WO2021227089A1 - 无线通信方法、终端设备和网络设备 - Google Patents

无线通信方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2021227089A1
WO2021227089A1 PCT/CN2020/090707 CN2020090707W WO2021227089A1 WO 2021227089 A1 WO2021227089 A1 WO 2021227089A1 CN 2020090707 W CN2020090707 W CN 2020090707W WO 2021227089 A1 WO2021227089 A1 WO 2021227089A1
Authority
WO
WIPO (PCT)
Prior art keywords
dmrs
transmissions
frequency domain
relative positions
transmission
Prior art date
Application number
PCT/CN2020/090707
Other languages
English (en)
French (fr)
Inventor
贺传峰
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2020/090707 priority Critical patent/WO2021227089A1/zh
Priority to EP20935597.3A priority patent/EP4152848A4/en
Priority to CN202080100689.9A priority patent/CN115553007A/zh
Publication of WO2021227089A1 publication Critical patent/WO2021227089A1/zh
Priority to US17/987,532 priority patent/US20230077947A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the embodiments of the present application relate to the communication field, and more specifically, to a wireless communication method, terminal device, and network device.
  • the New Radio (NR) system is mainly designed to support Enhanced Mobile Broadband (eMBB) services. Its main technology is to meet the needs of high speed, high spectrum efficiency, and large bandwidth.
  • eMBB Enhanced Mobile Broadband
  • the capabilities of terminals that support these services are reduced compared to those that support eMBB, such as reduced bandwidth, reduced processing time, and reduced number of antennas. Therefore, it is urgent to adopt certain technologies so that the NR system can support the work of such low-capability terminals.
  • the embodiments of the present application provide a wireless communication method, terminal equipment, and network equipment. Thereby, the time domain and/or frequency domain position of the DMRS in the repeated transmission of the data channel can be determined.
  • a wireless communication method includes: a terminal device acquires a relative position in the time domain and/or a relative position in the frequency domain of a reference signal on repeated transmission of a data channel. Wherein, the relative positions of the reference signals in at least two transmissions in the repeated transmission are different in the time domain, and/or the relative positions in the frequency domain are different.
  • a wireless communication method includes: a network device obtains a relative position in the time domain and/or a relative position in the frequency domain of a reference signal on repeated transmission of a data channel. Wherein, the relative positions of the reference signals in at least two transmissions in the repeated transmission are different in the time domain, and/or the relative positions in the frequency domain are different.
  • a terminal device which is used to execute the method in the foregoing first aspect or each of its implementation manners.
  • the terminal device includes a functional module for executing the method in the foregoing first aspect or each of its implementation manners.
  • a network device is provided, which is used to execute the method in the second aspect or its implementation manners.
  • the network device includes a functional module for executing the method in the foregoing second aspect or each of its implementation manners.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the above-mentioned first aspect or each of its implementation modes.
  • a network device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the second aspect or its implementation manners.
  • a device for implementing any one of the first aspect to the second aspect or the method in each implementation manner thereof.
  • the device includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the device executes any one of the above-mentioned first aspect to the second aspect or any of the implementations thereof method.
  • a computer-readable storage medium for storing a computer program that enables a computer to execute any one of the first aspect to the second aspect or the method in each implementation manner thereof.
  • a computer program product including computer program instructions that cause a computer to execute any one of the above-mentioned first to second aspects or the method in each implementation manner thereof.
  • a computer program which when running on a computer, causes the computer to execute any one of the above-mentioned first aspect to the second aspect or the method in each implementation manner thereof.
  • the present application provides a method for determining the relative position of the DMRS in the time domain and/or the relative position of the frequency domain in the repeated transmission of the data channel. Further, between different repeated transmissions of the data channel, the relative position of the DMRS in the time domain is different in the time domain resource of the data channel, and/or the relative position of the DMRS in the frequency domain is in the data channel.
  • the relative frequency domain resource positions in the frequency domain resources are different, so that the relative positions of the DMRS in the time domain and/or frequency domain resources of the data channel can be made as many as possible, which is beneficial in more relative time domain and/or frequency domains.
  • Channel estimation is performed on domain resources to improve the demodulation performance of the data channel.
  • FIG. 1 is a schematic diagram of a communication system architecture provided by an embodiment of this application.
  • FIG. 2 is a schematic diagram of frequency domain resource allocation of PDSCH provided by an embodiment of this application;
  • FIG. 3 is a schematic diagram of frequency domain resource allocation of PDSCH provided by another embodiment of this application.
  • FIG. 4 is a schematic diagram of frequency domain resource allocation of DMRS provided by an embodiment of this application.
  • FIG. 5 is a schematic diagram of frequency domain resource allocation of DMRS provided by another embodiment of this application.
  • FIG. 6 is an interaction flowchart of a wireless communication method provided by an embodiment of this application.
  • FIG. 7 is an interaction flowchart of a wireless communication method provided by another embodiment of this application.
  • FIG. 8 is a schematic diagram of repeated transmission of PDSCH in a time slot according to an embodiment of the application.
  • FIG. 9 is a schematic diagram of the relative position of the pre-DMRS in the time domain according to an embodiment of the application.
  • FIG. 10 is a schematic diagram of repeated transmission of PDSCH between time slots according to an embodiment of the application.
  • FIG. 11 is a schematic diagram of the relative position of the pre-DMRS in the time domain according to another embodiment of the application.
  • FIG. 12 is a schematic diagram of the relative position of the pre-DMRS in the time domain according to an embodiment of the application.
  • FIG. 13 is a schematic diagram of the relative position of the pre-DMRS in the time domain according to another embodiment of the application.
  • FIG. 14 is a schematic diagram of the relative position of the additional DMRS in the time domain according to an embodiment of the application.
  • FIG. 15 is an interaction flowchart of a wireless communication method provided by still another embodiment of this application.
  • FIG. 16 is an interaction flowchart of a wireless communication method provided by another embodiment of this application.
  • FIG. 17 is a schematic diagram of the relative position of the pre-DMRS in the frequency domain according to an embodiment of the application.
  • 18 is a schematic diagram of the relative position of the additional DMRS in the frequency domain according to an embodiment of the application.
  • FIG. 19 is an interaction flowchart of a wireless communication method provided by another embodiment of this application.
  • FIG. 20 is an interaction flowchart of a wireless communication method provided by another embodiment of this application.
  • FIG. 21 shows a schematic block diagram of a terminal device 2100 according to an embodiment of the present application.
  • FIG. 22 shows a schematic block diagram of a network device 2200 according to an embodiment of the present application.
  • FIG. 23 is a schematic structural diagram of a communication device 800 provided by an embodiment of the present application.
  • FIG. 24 is a schematic structural diagram of a device according to an embodiment of the present application.
  • FIG. 25 is a schematic block diagram of a communication system 1000 according to an embodiment of the present application.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • New Air Interface New Radio, NR
  • evolution of NR system LTE (LTE-based access to unlicensed spectrum, LTE-U) system on unlicensed spectrum, NR (NR-based access to unlicensed spectrum, on unlicensed spectrum, NR-U) system, Universal Mobile Telecommunication System (UMTS), Wireless Local Area Networks (WLAN), Wireless Fidelity (WiFi), next-generation communication systems or other communication systems, etc.
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC machine type communication
  • V2V vehicle to vehicle
  • the communication system in the embodiments of the present application can be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, can also be applied to a dual connectivity (DC) scenario, and can also be applied to a standalone (SA) deployment.
  • CA Carrier Aggregation
  • DC dual connectivity
  • SA standalone
  • the embodiment of the application does not limit the applied frequency spectrum.
  • the embodiments of this application can be applied to licensed spectrum or unlicensed spectrum.
  • the communication system 100 applied in the embodiment of the present application is shown in FIG. 1.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal device 120 (or called a communication terminal or terminal).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminal devices located in the coverage area.
  • Figure 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. The embodiment does not limit this.
  • the communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • the devices with communication functions in the network/system in the embodiments of the present application may be referred to as communication devices.
  • the communication device may include a network device 110 having a communication function and a terminal device 120.
  • the network device 110 and the terminal device 120 may be the specific devices described above, which will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as network controllers, mobility management entities and other network entities, which are not limited in the embodiment of the present application.
  • terminal equipment may also be referred to as User Equipment (UE), access terminal, subscriber unit, user station, mobile station, mobile station, and remote Station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • UE User Equipment
  • the terminal device can be a station (STAION, ST) in a WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, and personal digital processing (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, and next-generation communication systems, such as terminal devices in the NR network or Terminal equipment in the public land mobile network (PLMN) network that will evolve in the future.
  • STAION, ST station
  • WLAN Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices. It is a general term for using wearable technology to intelligently design everyday wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a kind of hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • a network device can be a device used to communicate with mobile devices.
  • the network device can be an access point (AP) in WLAN, a base station (BTS) in GSM or CDMA, or a device in WCDMA.
  • a base station (NodeB, NB) can also be an Evolutional Node B (eNB or eNodeB) in LTE, or a relay station or access point, or a vehicle-mounted device, a wearable device, and a network device or base station in the NR network (gNB) or network equipment in the future evolved PLMN network.
  • the network equipment provides services for the cell
  • the terminal equipment communicates with the network equipment through the transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell
  • the cell may be a network equipment (for example, The cell corresponding to the base station.
  • the cell can belong to a macro base station or a base station corresponding to a small cell.
  • the small cell here can include: Metro cell, Micro cell, Pico Cells, Femto cells, etc. These small cells have the characteristics of small coverage and low transmit power, and are suitable for providing high-rate data transmission services.
  • the following describes how to determine the time-frequency domain position of the DMRS in a single transmission of the data channel in the NR system.
  • DCI Downlink Control Information
  • DL grant Downlink Grant
  • DCI format 1_0 or DCI format 1_1 it will carry PDSCH scheduling information in the DCI, including time domain and Frequency domain resource allocation information.
  • the time domain resource allocation information is indicated by the Time Domain Resource Allocation (TDRA) field, which contains 4 bits, which can indicate 16 different rows in a resource allocation table, each row Contains different resource allocation combinations, for example, the resource allocation combination includes: the starting symbol S of the PDSCH, the length L, k0, and different types.
  • k0 represents the time slot offset between the time slot (slot) where the DCI is located and the time slot (slot) where the PDSCH is located.
  • the starting symbol S and the length L of the PDSCH are no longer fixed, but as described above, the starting symbol S and the length L are indicated by TDRA in the DCI.
  • the values of S and L are not arbitrary, but are jointly coded to form a start and length indicator (SLIV).
  • S and L are not arbitrary, but are jointly coded to form a start and length indicator (SLIV).
  • SIV start and length indicator
  • Type A in the PDSCH mapping type in Table 1, there are two ways of real-time domain resource allocation: Type A and Type B.
  • Type A is mainly oriented to slot-based services, S is relatively high, and L is relatively long.
  • Type B is mainly oriented to Ultra-Reliable and Low Latency Communication (URLLC) services, which requires higher latency, so the location of S is more flexible to transmit URLLC services that arrive at any time, and L is shorter. , Which can reduce the transmission delay.
  • URLLC Ultra-Reliable and Low Latency Communication
  • Table 2 is the default table A corresponding to the TDRA indication field.
  • the terminal device receives the DCI and obtains the TDRA information, it determines the SLIV corresponding to the TDRA according to the default table A.
  • Type0 There are two ways to allocate frequency domain resources of the PDSCH: Type0 and Type1.
  • the Type0 frequency domain resource allocation method introduces a resource block group (Resource Block Group, RBG).
  • RBG Resource Block Group
  • an RBG is composed of several RBs.
  • the number of RBs included in one RGB is related to the radio resource control (Radio Resource Control, RRC) configuration and the bandwidth Part (Bandwidth Part, BWP) size.
  • RRC configuration includes: Configuration 1 (Configuration 1) and Configuration 2 (Configuration 2). 2).
  • Configuration 1 Configuration 1
  • Configuration 2 Configuration 2).
  • Table 3 can determine the number of RBs included in the RBG.
  • the RRC configuration RBG is Configuration 1
  • the number of RBs included in one RBG is 2 by looking up Table 3.
  • each RBG corresponds to 1 bit. If the 1 bit corresponding to a certain RBG is set to 1, it means that the RBG is allocated to the PDSCH. If the 1 bit corresponding to a certain RBG is set to 0, it means that the RBG is not Assigned to PDSCH.
  • FIG. 2 is a schematic diagram of the frequency domain resource allocation of the PDSCH provided by an embodiment of the application. As shown in FIG. 2, the frequency domain resource (RBG) allocation of the PDSCH can be represented by "0101010".
  • the Type1 frequency domain resource allocation method forms a resource indication value (RIV) by jointly encoding the starting position S and the length L of the resource.
  • a group of (S, L) has a one-to-one correspondence with a RIV value, and the terminal device can deduce the corresponding (S, L) through the RIV value.
  • the transmission of PDSCH includes the transmission of DMRS, which is used for terminal equipment to demodulate the PDSCH.
  • the time-frequency resources of the DMRS are located within the scheduling resources of the PDSCH. Among them, the time-frequency domain resource location of the DMRS is configured through high-level parameters.
  • DMRS includes front loaded DMRS, or, DMRS includes front loaded DMRS and additional DMRS.
  • the time domain position of the pre-DMRS is related to the PDSCH mapping type.
  • the pre-DMRS is divided into two types, single-symbol and double-symbol, which respectively indicate whether the number of symbols included in the DMRS is one, one, or two. If the high-level parameter maxLength is not configured, the DMRS is of single type. If the high-level parameter maxLength is configured, it is determined whether it is single or double according to the indication of the DCI received by the terminal device.
  • the time domain position of the additional DMRS is configured by the high-level parameter dmrs-Additional Position.
  • the frequency domain resource location of the DMRS is determined according to the high-level parameter dmrs-Type.
  • dmrs-Type includes DMRS configuration type 1 and DMRS configuration type 2.
  • Fig. 4 is a schematic diagram of the frequency domain resource allocation of DMRS provided by an embodiment of the application. As shown in Fig. 4, for DMRS configuration type 1, DMRS is distributed every resource element (Resource Element, RE) in the frequency domain. .
  • Figure 5 is a schematic diagram of the frequency domain resource allocation of DMRS provided by another embodiment of the application. As shown in Figure 5, for DMRS configuration type 2, the RE group where the DMRS is located includes two consecutive REs, and the interval between the RE groups is 6 RE.
  • the network device sends an uplink grant (UL grant), such as DCI format 0_0 or DCI format 0_1 to schedule PUSCH transmission.
  • UL grant uplink grant
  • the network device schedules uplink data transmission through the DCI of the UL grant, it will carry TDRA in the DCI.
  • the length of the TDRA is 4 bits, which can indicate 16 different rows in a resource allocation table, and each row contains different resource allocation combinations. , Such as PUSCH starting position S, length L, k2, and different types, etc.
  • k2 represents the number of offset time slots between the time slot where the DCI is located and the time slot where the PUSCH is located.
  • the types of PUSCH time domain resource allocation include Type A and Type B.
  • Type A is mainly oriented to slot-based services, S is relatively high, and L is relatively long.
  • Type B is mainly oriented to URLLC services and has higher requirements for delay. Therefore, the location of S is more flexible to transmit URLLC services that arrive at any time. L is shorter, which can reduce transmission delay.
  • the optional value ranges of S and L are shown in Table 4.
  • Table 5 is the default table A corresponding to the TDRA indication field.
  • the terminal device receives DCI and obtains TDRA information, it determines the starting position S, length L, K2, and different types of the PUSCH corresponding to TDRA according to the default table A. .
  • Type0 There are two ways to allocate PUSCH frequency domain resources: Type0 and Type1.
  • the allocation mode of the frequency domain resources of the PUSCH can be configured through high-level signaling, and can also be dynamically indicated through DCI.
  • the Type0 frequency domain resource allocation method uses a bitmap to indicate the RBG allocated to the terminal device.
  • the number of RBs included in the RBG is configured by high-level parameters, such as configuration 1 (Configuration 1) and configuration 2 (Configuration 2), which are related to the BWP size.
  • Configuration 1 Configuration 1
  • Configuration 2 configuration 2
  • Table 6 can determine the number of RBs included in the RBG. Table 6:
  • the Type1 frequency domain resource allocation method forms an RIV by jointly encoding the starting position S and the length L of the resource.
  • a group of (S, L) has a one-to-one correspondence with a RIV value, and the terminal device can deduce the corresponding (S, L) through the RIV value.
  • the DMRS carried by the PUSCH also includes a pre-DMRS and an additional DMRS.
  • the method for configuring the time domain and frequency domain positions of the PUSCH DMRS is similar to the method for configuring the time domain and frequency domain positions of the DMRS (PDSCH DMRS) carried by the PDSCH, and will not be repeated here.
  • the high-level parameters related to the configuration of PUSCH DMRS also include dmrs-TypeA-Position, dmrs-AdditionalPosition, maxLength, etc.
  • the method for determining the position of the DMRS in the time and frequency domain on a single transmission of data channels such as PDSCH and PUSCH is described in detail above.
  • data channels such as PDSCH and PUSCH
  • how to determine the time domain and/or frequency domain position of the DMRS in the repeated transmission of the data channel is an urgent need to be solved in this application Technical issues.
  • this application provides a wireless communication method, terminal equipment and network equipment.
  • the inventive concept of this application is: because DMRS is used to demodulate PDSCH, PUSCH and other data channels to evaluate the data channel, in order to improve the accuracy of channel evaluation, between different repeated transmissions of the data channel, where the DMRS is located
  • the relative position of the time-frequency resource in the time-frequency resource of the data channel is different, so that the relative position of the DMRS in the time-frequency resource of the data channel is as large as possible.
  • the data channel carries a reference signal
  • the reference signal is used to demodulate the data channel.
  • the reference signal includes: pre-DMRS, and/or, additional DMRS.
  • both the terminal equipment and the network equipment need to obtain the time-frequency domain position of the reference signal on the repeated transmission of the data channel, and transmit the reference channel at the corresponding time-frequency domain position.
  • the terminal equipment and network equipment obtain the relative position of the reference signal in the time domain during the repeated transmission of the data channel. 2. In the repeated transmission of the data channel, the terminal equipment and the network equipment obtain the relative position of the reference signal in the frequency domain. 3. In the repeated transmission of the data channel, the terminal equipment and the network equipment obtain the relative position in the time domain and the relative position in the frequency domain where the reference signal is located.
  • FIG. 6 is an interaction flowchart of a wireless communication method provided by an embodiment of this application. The method includes the following steps:
  • Step S601 The terminal device obtains the relative position in the time domain of the reference signal on the repeated transmission of the data channel; wherein the relative position in the time domain of the reference signal on at least two transmissions in the repeated transmission is different.
  • step S602 the terminal device sends the reference signal at a relative position in the time domain of the reference signal.
  • Step S603 The network device obtains the relative position of the reference signal in the time domain on the repeated transmission of the data channel.
  • step S604 the network device receives the reference signal at a relative position in the time domain of the reference signal.
  • step S603 can be executed before step S601, or can be executed between step S602 and step S603.
  • the data channel in step S601 to step S604 is PUSCH.
  • FIG. 7 is an interaction flowchart of a wireless communication method provided by another embodiment of this application. The method includes the following steps:
  • Step S701 The network device obtains the relative position of the reference signal in the time domain on the repeated transmission of the data channel; wherein the relative position of the reference signal in the time domain on at least two transmissions in the repeated transmission is different.
  • step S702 the network device sends the reference signal at the relative position of the reference signal in the time domain.
  • Step S703 The terminal device obtains the relative position of the reference signal in the time domain on the repeated transmission of the data channel.
  • step S704 the terminal device receives the reference signal at a relative position in the time domain of the reference signal.
  • step S703 can be executed before step S701, or can be executed between step S702 and step S703.
  • the data channel in step S701 to step S704 is PDSCH.
  • the relative time domain position of the reference signal on the transmission is relative to the time domain position of the data channel on the transmission.
  • the time domain position of the data channel on the transmission (the time domain position can be the starting time domain position) is symbol 2
  • the time domain relative position of the reference signal on the transmission is 1
  • the actual time domain position is on the symbol Location 2 that is, the time domain position of the reference signal on the transmission is on the start symbol occupied by the data channel, that is, symbol 2.
  • the network equipment is configured with a pre-DMRS for repeated transmission, or the network equipment is configured with a pre-DMRS and an additional DMRS for repeated transmission, and the additional DMRS is carried in the repeated transmission, or the network equipment is configured with a pre-delivery for repeated transmission DMRS and additional DMRS, and the additional DMRS is carried on part of the transmission in the repeated transmission, and the additional DMRS is not carried on the part of the transmission.
  • the time-domain relative positions of the reference signal on at least two transmissions in the repeated transmission of the reference signal are different, which includes the following situations:
  • Case 1 The relative positions of the pre-DMRS in the time domain on at least two transmissions are different.
  • the first situation is applicable to the scenario where the network device configures the pre-DMRS for repeated transmission.
  • the foregoing repeated transmission is in one time unit or in different time units, and the time unit may be one time slot or multiple time slots, which is not limited in this application.
  • repeated PDSCH transmission such as repeated transmission within a time slot or repeated transmission between time slots.
  • Fig. 8 is a schematic diagram of PDSCH repeated transmission in a time slot provided by an embodiment of this application
  • Fig. 9 is a schematic diagram of the relative position of the pre-DMRS in the time domain provided by an embodiment of this application.
  • the PDSCH is The symbols 3-6 of time slot n are transmitted for the first time, and symbols 9-12 of time slot n are transmitted for the second time.
  • the actual time domain position of the preamble DMRS in the first transmission is symbol 3, which is The relative position in the time domain is 1, which is the first symbol in the first transmission of the PDSCH.
  • the actual time domain position of the pre-DMRS in the second transmission is symbol 10, that is, its time domain relative position is 2, which is the second symbol in the second transmission of PDSCH.
  • FIG. 10 is a schematic diagram of PDSCH repeated transmission between time slots according to an embodiment of this application.
  • FIG. 11 is a schematic diagram of the relative position of the pre-DMRS in the time domain according to another embodiment of this application.
  • PDSCH The first transmission is performed at symbol 2-13 of time slot n, and the second repeated transmission is performed at symbol 2-13 of time slot n+1.
  • the actual time domain position of the pre-DMRS in the first transmission is time Symbol 2 in slot n, that is, its relative position in the time domain is 1, that is, the first symbol in the first transmission of PDSCH.
  • the actual time-domain position of the pre-DMRS in the second transmission is symbol 3 in slot n+1, that is, its relative time-domain position is 2, which is the second symbol in the second transmission of PDSCH.
  • the relative position of the pre-DMRS in the time domain on the repeated transmission is determined according to high-layer signaling and/or DCI.
  • the DCI sent by the network device to the terminal device can be used to uniquely determine the time domain relative position of the pre-DMRS on the repeated transmission.
  • the terminal device determines the timing of the pre-DMRS on the repeated transmission according to the DCI sent by the network device.
  • the relative position of the domain For another example, the terminal device can determine the relative position of the pre-DMRS in the time domain of multiple groups of repeated transmissions according to high-level signaling. Further, the terminal device can determine the relative position of the pre-DMRS in the time domain of the multiple groups of repeated transmissions according to DCI. Uniquely determines the relative position of the pre-DMRS in the time domain on the repeated transmission.
  • the relative position of the pre-DMRS in the time domain on the first transmission in the repeated transmission is determined according to higher layer signaling and/or DCI; the relative position of the pre-DMRS in the time domain on the non-first transmission is determined according to a preset rule of.
  • the preset rule negotiated between the terminal device and the network device is: if the above-mentioned repeated transmission is N transmissions, and the relative position of the pre-DMRS signal in the i-th transmission in the time domain includes the symbol n, then the N-th transmission
  • the relative position of the pre-DMRS signal in the time domain in the i+1 transmission includes the symbol n+k, where i is a positive integer, n is an integer, and k is a positive integer.
  • k 1
  • the relative position of the pre-DMRS in the time domain is the first symbol in the first transmission of the PDSCH, based on this, it can be inferred that the relative position of the pre-DMRS in the time domain is the second symbol in the PDSCH.
  • the time-domain relative position of the preamble DMRS is the third symbol in the third transmission of the PDSCH.
  • the DCI sent by the network device to the terminal device can be used to uniquely determine the time domain relative position of the pre-DMRS on the first transmission. Based on this, the terminal device combined with the preset rules can infer that the pre-DMRS is in the second transmission. , The relative position in time domain in the third transmission... For another example: the terminal device can determine the relative position of the pre-DMRS in the time domain for the first transmission of multiple groups according to the high-level signaling.
  • the terminal device can determine the relative position of the pre-DMRS in the time domain of the multiple groups of the pre-DMRS on the first transmission according to the DCI. Uniquely determines the relative position of the pre-DMRS in the time domain on the first transmission. Based on this, the terminal device combined with the preset rules can infer the relative position of the pre-DMRS in the time domain during the second transmission, the third transmission, and so on.
  • Case 2 The relative positions of the pre-DMRS in the time domain on at least two transmissions are different, and the relative positions of the additional DMRS in the time domain on at least two transmissions are the same.
  • the second case is applicable to a scenario where the network device configures the pre-DMRS and the additional DMRS for repeated transmission, and the additional DMRS is carried in the repeated transmission.
  • the foregoing repeated transmission is in one time unit or in different time units, and the time unit may be one time slot or multiple time slots, which is not limited in this application.
  • the relative position of the additional DMRS on the repeated transmission in the time domain is determined according to higher layer signaling and/or DCI.
  • the network device can establish the corresponding relationship between the dmrs-Additional Position and PDSCH mapping type A and the relative position of the additional DMRS in the time domain. Based on this, the terminal device can repeat the additional DMRS on the dmrs-Additional Position and PDSCH mapping type A. Relative position in time domain.
  • the network device may establish the corresponding relationship between the DCI and the relative position of the additional DMRS in the time domain. Based on this, the terminal device may determine the relative position of the additional DMRS in the time domain on repeated transmission through the DCI.
  • the relative position of the additional DMRS on the repeated transmission in the time domain is determined based on DCI, dmrs-Additional Position, and PDSCH mapping type A.
  • the relative position of the pre-DMRS and the additional DMRS on the repeated transmission in the time domain can be indicated by high-layer signaling.
  • one or more high-level signaling can simultaneously indicate the pre-DMRS and the additional DMRS on the repeated transmission.
  • the relative position of the pre-DMRS and the additional DMRS in the time domain on the repeated transmission may be jointly indicated by DCI.
  • one or more DCIs may indicate the relative position of the pre-DMRS and the additional DMRS in the time domain on the repeated transmission at the same time.
  • the relative position of the pre-DMRS and the additional DMRS in the time domain on the repeated transmission may be jointly indicated by high-layer signaling and DCI.
  • high-layer signaling and one or more DCI can simultaneously indicate the relative positions of the pre-DMRS and the additional DMRS in the time domain on the repeated transmission. This application does not impose restrictions on this.
  • the relative position in the time domain of the additional DMRS on the first transmission in the repeated transmission is determined according to higher layer signaling and/or DCI; the relative position in the time domain of the additional DMRS on the non-first transmission is determined according to a preset rule.
  • a network device can establish a correspondence between dmrs-Additional Position and PDSCH mapping type A and the relative position of the additional DMRS in the first transmission. Based on this, the terminal device can use dmrs-Additional Position and PDSCH mapping type A for the first transmission.
  • the relative position of the additional DMRS on the time domain is determined according to higher layer signaling and/or DCI; the relative position in the time domain of the additional DMRS on the non-first transmission is determined according to a preset rule.
  • a network device can establish a correspondence between dmrs-Additional Position and PDSCH mapping type A and the relative position of the additional DMRS in the first transmission. Based on this, the terminal device can use dmr
  • the above-mentioned preset rule stipulates that the relative position of the additional DMRS in the time domain is the same in the non-first transmission and the first transmission. Based on this, the relative position in the time domain of the additional DMRS on the non-first transmission can be determined.
  • the network device may establish the correspondence between the DCI and the relative position in the time domain of the additional DMRS in the first transmission. Based on this, the terminal device can determine the relative position in the time domain of the additional DMRS in the first transmission through the DCI. Further, it is assumed that the above-mentioned preset rule stipulates that the relative position of the additional DMRS in the time domain is the same in the non-first transmission and the first transmission.
