WO2021227543A1 - 调试组件 - Google Patents

调试组件 Download PDF

Info

Publication number
WO2021227543A1
WO2021227543A1 PCT/CN2021/071226 CN2021071226W WO2021227543A1 WO 2021227543 A1 WO2021227543 A1 WO 2021227543A1 CN 2021071226 W CN2021071226 W CN 2021071226W WO 2021227543 A1 WO2021227543 A1 WO 2021227543A1
Authority
WO
WIPO (PCT)
Prior art keywords
branch
pipeline
throttling
main
main pipeline
Prior art date
Application number
PCT/CN2021/071226
Other languages
English (en)
French (fr)
Inventor
武永宾
矫立涛
常利华
王连宝
石贤光
邱洪刚
夏褚芮
Original Assignee
青岛海尔空调器有限总公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2021227543A1 publication Critical patent/WO2021227543A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/37Capillary tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/385Dispositions with two or more expansion means arranged in parallel on a refrigerant line leading to the same evaporator

Definitions

  • This application relates to the field of air conditioning technology, for example, to a debugging component.
  • capillary tubes or short throttle tubes as the throttle components of the air conditioning system.
  • the R&D personnel need to pass multiple tests in the initial stage of development to determine the capillary parameters or the specifications of the short throttle tubes to determine the final air conditioning system. performance.
  • different capillary parameters can be achieved by changing the capillary size, or changing the throttle valve core to change the throttling parameters of the throttling short tube.
  • the period of the test determination phase of the empty adjustment flow parameter is long.
  • the embodiment of the present disclosure provides a debugging component to solve the problem of a long period in the test determination phase of the empty adjustment flow parameter.
  • the debugging assembly includes a first main pipeline for communicating with indoor unit pipelines and a second main pipeline for communicating with outdoor unit pipelines, a branch pipeline, which is connected to the first main pipeline
  • the pipeline and the second main pipeline are provided with a throttling component and an on-off valve, the on-off valve is configured to control the on-off of the branch pipeline; wherein, the branch pipeline is multiple, The throttling parameters of the throttling components in multiple branch pipelines are partially the same.
  • one vacuum is used to test the throttling parameters of multiple sets of different throttling components using multiple branch and trunk pipelines.
  • other branches and trunk pipelines pass the on-off valve Closed to prevent interference with the test results of the branch pipeline to be tested; reduce the number of vacuuming, thereby shortening the test cycle and improving the test efficiency.
  • FIG. 1 is a schematic structural diagram of a debugging component provided by an embodiment of the present disclosure
  • Figure 2 is a schematic structural diagram of a throttling assembly provided by an embodiment of the present disclosure
  • Fig. 3 is a schematic structural diagram of a first throttling element provided by an embodiment of the present disclosure.
  • 10 the first main pipeline; 20: the second main pipeline; 30: the branch pipeline; 301: the first branch; 302: the connecting pipeline; 303: the second branch; 401: the first throttling element ; 402: second throttle element; 403: limit part; 4031: protrusion; 404: through hole; 50: on-off valve; 60: first dispenser; 70: second dispenser; 80: two-way Valve; 90: mounting plate; 901: mounting hole.
  • the directions or positional relationships indicated by the terms “upper”, “lower”, “inner”, “in”, “outer”, “front”, “rear”, etc. are based on the directions shown in the drawings or Positional relationship. These terms are mainly used to better describe the embodiments of the present disclosure and the embodiments thereof, and are not used to limit that the indicated device, element, or component must have a specific orientation, or be constructed and operated in a specific orientation. In addition, some of the above terms may be used to indicate other meanings in addition to the orientation or position relationship. For example, the term “shang” may also be used to indicate a certain attachment relationship or connection relationship in some cases. For those of ordinary skill in the art, the specific meanings of these terms in the embodiments of the present disclosure can be understood according to specific situations.
  • connection can be a fixed connection, a detachable connection, or an integral structure; it can be a mechanical connection or an electrical connection; it can be directly connected, or indirectly connected through an intermediate medium, or two devices, components, or The internal communication between the components.
  • connection can be a fixed connection, a detachable connection, or an integral structure; it can be a mechanical connection or an electrical connection; it can be directly connected, or indirectly connected through an intermediate medium, or two devices, components, or The internal communication between the components.
  • A/B means: A or B.
  • a and/or B means: A or B, or, A and B.
  • an embodiment of the present disclosure provides a debugging assembly, including a first main pipeline 10 for communicating with indoor unit pipelines, a second main pipeline 20 for communicating with outdoor unit pipelines, and
  • the branch and trunk pipeline 30 connects the first trunk pipeline 10 and the second trunk pipeline 20.
  • the branch trunk pipeline 30 is provided with a throttle assembly and an on-off valve 50, and the on-off valve 50 is configured to control the branch trunk.
  • the on and off of the pipeline 30; among them, there are multiple branch and trunk pipelines 30, and the throttling parameters of the throttling components in the multiple branch and trunk pipelines 30 are partly the same.
  • a vacuum is applied at one time, and multiple branch pipes are used to test the throttling parameters of multiple sets of different throttling components.
  • the other branch pipes The pipeline is closed by the switch valve to prevent interference with the test results of the branch pipeline to be tested; the number of vacuuming is reduced, thereby shortening the test cycle and improving the test efficiency.
  • the number of branch and trunk pipelines is greater than 2, and the specific number is not limited.
  • the number of vacuum pumping times is inversely proportional to the number of branch pipes.
  • the selection range of the throttling parameters of the throttling component is larger, which is beneficial to improve the test accuracy.
  • the throttle parameter of the throttle component may include one or more of the length of the throttle component, the flow area of the throttle component, the aperture of the throttle component, or the pressure difference of the throttle component.
