WO2021227837A1 - 无损检测汽轮发电机转子导电螺钉瞬态特性的装置及方法 - Google Patents

无损检测汽轮发电机转子导电螺钉瞬态特性的装置及方法 Download PDF

Info

Publication number
WO2021227837A1
WO2021227837A1 PCT/CN2021/089474 CN2021089474W WO2021227837A1 WO 2021227837 A1 WO2021227837 A1 WO 2021227837A1 CN 2021089474 W CN2021089474 W CN 2021089474W WO 2021227837 A1 WO2021227837 A1 WO 2021227837A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse
load
conductive screw
ultra
transient
Prior art date
Application number
PCT/CN2021/089474
Other languages
English (en)
French (fr)
Inventor
张跃武
刘建喜
包彦省
查卫华
张骞一
刘东兵
杨伟星
韩旭
李苗叶
王梓瑞
刘俊良
罗杰
沈维焘
傅裕
高晗
Original Assignee
杭州核诺瓦科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州核诺瓦科技有限公司 filed Critical 杭州核诺瓦科技有限公司
Priority to US17/922,599 priority Critical patent/US11971452B2/en
Publication of WO2021227837A1 publication Critical patent/WO2021227837A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • G01R31/346Testing of armature or field windings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • G01R31/343Testing dynamo-electric machines in operation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/221Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance by investigating the dielectric properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/24Investigating the presence of flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2617Measuring dielectric properties, e.g. constants