  • the relative position in the time domain of the additional DMRS on the non-first transmission can be determined.
  • the relative position of the additional DMRS in the time domain on the first transmission is determined based on DCI, dmrs-Additional Position, and PDSCH mapping type A. Further, it is assumed that the above-mentioned preset rule stipulates that the relative position of the additional DMRS in the time domain is the same in the non-first transmission and the first transmission. Based on this, the relative position in the time domain of the additional DMRS on the non-first transmission can be determined.
  • the relative position of the pre-DMRS and the additional DMRS in the time domain on the first transmission can be jointly indicated by high-layer signaling.
  • one or more high-level signaling can simultaneously indicate the pre-DMRS and the additional DMRS on the first transmission.
  • the relative positions of the pre-DMRS and the additional DMRS in the time domain on the first transmission may be indicated jointly by DCI.
  • one or more DCIs may simultaneously indicate the relative positions of the pre-DMRS and the additional DMRS in the time domain on the first transmission.
  • the relative position of the pre-DMRS and the additional DMRS in the time domain on the first transmission may be indicated jointly by higher layer signaling and DCI.
  • one or more high-level signaling and one or more DCI can simultaneously indicate the relative positions of the pre-DMRS and the additional DMRS in the time domain on the first transmission. This application does not impose restrictions on this.
  • Case 3 The time domain relative position of the pre-DMRS on at least two transmissions is the same, and the time domain relative position of the additional DMRS on at least two transmissions is different.
  • the third case is applicable to a scenario where the network device configures the pre-DMRS and the additional DMRS for repeated transmission, and the additional DMRS is carried in the repeated transmission.
  • the foregoing repeated transmission is in one time unit or in different time units, and the time unit may be one time slot or multiple time slots, which is not limited in this application.
  • repeated PDSCH transmission such as repeated transmission within a time slot or repeated transmission between time slots.
  • Fig. 12 is a schematic diagram of the relative position of the pre-DMRS in the time domain provided by an embodiment of the application.
  • the PDSCH is transmitted for the first time at symbols 3-6 of time slot n, and at symbols of time slot n 9-12 performs the second repeated transmission, and the actual time domain position of the pre-DMRS in the first transmission is symbol 3, that is, its relative time domain position is 1, which is the first transmission in the first PDSCH transmission.
  • the actual time domain position of the pre-DMRS in the second transmission is symbol 9, that is, its relative time domain position is 1, which is the first symbol in the second transmission of PDSCH.
  • FIG. 13 is a schematic diagram of the relative position of the pre-DMRS in the time domain provided by another embodiment of the application.
  • the PDSCH is transmitted for the first time at symbols 2-13 of time slot n, and in time slot n+ Symbols 2-13 of 1 are transmitted for the second time, and the actual time domain position of the pre-DMRS in the first transmission is symbol 2 in slot n, that is, its relative position in the time domain is 1, which is in the PDSCH The first symbol in the first transmission.
  • the actual time domain position of the pre-DMRS in the second transmission is symbol 2 in slot n+1, that is, its relative time domain position is 1, which is the first symbol in the second transmission of PDSCH.
  • the relative position of the pre-DMRS in the time domain on the repeated transmission is determined according to high-layer signaling and/or DCI.
  • the DCI sent by the network device to the terminal device can be used to uniquely determine the time domain relative position of the pre-DMRS on the repeated transmission.
  • the terminal device determines the timing of the pre-DMRS on the repeated transmission according to the DCI sent by the network device.
  • the relative position of the domain For another example, the terminal device can determine the relative position of the pre-DMRS in the time domain of multiple groups of repeated transmissions according to high-level signaling. Further, the terminal device can determine the relative position of the pre-DMRS in the time domain of the multiple groups of repeated transmissions according to DCI. Uniquely determines the relative position of the pre-DMRS in the time domain on the repeated transmission.
  • the relative position of the pre-DMRS in the time domain on the first transmission in the repeated transmission is determined according to higher layer signaling and/or DCI; the relative position of the pre-DMRS in the time domain on the non-first transmission is determined according to a preset rule of.
  • the preset rule negotiated between the terminal device and the network device is that the time-domain relative position of the pre-DMRS on the non-first transmission is the same as the time-domain relative position of the pre-DMRS on the first transmission. Based on this, the relative position of the pre-DMRS in the time domain on the non-first transmission can be inferred.
  • the DCI sent by the network device to the terminal device can be used to uniquely determine the time domain relative position of the pre-DMRS on the first transmission, and then according to preset rules, the time domain relative position of the pre-DMRS on the non-first transmission can be inferred. .
  • the terminal device can determine the relative position of the pre-DMRS in the time domain for the first transmission of multiple groups according to the high-level signaling, and then can infer the relative position of the pre-DMRS in the time domain on the non-first transmission according to a preset rule.
  • FIG. 14 is a schematic diagram of the relative position of the additional DMRS in the time domain provided by an embodiment of this application.
  • Time domain length l d 12
  • dmrs-Additional Position is configured as pos2
  • the terminal device is configured with PDSCH mapping type A. It can be determined from Table 7 that the symbols of the additional DMRS for one of the above-mentioned at least two transmissions are 6 and 9.
  • the symbols of the additional DMRS of the other transmission on at least two transmissions are 7 and 10.
  • the symbols of the front DMRS are all 2.
  • the relative position of the additional DMRS on the repeated transmission in the time domain is determined according to higher layer signaling and/or DCI.
  • the network device can establish the corresponding relationship between the dmrs-Additional Position and PDSCH mapping type A and the relative position of the additional DMRS in the time domain. Based on this, the terminal device can repeat the additional DMRS on the dmrs-Additional Position and PDSCH mapping type A.
  • the relative position in the time domain of the repeated transmission of the additional DMRS in the time domain is different.
  • the network device can establish the corresponding relationship between the relative position of the DCI and the additional DMRS in the time domain.
  • the terminal device can determine the relative position of the additional DMRS in the repeated transmission in the time domain through the DCI.
  • the relative position of the domain As another example, as shown in Table 7, the relative position of the additional DMRS on the repeated transmission in the time domain is determined based on DCI, dmrs-Additional Position, and PDSCH mapping type A.
  • the relative position of the pre-DMRS and the additional DMRS on the repeated transmission in the time domain can be indicated by high-layer signaling.
  • one or more high-level signaling can simultaneously indicate the pre-DMRS and the additional DMRS on the repeated transmission.
  • the relative position of the pre-DMRS and the additional DMRS in the time domain on the repeated transmission may be jointly indicated by DCI.
  • one or more DCIs may indicate the relative position of the pre-DMRS and the additional DMRS in the time domain on the repeated transmission at the same time.
  • the relative position of the pre-DMRS and the additional DMRS in the time domain on the repeated transmission may be jointly indicated by high-layer signaling and DCI.
  • high-layer signaling and one or more DCI can simultaneously indicate the relative positions of the pre-DMRS and the additional DMRS in the time domain on the repeated transmission. This application does not impose restrictions on this.
  • the relative position in the time domain of the additional DMRS on the first transmission in the repeated transmission is determined according to higher layer signaling and/or DCI; the relative position in the time domain of the additional DMRS on the non-first transmission is determined according to a preset rule.
  • a network device can establish a correspondence between dmrs-Additional Position and PDSCH mapping type A and the relative position of the additional DMRS in the first transmission. Based on this, the terminal device can use dmrs-Additional Position and PDSCH mapping type A for the first transmission.
  • the relative position of the additional DMRS on the time domain is determined according to higher layer signaling and/or DCI; the relative position in the time domain of the additional DMRS on the non-first transmission is determined according to a preset rule.
  • a network device can establish a correspondence between dmrs-Additional Position and PDSCH mapping type A and the relative position of the additional DMRS in the first transmission. Based on this, the terminal device can use dmr
  • the above-mentioned preset rule stipulates that if the above-mentioned repeated transmission is N transmissions, and the relative position of the additional DMRS in the i-th transmission in the time domain includes the symbol n, then the additional DMRS in the i+1-th transmission of the N-times transmission
  • the relative position of the DMRS in the time domain includes the symbol n+k, where i is a positive integer, n is an integer, and k is a positive integer.
  • the relative position in the time domain of the additional DMRS on the non-first transmission can be determined.
  • the network device may establish the correspondence between the DCI and the relative position in the time domain of the additional DMRS in the first transmission.
  • the terminal device can determine the relative position in the time domain of the additional DMRS in the first transmission through the DCI. Further, suppose that the above-mentioned preset rule stipulates that if the above-mentioned repeated transmission is N transmissions, and the relative position of the additional DMRS in the i-th transmission in the time domain includes the symbol n, then the additional DMRS in the i+1-th transmission of the N-times transmission The relative position of the DMRS in the time domain includes the symbol n+k, where i is a positive integer, n is an integer, and k is a positive integer. Based on this, the relative position in the time domain of the additional DMRS on the non-first transmission can be determined.
  • the relative position of the additional DMRS in the time domain on the first transmission is determined based on DCI, dmrs-Additional Position, and PDSCH mapping type A. Further, suppose that the above-mentioned preset rule stipulates that if the above-mentioned repeated transmission is N transmissions, and the relative position of the additional DMRS in the i-th transmission in the time domain includes the symbol n, then the additional DMRS in the i+1-th transmission of the N-times transmission The relative position of the DMRS in the time domain includes the symbol n+k, where i is a positive integer, n is an integer, and k is a positive integer. Based on this, the relative position in the time domain of the additional DMRS on the non-first transmission can be determined.
  • the relative position of the pre-DMRS and the additional DMRS in the time domain on the first transmission can be jointly indicated by high-layer signaling.
  • one or more high-level signaling can simultaneously indicate the pre-DMRS and the additional DMRS on the first transmission.
  • the relative positions of the pre-DMRS and the additional DMRS in the time domain on the first transmission may be indicated jointly by DCI.
  • one or more DCIs may simultaneously indicate the relative positions of the pre-DMRS and the additional DMRS in the time domain on the first transmission.
  • the relative position of the pre-DMRS and the additional DMRS in the time domain on the first transmission may be indicated jointly by higher layer signaling and DCI.
  • one or more high-level signaling and one or more DCI can simultaneously indicate the relative positions of the pre-DMRS and the additional DMRS in the time domain on the first transmission. This application does not impose restrictions on this.
  • Case 4 The relative positions of the pre-DMRS in the time domain on at least two transmissions are different, and the relative positions of the additional DMRS in the time domain on at least two transmissions are different.
  • the fourth situation is applicable to a scenario where the network equipment configures the pre-DMRS and the additional DMRS for repeated transmission, and the additional DMRS is carried in the repeated transmission.
  • Case 5 The time-domain relative positions of the preceding DMRS on at least two transmissions are the same, there is an additional DMRS on at least one of the at least two transmissions, and there is no additional DMRS on at least one of the at least two transmissions.
  • case 5 is applicable to the following scenario: the network device configures the pre-DMRS and the additional DMRS for repeated transmission, and in the repeated transmission, some transmissions carry additional DMRS, and some transmissions do not carry additional DMRS.
  • this situation can be understood as: the relative position of the additional DMRS in the time domain of at least two transmissions is different.
  • the terminal device is configured with PDSCH mapping type A, From Table 7, it can be determined that the symbols where the additional DMRS is located in at least one of the above-mentioned at least two transmissions are 6 and 9. There is no transmission of the additional DMRS in at least one of the at least two transmissions, that is, there is no symbol where the additional DMRS is located.
  • the relative position of the additional DMRS on the repeated transmission in the time domain is determined according to higher layer signaling and/or DCI.
  • the relative position of the additional DMRS on the repeated transmission in the time domain is determined according to higher layer signaling and/or DCI.
  • the relative position of the additional DMRS on the repeated transmission in the time domain is determined according to higher layer signaling and/or DCI.
  • Case 2 and Case 3 which will not be repeated here.
  • the relative position in the time domain of the additional DMRS on the first transmission in the repeated transmission is determined according to higher layer signaling and/or DCI; the relative position in the time domain of the additional DMRS on the non-first transmission is determined according to a preset rule.
  • a preset rule For details, please refer to Case 2 and Case 3, which will not be repeated here.
  • Case 6 The time-domain relative positions of the pre-DMRS on at least two transmissions are different, there is an additional DMRS on at least one of the at least two transmissions, and there is no additional DMRS on at least one of the at least two transmissions.
  • case 6 is applicable to the following scenario: the network device configures the pre-DMRS and the additional DMRS for repeated transmission, and in the repeated transmission, some transmissions carry additional DMRSs, and some transmissions do not carry additional DMRSs.
  • this situation can be understood as: the relative position of the additional DMRS in the time domain of at least two transmissions is different.
  • the relative position of the additional DMRS on the repeated transmission in the time domain is determined according to higher layer signaling and/or DCI.
  • the relative position of the additional DMRS on the repeated transmission in the time domain is determined according to higher layer signaling and/or DCI.
  • the relative position of the additional DMRS on the repeated transmission in the time domain is determined according to higher layer signaling and/or DCI.
  • Case 2 and Case 3 which will not be repeated here.
  • the relative position in the time domain of the additional DMRS on the first transmission in the repeated transmission is determined according to higher layer signaling and/or DCI; the relative position in the time domain of the additional DMRS on the non-first transmission is determined according to a preset rule.
  • a preset rule For details, please refer to Case 2 and Case 3, which will not be repeated here.
  • this application may also include: Case 7: Pre-DMRS and/or additional DMRS are present on at least one of the at least two transmissions, and no pre-DMRS and/or additional DMRS are present in at least one of the at least two transmissions.
  • the pre-DMRS and the additional DMRS are present on at least one of the at least two transmissions, and the pre-DMRS and the additional DMRS are not present in at least one of the at least two transmissions.
  • the preamble and additional DMRS exist on at least one of the at least two transmissions, so the relative position of the preamble and additional DMRS in the time domain is involved in the at least one transmission; at least one of the two transmissions does not exist.
  • Pre- and additional DMRS so the time-domain relative position of the pre- and additional DMRS is not involved in the at least one transmission; in summary, this can be understood as: the time-domain relative positions of the pre-DMRS on at least two transmissions are different , And the relative positions of the additional DMRS on at least two transmissions in the time domain are different. Therefore, reference may be made to the example in case four, which will not be repeated in this application.
  • Case 7 is applicable to the following scenario: When the number of symbols allocated to the time domain resources of the data channel is relatively small, such as two symbols, for two consecutive retransmissions, due to the closeness in the time domain, the latter The transmission may not include DMRS, and the DMRS of the previous transmission is used for channel estimation. This can reduce the overhead of DMRS.
  • both the terminal device and the network device can obtain the relative position of the reference signal in the time domain, and the relative position of the reference signal obtained by the terminal device side and the network device side presents the same results. Therefore, the time domain relative position of the reference signal obtained by the network equipment side can refer to the terminal equipment side.
  • the network equipment can configure the time domain relative position of the reference signal through high-level signaling and/or DCI. To the terminal equipment.
  • the relative position of the reference signal in the time domain can be determined internally according to high-level signaling or other pre-configuration methods.
  • the present application provides a method for determining the relative position of the DMRS in the time domain in the repeated transmission of the data channel. Further, between different repeated transmissions of the data channel, the time domain resource position where the DMRS is located is different in the relative time domain resource position of the time domain resource of the data channel, which can make the relative position of the DMRS in the time domain resource of the data channel As many as possible, it is helpful to perform channel estimation on more relative time domain resources and improve the demodulation performance of the data channel.
  • FIG. 15 is an interaction flowchart of a wireless communication method provided by still another embodiment of this application. The method includes the following steps:
  • Step S1501 The terminal device obtains the frequency domain relative position of the reference signal on the repeated transmission of the data channel; wherein the frequency domain relative position of the reference signal on at least two transmissions in the repeated transmission is different.
  • step S1502 the terminal device sends the reference signal at a relative position in the frequency domain of the reference signal.
  • Step S1503 The network device obtains the frequency domain relative position of the reference signal on the repeated transmission of the data channel.
  • step S1504 the network device receives the reference signal at a relative position in the frequency domain of the reference signal.
  • step S1503 can be executed before step S1501, or can be executed between step S1502 and step S1503.
  • the data channel in step S1501 to step S1504 is PUSCH.
  • FIG. 16 is an interaction flowchart of a wireless communication method provided by another embodiment of this application. The method includes the following steps:
  • Step S1601 The network device obtains the frequency domain relative position of the reference signal on the repeated transmission of the data channel; wherein the frequency domain relative position of the reference signal on at least two transmissions in the repeated transmission is different.
  • step S1602 the network device sends the reference signal at a relative position in the frequency domain of the reference signal.
  • Step S1603 The terminal device obtains the frequency domain relative position of the reference signal on the repeated transmission of the data channel.
  • step S1604 the terminal device receives the reference signal at a relative position in the frequency domain of the reference signal.
  • step S1603 can be executed before step S1601, or can be executed between step S1602 and step S1603.
  • the data channel in step S1601 to step S1604 is PDSCH.
  • the relative frequency domain position of the reference signal on the transmission is relative to the frequency domain position of the data channel on the transmission.
  • the frequency domain position of the data channel on the transmission (the time-frequency domain position may be the starting frequency domain position) is RE No. 0
  • the frequency domain relative position of the reference signal on the transmission is 1, the actual frequency domain position It is also at the 0th RE, that is, the frequency domain position of the reference signal on the transmission is in the starting frequency domain occupied by the data channel, that is, the 0th RE.
  • the network equipment is configured with a pre-DMRS for repeated transmission, or the network equipment is configured with a pre-DMRS and an additional DMRS for repeated transmission, and the additional DMRS is carried in the repeated transmission, or the network equipment is configured with a pre-delivery for repeated transmission DMRS and additional DMRS, and the additional DMRS is carried on part of the transmission in the repeated transmission, and the additional DMRS is not carried on the part of the transmission.
  • the relative positions of the reference signal in the frequency domain of at least two transmissions in the repeated transmission of the reference signal are different, which includes the following situations:
  • Case 1 The relative positions of the pre-DMRS in the frequency domain on at least two transmissions are different.
  • the first situation is applicable to the scenario where the network device configures the pre-DMRS for repeated transmission.
  • the frequency domain position k of the pre-DMRS can be determined by the following formula:
  • n 0,1,...
  • the parameter ⁇ determines the offset of the RE where the pre-DMRS is located relative to the reference RE.
  • the DMRS of different antenna ports can be on different REs, or on the same RE and different code domains to maintain orthogonality to each other.
  • Table 8 shows the values of ⁇ and k′ when the high-level parameter is configuration type 1
  • Table 9 shows the values of ⁇ and k′ when the high-level parameter is configuration type 2.
  • Fig. 17 is a schematic diagram of the relative position of the pre-DMRS in the frequency domain provided by an embodiment of the application. As shown in Fig. 17, DMRS configuration type 1 is adopted.
  • the pre-DMRS is The position of the RE in an RB is ⁇ 0, 2, 4, 6, 8, 10 ⁇ ; in the second transmission, the position of the RE in an RB of the pre-DMRS is ⁇ 1, 3, 5, 7, 9, 11 ⁇ .
  • the frequency domain relative position of the pre-DMRS on repeated transmission is determined according to high-layer signaling and/or DCI.
  • the frequency domain position of the pre-DMRS on the repeated transmission in the frequency domain relative position in the first transmission is the position of the RE within one RB is ⁇ 0, 2, 4, 6, 8 , 10 ⁇ ;
  • the position of the RE of the pre-DMRS in one RB is ⁇ 1, 3, 5, 7, 9, 11 ⁇ .
  • the DCI sent by the network device to the terminal device can be used to uniquely determine the frequency domain relative position of the pre-DMRS on the repeated transmission. Based on this, the terminal device determines the frequency of the pre-DMRS on the repeated transmission according to the DCI sent by the network device.
  • the relative position of the domain For another example, the terminal device can determine the relative position of the pre-DMRS in the frequency domain of multiple sets of repeated transmissions according to high-level signaling. Further, the terminal device can determine the relative position of the pre-DMRS in the frequency domain of the multiple sets of repeated transmissions according to DCI. Uniquely determines the frequency domain relative position of the pre-DMRS on repeated transmission.
  • the frequency domain relative position of the pre-DMRS on the first transmission in the repeated transmission is determined according to higher layer signaling and/or DCI; the frequency domain relative position of the pre-DMRS on the non-first transmission is determined according to a preset rule of.
  • the frequency domain position of the pre-DMRS on the repeated transmission in the frequency domain relative position in the first transmission is the position of the RE within one RB is ⁇ 0, 2, 4, 6, 8, 10 ⁇ .
  • the preset rule negotiated between the terminal equipment and the network equipment is: if the above repeated transmission is N transmissions, and the frequency domain relative position of the pre-DMRS signal in the i-th transmission includes REn, then the i-th transmission of the N-th transmission.
  • the relative position of the pre-DMRS signal in the frequency domain in the +1 transmission includes REn+k, where i is a positive integer, n is an integer, and k is a positive integer. Based on this, it can be inferred that the relative position of the pre-DMRS in the frequency domain is ⁇ 1, 3, 5, 7, 9, 11 ⁇ within an RB in the second transmission of the PDSCH.
  • the DCI sent by the network device to the terminal device can be used to uniquely determine the relative position of the pre-DMRS in the frequency domain on the first transmission. Based on this, the terminal device can infer that the pre-DMRS is in the second transmission in combination with the preset rules. , The relative position in the frequency domain in the third transmission... For another example: the terminal device can determine the relative frequency domain positions of multiple sets of pre-DMRS on the first transmission according to high-level signaling. Further, the terminal device can determine the relative frequency domain positions of multiple sets of pre-DMRS on the first transmission according to DCI. Uniquely determines the relative position of the pre-DMRS in the frequency domain on the first transmission. Based on this, the terminal device combined with the preset rules can infer the relative position of the pre-DMRS in the frequency domain during the second transmission, the third transmission, and so on.
  • Case 2 The frequency domain relative positions of the preamble DMRS on at least two transmissions are different, and the frequency domain relative positions of the additional DMRS on at least two transmissions are the same.
  • the second case is applicable to a scenario where the network device configures the pre-DMRS and the additional DMRS for repeated transmission, and the additional DMRS is carried in the repeated transmission.
  • the formulas in Case 1, Table 8 and Table 9 are also applicable to additional DMRS.
  • the frequency domain position of the additional DMRS on the repeated transmission is relative to the frequency domain position in the repeated transmission.
  • the position of the RE in one RB is ⁇ 1, 3, 5, 7, 9, 11 ⁇ .
  • the relative position of the additional DMRS on the repeated transmission in the frequency domain is determined according to high-layer signaling and/or DCI.
  • the network device can establish a correspondence between the DMRS configuration type and the relative position of the additional DMRS in the frequency domain. Based on this, the terminal device can determine the relative position of the additional DMRS in the frequency domain through the DMRS configuration type.
  • the network device may establish the corresponding relationship between the relative position of the DCI and the additional DMRS in the frequency domain. Based on this, the terminal device may determine the relative position of the additional DMRS in the frequency domain on repeated transmission through the DCI.
  • the relative position of the additional DMRS on the repeated transmission in the frequency domain can be determined jointly according to the DCI and the DMRS configuration type.
  • the relative positions of the pre-DMRS and the additional DMRS on the repeated transmission in the frequency domain can be jointly indicated by high-layer signaling.
  • one or more high-level signaling can simultaneously indicate the pre-DMRS and the additional DMRS on the repeated transmission.
  • the frequency-domain relative positions of the pre-DMRS and the additional DMRS on the repeated transmission can be jointly indicated by DCI.
  • one or more DCIs can simultaneously indicate the frequency-domain relative positions of the pre-DMRS and the additional DMRS on the repeated transmission.
  • the relative positions of the pre-DMRS and the additional DMRS in the frequency domain on the repeated transmission may be jointly indicated by high-layer signaling and DCI.
  • one or more high-level signaling and one or more DCI can simultaneously indicate the relative positions of the pre-DMRS and the additional DMRS in the frequency domain on the repeated transmission. This application does not impose restrictions on this.
  • the frequency domain relative position of the additional DMRS on the first transmission in the repeated transmission is determined according to higher layer signaling and/or DCI; the frequency domain relative position of the additional DMRS on the non-first transmission is determined according to a preset rule.
  • the network device may establish a corresponding relationship between the DMRS configuration type and the relative position of the additional DMRS in the frequency domain in the first transmission. Based on this, the terminal device may determine the relative position of the additional DMRS in the frequency domain in the first transmission. Further, it is assumed that the above-mentioned preset rule stipulates that the relative positions of the additional DMRS in the frequency domain in the non-first transmission and the first transmission are the same.
  • the relative position of the additional DMRS on the non-first transmission in the frequency domain can be determined.
  • the network device can establish the correspondence between the DCI and the relative position in the frequency domain of the additional DMRS in the first transmission. Based on this, the terminal device can determine the relative position in the frequency domain of the additional DMRS in the first transmission through the DCI. Further, it is assumed that the above-mentioned preset rule stipulates that the relative positions of the additional DMRS in the frequency domain in the non-first transmission and the first transmission are the same. Based on this, the relative position of the additional DMRS on the non-first transmission in the frequency domain can be determined.
  • the relative position of the additional DMRS in the frequency domain on the first transmission can be determined jointly according to the DCI and the DMRS configuration type. Further, it is assumed that the above-mentioned preset rule stipulates that the relative position of the additional DMRS in the frequency domain is the same in the non-first transmission and the first transmission. Based on this, the relative position of the additional DMRS on the non-first transmission in the frequency domain can be determined.
  • the relative positions of the pre-DMRS and the additional DMRS on the first transmission in the frequency domain can be jointly indicated by high-layer signaling.
  • one or more high-level signaling can simultaneously indicate the pre-DMRS and the additional DMRS on the first transmission.
  • the frequency domain relative positions of the pre-DMRS and the additional DMRS on the first transmission may be jointly indicated by DCI.
  • one or more DCIs may simultaneously indicate the frequency domain relative positions of the pre-DMRS and the additional DMRS on the first transmission.
  • the relative positions of the pre-DMRS and the additional DMRS in the frequency domain on the first transmission may be indicated by the high-layer signaling and DCI jointly.
  • one or more high-level signaling and one or more DCI can simultaneously indicate the relative positions of the pre-DMRS and the additional DMRS in the frequency domain on the first transmission. This application does not impose restrictions on this.
  • Case 3 The frequency domain relative position of the pre-DMRS on at least two transmissions is the same, and the frequency domain relative position of the additional DMRS on at least two transmissions is different.
  • the third case is applicable to a scenario where the network device configures the pre-DMRS and the additional DMRS for repeated transmission, and the additional DMRS is carried in the repeated transmission.
  • the position of the RE in one RB of the pre-DMRS on at least two transmissions in repeated transmissions is ⁇ 0, 2, 4, 6, 8, 10 ⁇ .
  • the frequency domain relative position of the pre-DMRS on repeated transmission is determined according to high-layer signaling and/or DCI.
  • DCI sent by the network device to the terminal device can be used to uniquely determine the frequency domain relative position of the pre-DMRS on the repeated transmission.
  • the terminal device determines the frequency of the pre-DMRS on the repeated transmission according to the DCI sent by the network device.
  • the relative position of the domain For another example, the terminal device can determine the relative position of the pre-DMRS in the frequency domain of multiple sets of repeated transmissions according to high-level signaling. Further, the terminal device can determine the relative position of the pre-DMRS in the frequency domain of the multiple sets of repeated transmissions according to DCI. Uniquely determines the frequency domain relative position of the pre-DMRS on repeated transmission.
  • the frequency domain relative position of the pre-DMRS on the first transmission in the repeated transmission is determined according to higher layer signaling and/or DCI; the frequency domain relative position of the pre-DMRS on the non-first transmission is determined according to a preset rule of.
  • a preset rule of For example: for DMRS configuration type 1, the relative position of the pre-DMRS in the frequency domain on the first transmission is that the position of the RE in the first transmission of the PDSCH is ⁇ 0, 2, 4, 6, 8, 10 ⁇ .
  • the preset rule negotiated between the terminal device and the network device is that the frequency domain relative position of the pre-DMRS on the non-first transmission is the same as the frequency domain relative position of the pre-DMRS on the first transmission.