  • the length of the throttling component is different, and the throttling effect is different.
  • the flow area or aperture of the throttling component is different, and the throttling effect is different.
  • the pressure difference of the throttling component is formed by the two ends or inside of the throttling component, and the throttling purpose is achieved through the pressure difference. Among them, the greater the pressure difference, the more significant the throttling effect.
  • the throttle assembly is detachably connected to the branch pipeline. According to the different horsepower of the air conditioner, replace the appropriate throttling components, which will help increase the adaptability of the debugging components.
  • the throttle component may be a capillary tube, an electronic expansion valve, a throttle valve or a throttle orifice.
  • the on-off valve is arranged in the branch pipeline between the throttle assembly and the second main pipeline.
  • the circulation of the branch pipeline being tested is stopped by the on-off valve, preventing the refrigerant that has passed the throttling assembly from continuing to flow to the second main pipeline, and reducing the branch pipeline to be tested. The impact of dry pipeline test results.
  • the first main pipeline is connected with the thin tube with a bell mouth of the indoor unit, and the second main pipeline is connected with the two-way valve of the outdoor unit.
  • the first main pipeline is provided with a switch for controlling the on and off of the first main pipeline.
  • the branch pipeline to be tested when the branch pipeline to be tested is replaced, the flow path in the first main pipeline is disconnected by the switch, and the flow path in the branch pipeline being tested is disconnected by the on-off valve, and then Open the flow path of the branch pipe to be tested. After the branch pipe is replaced, open the flow path of the first main pipe through the switch, and the refrigerant flows through the branch pipe for throttling test.
  • the commissioning assembly includes 4 branch pipelines.
  • the branch pipeline 30 includes a first branch 301, a second branch 303, and a connecting pipeline 302, the first branch 301 is connected to the first main pipeline 10; the second branch 303 is connected to the second main pipeline 20; the connecting pipeline 302 connects the first branch 301 and the second branch 303; wherein the connecting pipeline 302 is provided with a throttle assembly.
  • the first branch, the second branch and the connecting pipeline facilitate the disassembly and maintenance of the branch pipeline.
  • it is conducive to the disassembly and assembly of throttling components and branch pipelines.
  • the first branch and the connecting pipeline can be detachably connected, for example, the first branch is threadedly connected with the connecting pipeline.
  • the first branch is detachably connected with the first main pipeline.
  • the plurality of first branches and the first main pipeline can be communicated with each other through a multi-way valve.
  • the second branch and the connecting pipeline are detachably connected, for example, the second branch is threadedly connected with the connecting pipeline.
  • the second branch is detachably connected with the second main pipeline.
  • the plurality of second branches and the second main pipeline can be connected through a multi-way valve.
  • the throttle component is arranged in the connecting pipeline.
  • the throttle component and the connecting pipeline are detachably connected. This facilitates the disassembly and assembly of the throttle assembly.
  • the joints of the pipelines are all provided with sealing rings or sealing devices. In this way, it is beneficial to improve the air tightness of the debugging components during the test and maintain the vacuum state.
  • the throttling assembly includes a first throttling element 401 and a second throttling element 402 that are arranged oppositely.
  • the first throttling element and the second throttling element achieve the purpose of throttling the refrigerant in the cooling or heating process.
  • the throttling parameters of the first throttling element and the second throttling element are the same, in the cooling or heating process, the throttling results of the refrigerant flowing through the branch pipelines are the same.
  • the throttling result of the refrigerant flowing through the branch pipe in the refrigeration scene is the same as that of the refrigerant flowing through the branch pipe in the heating scene.
  • the throttling results are different.
  • the refrigerant flows from the first main pipeline to the second main pipeline, and the purpose of throttling is achieved through the second throttling element; in the case of heating, the refrigerant flows from the second main pipeline to the first main pipeline In the pipeline, throttling is achieved through the first throttling element.
  • the second and first throttling elements with different throttling parameters are used to perform throttling tests on the refrigerant in the cooling and heating scenarios. There is no need to replace throttling elements with different parameters according to different application scenarios, which shortens the test cycle. , Improve the accuracy of the test.
  • the first throttling element and the second throttling element are arranged relative to each other to ensure that only the second throttling element plays a throttling role during cooling, and only the first throttling element plays a throttling role during heating.
  • the inlet of the second throttling element is set toward the direction of the first branch, and the impact force generated by the impact of the flow of the refrigerant clamps the second throttling element in the connecting pipeline.
  • the connecting pipeline cooperates to play a throttling effect; at this time, the first throttling element does not have a throttling effect.
  • the inlet of the first throttling element is set toward the direction of the second branch, the impact force generated by the impact of the flow of the refrigerant clamps the first throttling element in the connecting pipeline, and the first throttling element is connected to the The pipelines cooperate to play a throttling effect; at this time, the second throttling element does not have a throttling effect.
  • each throttling element and the connecting pipeline can be detachably connected.
  • Each throttle element is inserted in the connecting pipeline and is detachably connected with the connecting pipeline.