Definitions

  • the invention provides a device and method for nondestructively detecting the transient characteristics of a conductive screw of a steam turbine generator rotor, and belongs to the technical field of generator detection.
  • the generator rotor uses DC current for excitation, which is the basic condition for the establishment of stable and safe operation of the generator. Once the rotor circuit fails, the generator voltage and current will have a great impact, which will threaten the normal operation of the unit. In the generator rotor circuit, the generator rotor conductive screw is the only non-permanent connection point of the entire rotor excitation circuit. At the same time, the hydrogen gas tightness must be ensured, which is a key part that plays a dual important role.
  • Nuclear power generating units are different from ordinary thermal power generating units.
  • Nuclear power generating units as the base load generally have a relatively long operating cycle.
  • the operating cycle is generally 12 months or 18 months. During the longer operating cycle, the safe and good operation of the generating units must be ensured.
  • the conductive screw is the only point of maximum impedance mutation that conducts the excitation current from the inside to the outside of the large axis.
  • the large excitation current makes this place where the electromagnetic stress is the most concentrated and the change has the greatest influence.
  • the bending and torsion resonance force is complex, due to the conduction current
  • the heat will accelerate the aging of the sealing ring, and there is a hidden danger of hydrogen leakage accident.
  • the direct resistance detection, AC impedance and other conventional methods recommended in the national standard cannot reflect the health of this important part, especially when the rotor and the end cover are not removed, the conductive screw cannot be seen at all, let alone Inspection of.
  • the conductive screw of the rotor is a place where accidents frequently occur. There have been precedents of accidents caused by flying off of conductive screws in power plants, and loosening and overheating often occur. It is very necessary to detect the tightness of conductive screws.
  • the purpose of the present invention is to provide a device and method for non-destructive testing of the transient characteristics of the conductive screw of a steam turbine generator rotor that can overcome the above-mentioned defects. Open the end cap without disassembling the pair of wheels.
  • the device of the present invention for non-destructively detecting the transient characteristics of the conductive screw of a steam turbine generator rotor includes a PC terminal, an extremely steep pulse generator, an ultra-high frequency double isolation transformer, and a pulse emission coupling module connected in sequence; and a pulse emission coupling
  • the module is connected to the load, and the synchronous pulse receiving non-inductive voltage divider circuit synchronously receives the characteristic waveform from the load.
  • the synchronous pulse receiving non-inductive voltage divider circuit amplifies the signal by the nonlinear saturation amplifier circuit and then connects to the ultra-high-speed A/D module.
  • the terminal receives the signal from the ultra-high-speed A/D module;
  • the load is composed of a 180° symmetrical positive or negative excitation lead loop in a short-circuit state instantaneously and the rotor shaft.
  • the extremely steep pulse generator adopts a nanosecond high-voltage steep pulse generator;
  • the non-inductive voltage divider circuit adopts a resistor divider.
  • the transient rotating electric field pulse of the same parameter has different effects on media of different structures and materials.
  • the two transient pulse characteristic waveforms of positive or negative are compared.
  • the dielectric constant of a certain part of one of the conductive screws changes, inconsistencies in phase and amplitude will occur.
  • the location and severity of the defect of the conductive screw can be judged.
  • the PC terminal controls the extremely steep pulse generator to generate pulses
  • a dual-isolated winding ultra-high frequency transformer with a passband above 10MHz is used as a secondary superposition source to apply pulses;
  • the pulse transmission coupling module couples the second superimposed pulse to the load
  • the non-inductive voltage divider circuit synchronously receives the feedback pulse from the load
  • the nonlinear saturation amplifier circuit amplifies the voltage signal of step (4) and then connects to the ultra-high-speed A/D module;
  • the PC terminal receives the signal from the ultra-high-speed A/D module to form a waveform
  • the load is a load composed of a positive or negative excitation lead loop and a rotor shaft that is momentarily short-circuited, and the characteristic waveform of the load is that the amplitude of the waveform decays rapidly after several oscillating waves.
  • the nonlinear saturation amplifying circuit amplifies and converts the superimposed wave of the leading edge of the transient wave with the slope in step (4) into an ultra-high frequency extremely narrow pulse oscillation wave that can be displayed horizontally.
  • test procedure is to test the positive electrode and the large shaft first, and then test the negative electrode and the large shaft. Then compare the second test waveform
  • the present invention can accurately reflect the mechanical, electrical, and material health conditions of the conductive screw under the premise of not needing to extract the rotor, open the end cover, and remove the pair of wheels. Hidden dangers such as decreased contact performance, loosening of internal and external front and back wheels.
  • Figure 1 is a schematic diagram of the connection of the present invention
  • Figure 2 is a schematic diagram of the coupling waveform of the present invention.
  • Figure 3 is a waveform diagram of a faulty conductive screw in the second embodiment of the present invention.
  • FIG. 4 is a schematic diagram of tightening a normal conductive screw according to the second embodiment of the present invention.
  • Figure 5 is a waveform diagram of a faulty conductive screw in the third embodiment of the present invention.
  • Fig. 6 is a schematic diagram of a normal conductive screw according to the third embodiment of the present invention.
  • the device for non-destructive testing of the transient characteristics of the conductive screws of the rotor of a steam turbine generator includes a PC terminal, an extremely steep pulse generator, an ultra-high frequency double isolation transformer, which are connected in sequence, Pulse transmission coupling module; the pulse transmission coupling module is connected to the load, the synchronous pulse receiving non-inductive voltage divider circuit synchronously receives the characteristic waveform from the load, and the synchronous pulse receiving non-inductive voltage divider circuit amplifies the signal with the super High-speed A/D module connection, the PC terminal receives the signal from the ultra-high-speed A/D module;