  • the relative position of the pre-DMRS in the frequency domain on the non-first transmission can be inferred.
  • the DCI sent by the network device to the terminal device can be used to uniquely determine the frequency domain relative position of the pre-DMRS on the first transmission, and then according to preset rules, the frequency domain relative position of the pre-DMRS on the non-first transmission can be inferred.
  • the terminal device can determine the relative frequency domain positions of multiple sets of pre-DMRS on first transmission according to high-level signaling, and then can infer the relative frequency domain relative positions of pre-DMRS on non-first transmission according to preset rules.
  • FIG. 18 is a schematic diagram of the relative position of the additional DMRS in the frequency domain provided by an embodiment of this application.
  • DMRS configuration type 1 is adopted.
  • the position of the RE in the RB is ⁇ 0, 2, 4, 6, 8, 10 ⁇ ; in the second transmission, the position of the RE in one RB with the additional DMRS is ⁇ 1, 3, 5, 7, 9, 11 ⁇ .
  • the relative position of the additional DMRS on the repeated transmission in the frequency domain is determined according to high-layer signaling and/or DCI.
  • the network device can establish the corresponding relationship between the DMRS configuration type and the relative position of the additional DMRS in the frequency domain. Based on this, the terminal device can determine the relative position of the additional DMRS on the repeated transmission in the frequency domain, and the frequency domain of the additional DMRS on the repeated transmission. The relative position is different.
  • the network device can establish the corresponding relationship between the relative positions of the DCI and the additional DMRS in the frequency domain.
  • the terminal device can determine the relative position of the additional DMRS in the frequency domain on the repeated transmission through the DCI, and the frequency of the additional DMRS on the repeated transmission.
  • the relative position of the domain For another example: the relative position of the additional DMRS on the repeated transmission in the frequency domain is jointly determined according to the DCI and the DMRS configuration type.
  • the relative positions of the pre-DMRS and the additional DMRS on the repeated transmission in the frequency domain can be jointly indicated by high-layer signaling.
  • one or more high-level signaling can simultaneously indicate the pre-DMRS and the additional DMRS on the repeated transmission.
  • the frequency-domain relative positions of the pre-DMRS and the additional DMRS on the repeated transmission can be jointly indicated by DCI.
  • one or more DCIs can simultaneously indicate the frequency-domain relative positions of the pre-DMRS and the additional DMRS on the repeated transmission.
  • the relative positions of the pre-DMRS and the additional DMRS in the frequency domain on the repeated transmission may be jointly indicated by high-layer signaling and DCI.
  • one or more high-level signaling and one or more DCI can simultaneously indicate the relative positions of the pre-DMRS and the additional DMRS in the frequency domain on the repeated transmission. This application does not impose restrictions on this.
  • the frequency domain relative position of the additional DMRS on the first transmission in the repeated transmission is determined according to higher layer signaling and/or DCI; the frequency domain relative position of the additional DMRS on the non-first transmission is determined according to a preset rule.
  • the network device may establish a corresponding relationship between the DMRS configuration type and the relative position of the additional DMRS in the frequency domain in the first transmission. Based on this, the terminal device may determine the relative position of the additional DMRS in the frequency domain in the first transmission.
  • the above-mentioned preset rule stipulates that if the above-mentioned repeated transmission is N transmissions, and the relative frequency domain position of the additional DMRS in the i-th transmission includes REn, then the additional DMRS in the i+1-th transmission of the N-times transmission
  • the relative position in the frequency domain includes REn+k, where i is a positive integer, n is an integer, and k is a positive integer.
  • the relative position of the additional DMRS on the non-first transmission in the frequency domain can be determined.
  • the network device may establish the correspondence between the DCI and the relative position of the additional DMRS in the frequency domain in the first transmission.
  • the terminal device may determine the relative position of the additional DMRS in the frequency domain in the first transmission through the DCI.
  • the above-mentioned preset rule stipulates that if the above-mentioned repeated transmission is N transmissions, and the relative frequency domain position of the additional DMRS in the i-th transmission includes REn, then the additional DMRS in the i+1-th transmission of the N-times transmission
  • the relative position of the frequency domain includes REn+k, i is a positive integer, n is an integer, and k is a positive integer. Based on this, the relative position of the additional DMRS on the non-first transmission in the frequency domain can be determined.
  • the relative position of the additional DMRS in the frequency domain on the first transmission is jointly determined according to the DCI and DMRS configuration type.
  • the above-mentioned preset rule stipulates that if the above-mentioned repeated transmission is N transmissions, and the relative frequency domain position of the additional DMRS in the i-th transmission includes REn, then the additional DMRS in the i+1-th transmission of the N-times transmission
  • the relative position of the frequency domain includes REn+k, i is a positive integer, n is an integer, and k is a positive integer. Based on this, the relative position of the additional DMRS on the non-first transmission in the frequency domain can be determined.
  • the relative positions of the pre-DMRS and the additional DMRS on the first transmission in the frequency domain can be jointly indicated by high-layer signaling.
  • one or more high-level signaling can simultaneously indicate the pre-DMRS and the additional DMRS on the first transmission.
  • the frequency domain relative positions of the pre-DMRS and the additional DMRS on the first transmission may be jointly indicated by DCI.
  • one or more DCIs may simultaneously indicate the frequency domain relative positions of the pre-DMRS and the additional DMRS on the first transmission.
  • the relative positions of the pre-DMRS and the additional DMRS in the frequency domain on the first transmission may be indicated by the high-layer signaling and DCI jointly.
  • one or more high-level signaling and one or more DCI can simultaneously indicate the relative positions of the pre-DMRS and the additional DMRS in the frequency domain on the first transmission. This application does not impose restrictions on this.
  • Case 4 The frequency domain relative positions of the pre-DMRS on at least two transmissions are different, and the frequency domain relative positions of the additional DMRS on at least two transmissions are different.
  • the fourth situation is applicable to a scenario where the network equipment configures the pre-DMRS and the additional DMRS for repeated transmission, and the additional DMRS is carried in the repeated transmission.
  • Case 5 The frequency domain relative positions of the pre-DMRS on at least two transmissions are the same, there is an additional DMRS on at least one of the at least two transmissions, and there is no additional DMRS on at least one of the at least two transmissions.
  • case 5 is applicable to the following scenario: the network device configures the pre-DMRS and the additional DMRS for repeated transmission, and in the repeated transmission, some transmissions carry additional DMRS, and some transmissions do not carry additional DMRS.
  • DMRS configuration type 1 is adopted, and the position of the RE of the additional DMRS in one RB is ⁇ 0, 2, 4, 6, 8, 10 ⁇ . There is no transmission of the additional DMRS in at least one of the at least two transmissions, that is, there is no RE where the additional DMRS is located.
  • the relative position of the additional DMRS on the repeated transmission in the frequency domain is determined according to high-layer signaling and/or DCI.
  • the relative position of the additional DMRS on the repeated transmission in the frequency domain is determined according to high-layer signaling and/or DCI.
  • case 2 and Case 3 which will not be repeated here.
  • the frequency domain relative position of the additional DMRS on the first transmission in the repeated transmission is determined according to higher layer signaling and/or DCI; the frequency domain relative position of the additional DMRS on the non-first transmission is determined according to a preset rule.
  • a preset rule For details, please refer to Case 2 and Case 3, which will not be repeated here.
  • Case 6 The frequency domain relative positions of the pre-DMRS on at least two transmissions are different, there is an additional DMRS on at least one of the at least two transmissions, and there is no additional DMRS on at least one of the at least two transmissions.
  • case 6 is applicable to the following scenario: the network device configures the pre-DMRS and the additional DMRS for repeated transmission, and in the repeated transmission, some transmissions carry additional DMRSs, and some transmissions do not carry additional DMRSs.
  • the relative position of the additional DMRS on the repeated transmission in the frequency domain is determined according to high-layer signaling and/or DCI.
  • the relative position of the additional DMRS on the repeated transmission in the frequency domain is determined according to high-layer signaling and/or DCI.
  • case 2 and Case 3 which will not be repeated here.
  • the frequency domain relative position of the additional DMRS on the first transmission in the repeated transmission is determined according to higher layer signaling and/or DCI; the frequency domain relative position of the additional DMRS on the non-first transmission is determined according to a preset rule.
  • a preset rule For details, please refer to Case 2 and Case 3, which will not be repeated here.
  • Pre-DMRS and/or additional DMRS are present on at least one of the at least two transmissions, and no pre-DMRS and/or additional DMRS are present in at least one of the at least two transmissions.
  • the pre-DMRS and the additional DMRS are present on at least one of the at least two transmissions, and the pre-DMRS and the additional DMRS are not present in at least one of the at least two transmissions.
  • preamble and additional DMRS on at least one transmission in at least two transmissions so the relative position of the preamble and additional DMRS in the frequency domain is involved in this at least one transmission; at least one transmission in at least two transmissions does not exist Pre- and additional DMRS, so the frequency domain relative positions of the pre- and additional DMRS are not involved in the at least one transmission; in summary, this can be understood as: the frequency-domain relative positions of the pre-DMRS on at least two transmissions are different , And the relative positions of the additional DMRS in the frequency domain on at least two transmissions are different. Therefore, reference may be made to the example in case four, which will not be repeated in this application.
  • Case 7 is applicable to the following scenario: When the number of REs allocated to the frequency domain resources of the data channel is relatively small, such as two REs, for two consecutive retransmissions, due to the closeness in the frequency domain, the latter
  • the transmission may not include DMRS, and the DMRS of the previous transmission is used for channel estimation. This can reduce the overhead of DMRS.
  • both the terminal device and the network device can obtain the frequency domain relative position of the reference signal, and the frequency domain relative position of the reference signal obtained by the terminal device side and the network device side presents the same results. Therefore, the frequency domain relative position of the reference signal obtained by the network equipment side can refer to the terminal equipment side.
  • the network equipment can configure the frequency domain relative position of the reference signal through high-level signaling and/or DCI. To the terminal equipment.
  • the relative position of the reference signal in the frequency domain can be determined internally according to high-level signaling or other pre-configuration methods.
  • the present application provides a method for determining the relative position of the DMRS in the frequency domain in the repeated transmission of the data channel. Further, between different repeated transmissions of the data channel, the relative frequency domain resource position of the frequency domain resource location where the DMRS is located in the frequency domain resource of the data channel is different, which can make the relative position of the DMRS in the frequency domain resource of the data channel As many as possible, it is helpful to perform channel estimation on more relative frequency domain resources and improve the demodulation performance of the data channel.
  • FIG. 19 is an interaction flowchart of a wireless communication method provided by another embodiment of this application. The method includes the following steps:
  • Step S1901 The terminal device obtains the relative position in the time domain and the relative position in the frequency domain of the reference signal on the repeated transmission of the data channel; wherein the relative position in the time domain of the reference signal on at least two transmissions in the repeated transmission is different, and/or , The relative position of the frequency domain is different.
  • step S1902 the terminal device sends the reference signal at the relative position in the time domain and the relative position in the frequency domain of the reference signal.
  • Step S1903 The network device obtains the relative position in the time domain and the relative position in the frequency domain of the reference signal on the repeated transmission of the data channel.
  • step S1904 the network device receives the reference signal at a relative position in the time domain and a relative position in the frequency domain of the reference signal.
  • step S1903 can be executed before step S1901, or can be executed between step S1902 and step S1903.
  • the data channel in step S1901 to step S1904 is PUSCH.
  • FIG. 20 is an interaction flowchart of a wireless communication method provided by another embodiment of this application. The method includes the following steps:
  • Step S2001 The network device obtains the relative position in the time domain and the relative position in the frequency domain of the reference signal on the repeated transmission of the data channel; wherein the relative position in the time domain of the reference signal on at least two transmissions in the repeated transmission is different, and/or , The relative position of the frequency domain is different.
  • step S2002 the network device sends the reference signal at the relative position in the time domain and the relative position in the frequency domain of the reference signal.
  • Step S2003 the terminal device obtains the relative position in the time domain and the relative position in the frequency domain of the reference signal on the repeated transmission of the data channel.
  • step S2004 the terminal device receives the reference signal at a relative position in the time domain and a relative position in the frequency domain of the reference signal.
  • step S2003 can be executed before step S2001, or can be executed between step S2002 and step S2003.
  • the data channel in step S2001 to step S2004 is PDSCH.
  • the network equipment is configured with a pre-DMRS for repeated transmission, or the network equipment is configured with a pre-DMRS and an additional DMRS for repeated transmission, and the additional DMRS is carried in the repeated transmission, or the network equipment is configured with a pre-delivery for repeated transmission DMRS and additional DMRS, and the additional DMRS is carried on part of the transmission in the repeated transmission, and the additional DMRS is not carried on the part of the transmission.
  • Embodiment 1 for the different relative positions of the reference signals in the at least two transmissions in the repeated transmissions in the time domain, and reference may be made to the different relative positions of the reference signals in the frequency domains in the at least two transmissions in the repeated transmissions.
  • the second embodiment will not be repeated here.
  • the relative position of the reference signal in the time domain and the frequency domain of the reference signal on at least two transmissions in repeated transmissions are different, which includes the following situations:
  • Case 1 The relative positions of the pre-DMRS in the time domain on at least two transmissions are different, and the relative positions of the pre-DMRS in the frequency domain on at least two transmissions are different.
  • Case 2 The time domain relative positions of the pre-DMRS on at least two transmissions are different, and the frequency domain relative positions of the pre-DMRS on at least two transmissions are different, and the time domain relative positions of the additional DMRS on at least two transmissions The same, and the frequency domain relative position of the pre-DMRS on at least two transmissions is the same.
  • Case 3 The time domain relative positions of the pre-DMRS on at least two transmissions are the same, and the frequency domain relative positions of the pre-DMRS on at least two transmissions are the same, and the time domain relative positions of the additional DMRS on at least two transmissions are different , The relative positions of the additional DMRS in the frequency domain on at least two transmissions are different.
  • Case 4 The relative positions of the pre-DMRS in the time domain on at least two transmissions are different, and the relative positions in the frequency domain of the pre-DMRS on at least two transmissions are different, and the relative positions in the time domain of the additional DMRS on at least two transmissions are different , The relative positions of the additional DMRS in the frequency domain on at least two transmissions are different.
  • Case 5 The relative position of the pre-DMRS in the time domain on at least two transmissions is the same, and the relative position of the pre-DMRS in the frequency domain on at least two transmissions is the same, and there is an additional DMRS on at least one of the at least two transmissions, at least There is no additional DMRS for at least one of the two transmissions.
  • Case 6 The relative positions of the pre-DMRS in the time domain on at least two transmissions are different, and the relative positions of the pre-DMRS in the frequency domain on at least two transmissions are different, and there is an additional DMRS on at least one of the two transmissions, at least There is no additional DMRS for at least one of the two transmissions.
  • Pre-DMRS and/or additional DMRS are present on at least one of the at least two transmissions, and no pre-DMRS and/or additional DMRS are present in at least one of the at least two transmissions.
  • the present application provides a method for determining the relative position of the DMRS in the repeated transmission of the data channel in time and frequency. Further, between different repeated transmissions of the data channel, the relative time-frequency resource position of the time-frequency resource location where the DMRS is located is different in the time-frequency resource of the data channel, which can make the relative position of the DMRS in the time-frequency resource of the data channel As many as possible, it is beneficial to perform channel estimation on more relative time-frequency resources and improve the demodulation performance of the data channel.
  • FIG. 21 shows a schematic block diagram of a terminal device 2100 according to an embodiment of the present application. As shown in FIG. 21, the terminal device 2100 includes:
  • the processing unit 2101 is configured to obtain the relative position in the time domain and/or the relative position in the frequency domain of the reference signal on the repeated transmission of the data channel. Wherein, the relative positions of the reference signals in at least two transmissions in the repeated transmission are different in the time domain, and/or the relative positions in the frequency domain are different.
  • the reference signal includes: a pre-demodulation reference signal DMRS, and/or an additional DMRS.
  • the relative positions of the pre-DMRS in the time domain on at least two transmissions are different.
  • the time domain relative position of the pre-DMRS on at least two transmissions is different, and the time domain relative position of the additional DMRS on at least two transmissions is the same.
  • the time domain relative positions of the preamble DMRS on at least two transmissions are the same, and the time domain relative positions of the additional DMRS on at least two transmissions are different.
  • the time domain relative positions of the pre-DMRS on at least two transmissions are different, and the time domain relative positions of the additional DMRS on at least two transmissions are different.
  • the time-domain relative positions of the preceding DMRS on at least two transmissions are the same, the additional DMRS is present on at least one of the at least two transmissions, and the additional DMRS is not present on at least one of the at least two transmissions.
  • the time domain relative positions of the pre-DMRS on at least two transmissions are different, the additional DMRS exists on at least one of the at least two transmissions, and the additional DMRS does not exist on at least one of the at least two transmissions.
  • the frequency domain relative positions of the pre-DMRS on at least two transmissions are different.
  • the frequency domain relative positions of the preamble DMRS on at least two transmissions are different, and the frequency domain relative positions of the additional DMRS on at least two transmissions are the same.
  • the frequency domain relative positions of the preamble DMRS on at least two transmissions are the same, and the frequency domain relative positions of the additional DMRS on at least two transmissions are different.
  • the frequency domain relative positions of the preamble DMRS on at least two transmissions are different, and the frequency domain relative positions of the additional DMRS on at least two transmissions are different.
  • the frequency domain relative positions of the pre-DMRS on at least two transmissions are the same, the additional DMRS is present on at least one of the at least two transmissions, and the additional DMRS is not present on at least one of the at least two transmissions.
  • the frequency domain relative positions of the pre-DMRS on at least two transmissions are different, the additional DMRS exists on at least one of the at least two transmissions, and the additional DMRS does not exist on at least one of the at least two transmissions.
  • the preamble DMRS and/or the additional DMRS are present on at least one of the at least two transmissions, and the preamble DMRS and/or the additional DMRS are not present on at least one of the at least two transmissions.
  • the relative position in the time domain and/or the relative position in the frequency domain of the reference signal on the repeated transmission is determined according to the high-level signaling and/or the downlink control signaling DCI.
  • the relative position in the time domain and/or the relative position in the frequency domain of the reference signal on the first transmission in the repeated transmission is determined according to the high-level signaling and/or the downlink control signaling DCI.
  • the relative position in the time domain and/or the relative position in the frequency domain of the reference signal on the non-first transmission is determined according to a preset rule.
  • the repeated transmission is in one time unit, or in different time units.
  • the time unit is a time slot.
  • the data channel is a physical downlink shared channel PDSCH, or a physical uplink shared channel PUSCH.
  • the relative position of the reference signal on the transmission in the time domain is relative to the position of the data channel on the transmission in the time domain
  • the relative position of the reference signal on the transmission in the frequency domain is relative to the transmission The frequency domain position of the data channel on the
  • the terminal device 2100 further includes: a communication unit 2102, configured to implement communication with a network device.
  • a communication unit 2102 configured to implement communication with a network device.
  • the aforementioned communication unit may be a communication interface or a transceiver, or an input/output interface of a communication chip or a system-on-chip.
  • the aforementioned processing unit may be one or more processors.
  • terminal device 2100 may correspond to the terminal device in the method embodiment of the present application, and the foregoing and other operations and/or functions of each unit in the terminal device 2100 are used to implement the foregoing method embodiments. For the sake of brevity, the corresponding process of the terminal device will not be repeated here.
  • FIG. 22 shows a schematic block diagram of a network device 2200 according to an embodiment of the present application. As shown in FIG. 22, the network device 2200 belongs to the first network, and the network device 2200 includes:
  • the processing unit 2201 is configured to obtain the relative position in the time domain and/or the relative position in the frequency domain of the reference signal on the repeated transmission of the data channel. Wherein, the relative positions of the reference signals in at least two transmissions in the repeated transmission are different in the time domain, and/or the relative positions in the frequency domain are different.
  • the reference signal includes: a pre-demodulation reference signal DMRS, and/or an additional DMRS.
  • the relative positions of the pre-DMRS in the time domain on at least two transmissions are different.
  • the time domain relative positions of the preamble DMRS on at least two transmissions are different, and the time domain relative positions of the additional DMRS on at least two transmissions are the same.
  • the time domain relative positions of the preamble DMRS on at least two transmissions are the same, and the time domain relative positions of the additional DMRS on at least two transmissions are different.
  • the time domain relative positions of the pre-DMRS on at least two transmissions are different, and the time domain relative positions of the additional DMRS on at least two transmissions are different.
  • the time-domain relative positions of the preceding DMRS on at least two transmissions are the same, the additional DMRS is present on at least one of the at least two transmissions, and the additional DMRS is not present on at least one of the at least two transmissions.
  • the time domain relative positions of the pre-DMRS on at least two transmissions are different, the additional DMRS exists on at least one of the at least two transmissions, and the additional DMRS does not exist on at least one of the at least two transmissions.
  • the frequency domain relative positions of the pre-DMRS on at least two transmissions are different.
  • the frequency domain relative positions of the preamble DMRS on at least two transmissions are different, and the frequency domain relative positions of the additional DMRS on at least two transmissions are the same.
  • the frequency domain relative positions of the preamble DMRS on at least two transmissions are the same, and the frequency domain relative positions of the additional DMRS on at least two transmissions are different.
  • the frequency domain relative positions of the preamble DMRS on at least two transmissions are different, and the frequency domain relative positions of the additional DMRS on at least two transmissions are different.
  • the frequency domain relative positions of the pre-DMRS on at least two transmissions are the same, the additional DMRS is present on at least one of the at least two transmissions, and the additional DMRS is not present on at least one of the at least two transmissions.
  • the frequency domain relative positions of the pre-DMRS on at least two transmissions are different, the additional DMRS is present on at least one of the at least two transmissions, and the additional DMRS is not present on at least one of the at least two transmissions.
  • the preamble DMRS and/or the additional DMRS are present on at least one of the at least two transmissions, and the preamble DMRS and/or the additional DMRS are not present on at least one of the at least two transmissions.
  • a communication unit 2202 configured to send high-level signaling and/or DCI to the terminal device, and high-level signaling and/or downlink control signaling DCI is used to determine the relative position of the reference signal in the time domain for repeated transmission , And/or, relative position in the frequency domain.
  • a communication unit 2202 configured to send high-level signaling and/or DCI to the terminal device, and high-level signaling and/or downlink control signaling DCI are used to determine the time of the first transmission of the reference signal in the repeated transmission.
  • the relative position in the time domain and/or the relative position in the frequency domain of the reference signal on the non-first transmission is determined according to a preset rule.
  • the repeated transmission is in one time unit, or in different time units.
  • the time unit is a time slot.
  • the data channel is a physical downlink shared channel PDSCH, or a physical uplink shared channel PUSCH.
  • the relative position of the reference signal on the transmission in the time domain is relative to the position of the data channel on the transmission in the time domain
  • the relative position of the reference signal on the transmission in the frequency domain is relative to the transmission The frequency domain position of the data channel on the
  • the aforementioned communication unit may be a communication interface or a transceiver, or an input/output interface of a communication chip or a system-on-chip.
  • the aforementioned processing unit may be one or more processors.
  • the network device 2200 may correspond to the network device in the method embodiment of the present application, and the foregoing and other operations and/or functions of each unit in the network device 2200 are used to implement the foregoing method embodiments. For the sake of brevity, the corresponding process of the network device will not be repeated here.
  • FIG. 23 is a schematic structural diagram of a communication device 800 provided by an embodiment of the present application.
  • the communication device 800 shown in FIG. 23 includes a processor 810, and the processor 810 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the communication device 800 may further include a memory 820.
  • the processor 810 may call and run a computer program from the memory 820 to implement the method in the embodiment of the present application.
  • the memory 820 may be a separate device independent of the processor 810, or may be integrated in the processor 810.
  • the communication device 800 may further include a transceiver 830, and the processor 810 may control the transceiver 830 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 830 may include a transmitter and a receiver.
  • the transceiver 830 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 800 may specifically be a network device in an embodiment of the present application, and the communication device 800 may implement the corresponding process implemented by the network device in each method of the embodiment of the present application. For the sake of brevity, it will not be repeated here. .
  • the communication device 800 may specifically be a mobile terminal/terminal device of an embodiment of the application, and the communication device 800 may implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiment of the application.
  • I won’t repeat it here.
  • Fig. 24 is a schematic structural diagram of a device according to an embodiment of the present application.
  • the apparatus 900 shown in FIG. 24 includes a processor 910, and the processor 910 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the apparatus 900 may further include a memory 920.
  • the processor 910 may call and run a computer program from the memory 920 to implement the method in the embodiment of the present application.
  • the memory 920 may be a separate device independent of the processor 910, or may be integrated in the processor 910.
  • the device 900 may further include an input interface 930.
  • the processor 910 can control the input interface 930 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the device 900 may further include an output interface 940.
  • the processor 910 can control the output interface 940 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the device can be applied to the network equipment in the embodiments of the present application, and the device can implement the corresponding processes implemented by the network equipment in the various methods of the embodiments of the present application.
  • the device can implement the corresponding processes implemented by the network equipment in the various methods of the embodiments of the present application.
  • details are not described herein again.
  • the device can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the device can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the device can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the device can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the device mentioned in the embodiment of the present application may also be a chip.
  • it can be a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-chip.
  • FIG. 25 is a schematic block diagram of a communication system 1000 according to an embodiment of the present application. As shown in FIG. 25, the communication system 1000 includes a terminal device 1010 and a network device 1020.
  • the terminal device 1010 can be used to implement the corresponding function implemented by the terminal device in the above method
  • the network device 1020 can be used to implement the corresponding function implemented by the network device in the above method. For brevity, it will not be repeated here. .
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments may be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is to say, the memory in the embodiments of the present application is intended to include, but is not limited to, these and any other suitable types of memory.
  • the embodiments of the present application also provide a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application , For the sake of brevity, I won’t repeat it here.
  • the embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application, For the sake of brevity, I will not repeat them here.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program runs on the computer, it causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • I won’t repeat it here.
  • the computer program can be applied to the mobile terminal/terminal device in the embodiment of the present application.
  • the computer program runs on the computer, the computer executes each method in the embodiment of the present application. For the sake of brevity, the corresponding process will not be repeated here.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种无线通信方法、终端设备和网络设备,其中在数据信道的重复传输场景下,可以获取DMRS在数据信道的重复传输中的时域相对位置和/或频域相对位置的方法。重复传输中的至少两次传输上的参考信号的时域相对位置不同,和/或,频域相对位置不同。

