WO2021227171A1 - 山地果园仿形自主避障割草机及其控制方法 - Google Patents

山地果园仿形自主避障割草机及其控制方法 Download PDF

Info

Publication number
WO2021227171A1
WO2021227171A1 PCT/CN2020/095584 CN2020095584W WO2021227171A1 WO 2021227171 A1 WO2021227171 A1 WO 2021227171A1 CN 2020095584 W CN2020095584 W CN 2020095584W WO 2021227171 A1 WO2021227171 A1 WO 2021227171A1
Authority
WO
WIPO (PCT)
Prior art keywords
header
connecting plate
chassis
angle
motor
Prior art date
Application number
PCT/CN2020/095584
Other languages
English (en)
French (fr)
Inventor
管贤平
刘志鹏
代富彬
邱白晶
董晓娅
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Priority to US17/421,023 priority Critical patent/US11470771B2/en
Priority to GB2217742.2A priority patent/GB2609379B/en
Publication of WO2021227171A1 publication Critical patent/WO2021227171A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/01Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus
    • A01D34/412Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters
    • A01D34/63Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters having cutters rotating about a vertical axis
    • A01D34/64Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters having cutters rotating about a vertical axis mounted on a vehicle, e.g. a tractor, or drawn by an animal or a vehicle
    • A01D34/66Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters having cutters rotating about a vertical axis mounted on a vehicle, e.g. a tractor, or drawn by an animal or a vehicle with two or more cutters
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/006Control or measuring arrangements
    • A01D34/008Control or measuring arrangements for automated or remotely controlled operation
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/01Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus
    • A01D34/412Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters
    • A01D34/63Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters having cutters rotating about a vertical axis
    • A01D34/64Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters having cutters rotating about a vertical axis mounted on a vehicle, e.g. a tractor, or drawn by an animal or a vehicle
    • A01D34/66Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters having cutters rotating about a vertical axis mounted on a vehicle, e.g. a tractor, or drawn by an animal or a vehicle with two or more cutters
    • A01D34/661Mounting means
    • A01D34/662Mounting means to the front of the vehicle
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/01Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus
    • A01D34/412Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters
    • A01D34/63Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters having cutters rotating about a vertical axis
    • A01D34/82Other details
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/835Mowers; Mowing apparatus of harvesters specially adapted for particular purposes
    • A01D34/86Mowers; Mowing apparatus of harvesters specially adapted for particular purposes for use on sloping ground, e.g. on embankments or in ditches
    • A01D34/863Mowers; Mowing apparatus of harvesters specially adapted for particular purposes for use on sloping ground, e.g. on embankments or in ditches and for mowing around obstacles, e.g. posts, trees, fences or the like
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/835Mowers; Mowing apparatus of harvesters specially adapted for particular purposes
    • A01D34/86Mowers; Mowing apparatus of harvesters specially adapted for particular purposes for use on sloping ground, e.g. on embankments or in ditches
    • A01D34/866Mounting means
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D75/00Accessories for harvesters or mowers
    • A01D75/18Safety devices for parts of the machines
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D75/00Accessories for harvesters or mowers
    • A01D75/18Safety devices for parts of the machines
    • A01D75/185Avoiding collisions with obstacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D21/00Understructures, i.e. chassis frame on which a vehicle body may be mounted
    • B62D21/18Understructures, i.e. chassis frame on which a vehicle body may be mounted characterised by the vehicle type and not provided for in groups B62D21/02 - B62D21/17
    • B62D21/186Understructures, i.e. chassis frame on which a vehicle body may be mounted characterised by the vehicle type and not provided for in groups B62D21/02 - B62D21/17 for building site vehicles or multi-purpose tractors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D37/00Stabilising vehicle bodies without controlling suspension arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D53/00Tractor-trailer combinations; Road trains
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/06Endless track vehicles with tracks without ground wheels
    • B62D55/065Multi-track vehicles, i.e. more than two tracks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/08Endless track units; Parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/08Endless track units; Parts thereof
    • B62D55/104Suspension devices for wheels, rollers, bogies or frames
    • B62D55/116Attitude or position control of chassis by action on suspension, e.g. to compensate for a slope
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0257Control of position or course in two dimensions specially adapted to land vehicles using a radar
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D27/00Simultaneous control of variables covered by two or more of main groups G05D1/00 - G05D25/00
    • G05D27/02Simultaneous control of variables covered by two or more of main groups G05D1/00 - G05D25/00 characterised by the use of electric means
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D2101/00Lawn-mowers
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/01Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus
    • A01D34/412Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters
    • A01D34/63Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters having cutters rotating about a vertical axis
    • A01D34/76Driving mechanisms for the cutters
    • A01D34/78Driving mechanisms for the cutters electric