  • the connecting pipeline includes a first section of pipeline and a second section of pipeline, the first throttling element is arranged in the first section of pipeline, the second throttling element is arranged in the second section of pipeline, and the first The section pipeline and the second section pipeline can be detachably connected. This facilitates the disassembly and assembly of the first throttle element and the second throttle element. For example, when the first or second throttling element needs to be replaced, only the first section of pipeline and the second section of pipeline need to be disassembled, and then the corresponding throttling element can be replaced, which is convenient, fast, and economical. Save time and effort.
  • each throttle element is provided with a limiting portion 403, and the limiting portion 403 protrudes outward from the outer side wall of the throttle element to the inner side wall of the connecting pipe 302; wherein, the connecting pipe 302
  • the inner side wall is provided with a card slot (not shown in the figure) that is matched with the limiting portion 403.
  • the limiting part is matched with the clamping groove of the inner side wall of the connecting pipeline to realize the clamping and fixing of the throttle element and the connecting pipeline.
  • the throttling element is columnar.
  • the limiting portion has a rectangular parallelepiped shape, a fin shape or a strip shape.
  • a plurality of limiting parts are evenly arranged along the outer side wall of the throttling element.
  • the length of the limit part is smaller than the length of the throttle element.
  • the limiting portion includes a first end and a second end opposite to each other, and the axis of the first end and the second end are parallel to the axis of the throttling element.
  • the first end of the limiting portion is close to the end surface of the throttling element.
  • the first end of the limiting portion and the end surface of the throttling element are located on the same plane.
  • the second end of the limiting portion is an inclined surface. In this way, the clamping between the limiting part and the card slot is smoother, and the impact force during the clamping is reduced.
  • a protrusion 4031 is provided on the top edge of a limiting portion 403.
  • the protrusion is close to the end surface of the throttle element. In this way, it helps users identify the installation direction of the throttling element and prevent reverse installation.
  • the limiting part and the throttling element can be integrally formed.
  • the integrally formed structure helps to improve the firmness of the connection between the limiting part and the throttle element.
  • each throttling element is provided with a through hole 404 for throttling.
  • the refrigerant flows through the through holes for throttling, and different apertures have different throttling effects.
  • the through-hole processing and manufacturing are simple, and the processing cost is reduced.
  • each throttling element is provided with one or more through holes.
  • a plurality of through holes are evenly distributed in the throttle element. In this way, the multiple through holes help reduce the impact of the refrigerant on the throttling element.
  • the throttling parameter of the throttling element is the superposition of the flow areas of the multiple through holes.
  • the entrance of the through hole is trumpet-shaped.
  • the outlet of the through hole is trumpet-shaped. In this way, it is beneficial to reduce the impact of the refrigerant on the throttling element.
  • the switch valve 50 communicates with the connecting pipeline 302 and the second branch 303.
  • the on-off valve may be a two-way valve. One valve port of the two-way valve is in communication with the connecting pipeline, and the other valve port is in communication with the second branch.
  • the on-off valve is detachably connected to the connecting pipeline.
  • the on-off valve is detachably connected to the second branch. In this way, it is conducive to the disassembly and assembly of the on-off valve.
  • a mounting plate is provided on the switch valve.
  • the mounting plate is sleeved on the on-off valve and is close to a valve port.
  • Mounting holes are provided on the mounting plate.
  • the debugging assembly further includes: a first dispenser 60, which connects the first branch 301 and the first main pipeline 10, and/or, a second dispenser 70, which communicates the second branch 303 and the second main pipe 10.
  • Main pipeline 20 In this way, it is helpful to gather the flow paths of a plurality of first branches, and at the same time divide the flow paths of the first main pipeline and the second main pipeline.
  • the appearance of the debugging component is neat and tidy.
  • the first dispenser includes a main port and four split ports.
  • the second dispenser includes a main port and four split ports.
  • the number of ports of the first dispenser is less than or equal to the number of branch pipes.
  • the number of split ports of the second dispenser is less than or equal to the number of branch pipes. In this way, in the case where the number of split ports of the first dispenser is smaller than the branch and trunk pipelines, the split ports in the first splitter that are not in communication with the branch trunk pipelines may be blocked. In the same way, in the case where the number of split ports of the second dispenser is smaller than the branch and trunk pipelines, the split ports in the second splitter that are not in communication with the branch trunk pipelines may be blocked.
  • the first branch 301 is a bent pipe
  • the second branch 303 is a bent pipe. In this way, it is beneficial to expand the separation distance of multiple branch and trunk pipelines, and facilitate the disassembly and assembly of branch and trunk pipelines and throttle components.
  • the first branch may be Z-shaped, S-shaped or L-shaped.
  • a plurality of first branches are evenly arranged, and the distance between adjacent first branches is the maximum.
  • the multiple first branches do not interfere with each other. As shown in Figure 1.
  • the second branch may be Z-shaped, S-shaped or L-shaped. In this way, it is possible to better converge the flow paths in the plurality of second branches to the second main pipeline.
  • the first main pipeline 10 is provided with a two-way valve 80, and the two-way valve 80 is provided at the main port of the first liquid separator 60.
  • the on-off of the first main pipeline is controlled by the two-way valve.
  • One valve port of the two-way valve is in communication with the main port of the first dispenser, and the other valve port is in communication with a thin tube with a bell mouth of the indoor unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Housings (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种调试组件,调试组件包括用于连通室内机管路的第一主干管路(10)和用于连通室外机管路的第二主干管路(20),支干管路(30),连通第一主干管路(10)和第二主干管路(20),设置有节流组件和开关阀(50),开关阀(50)被配置为控制支干管路(30)的通断;其中,支干管路(30)为多条,多条支干管路(30)中节流组件的节流参数部分相同。在测试过程中,一次抽真空,利用多条支干管路(30)进行多组不同节流组件的节流参数的试验,在任意一条支干管路(30)测试过程中,其他支干管路(30)通过开关阀(50)关闭,防止干扰待测试的支干管路(30)的测试结果;减少了抽真空的次数,从而缩短了测试周期,提高了测试效率。