Description

无线通信方法、终端设备和网络设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及一种无线通信方法、终端设备和网络设备。
背景技术
新空口(New Radio,NR)系统主要是为了支持增强移动宽带(Enhanced Mobile Broadband,eMBB)业务而设计的。其主要技术是为了满足高速率、高频谱效率、大带宽的需要。实际上,除了eMBB业务,还存在多种不同的业务类型,例如传感器网络、视频监控、可穿戴等业务,它们在速率、带宽、功耗、成本等方面与eMBB业务有着不同的需求。支持这些业务的终端相比支持eMBB的终端的能力是降低的,如支持的带宽减小、处理时间放松、天线数减少等。因此亟需采取一定的技术使得NR系统可以支持这类能力较低的终端工作。
基于此,考虑在NR系统中引入物理下行共享信道(Physical Downlink Shared Channel,PDSCH)、物理上行共享信道(Physical Uplink Shared Channel,PUSCH)等数据信道的重复传输,以实现数据信道的覆盖增强,通常这类数据信道承载有解调参考信号(Demodulation Reference Signal,DMRS)的传输,因此如何确定DMRS在数据信道的重复传输中的时域和/或频域位置是本申请亟待解决的技术问题。
发明内容
本申请实施例提供了一种无线通信方法、终端设备和网络设备。从而可以确定DMRS在数据信道的重复传输中的时域和/或频域位置。
第一方面,提供了一种无线通信方法,该方法包括:终端设备获取数据信道的重复传输上的参考信号的时域相对位置,和/或,频域相对位置。其中,重复传输中的至少两次传输上的参考信号的时域相对位置不同,和/或,频域相对位置不同。
第二方面,提供了一种无线通信方法,该方法包括:网络设备获取数据信道的重复传输上的参考信号的时域相对位置,和/或,频域相对位置。其中,重复传输中的至少两次传输上的参考信号的时域相对位置不同,和/或,频域相对位置不同。
第三方面,提供了一种终端设备,用于执行上述第一方面或其各实现方式中的方法。
具体地,该终端设备包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
第四方面,提供了一种网络设备,用于执行上述第二方面或其各实现方式中的方法。
具体地,该网络设备包括用于执行上述第二方面或其各实现方式中的方法的功能模块。
第五方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或其各实现方式中的方法。
第六方面,提供了一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面或其各实现方式中的方法。
第七方面,提供了一种装置,用于实现上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
具体地,该装置包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该装置的设备执行如上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第十方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
通过上述第一方面或第二方面的技术方案,在数据信道的重复传输场景下,本申请提供了确定DMRS在数据信道的重复传输中的时域相对位置和/或频域相对位置的方法。进一步地,数据信道的不同的重复传输之间,DMRS所在的时域相对位置在数据信道的时域资源中的相对时域资源位置不同,和/或,DMRS所在的频域相对位置在数据信道的频域资源中的相对频域资源位置不同,可以使得DMRS在数据信道的时域和/或频域资源中的相对位置尽可能的多,有利于在更多的相对时域和/或频域资源上进行信道估计,提高数据信道的解调性能。
附图说明
图1为本申请实施例提供的一种通信系统架构的示意性图;
图2为本申请一实施例提供的PDSCH的频域资源分配情况示意图;
图3为本申请另一实施例提供的PDSCH的频域资源分配情况示意图;
图4为本申请一实施例提供的DMRS的频域资源分配情况示意图;
图5为本申请另一实施例提供的DMRS的频域资源分配情况示意图;
图6为本申请一实施例提供的无线通信方法交互流程图;
图7为本申请另一实施例提供的无线通信方法交互流程图;
图8为本申请一实施例提供的PDSCH在时隙内重复传输的示意图;
图9为本申请一实施例提供的前置DMRS的时域相对位置的示意图;
图10为本申请一实施例提供的PDSCH在时隙间重复传输的示意图;
图11为本申请另一实施例提供的前置DMRS的时域相对位置的示意图;
图12为本申请一实施例提供的前置DMRS的时域相对位置的示意图;
图13为本申请另一实施例提供的前置DMRS的时域相对位置的示意图;
图14为本申请一实施例提供的附加DMRS的时域相对位置的示意图;
图15为本申请再一实施例提供的无线通信方法交互流程图;
图16为本申请另一实施例提供的无线通信方法交互流程图;
图17为本申请一实施例提供的前置DMRS的频域相对位置的示意图;
图18为本申请一实施例提供的附加DMRS的频域相对位置的示意图;
图19为本申请又一实施例提供的无线通信方法交互流程图;
图20为本申请另一实施例提供的无线通信方法交互流程图;
图21示出了根据本申请实施例的终端设备2100的示意性框图;
图22示出了根据本申请实施例的网络设备2200的示意性框图;
图23是本申请实施例提供的一种通信设备800示意性结构图;
图24是本申请实施例的装置的示意性结构图;
图25是本申请实施例提供的一种通信系统1000的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新空口(New Radio,NR)系统、NR系统的演进系统、免授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、免授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、下一代通信系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),以及车辆间(Vehicle to Vehicle,V2V)通信等,本申请实施例也可以应用于这些通信系统。
可选地,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
本申请实施例对应用的频谱并不限定。例如,本申请实施例可以应用于授权频谱,也可以应用于免授权频谱。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请实施例结合终端设备和网络设备描述了各个实施例,其中:终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。终端设备可以是WLAN中的站点(STAION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及下一代通信系统,例如,NR网络中的终端设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备或者基站(gNB)或者未来演进的PLMN网络中的网络设备等。
在本申请实施例中,网络设备为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
在介绍本申请技术方案之前,下面先介绍在NR系统中,在数据信道的单次传输中,如何确定DMRS的时频域位置。
NR系统中的下行数据传输:
网络设备通过下行授权(DL grant)的下行控制信令(Downlink control information,DCI),如DCI format 1_0或DCI format 1_1调度下行数据传输时,会在DCI中携带PDSCH的调度信息,包括时域和频域资源分配信息。其中,时域资源分配信息通过时域资源分配值(Time Domain Resource Allocation,TDRA)域指示,该域包含4比特(bit),其可以指示一个资源分配表格中的16个不同的行,每一行包含不同的资源分配组合,例如:该资源分配组合包括:PDSCH的起始符号S,长度L,k0以及不同的type等。其中,k0表示DCI所在的时隙(slot)和PDSCH所在的时隙(slot)之间的时隙偏移。在NR系统中,PDSCH的起始符号S和长度L不再固定,而是如上所述,起始符号S和长度L是通过DCI中的TDRA指示的。S和L的取值不是随意的,而是通过联合编码,组成一个起始和长度指示值(the start and length indicator,SLIV),可选的取值范围如表1所示:
表1
Figure PCTCN2020090707-appb-000001
Figure PCTCN2020090707-appb-000002
其中,表1中PDSCH映射类型,即时域资源分配有两种方式:Type A和Type B。简单来说,Type A和Type B的区别就是两种方式对应的S和L候选值的取值范围不一样。Type A主要面向基于时隙(slot-based)的业务,S比较靠前,L比较长。而Type B主要面向高可靠低时延通信(Ultra-Reliable and Low Latency Communication,URLLC)业务,其对时延要求较高,所以S的位置比较灵活,以便传输随时到达的URLLC业务,L较短,从而可以降低传输时延。
表2是TDRA指示域对应的缺省表格A,当终端设备接收到DCI,获得TDRA信息时,按照缺省表格A确定TDRA对应的SLIV。
表2
Figure PCTCN2020090707-appb-000003
PDSCH的频域资源的分配方式有两种:Type0和Type1。
Type0频域资源分配方式引入资源块组(Resource Block Group,RBG),简而言之,一个RBG是由若干个RB组成。其中,一个RGB包括的RB的数量和无线资源控制(Radio Resource Control,RRC)配置以及部分带宽(Bandwidth Part,BWP)大小有关,其中,RRC配置包括:配置1(Configuration 1)和配置2(Configuration 2)。例如:通过表3即可确定RBG包括的RB的数量。
表3
BWP大小(Bandwidth Part Size) 配置1(Configuration 1) 配置2(Configuration 2)
1–36 2 4
37–72 4 8
73–144 8 16
145–275 16 16
假设BWP的大小为14个RB,RRC配置RBG为Configuration 1,查表3得到一个RBG包括的RB的数量是2。
进一步地,每个RBG会对应1bit,如果某个RBG对应的1bit被置为1,则表示该RBG被分配给了PDSCH,如果某个RBG对应的1bit被置为0,则表示该RBG未被分配给PDSCH。图2为本申请一实施例提供的PDSCH的频域资源分配情况示意图,如图2所示,PDSCH的频域资源(RBG)分配可以用“0101010”表示。
Type1频域资源分配方式通过将资源的起始位置S和长度L联合编码,组成一个资源指示值(Resource Indication Value,RIV)。一组(S,L)和一个RIV值一一对应,终端设备通过RIV值便可以推出对应的(S,L)。图3为本申请另一实施例提供的PDSCH的频域资源分配情况示意图,如图3所示,假设终端设备根据RIV值得到S=2,L=7,则对应的起始RB为索引或者编号为2的RB,之后连续占用7个RB。
PDSCH的传输包括DMRS的传输,用于终端设备对PDSCH进行解调。DMRS的时频资源位于PDSCH的调度资源范围内。其中,DMRS的时频域资源位置通过高层参数进行配置。
下面分别介绍在单次传输中,DMRS的时频域资源位置的确定方法:
DMRS包括前置(front loaded)DMRS,或者,DMRS包括:前置DMRS和附加(additional)DMRS。
前置DMRS的时域位置与PDSCH mapping type有关。对于PDSCH mapping type A,前置DMRS的时域位置通过高层参数dmrs-TypeA-Position确定,dmrs-TypeA-Position=’pos2’和’pos3’,dmrs-TypeA-Position=’pos2’表示前置DMRS的第一个符号位置l 0=2,dmrs-TypeA-Position=’pos3表示前置DMRS的第一个符号位置l 0=3,l的参考点为PDSCH占用时隙的起始符号。对于PDSCH mapping type B,前置DMRS的第一个符号位置l 0=0,l的参考点为调度的PDSCH的起始符号。同时,对于前置DMRS,还分为单符号(single-symbol)和双符号(double-symbol)两种类型,分别表示DMRS包含的符号个数是一个还是一个或者两个。如果高层参数maxLength没有配置,则DMRS为single类型,如果高层参数maxLength被配置了,则根据终端设备接收到的DCI的指示来确定是single还是double。
附加DMRS的时域位置由高层参数dmrs-Additional Position配置。当dmrs-AdditionalPosition没有配置,则附加DMRS的时域位置=pos2。当dmrs-AdditionalPosition被配置了,则dmrs-AdditionalPosition可以指示附加DMRS的位置={pos0,pos1,pos3}中的一种。
DMRS的频域资源位置的确定是根据高层参数dmrs-Type决定的。dmrs-Type包括DMRS configuration type 1和DMRS configuration type 2。图4为本申请一实施例提供的DMRS的频域资源分配情况示意图,如图4所示,对于DMRS configuration type 1,DMRS在频域上每隔1个资源元素(Resource Element,RE)分布一个。
图5为本申请另一实施例提供的DMRS的频域资源分配情况示意图,如图5所示,对于DMRS configuration type 2,DMRS所在的RE组包含连续的两个RE,RE组之间间隔6个RE。
NR系统中的上行数据传输
在NR系统中,网络设备发送上行授权(UL grant),如DCI format 0_0或DCI format 0_1调度PUSCH传输。其中,网络设备通过UL grant的DCI调度上行数据传输时,会在DCI中携带TDRA,该TDRA长度为4bit,可以指示一个资源分配表格中的16个不同的行,每一行包含不同的资源分配组合,比如PUSCH的起始位置S,长度L,k2,以及不同的类型等。其中,k2表示DCI所在的时隙和PUSCH所在的时隙之间的偏移时隙的个数。PUSCH时域资源分配的类型包括Type A和Type B。Type A和Type B的区别就是两种方式对应的S和L候选值的取值范围不一样。Type A主要面向基于时隙(slot-based)的业务,S比较靠前,L比较长。而Type B主要面向URLLC业务,对时延要求较高,所以S的位置比较灵活,以便传输随时到达的URLLC业务,L较短,可降低传输时延。S和L可选的取值范围如表4所示。
表4
Figure PCTCN2020090707-appb-000004
Figure PCTCN2020090707-appb-000005
表5是TDRA指示域对应的缺省表格A,当终端设备接收到DCI,获得TDRA信息时,按照缺省表格A确定TDRA对应的PUSCH的起始位置S,长度L,K2,以及不同的类型。
表5
Figure PCTCN2020090707-appb-000006
PUSCH的频域资源的分配方式有两种:Type0和Type1。
PUSCH的频域资源的分配方式可以通过高层信令配置,也可以通过DCI动态指示。Type0频域资源分配方式通过位图(bitmap)指示分配给终端设备的RBG,RBG包含的RB的数量由高层参数配置,如配置1(Configuration 1)和配置2(Configuration 2)和BWP大小有关,例如:通过表6即可确定RBG包括的RB的数量。表6:
BWP大小(Bandwidth Part Size) 配置1(Configuration 1) 配置2(Configuration 2)
1–36 2 4
37–72 4 8
73–144 8 16
145–275 16 16
Type1频域资源分配方式通过将资源的起始位置S和长度L联合编码,组成一个RIV。一组(S,L)和一个RIV值一一对应,终端设备通过RIV值便可以推出对应的(S,L)。
其中,PUSCH承载的DMRS(即PUSCH DMRS)也包括前置DMRS和附加DMRS。PUSCH DMRS的时域和频域位置的配置方法与PDSCH承载的DMRS(PDSCH DMRS)的时域和频域位置的配置方法类似,对此不再赘述。与PUSCH DMRS的配置有关的高层参数也包括了dmrs-TypeA-Position,dmrs-AdditionalPosition,maxLength等。
上面详细描述了在PDSCH和PUSCH这类数据信道的单次传输上的DMRS的时频域位置确定方法。然而,如上所述,目前亟需采取一定的技术使得NR系统可以支持能力较低的终端工作。基于此,考虑在NR系统中引入数据信道的重复传输,以实现数据信道的覆盖增强,基于此,如何确定DMRS在数据信道的重复传输中的时域和/或频域位置是本申请亟待解决的技术问题。
为了解决上述技术问题,本申请提供一种无线通信方法、终端设备和网络设备。本申请的发明构思是:由于DMRS是用于解调PDSCH、PUSCH等数据信道,以对数据信道进行评估,为了提高信道评估的精度,因此在数据信道的不同的重复传输之间,DMRS所在的时频资源位置在数据信道的时频资源中的相对时频资源位置不同,使得DMRS在数据信道的时频资源中的相对位置尽可能的多。
以下通过具体实施例详述本申请的技术方案。
需要说明的是,针对上行数据信道的重复传输和下行数据信道的重复传输,如上所述,数据信道 上承载有参考信号,该参考信号用于解调数据信道,例如在NR系统中,该参考信号包括:前置DMRS,和/或,附加DMRS。其中,对于终端设备和网络设备均需要获取数据信道的重复传输上参考信号所在的时频域位置,并在对应的时频域位置传输参考信道。下面将本申请技术方案分为如下几部分:
一、终端设备和网络设备在数据信道的重复传输中,获取参考信号所在的时域相对位置的情况。二、终端设备和网络设备在数据信道的重复传输中,获取参考信号所在的频域相对位置的情况。三、终端设备和网络设备在数据信道的重复传输中,获取参考信号所在的时域相对位置和频域相对位置的情况。
实施例一
针对上行数据信道的重复传输:图6为本申请一实施例提供的无线通信方法交互流程图,该方法包括如下步骤:
步骤S601:终端设备获取数据信道的重复传输上的参考信号的时域相对位置;其中,重复传输中的至少两次传输上的参考信号的时域相对位置不同。
可选地,步骤S602:终端设备在参考信号的时域相对位置发送参考信号。
步骤S603:网络设备获取数据信道的重复传输上的参考信号的时域相对位置。
可选地,步骤S604:网络设备在参考信号的时域相对位置接收参考信号。
需要说明的是,本申请对上述步骤S603与步骤S601、步骤S602的先后顺序不做限制,例如:步骤S603可以在步骤S601之前执行,也可以在步骤S602和步骤S603之间执行。
可选地,步骤S601至步骤S604中的数据信道是PUSCH。
针对下行数据信道的重复传输:图7为本申请另一实施例提供的无线通信方法交互流程图,该方法包括如下步骤:
步骤S701:网络设备获取数据信道的重复传输上的参考信号的时域相对位置;其中,重复传输中的至少两次传输上的参考信号的时域相对位置不同。
可选地,步骤S702:网络设备在参考信号的时域相对位置发送参考信号。
步骤S703:终端设备获取数据信道的重复传输上的参考信号的时域相对位置。
可选地,步骤S704:终端设备在参考信号的时域相对位置接收参考信号。
需要说明的是,本申请对上述步骤S703与步骤S701、步骤S702的先后顺序不做限制,例如:步骤S703可以在步骤S701之前执行,也可以在步骤S702和步骤S703之间执行。
可选地,步骤S701至步骤S704中的数据信道是PDSCH。
下面将针对重复传输中的至少两次传输上的参考信号的时域相对位置不同进行解释说明,其适用于上行数据信道的重复传输场景,也适用于下行数据信道的重复传输场景。
需要说明的是,针对重复传输上的任一传输,该传输上的参考信号的时域相对位置是相对于该传输上的数据信道的时域位置。例如:该传输上的数据信道的时域位置(该时域位置可以是起始时域位置)为符号2,而该传输上的参考信号的时域相对位置是1,实际时域位置在符号2处,即该传输上的参考信号的时域位置是在该数据信道所占用的起始符号上,即符号2。
可选地,网络设备为重复传输配置前置DMRS,或者,网络设备为重复传输配置前置DMRS和附加DMRS,并且在重复传输中均承载有附加DMRS,或者,网络设备为重复传输配置前置DMRS和附加DMRS,并且在重复传输中部分传输上承载有附加DMRS,部分传输上未承载有附加DMRS。基于此,针对参考信号的重复传输中的至少两次传输上的参考信号的时域相对位置不同,其包括如下几种情况:
情况一:至少两次传输上的前置DMRS的时域相对位置不同。
其中,情况一适用于网络设备为重复传输配置前置DMRS的场景。
可选地,上述重复传输在一个时间单元内或者在不同的时间单元内,该时间单元可以为一个时隙或者多个时隙,本申请对此不做限制。
示例性地,以下为PDSCH重复传输的两种可能的情况,如时隙内重复传输或者时隙间重复传输。
图8为本申请一实施例提供的PDSCH在时隙内重复传输的示意图,图9为本申请一实施例提供的前置DMRS的时域相对位置的示意图,结合图8和图9,PDSCH在时隙n的符号3-6进行第一次传输,在时隙n的符号9-12进行第二次传输,而前置DMRS在第一次传输中的实际时域位置为符号3,即其时域相对位置为1,也就是在PDSCH的第一次传输中的第一个符号。前置DMRS在第二次传输中的实际时域位置为符号10,即其时域相对位置为2,也就是在PDSCH的第二次传输中的第二个符号。
图10为本申请一实施例提供的PDSCH在时隙间重复传输的示意图,图11为本申请另一实施例提供的前置DMRS的时域相对位置的示意图,结合图10和图11,PDSCH在时隙n的符号2-13进行 第一次传输,在时隙n+1的符号2-13进行第二次重复传输,而前置DMRS在第一次传输中的实际时域位置为时隙n中的符号2,即其时域相对位置为1,也就是在PDSCH的第一次传输中的第一个符号。前置DMRS在第二次传输中的实际时域位置为时隙n+1中的符号3,即其时域相对位置为2,也就是在PDSCH的第二次传输中的第二个符号。
可选地,重复传输上的前置DMRS的时域相对位置是根据高层信令和/或DCI确定的。例如:对于PDSCH mapping type A,重复传输上的前置DMRS的时域位置通过高层参数dmrs-TypeA-Position确定,dmrs-TypeA-Position=1,2……分别表示前置DMRS的时域相对位置是在PDSCH的第一次传输中的第一个符号,在第二次传输中的第二个符号……。再例如:网络设备向终端设备发送的DCI可以用于唯一确定重复传输上的前置DMRS的时域相对位置,基于此,终端设备根据网络设备发送的DCI确定重复传输上的前置DMRS的时域相对位置。再例如:终端设备根据高层信令可以确定多组重复传输上的前置DMRS的时域相对位置,进一步地,终端设备可以根据DCI在多组重复传输上的前置DMRS的时域相对位置中唯一确定重复传输上的前置DMRS的时域相对位置。
可选地,重复传输中首次传输上的前置DMRS的时域相对位置是根据高层信令和/或DCI确定的;非首次传输上的前置DMRS的时域相对位置是根据预设规则确定的。例如:对于PDSCH mapping type A,首次传输上的前置DMRS的时域位置通过高层参数dmrs-TypeA-Position确定,dmrs-TypeA-Position=1,表示前置DMRS的时域相对位置是在PDSCH的第一次传输中的第一个符号。而终端设备和网络设备之间协商的预设规则是:若上述重复传输为N次传输,其第i次传输中的前置DMRS信号的时域相对位置包括符号n,则N次传输的第i+1次传输中的前置DMRS信号的时域相对位置包括符号n+k,i为正整数,n为整数,k为正整数。当k=1,且前置DMRS的时域相对位置是在PDSCH的第一次传输中的第一个符号,基于此,可以推断出,前置DMRS的时域相对位置是在PDSCH的第二次传输中的第二个符号,前置DMRS的时域相对位置是在PDSCH的第三次传输中的第三个符号。再例如:网络设备向终端设备发送的DCI可以用于唯一确定首次传输上的前置DMRS的时域相对位置,基于此,终端设备再结合预设规则可以推断出前置DMRS在第二次传输、第三次传输……中的时域相对位置。再例如:终端设备根据高层信令可以确定多组首次传输上的前置DMRS的时域相对位置,进一步地,终端设备可以根据DCI在多组首次传输上的前置DMRS的时域相对位置中唯一确定首次传输上的前置DMRS的时域相对位置。基于此,终端设备再结合预设规则可以推断出前置DMRS在第二次传输、第三次传输……中的时域相对位置。
情况二:至少两次传输上的前置DMRS的时域相对位置不同,至少两次传输上的附加DMRS的时域相对位置相同。
其中,情况二适用于网络设备为重复传输配置前置DMRS和附加DMRS,并且在重复传输中均承载有附加DMRS的场景。
需要说明的是,至少两次传输上的前置DMRS的时域相对位置不同的示例可参考情况一中的示例,本申请对此不再赘述。
可选地,上述重复传输在一个时间单元内或者在不同的时间单元内,该时间单元可以为一个时隙或者多个时隙,本申请对此不做限制。
示例性地,以PDSCH在间隙内重复传输为例,若终端设备接收到的DCI指示PDSCH的时域长度l d=12,dmrs-Additional Position配置为pos2,且终端设备被配置PDSCH mapping type A,通过表7可以确定在上述至少两次传输上的附加DMRS所在的符号均为6和9。
表7
Figure PCTCN2020090707-appb-000007
Figure PCTCN2020090707-appb-000008
可选地,重复传输上的附加DMRS的时域相对位置是根据高层信令和/或DCI确定的。例如:网络设备可以建立dmrs-Additional Position和PDSCH mapping type A联合与附加DMRS的时域相对位置的对应关系,基于此,终端设备可以通过dmrs-Additional Position和PDSCH mapping type A重复传输上的附加DMRS的时域相对位置。再例如:网络设备可以建立DCI与附加DMRS的时域相对位置的对应关系,基于此,终端设备可以通过DCI确定重复传输上的附加DMRS的时域相对位置。再例如:如表7所示,重复传输上的附加DMRS的时域相对位置是根据DCI、dmrs-Additional Position和PDSCH mapping type A共同确定的。