  • the load is composed of a positive or negative excitation lead loop that is in a short-circuit state instantaneously and the rotor shaft.
  • the extremely steep pulse generator adopts a nanosecond high-voltage steep pulse generator;
  • the non-inductive voltage divider circuit adopts a resistor divider.
  • the transient rotating electric field pulse of the same parameter has different effects on media of different structures and materials.
  • the two transient pulse characteristic waveforms are compared. When the dielectric constant of one of the conductive screws changes, there will be inconsistencies in the phase and amplitude. Through the waveform comparison analysis, it can be Determine the location and severity of the defect of the conductive screw.
  • the basis of electromagnetic transient test and analysis is to describe the three-dimensional spatial fluctuation of a single pulse electric potential or electric field in time, corresponding to the result of a single electric field pulse in the conductor and the spatial field energy fluctuation-the three-dimensional voltage fluctuation is generated.
  • the low-frequency, macro-electromagnetic phenomenon is the measurement result obtained after each single electromagnetic wave is accumulated, superimposed, and before and after (specifically ns level) related disturbances are integrated in time and space. Therefore, the most basic and accurate fluctuation information can be obtained by analyzing a single voltage pulse.
  • the transient rotating electric field pulse wave can be spirally conducted from the positive or negative excitation lead to the conductive screw, from the excitation lead to the conductive screw, and then to the main winding of the rotor.
  • the transient rotating electric field pulse of the same parameter has different effects on media of different structures and materials.
  • the spatial damping correlation of the insulator has a gradual property around the insulating medium.
  • the transient pulse sensitivity is ns level, and the slight change of the medium can be fully reflected by the transient pulse in the ultra-high-speed acquisition state.
  • the positive and negative conductive screws of the generator rotor should be completely symmetrical in terms of material, airtightness, torque, etc.
  • the transient pulse wave of the same parameter is applied to the positive or negative pole, and the distributed dielectric constant reflected should also be Completely consistent, such as comparing two time-sharing waveforms of transient pulse characteristics, if the dielectric constant of one of the conductive screws changes, there will be inconsistencies in phase and amplitude, which can be judged by waveform comparison analysis
  • the location and severity of the defect of the conductive screw Through this method, the health status of the rotor conductive screw can be directly judged, and the seriousness of the fault can be effectively evaluated and judged.
  • the historical data collection and comparison can be performed on the conductive screw for a long time. Accumulate data evaluation, master the health data of conductive screws, achieve effective management of the health status of the equipment throughout its life, early warning of the equipment status, planned maintenance, and avoid unnecessary accidents.
  • the PC terminal controls the extremely steep pulse generator to generate pulses
  • a dual-isolated winding ultra-high frequency transformer with a passband above 10MHz is used as a secondary superposition source to apply pulses;
  • the pulse transmission coupling module couples the second superimposed pulse to the load
  • the non-inductive voltage divider circuit synchronously receives the feedback pulse from the load
  • the nonlinear saturation amplifier circuit amplifies the voltage signal of step (4) and then connects to the ultra-high-speed A/D module;
  • the PC terminal receives the signal from the ultra-high-speed A/D module to form a waveform
  • the load is a load composed of a positive or negative excitation lead loop and a rotor shaft that is momentarily short-circuited, and the characteristic waveform of the load is that the amplitude of the waveform decays rapidly after several oscillating waves.
  • the nonlinear saturation amplifying circuit amplifies and converts the superimposed wave of the leading edge of the transient wave with the slope in step (4) into an ultra-high frequency extremely narrow pulse oscillation wave that can be displayed horizontally.
  • the 30X overhaul of a nuclear power 660MW unit uses this method to inspect the rotor conductive screws at the J-connector.
  • the positive and negative poles are at the same test voltage, test frequency, and the same test.
  • the positive and negative waveforms of the non-faulty conductive screw should basically coincide on the time axis, and the transient pulse waveform of the positive and negative tests should have no abnormalities, and the positive and negative poles of the rotor (B waveform) in this test have transient characteristic impedance imbalance.
  • the phenomenon When the airtightness test of the rotor is carried out later, it is judged as unqualified according to the 1.0MPa when the rotor leaves the factory. In order to find the leak point, the helium leak detection method was used to find that there was a slight gas leak in the positive pole of the rotor.
  • the rotor winding of a nuclear power 650MW generator is under maintenance, and the generator rotor is in the bore.
  • the air tightness test of the rotor winding has been carried out, and the direct resistance test is normal.
  • the test location is the positive and negative collector ring
  • the positive pole of the inner ring is 1 waveform
  • the negative pole of the outer ring is 2 waveforms
  • the test voltage is 50V
  • the instantaneous internal resistance is 100u ⁇
  • the instantaneous power of the components used is 100W
  • the voltage divider resistance The value is 1:3-2:3 adjustable with load.
  • the comparison between the positive and negative poles of the transient pulse characteristics of the large shaft is shown in Figure 5.
  • the negative waveform is displaced on the time axis, and there is an obvious reverse reflection peak at the second waveform of the conductive screw.
  • the generator rotor After the manufacturer’s personnel tighten the generator rotor conductive screws and the back wheel, and then perform the generator rotor winding CSTA test, the generator rotor is in the bore, the test position is at the positive and negative collector rings, and the test voltage is 50V.
  • the conductive bolts of the generator rotor winding are tested, and the positive and negative poles are compared with the transient pulse characteristics of the main shaft.
  • the first waveform is 0, the horizontal difference of peak 2 is 0, and the vertical difference is 1.
  • the transient pulse characteristic waveforms of the positive and negative conductive screws of the generator rotor are basically symmetrical without loosening Wait for the exception, as shown in Figure 6.