Definitions

  • the invention belongs to the technical field of agricultural machinery, and specifically relates to a profiling autonomous obstacle avoidance lawn mower and a control method thereof in mountain orchards.
  • the present invention provides a mountain orchard profiling autonomous obstacle avoidance lawn mower and a control method thereof.
  • the lawn mower of the present invention has high efficiency, energy saving and environmental protection, uniform stubble cutting, high safety and intelligence. The characteristics of.
  • the present invention achieves the above-mentioned technical objects through the following technical means.
  • the mechanical part includes a header and a crawler chassis.
  • the chassis body of the crawler chassis is provided with a winch support and a control box.
  • the push rod motor in the front of the winch support is connected to the base and the rear end of the push rod motor.
  • the chassis body of the crawler chassis is also equipped with a navigation system;
  • the header includes a buffer depth limit mechanism, a front depth limit mechanism connection plate, a motor connection plate, a header support plate and a rear depth limit mechanism connection
  • the front end of the front depth-limiting mechanism connection plate is connected to three groups of buffer depth-limiting mechanisms.
  • the front end of the front-end depth-limiting mechanism connection plate is not connected to the buffer depth-limiting mechanism with a support frame.
  • the rear end of the front depth-limiting mechanism connection plate is connected to the motor connection plate ,
  • the rear depth limit mechanism connection plate is connected, the upper side of the motor connection plate is connected with the header support plate, and the rear end of the rear depth limit wheel mechanism connection plate is connected with two sets of buffer depth limit mechanisms;
  • the buffer depth-limiting mechanism includes a mounting base, a buffer spring, a rotating auxiliary link, and a universal depth-limiting wheel.
  • the auxiliary connecting rod is connected with the installation base, the rotating auxiliary connecting rod is in a "T" shape, and the lower end is connected with the installation base, and the outer side of the rotating auxiliary connecting rod is connected to the universal depth limiting wheel through the universal depth limiting wheel connecting bracket;
  • the control system includes a driving system and a detection main control system.
  • the driving system is used to drive the crawler chassis operations.
  • the detection main control system includes a two-dimensional lidar, a navigation system, a radar-attached attitude sensor, a barometer, a 4G communication system, and a host Industrial computer, two-dimensional lidar, navigation system, radar-associated attitude sensor, and barometer all communicate with the upper industrial computer.
  • the barometer and radar-associated attitude sensor are installed inside the 2D lidar, and the 4G communication system is used for the upper industrial computer and the cloud.
  • the server communicates; the upper industrial computer also carries out signal transmission with the lower computer of the chassis and the lower computer of the header.
  • the two cutter drive motors on the motor connection board are respectively equipped with cutters, and the motor connection board is also equipped with a header acceleration attitude sensor for real-time feedback of the cutter angle.
  • the upper part of the header support plate is connected to the base bearing connecting plate, the base bearing connecting plate is equipped with a lower base bearing, and the lower base bearing is connected with the upper base bearing through the base connecting optical axis to form a rotating pair; the base bearing is connected
  • the rear end of the plate is provided with a front connecting base of the push rod motor, which is used to connect with the protruding end of the push rod motor.
  • the upper base bearing is installed at the lower end of the upper connecting plate, the rear end of the upper connecting plate is provided with a winch rope connection base for connecting with the rope hook of the electric winch, and the connecting rod connecting base is installed on the upper connecting plate to connect
  • the rod connecting base is fixedly connected with the front end of the connecting rod, and the rear end of the connecting rod is connected with the connecting rod rotating pair.
  • the drive system includes a servo motor, an encoder, a reducer, a chassis power supply, and a chassis lower computer.
  • the servo motor output shaft is connected to the reducer input bearing.
  • the encoder is installed inside the servo motor.
  • the control method of the mountain orchard profiling autonomous obstacle avoidance mower including crawler chassis detection and control, header detection and control, path planning and operation planning, specifically:
  • the forward direction calibration of the tracked chassis is achieved by combining the navigation system heading information with the radar attached attitude sensor and the servo motor encoder.
  • the encoder measures the speed of the tracks on both sides in real time. If the tracks on both sides reach the predetermined speed range, the radar attached attitude sensor starts to use the heading Check the heading direction of the crawler chassis. If the heading angle of the tracked chassis shows that the heading angle of the crawler chassis does not change during the forward process, use the navigation system to measure the heading again if there is a problem;
  • the lower machine of the header compares the current overall roll angle of the header with the preset angle of the header. If the current overall roll angle of the header is not within the preset angle range of the header, the lower machine of the header drives the push rod motor to perform Stretch until it meets the deviation range requirements of the preset angle value, and then change the cutting angle. At the same time, the lower machine of the cutting table controls the rotation angle of the cutting knife and the height of the cutting table;
  • the two-dimensional lidar adjusts the appropriate height according to the surrounding environment road signs.
  • the upper industrial computer determines the surrounding environment information by querying the point cloud map information of the location, and starts path planning of the surrounding environment, determines the edge line, and calibrates the primary and secondary edge lines. Plan the path block; set the forward speed of the crawler chassis and the cutting speed and the best cutting angle of the cutter according to the terrain, and the lawn mower will cut the grass. If there is an obstacle in the safety distance Ls ahead, the right angle obstacle avoidance will be started; If there are no obstacles and there is a boundary at the safety distance Ls ahead, the stop operation or line change operation will be executed by the type of boundary.
  • the right-angle obstacle avoidance is specifically: if there is an obstacle ahead, turn at Ls in front of the obstacle, turn to the secondary edge line by 90° and then move forward Ls, so that the forward path before turning is already far from the obstacle, then mowing The machine turns 90° toward the main edge line. At this time, the forward path before turning is not far away from the obstacle, then continue to move forward Ls until the forward path before turning is far away from the obstacle, and the lawn mower turns toward the main edge line after being far away from the obstacle 90° °, make a 90° turn after moving forward Ls, and return to the forward path before turning, where Ls is the safe distance.
  • the upper host computer compares the number of path blocks that have been traversed with the number of previously planned path blocks. If the number of path blocks that have been traversed is less than the total number of previously planned path blocks, the front boundary is judged to be a line-wrapping boundary. When the distance from the boundary is Ls, the lawnmower Turn 90° to the right edge line, go forward L after turning, then turn 90° to the left edge line, and continue the forward mowing operation; if the number of path blocks that have been traveled is greater than or equal to the total number of path blocks planned before, it is determined The front boundary is the end boundary, and the operation is stopped.
  • the buffer depth-limiting mechanism of the lawn mower of the present invention indirectly compresses the buffer spring through the universal depth-limiting wheel, so that the buffer spring can fully absorb the impact energy when the cutting platform impacts the ground, and while realizing the depth-limiting protection of the cutting knife, Protect the internal parts of the header from damage;
  • the lawn mower of the present invention uses two motors to drive the two cutting blades respectively. When one motor is damaged, it will affect the operation effect but will not completely stop the operation;
  • the front end of the front depth limiting mechanism of the lawn mower of the present invention is not connected to the buffer depth limiting mechanism with a support frame for supporting the grass, so that the minimum rotation speed required for theoretical cutting is reduced, cutting energy loss is reduced, and cutting energy loss is enhanced.
  • the cutting head of the lawn mower of the present invention can be adjusted appropriately through the cooperation of the push rod motor and the rotating pair to achieve the best cutting angle, thereby achieving the best cutting effect;
  • the measuring standard of the cutting platform acceleration attitude sensor of the lawn mower of the present invention is the horizontal plane.
  • the overall growth direction of the plant is perpendicular to the horizontal plane due to the positive direction of the vegetation. This feature makes the plant growth reference plane consistent with the sensor measurement standard.
  • the cutting angle of the cutter relative to the weeds is not affected by the inclination angle of the slope, so the header can also perform more accurate multi-angle cutting operations in a slope environment with a certain angle;
  • the lawn mower of the present invention is provided with a connecting rod, and the connecting rod cooperates with the upper base bearing, the lower base bearing, and the base connecting optical axis to form a flexible mechanism.
  • the flexible mechanism interacts with the push rod motor, so that the lawn mower can be relatively
  • the complex orchard terrain is used for ground contour mowing operations, and the cutting effect is better than that of traditional lawn mowers;
  • the control method of the present invention adopts two-level control, the header and the chassis are controlled separately, without mutual interference, and the modular design makes the maintenance and upgrading more convenient; the encoder, the navigation system and the radar attached to the attitude sensor are combined Method, to ensure the accuracy of the heading position to the greatest extent, the point cloud map and the real-time information of the two-dimensional lidar are combined to ensure the accuracy of the current position and the precise positioning of obstacles;
  • the control method of the present invention uses the upper industrial computer and the chassis lower computer to make the lawn mower adopt a right-angle orbiting obstacle avoidance method.
  • the method is simple. While reducing the calculation space occupied by the upper industrial computer, the cutting is guaranteed to the greatest extent. The safety and reliability of the grass machine itself.
  • Figure 1 is a schematic diagram of the structure of the mountain orchard profiling autonomous obstacle avoidance lawn mower of the present invention
  • Figure 2 is a schematic diagram of the crawler chassis structure of the present invention.
  • Figure 3 is a schematic diagram of the structure of the header according to the present invention.
  • Fig. 4 is a schematic diagram of the structure of the buffer depth limiting mechanism of the present invention.
  • Figure 5 is a schematic diagram of the assembly of the upper base bearing of the present invention.
  • Figure 6 is a schematic diagram of the assembly of the lower base bearing according to the present invention.
  • Figure 7 is a schematic diagram of the connecting rod assembly of the present invention.
  • Figure 8 is a flow chart of the control method of the mountain orchard profiling autonomous obstacle avoidance lawn mower of the present invention.
  • Fig. 9 is a schematic diagram of path planning according to the invention.
  • 101-tracked chassis 101-two-dimensional lidar; 103-push rod motor; 104-cutting table; 105-electric winch; 106-connecting rod rotating pair; 201-buffer depth-limiting mechanism; 202-front depth-limiting mechanism Connecting plate; 203-motor connecting plate; 204-cutting table support plate; 205-rear depth limit mechanism connecting plate; 301-lower base bearing; 302-base bearing connecting plate; 303-push rod motor front connecting base; 304-base Connecting the optical axis; 401- connecting rod; 403- upper base bearing; 404- upper connecting plate; 405- connecting rod connecting base; 406- winch rope connecting base; 501-radar main antenna; 502-positioning radar bracket; 503-radar Sub-antenna; 504-control box; 506-winch bracket; 507-connecting base after the push rod motor; 601-mounting base; 602-buffer spring; 603-rotating auxiliary connecting rod; 604-universal
  • the mountain orchard profiling autonomous obstacle avoidance mower is composed of a mechanical part and a control system.
  • the mechanical part is composed of a header 104 and a crawler chassis 101.
  • the crawler chassis 101 includes a chassis body.
  • the chassis body is provided with a winch bracket 506 and a control box 504 in sequence along the mower's advancing direction.