Description

调试组件
本申请基于申请号为202020762383.7、申请日为2020年05月09日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及空气调节技术领域,例如涉及一种调试组件。
背景技术
目前,现有定频空调器大多使用毛细管或者节流短管作为空调系统的节流部件,研发人员在研发初期需要通过多次测试才能确定毛细管参数或者节流短管规格,从而确定空调系统最终性能。测试过程中可通过更改毛细管尺寸实现不同的毛细管参数,或者更换节流阀芯改变节流短管的节流参数。另外,当更改毛细管尺寸或更换节流阀芯时均需要重新抽真空后测试。多次抽真空需要花费大量时间。
在实现本公开实施例的过程中,发现相关技术中至少存在如下问题:空调节流参数的测试确定阶段的周期长。
发明内容
为了对披露的实施例的一些方面有基本的理解,下面给出了简单的概括。所述概括不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围,而是作为后面的详细说明的序言。
本公开实施例提供一种调试组件,以解决空调节流参数的测试确定阶段的周期长的问题。
在一些实施例中,所述调试组件包括用于连通室内机管路的第一主干管路和用于连通室外机管路的第二主干管路,支干管路,连通所述第一主干管路和所述第二主干管路,设置有节流组件和开关阀,所述开关阀被配置为控制所述支干管路的通断;其中,所述支干管路为多条,多条支干管路中节流组件的节流参数部分相同。
本公开实施例提供的调试组件,可以实现以下技术效果:
在测试过程中,一次抽真空,利用多条支干管路进行多组不同节流组件的节流参数的试验,在任一一条支干管路测试过程中,其他支干管路通过开关阀关闭,防止干扰待测试的支干管路的测试结果;减少了抽真空的次数,从而缩短了测试周期,提高了测试效率。
以上的总体描述和下文中的描述仅是示例性和解释性的,不用于限制本申请。
附图说明
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明和附图并不构成对实施例的限定,附图中具有相同参考数字标号的元件示为类似的元件,附图不构成比例限制,并且其中:
图1是本公开实施例提供的调试组件的结构示意图;
图2是本公开实施例提供的节流组件的结构示意图;
图3是本公开实施例提供的第一节流元件的结构示意图。
附图标记:
10:第一主干管路;20:第二主干管路;30:支干管路;301:第一支路;302:连接管路;303:第二支路;401:第一节流元件;402:第二节流元件;403:限位部;4031:凸起;404:通孔;50:开关阀;60:第一分液器;70:第二分液器;80:二通阀;90:安装板;901:安装孔。
具体实施方式
为了能够更加详尽地了解本公开实施例的特点与技术内容,下面结合附图对本公开实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本公开实施例。在以下的技术描述中,为方便解释起见,通过多个细节以提供对所披露实施例的充分理解。然而,在没有这些细节的情况下,一个或多个实施例仍然可以实施。在其它情况下,为简化附图,熟知的结构和装置可以简化展示。
本公开实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开实施例的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。
本公开实施例中,术语“上”、“下”、“内”、“中”、“外”、“前”、“后”等指示的方位或位置关系为基于附图所示的方位或位置关系。这些术语主要是为了更好地描述本公开实施例及其实施例,并非用于限定所指示的装置、元件或组成部分必须具有特定方位,或以特定方位进行构造和操作。并且,上述部分术语除了可以用于表示方位或位置关系以外,还可能用于表示其他含义,例如术语“上”在某些情况下也可能用于表示某种依附关系或连接关系。对于本领域普通技术人员而言,可以根据具体情况理解这些术语在本公开实施例中的具体含义。
另外,术语“设置”、“连接”、“固定”应做广义理解。例如,“连接”可以是固定连接,可拆卸连接,或整体式构造;可以是机械连接,或电连接;可以是直接相连,或者是通过中间媒介间接相连,又或者是两个装置、元件或组成部分之间内部的连通。对于本领域普通技术人员而言,可以根据具体情况理解上述术语在本公开实施例中的具体含义。
除非另有说明,术语“多个”表示两个或两个以上。
本公开实施例中,字符“/”表示前后对象是一种“或”的关系。例如,A/B表示:A或B。
术语“和/或”是一种描述对象的关联关系,表示可以存在三种关系。例如,A和/或B,表示:A或B,或,A和B这三种关系。
需要说明的是,在不冲突的情况下,本公开实施例中的实施例及实施例中的特征可以相互组合。
结合图1至图3所示,本公开实施例提供一种调试组件,包括用于连通室内机管路的第一主干管路10、用于连通室外机管路的第二主干管路20和支干管路30,支干管路30连通第一主干管路10和第二主干管路20,支干管路30设置有节流组件和开关阀50,开关阀50被配置为控制支干管路30的通断;其中,支干管路30为多条,多条支干管路30中节流组件的节流参数部分相同。