需要说明的是,重复传输上的前置DMRS和附加DMRS的时域相对位置可以通过高层信令联合指示,例如:通过一个或者多个高层信令可以同时指示重复传输上的前置DMRS和附加DMRS的时域相对位置。或者,重复传输上的前置DMRS和附加DMRS的时域相对位置可以通过DCI联合指示,例如:通过一个或者多个DCI可以同时指示重复传输上的前置DMRS和附加DMRS的时域相对位置。或者,重复传输上的前置DMRS和附加DMRS的时域相对位置可以通过高层信令和DCI联合指示。例如:通过一个或者多个高层信令和一个或者多个DCI可以同时指示重复传输上的前置DMRS和附加DMRS的时域相对位置。本申请对此不做限制。
可选地,重复传输中首次传输上的附加DMRS的时域相对位置是根据高层信令和/或DCI确定的;非首次传输上的附加DMRS的时域相对位置是根据预设规则确定的。例如:网络设备可以建立dmrs-Additional Position和PDSCH mapping type A联合与首次传输中的附加DMRS的时域相对位置的对应关系,基于此,终端设备可以通过dmrs-Additional Position和PDSCH mapping type A首次传输上的附加DMRS的时域相对位置。进一步地,假设上述预设规则规定非首次传输和首次传输中附加DMRS的时域相对位置相同。基于此,可以确定非首次传输上的附加DMRS的时域相对位置。再例如:网络设备可以建立DCI与首次传输中附加DMRS的时域相对位置的对应关系,基于此,终端设备可以通过DCI确定首次传输上的附加DMRS的时域相对位置。进一步地,假设上述预设规则规定非首次传输和首次传输中附加DMRS的时域相对位置相同。基于此,可以确定非首次传输上的附加DMRS的时域相对位置。再例如:如表7所示,首次传输上的附加DMRS的时域相对位置是根据DCI、dmrs-Additional Position和PDSCH mapping type A共同确定的。进一步地,假设上述预设规则规定非首次传输和首次传输中附加DMRS的时域相对位置相同。基于此,可以确定非首次传输上的附加DMRS的时域相对位置。
需要说明的是,首次传输上的前置DMRS和附加DMRS的时域相对位置可以通过高层信令联合指示,例如:通过一个或者多个高层信令可以同时指示首次传输上的前置DMRS和附加DMRS的时域相对位置。或者,首次传输上的前置DMRS和附加DMRS的时域相对位置可以通过DCI联合指示,例如:通过一个或者多个DCI可以同时指示首次传输上的前置DMRS和附加DMRS的时域相对位置。或者,首次传输上的前置DMRS和附加DMRS的时域相对位置可以通过高层信令和DCI联合指示。例如:通过一个或者多个高层信令和一个或者多个DCI可以同时指示首次传输上的前置DMRS和附加DMRS的时域相对位置。本申请对此不做限制。
情况三:至少两次传输上的前置DMRS的时域相对位置相同,至少两次传输上的附加DMRS的时域相对位置不同。
其中,情况三适用于网络设备为重复传输配置前置DMRS和附加DMRS,并且在重复传输中均承载有附加DMRS的场景。
可选地,上述重复传输在一个时间单元内或者在不同的时间单元内,该时间单元可以为一个时隙或者多个时隙,本申请对此不做限制。
示例性地,以下为PDSCH重复传输的两种可能的情况,如时隙内重复传输或者时隙间重复传输。
图12为本申请一实施例提供的前置DMRS的时域相对位置的示意图,结合图8和图12,PDSCH在时隙n的符号3-6进行第一次传输,在时隙n的符号9-12进行第二次重复传输,而前置DMRS在第一次传输中的实际时域位置为符号3,即其时域相对位置为1,也就是在PDSCH的第一次传输中的第一个符号。前置DMRS在第二次传输中的实际时域位置为符号9,即其时域相对位置为1,也就是在PDSCH的第二次传输中的第一个符号。
图13为本申请另一实施例提供的前置DMRS的时域相对位置的示意图,结合图10和图13,PDSCH在时隙n的符号2-13进行第一次传输,在时隙n+1的符号2-13进行第二次重复传输,而前置DMRS在第一次传输中的实际时域位置为时隙n中的符号2,即其时域相对位置为1,也就是在PDSCH 的第一次传输中的第一个符号。前置DMRS在第二次传输中的实际时域位置为时隙n+1中的符号2,即其时域相对位置为1,也就是在PDSCH的第二次传输中的第一个符号。
可选地,重复传输上的前置DMRS的时域相对位置是根据高层信令和/或DCI确定的。例如:对于PDSCH mapping type A,重复传输上的前置DMRS的时域位置通过高层参数dmrs-TypeA-Position确定,dmrs-TypeA-Position=1,表示前置DMRS的时域相对位置是在PDSCH的每次传输中的第一个符号。再例如:网络设备向终端设备发送的DCI可以用于唯一确定重复传输上的前置DMRS的时域相对位置,基于此,终端设备根据网络设备发送的DCI确定重复传输上的前置DMRS的时域相对位置。再例如:终端设备根据高层信令可以确定多组重复传输上的前置DMRS的时域相对位置,进一步地,终端设备可以根据DCI在多组重复传输上的前置DMRS的时域相对位置中唯一确定重复传输上的前置DMRS的时域相对位置。
可选地,重复传输中首次传输上的前置DMRS的时域相对位置是根据高层信令和/或DCI确定的;非首次传输上的前置DMRS的时域相对位置是根据预设规则确定的。例如:对于PDSCH mapping type A,首次传输上的前置DMRS的时域位置通过高层参数dmrs-TypeA-Position确定,dmrs-TypeA-Position=1,表示前置DMRS的时域相对位置是在PDSCH的第一次传输中的第一个符号。而终端设备和网络设备之间协商的预设规则是:非首次传输上的前置DMRS的时域相对位置和首次传输上的前置DMRS的时域相对位置相同。基于此,可以推断出非首次传输上的前置DMRS的时域相对位置。再例如:网络设备向终端设备发送的DCI可以用于唯一确定首次传输上的前置DMRS的时域相对位置,再根据预设规则可以推断出非首次传输上的前置DMRS的时域相对位置。再例如:终端设备根据高层信令可以确定多组首次传输上的前置DMRS的时域相对位置,再根据预设规则可以推断出非首次传输上的前置DMRS的时域相对位置。
如情况三所述,至少两次传输上的附加DMRS的时域相对位置不同。示例性地,图14为本申请一实施例提供的附加DMRS的时域相对位置的示意图,如图14所示,以PDSCH在间隙内重复传输为例,若终端设备接收到的DCI指示PDSCH的时域长度l d=12,dmrs-Additional Position配置为pos2,且终端设备被配置PDSCH mapping type A,通过表7可以确定在上述至少两次传输上的一次传输的附加DMRS所在的符号为6和9。而至少两次传输上的另一次传输的附加DMRS所在的符号为7和10。前置DMRS所在的符号均为2。
可选地,重复传输上的附加DMRS的时域相对位置是根据高层信令和/或DCI确定的。例如:网络设备可以建立dmrs-Additional Position和PDSCH mapping type A联合与附加DMRS的时域相对位置的对应关系,基于此,终端设备可以通过dmrs-Additional Position和PDSCH mapping type A重复传输上的附加DMRS的时域相对位置,其重复传输上的附加DMRS的时域相对位置不同。再例如:网络设备可以建立DCI与附加DMRS的时域相对位置的对应关系,基于此,终端设备可以通过DCI确定重复传输上的附加DMRS的时域相对位置,其重复传输上的附加DMRS的时域相对位置。再例如:如表7所示,重复传输上的附加DMRS的时域相对位置是根据DCI、dmrs-Additional Position和PDSCH mapping type A共同确定的。
需要说明的是,重复传输上的前置DMRS和附加DMRS的时域相对位置可以通过高层信令联合指示,例如:通过一个或者多个高层信令可以同时指示重复传输上的前置DMRS和附加DMRS的时域相对位置。或者,重复传输上的前置DMRS和附加DMRS的时域相对位置可以通过DCI联合指示,例如:通过一个或者多个DCI可以同时指示重复传输上的前置DMRS和附加DMRS的时域相对位置。或者,重复传输上的前置DMRS和附加DMRS的时域相对位置可以通过高层信令和DCI联合指示。例如:通过一个或者多个高层信令和一个或者多个DCI可以同时指示重复传输上的前置DMRS和附加DMRS的时域相对位置。本申请对此不做限制。
可选地,重复传输中首次传输上的附加DMRS的时域相对位置是根据高层信令和/或DCI确定的;非首次传输上的附加DMRS的时域相对位置是根据预设规则确定的。例如:网络设备可以建立dmrs-Additional Position和PDSCH mapping type A联合与首次传输中的附加DMRS的时域相对位置的对应关系,基于此,终端设备可以通过dmrs-Additional Position和PDSCH mapping type A首次传输上的附加DMRS的时域相对位置。进一步地,假设上述预设规则规定若上述重复传输为N次传输,其第i次传输中的附加DMRS的时域相对位置包括符号n,则N次传输的第i+1次传输中的附加DMRS的时域相对位置包括符号n+k,i为正整数,n为整数,k为正整数。基于此,可以确定非首次传输上的附加DMRS的时域相对位置。再例如:网络设备可以建立DCI与首次传输中附加DMRS的时域相对位置的对应关系,基于此,终端设备可以通过DCI确定首次传输上的附加DMRS的时域相对位置。进一步地,假设上述预设规则规定若上述重复传输为N次传输,其第i次传输中的附加DMRS的时域相对位置包括符号n,则N次传输的第i+1次传输中的附加DMRS的时域相对位置包括符号n+k, i为正整数,n为整数,k为正整数。基于此,可以确定非首次传输上的附加DMRS的时域相对位置。再例如:如表7所示,首次传输上的附加DMRS的时域相对位置是根据DCI、dmrs-Additional Position和PDSCH mapping type A共同确定的。进一步地,假设上述预设规则规定若上述重复传输为N次传输,其第i次传输中的附加DMRS的时域相对位置包括符号n,则N次传输的第i+1次传输中的附加DMRS的时域相对位置包括符号n+k,i为正整数,n为整数,k为正整数。基于此,可以确定非首次传输上的附加DMRS的时域相对位置。
需要说明的是,首次传输上的前置DMRS和附加DMRS的时域相对位置可以通过高层信令联合指示,例如:通过一个或者多个高层信令可以同时指示首次传输上的前置DMRS和附加DMRS的时域相对位置。或者,首次传输上的前置DMRS和附加DMRS的时域相对位置可以通过DCI联合指示,例如:通过一个或者多个DCI可以同时指示首次传输上的前置DMRS和附加DMRS的时域相对位置。或者,首次传输上的前置DMRS和附加DMRS的时域相对位置可以通过高层信令和DCI联合指示。例如:通过一个或者多个高层信令和一个或者多个DCI可以同时指示首次传输上的前置DMRS和附加DMRS的时域相对位置。本申请对此不做限制。
情况四:至少两次传输上的前置DMRS的时域相对位置不同,至少两次传输上的附加DMRS的时域相对位置不同。
其中,情况四适用于网络设备为重复传输配置前置DMRS和附加DMRS,并且在重复传输中均承载有附加DMRS的场景。
需要说明的是,至少两次传输上的前置DMRS的时域相对位置不同的示例可参考情况一中的示例,本申请对此不再赘述。至少两次传输上的附加DMRS的时域相对位置不同的示例可参考情况三中的示例,本申请对此不再赘述。
情况五:至少两次传输上的前置DMRS的时域相对位置相同,至少两次传输中至少一次传输上存在附加DMRS,至少两次传输中的至少一次传输不存在附加DMRS。
其中,情况五适用于如下场景:网络设备为重复传输配置前置DMRS和附加DMRS,并且在重复传输中部分传输上承载有附加DMRS,部分传输上未承载有附加DMRS。
需要说明的是,至少两次传输中至少一次传输上存在附加DMRS,因此该至少一次传输上涉及附加DMRS的时域相对位置;至少两次传输中的至少一次传输不存在附加DMRS,因此该至少一次传输上不涉及附加DMRS的时域相对位置;综上这种情况可以被理解为:至少两次传输上的附加DMRS的时域相对位置不同。
至少两次传输上的前置DMRS的时域相对位置相同的示例可参考情况三中的示例,本申请对此不再赘述。
示例性地,以PDSCH在间隙内重复传输为例,若终端设备接收到的DCI指示PDSCH的时域长度l d=12,dmrs-Additional Position配置为pos2,且终端设备被配置PDSCH mapping type A,通过表7可以确定在上述至少两次传输上的至少一次传输中附加DMRS所在的符号为6和9。至少两次传输上的至少一次传输中不存在附加DMRS的传输,即不存在附加DMRS所在的符号。
可选地,重复传输上的附加DMRS的时域相对位置是根据高层信令和/或DCI确定的。具体可参考情况二和情况三,对此不再赘述。
可选地,重复传输中首次传输上的附加DMRS的时域相对位置是根据高层信令和/或DCI确定的;非首次传输上的附加DMRS的时域相对位置是根据预设规则确定的。具体可参考情况二和情况三,对此不再赘述。
情况六:至少两次传输上的前置DMRS的时域相对位置不同,至少两次传输中至少一次传输上存在附加DMRS,至少两次传输中的至少一次传输不存在附加DMRS。
其中,情况六适用于如下场景:网络设备为重复传输配置前置DMRS和附加DMRS,并且在重复传输中部分传输上承载有附加DMRS,部分传输上未承载有附加DMRS。
需要说明的是,至少两次传输中至少一次传输上存在附加DMRS,因此该至少一次传输上涉及附加DMRS的时域相对位置;至少两次传输中的至少一次传输不存在附加DMRS,因此该至少一次传输上不涉及附加DMRS的时域相对位置;综上这种情况可以被理解为:至少两次传输上的附加DMRS的时域相对位置不同。
至少两次传输上的前置DMRS的时域相对位置不同的示例可参考情况一中的示例,本申请对此不再赘述。
至少两次传输中至少一次传输上存在附加DMRS,至少两次传输中的至少一次传输不存在附加DMRS的示例可参考情况五的示例,对此不再赘述。
可选地,重复传输上的附加DMRS的时域相对位置是根据高层信令和/或DCI确定的。具体可参 考情况二和情况三,对此不再赘述。
可选地,重复传输中首次传输上的附加DMRS的时域相对位置是根据高层信令和/或DCI确定的;非首次传输上的附加DMRS的时域相对位置是根据预设规则确定的。具体可参考情况二和情况三,对此不再赘述。
此外,本申请还可以包括:情况七:至少两次传输中至少一次传输上存在前置DMRS和/或附加DMRS,至少两次传输中的至少一次传输不存在前置DMRS和/或附加DMRS。
示例性地,至少两次传输中至少一次传输上存在前置DMRS,至少两次传输中的至少一次传输不存在前置DMRS。
需要说明的是,至少两次传输中至少一次传输上存在前置DMRS,因此该至少一次传输上涉及前置DMRS的时域相对位置;至少两次传输中的至少一次传输不存在前置DMRS,因此该至少一次传输上不涉及前置DMRS的时域相对位置;综上这种情况可以被理解为:至少两次传输上的前置DMRS的时域相对位置不同。至少两次传输上的前置DMRS的时域相对位置不同的示例可参考情况一中的示例,本申请对此不再赘述。
示例性地,至少两次传输中至少一次传输上存在前置DMRS和附加DMRS,至少两次传输中的至少一次传输不存在前置DMRS和附加DMRS。
需要说明的是,至少两次传输中至少一次传输上存在前置和附加DMRS,因此该至少一次传输上涉及前置和附加DMRS的时域相对位置;至少两次传输中的至少一次传输不存在前置和附加DMRS,因此该至少一次传输上不涉及前置和附加DMRS的时域相对位置;综上这种情况可以被理解为:至少两次传输上的前置DMRS的时域相对位置不同,且至少两次传输上的附加DMRS的时域相对位置不同。因此可参考情况四中的示例,本申请对此不再赘述。
值得一提的是,情况七适用于如下场景:当数据信道的时域资源分配的符号个数比较少时,如两个符号,对于连续的两次重传,由于时域上比较接近,后一次传输可以不包含DMRS,用前一次传输的DMRS做信道估计。这样可以减少DMRS的开销。
需要说明的是,在本申请中,终端设备和网络设备均可以获取参考信号的时域相对位置,终端设备侧和网络设备侧所获取到的参考信号的时域相对位置所呈现的结果相同。因此,针对网络设备侧获取到的参考信号的时域相对位置可参考终端设备侧,不同的是,对于终端设备,网络设备可以通过高层信令和/或DCI将参考信号的时域相对位置配置给终端设备。而对于网络设备,其内部可以根据高层信令或者其他预配置方式确定参考信号的时域相对位置。
综上,在数据信道的重复传输场景下,本申请提供了确定DMRS在数据信道的重复传输中的时域相对位置的方法。进一步地,数据信道的不同的重复传输之间,DMRS所在的时域资源位置在数据信道的时域资源中的相对时域资源位置不同,可以使得DMRS在数据信道的时域资源中的相对位置尽可能的多,有利于在更多的相对时域资源上进行信道估计,提高数据信道的解调性能。
实施例二
针对上行数据信道的重复传输:图15为本申请再一实施例提供的无线通信方法交互流程图,该方法包括如下步骤:
步骤S1501:终端设备获取数据信道的重复传输上的参考信号的频域相对位置;其中,重复传输中的至少两次传输上的参考信号的频域相对位置不同。
可选地,步骤S1502:终端设备在参考信号的频域相对位置发送参考信号。
步骤S1503:网络设备获取数据信道的重复传输上的参考信号的频域相对位置。
可选地,步骤S1504:网络设备在参考信号的频域相对位置接收参考信号。
需要说明的是,本申请对上述步骤S1503与步骤S1501、步骤S1502的先后顺序不做限制,例如:步骤S1503可以在步骤S1501之前执行,也可以在步骤S1502和步骤S1503之间执行。
可选地,步骤S1501至步骤S1504中的数据信道是PUSCH。
针对下行数据信道的重复传输:图16为本申请另一实施例提供的无线通信方法交互流程图,该方法包括如下步骤:
步骤S1601:网络设备获取数据信道的重复传输上的参考信号的频域相对位置;其中,重复传输中的至少两次传输上的参考信号的频域相对位置不同。
可选地,步骤S1602:网络设备在参考信号的频域相对位置发送参考信号。
步骤S1603:终端设备获取数据信道的重复传输上的参考信号的频域相对位置。
可选地,步骤S1604:终端设备在参考信号的频域相对位置接收参考信号。
需要说明的是,本申请对上述步骤S1603与步骤S1601、步骤S1602的先后顺序不做限制,例如:步骤S1603可以在步骤S1601之前执行,也可以在步骤S1602和步骤S1603之间执行。
可选地,步骤S1601至步骤S1604中的数据信道是PDSCH。
下面将针对重复传输中的至少两次传输上的参考信号的频域相对位置不同进行解释说明,其适用于上行数据信道的重复传输场景,也适用于下行数据信道的重复传输场景。
需要说明的是,针对重复传输上的任一传输,该传输上的参考信号的频域相对位置是相对于该传输上的数据信道的频域位置。例如:该传输上的数据信道的频域位置(该时频域位置可以是起始频域位置)为0号RE,而该传输上的参考信号的频域相对位置是1,实际频域位置也在0号RE处,即该传输上的参考信号的频域位置是在该数据信道所占用的起始频域上,即0号RE。
可选地,网络设备为重复传输配置前置DMRS,或者,网络设备为重复传输配置前置DMRS和附加DMRS,并且在重复传输中均承载有附加DMRS,或者,网络设备为重复传输配置前置DMRS和附加DMRS,并且在重复传输中部分传输上承载有附加DMRS,部分传输上未承载有附加DMRS。基于此,针对参考信号的重复传输中的至少两次传输上的参考信号的频域相对位置不同,其包括如下几种情况:
情况一:至少两次传输上的前置DMRS的频域相对位置不同。
其中,情况一适用于网络设备为重复传输配置前置DMRS的场景。
前置DMRS的频域位置k可以通过如下公式确定:
Figure PCTCN2020090707-appb-000009
k′=0,1
n=0,1,...
参数Δ决定了前置DMRS所在的RE相对于基准RE的偏移量。不同天线端口的DMRS可以在不同的RE上,或者在相同的RE上且不同的码域上,以保持彼此正交。表8是高层参数为configuration type 1时,Δ和k′的取值情况,表9是高层参数为configuration type 2时,Δ和k′的取值情况。
表8
Figure PCTCN2020090707-appb-000010
表9
Figure PCTCN2020090707-appb-000011
通过上述公式和表8、表9可知,通过调整参数Δ,即可调整前置DMRS的频域位置,这里的频域位置可以理解为实际频域位置或者绝对频域位置,基于此,网络设备可以为重复传输中至少两次传输中的前置DMRS配置不同的频域相对位置。例如:图17为本申请一实施例提供的前置DMRS的频 域相对位置的示意图,如图17所示,采用DMRS configuration type 1,对于前置DMRS,第一次传输时,前置DMRS在一个RB内的RE的位置为{0,2,4,6,8,10};在第二次传输中,前置DMRS在一个RB内的RE的位置为{1,3,5,7,9,11}。
可选地,重复传输上的前置DMRS的频域相对位置是根据高层信令和/或DCI确定的。例如:对于DMRS configuration type 1,重复传输上的前置DMRS的频域位置在第一次传输中的频域相对位置为在一个RB内的RE的位置为{0,2,4,6,8,10};在第二次传输中,前置DMRS在一个RB内的RE的位置为{1,3,5,7,9,11}。再例如:网络设备向终端设备发送的DCI可以用于唯一确定重复传输上的前置DMRS的频域相对位置,基于此,终端设备根据网络设备发送的DCI确定重复传输上的前置DMRS的频域相对位置。再例如:终端设备根据高层信令可以确定多组重复传输上的前置DMRS的频域相对位置,进一步地,终端设备可以根据DCI在多组重复传输上的前置DMRS的频域相对位置中唯一确定重复传输上的前置DMRS的频域相对位置。
可选地,重复传输中首次传输上的前置DMRS的频域相对位置是根据高层信令和/或DCI确定的;非首次传输上的前置DMRS的频域相对位置是根据预设规则确定的。例如:对于DMRS configuration type 1,重复传输上的前置DMRS的频域位置在首次传输中的频域相对位置为在一个RB内的RE的位置为{0,2,4,6,8,10}。而终端设备和网络设备之间协商的预设规则是:若上述重复传输为N次传输,其第i次传输中的前置DMRS信号的频域相对位置包括REn,则N次传输的第i+1次传输中的前置DMRS信号的频域相对位置包括REn+k,i为正整数,n为整数,k为正整数。基于此,可以推断出,前置DMRS的频域相对位置是在PDSCH的第二次传输中是在一个RB内的RE的位置为{1,3,5,7,9,11}。再例如:网络设备向终端设备发送的DCI可以用于唯一确定首次传输上的前置DMRS的频域相对位置,基于此,终端设备再结合预设规则可以推断出前置DMRS在第二次传输、第三次传输……中的频域相对位置。再例如:终端设备根据高层信令可以确定多组首次传输上的前置DMRS的频域相对位置,进一步地,终端设备可以根据DCI在多组首次传输上的前置DMRS的频域相对位置中唯一确定首次传输上的前置DMRS的频域相对位置。基于此,终端设备再结合预设规则可以推断出前置DMRS在第二次传输、第三次传输……中的频域相对位置。
情况二:至少两次传输上的前置DMRS的频域相对位置不同,至少两次传输上的附加DMRS的频域相对位置相同。
其中,情况二适用于网络设备为重复传输配置前置DMRS和附加DMRS,并且在重复传输中均承载有附加DMRS的场景。
需要说明的是,至少两次传输上的前置DMRS的频域相对位置不同的示例可参考情况一中的示例,本申请对此不再赘述。
可选地,情况一中的公式、表8和表9同样适用于附加DMRS,例如:对于DMRS configuration type 1,重复传输上的附加DMRS的频域位置在重复传输中的频域相对位置为在一个RB内的RE的位置为{1,3,5,7,9,11}。
可选地,重复传输上的附加DMRS的频域相对位置是根据高层信令和/或DCI确定的。例如:网络设备可以建立DMRS configuration type与附加DMRS的频域相对位置的对应关系,基于此,终端设备可以通过DMRS configuration type确定重复传输上的附加DMRS的频域相对位置。再例如:网络设备可以建立DCI与附加DMRS的频域相对位置的对应关系,基于此,终端设备可以通过DCI确定重复传输上的附加DMRS的频域相对位置。再例如:重复传输上的附加DMRS的频域相对位置可以根据DCI、DMRS configuration type共同确定。
需要说明的是,重复传输上的前置DMRS和附加DMRS的频域相对位置可以通过高层信令联合指示,例如:通过一个或者多个高层信令可以同时指示重复传输上的前置DMRS和附加DMRS的频域相对位置。或者,重复传输上的前置DMRS和附加DMRS的频域相对位置可以通过DCI联合指示,例如:通过一个或者多个DCI可以同时指示重复传输上的前置DMRS和附加DMRS的频域相对位置。或者,重复传输上的前置DMRS和附加DMRS的频域相对位置可以通过高层信令和DCI联合指示。例如:通过一个或者多个高层信令和一个或者多个DCI可以同时指示重复传输上的前置DMRS和附加DMRS的频域相对位置。本申请对此不做限制。
可选地,重复传输中首次传输上的附加DMRS的频域相对位置是根据高层信令和/或DCI确定的;非首次传输上的附加DMRS的频域相对位置是根据预设规则确定的。例如:网络设备可以建立DMRS configuration type与首次传输中的附加DMRS的频域相对位置的对应关系,基于此,终端设备可以确定首次传输上的附加DMRS的频域相对位置。进一步地,假设上述预设规则规定非首次传输和首次传输中附加DMRS的频域相对位置相同。基于此,可以确定非首次传输上的附加DMRS的频域相对位置。再例如:网络设备可以建立DCI与首次传输中附加DMRS的频域相对位置的对应关系,基于 此,终端设备可以通过DCI确定首次传输上的附加DMRS的频域相对位置。进一步地,假设上述预设规则规定非首次传输和首次传输中附加DMRS的频域相对位置相同。基于此,可以确定非首次传输上的附加DMRS的频域相对位置。再例如:首次传输上的附加DMRS的频域相对位置可以根据DCI、DMRS configuration type共同确定。进一步地,假设上述预设规则规定非首次传输和首次传输中附加DMRS的频域相对位置相同。基于此,可以确定非首次传输上的附加DMRS的频域相对位置。
需要说明的是,首次传输上的前置DMRS和附加DMRS的频域相对位置可以通过高层信令联合指示,例如:通过一个或者多个高层信令可以同时指示首次传输上的前置DMRS和附加DMRS的频域相对位置。或者,首次传输上的前置DMRS和附加DMRS的频域相对位置可以通过DCI联合指示,例如:通过一个或者多个DCI可以同时指示首次传输上的前置DMRS和附加DMRS的频域相对位置。或者,首次传输上的前置DMRS和附加DMRS的频域相对位置可以通过高层信令和DCI联合指示。例如:通过一个或者多个高层信令和一个或者多个DCI可以同时指示首次传输上的前置DMRS和附加DMRS的频域相对位置。本申请对此不做限制。