  • the winch bracket 506 is welded to the chassis body; the longitudinal axis of the control box 504 and the crawler chassis
  • the longitudinal axis of the surface of 101 coincides, and it is installed at about 3/4 of the longitudinal direction behind the transverse axis of the surface of the crawler chassis 101 by bolts.
  • the control box 504 is used to store the lower machine of the header and the lower machine of the chassis.
  • the front of the winch bracket 506 is welded with a push rod motor and then connected to the base 507, which is used to connect with the rear mounting hole of the push rod motor 103 through a round pin, so that the push rod motor 103 can change the angle of the header during the expansion and contraction process, and in addition When the table angle is used, the cutting angle remains the same as the cutting table rises and falls.
  • the middle part of the winch bracket 506 is used to install the electric winch 105, and the two-dimensional lidar 102 is installed at the top;
  • the connecting bracket is composed of a heading bracket.
  • the bottom and two inner sides of the chassis connecting bracket are provided with light holes to align with the threaded holes on the crawler chassis 101 and the light holes on both sides of the control box 504, and are fixed by screw, bolt and nut connection; the heading bracket is responsible for installation
  • the length of the main radar antenna 501, the secondary radar antenna 503, and the heading support must be such that the center distance between the main radar antenna 501 and the secondary radar antenna 503 can accurately obtain heading information.
  • G is the overall weight of the chassis body (N)
  • Sk is the width of the crawler (m)
  • Lj is the grounding length of the crawler (m)
  • Pa is the maximum pressure of the soil in the working environment (pa)
  • Kpa is the safety factor ( ⁇ 1);
  • the crawlers of the crawler chassis 101 are made of rubber.
  • the ratio of the track grounding length Lj to the rolling distance B should be between 1 and 1.7, and the ground pressure should be less than 50kpa.
  • the main body of the chassis adopts independent suspension, and the suspension method is that adjustable dampers are installed above the load wheels on the left and right sides to realize the suspension function.
  • the header 104 includes a buffer depth limiting mechanism 201, a front depth limiting mechanism connecting plate 202, a motor connecting plate 203, a header supporting plate 204 and a rear depth limiting mechanism connecting plate 205.
  • Light holes are provided on both sides of the front edge of the front end of the front depth-limiting mechanism connecting plate 202 and in the middle position, which are used to connect with the three groups of front-end depth-limiting mechanisms 201; the front end of the front-end depth-limiting mechanism connecting plate 202 is not connected with the buffering depth-limiting mechanism 201
  • the longitudinal length of the connecting plate 202 of the front-limiting mechanism must be such that the cutting knife cannot leak out during the rotation process, so as to cause operation hazards.
  • the rear end of the front depth-limiting mechanism connecting plate 202 is provided with a light hole, which is connected with the front end of the motor connecting plate 203 through bolts and nuts; the rear end of the motor connecting plate 203 is provided with a light hole, and the rear end of the depth-limiting mechanism connecting plate 205 passes through the front end of the light hole Bolt and nut connection.
  • the motor connecting plate 203 is provided with light holes on both sides of the transverse side and at the transverse 3/4 and transverse 1/4 for connection with the header support plate 204; the upper and lower surfaces of the header support plate 204 are provided with threaded holes, respectively.
  • the bearing connecting plate 302 and the motor connecting plate 203 of the base are connected by bolts, and the number of threaded holes is not less than 3, which are arranged at equal intervals.
  • the header support plate 204 is made of a stronger material, such as 306 stainless steel.
  • the rear-end depth-limiting mechanism connecting plate 205 is provided with light holes on both sides of the rear edge, which are used to connect the two rear-end buffer depth-limiting mechanisms 201.
  • the rear-limiting mechanism connecting plate 205 installs the two sets of buffer-limiting Side top corner edge.
  • the upper surface of the motor connection plate 203 is equipped with a header acceleration attitude sensor for real-time feedback of the cutting knife angle, thereby facilitating real-time monitoring and adjustment of the cutting angle of the entire header 104.
  • Two cutting knife drive motors are installed on the motor connecting plate 203.
  • the cutting knife drive motor is located at the longitudinal center line of the motor connecting plate 203.
  • the lateral spacing of the drive motor must be more than 1mm larger than the diameter of the cutter to avoid collision between the two cutters during rotation and damage to the cutter.
  • the cutter drive motor adopts brushless motor, and the brushless motor adopts trapezoidal acceleration/deceleration and PID control algorithm.
  • the torque formula of the cutter drive motor is:
  • M is the motor torque
  • P is the motor power
  • N is the motor speed
  • the driver equipped with the motor needs to be able to monitor and control the motor speed and emergency braking in real time (existing technology).
  • the cutter specification is selected according to the following formula:
  • Va is the outside linear velocity of the cutter (m/s)
  • n is the cutter speed
  • r is the cutter radius
  • Va 40m/s
  • rotation speed n 3000r/min
  • the minimum radius of the cutter blade can be calculated to be 127mm.
  • this example takes 130mm.
  • the overall length of the cutter is 310mm, from the radius of the cutter 130mm to the radius of the cutter There is a blade end at 155mm, and the blade angle is 30°.
  • the buffer depth limiting mechanism 201 is composed of a mounting base 601, a buffer spring 602, a rotating auxiliary link 603, a universal depth limiting wheel connecting bracket, and a universal depth limiting wheel 604.
  • the rotating auxiliary link 603 is formed as a whole. "D" shape.
  • a light hole is provided under the mounting base 601, which is connected to the front depth-limiting mechanism connecting plate 202 and the rear depth-limiting mechanism connecting plate 205 through bolts and nuts; two ends of the buffer spring 602 are provided with mounting light holes, and the lower end is connected with the mounting base 601 through bolts and nuts , The upper end is connected with the rotating sub-link 603; the upper and lower ends of the rotating sub-link 603 are provided with light holes, which are respectively connected with the buffer spring 602 and the mounting base 601 through an optical axis; the rotating sub-link 603 is provided with a plurality of equal intervals The optical holes of the shaft are used to connect with the universal depth limiting wheel connecting bracket.
  • the universal wheel depth limiting connecting bracket is equipped with the universal depth limiting wheel 604, and the number of light holes on the outer side of the rotating auxiliary connecting rod 603 is larger than that of the universal depth limiting wheel. There are 1-3 more light holes on the connecting bracket, which is convenient for adjusting the position of the universal depth limiting wheel 604 and the cutting knife, and preventing the cutting knife from accidentally touching the universal depth limiting wheel 604 and causing parts damage.
  • the motor connecting plate 203 is connected to the front depth limiting mechanism connecting plate 202 and the rear depth limiting mechanism connecting plate 205, and then rigidly connected to the five sets of buffer depth limiting mechanisms 201.
  • the rotating secondary connecting rod 603 eliminates the impact ability through the expansion and contraction of the rotating buffer spring 602, thereby reducing the damage to the entire header caused by the impact force or inertial force.
  • three lower base bearings 301 are installed on the upper surface of the base bearing connecting plate 302, one of the lower base bearings 301 is installed in the middle of the base bearing connecting plate 302, and the other two are based on the transverse center line of the base bearing connecting plate 204
  • the installation distance needs to be greater than the width of an upper base bearing 403 to facilitate the connection with the upper base bearing 403.
  • the rear end of the base bearing connecting plate 302 is welded with the push rod motor front connecting base 303, the push rod motor front connecting base 303 is connected to the extension end of the push rod motor 103, and the connection method is: the push rod motor 103 and the push rod motor front connecting base 303
  • the connecting holes are aligned and the circular pins are used for connection to ensure that the two do not restrict each other when the push rod motor 103 expands and contracts.
  • the push rod motor 103 is driven by a stepping motor, which adopts a trapezoidal acceleration and deceleration control algorithm; the push rod motor 103 pushes and pulls the base bearing connecting plate 302 through expansion and contraction, and then adjusts the angle of the cutting part of the header 104.
  • the lower base bearing 301 is connected to the upper base bearing 403 through the base connecting optical shaft 304 to form a rotating pair.
  • the upper base bearing 403 is installed at the lower end of the upper connecting plate 404, specifically: the upper connecting plate 404 takes the horizontal centerline as the axis of symmetry, and the width of the lower base bearing 301 plus 1cm is the spacing, and the longitudinal holes are provided for Install the upper base bearing 403.
  • a winch rope connection base 406 is welded on the rear edge of the upper connecting plate 404.
  • the winch rope connection base 406 is connected to the rope hook of the electric winch 105. When the electric winch 105 reverses and shrinks the rope, the winch rope connection base 406 is lifted by the hook.
  • the header 104 is improved as a whole.
  • a horizontal axis of the above connecting plate 404 is a symmetry axis, and an installation light hole is provided based on the width of the crawler chassis 101 for installing a connecting rod to connect the base 405.
  • the upper end of the connecting rod connection base 405 is provided with a light hole for fixed connection with the front end of the connecting rod 401, and the rear end of the connecting rod 401 is provided with a threaded hole for bolt connection with the connecting rod rotating pair 106, thereby making the header 104 and
  • the crawler chassis 101 is connected by connecting rods; as shown in FIG. 7.
  • the power supply of the electric winch 105 is provided by the main chassis, and the electric winch 105 is driven by a winch driver.
  • the winch driver controls the operation of the electric winch 105 by receiving input signals from the lower machine of the header.
  • the output torque of the electric winch 105 satisfies the formula:
  • Mj is the output torque of the electric winch (NM)
  • Kj is the safety factor (>1)
  • Gg is the overall weight of the header part (N)
  • Lg is the connecting rod length (m).
  • the mechanical part allows the header 104 to be raised and lowered under the action of the electric winch 105. Because it is lifted by a rope, the rope only limits the lowest position of the header 104 when lifting, but does not limit the upward freedom of the header 104, thus satisfying Therefore, the vertical lifting is required, and the header 104 is required to perform profiling operations on the ground.
  • the lower base bearing 301 and the upper base bearing 403 cooperate to form a rotating pair, and the push rod motor 104 expands and contracts to complete the adjustment of the cutting angle of the header 104 on the mechanical structure.
  • control system consists of a drive system and a detection main control system.
  • the driving system uses two servo motors to drive the crawlers on both sides of the crawler chassis 101 to perform operations.
  • the driving system is composed of a servo motor, an encoder, a reducer, a chassis power supply and a chassis lower computer.
  • the drive of the crawler chassis 101 adopts a closed-loop system in which a servo motor is matched with an encoder and a reducer.
  • the servo motor and reducer are installed at the rear of the crawler chassis.
  • the output shaft of the servo motor is rigidly connected with the input bearing of the reducer.
  • the reducer is driven to rotate; the output shaft of the reducer is rigidly connected with the center of the drive wheel of the crawler chassis.
  • the edge of the output end of the reducer coincides with the inner edge of the crawler chassis;
  • the encoder is installed inside the servo motor, and when the servo motor starts to rotate, it drives the encoder to rotate, and the encoder transmits the speed information to the lower computer of the chassis;
  • the chassis power uses a lithium battery, Installed inside the chassis, the chassis power supply is composed of four lithium batteries, two of which are a set of four lithium batteries. The two sets are arranged symmetrically based on the axis of the crawler chassis in the forward direction.
  • the two sets of lithium batteries are closely attached to the inner wall of the crawler chassis to prevent lithium
  • the battery moves;
  • the lower computer of the chassis is installed in the center of the chassis, powered by the chassis power supply, and connected with the servo motor and encoder signal to control the speed of the servo motor and monitor the speed of the servo motor in real time.