Abstract

一种无损检测汽轮发电机转子导电螺钉瞬态特性的装置及方法,该装置包括依次连接的PC端、极陡脉冲发生器、超高频双隔离变压器、脉冲发射耦合模块;脉冲发射耦合模块与负载连接,同步脉冲接收无感分压电路同步接收来自负载的特征波形,该同步脉冲接收无感分压电路经非线性饱和放大电路放大信号后与超高速A/D模块连接,PC端接收来自超高速A/D模块的信号;该负载为180°对称的瞬时成短路状态的正或负极励磁引线回路与转子大轴组成。能对处于电磁波测试盲区的导电螺钉状态进行检测,检测不用抽转子,不开端盖,不拆对轮。

Description

无损检测汽轮发电机转子导电螺钉瞬态特性的装置及方法 技术领域
本发明提供一种无损检测汽轮发电机转子导电螺钉瞬态特性的装置及方法,属于发电机检测技术领域。
背景技术
大型汽轮发电机是发电厂的主要设备之一,良好的运行状态是发电企业的有利保障和发展的基础,发电机的主设备状态是否存在隐患,直接关系到安全运行的好坏。发电机转子利用直流电流进行励磁,是建立发电机稳定安全运行的基本条件,转子回路一旦发生故障,发电机电压电流将产生很大的影响,进而威胁机组的正常运行。在发电机转子回路中,发电机转子导电螺钉作为整个转子励磁回路的唯一非永久性连接点,同时必须保证氢气气密,是起双重重要作用的关键部位。在转子绕组高速运行时,导电螺钉处承受强大的电流,电网波动影响励磁电流的快速变化,存在松脱,断裂等隐患;当导电螺钉发生故障后,导致接触电阻增大,出现过热,导致弧光放电,甚至会出现烧毁现象,进而造成重大电力安全事故。
核电机组与普通的火电机组不同,作为基荷的核电机组一般运行周期比较长,运行周期一般为12个月或者18个月,在较长的运行周期中必须保证发电机组安全良好运行。
近几年发生多起发电机故障停机事件,多是由于发电机转子导电螺钉故障引起的,所以对发电机转子导电螺钉的检测是近几年来行业内一直重视研究的重要课题,保证导电螺钉的状态安全,就是保障了发电机的安全运行。
导电螺钉是唯一在大轴由内而外导通励磁电流的最大阻抗突变点,励磁大电流使得此处是电磁应力最集中、变化影响最大的地方,弯扭共振作用力复杂,由于导通电流大,发热引起密封圈加速老化,存在漏氢的事故隐患。通过国标里推荐的直阻检测、交流阻抗等常规手段,不能体现这一重要部位的健康情况,特别是不抽转子和不开端盖的情况下,导电螺钉处根本无法看到,更谈不上检查。转子导电螺钉处是事故多发地,已有电厂导电螺钉发生飞脱造成事故的先例,松动过热更是常常发生。对导电螺钉松紧状态进行检测已十分必要。
发明内容
本发明的目的是提供一种能克服上述缺陷的无损检测汽轮发电机转子导电螺钉瞬态特性的装置及方法,其能对处于电磁波检测盲区的导电螺钉状态进行检测,检测不用抽转子,不开端盖,不拆对轮。
本发明所述的一种无损检测汽轮发电机转子导电螺钉瞬态特性的装置,包括依次连接的PC端、极陡脉冲发生器、超高频双隔离变压器、脉冲发射耦合模块;脉冲发射耦合模块与负 载连接,同步脉冲接收无感分压电路同步接收来自负载的特征波形,所述同步脉冲接收无感分压电路经非线性饱和放大电路放大信号后与超高速A/D模块连接,PC端接收来自超高速A/D模块的信号;
所述负载为180°对称的瞬时成短路状态的正或负极励磁引线回路与转子大轴组成。
优选的,所述极陡脉冲发生器采用纳秒级高压陡脉冲发生器;无感分压电路采用电阻分压。
提供一种无损检测汽轮发电机转子导电螺钉瞬态特性的方法,从正或负极励磁引线到导电螺钉再到转子主绕组,同一参数的瞬态旋转电场脉冲对不同结构及材质的介质具有不同的空间阻尼相关性,分时分别测试后,对正或负极两个瞬态脉冲特性波形进行比较,当其中一个导电螺钉的某一部位介电常数发生改变,会产生相位及幅度上的不一致,通过波形对比分析,可判断出导电螺钉缺陷位置及状态严重程度。
具体的,包括以下步骤:
(1)PC端控制极陡脉冲发生器产生脉冲;
(2)通频带在10MHz以上的双隔离绕组超高频变压器作为二次叠加源施加脉冲;
(3)脉冲发射耦合模块将二次叠加后的脉冲耦合到负载;
(4)无感分压电路同步接收来自负载的反馈脉冲;
(5)非线性饱和放大电路放大步骤(4)的电压信号后与超高速A/D模块连接;
(6)PC端接收来自超高速A/D模块的信号形成波形;
(7)分时记录并同步比较步骤(6)的波形;
具体的,所述负载是瞬时成短路状态的正或负极励磁引线回路与转子大轴组成的负载,所述负载特征波形为几个振荡波后波形幅值急速衰减。
具体的,非线性饱和放大电路是将步骤(4)中带有斜率的瞬态波前沿叠加波,放大转换为可水平显示的超高频极窄脉冲振荡波。
具体的,测试步骤为先测试正极与大轴,再测试负极与大轴。之后将二次测试波形进行对比
有益效果:
本发明可以在不需要抽转子、开端盖、拆对轮的前提下准确反映导电螺钉部位的机械、电气、材料的健康状况,可提前发现导电螺钉存在的缺陷,导电螺钉松动,密封垫老化、接触性能下降,内外正反背轮松动等隐患。
附图说明
图1是本发明的连接示意图;
图2是本发明的耦合波形示意图;
图3是本发明的实施例二故障导电螺钉波形图;
图4是本发明的实施例二旋紧正常导电螺钉示意图;
图5是本发明的实施例三故障导电螺钉波形图;
图6是本发明的实施例三正常导电螺钉示意图。