采用上述实施例,在测试过程中,一次抽真空,利用多条支干管路进行多组不同节流组件的节流参数的试验,在任一一条支干管路测试过程中,其他支干管路通过开关阀关闭,防止干扰待测试的支干管路的测试结果;减少了抽真空的次数,从而缩短了测试周期,提高了测试效率。
本公开实施例中支干管路的条数大于2条,对具体条数不作限定。测试过程中,抽真空的次数与支干管路的条数成反比。在支干管路条数越多的情况下,节流组件的节流参数可选择的范围越大,有利于提高测试精度。
节流组件的节流参数可包括节流组件的长度、节流组件的流通面积、节流组件的孔径或节流组件的压差中的一个或多个。在实际应用中,节流组件的长度不同,节流效果不同。同理,节流组件的流通面积或孔径不同,节流效果不同。节流组件的压差由节流组件两端或内部形成,通过压差实现节流目的。其中,压差越大,节流效果越显著。
可选地,节流组件与支干管路可拆卸连接。根据空调不同的匹数,更换相适应的节流组件,这样,有利于提高调试组件的适应范围。可选地,节流组件可为毛细管、电子膨胀阀、节流阀或节流孔板。
可选地,开关阀设置于节流组件与第二主干管路之间的支干管路中。这样,在更换待测试的支干管路的情况下,通过开关阀停止正在测试的支干管路的流通,阻止已通过节流组件的冷媒继续流向第二主干管路,降低对待测试的支干管路的测试结果的影响。
在实际应用中,第一主干管路与室内机的带喇叭口的细管连通,第二主干管路与室外机的二通阀连通。其中,第一主干管路设有控制第一主干管路通断的开关。在测试过程中,在更换待测试的支干管路的情况下,通过开关断开第一主干管路内的流路,通过开关阀断开正在测试的支干管路内的流路,然后打开待测试的支干管路的流路,支干管路更换完毕后,通过开关打开第一主干管路的流路,冷媒流经支干管路进行节流测试。结合图1所示,调试组件包括4条支干管路。在一次抽真空的情况下,通过4条支干管路可进行4组节流测试。在进行4组节流测试的情况下,节省了3次抽真空的次数,缩短了测试周期,提高 了测试效率。另外,选择4条支干管路并联设置,有利于调试组件的拆装。
可选地,支干管路30包括第一支路301、第二支路303和连接管路302,第一支路301连通第一主干管路10;第二支路303连通第二主干管路20;连接管路302连通第一支路301和第二支路303;其中,连接管路302设有节流组件。这样,通过第一支路、第二支路和连接管路,有利于支干管路的拆装及维护。另外,有利于节流组件和支干管路的拆装。在需要更换节流组件的情况下,只需拆卸连接管路,第一支路和第一主干管路、第二支路和第二主干管路的连接保持不动。这样,有利于防止支干管路与第一主干管路和第二主干管路多次拆卸后,降低连接牢固度及连接处的气密性。
第一支路和连接管路可拆卸连接,例如,第一支路与连接管路螺纹连接。第一支路与第一主干管路可拆卸连接。其中,多个第一支路与第一主干管路可通过多通阀连通。第二支路和连接管路可拆卸连接,例如,第二支路与连接管路螺纹连接。第二支路与第二主干管路可拆卸连接。其中,多个第二支路与第二主干管路可通过多通阀连通。
节流组件设置于连接管路内。节流组件与连接管路可拆卸连接。这样,有利于节流组件的拆装。
本公开实施例中管路的连接处均设有密封圈或密封装置。这样,有利于提高测试过程中调试组件的气密性,保持真空状态。
可选地,节流组件包括相对设置的第一节流元件401和第二节流元件402。在制冷或制热的过程中,冷媒的流向是相反的。通过第一节流元件和第二节流元件实现在制冷或制热过程中对冷媒的节流目的。其中,在第一节流元件和第二节流元件的节流参数相同的情况下,在制冷或制热过程中,冷媒流经支干管路的节流结果相同。在第一节流元件和第二节流元件的节流参数不同的情况下,在制冷场景下冷媒流经支干管路的节流结果与在制热场景下冷媒流经支干管路的节流结果不同。
在制冷的情况下,冷媒由第一主干管路流向第二主干管路,通过第二节流元件实现节流的目的;在制热的情况下,冷媒由第二主干管路流向第一主干管路,通过第一节流元件实现节流的目的。通过节流参数不同的第二节流元件和第一节流元件分别对制冷和制热场景下的冷媒进行节流测试,无需根据不同的应用场景更换不同参数的节流元件,缩短了测试周期,提高了测试的准确度。
第一节流元件和第二节流元件通过相对设置,保证在制冷时只有第二节流元件起节流作用,在制热时只有第一节流元件起节流作用。例如,在制冷的情况下,第二节流元件的进口朝向第一支路方向设置,冷媒流动冲击产生的冲击力将第二节流元件卡固在连接管路内,第二节流元件与连接管路相配合起到节流作用;此时第一节流元件则不起节流作用。在制热的情况下,第一节流元件的进口朝向第二支路方向设置,冷媒流动冲击产生的冲击力将第一节流元件卡固在连接管路内,第一节流元件与连接管路相配合起到节流作用;此时第二节流元件则不起节流作用。
可选地,每一节流元件与连接管路均可拆卸连接。这样,有利于连接管路与节流元件 的拆装,便于根据空调匹数,更换不同节流参数的节流元件,提高了调试组件的适应范围。
每一节流元件均插装于连接管路内,且与连接管路可拆卸连接。可选地,连接管路包括第一段管路和第二段管路,第一节流元件设置于第一段管路内,第二节流元件设置于第二段管路内,第一段管路和第二段管路可拆卸连接。这样,有利于第一节流元件和第二节流元件的拆装。例如,在需更换第一节流元件或第二节流元件的情况下,只需将第一段管路和第二段管路拆卸,然后更换相应的节流元件即可,方便快捷,省时省力。