情况三:至少两次传输上的前置DMRS的频域相对位置相同,至少两次传输上的附加DMRS的频域相对位置不同。
其中,情况三适用于网络设备为重复传输配置前置DMRS和附加DMRS,并且在重复传输中均承载有附加DMRS的场景。
假设采用DMRS configuration type 1,对于前置DMRS,重复传输中至少两次传输上的前置DMRS在一个RB内的RE的位置为{0,2,4,6,8,10}。
可选地,重复传输上的前置DMRS的频域相对位置是根据高层信令和/或DCI确定的。例如:对于DMRS configuration type 1,表示前置DMRS的频域相对位置是在PDSCH的每次传输中的RE的位置为{0,2,4,6,8,10}。再例如:网络设备向终端设备发送的DCI可以用于唯一确定重复传输上的前置DMRS的频域相对位置,基于此,终端设备根据网络设备发送的DCI确定重复传输上的前置DMRS的频域相对位置。再例如:终端设备根据高层信令可以确定多组重复传输上的前置DMRS的频域相对位置,进一步地,终端设备可以根据DCI在多组重复传输上的前置DMRS的频域相对位置中唯一确定重复传输上的前置DMRS的频域相对位置。
可选地,重复传输中首次传输上的前置DMRS的频域相对位置是根据高层信令和/或DCI确定的;非首次传输上的前置DMRS的频域相对位置是根据预设规则确定的。例如:对于DMRS configuration type 1,首次传输上的前置DMRS的频域相对位置是在PDSCH的第一次传输中的RE的位置为{0,2,4,6,8,10}。而终端设备和网络设备之间协商的预设规则是:非首次传输上的前置DMRS的频域相对位置和首次传输上的前置DMRS的频域相对位置相同。基于此,可以推断出非首次传输上的前置DMRS的频域相对位置。再例如:网络设备向终端设备发送的DCI可以用于唯一确定首次传输上的前置DMRS的频域相对位置,再根据预设规则可以推断出非首次传输上的前置DMRS的频域相对位置。再例如:终端设备根据高层信令可以确定多组首次传输上的前置DMRS的频域相对位置,再根据预设规则可以推断出非首次传输上的前置DMRS的频域相对位置。
如情况三所述,至少两次传输上的附加DMRS的频域相对位置不同。示例性地,图18为本申请一实施例提供的附加DMRS的频域相对位置的示意图,如图18所示,采用DMRS configuration type 1,对于附加DMRS,第一次传输时,附加DMRS在一个RB内的RE的位置为{0,2,4,6,8,10};在第二次传输中,附加DMRS在一个RB内的RE的位置为{1,3,5,7,9,11}。
可选地,重复传输上的附加DMRS的频域相对位置是根据高层信令和/或DCI确定的。例如:网络设备可以建立DMRS configuration type与附加DMRS的频域相对位置的对应关系,基于此,终端设备可以确定重复传输上的附加DMRS的频域相对位置,其重复传输上的附加DMRS的频域相对位置不同。再例如:网络设备可以建立DCI与附加DMRS的频域相对位置的对应关系,基于此,终端设备可以通过DCI确定重复传输上的附加DMRS的频域相对位置,其重复传输上的附加DMRS的频域相对位置。再例如:重复传输上的附加DMRS的频域相对位置是根据DCI、DMRS configuration type共同确定的。
需要说明的是,重复传输上的前置DMRS和附加DMRS的频域相对位置可以通过高层信令联合指示,例如:通过一个或者多个高层信令可以同时指示重复传输上的前置DMRS和附加DMRS的频域相对位置。或者,重复传输上的前置DMRS和附加DMRS的频域相对位置可以通过DCI联合指示,例如:通过一个或者多个DCI可以同时指示重复传输上的前置DMRS和附加DMRS的频域相对位置。或者,重复传输上的前置DMRS和附加DMRS的频域相对位置可以通过高层信令和DCI联合指示。例如:通过一个或者多个高层信令和一个或者多个DCI可以同时指示重复传输上的前置DMRS和附加DMRS的频域相对位置。本申请对此不做限制。
可选地,重复传输中首次传输上的附加DMRS的频域相对位置是根据高层信令和/或DCI确定的;非首次传输上的附加DMRS的频域相对位置是根据预设规则确定的。例如:网络设备可以建立DMRS configuration type与首次传输中的附加DMRS的频域相对位置的对应关系,基于此,终端设备可以确定首次传输上的附加DMRS的频域相对位置。进一步地,假设上述预设规则规定若上述重复传输为N次传输,其第i次传输中的附加DMRS的频域相对位置包括REn,则N次传输的第i+1次传输中的附加DMRS的频域相对位置包括REn+k,i为正整数,n为整数,k为正整数。基于此,可以确定非首次传输上的附加DMRS的频域相对位置。再例如:网络设备可以建立DCI与首次传输中附加DMRS的频域相对位置的对应关系,基于此,终端设备可以通过DCI确定首次传输上的附加DMRS的频域相对位置。进一步地,假设上述预设规则规定若上述重复传输为N次传输,其第i次传输中的附加DMRS的频域相对位置包括REn,则N次传输的第i+1次传输中的附加DMRS的频域相对位置包括REn+k,i为正整数,n为整数,k为正整数。基于此,可以确定非首次传输上的附加DMRS的频域相对位置。再例如:首次传输上的附加DMRS的频域相对位置是根据DCI、DMRS configuration type共同确定的。进一步地,假设上述预设规则规定若上述重复传输为N次传输,其第i次传输中的附加DMRS的频域相对位置包括REn,则N次传输的第i+1次传输中的附加DMRS的频域相对位置包括REn+k,i为正整数,n为整数,k为正整数。基于此,可以确定非首次传输上的附加DMRS的频域相对位置。
需要说明的是,首次传输上的前置DMRS和附加DMRS的频域相对位置可以通过高层信令联合指示,例如:通过一个或者多个高层信令可以同时指示首次传输上的前置DMRS和附加DMRS的频域相对位置。或者,首次传输上的前置DMRS和附加DMRS的频域相对位置可以通过DCI联合指示,例如:通过一个或者多个DCI可以同时指示首次传输上的前置DMRS和附加DMRS的频域相对位置。或者,首次传输上的前置DMRS和附加DMRS的频域相对位置可以通过高层信令和DCI联合指示。例如:通过一个或者多个高层信令和一个或者多个DCI可以同时指示首次传输上的前置DMRS和附加DMRS的频域相对位置。本申请对此不做限制。
情况四:至少两次传输上的前置DMRS的频域相对位置不同,至少两次传输上的附加DMRS的频域相对位置不同。
其中,情况四适用于网络设备为重复传输配置前置DMRS和附加DMRS,并且在重复传输中均承载有附加DMRS的场景。
需要说明的是,至少两次传输上的前置DMRS的频域相对位置不同的示例可参考情况一中的示例,本申请对此不再赘述。至少两次传输上的附加DMRS的频域相对位置不同的示例可参考情况三中的示例,本申请对此不再赘述。
情况五:至少两次传输上的前置DMRS的频域相对位置相同,至少两次传输中至少一次传输上存在附加DMRS,至少两次传输中的至少一次传输不存在附加DMRS。
其中,情况五适用于如下场景:网络设备为重复传输配置前置DMRS和附加DMRS,并且在重复传输中部分传输上承载有附加DMRS,部分传输上未承载有附加DMRS。
需要说明的是,至少两次传输中至少一次传输上存在附加DMRS,因此该至少一次传输上涉及附加DMRS的频域相对位置;至少两次传输中的至少一次传输不存在附加DMRS,因此该至少一次传输上不涉及附加DMRS的频域相对位置;综上这种情况可以被理解为:至少两次传输上的附加DMRS的频域相对位置不同。
至少两次传输上的前置DMRS的频域相对位置相同的示例可参考情况三中的示例,本申请对此不再赘述。
示例性地,至少两次传输中的至少一次传输中,采用DMRS configuration type 1,附加DMRS在一个RB内的RE的位置为{0,2,4,6,8,10}。至少两次传输上的至少一次传输中不存在附加DMRS的传输,即不存在附加DMRS所在的RE。
可选地,重复传输上的附加DMRS的频域相对位置是根据高层信令和/或DCI确定的。具体可参考情况二和情况三,对此不再赘述。
可选地,重复传输中首次传输上的附加DMRS的频域相对位置是根据高层信令和/或DCI确定的;非首次传输上的附加DMRS的频域相对位置是根据预设规则确定的。具体可参考情况二和情况三,对此不再赘述。
情况六:至少两次传输上的前置DMRS的频域相对位置不同,至少两次传输中至少一次传输上存在附加DMRS,至少两次传输中的至少一次传输不存在附加DMRS。
其中,情况六适用于如下场景:网络设备为重复传输配置前置DMRS和附加DMRS,并且在重复传输中部分传输上承载有附加DMRS,部分传输上未承载有附加DMRS。
需要说明的是,至少两次传输中至少一次传输上存在附加DMRS,因此该至少一次传输上涉及附加DMRS的频域相对位置;至少两次传输中的至少一次传输不存在附加DMRS,因此该至少一次传输上不涉及附加DMRS的频域相对位置;综上这种情况可以被理解为:至少两次传输上的附加DMRS的频域相对位置不同。
至少两次传输上的前置DMRS的频域相对位置不同的示例可参考情况一中的示例,本申请对此不再赘述。
至少两次传输中至少一次传输上存在附加DMRS,至少两次传输中的至少一次传输不存在附加DMRS的示例可参考情况五的示例,对此不再赘述。
可选地,重复传输上的附加DMRS的频域相对位置是根据高层信令和/或DCI确定的。具体可参考情况二和情况三,对此不再赘述。
可选地,重复传输中首次传输上的附加DMRS的频域相对位置是根据高层信令和/或DCI确定的;非首次传输上的附加DMRS的频域相对位置是根据预设规则确定的。具体可参考情况二和情况三,对此不再赘述。
情况七:至少两次传输中至少一次传输上存在前置DMRS和/或附加DMRS,至少两次传输中的至少一次传输不存在前置DMRS和/或附加DMRS。
示例性地,至少两次传输中至少一次传输上存在前置DMRS,至少两次传输中的至少一次传输不存在前置DMRS。
需要说明的是,至少两次传输中至少一次传输上存在前置DMRS,因此该至少一次传输上涉及前置DMRS的频域相对位置;至少两次传输中的至少一次传输不存在前置DMRS,因此该至少一次传输上不涉及前置DMRS的频域相对位置;综上这种情况可以被理解为:至少两次传输上的前置DMRS的频域相对位置不同。至少两次传输上的前置DMRS的频域相对位置不同的示例可参考情况一中的示例,本申请对此不再赘述。
示例性地,至少两次传输中至少一次传输上存在前置DMRS和附加DMRS,至少两次传输中的至少一次传输不存在前置DMRS和附加DMRS。
需要说明的是,至少两次传输中至少一次传输上存在前置和附加DMRS,因此该至少一次传输上涉及前置和附加DMRS的频域相对位置;至少两次传输中的至少一次传输不存在前置和附加DMRS,因此该至少一次传输上不涉及前置和附加DMRS的频域相对位置;综上这种情况可以被理解为:至少两次传输上的前置DMRS的频域相对位置不同,且至少两次传输上的附加DMRS的频域相对位置不同。因此可参考情况四中的示例,本申请对此不再赘述。
值得一提的是,情况七适用于如下场景:当数据信道的频域资源分配的RE个数比较少时,如两个RE,对于连续的两次重传,由于频域上比较接近,后一次传输可以不包含DMRS,用前一次传输的DMRS做信道估计。这样可以减少DMRS的开销。
需要说明的是,在本申请中,终端设备和网络设备均可以获取参考信号的频域相对位置,终端设备侧和网络设备侧所获取到的参考信号的频域相对位置所呈现的结果相同。因此,针对网络设备侧获取到的参考信号的频域相对位置可参考终端设备侧,不同的是,对于终端设备,网络设备可以通过高层信令和/或DCI将参考信号的频域相对位置配置给终端设备。而对于网络设备,其内部可以根据高层信令或者其他预配置方式确定参考信号的频域相对位置。
综上,在数据信道的重复传输场景下,本申请提供了确定DMRS在数据信道的重复传输中的频域相对位置的方法。进一步地,数据信道的不同的重复传输之间,DMRS所在的频域资源位置在数据信道的频域资源中的相对频域资源位置不同,可以使得DMRS在数据信道的频域资源中的相对位置尽可能的多,有利于在更多的相对频域资源上进行信道估计,提高数据信道的解调性能。
实施例三
针对上行数据信道的重复传输:图19为本申请又一实施例提供的无线通信方法交互流程图,该方法包括如下步骤:
步骤S1901:终端设备获取数据信道的重复传输上的参考信号的时域相对位置和频域相对位置;其中,重复传输中的至少两次传输上的参考信号的时域相对位置不同,和/或,频域相对位置不同。
可选地,步骤S1902:终端设备在参考信号的时域相对位置和频域相对位置发送参考信号。
步骤S1903:网络设备获取数据信道的重复传输上的参考信号的时域相对位置和频域相对位置。
可选地,步骤S1904:网络设备在参考信号的时域相对位置和频域相对位置接收参考信号。
需要说明的是,本申请对上述步骤S1903与步骤S1901、步骤S1902的先后顺序不做限制,例如:步骤S1903可以在步骤S1901之前执行,也可以在步骤S1902和步骤S1903之间执行。
可选地,步骤S1901至步骤S1904中的数据信道是PUSCH。
针对下行数据信道的重复传输:图20为本申请另一实施例提供的无线通信方法交互流程图,该方法包括如下步骤:
步骤S2001:网络设备获取数据信道的重复传输上的参考信号的时域相对位置和频域相对位置;其中,重复传输中的至少两次传输上的参考信号的时域相对位置不同,和/或,频域相对位置不同。
可选地,步骤S2002:网络设备在参考信号的时域相对位置和频域相对位置发送参考信号。
步骤S2003:终端设备获取数据信道的重复传输上的参考信号的时域相对位置和频域相对位置。
可选地,步骤S2004:终端设备在参考信号的时域相对位置和频域相对位置接收参考信号。
需要说明的是,本申请对上述步骤S2003与步骤S2001、步骤S2002的先后顺序不做限制,例如:步骤S2003可以在步骤S2001之前执行,也可以在步骤S2002和步骤S2003之间执行。
可选地,步骤S2001至步骤S2004中的数据信道是PDSCH。
可选地,网络设备为重复传输配置前置DMRS,或者,网络设备为重复传输配置前置DMRS和附加DMRS,并且在重复传输中均承载有附加DMRS,或者,网络设备为重复传输配置前置DMRS和附加DMRS,并且在重复传输中部分传输上承载有附加DMRS,部分传输上未承载有附加DMRS。基于此,针对重复传输中的至少两次传输上的参考信号的时域相对位置不同可参考实施例一,针对针对重复传输中的至少两次传输上的参考信号的频域相对位置不同可参考实施例二,对此不再赘述。针对参考信号的针对重复传输中的至少两次传输上的参考信号的时域相对位置和频域相对位置不同,其包括如下几种情况:
情况一:至少两次传输上的前置DMRS的时域相对位置不同,且至少两次传输上的前置DMRS的频域相对位置不同。
情况二:至少两次传输上的前置DMRS的时域相对位置不同,且至少两次传输上的前置DMRS的频域相对位置不同,且至少两次传输上的附加DMRS的时域相对位置相同,且至少两次传输上的前置DMRS的频域相对位置相同。
情况三:至少两次传输上的前置DMRS的时域相对位置相同,且至少两次传输上的前置DMRS的频域相对位置相同,至少两次传输上的附加DMRS的时域相对位置不同,至少两次传输上的附加DMRS的频域相对位置不同。
情况四:至少两次传输上的前置DMRS的时域相对位置不同,且至少两次传输上的前置DMRS的频域相对位置不同,至少两次传输上的附加DMRS的时域相对位置不同,至少两次传输上的附加DMRS的频域相对位置不同。
情况五:至少两次传输上的前置DMRS的时域相对位置相同,且至少两次传输上的前置DMRS的频域相对位置相同,至少两次传输中至少一次传输上存在附加DMRS,至少两次传输中的至少一次传输不存在附加DMRS。
情况六:至少两次传输上的前置DMRS的时域相对位置不同,且至少两次传输上的前置DMRS的频域相对位置不同,至少两次传输中至少一次传输上存在附加DMRS,至少两次传输中的至少一次传输不存在附加DMRS。
情况七:至少两次传输中至少一次传输上存在前置DMRS和/或附加DMRS,至少两次传输中的至少一次传输不存在前置DMRS和/或附加DMRS。
当然,还包括其他情况,只要存在前置和/或DMRS在重复传输中的时域相对位置和/或频域相对位置上不同,都在本申请的保护范围之内。
综上,在数据信道的重复传输场景下,本申请提供了确定DMRS在数据信道的重复传输中的时频相对位置的方法。进一步地,数据信道的不同的重复传输之间,DMRS所在的时频资源位置在数据信道的时频资源中的相对时频资源位置不同,可以使得DMRS在数据信道的时频资源中的相对位置尽可能的多,有利于在更多的相对时频资源上进行信道估计,提高数据信道的解调性能。
上文结合图6至图20,详细描述了本申请的方法实施例,下文结合图21至图24,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图21示出了根据本申请实施例的终端设备2100的示意性框图。如图21所示,该终端设备2100包括:
处理单元2101,用于获取数据信道的重复传输上的参考信号的时域相对位置,和/或,频域相对位置。其中,重复传输中的至少两次传输上的参考信号的时域相对位置不同,和/或,频域相对位置不同。
可选地,参考信号包括:前置解调参考信号DMRS,和/或,附加DMRS。
可选地,至少两次传输上的前置DMRS的时域相对位置不同。
或者,至少两次传输上的前置DMRS的时域相对位置不同,至少两次传输上的附加DMRS的时 域相对位置相同。
或者,至少两次传输上的前置DMRS的时域相对位置相同,至少两次传输上的附加DMRS的时域相对位置不同。
或者,至少两次传输上的前置DMRS的时域相对位置不同,至少两次传输上的附加DMRS的时域相对位置不同。
或者,至少两次传输上的前置DMRS的时域相对位置相同,至少两次传输中至少一次传输上存在附加DMRS,至少两次传输中的至少一次传输不存在附加DMRS。
或者,至少两次传输上的前置DMRS的时域相对位置不同,至少两次传输中至少一次传输上存在附加DMRS,至少两次传输中的至少一次传输不存在附加DMRS。
可选地,至少两次传输上的前置DMRS的频域相对位置不同。
或者,至少两次传输上的前置DMRS的频域相对位置不同,至少两次传输上的附加DMRS的频域相对位置相同。
或者,至少两次传输上的前置DMRS的频域相对位置相同,至少两次传输上的附加DMRS的频域相对位置不同。
或者,至少两次传输上的前置DMRS的频域相对位置不同,至少两次传输上的附加DMRS的频域相对位置不同。
或者,至少两次传输上的前置DMRS的频域相对位置相同,至少两次传输中至少一次传输上存在附加DMRS,至少两次传输中的至少一次传输不存在附加DMRS。
或者,至少两次传输上的前置DMRS的频域相对位置不同,至少两次传输中至少一次传输上存在附加DMRS,至少两次传输中的至少一次传输不存在附加DMRS。
可选地,至少两次传输中至少一次传输上存在前置DMRS和/或附加DMRS,至少两次传输中的至少一次传输不存在前置DMRS和/或附加DMRS。
可选地,重复传输上的参考信号的时域相对位置,和/或,频域相对位置是根据高层信令和/或下行控制信令DCI确定的。
可选地,重复传输中首次传输上的参考信号的时域相对位置,和/或,频域相对位置是根据高层信令和/或下行控制信令DCI确定的。非首次传输上的参考信号的时域相对位置,和/或,频域相对位置是根据预设规则确定的。
可选地,重复传输在一个时间单元内,或者,在不同时间单元内。
可选地,时间单元为一个时隙。
可选地,数据信道为物理下行共享信道PDSCH,或者,物理上行共享信道PUSCH。
可选地,针对重复传输上的任一传输,传输上的参考信号的时域相对位置是相对于传输上的数据信道的时域位置,传输上的参考信号的频域相对位置是相对于传输上的数据信道的频域位置。
可选地,终端设备2100还包括:通信单元2102,用于与网络设备实现通信。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的终端设备2100可对应于本申请方法实施例中的终端设备,并且终端设备2100中的各个单元的上述和其它操作和/或功能分别为了实现上述方法实施例中终端设备的相应流程,为了简洁,在此不再赘述。
图22示出了根据本申请实施例的网络设备2200的示意性框图。如图22所示,该网络设备2200属于第一网络,该网络设备2200包括:
处理单元2201,用于获取数据信道的重复传输上的参考信号的时域相对位置,和/或,频域相对位置。其中,重复传输中的至少两次传输上的参考信号的时域相对位置不同,和/或,频域相对位置不同。
可选地,参考信号包括:前置解调参考信号DMRS,和/或,附加DMRS。
可选地,至少两次传输上的前置DMRS的时域相对位置不同。
或者,至少两次传输上的前置DMRS的时域相对位置不同,至少两次传输上的附加DMRS的时域相对位置相同。
或者,至少两次传输上的前置DMRS的时域相对位置相同,至少两次传输上的附加DMRS的时域相对位置不同。
或者,至少两次传输上的前置DMRS的时域相对位置不同,至少两次传输上的附加DMRS的时域相对位置不同。
或者,至少两次传输上的前置DMRS的时域相对位置相同,至少两次传输中至少一次传输上存 在附加DMRS,至少两次传输中的至少一次传输不存在附加DMRS。
或者,至少两次传输上的前置DMRS的时域相对位置不同,至少两次传输中至少一次传输上存在附加DMRS,至少两次传输中的至少一次传输不存在附加DMRS。
可选地,至少两次传输上的前置DMRS的频域相对位置不同。
或者,至少两次传输上的前置DMRS的频域相对位置不同,至少两次传输上的附加DMRS的频域相对位置相同。
或者,至少两次传输上的前置DMRS的频域相对位置相同,至少两次传输上的附加DMRS的频域相对位置不同。
或者,至少两次传输上的前置DMRS的频域相对位置不同,至少两次传输上的附加DMRS的频域相对位置不同。
或者,至少两次传输上的前置DMRS的频域相对位置相同,至少两次传输中至少一次传输上存在附加DMRS,至少两次传输中的至少一次传输不存在附加DMRS。
或者,至少两次传输上的前置DMRS的频域相对位置不同,至少两次传输中至少一次传输上存在附加DMRS,至少两次传输中的至少一次传输不存在附加DMRS。
可选地,至少两次传输中至少一次传输上存在前置DMRS和/或附加DMRS,至少两次传输中的至少一次传输不存在前置DMRS和/或附加DMRS。
可选地,还包括:通信单元2202,用于向终端设备发送高层信令和/或DCI,高层信令和/或下行控制信令DCI用于确定重复传输上的参考信号的时域相对位置,和/或,频域相对位置。
可选地,还包括:通信单元2202,用于向终端设备发送高层信令和/或DCI,高层信令和/或下行控制信令DCI用于确定重复传输中首次传输上的参考信号的时域相对位置,和/或,频域相对位置。非首次传输上的参考信号的时域相对位置,和/或,频域相对位置是根据预设规则确定的。
可选地,重复传输在一个时间单元内,或者,在不同时间单元内。
可选地,时间单元为一个时隙。
可选地,数据信道为物理下行共享信道PDSCH,或者,物理上行共享信道PUSCH。
可选地,针对重复传输上的任一传输,传输上的参考信号的时域相对位置是相对于传输上的数据信道的时域位置,传输上的参考信号的频域相对位置是相对于传输上的数据信道的频域位置。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的网络设备2200可对应于本申请方法实施例中的网络设备,并且网络设备2200中的各个单元的上述和其它操作和/或功能分别为了实现上述方法实施例中网络设备的相应流程,为了简洁,在此不再赘述。
图23是本申请实施例提供的一种通信设备800示意性结构图。图23所示的通信设备800包括处理器810,处理器810可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图23所示,通信设备800还可以包括存储器820。其中,处理器810可以从存储器820中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器820可以是独立于处理器810的一个单独的器件,也可以集成在处理器810中。
可选地,如图23所示,通信设备800还可以包括收发器830,处理器810可以控制该收发器830与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器830可以包括发射机和接收机。收发器830还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备800具体可为本申请实施例的网络设备,并且该通信设备800可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备800具体可为本申请实施例的移动终端/终端设备,并且该通信设备800可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图24是本申请实施例的装置的示意性结构图。图24所示的装置900包括处理器910,处理器910可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图24所示,装置900还可以包括存储器920。其中,处理器910可以从存储器920中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器920可以是独立于处理器910的一个单独的器件,也可以集成在处理器910中。
可选地,该装置900还可以包括输入接口930。其中,处理器910可以控制该输入接口930与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该装置900还可以包括输出接口940。其中,处理器910可以控制该输出接口940与其 他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该装置可应用于本申请实施例中的网络设备,并且该装置可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该装置可应用于本申请实施例中的移动终端/终端设备,并且该装置可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
可选地,本申请实施例提到的装置也可以是芯片。例如可以是系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图25是本申请实施例提供的一种通信系统1000的示意性框图。如图25所示,该通信系统1000包括终端设备1010和网络设备1020。
其中,该终端设备1010可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备1020可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。针对这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (54)

