索空间集的PDCCH重复次数。此时,可以确定标识为0的搜索空间集的PDCCH重复次数为M。
在具体实施中,在确定搜索空间集的PDCCH重复次数为M后,还可以确定被调度的PDSCH的起始时隙偏移量。在本发明实施例中,可以确定被调度的PDSCH的起始时隙偏移量为M,也可以确定被调度的PDSCH的起始时隙偏移量为M-1。
在本发明实施例中,也可以根据搜索空间对集应的表格中的参数M,确定搜索空间集的PDCCH重复次数为:搜索空间集对应的表格中的参数M的1/2,也即M/2。
例如,M=4,则确定搜索空间集的PDCCH重复次数为2。
相应地,可以根据标识为0的搜索空间集的表格参数M,确定标识为0的搜索空间集的PDCCH重复次数。此时,可以确定标识为0的搜索空间集的PDCCH重复次数为M/2。
在具体实施中,在确定搜索空间集的PDCCH重复次数为M/2后,还可以确定被调度的PDSCH的起始时隙偏移量。在本发明实施例中,可以确定被调度的PDSCH的起始时隙偏移量为M/2,也可以确定被调度的PDSCH的起始时隙偏移量为M/2-1。
在具体实施中,用户设备还可以根据同步信号块的QCL(拟共站址,Quasi Co-Location)参数,确定搜索空间集的PDCCH重复次数。具体而言,可以确定与具有QCL关系的同步信号块关联的PDCCH监听时机重复。QCL参数又称为参数Q,可以记为
Figure PCTCN2021093257-appb-000002
用户设备通过信令ssbPositionQCL-Relationship或MIB信令获得QCL参数。用户设备通过QCL参数可以获知同步信号块之间是否具有QCL关系,也可以获得同步信号块索引。
相应地,用户设备可以根据同步信号块的QCL参数,确定标识为0的搜索空间集的PDCCH重复次数:确定与具有QCL关系的同步信号块关联的PDCCH监听时机重复。
在具体实施中,在确定了搜索空间集的PDCCH重复次数之后,还可以确定PDCCH的监听时机。用户设备可以确定PDCCH的监听时机对应的起始时隙和起始符号,确定执行连续的W次监听,W为搜索空间集的PDCCH重复次数。
参照图2,本发明实施例还提供了一种确定搜索空间集配置的装置20,包括接收单元201以及确定单元202,其中:
接收单元201,用于接收信令;
确定单元202,用于根据所述信令,确定搜索空间集的配置。
在具体实施中,接收单元201以及确定单元202的具体执行过程可以对应参照上述步骤S101~步骤S102,本发明实施例不做赘述。
在具体实施中,上述的确定搜索空间集配置的装置20可以对应于用户设备中具有数据处理功能的芯片(如基带芯片),或者对应于用户设备中包含数据处理功能芯片(如基带芯片)的芯片模组,或者对应于用户设备。
在具体实施中,关于上述实施例中描述的各个装置、产品包含的各个模块/单元,其可以是软件模块/单元,也可以是硬件模块/单元,或者也可以部分是软件模块/单元,部分是硬件模块/单元。
例如,对于应用于或集成于芯片的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于芯片内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现;对于应用于或集成于芯片模组的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,不同的模块/单元可以位于芯片模组的同一组件(例如芯片、电路模块等)或者不同组件中,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于芯片模组内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现;对于应用于或集成于终端的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,不同的模块/单元可以位于终端内同一组件(例如,芯片、电路模块等)或者不同组件中,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于终端内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现。
本发明实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器运行时执行本发明上述任一实施例提供的确定搜索空间集配置的方法的步骤。
本发明实施例还提供了另一种确定搜索空间集配置的装置,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机程序,所述处理器运行时执行本发明上述任一实施例提供的确定搜索空间集配置的方法的步骤。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指示相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:ROM、RAM、磁盘或光盘等。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因 此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (33)