可选地,每一节流元件的外侧壁均设有限位部403,限位部403自节流元件的外侧壁向外凸出至连接管路302的内侧壁;其中,连接管路302的内侧壁设有与限位部403相适配的卡槽(图中未示出)。这样,通过限位部实现节流元件的定位,保证节流元件的正向安装,确保对冷媒起到相应的节流作用。限位部与连接管路的内侧壁的卡槽相配合,实现节流元件和连接管路的卡接固定。
结合图2和图3所示,节流元件呈柱状。可选地,限位部呈长方体状、翅片状或条状。多个限位部沿节流元件的外侧壁间隔均匀布设。限位部的长度小于节流元件的长度。可选地,限位部包括相对的第一端和第二端,第一端和第二端的轴线与节流元件的轴线相平行。可选地,限位部的第一端靠近节流元件的端面。可选地,限位部的第一端与节流元件的端面位于同一个平面。可选地,限位部的第二端为一斜面。这样,使得限位部与卡槽卡接更加顺畅,减少卡接时的冲击力。
可选地,结合图3所示,一限位部403的顶部边缘设有凸起4031。其中,凸起靠近节流元件端面。这样,有助于帮助用户识别节流元件的安装方向,防止反向安装。
可选地,限位部与节流元件可一体成型。这样,在冷媒流动冲击产生的冲击力作用于限位部及节流元件的情况下,一体成型的结构,有助于提高限位部与节流元件连接的牢固度。
可选地,每一节流元件内均设有用于节流的通孔404。这样,冷媒流经通孔进行节流,不同的孔径,节流效果不同。另外,通孔加工制造简单,降低了加工成本。此外,便于更换不同孔径的节流元件。
可选地,每一节流元件内设有一个或多个通孔。可选地,多个通孔均布于节流元件中。这样,通过多个通孔,有助于降低冷媒对节流元件的冲击力。节流元件的节流参数为多个通孔的流通面积的叠加。
可选地,通孔的进口呈喇叭状。可选地,通孔的出口呈喇叭状。这样,有利于减少冷媒对节流元件的冲击力。
可选地,开关阀50连通连接管路302和第二支路303。这样,通过开关阀断开节流组件与第二支路之间的流路。防止在更换支干管路的过程中,流经节流组件的部分冷媒在节流作用下依旧向第二支路和第二主干管路流通,影响另一支干管路的测试结果。可选地,开关阀可为二通阀。二通阀的一个阀口与连接管路连通,另一个阀口与第二支路连通。
可选地,开关阀与连接管路可拆卸连接。可选地,开关阀与第二支路可拆卸连接。这 样,有利于开关阀的拆装。
可选地,开关阀上设有安装板。安装板套设于开关阀并靠近一阀口。安装板上设有安装孔。这样,在实际应用过程中,可通过安装板将调试组件进行固定,防止测试过程中冷媒的冲击力过大,调试组件振动,导致调试组件中管路的连接处出现松动,造成不必要的损失。
可选地,调试组件还包括:第一分液器60,连通第一支路301和第一主干管路10,和/或,第二分液器70,连通第二支路303和第二主干管路20。这样,有助于汇集多条第一支路的流路,同时对第一主干管路和第二主干管路的流路进行分流。通过设置第一分液器和第二分液器,使得调试组件外观整洁。
在冷媒由支干管路流向第一主干管路的情况下,通过第一分液器将来自多个支干管路的多条流路汇集为一条流路,该流路进入第一主干管路。在冷媒由第一主干管路流向支干管路的情况下,通过第一分液器将第一主干管路的流路分流,分流后的多条流路分别进入相应的支干管路。
在冷媒由支干管路流向第二主干管路的情况下,通过第二分液器将来自多个支干管路的多条流路汇集为一条流路,该流路进入第二主干管路。在冷媒由第二主干管路流向支干管路的情况下,通过第二分液器将第二主干管路的流路分流,分流后的多条流路分别进入相应的支干管路。
结合图1所示,第一分液器包括一个主干口和四个分口。第二分液器包括一个主干口和四个分口。在实际应用中,第一分液器的分口数量小于或等于支干管路的数量。第二分液器的分口数量小于或等于支干管路的数量。这样,在第一分液器的分口数量小于支干管路的情况下,第一分液器中未与支干管路连通的分口堵塞不通即可。同理,在第二分液器的分口数量小于支干管路的情况下,第二分液器中未与支干管路连通的分口堵塞不通即可。
可选地,第一支路301为弯管,和/或,第二支路303为弯管。这样,有利于扩大多条支干管路的间隔距离,便于支干管路、节流组件的拆装。
可选地,第一支路可呈Z型、S型或L型。在第一支路和第一主干管路装配的情况下,多条第一支路均匀布设,且相邻第一支路之间的间距为最大值。可选地,多条第一支路互不干涉。结合图1所示。
可选地,第二支路可呈Z型、S型或L型。这样,能够更好地将多条第二支路中的流路汇集至第二主干管路。
可选地,第一主干管路10设有二通阀80,二通阀80设置于第一分液器60的主干口。这样,通过二通阀控制第一主干管路的通断。二通阀的一阀口与第一分液器的主干口连通,另一阀口与室内机的带喇叭口的细管连通。在测试过程中,在更换待测试的支干管路的情况下,通过二通阀断开第一主干管路内的流路,通过开关阀断开正在测试的支干管路内的流路,然后打开另一待测试的支干管路的流路,支干管路更换完毕后,通过二通阀打开第 一主干管路的流路,冷媒从第一主干管路流出至支干管路进行节流测试。
以上描述和附图充分地示出了本公开的实施例,以使本领域的技术人员能够实践它们。其他实施例可以包括结构的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施例的部分和特征可以被包括在或替换其他实施例的部分和特征。本公开的实施例并不局限于上面已经描述并在附图中示出的结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (10)