  • the servo motor adopts trapezoidal acceleration and deceleration and PID control algorithms, in which the acceleration in the trapezoidal acceleration and deceleration is set by human needs; the selection of the servo motor is based on the formula:
  • P is the motor power (W)
  • U is the motor rated voltage (V)
  • I is the current (A)
  • M is the motor torque (N/m)
  • N is the motor speed (rad/s)
  • [a ] Is the safety factor ([a]>1).
  • the encoder uses a photoelectric 16-bit quadrature encoder.
  • the chassis lower controller uses a hardware timer to calculate and measure the speed of the servo motor with every 10ms as a cycle, and feedback the speed to the chassis lower computer. In turn, a closed-loop drive system is realized.
  • the main detection control system is composed of two-dimensional lidar 102, lidar base, navigation system, radar attached attitude sensor, barometer, 4G communication system and upper industrial computer.
  • the upper industrial computer adopts a 64-bit industrial computer with a main frequency of 2.8GHz.
  • the upper industrial computer is installed inside the crawler chassis.
  • the lidar base is connected to the upper surface of the crawler chassis through threads.
  • the lidar base is placed at the front end of the crawler chassis, and the top of the lidar base is equipped with a two-dimensional lidar 102 and a two-dimensional lidar 102, and the obtained signals are transmitted to the upper industrial computer for correlation calculate.
  • the height of the lidar base is adjusted by the push rod motor 103.
  • the lidar 102 stretches upwards until it reaches the top; during this period, if the 2D lidar 102 finds enough road signs, the lidar base will immediately stop stretching; if all expansions and contractions are completed and no enough road signs are found, redefine the number of road signs and road signs Default value, complete the above actions again.
  • the minimum height of the two-dimensional lidar 102 is higher than the height of the header 104 when the header 104 is fully elevated, so as to prevent the external environment from affecting the scanning of the two-dimensional lidar 102.
  • the two-dimensional lidar 102 is equipped with a barometer and a radar-associated attitude sensor.
  • the radar-associated attitude sensor uses a 100Hz frequency attitude sensor, which communicates with the host computer through RS232.
  • the installation plane of the radar-associated attitude sensor is parallel to the installation plane of the two-dimensional lidar 102, the axis around which the heading angle of the radar-associated attitude sensor is parallel to the telescopic direction of the lidar base, and the axis around the roll angle of the radar-associated attitude sensor and the carrier part move forward and retreat The direction is parallel, and the axis around which the pitch angle of the radar is attached to the attitude sensor is perpendicular to the forward and backward direction of the vehicle part.
  • the navigation system consists of a positioning radar bracket 502, a main radar antenna 501, and a secondary radar antenna 503.
  • the navigation system uses a 5Hz Beidou positioning system, which can feed back the actual geographic location of the point in real time, and pass the actual geographic location and the obtained heading information through RS232 The interface is transferred to the upper industrial computer.
  • Attach the radar to the attitude sensor to obtain the current attitude of the lidar, the barometer to obtain the altitude of the lidar, and the two-dimensional lidar 102 to obtain the surrounding environment information of the current attitude, and all of them are transmitted to the host computer, and the host computer will send the two-dimensional lidar 102 .
  • the radar is equipped with the data obtained by the attitude sensor and the barometer to obtain the absolute geographic location information at the moment, and send it to the cloud server through the 4G communication system, and query the point cloud map information of the location, and combine it with the two-dimensional lidar
  • the data acquired by 102 is compared and corrected to further determine the surrounding environment information.
  • the 4G communication system sends the returned surrounding environment information to the upper industrial computer, which shields all the point cloud data other than the calibrated features, starts to extract the calibrated feature data, and determines whether there is an obstacle ahead according to the calibrated features.
  • the crawler chassis adopts a secondary control system, and the chassis lower computer with the arm cortex M4 chip as the core is used as the chassis lower computer.
  • the chassis lower computer and the upper industrial computer use RS485 communication mode and MODBUS communication protocol.
  • the chassis lower computer transmits the servo to the upper industrial computer in real time.
  • the upper industrial computer sends an instruction to the lower computer of the chassis according to the absolute geographic location information at that moment, and then drives the crawler chassis 101 to move as a whole.
  • control method of the mountain orchard profiling autonomous obstacle avoidance mower is divided into the following steps: crawler chassis detection and control, header detection and control, path planning, and operation planning.
  • the forward direction calibration of the tracked chassis is achieved by combining the heading information of the navigation system with the attitude sensor attached to the radar and the servo motor encoder. Since the attitude sensor associated with the radar is built into the two-dimensional lidar 102 and is far away from a large number of metal products with iron elements, there is no problem of interference from the external soft magnetic environment to the navigation angle of the two-dimensional lidar 102. First, use the encoder to measure the speed of the crawler on both sides in real time, and set the predetermined value range of the servo motor speed.
  • the radar attached attitude sensor starts to use the heading angle to check the forward direction of the crawler chassis, such as Detecting the heading angle shows that the heading angle of the crawler chassis has not changed during the forward process, and then use the navigation system to measure the heading again if there is a problem.
  • the order of priority of the three methods for calibrating the forward direction of the tracked chassis is as follows: encoder measurement feedback>radar attached attitude sensor feedback>navigation system heading detection.
  • the header acceleration attitude sensor is used to measure the overall roll angle of the header, feedback the cutting angle of the cutter in real time, and then guide the adjustment of the cutting angle of the header.
  • the upper industrial computer sends a predetermined angle value to the lower header of the header
  • the lower header of the header compares the current angle of the overall roll angle of the header obtained with the preset value of the header, and then drives the corresponding posture adjustment push rod motor 103 expands and contracts. The process will continue until the angle obtained by the header acceleration attitude sensor meets the deviation range requirements of the preset angle value, then the attitude adjustment push rod motor 103 stops telescoping and self-locks; the header is driven and pushed by the lower machine.
  • the rod motor 103 changes the cutting angle.
  • the upper industrial computer sends the predetermined cutter speed and the electric winch 105 command to the lower machine of the header, and the lower machine of the header controls the rotation angle of the cutter and the height of the header 104.
  • the preset angle of the header is obtained through the forage density and a database built for various types of forage.
  • the server sends the best cutting angle and cutting speed at that moment to the upper industrial computer after querying.
  • the upper industrial computer sends the cutting angle and cutting speed to the lower computer of the header via RS485.
  • the two-dimensional lidar 102 starts to scan the surrounding environment to see if there are enough preset road signs. If the measured road scalar quantity is less than the preset value, the lidar base starts to retract, retracts to the bottom and then starts to stretch. If the value is set, the base will stop stretching and start the next step. If the measured road scalar is still less than the preset value after the above actions are completed, the preset value will be re-adjusted.
  • the navigation system starts, and the two-dimensional lidar 102 starts to work after the data is stabilized; at the same time, the data obtained by the two-dimensional lidar 102, barometer and radar attached attitude sensor are transmitted to
  • the upper industrial computer obtains the absolute geographic location of the two-dimensional lidar 102 at the moment, and transmits it to the cloud server through the 4G communication system.
  • the information obtained by querying the point cloud map information of the location is obtained with the two-dimensional lidar 102
  • the data is compared and corrected to further determine the surrounding environment information.
  • the host computer began to plan the path of the surrounding environment, calculate the edge limit of the environment, such as the large-scale layered area of the environment such as cliffs, cliffs, terraces, etc., and determine the edge line along the layered location; if there is no edge line on the left and right sides, then The primary and secondary edge lines are manually calibrated; if there is only one side edge line on the left and right sides, the side edge line is deemed to be calibrated as the main edge line, and the other side secondary edge line is manually calibrated; if there are edge lines on the left and right sides, then On both sides, the low-lying side is marked as the main edge line, and the other side is the secondary edge line.
  • the edge limit of the environment such as the large-scale layered area of the environment such as cliffs, cliffs, terraces, etc.
  • the mower After planning a suitable path, set the forward speed of the crawler chassis 101 and the cutting speed and the best cutting angle of the cutter according to the local terrain.
  • the mower is parallel to the edge of each path block for cutting operations, such as the front safety distance Ls If there is an obstacle, the obstacle avoidance is started.
  • the obstacle avoidance is: if there is an obstacle ahead, turn at Ls in front of the obstacle, turn 90° to the secondary edge line and then move forward Ls, then the forward path before turning is far away from the obstacle, and the lawn mower faces the main edge
  • the line turns 90°
  • the forward path before turning is not far away from the obstacle, continue forward Ls, until now the forward path before turning is far away from the obstacle, after leaving the obstacle, the mower turns 90° toward the main edge line, and forward Ls
  • Ls is the safety distance, which is set artificially according to the working environment; as shown in Figure 9 (the leftmost whisker part represents the main edge line, the rightmost part)
  • the side solid line represents the secondary edge line).
  • the upper host computer starts to calculate the number of path blocks that have been traversed, and compares it with the number of previously planned path blocks. If the number of traversed path blocks is less than the previously planned total path block number, determine the front boundary It is the line-feeding boundary. When the distance from the boundary is Ls, it starts to turn 90° to the right edge line. After turning, it moves forward L, and then turns 90° to the left edge line to continue the forward mowing operation. If the number of path blocks that have been traversed is greater than or equal to the total number of path blocks planned before, the front boundary is determined as the end boundary, the operation is stopped before the end boundary, and the operation origin is returned.
  • the upper host computer starts to calculate the number of blocks that have been traveled and compares the number of blocks in the previously planned path.
  • the front boundary is judged to be a turning boundary.
  • the distance from the boundary is Ls, it starts to turn 90° to the right edge line, and after turning, it moves forward L, and then turns to the left edge line 90°, continue the forward mowing operation. If the number of path blocks that have been traversed is greater than or equal to the total number of path blocks planned previously, the front boundary is determined to be the end boundary, the operation is stopped before the end boundary, and the job origination point is returned.
  • the weeds When the mowing starts, the weeds first pass through the front depth-limiting mechanism connection plate 202 to support the grass.
  • the purpose is to reduce the minimum linear speed required when the cutting knife rotates, thereby reducing the speed and torque required by the cutting knife drive motor.
  • the electric winch 105 begins to shrink and raises the header 104 to a certain height, which does not block the scanning of the two-dimensional lidar 102 and needs to be set aside
  • the height is used for repairing wearable parts such as cutters.
  • the lawnmower cutter drive motor performs emergency braking, in order to ensure the safety of the staff and the parts of the lawnmower.
  • the crawler chassis 101 returns to the starting point of the work according to the data obtained by the two-dimensional lidar 102, and all motors stop working after reaching the origin, and keep the locked state to avoid accidental injury of the staff during inspection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Harvester Elements (AREA)
  • Guiding Agricultural Machines (AREA)