具体实施方式
实施例1
如图1、2所示,本发明所述的一种无损检测汽轮发电机转子导电螺钉瞬态特性的装置,包括依次连接的PC端、极陡脉冲发生器、超高频双隔离变压器、脉冲发射耦合模块;脉冲发射耦合模块与负载连接,同步脉冲接收无感分压电路同步接收来自负载的特征波形,所述同步脉冲接收无感分压电路经非线性饱和放大电路放大信号后与超高速A/D模块连接,PC端接收来自超高速A/D模块的信号;
所述负载为瞬时成短路状态的正或负极励磁引线回路与转子大轴组成。
优选的,所述极陡脉冲发生器采用纳秒级高压陡脉冲发生器;无感分压电路采用电阻分压。
提供一种无损检测汽轮发电机转子导电螺钉瞬态特性的方法,从正或负极励磁引线到导电螺钉再到转子主绕组,同一参数的瞬态旋转电场脉冲对不同结构及材质的介质具有不同的空间阻尼相关性,分时分别测试后,对两个瞬态脉冲特性波形进行比较,当其中一个导电螺钉的介电常数发生改变,会产生相位及幅度上的不一致,通过波形对比分析,可判断出导电螺钉缺陷位置及状态严重程度。
电磁瞬态测试分析的基础,描述的是单个脉冲电势或电场在时间上的三维空间波动,对应单个电场脉冲在导体及空间场能量波动的结果--产生电压的三维波动。低频、宏观的电磁现象是由每个单一电磁波动相互累加、叠加及前后(专指ns级)相关扰动在时间及空间积分后得出的测量结果。所以分析单个电压脉冲可得出最基本的准确波动信息。
瞬态旋转电场脉冲波可在正或负极励磁引线到导电螺钉处螺旋传导,从励磁引线到导电螺钉,再到转子主绕组,同一参数的瞬态旋转电场脉冲对不同结构及材质的介质具有不同的空间阻尼相关性,在绝缘介质的周围具有渐变属性,当瞬态旋转电场脉冲衍射传播,绝缘介电常数发生变化,瞬态旋转电场脉冲采集的波形会发生相应变化。瞬态脉冲灵敏度为ns级,在超高速采集状态下通过瞬态脉冲可完全反映介质的轻微变化。从设计制造的角度考虑,发电机转子正负导电螺钉从材料,气密性,力矩等应该完全对称,同一参数的瞬态脉冲波施加在正或负极,所反映的分布式介电常数也应该完全一致,如对两个分时采集的瞬态脉冲特性 波形进行比较,如其中一个导电螺钉的某一部位介电常数发生改变,会产生相位及幅度上的不一致,通过波形对比分析可判断出导电螺钉缺陷位置及状态严重程度。通过该方法可以直接判断出转子导电螺钉的健康状态,可对故障的严重性进行有效的评估和判断,通过对导电螺钉进行周期性检测,进行历史性数据采集对比,可对导电螺钉进行长期的数据累计评估,掌握导电螺钉的健康数据,做到设备全寿期健康状态的有效管理,提前对设备状态进行预警,计划检修,避免不必要的事故发生。
具体的,包括以下步骤:
(1)PC端控制极陡脉冲发生器产生脉冲;
(2)通频带在10MHz以上的双隔离绕组超高频变压器作为二次叠加源施加脉冲;
(3)脉冲发射耦合模块将二次叠加后的脉冲耦合到负载;
(4)无感分压电路同步接收来自负载的反馈脉冲;
(5)非线性饱和放大电路放大步骤(4)的电压信号后与超高速A/D模块连接;
(6)PC端接收来自超高速A/D模块的信号形成波形;
(7)分时记录并同步比较步骤(6)的波形;
具体的,所述负载是瞬时成短路状态的正或负极励磁引线回路与转子大轴组成的负载,所述负载特征波形为几个振荡波后波形幅值急速衰减。
具体的,非线性饱和放大电路是将步骤(4)中带有斜率的瞬态波前沿叠加波,放大转换为可水平显示的超高频极窄脉冲振荡波。
实施例2:
如图3所示,某核电660MW机组30X大修,在J型连接片处采用本方法对转子导电螺钉进行检查,根据本方法可知,由于正负两极在同样的测试电压,测试频率,同样的测试条件下,无故障的导电螺钉正负极波形在时间轴上应基本重合,正负极测试瞬态脉冲波形应无任何异常,而本次试验转子正极(B波形)存在瞬态特性阻抗不平衡的现象。后对该转子进行气密性试验时,按照转子出厂时1.0MPa判断不合格。为查找泄漏点,采用氦气检漏法发现,发现转子正极有轻微漏气情况。
制造厂人员更换正极导电螺钉密封垫完毕后,正极与负极的瞬态特性波形区别不明显,无明显区分突变点,正负极波形基本重合,如图4所示。经过氦气气密试验验证合格。可知导致气密性试验不合格的原因是密封垫圈老化。
实施例3:
某核电650MW发电机转子绕组处于检修状态,发电机转子在膛内,该转子绕组进行了气密试验,直阻测试均为正常。采用本方法进行测试,测试位置为正负集电环处,内环正极 为1波形,外环负极为2波形,测试电压为50V,瞬时内阻100uΩ,所用元件瞬时功率是100W,分压阻值是1:3‐2:3随负载可调。正负极对大轴瞬态脉冲特性波形进行比较见图5。
在J型连接片处,进行导电螺栓松紧度测试,正极对大轴测试波形比较,负极存在负反射峰,产生不匹配反射。
正负两极在同样的测试条件下,负极波形在时间轴上发生位移,在导电螺钉第二个波形处有明显反向反射峰。
制造厂人员后对发电机转子导电螺钉及背轮进行紧固处理,再进行发电机转子绕组CSTA测试,发电机转子在膛内,测试位置为正负集电环处,测试电压为50V,对发电机转子绕组导电螺栓进行测试,正负极对大轴瞬态脉冲特性波形进行比较。正负极瞬态脉冲波形下降沿水平差值第一个波形为0,波峰2水平差值为0,垂直差值为1,发电机转子正负极导电螺钉瞬态脉冲特性波形基本对称无松动等异常,如图6所示。