  1. 一种调试组件,包括用于连通室内机管路的第一主干管路和用于连通室外机管路的第二主干管路,其特征在于,还包括:
    支干管路,连通所述第一主干管路和所述第二主干管路,设置有节流组件和开关阀,所述开关阀被配置为控制所述支干管路的通断;
    其中,所述支干管路为多条,多条支干管路中节流组件的节流参数部分相同。
  2. 根据权利要求1所述的调试组件,其特征在于,所述支干管路包括:
    第一支路,连通所述第一主干管路;
    第二支路,连通所述第二主干管路;
    连接管路,连通所述第一支路和所述第二支路;其中,所述连接管路设有节流组件。
  3. 根据权利要求2所述的调试组件,其特征在于,所述节流组件包括相对设置的第一节流元件和第二节流元件。
  4. 根据权利要求3所述的调试组件,其特征在于,每一节流元件与所述连接管路均可拆卸连接。
  5. 根据权利要求3所述的调试组件,其特征在于,每一节流元件的外侧壁均设有限位部,所述限位部自节流元件的外侧壁向外凸出至所述连接管路的内侧壁;
    其中,所述连接管路的内侧壁设有与所述限位部相适配的卡槽。
  6. 根据权利要求3所述的调试组件,其特征在于,每一节流元件内均设有用于节流的通孔。
  7. 根据权利要求2所述的调试组件,其特征在于,所述开关阀连通所述连接管路和所述第二支路。
  8. 根据权利要求1至7任一项所述的调试组件,其特征在于,还包括:
    第一分液器,连通所述第一支路和所述第一主干管路,和/或,
    第二分液器,连通所述第二支路和所述第二主干管路。
  9. 根据权利要求8所述的调试组件,其特征在于,所述第一支路为弯管,和/或,所述第二支路为弯管。
  10. 根据权利要求8所述的调试组件,其特征在于,所述第一主干管路设有二通阀,所述二通阀设置于所述第一分液器的主干口。
PCT/CN2021/071226 2020-05-09 2021-01-12 调试组件 WO2021227543A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202020762383.7U CN212720382U (zh) 2020-05-09 2020-05-09 调试组件
CN202020762383.7 2020-05-09