  1. 一种确定搜索空间集配置的方法,其特征在于,包括:
    接收信令;
    根据所述信令,确定搜索空间集的配置。
  2. 如权利要求1所述的确定搜索空间集配置的方法,其特征在于,所述信令为MIB信令。
  3. 如权利要求1所述的确定搜索空间集配置的方法,其特征在于,所述确定搜索空间集的配置,包括:
    确定搜索空间集的PDCCH配置。
  4. 如权利要求3所述的确定搜索空间集配置的方法,其特征在于,所述确定搜索空间集的PDCCH配置,包括:
    确定标识为0的搜索空间集的PDCCH配置。
  5. 如权利要求4所述的确定搜索空间集配置的方法,其特征在于,所述确定标识为0的搜索空间集的PDCCH配置,包括:
    确定所述标识为0的搜索空间集的PDCCH重复次数。
  6. 如权利要求3所述的确定搜索空间集配置的方法,其特征在于,所述确定搜索空间集的配置,包括:
    确定所述搜索空间集的PDCCH重复次数。
  7. 如权利要求6所述的确定搜索空间集配置的方法,其特征在于,所述确定所述搜索空间集的PDCCH重复次数,包括以下至少一种:
    根据覆盖恢复值,确定所述搜索空间集的PDCCH重复次数;
    根据用户设备的带宽与接收天线数中的至少之一,确定所述搜索空间集的PDCCH重复次数;
    根据控制资源集的带宽、控制资源集的持续时间以及所述用户设备的 接收天线数,确定所述搜索空间集的PDCCH重复次数;
    根据最大聚合等级和所述用户设备的接收天线数,确定所述搜索空间集的PDCCH重复次数;
    根据所述用户设备的类型,确定所述搜索空间集的PDCCH重复次数。
  8. 如权利要求7所述的确定搜索空间集配置的方法,其特征在于,所述根据覆盖恢复值,确定所述搜索空间集的PDCCH重复次数,包括以下至少一种:
    当所述覆盖恢复值为3dB时,确定所述搜索空间集的PDCCH重复次数为2;
    当所述覆盖恢复值为6dB时,确定所述搜索空间集的PDCCH重复次数为4;
    当所述覆盖恢复值为9dB时,确定所述搜索空间集的PDCCH重复次数为8。
  9. 如权利要求7所述的确定搜索空间集配置的方法,其特征在于,所述根据用户设备的带宽与接收天线数中的至少之一,确定所述搜索空间集的PDCCH重复次数,包括:
    当所述用户设备的带宽小于X个物理资源块,且所述接收天线数等于Z时,确定所述搜索空间集的PDCCH重复次数为W。
  10. 如权利要求9所述的确定搜索空间集配置的方法,其特征在于,所述确定所述搜索空间集的PDCCH重复次数为W,包括以下至少一种:
    当所述用户设备的带宽小于48个物理资源块,且所述接收天线数等于2时,确定所述搜索空间集的PDCCH重复次数为2;
    当所述用户设备的带宽小于48个物理资源块,且所述接收天线数等于1时,确定所述搜索空间集的PDCCH重复次数为4或8。
  11. 如权利要求7所述的确定搜索空间集配置的方法,其特征在于,所述用户设备的类型由以下至少一种确定:
    所述覆盖恢复值;
    所述用户设备的带宽与接收天线数中的至少之一;
    所述最大聚合等级和所述用户设备的接收天线数。
  12. 如权利要求11所述的确定搜索空间集配置的方法,其特征在于,当所述用户设备的类型由所述覆盖恢复值确定时,所述用户设备的类型采用如下至少一种方式确定:
    当所述覆盖恢复值为3dB时,所述用户设备的类型为类型3;
    当所述覆盖恢复值为6dB时,所述用户设备的类型为类型6;
    当所述覆盖恢复值为9dB时,所述用户设备的类型为类型9。
  13. 如权利要求11所述的确定搜索空间集配置的方法,其特征在于,当所述用户设备的类型由所述用户设备的带宽与接收天线数中的至少之一确定时,所述用户设备的类型采用如下至少一种方式确定:
    当所述用户设备的带宽小于X个物理资源块,且接收天线数为Z时,确定所述用户设备的类型为类型N。
  14. 如权利要求13所述的确定搜索空间集配置的方法,其特征在于,所述确定所述用户设备的类型为类型N,包括以下至少一种:
    当所述用户设备的带宽小于48个物理资源块,且接收天线数为2时,确定所述用户设备的类型为类型3;
    当所述用户设备的带宽小于48个物理资源块,且接收天线数为1时,确定所述用户设备的类型为类型6或类型9。
  15. 如权利要求11所述的确定搜索空间集配置的方法,其特征在于,当所述用户设备的类型由所述最大聚合等级和所述用户设备的接收天线数确定时,所述用户设备的类型采用如下方式确定:
    当所述最大聚合等级为Y,且所述接收天线数为Z时,确定所述用户设备的类型为类型N。
  16. 如权利要求15所述的确定搜索空间集配置的方法,其特征在于,所述定所述用户设备的类型为类型N,包括以下至少一种:
    当所述最大聚合等级为16,且所述接收天线数为1时,确定所述用户设备的类型为类型3;
    当所述最大聚合等级为8,且所述接收天线数为2时,确定所述用户设备的类型为类型3;
    当所述最大聚合等级为4,且所述接收天线数为4时,确定所述用户设备的类型为类型3;
    当所述最大聚合等级为8,且所述接收天线数为1时,确定所述用户设备的类型为类型6;
    当所述最大聚合等级为4,且所述接收天线数为2时,确定所述用户设备的类型为类型6;
    当所述最大聚合等级为4,且所述接收天线数为1时,确定所述用户设备的类型为类型9。