Claims (7)

  1. 一种无损检测汽轮发电机转子导电螺钉瞬态特性的装置,其特征在于,包括依次连接的PC端、极陡脉冲发生器、超高频双隔离变压器、脉冲发射耦合模块;脉冲发射耦合模块与负载连接,同步脉冲接收无感分压电路同步接收来自负载的特征波形,所述同步脉冲接收无感分压电路经非线性饱和放大电路放大信号后与超高速A/D模块连接,PC端接收来自超高速A/D模块的信号;
    所述负载为180°对称的瞬时成短路状态的正或负极励磁引线回路与转子大轴组成。
  2. 根据权利要求1所述的一种无损检测汽轮发电机转子导电螺钉瞬态特性的装置,其特征在于,所述极陡脉冲发生器采用纳秒级高压陡脉冲发生器;无感分压电路采用电阻分压。
  3. 一种如权利要求1、2所述的无损检测汽轮发电机转子导电螺钉瞬态特性的方法,其特征在于,从正或负极励磁引线到导电螺钉再到转子主绕组,同一参数的瞬态旋转电场脉冲对不同结构及材质的介质具有不同的空间阻尼相关性,分时分别测试后,对正或负极两个瞬态脉冲特性波形进行比较,当其中一个导电螺钉的某一部位介电常数发生改变,会产生相位及幅度上的不一致,通过波形对比分析,可判断出导电螺钉缺陷位置及状态严重程度。
  4. 根据权利要求3所述的一种无损检测汽轮发电机转子导电螺钉瞬态特性的方法,其特征在于,包括以下步骤:
    (1)PC端控制极陡脉冲发生器产生脉冲;
    (2)通频带在10MHz以上的双隔离绕组超高频变压器作为二次叠加源施加脉冲;
    (3)脉冲发射耦合模块将二次叠加后的脉冲耦合到负载;
    (4)无感分压电路同步接收来自负载的反馈脉冲;
    (5)非线性饱和放大电路放大步骤(4)的电压信号后与超高速A/D模块连接;
    (6)PC端接收来自超高速A/D模块的信号形成波形;
    (7)分时记录并同步比较步骤(6)的波形。
  5. 根据权利要求4所述的一种无损检测汽轮发电机转子导电螺钉瞬态特性的方法,其特征在于,所述负载是瞬时成短路状态的正或负极励磁引线回路与转子大轴组成的负载,所述负载特征波形为几个振荡波后波形幅值急速衰减。
  6. 根据权利要求4所述的一种无损检测汽轮发电机转子导电螺钉瞬态特性的方法,其特征在于,非线性饱和放大电路是将步骤(4)中带有斜率的瞬态波前沿叠加波,放大转换为可水平显示的超高频极窄脉冲振荡波。
  7. 根据权利要求4所述的一种无损检测汽轮发电机转子导电螺钉瞬态特性的方法,其特征在于,测试步骤为先测试正极与大轴,再测试负极与大轴,之后将二次测试波形进行对比。
PCT/CN2021/089474 2020-05-15 2021-04-25 无损检测汽轮发电机转子导电螺钉瞬态特性的装置及方法 WO2021227837A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/922,599 US11971452B2 (en) 2020-05-15 2021-04-25 Device and method for nondestructively detecting transient characteristic of conductive screw of turbo-generator rotor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010410028.8A CN111521939B (zh) 2020-05-15 2020-05-15 无损检测汽轮发电机转子导电螺钉瞬态特性的装置及方法
CN202010410028.8 2020-05-15