Publications (1)

Publication Number Publication Date
WO2021227543A1 true WO2021227543A1 (zh) 2021-11-18

Family

ID=74944516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/071226 WO2021227543A1 (zh) 2020-05-09 2021-01-12 调试组件

Country Status (2)

Country Link
CN (1) CN212720382U (zh)
WO (1) WO2021227543A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114198358A (zh) * 2021-12-15 2022-03-18 武昌船舶重工集团有限公司 一种液压系统管件的试验、清洗装置
CN115440399A (zh) * 2022-09-16 2022-12-06 中国核动力研究设计院 一种适用于新型安注箱的多几何参数组合研究的阻尼器试验本体结构

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10185369A (ja) * 1996-12-20 1998-07-14 Mitsubishi Heavy Ind Ltd 冷凍装置及びその運転方法
CN2786504Y (zh) * 2005-04-06 2006-06-07 广东科龙电器股份有限公司 一种自适应变节流的空调器
CN201666699U (zh) * 2010-01-25 2010-12-08 珠海格力电器股份有限公司 一种空调匹配毛细管的装置
CN202145069U (zh) * 2011-06-23 2012-02-15 浙江同星制冷有限公司 一种空调系统用双向节流阀
CN203432167U (zh) * 2013-06-26 2014-02-12 宁波奥克斯空调有限公司 一种空调系统调试工装
CN104729164A (zh) * 2013-12-20 2015-06-24 广东科龙空调器有限公司 节流-分流装置和空调器
CN206803561U (zh) * 2017-04-28 2017-12-26 万家乐空气能科技有限公司 一种空气能热泵热水机节流装置的调试装置
CN206944541U (zh) * 2017-07-18 2018-01-30 海信科龙电器股份有限公司 一种节流短管及空调器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10185369A (ja) * 1996-12-20 1998-07-14 Mitsubishi Heavy Ind Ltd 冷凍装置及びその運転方法
CN2786504Y (zh) * 2005-04-06 2006-06-07 广东科龙电器股份有限公司 一种自适应变节流的空调器
CN201666699U (zh) * 2010-01-25 2010-12-08 珠海格力电器股份有限公司 一种空调匹配毛细管的装置
CN202145069U (zh) * 2011-06-23 2012-02-15 浙江同星制冷有限公司 一种空调系统用双向节流阀
CN203432167U (zh) * 2013-06-26 2014-02-12 宁波奥克斯空调有限公司 一种空调系统调试工装
CN104729164A (zh) * 2013-12-20 2015-06-24 广东科龙空调器有限公司 节流-分流装置和空调器
CN206803561U (zh) * 2017-04-28 2017-12-26 万家乐空气能科技有限公司 一种空气能热泵热水机节流装置的调试装置
CN206944541U (zh) * 2017-07-18 2018-01-30 海信科龙电器股份有限公司 一种节流短管及空调器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114198358A (zh) * 2021-12-15 2022-03-18 武昌船舶重工集团有限公司 一种液压系统管件的试验、清洗装置
CN115440399A (zh) * 2022-09-16 2022-12-06 中国核动力研究设计院 一种适用于新型安注箱的多几何参数组合研究的阻尼器试验本体结构

Also Published As

Publication number Publication date
CN212720382U (zh) 2021-03-16

Similar Documents

Publication Publication Date Title
WO2021227543A1 (zh) 调试组件
CN114165946B (zh) 换热器和空调器
CN105865008A (zh) 换热工质流向与流路数目同步变化的热泵型空调换热器
CN105180304B (zh) 空调室外机、多功能空调系统及其工作方法
ITTO981041A1 (it) Condizionatore d'aria a piu' unita' avente una sezione di bypass per regolare la portata di refrigerante.
CN103807936B (zh) 一种热泵空调系统
CN109838587A (zh) 流体管理组件及热管理系统
KR20190030418A (ko) 전열교환기
CN111023366A (zh) 一种双向逆流换热系统、双向逆流换热方法和空调器
CN109328289A (zh) 制冷剂切换集合单元
CN212457525U (zh) 节流装置、制冷剂循环系统和除湿机
US10288328B2 (en) Outdoor unit for VRF air conditioning system and VRF air conditioning system having same
CN107543340A (zh) 节流兼分流组件及空调器
KR20120081815A (ko) 공기 조화기
JP2000161808A (ja) 冷凍サイクル装置及び逆止弁ユニット
CN204438363U (zh) 空调及其热回收模式转换器
CN207922624U (zh) 海水源热泵机组
JPH0218449Y2 (zh)
CN205048802U (zh) 流体流向换向器及空调器
CN217357651U (zh) 单向阀、换热器和空调器
JP2003314920A (ja) 空気調和機
CN218120171U (zh) 换热器以及空调器
CN217357638U (zh) 换热器和空调器
CN218119994U (zh) 一种分歧模块及空调器
CN220380032U (zh) 一种多联机空调机组喷气增焓控制系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21803013

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21803013

Country of ref document: EP

Kind code of ref document: A1