  17. 如权利要求15所述的确定搜索空间集配置的方法,其特征在于,所述最大聚合等级由所述控制资源集的带宽、所述控制资源集的持续时间决定。
  18. 如权利要求12~17任一项所述的确定搜索空间集配置的方法,其特征在于,所述根据用户设备的类型,确定所述搜索空间集的PDCCH重复次数,包括以下至少一种:
    当所述用户设备的类型为类型3时,确定所述搜索空间集的PDCCH重复次数为2;
    当所述用户设备的类型为类型6时,确定所述搜索空间集的PDCCH重复次数为4;
    当所述用户设备的类型为类型9时,确定所述搜索空间集的PDCCH重复次数为8。
  19. 如权利要求3所述的确定搜索空间集配置的方法,其特征在于,所述确定所述搜索空间集的PDCCH重复次数,包括:
    根据所述搜索空间集的表格参数,确定所述搜索空间集的PDCCH重复次数。
  20. 如权利要求19所述的确定搜索空间集配置的方法,其特征在于,所述根据所述搜索空间集的表格参数,确定所述搜索空间集的PDCCH重复次数,包括:
    根据所述搜索空间集对应的表格中的参数M,确定所述搜索空间集的PDCCH重复次数。
  21. 如权利要求20所述的确定搜索空间集配置的方法,其特征在于,所述根据所述搜索空间集对应的表格中的参数M,确定所述搜索空间集的PDCCH重复次数,包括:
    确定所述搜索空间集的PDCCH重复次数为:所述搜索空间集对应的表格中的参数M。
  22. 如权利要求21所述的确定搜索空间集配置的方法,其特征在于,在确定所述搜索空间集的PDCCH重复次数之后,还包括:
    根据所述搜索空间集的PDCCH重复次数,确定被调度的PDSCH的起始时隙偏移量。
  23. 如权利要求22所述的确定搜索空间集配置的方法,其特征在于,所述确定被调度的PDSCH的起始时隙偏移量,包括:
    确定所述被调度的PDSCH的起始时隙偏移量为M;
    或者,确定所述被调度的PDSCH的起始时隙偏移量为M-1。
  24. 如权利要求20所述的确定搜索空间集配置的方法,其特征在于, 所述根据所述搜索空间集对应的表格中的参数M,确定所述搜索空间集的PDCCH重复次数,包括:
    确定所述搜索空间集的PDCCH重复次数为:所述搜索空间集对应的表格中的参数M的1/2。
  25. 如权利要求24所述的确定搜索空间集配置的方法,其特征在于,在确定所述搜索空间集的PDCCH重复次数之后,还包括:
    根据所述搜索空间集的PDCCH重复次数,确定被调度的PDSCH的起始时隙偏移量。
  26. 如权利要求25所述的确定搜索空间集配置的方法,其特征在于,所述确定被调度的PDSCH的起始时隙偏移量,包括:
    确定所述被调度的PDSCH的起始时隙偏移量为M/2;
    或者,确定所述被调度的PDSCH的起始时隙偏移量为M/2-1。
  27. 如权利要求6所述的确定搜索空间集配置的方法,其特征在于,所述确定所述搜索空间集的PDCCH重复次数,包括:
    根据同步信号块的QCL参数,确定所述搜索空间集的PDCCH重复次数。
  28. 如权利要求27所述的确定搜索空间集配置的方法,其特征在于,所述根据所述同步信号块的QCL参数,确定所述搜索空间集的PDCCH重复次数,包括:
    确定与具有QCL关系的同步信号块关联的PDCCH监听时机重复。
  29. 如权利要求3所述的确定搜索空间集配置的方法,其特征在于,在确定所述搜索空间集的PDCCH重复次数之后,还包括:
    确定PDCCH的监听时机。
  30. 如权利要求29所述的确定搜索空间集配置的方法,其特征在于,所述确定PDCCH的监听时机,包括:
    确定所述PDCCH的监听时机对应的起始时隙与起始符号,并确定执行连续W次监听,W为所述搜索空间集的PDCCH重复次数。
  31. 一种确定搜索空间集配置的装置,其特征在于,包括:
    接收单元,用于接收信令;
    确定单元,用于根据所述信令,确定搜索空间集的配置。
  32. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器运行时执行权利要求1~30任一项所述的确定搜索空间集配置的方法的步骤。
  33. 一种确定搜索空间集配置的装置,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机程序,其特征在于,所述处理器运行所述计算机程序时执行权利要求1~30任一项所述的确定搜索空间集配置的方法的步骤。
PCT/CN2021/093257 2020-05-15 2021-05-12 确定搜索空间集配置的方法及装置、计算机可读存储介质 WO2021228121A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/925,467 US20230180251A1 (en) 2020-05-15 2021-05-12 Method and apparatus for determining configuration of search space set, and computer readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010413837.4A CN113676301B (zh) 2020-05-15 2020-05-15 确定搜索空间集配置的方法及装置、计算机可读存储介质
CN202010413837.4 2020-05-15