Abstract

一种山地果园仿形自主避障割草机及其控制方法,通过推杆电机(103)和连杆旋转副(106)配合,实现了多角度切削,用以减少割草作业所需能耗;通过设置连杆(401),连杆(401)与上底座轴承(403)、下底座轴承(301)、底座连接光轴(304)配合,构成柔性机构,柔性机构与推杆电机(103)相互作用,实现了仿形作业,使得割草机整体可以在较为复杂的果园地形进行地面仿形割草作业,切削效果较传统割草机效果更佳;采用直角绕行的避障方式,实现了割草机精确避障,达到不过度依赖操作人员的作业目的,可以进行地面仿形多角度割草作业,切削效果好;具有安全性高、作业可靠性高、智能化、高效、节能环保等特点。

Description

山地果园仿形自主避障割草机及其控制方法 技术领域
本发明属于农业机械技术领域,具体涉及山地果园仿形自主避障割草机及其控制方法。
背景技术
山地果园地形较为复杂,传统割草方式多半借助人工手持机器割草或人员操作割草,智能化程度较低,不能进行精准割草;传统割草方式对人员依赖程度大,由于除草机械动能较大,对操作人员的生命安全也具有一定威胁;另外,传统割草机对于坑洼地区割草效果不佳,仿形效果不好。割草能耗较大,造成不必要的能源浪费。
发明内容
针对现有技术中存在不足,本发明提供了一种山地果园仿形自主避障割草机及其控制方法,本发明的割草机具有高效、节能环保、割茬均匀、安全性高以及智能化的特点。
本发明是通过以下技术手段实现上述技术目的的。
山地果园仿形自主避障割草机,包括机械部分和控制系统;
所述机械部分包括割台和履带底盘,所述履带底盘的底盘主体上设有绞盘支架和控制箱,绞盘支架前方的推杆电机后连接底座与推杆电机后端连接,绞盘支架中间安装电动绞盘,顶端安装二维激光雷达;履带底盘的底盘主体上还设有导航系统;割台包括缓冲限深机构、前限深机构连接板、电机连接板、割台支撑板和后限深机构连接板,前限深机构连接板前端连接三组缓冲限深机构,前限深机构连接板前端未与缓冲限深机构连接处设有支撑架,前限深机构连接板后端依次与电机连接板、后限深机构连接板连接,电机连接板上侧连接有割台支撑板,后限深轮机构连接板后端边沿连接两组缓冲限深机构;
所述缓冲限深机构包括安装底座、缓冲弹簧、旋转副连杆以及万向限深轮,安装底座下方与前限深机构连接板、后限深机构连接板连接,缓冲弹簧两端分别与旋转副连杆、安装底座连接,旋转副连杆呈“丁”字形,下端与安装底座连接,旋转副连杆外侧通过万向限深轮连接支架连接万向限深轮;
所述控制系统包括驱动系统和探测主控制系统,驱动系统用于驱动履带底盘作业,所述探测主控制系统包括二维激光雷达、导航系统、雷达配属姿态传感器、气压计、4G通讯系统以及上位工控机,二维激光雷达、导航系统、雷达配属姿态传感器、气压计均与上位工控机通信,气压计、雷达配属姿态传感器安装在二维激光雷达内部,4G通讯系统用于上位工控机与云端服务器进行通信;上位工控机还与底盘下位机、割台下位机进行信号传输。
上述技术方案中,所述电机连接板上的两割刀驱动电机分别安装割刀,电机连接板上还安装有割台加速度姿态传感器,用以实时反馈割刀角度。
上述技术方案中,所述割台支撑板上部连接底座轴承连接板,底座轴承连接板上安装有下底座轴承,下底座轴承通过底座连接光轴与上底座轴承连接,形成旋转副;底座轴承连接板后端设有推杆电机前连接底座,用于与推杆电机伸出端连接。
上述技术方案中,所述上底座轴承安装在上连接板下端,上连接板后端设有绞盘绳索连接底座,用于与电动绞盘的绳索挂钩连接,上连接板上安装连杆连接底座,连杆连接底座与连杆前端固连,连杆后端与连杆旋转副连接。
上述技术方案中,所述驱动系统包括伺服电机、编码器、减速器、底盘电源和底盘下位机,伺服电机输出轴与减速器输入轴承连接,编码器安装于伺服电机内部,底盘下位机与伺服电机、编码器信号连接。
山地果园仿形自主避障割草机的控制方法,包括履带底盘探测与控制、割台探测与控制、路径规划以及作业规划,具体为:
履带底盘前进方向标定通过导航系统航向信息与雷达配属姿态传感器、伺服电机编码器结合实现,编码器实时测量两侧履带转速,如两侧履带均达到转速预定值范围,雷达配属姿态传感器开始使用航向角对履带底盘前进方向进行检验,如检测航向角显示履带底盘在前进过程中航向角未发生改变,则使用导航系统再次测量航向是否出现问题;
割台下位机将当前割台整体翻滚角与割台预设值角度进行对比,若当前割台整体翻滚角不在割台预设值角度范围内,则割台下位机驱动推杆电机进行伸缩,直至符合预设角度值的偏差范围要求,进而改变切削角度,同时割台下位机控制割刀旋转角度以及割台高度;
二维激光雷达根据周围环境路标,调节合适的高度,上位工控机通过查询该位置的点云地图信息确定周围环境信息,开始对周围环境进行路径规划,确定边缘线,并标定主次边缘线,规划路径块;根据地形设定履带底盘前行速度以及割刀的割草速度、最佳切削角度,割草机进行割草作业,如前方安全距离Ls存在障碍物,则开始进行直角避障;若不存在障碍物,且前方安全距离Ls处存在边界,由边界的类型执行停止作业或换行作业。
进一步,所述直角避障具体为:如果前方存在障碍物,则在障碍物前方Ls处转弯,向次边缘线转弯90°后前进Ls,如此时转弯前前进路径已经远离障碍物,则割草机朝向主边缘线转弯90°,如此时转弯前前进路径未远离障碍物,则继续前进Ls,直至此时转弯前前进路径远离障碍物,远离障碍物之后割草机朝向主边缘线进行转弯90°,前进Ls后再进行转弯90°,恢复至转弯前前进路径,其中Ls为安全距离。
进一步,所述边界的类型的判定过程为:
上位主控机对比已走过路径块数和之前规划路径块数,如果已走过路径块数小于之前规划总路径块数,判定前方边界为换行边界,在距离边界Ls距离时,割草机向右侧边缘线转向90°,转向完毕后前进L,然后向左侧边缘线转弯90°,继续进行前进割草作业;如果已走过路径块数大于等于之前规划总路径块数,则判定前方边界为终点边界,停止作业。
本发明的有益效果为:
(1)本发明割草机的缓冲限深机构通过万向限深轮间接压缩缓冲弹簧,使得割台与地面发生冲击时缓冲弹簧能够充分吸收冲击能量,在实现限深保护割刀的同时,保护割台内部零件不造成损坏;
(2)本发明割草机使用两个电机分别对两个割刀进行旋转驱动,当一个电机损坏时,对作业效果造成影响但不会完全停止作业;
(3)本发明割草机前限深机构连接板前端未与缓冲限深机构连接处设有支撑架,用于扶禾支撑,使得理论切割所需最小转速降低,减少切割能耗损失,增强切割质量;
(4)本发明割草机的割台通过推杆电机和旋转副配合,可进行适当的角度调节,以达到最佳的切削角度,进而达到最佳切割效果;
(5)本发明割草机的割台加速度姿态传感器的测量基准为水平面,由于植被的向阳性导致植物整体生长方向垂直于水平面,该种特性使得植物生长基准面与传感器测量基准一致,因此对于坡度上的杂草切削作业,割刀相对于杂草的切削角度不受斜坡的倾斜角度影响,因此该割台也可以在有一定角度的斜坡环境下进行较为精确的多角度切削作业;
(6)本发明割草机通过设置连杆,连杆与上底座轴承、下底座轴承、底座连接光轴配合,构成柔性机构,柔性机构与推杆电机相互作用,使得割草机可以在较为复杂的果园地形进行地面仿形割草作业,切削效果较传统割草机效果更佳;
(7)本发明控制方法采用二级控制,割台与底盘分开控制,互不干扰,模块化设计使得检修以及升级换代变的更加便捷;采用编码器、导航系统以及雷达配属姿态传感器相结合的方式,最大程度上保障航向位置精确,采用点云地图与二维激光雷达实时信息相结合,确保当前位置的准确性以及对障碍物精确定位;
(8)本发明控制方法通过上位工控机、底盘下位机,使得割草机采用直角绕行的避障方式,方式简单,在减少对上位工控机计算空间占有的同时,最大程度上保障了割草机自身安全以及作业可靠性。
附图说明
图1为本发明所述山地果园仿形自主避障割草机结构示意图;
图2为本发明所述履带底盘结构示意图;
图3为本发明所述割台结构示意图;
图4为本发明所述缓冲限深机构结构示意图;
图5为本发明所述上底座轴承装配示意图;
图6为本发明所述下底座轴承装配示意图;
图7为本发明所述连杆装配示意图;
图8为本发明所述山地果园仿形自主避障割草机的控制方法流程图;
图9为发明所述路径规划示意图。
其中:101-履带底盘;102-二维激光雷达;103-推杆电机;104-割台;105-电动绞盘;106-连杆旋转副;201-缓冲限深机构;202-前限深机构连接板;203-电机连接板;204-割台支撑板;205-后限深机构连接板;301-下底座轴承;302-底座轴承连接板;303-推杆电机前连接底座;304-底座连接光轴;401-连杆;403-上底座轴承;404-上连接板;405-连杆连接底座;406-绞盘绳索连接底座;501-雷达主天线;502-定位雷达支架;503-雷达副天线;504-控制箱;506-绞盘支架;507-推杆电机后连接底座;601-安装底座;602-缓冲弹簧;603-旋转副连杆;604-万向限深轮。
具体实施方式
虽然本发明实行方式易于转换为其他实现方式,但本发明描述的是一种特定的实施方式。应理解的是,本发明所公开的是一种用于展现工作原理的事例,并非将本发明限定于所展示特殊事例。
如图1所示,山地果园仿形自主避障割草机由机械部分和控制系统组成,其中机械部分由割台104和履带底盘101组成。
如图2所示,履带底盘101包括底盘主体,底盘主体上沿割草机前进方向依次设有绞盘支架506、控制箱504,绞盘支架506焊接在底盘主体上;控制箱504纵向轴线与履带底盘101表面纵向轴线重合,通过螺栓安装于履带底盘101表面横向轴线以后约纵向3/4处,控制箱504用于存放割台下位机和底盘下位机。绞盘支架506前方焊接有推杆电机后连接底座507,用于与推杆电机103后端安装孔通过圆销连接,便于推杆电机103在伸缩过程中既能改变割台角度,另外在保持割台角度时,随着割台上下起伏的同时保持切削角度不变。绞盘支架506中间部分用于安装电动绞盘105,顶端安装二维激光雷达102;优选地,本实施例中控制箱504两侧设有光孔,用以连接定位雷达支架502,雷达支架502由底盘连接支架与航向支架组成,底盘连接支架下端以及两内侧设有光孔,用以与履带底盘101螺纹孔、控制箱504两侧光孔对齐,通过螺纹、螺栓螺母连接进行固定;航向支架负责安装雷达主天线501、雷达副天线503,航向支架长度需使得雷达主天线501、雷达副天线503两天线中心距可以准确得出 航向信息。
底盘主体履带接地长度与履带宽度满足关系式:
G/(2*Sk*Lj)<Pa*Kpa
其中:G为底盘主体整体重量(N),Sk为履带宽度(m),Lj为履带接地长度(m),Pa为作业环境土壤最大承受压强(pa),Kpa为安全系数(<1);
履带式底盘101的履带采用橡胶制成。
为保证车体转弯性能,履带接地长度Lj与轧距B比值应在1-1.7之间,地面压强小于50kpa。
底盘主体采用独立悬挂,悬挂方式为左右两侧负重轮上方安装有可调节阻尼器,用以实现悬挂功能。
如图3所示,割台104包括缓冲限深机构201、前限深机构连接板202、电机连接板203、割台支撑板204和后限深机构连接板205。前限深机构连接板202前端边沿两侧以及中间位置设有光孔,用于与前端三组缓冲限深机构201进行连接;前限深机构连接板202前端未与缓冲限深机构201相连接的地方设有支撑架,支撑架间距要求:割草机以2m/s的速度前进时,草料不会填满支撑架间隙以造成割刀堵转。前限深机构连接板202纵向长度需使得割刀在旋转过程中不得漏出,以造成作业危险。前限深机构连接板202后端设有光孔,与电机连接板203前端光孔通过螺栓螺母连接;电机连接板203后端设有光孔,与后限深机构连接板205前端光孔通过螺栓螺母连接。电机连接板203横向两侧边沿以及横向3/4、横向1/4处均设有光孔,用于与割台支撑板204连接;割台支撑板204上下表面均设有螺纹孔,分别用于与底座轴承连接板302、电机连接板203通过螺栓连接,且螺纹孔个数不少于3个,等间距设置。割台支撑板204采用强度较大材料,如306不锈钢。后限深轮机构连接板205后端边沿两侧设有光孔,用于连接后端两组缓冲限深机构201,后限深机构连接板205将两组缓冲限深机构201分别安装与两侧顶角边沿。
电机连接板203上表面安装有割台加速度姿态传感器,用以实时反馈割刀角度,进而便于整个割台104实时监测调节切削角度。电机连接板203上安装有两割刀驱动电机,割刀驱动电机位于电机连接板203纵向中线,割刀通过割刀连接装置(现有技术)与割刀驱动电机输出轴进行连接,两割刀驱动电机横向间距需比割刀直径大1mm以上,以免造成旋转时两割刀互相碰撞,造成割刀损坏。割刀驱动电机采用无刷电机,无刷电机采用梯形加减速与PID控制算法。
割刀驱动电机的转矩公式为:
M=9550*P/N
其中:M为电机转矩,P为电机功率,N为电机转速;
对于割刀驱动电机进行选型,电机所配驱动器需可实时监控、调控电机转速以及紧急刹车(现有技术)。
割刀规格根据下述公式进行选择:
Va≤2πnr/60000
其中:Va为割刀外侧线速度(m/s),n为割刀转速,r为割刀半径;由割草速度范围:30m/s~80m/s,取Va=40m/s、转速n=3000r/min,计算可得割刀刀刃最小半径为127mm,为保证切割效果本实施例取130mm,为保证切割最佳效果取割刀整体长度为310mm,从割刀半径130mm处至割刀半径155mm处设有刃端,刃部角度为30°。