Publications (1)

Publication Number Publication Date
WO2021227837A1 true WO2021227837A1 (zh) 2021-11-18

Family

ID=71907661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/089474 WO2021227837A1 (zh) 2020-05-15 2021-04-25 无损检测汽轮发电机转子导电螺钉瞬态特性的装置及方法

Country Status (3)

Country Link
US (1) US11971452B2 (zh)
CN (1) CN111521939B (zh)
WO (1) WO2021227837A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111521939B (zh) 2020-05-15 2021-05-14 杭州核诺瓦科技有限公司 无损检测汽轮发电机转子导电螺钉瞬态特性的装置及方法
CN111965541B (zh) 2020-08-18 2021-06-18 杭州核诺瓦科技有限公司 检测电机磁回路槽楔、气隙、转子断条状态的装置及方法
CN113406540B (zh) * 2021-05-06 2022-07-19 杭州核诺瓦科技有限公司 汽轮发电机转子绕组匝间电磁脉振波特性检测装置及方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU951571A1 (ru) * 1980-12-31 1982-08-15 Научно-Исследовательский,Проектно-Конструкторский И Технологический Институт Тяжелого Электромашиностроения Харьковского Завода "Электротяжмаш" Им.В.И.Ленина Устройство дл контрол витковых замыканий в обмотке ротора электрической машины
EP0608442A1 (en) * 1992-12-30 1994-08-03 Ansaldo Energia S.P.A. Rotor winding short circuit detector
CN201133925Y (zh) * 2007-09-19 2008-10-15 郑役军 匝间短路测试装置
CN103226182A (zh) * 2013-01-25 2013-07-31 程少敏 一种发电机转子常见故障早期诊断方法及图形化扫描仪
CN106152922A (zh) * 2016-06-15 2016-11-23 淄博固特电气有限公司 大型汽轮发电机转子线圈中心点定位判断装置及其中心点定位方法
CN206975158U (zh) * 2017-07-12 2018-02-06 中国大唐集团科学技术研究院有限公司华东分公司 一种发电机转子绕组匝间短路状况的检测装置
CN108872856A (zh) * 2018-07-16 2018-11-23 山东固特电气有限公司 发电机转子绕组状态检测装置及方法
CN110346685A (zh) * 2019-07-16 2019-10-18 杭州核诺瓦科技有限公司 大型电机定子绕组匝间状态检测的装置及方法
CN111521939A (zh) * 2020-05-15 2020-08-11 杭州核诺瓦科技有限公司 无损检测汽轮发电机转子导电螺钉瞬态特性的装置及方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7093422B2 (en) * 2004-02-10 2006-08-22 General Electric Company Detecting spark in igniter of gas turbine engine by detecting signals in grounded RF shielding
CN102611254B (zh) * 2012-03-29 2013-12-18 东方电气集团东方电机有限公司 发电机大电流集电环装置
KR101872530B1 (ko) * 2012-06-18 2018-06-28 현대일렉트릭앤에너지시스템(주) 유도전동기 작동시험장치
CN204256092U (zh) * 2014-11-26 2015-04-08 南阳防爆集团股份有限公司 一种发电机转子接地无线检测装置
CN104569733B (zh) * 2015-01-09 2017-06-06 华北电力大学(保定) 一种确定电机励磁绕组匝间短路故障位置的方法
CN205246758U (zh) * 2015-11-27 2016-05-18 湖北华电电力工程有限公司 一种用于测量电机转子绕组电阻的测试装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU951571A1 (ru) * 1980-12-31 1982-08-15 Научно-Исследовательский,Проектно-Конструкторский И Технологический Институт Тяжелого Электромашиностроения Харьковского Завода "Электротяжмаш" Им.В.И.Ленина Устройство дл контрол витковых замыканий в обмотке ротора электрической машины
EP0608442A1 (en) * 1992-12-30 1994-08-03 Ansaldo Energia S.P.A. Rotor winding short circuit detector
CN201133925Y (zh) * 2007-09-19 2008-10-15 郑役军 匝间短路测试装置
CN103226182A (zh) * 2013-01-25 2013-07-31 程少敏 一种发电机转子常见故障早期诊断方法及图形化扫描仪
CN106152922A (zh) * 2016-06-15 2016-11-23 淄博固特电气有限公司 大型汽轮发电机转子线圈中心点定位判断装置及其中心点定位方法
CN206975158U (zh) * 2017-07-12 2018-02-06 中国大唐集团科学技术研究院有限公司华东分公司 一种发电机转子绕组匝间短路状况的检测装置
CN108872856A (zh) * 2018-07-16 2018-11-23 山东固特电气有限公司 发电机转子绕组状态检测装置及方法
CN110346685A (zh) * 2019-07-16 2019-10-18 杭州核诺瓦科技有限公司 大型电机定子绕组匝间状态检测的装置及方法
CN111521939A (zh) * 2020-05-15 2020-08-11 杭州核诺瓦科技有限公司 无损检测汽轮发电机转子导电螺钉瞬态特性的装置及方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AO, GUANYOU: "Analysis of Large Generator Rotor Windings Using the RSO Test", CONSTRUCTION MATERIALS & DECORATION, no. 18, 31 May 2017 (2017-05-31), CN, pages 245 - 246, XP009531835, ISSN: 1673-0038 *
LI, LONG ET AL.: "Analysis and Treatment of a Generator Rotor Failure", ELECTRIC ENGINEERING, no. 8, 30 April 2020 (2020-04-30), pages 61 - 62,65, XP055866879, ISSN: 1002-1388 *
XIAO, YAO ET AL.: "Location and Analysis of Rotor Short-Circuit Fault of 1000 MW Turbo-Generator", HUBEI ELECTRIC POWER, vol. 43, no. 3, 30 June 2019 (2019-06-30), pages 76 - 82, XP055866884, ISSN: 1006-3986 *