Publications (1)

Publication Number Publication Date
WO2021228121A1 true WO2021228121A1 (zh) 2021-11-18

Family

ID=78525266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/093257 WO2021228121A1 (zh) 2020-05-15 2021-05-12 确定搜索空间集配置的方法及装置、计算机可读存储介质

Country Status (3)

Country Link
US (1) US20230180251A1 (zh)
CN (1) CN113676301B (zh)
WO (1) WO2021228121A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109792773A (zh) * 2016-04-28 2019-05-21 寰发股份有限公司 用于窄带物联网的连续模式非连续接收
US20190223164A1 (en) * 2018-03-22 2019-07-18 Intel Corporation Physical downlink control channel (pdcch) blind decoding in fifth generation (5g) new radio (nr) systems
CN110383729A (zh) * 2017-12-08 2019-10-25 Lg电子株式会社 用于在无线通信系统中发送或接收信号的方法及其装置
CN110856180A (zh) * 2019-11-08 2020-02-28 展讯通信(上海)有限公司 数据接收方法及装置、存储介质、终端

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110602731A (zh) * 2019-09-20 2019-12-20 中兴通讯股份有限公司 一种信息指示方法、装置和存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109792773A (zh) * 2016-04-28 2019-05-21 寰发股份有限公司 用于窄带物联网的连续模式非连续接收
CN110383729A (zh) * 2017-12-08 2019-10-25 Lg电子株式会社 用于在无线通信系统中发送或接收信号的方法及其装置
US20190223164A1 (en) * 2018-03-22 2019-07-18 Intel Corporation Physical downlink control channel (pdcch) blind decoding in fifth generation (5g) new radio (nr) systems
CN110856180A (zh) * 2019-11-08 2020-02-28 展讯通信(上海)有限公司 数据接收方法及装置、存储介质、终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "CR to 38.213 capturing the RAN1#94bis and RAN1#95 meeting agreements", 3GPP TSG RAN WG1 MEETING #95 R1-1814394, vol. RAN WG1, 30 November 2018 (2018-11-30), Spokane, USA, pages 1 - 109, XP051494851 *

Also Published As

Publication number Publication date
CN113676301B (zh) 2023-04-25
US20230180251A1 (en) 2023-06-08
CN113676301A (zh) 2021-11-19

Similar Documents

Publication Publication Date Title
US11516807B2 (en) Method and device for configuring control channel, method and device for detecting control channel, program and medium
CN108631934B (zh) 一种数据传输方法、终端设备及基站系统
KR101946225B1 (ko) 캐리어 집성을 위한 제어 채널 공유 시스템 및 방법
EP3729898B1 (en) Managing pdcch blind searches in new radio unlicensed band scenario
RU2759842C1 (ru) Способ определения параметра области поиска и абонентское устройство
CN110651525B (zh) 终端、接收方法及集成电路
WO2018210243A1 (zh) 一种通信方法和装置
JP2023052656A (ja) 情報送信方法及び装置
US11178686B2 (en) Method and apparatus for transmitting and detecting downlink control information
US20220182991A1 (en) Physical downlink control channel pdcch transmission method and apparatus
US11202294B2 (en) Methods and devices for determining downlink resource set and sending resource position information
NZ758247A (en) Transmission direction configuration method, device, and system
EP3902323A1 (en) Communication method and apparatus
US11375502B2 (en) Resource indication method and device, storage medium, and processor
US20210058929A1 (en) Uplink transmission resource allocation method and apparatus
WO2017121413A1 (zh) 资源的使用方法及装置
WO2021228121A1 (zh) 确定搜索空间集配置的方法及装置、计算机可读存储介质
US20200177337A1 (en) Data transmission method, device, and system
WO2022077438A1 (en) Method for beam switching in mmwave systems
WO2021233173A1 (zh) 确定控制资源集配置的方法及装置、计算机可读存储介质
WO2023125295A1 (zh) 物理侧链路反馈信道发送方法及装置、可读存储介质
US20240032059A1 (en) Physical downlink control channel repetition method and apparatus, and user equipment
WO2019029644A1 (zh) 一种传输控制信息的方法和装置
CN113271654B (zh) Pdcch的监听时机的配置方法和装置、电子设备、存储介质
CN108418664B (zh) 信息指示方法、设备及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21804451

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21804451

Country of ref document: EP

Kind code of ref document: A1