如图4所示,缓冲限深机构201由安装底座601、缓冲弹簧602、旋转副连杆603、万向限深轮连接支架以及万向限深轮604组成,旋转副连杆603整体呈“丁”字形。安装底座601下方设有光孔,通过螺栓螺母与前限深机构连接板202、后限深机构连接板205连接;缓冲弹簧602两端设有安装光孔,下端与安装底座601通过螺栓螺母连接,上端与旋转副连杆603连接;旋转副连杆603内侧上下端均设有光孔,分别与缓冲弹簧602以及安装底座601通过光轴连接;旋转副连杆603外侧设有多个等间距的光孔,用于与万向限深轮连接支架相连接,万向轮限深连接支架安装万向限深轮604,且旋转副连杆603外侧的光孔个数比万向限深轮连接支架上的光孔多1-3个,方便调节万向限深轮604与割刀位置,防止割刀误触万向限深轮604,造成零件损坏。
电机连接板203通过与前限深机构连接板202以及后限深机构连接板205相连接,进而与五组缓冲限深机构201刚性连接,当割台104在前进过程或抬举过程突然降落时,旋转副连杆603通过转动缓冲弹簧602的伸缩将冲击能力进行消除,进而减轻冲击力或惯性力对割台整体造成的损坏。
如图5所示,底座轴承连接板302上表面安装有三个下底座轴承301,其中一个下底座轴承301安装于底座轴承连接板302的中间位置,其余两个以底座轴承连接板204横向中线为对称轴安装,安装间距需大于一个上底座轴承403的宽度,以方便与上底座轴承403相连接。底座轴承连接板302后端焊接有推杆电机前连接底座303,推杆电机前连接底座303与推杆电机103伸出端连接,连接方式为:推杆电机103与推杆电机前连接底座303连接孔对齐、使用圆形销进行连接,保证在推杆电机103伸缩时两者不会发生互相约束。推杆电机103采用步进电机驱动,该步进电机采用梯形加减速控制算法;推杆电机103通过伸缩对底座轴承连接板302进行推拉,进而对割台104的切削部分进行角度调节。下底座轴承301通过底座连接光轴304与上底座轴承403连接,形成旋转副。
如图6所示,上底座轴承403安装在上连接板404下端,具体为:上连接板404以横向中线为对称轴,以下底座轴承301宽度加1cm为间距,纵向设有光孔,用于安装上底座轴承403。上连接板404后端边沿焊接有绞盘绳索连接底座406,绞盘绳索连接底座406与电动绞盘105的绳索挂钩相连接,当电动绞盘105反转收缩绳索时,通过挂钩提拉绞盘绳索连接底座406将割台104整体提升。以上连接板404一横向轴线为对称轴,以履带底盘101宽度为基准设有安装光孔,用以安装连杆连接底座405。连杆连接底座405上端设有光孔,用于与连杆401前端进行固定连接,连杆401后端设有螺纹孔,用于与连杆旋转副106进行螺栓连接,进而使得割台104与履带底盘101通过连杆连接;如图7所示。
电动绞盘105电源由底盘主体提供,电动绞盘105由绞盘驱动器进行驱动,绞盘驱动器通过接收割台下位机输入信号控制电动绞盘105工作。电动绞盘105输出力矩满足公式:
Mj=Kj*Gg*Lg
其中:Mj为电动绞盘输出力矩(NM),Kj为安全系数(>1),Gg为割台部分整体重量(N),Lg为连杆长度(m)。当开始进行作业时,电动绞盘105调节割台104的高度下限,当割台104遇到复杂地形时,连杆401随着割台104进行贴地的上下移动,进而实现被动仿形的作业效果。
机械部分使得割台104可以在电动绞盘105作用下进行抬起升降,由于通过绳索提升,当提升时,绳索仅限制了割台104最低位置,但未限制割台104向上的自由度,因此满足了纵向提升,并且使得割台104对地面进行仿形作业的要求。以此同时,下底座轴承301以及上底座轴承403进行配合形成旋转副,通过推杆电机104伸缩,得以在机械结构上完成对割台104切削角度的调整。
如图8所示,控制系统由驱动系统和探测主控制系统组成。
驱动系统采用两个伺服电机分别驱动履带底盘101两侧履带进行作业,驱动系统由伺服电机、编码器、减速器、底盘电源以及底盘下位机组成。履带底盘101驱动采用伺服电机与编码器、减速器相配合的闭环系统。
伺服电机与减速器安装于履带底盘后部,伺服电机输出轴与减速器输入轴承刚性连接,当伺服电机输出轴转动时,带动减速器转动;减速器输出轴与履带底盘驱动轮中心刚性连接,减速器输出端边沿与履带底盘内部边沿重合;编码器安装于伺服电机内部,当伺服电机开始转动时,带动编码器旋转,编码器则将转速信息传递至底盘下位机;底盘电源采用锂电池,安装于底盘内部,底盘电源由四块锂电池组成,四块锂电池两个为一组,两组以履带底盘前进方向轴线为基准,对称排列,两组锂电池均紧贴履带底盘内壁防止锂电池移动;底盘下位机安装于底盘中心位置,通过底盘电源进行供电,与伺服电机以及编码器信号连接,进而控 制伺服电机转速以及实时监测伺服电机的转速。
伺服电机采用梯形加减速与PID控制算法,其中梯形加减速中加速度由人为需要设定;伺服电机选型依据公式:
P=UI,P=[a]*9550*M/n
其中:P为电机功率(W),U为电机额定电压(V),I为电流大小(A),M为电机力矩大小(N/m),N为电机转速(rad/s),[a]为安全系数([a]>1)。
编码器采用光电16位正交编码器,为保证编码器信号反馈及时,底盘下位控制器采用硬件定时器,以每10ms为一个周期计算测量伺服电机的转速,并将转速反馈至底盘下位机,进而实现闭环驱动系统。
探测主控制系统由二维激光雷达102、激光雷达底座、导航系统、雷达配属姿态传感器、气压计、4G通讯系统以及上位工控机组成,上位工控机采用主频为2.8GHz的64位工控机,上位工控机安装于履带底盘内部。
激光雷达底座通过螺纹与履带底盘上表面进行连接,激光雷达底座置于履带底盘前端,且激光雷达底座顶端安装二维激光雷达102,二维激光雷达102并将获得信号传输至上位工控机进行相关计算。激光雷达底座的高度通过推杆电机103进行调节,当二维激光雷达102未采集足够的路标时,激光雷达底座首先向下伸缩,当缩至底部时仍未发现足够路标,则开始推动二维激光雷达102向上伸展,直到最顶端;在此期间,如二维激光雷达102发现足够路标,激光雷达底座马上停止伸缩;如果完成所有伸缩仍未发现有足够的路标,则重新定义路标、路标数量预设值,重新完成上述动作。
二维激光雷达102最低高度高于割台104处于完全抬高时的高度,避免外界环境影响二维激光雷达102的扫描。
二维激光雷达102内部安装有气压计、雷达配属姿态传感器,雷达配属姿态传感器采用100Hz频率姿态传感器,与上位工控机通过RS232通讯。雷达配属姿态传感器安装平面与二维激光雷达102的安装平面相平行,雷达配属姿态传感器航向角所绕轴线与激光雷达底座伸缩方向平行,雷达配属姿态传感器翻滚角所绕轴线与载具部分前进后退方向平行,雷达配属姿态传感器俯仰角所绕轴线与载具部分前进后退方向垂直。
导航系统由定位雷达支架502、雷达主天线501、雷达副天线503组成,导航系统采用5Hz的北斗定位系统,可以实时反馈该点的实际地理位置,并将实际地理位置和所获航向信息通过RS232接口传递至上位工控机。
将雷达配属姿态传感器获取激光雷达当前的姿态、气压计获取激光雷达的海拔高度、二维激光雷达102获取当前姿态的周围环境信息,均传输给上位工控机,上位工控机将二维激 光雷达102、雷达配属姿态传感器和气压计所获得数据相结合,获得该时刻下的绝对地理位置信息,并通过4G通讯系统发送至云端服务器,通过查询该位置所在点云地图信息,并与二维激光雷达102获取的数据进行对比矫正,进一步确定周围环境信息。
4G通讯系统将所返回的周围环境信息发送至上位工控机,上位工控机将标定了特征以外的点云数据全部屏蔽,开始提取标定特征数据,并根据标定特征判定前方是否为存在障碍物。
履带底盘采用二级控制系统,采用arm cortex M4芯片为内核的底盘下位机作为底盘下位机,底盘下位机与上位工控机采用RS485通讯方式、MODBUS通讯协议,底盘下位机向上位工控机实时传输伺服电机转速实时情况,上位工控机根据该时刻下的绝对地理位置信息发送指令到底盘下位机,进而驱动履带底盘101整体进行运动。
如图8所示,山地果园仿形自主避障割草机的控制方法,分为以下几个步骤:履带底盘探测与控制、割台探测与控制、路径规划以及作业规划。
(1)履带底盘探测与控制
履带底盘前进方向标定通过导航系统航向信息与雷达配属姿态传感器、伺服电机编码器相结合的方法实现。由于雷达配属姿态传感器内置于二维激光雷达102之中,远离大量铁元素金属制品,因此不存在外部软磁环境对二维激光雷达102导航角干扰的问题。首先使用编码器对两侧履带转速进行实时测量,设定伺服电机转速预定值范围,如两侧履带均达到转速预定值范围,雷达配属姿态传感器开始使用航向角对履带底盘前进方向进行检验,如检测航向角显示履带底盘在前进过程中航向角未发生改变,则使用导航系统再次测量航向是否出现问题。这三种标定履带底盘前进方向的方法优先级大小排列依次为:编码器测量反馈>雷达配属姿态传感器反馈>导航系统航向检测。当导航系统存在信号问题接收不到信号时,履带底盘依靠编码器以及雷达配属姿态传感器依旧能够继续保持向前移动。履带底盘101转弯时,左侧底盘与右侧底盘采用相同的转速进行转弯,以保证在未打滑情况下转弯半径圆心始终位于履带底盘101中心。
(2)割台探测与控制
割台加速度姿态传感器用以测定割台整体翻滚角大小,以实时反馈割刀的切削角度,进而指导割台切削角度调节。当上位工控机发出预定角度值至割台下位机,割台下位机根据所获得割台整体翻滚角当前角度与割台预设值角度进行对比,进而驱动相对应的姿态调整推杆电机103进行伸缩,该过程将一直进行直至割台加速度姿态传感器所获得角度符合预设角度值的偏差范围要求后,姿态调整推杆电机103停止伸缩并进行自锁;通过割台下位机驱动推杆电机103,进而改变切削角度。与此同时上位工控机将预定割刀转速、电动绞盘105指令发送至割台下位机,通过割台下位机控制割刀旋转角度以及割台104的高度。
割台预设角度通过草料密度以及各种草料种类所建数据库获取,工控上位机将周围环境信息发送至云端服务器后,服务器查询后将该时刻最佳切削角度以及切削转速发送至上位工控机,上位工控机将切削角度以及切削转速通过RS485发送至割台下位机。
(3)路径规划以及作业规划
二维激光雷达102开始扫描周围环境是否存在足够预设路标,如果测得路标量小于预设值,则激光雷达底座开始回缩,缩至底部后开始伸展,期间如果测得路标量大于等于预设值,则底座停止伸缩,并开始下一步工作,如果上述动作完成后测得路标量仍小于预设值,则重新调节预设值。二维激光雷达102高度调节完毕后,导航系统开始启动,在数据稳定后二维激光雷达102开始工作;与此同时,二维激光雷达102、气压计以及雷达配属姿态传感器获得的数据,传递至上位工控机,上位工控机获得该时刻下二维激光雷达102的绝对地理位置,并通过4G通讯系统传输至云端服务器,通过查询该位置的点云地图信息,并与二维激光雷达102获取的数据进行对比矫正,进一步确定周围环境信息。
上位工控机开始对周围环境进行路径规划,计算环境边缘极限,比如悬崖、峭壁、梯田等环境的大范围分层处,确定分层处所沿线为边缘线;如果左右两侧均无边缘线,则由人工标定主次边缘线;如果左右两侧仅有一侧边缘线,则认定该侧边缘线标定为主边沿线,另一侧次边缘线由人工标定;如果左右两侧均存在边缘线,则两侧以地势低的一侧标定为主边缘线,另一侧为次边缘线。在标定完毕主次边缘线后,将主次边缘线间距最宽处标定为总宽度除以车体宽度L,如结果存在小数,则消掉小数自动加1,以此为标准规划路径块。
在规划出适合路径以后,根据当地地形设定履带底盘101前行速度以及割刀的割草速度、最佳切削角度,割草机平行于各路径块边线进行割草作业,如前方安全距离Ls存在障碍物,则开始进行避障。所述避障为:如果前方存在障碍物,则在障碍物前方Ls处转弯,向次边缘线转弯90°后前进Ls,如此时转弯前前进路径已经远离障碍物,则割草机朝向主边缘线转弯90°,如此时转弯前前进路径未远离障碍物,则继续前进Ls,直至此时转弯前前进路径远离障碍物,远离障碍物之后割草机朝向主边缘线进行转弯90°,前进Ls后再进行转弯90°,恢复至转弯前前进路径,其中Ls为安全距离,根据作业环境进行人为设定;如图9所示(图中:最左侧须线部分代表主边缘线,最右侧实线部分代表次边缘线)。
如前方安全距离Ls处存在边界,上位主控机开始计算已走过路径块数,并与之前规划路径块数进行对比,如果已走过路径块数小于之前规划总路径块数,判定前方边界为换行边界,在距离边界Ls距离时,开始向右侧边缘线转向90°,转向完毕后前进L,然后向左侧边缘线转弯90°,继续进行前进割草作业。如果已走过路径块数大于等于之前规划总路径块数,则判定前方边界为终点边界,在终点边界前停止作业,并返回作业始发原点。
在前进过程中,根据之前划定好的路径前进时,发现在前进方向安全距离Ls处存在边界,上位主控机开始计算已走过路径块数和先前规划路径时块数进行对比,如果已走过路径块数小于先前规划总路径块数时,判定前方边界为转弯边界,在距离边界Ls距离时开始向右侧边缘线转向90°,转向完毕后前进L,后向左侧边缘线转弯90°,继续进行前进割草作业。如果已走过路径块数大于等于先前规划总路径块数时,则判定前方边界为终点边界,在终点边界前停止作业,并返回作业始发原点。
当割草开始进行时,杂草首先经过前限深机构连接板202扶禾作业,目的是减少割刀旋转时所需的最小线速度,进而减少割刀驱动电机所需转速与扭矩。
当导航系统以及二维激光雷达102经识别扫描发现工作区域已经清理完毕,电动绞盘105开始进行收缩,将割台104升至一定高度,该高度需不遮挡二维激光雷达102扫描且需留出高度用以检修割刀等易损耗部件。
二维激光雷达102在10cm处被遮挡面积到超过60%时,割草机割刀驱动电机进行紧急刹车,目的是保证工作人员以及割草机部件安全。割草工作结束后,履带底盘101根据二维激光雷达102所获得数据返回工作起点,待到达原点后所有电机停止工作,保持锁死状态,避免工作人员检查时误伤。
所述实施例为本发明的优选的实施方式,但本发明并不限于上述实施方式,在不背离本发明的实质内容的情况下,本领域技术人员能够做出的任何显而易见的改进、替换或变型均属于本发明的保护范围。