  1. 一种无线通信方法,其特征在于,包括:
    终端设备获取数据信道的重复传输上的参考信号的时域相对位置,和/或,频域相对位置;
    其中,所述重复传输中的至少两次传输上的参考信号的时域相对位置不同,和/或,频域相对位置不同。
  2. 根据权利要求1所述的方法,其特征在于,所述参考信号包括:前置解调参考信号DMRS,和/或,附加DMRS。
  3. 根据权利要求1或2所述的方法,其特征在于,
    所述至少两次传输上的前置DMRS的时域相对位置不同;
    或者,所述至少两次传输上的前置DMRS的时域相对位置不同,所述至少两次传输上的附加DMRS的时域相对位置相同;
    或者,所述至少两次传输上的前置DMRS的时域相对位置相同,所述至少两次传输上的附加DMRS的时域相对位置不同;
    或者,所述至少两次传输上的前置DMRS的时域相对位置不同,所述至少两次传输上的附加DMRS的时域相对位置不同;
    或者,所述至少两次传输上的前置DMRS的时域相对位置相同,所述至少两次传输中至少一次传输上存在附加DMRS,所述至少两次传输中的至少一次传输不存在附加DMRS;
    或者,所述至少两次传输上的前置DMRS的时域相对位置不同,所述至少两次传输中至少一次传输上存在附加DMRS,所述至少两次传输中的至少一次传输不存在附加DMRS。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,
    所述至少两次传输上的前置DMRS的频域相对位置不同;
    或者,所述至少两次传输上的前置DMRS的频域相对位置不同,所述至少两次传输上的附加DMRS的频域相对位置相同;
    或者,所述至少两次传输上的前置DMRS的频域相对位置相同,所述至少两次传输上的附加DMRS的频域相对位置不同;
    或者,所述至少两次传输上的前置DMRS的频域相对位置不同,所述至少两次传输上的附加DMRS的频域相对位置不同;
    或者,所述至少两次传输上的前置DMRS的频域相对位置相同,所述至少两次传输中至少一次传输上存在附加DMRS,至少两次传输中的至少一次传输不存在附加DMRS;
    或者,所述至少两次传输上的前置DMRS的频域相对位置不同,所述至少两次传输中至少一次传输上存在附加DMRS,至少两次传输中的至少一次传输不存在附加DMRS。
  5. 根据权利要求1或2所述的方法,其特征在于,
    所述至少两次传输中至少一次传输上存在前置DMRS和/或附加DMRS,所述至少两次传输中的至少一次传输不存在前置DMRS和/或附加DMRS。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,
    所述重复传输上的参考信号的时域相对位置,和/或,频域相对位置是根据高层信令和/或下行控制信令DCI确定的。
  7. 根据权利要求1-5任一项所述的方法,其特征在于,
    所述重复传输中首次传输上的参考信号的时域相对位置,和/或,频域相对位置是根据高层信令和/或下行控制信令DCI确定的;非首次传输上的参考信号的时域相对位置,和/或,频域相对位置是根据预设规则确定的。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述重复传输在一个时间单元内,或者,在不同时间单元内。
  9. 根据权利要求8所述的方法,其特征在于,所述时间单元为一个时隙。
  10. 根据权利要求1-9任一项所述的方法,其特征在于,所述数据信道为物理下行共享信道PDSCH,或者,物理上行共享信道PUSCH。
  11. 根据权利要求1-10任一项所述的方法,其特征在于,针对所述重复传输上的任一传输,所述传输上的参考信号的时域相对位置是相对于所述传输上的数据信道的时域位置,所述传输上的参考信号的频域相对位置是相对于所述传输上的数据信道的频域位置。
  12. 一种无线通信方法,其特征在于,包括:
    网络设备获取数据信道的重复传输上的参考信号的时域相对位置,和/或,频域相对位置;
    其中,所述重复传输中的至少两次传输上的参考信号的时域相对位置不同,和/或,频域相对位 置不同。
  13. 根据权利要求12所述的方法,其特征在于,所述参考信号包括:前置解调参考信号DMRS,和/或,附加DMRS。
  14. 根据权利要求12或13所述的方法,其特征在于,
    所述至少两次传输上的前置DMRS的时域相对位置不同;
    或者,所述至少两次传输上的前置DMRS的时域相对位置不同,所述至少两次传输上的附加DMRS的时域相对位置相同;
    或者,所述至少两次传输上的前置DMRS的时域相对位置相同,所述至少两次传输上的附加DMRS的时域相对位置不同;
    或者,所述至少两次传输上的前置DMRS的时域相对位置不同,所述至少两次传输上的附加DMRS的时域相对位置不同;
    或者,所述至少两次传输上的前置DMRS的时域相对位置相同,所述至少两次传输中至少一次传输上存在附加DMRS,至少两次传输中的至少一次传输不存在附加DMRS;
    或者,所述至少两次传输上的前置DMRS的时域相对位置不同,所述至少两次传输中至少一次传输上存在附加DMRS,至少两次传输中的至少一次传输不存在附加DMRS。
  15. 根据权利要求12-14任一项所述的方法,其特征在于,
    所述至少两次传输上的前置DMRS的频域相对位置不同;
    或者,所述至少两次传输上的前置DMRS的频域相对位置不同,所述至少两次传输上的附加DMRS的频域相对位置相同;
    或者,所述至少两次传输上的前置DMRS的频域相对位置相同,所述至少两次传输上的附加DMRS的频域相对位置不同;
    或者,所述至少两次传输上的前置DMRS的频域相对位置不同,所述至少两次传输上的附加DMRS的频域相对位置不同;
    或者,所述至少两次传输上的前置DMRS的频域相对位置相同,所述至少两次传输中至少一次传输上存在附加DMRS,至少两次传输中的至少一次传输不存在附加DMRS;
    或者,所述至少两次传输上的前置DMRS的频域相对位置不同,所述至少两次传输中至少一次传输上存在附加DMRS,至少两次传输中的至少一次传输不存在附加DMRS。
  16. 根据权利要求12或13所述的方法,其特征在于,
    所述至少两次传输中至少一次传输上存在前置DMRS和/或附加DMRS,所述至少两次传输中的至少一次传输不存在前置DMRS和/或附加DMRS。
  17. 根据权利要求12-16任一项所述的方法,其特征在于,还包括:
    所述网络设备向所述终端设备发送高层信令和/或下行控制信令DCI,所述高层信令和/或下行控制信令DCI用于确定所述重复传输上的参考信号的时域相对位置,和/或,频域相对位置。
  18. 根据权利要求12-16任一项所述的方法,其特征在于,还包括:
    所述网络设备向所述终端设备发送高层信令和/或下行控制信令DCI,所述高层信令和/或下行控制信令DCI用于确定所述重复传输中首次传输上的参考信号的时域相对位置,和/或,频域相对位置;
    非首次传输上的参考信号的时域相对位置,和/或,频域相对位置是根据预设规则确定的。
  19. 根据权利要求12-18任一项所述的方法,其特征在于,所述重复传输在一个时间单元内,或者,在不同时间单元内。
  20. 根据权利要求19所述的方法,其特征在于,所述时间单元为一个时隙。
  21. 根据权利要求12-20任一项所述的方法,其特征在于,所述数据信道为物理下行共享信道PDSCH,或者,物理上行共享信道PUSCH。
  22. 根据权利要求12-21任一项所述的方法,其特征在于,针对所述重复传输上的任一传输,所述传输上的参考信号的时域相对位置是相对于所述传输上的数据信道的时域位置,所述传输上的参考信号的频域相对位置是相对于所述传输上的数据信道的频域位置。
  23. 一种终端设备,其特征在于,包括:
    处理单元,用于获取数据信道的重复传输上的参考信号的时域相对位置,和/或,频域相对位置;
    其中,所述重复传输中的至少两次传输上的参考信号的时域相对位置不同,和/或,频域相对位置不同。
  24. 根据权利要求23所述的终端设备,其特征在于,所述参考信号包括:前置解调参考信号DMRS,和/或,附加DMRS。
  25. 根据权利要求23或24所述的终端设备,其特征在于,
    所述至少两次传输上的前置DMRS的时域相对位置不同;
    或者,所述至少两次传输上的前置DMRS的时域相对位置不同,所述至少两次传输上的附加DMRS的时域相对位置相同;
    或者,所述至少两次传输上的前置DMRS的时域相对位置相同,所述至少两次传输上的附加DMRS的时域相对位置不同;
    或者,所述至少两次传输上的前置DMRS的时域相对位置不同,所述至少两次传输上的附加DMRS的时域相对位置不同;
    或者,所述至少两次传输上的前置DMRS的时域相对位置相同,所述至少两次传输中至少一次传输上存在附加DMRS,至少两次传输中的至少一次传输不存在附加DMRS;
    或者,所述至少两次传输上的前置DMRS的时域相对位置不同,所述至少两次传输中至少一次传输上存在附加DMRS,至少两次传输中的至少一次传输不存在附加DMRS。
  26. 根据权利要求23-25任一项所述的终端设备,其特征在于,
    所述至少两次传输上的前置DMRS的频域相对位置不同;
    或者,所述至少两次传输上的前置DMRS的频域相对位置不同,所述至少两次传输上的附加DMRS的频域相对位置相同;
    或者,所述至少两次传输上的前置DMRS的频域相对位置相同,所述至少两次传输上的附加DMRS的频域相对位置不同;
    或者,所述至少两次传输上的前置DMRS的频域相对位置不同,所述至少两次传输上的附加DMRS的频域相对位置不同;
    或者,所述至少两次传输上的前置DMRS的频域相对位置相同,所述至少两次传输中至少一次传输上存在附加DMRS,至少两次传输中的至少一次传输不存在附加DMRS;
    或者,所述至少两次传输上的前置DMRS的频域相对位置不同,所述至少两次传输中至少一次传输上存在附加DMRS,至少两次传输中的至少一次传输不存在附加DMRS。
  27. 根据权利要求23或24所述的终端设备,其特征在于,
    所述至少两次传输中至少一次传输上存在前置DMRS和/或附加DMRS,所述至少两次传输中的至少一次传输不存在前置DMRS和/或附加DMRS。
  28. 根据权利要求23-27任一项所述的终端设备,其特征在于,
    所述重复传输上的参考信号的时域相对位置,和/或,频域相对位置是根据高层信令和/或下行控制信令DCI确定的。
  29. 根据权利要求23-27任一项所述的终端设备,其特征在于,
    所述重复传输中首次传输上的参考信号的时域相对位置,和/或,频域相对位置是根据高层信令和/或下行控制信令DCI确定的;非首次传输上的参考信号的时域相对位置,和/或,频域相对位置是根据预设规则确定的。
  30. 根据权利要求23-29任一项所述的终端设备,其特征在于,所述重复传输在一个时间单元内,或者,在不同时间单元内。
  31. 根据权利要求30所述的终端设备,其特征在于,所述时间单元为一个时隙。
  32. 根据权利要求23-31任一项所述的终端设备,其特征在于,所述数据信道为物理下行共享信道PDSCH,或者,物理上行共享信道PUSCH。
  33. 根据权利要求23-32任一项所述的终端设备,其特征在于,针对所述重复传输上的任一传输,所述传输上的参考信号的时域相对位置是相对于所述传输上的数据信道的时域位置,所述传输上的参考信号的频域相对位置是相对于所述传输上的数据信道的频域位置。
  34. 一种网络设备,其特征在于,包括:
    处理单元,用于获取数据信道的重复传输上的参考信号的时域相对位置,和/或,频域相对位置;
    其中,所述重复传输中的至少两次传输上的参考信号的时域相对位置不同,和/或,频域相对位置不同。
  35. 根据权利要求34所述的网络设备,其特征在于,所述参考信号包括:前置解调参考信号DMRS,和/或,附加DMRS。
  36. 根据权利要求34或35所述的网络设备,其特征在于,
    所述至少两次传输上的前置DMRS的时域相对位置不同;
    或者,所述至少两次传输上的前置DMRS的时域相对位置不同,所述至少两次传输上的附加DMRS的时域相对位置相同;
    或者,所述至少两次传输上的前置DMRS的时域相对位置相同,所述至少两次传输上的附加 DMRS的时域相对位置不同;
    或者,所述至少两次传输上的前置DMRS的时域相对位置不同,所述至少两次传输上的附加DMRS的时域相对位置不同;
    或者,所述至少两次传输上的前置DMRS的时域相对位置相同,所述至少两次传输中至少一次传输上存在附加DMRS,至少两次传输中的至少一次传输不存在附加DMRS;
    或者,所述至少两次传输上的前置DMRS的时域相对位置不同,所述至少两次传输中至少一次传输上存在附加DMRS,至少两次传输中的至少一次传输不存在附加DMRS。
  37. 根据权利要求34-36任一项所述的网络设备,其特征在于,
    所述至少两次传输上的前置DMRS的频域相对位置不同;
    或者,所述至少两次传输上的前置DMRS的频域相对位置不同,所述至少两次传输上的附加DMRS的频域相对位置相同;
    或者,所述至少两次传输上的前置DMRS的频域相对位置相同,所述至少两次传输上的附加DMRS的频域相对位置不同;
    或者,所述至少两次传输上的前置DMRS的频域相对位置不同,所述至少两次传输上的附加DMRS的频域相对位置不同;
    或者,所述至少两次传输上的前置DMRS的频域相对位置相同,所述至少两次传输中至少一次传输上存在附加DMRS,至少两次传输中的至少一次传输不存在附加DMRS;
    或者,所述至少两次传输上的前置DMRS的频域相对位置不同,所述至少两次传输中至少一次传输上存在附加DMRS,至少两次传输中的至少一次传输不存在附加DMRS。
  38. 根据权利要求34或35所述的网络设备,其特征在于,
    所述至少两次传输中至少一次传输上存在前置DMRS和/或附加DMRS,所述至少两次传输中的至少一次传输不存在前置DMRS和/或附加DMRS。
  39. 根据权利要34-38任一项所述的网络设备,其特征在于,还包括:
    通信单元,用于向所述终端设备发送高层信令和/或下行控制信令DCI,所述高层信令和/或下行控制信令DCI用于确定所述重复传输上的参考信号的时域相对位置,和/或,频域相对位置。
  40. 根据权利要求34-38任一项所述的网络设备,其特征在于,还包括:
    通信单元,用于向所述终端设备发送高层信令和/或下行控制信令DCI,所述高层信令和/或下行控制信令DCI用于确定所述重复传输中首次传输上的参考信号的时域相对位置,和/或,频域相对位置;
    非首次传输上的参考信号的时域相对位置,和/或,频域相对位置是根据预设规则确定的。
  41. 根据权利要求34-40任一项所述的网络设备,其特征在于,所述重复传输在一个时间单元内,或者,在不同时间单元内。
  42. 根据权利要求41所述的网络设备,其特征在于,所述时间单元为一个时隙。
  43. 根据权利要求34-42任一项所述的网络设备,其特征在于,所述数据信道为物理下行共享信道PDSCH,或者,物理上行共享信道PUSCH。
  44. 根据权利要求34-43任一项所述的网络设备,其特征在于,针对所述重复传输上的任一传输,所述传输上的参考信号的时域相对位置是相对于所述传输上的数据信道的时域位置,所述传输上的参考信号的频域相对位置是相对于所述传输上的数据信道的频域位置。
  45. 一种终端设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至11中任一项所述的方法。
  46. 一种网络设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求12至22中任一项所述的方法。
  47. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至11中任一项所述的方法。
  48. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求12至22中任一项所述的方法。
  49. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至11中任一项所述的方法。
  50. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求12至22中任一项所述的方法。
  51. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至11中任一项所述的方法。
  52. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求12至22中任一项所述的方法。
  53. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至11中任一项所述的方法。
  54. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求12至22中任一项所述的方法。
PCT/CN2020/090707 2020-05-15 2020-05-15 无线通信方法、终端设备和网络设备 WO2021227089A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2020/090707 WO2021227089A1 (zh) 2020-05-15 2020-05-15 无线通信方法、终端设备和网络设备
EP20935597.3A EP4152848A4 (en) 2020-05-15 2020-05-15 WIRELESS COMMUNICATION METHOD, TERMINAL DEVICE AND NETWORK DEVICE
CN202080100689.9A CN115553007A (zh) 2020-05-15 2020-05-15 无线通信方法、终端设备和网络设备
US17/987,532 US20230077947A1 (en) 2020-05-15 2022-11-15 Wireless communication method, terminal device, and network device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/090707 WO2021227089A1 (zh) 2020-05-15 2020-05-15 无线通信方法、终端设备和网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/987,532 Continuation US20230077947A1 (en) 2020-05-15 2022-11-15 Wireless communication method, terminal device, and network device