Also Published As

Publication number Publication date
CN111521939B (zh) 2021-05-14
US20230168303A1 (en) 2023-06-01
US11971452B2 (en) 2024-04-30
CN111521939A (zh) 2020-08-11

Similar Documents

Publication Publication Date Title
WO2021227837A1 (zh) 无损检测汽轮发电机转子导电螺钉瞬态特性的装置及方法
CN101937047A (zh) 利用振动波形检测变压器绕组状态的方法
CN105628419A (zh) 基于独立分量分析去噪的gis机械缺陷诊断系统及方法
TW201432279A (zh) 運用聲能特徵判斷電力設備電弧放電及機械震動、異常位移類故障的方法
CN105629100A (zh) 基于异常振动分析的gis机械缺陷诊断系统及方法
CN106771895A (zh) 一种基于磁场谐波检测的电缆老化检测方法
Ushakov et al. Diagnostics of High-Voltage Equipment by Defectography Methods
CN111832967A (zh) 一种运行年久发电机延寿评估系统
CN110895322A (zh) 一种固体绝缘电压互感器匝间短路诊断方法
US5594348A (en) Surge testing method in decompressed atmosphere for a small-size electric machine and apparatus thereof
Wu et al. Study on nanosecond impulse frequency response for detecting transformer winding deformation based on Morlet wavelet transform
Wang et al. Vibration Fault On-site Dection of Gas-insulated Switchgear (GIS) Equipment Based on Ultrasound and Ultra-high Frequency Measurement Method
CN110632481B (zh) 一种中压电缆本体绝缘缺陷程度识别方法
Liu et al. An Analysis Method of GIS Equipment Fault Causes based on Online Monitoring and Joint Diagnosis
CN111273211B (zh) 一种gis局部放电在线监测系统校核系统及方法
Shi et al. Diagnosis of transformer winding looseness based on vibration sensor array
Wang et al. Multi-source partial discharge detection and rapid localization of switchgear based on comprehensive diagnosis method
CN111880030A (zh) 一种电缆终端高频谐波电热老化试验系统
Patel et al. Health Condition Monitoring of Transformer: A Review
Cao et al. Research on Detection Method of PD Detection with Special-shaped Wave
Yin et al. Application of Frequency Response Analysis Method in the Detection of Winding Deformation Faults in Transformers with Balanced Coils
Zhang et al. Mechanical Defect Field Detection for Operational GIS Equipment Based on Vibration Signal Analysis
Du et al. Discharge Characteristics of Epoxy Resin Partial Discharge under Different Harmonic Voltages
Kong et al. The application of multi-sensor technique in switchgear partial discharge precise location
Sun et al. Research and Application of GIS Cable Terminal Acoustic-electric Combined Partial Discharge Detection Technology

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21803207

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21803207

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06/06/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21803207

Country of ref document: EP

Kind code of ref document: A1