Claims (8)

  1. 山地果园仿形自主避障割草机,其特征在于,包括机械部分和控制系统;
    所述机械部分包括割台(104)和履带底盘(101),所述履带底盘(101)的底盘主体上设有绞盘支架(506)和控制箱(504),绞盘支架(506)前方的推杆电机后连接底座(507)与推杆电机(103)后端连接,绞盘支架(506)中间安装电动绞盘(105),顶端安装二维激光雷达(102);履带底盘(101)的底盘主体上还设有导航系统;割台(104)包括缓冲限深机构(201)、前限深机构连接板(202)、电机连接板(203)、割台支撑板(204)和后限深机构连接板(205),前限深机构连接板(202)前端连接三组缓冲限深机构(201),前限深机构连接板(202)前端未与缓冲限深机构(201)连接处设有支撑架,前限深机构连接板(202)后端依次与电机连接板(203)、后限深机构连接板(205)连接,电机连接板(203)上侧连接有割台支撑板(204),后限深轮机构连接板(205)后端边沿连接两组缓冲限深机构(201);
    所述缓冲限深机构(201)包括安装底座(601)、缓冲弹簧(602)、旋转副连杆(603)以及万向限深轮(604),安装底座(601)下方与前限深机构连接板(202)、后限深机构连接板(205)连接,缓冲弹簧(602)两端分别与旋转副连杆(603)、安装底座(601)连接,旋转副连杆(603)呈“丁”字形,下端与安装底座(601)连接,旋转副连杆(603)外侧通过万向限深轮连接支架连接万向限深轮(604);
    所述控制系统包括驱动系统和探测主控制系统,驱动系统用于驱动履带底盘(101)作业,所述探测主控制系统包括二维激光雷达(102)、导航系统、雷达配属姿态传感器、气压计、4G通讯系统以及上位工控机,二维激光雷达(102)、导航系统、雷达配属姿态传感器、气压计均与上位工控机通信,气压计、雷达配属姿态传感器安装在二维激光雷达(102)内部,4G通讯系统用于上位工控机与云端服务器进行通信;上位工控机还与底盘下位机、割台下位机进行信号传输。
  2. 根据权利要求1所述的山地果园仿形自主避障割草机,其特征在于,所述电机连接板(203)上的两割刀驱动电机分别安装割刀,电机连接板(203)上还安装有割台加速度姿态传感器,用以实时反馈割刀角度。
  3. 根据权利要求1所述的山地果园仿形自主避障割草机,其特征在于,所述割台支撑板(204)上部连接底座轴承连接板(302),底座轴承连接板(302)上安装有下底座轴承(301),下底座轴承(301)通过底座连接光轴(304)与上底座轴承(403)连接,形成旋转副;底座轴承连接板(302)后端设有推杆电机前连接底座(303),用于与推杆电机(103)伸出端连接。
  4. 根据权利要求3所述的山地果园仿形自主避障割草机,其特征在于,所述上底座轴承(403)安装在上连接板(404)下端,上连接板(404)后端设有绞盘绳索连接底座(406), 用于与电动绞盘(105)的绳索挂钩连接,上连接板(404)上安装连杆连接底座(405),连杆连接底座(405)与连杆(401)前端固连,连杆(401)后端与连杆旋转副(106)连接。
  5. 根据权利要求1所述的山地果园仿形自主避障割草机,其特征在于,所述驱动系统包括伺服电机、编码器、减速器、底盘电源和底盘下位机,伺服电机输出轴与减速器输入轴承连接,编码器安装于伺服电机内部,底盘下位机与伺服电机、编码器信号连接。
  6. 一种根据权利要求1-5任一项所述的山地果园仿形自主避障割草机的控制方法,其特征在于,包括履带底盘探测与控制、割台探测与控制、路径规划以及作业规划,具体为:
    履带底盘前进方向标定通过导航系统航向信息与雷达配属姿态传感器、伺服电机编码器结合实现,编码器实时测量两侧履带转速,如两侧履带均达到转速预定值范围,雷达配属姿态传感器开始使用航向角对履带底盘前进方向进行检验,如检测航向角显示履带底盘在前进过程中航向角未发生改变,则使用导航系统再次测量航向是否出现问题;
    割台下位机将当前割台整体翻滚角与割台预设值角度进行对比,若当前割台整体翻滚角不在割台预设值角度范围内,则割台下位机驱动推杆电机进行伸缩,直至符合预设角度值的偏差范围要求,进而改变切削角度,同时割台下位机控制割刀旋转角度以及割台高度;
    二维激光雷达(102)根据周围环境路标,调节合适的高度,上位工控机通过查询该位置的点云地图信息确定周围环境信息,开始对周围环境进行路径规划,确定边缘线,并标定主次边缘线,规划路径块;根据地形设定履带底盘(101)前行速度以及割刀的割草速度、最佳切削角度,割草机进行割草作业,如前方安全距离Ls存在障碍物,则开始进行直角避障;若不存在障碍物,且前方安全距离Ls处存在边界,由边界的类型执行停止作业或换行作业。
  7. 根据权利要求6所述的山地果园仿形自主避障割草机的控制方法,其特征在于,所述直角避障具体为:如果前方存在障碍物,则在障碍物前方Ls处转弯,向次边缘线转弯90°后前进Ls,如此时转弯前前进路径已经远离障碍物,则割草机朝向主边缘线转弯90°,如此时转弯前前进路径未远离障碍物,则继续前进Ls,直至此时转弯前前进路径远离障碍物,远离障碍物之后割草机朝向主边缘线进行转弯90°,前进Ls后再进行转弯90°,恢复至转弯前前进路径,其中Ls为安全距离。
  8. 根据权利要求6所述的山地果园仿形自主避障割草机的控制方法,其特征在于,所述边界的类型的判定过程为:
    上位主控机对比已走过路径块数和之前规划路径块数,如果已走过路径块数小于之前规划总路径块数,判定前方边界为换行边界,在距离边界Ls距离时,割草机向右侧边缘线转向90°,转向完毕后前进L,然后向左侧边缘线转弯90°,继续进行前进割草作业;如果已走过路径块数大于等于之前规划总路径块数,则判定前方边界为终点边界,停止作业。
PCT/CN2020/095584 2020-05-11 2020-06-11 山地果园仿形自主避障割草机及其控制方法 WO2021227171A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/421,023 US11470771B2 (en) 2020-05-11 2020-06-11 Ground-contour-following autonomous obstacle avoidance mower for hillside orchards and control method thereof
GB2217742.2A GB2609379B (en) 2020-05-11 2020-06-11 Ground-contour-following autonomous obstacle avoidance mower for hillside orchards and control method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010390555.7 2020-05-11
CN202010390555.7A CN111713245B (zh) 2020-05-11 2020-05-11 山地果园仿形自主避障割草机及其控制方法

Publications (1)

Publication Number Publication Date
WO2021227171A1 true WO2021227171A1 (zh) 2021-11-18

Family

ID=72565899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/095584 WO2021227171A1 (zh) 2020-05-11 2020-06-11 山地果园仿形自主避障割草机及其控制方法

Country Status (4)

Country Link
US (1) US11470771B2 (zh)
CN (1) CN111713245B (zh)
GB (1) GB2609379B (zh)
WO (1) WO2021227171A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115235036A (zh) * 2022-08-03 2022-10-25 合肥工业大学 一种移动式空气净化器及其控制方法
WO2023183307A1 (en) * 2022-03-23 2023-09-28 Dean Solon Robotic device with deployable propulsion system

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112715133B (zh) * 2020-12-28 2022-06-07 南京苏美达智能技术有限公司 一种智能割草机系统及割草方法
CN112970419B (zh) * 2021-02-03 2022-03-22 江苏大学 集果园仿形喷雾与避障割草的多功能作业机及作业方法
CN113439524A (zh) * 2021-06-15 2021-09-28 江苏科技大学 基于单线激光雷达自动升降装置的家用割草机器人、系统以及建图方法
CN114830855A (zh) * 2022-05-17 2022-08-02 重庆文理学院 一种山地标准化果园智能除草机器人
CN115119602B (zh) * 2022-08-05 2024-01-09 中国农业科学院果树研究所 一种扫地机器人式割草机的避障机构
CN116839570B (zh) * 2023-07-13 2023-12-01 安徽农业大学 一种基于传感器融合目标检测的作物行间作业导航方法
CN116594431A (zh) * 2023-07-17 2023-08-15 湖南尖山智能科技有限责任公司 液压工程机器人跟随方法、装置、系统及液压工程机器人
CN117260672A (zh) * 2023-11-23 2023-12-22 天合光能股份有限公司 光伏面板安装机器人及光伏面板安装方法
CN117315183B (zh) * 2023-11-30 2024-02-23 四川鼎鸿智电装备科技有限公司 一种基于激光雷达构建三维地图和作业分析的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5966912A (en) * 1997-07-24 1999-10-19 Swisher Mower & Machine Co., Inc. Trailmower with angled bumper rollers
CN107229275A (zh) * 2017-04-24 2017-10-03 华南农业大学 一种果园自动遍历智能割草机控制系统及方法
US20170280621A1 (en) * 2016-03-31 2017-10-05 Kanzaki Kokyukoki Mfg. Co., Ltd. Riding type vehicle
CN107743771A (zh) * 2017-10-19 2018-03-02 谢新昇 一种可避障自动割草机器人
CN207284231U (zh) * 2017-05-24 2018-05-01 西北农林科技大学 一种果园u型全向割草机
CN109348831A (zh) * 2018-09-03 2019-02-19 江苏大学 一种适用于果园地形的自动仿形割草机
CN109362331A (zh) * 2018-12-19 2019-02-22 江西洪都航空工业集团有限责任公司 无人割草车
CN209563198U (zh) * 2019-03-08 2019-11-01 河北农业大学 履带式山地果园割草机避障爬坡系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3619996A (en) * 1970-02-12 1971-11-16 Gen Electric Mower apparatus
US4129186A (en) * 1976-10-21 1978-12-12 Sheathelm Dorwin J Bean puller
DE102017204249A1 (de) * 2017-03-14 2018-09-20 Deere & Company Kombination aus einem landwirtschaftlichen Arbeitsgerät und einem Straßenfahrschutz mit Abdeck-, Warn und/oder Beleuchtungseinrichtungen zur Absicherung des Arbeitsgeräts bei einer Straßenfahrt
CN108551775B (zh) * 2018-01-24 2023-11-10 中国农业大学 一种双边立式自动避障株间除草机

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5966912A (en) * 1997-07-24 1999-10-19 Swisher Mower & Machine Co., Inc. Trailmower with angled bumper rollers
US20170280621A1 (en) * 2016-03-31 2017-10-05 Kanzaki Kokyukoki Mfg. Co., Ltd. Riding type vehicle
CN107229275A (zh) * 2017-04-24 2017-10-03 华南农业大学 一种果园自动遍历智能割草机控制系统及方法
CN207284231U (zh) * 2017-05-24 2018-05-01 西北农林科技大学 一种果园u型全向割草机
CN107743771A (zh) * 2017-10-19 2018-03-02 谢新昇 一种可避障自动割草机器人
CN109348831A (zh) * 2018-09-03 2019-02-19 江苏大学 一种适用于果园地形的自动仿形割草机
CN109362331A (zh) * 2018-12-19 2019-02-22 江西洪都航空工业集团有限责任公司 无人割草车
CN209563198U (zh) * 2019-03-08 2019-11-01 河北农业大学 履带式山地果园割草机避障爬坡系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023183307A1 (en) * 2022-03-23 2023-09-28 Dean Solon Robotic device with deployable propulsion system
CN115235036A (zh) * 2022-08-03 2022-10-25 合肥工业大学 一种移动式空气净化器及其控制方法

Also Published As

Publication number Publication date
GB2609379B (en) 2024-05-22
GB202217742D0 (en) 2023-01-11
US11470771B2 (en) 2022-10-18
GB2609379A (en) 2023-02-01
CN111713245A (zh) 2020-09-29
US20220124974A1 (en) 2022-04-28
CN111713245B (zh) 2022-06-21

Similar Documents

Publication Publication Date Title
WO2021227171A1 (zh) 山地果园仿形自主避障割草机及其控制方法
CN109952857B (zh) 一种能自动完成割草作业的果园割草机及方法
CN109348831B (zh) 一种适用于果园地形的自动仿形割草机
WO2020124484A1 (zh) 无人割草车
CN111045423B (zh) 一种智能四轮驱动uwb定位割草机器人及其控制方法
CN108738640B (zh) 一种自走式草坪修剪装置
CN110989578B (zh) 一种可无线控制的双核四轮驱动uwb定位割草机器人及其控制方法
CN112970419B (zh) 集果园仿形喷雾与避障割草的多功能作业机及作业方法
CN112514637B (zh) 一种全地形割草机及其使用方法
CN112119743A (zh) 一种自动割草机器人及割草装置、调整割草高度的方法
WO2023221430A1 (zh) 山地果园自适应地形无人除草机器人
CN111183783B (zh) 一种防缠草割草机构及割草机
CN111123910B (zh) 一种双核四轮驱动uwb定位割草机器人及其控制方法
WO2021114220A1 (zh) 一种全自主无人割草系统
CN114424703A (zh) 一种新能源割草机器人
EP3482621A1 (en) Lawn mower robot and control method
CN220292082U (zh) 一种智慧农业病虫害监测预警装置
CN204929640U (zh) 一种智能果树林区除草机器人
CN214338686U (zh) 智能割草机
CN211149280U (zh) 一种连栋温室陆地轨道两用多功能运输车
CN111788924A (zh) 一种智能割草机器人
CN219087825U (zh) 一种具有独立悬挂机构的割草机器人
CN114145125B (zh) 一种自锁式自调电动割草机
CN207706718U (zh) 一种带尾轮的重型甩刀式割草机
CN219248590U (zh) 一种割草机器人

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20935035

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202217742

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20200611

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20935035

Country of ref document: EP

Kind code of ref document: A1