Publications (1)

Publication Number Publication Date
WO2021227089A1 true WO2021227089A1 (zh) 2021-11-18

Family

ID=78526318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/090707 WO2021227089A1 (zh) 2020-05-15 2020-05-15 无线通信方法、终端设备和网络设备

Country Status (4)

Country Link
US (1) US20230077947A1 (zh)
EP (1) EP4152848A4 (zh)
CN (1) CN115553007A (zh)
WO (1) WO2021227089A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110535584A (zh) * 2018-08-10 2019-12-03 中兴通讯股份有限公司 一种上行链路传输方法、装置,用户终端及可读存储介质
US20200015222A1 (en) * 2018-07-03 2020-01-09 Qualcomm Incorporated Physical uplink control channel repetition
WO2020067967A1 (en) * 2018-09-28 2020-04-02 Telefonaktiebolaget Lm Ericsson (Publ) Frequency hopping for transmission with multiple repetitions

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200015222A1 (en) * 2018-07-03 2020-01-09 Qualcomm Incorporated Physical uplink control channel repetition
CN110535584A (zh) * 2018-08-10 2019-12-03 中兴通讯股份有限公司 一种上行链路传输方法、装置,用户终端及可读存储介质
WO2020067967A1 (en) * 2018-09-28 2020-04-02 Telefonaktiebolaget Lm Ericsson (Publ) Frequency hopping for transmission with multiple repetitions

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
OPPO: "PUSCH enhancement for URLLC", 3GPP DRAFT; R1-1910621, vol. RAN WG1, 5 October 2019 (2019-10-05), Chongqing, China, pages 1 - 8, XP051808609 *
See also references of EP4152848A4 *
SONY: "On DMRS of segmented PUSCH", 3GPP DRAFT; R1-2000585, vol. RAN WG1, 14 February 2020 (2020-02-14), pages 1 - 3, XP051852930 *

Also Published As

Publication number Publication date
CN115553007A (zh) 2022-12-30
EP4152848A4 (en) 2024-04-10
EP4152848A1 (en) 2023-03-22
US20230077947A1 (en) 2023-03-16

Similar Documents

Publication Publication Date Title
US20210329431A1 (en) Feedback Channel Sending Method And Apparatus, And Feedback Channel Receiving Method And Apparatus
WO2019157995A1 (zh) 传输数据的方法和装置以及通信设备
WO2020211096A1 (zh) 无线通信方法、终端设备和网络设备
WO2021163938A1 (zh) 天线切换方法、终端设备和通信设备
WO2020147131A1 (zh) 无线通信方法、终端设备和网络设备
CN113645657B (zh) 无线通信方法、终端设备和网络设备
CN113169848B (zh) 无线通信方法、终端设备和网络设备
WO2020087292A1 (zh) 无线通信方法、终端设备和网络设备
WO2021081824A1 (zh) 无线通信方法和终端设备
US20210392530A1 (en) Wireless communication method, terminal device and network device
WO2020056609A1 (zh) 资源分配方法、终端设备和网络设备
WO2020073257A1 (zh) 无线通信方法和终端设备
WO2020082395A1 (zh) 信号传输方法、发射端设备和接收端设备
EP3955629B1 (en) Wireless communication method, terminal device, and network device
TWI751235B (zh) 無線通信的方法和裝置
WO2019119375A1 (zh) 一种信息传输的方法、装置及计算机存储介质
JP2023514730A (ja) フィードバックリソース決定方法およびフィードバックリソース決定装置
WO2021227089A1 (zh) 无线通信方法、终端设备和网络设备
WO2022193260A1 (zh) 无线通信方法、终端设备和网络设备
WO2021248456A1 (zh) 无线通信的方法及设备
WO2022021136A1 (zh) 无线通信方法、终端设备和网络设备
WO2021062869A1 (zh) 无线通信方法和终端设备
WO2022056870A1 (zh) 无线通信方法、终端设备和网络设备
WO2022141105A1 (zh) 无线通信方法、终端设备和网络设备
WO2023050320A1 (zh) 无线通信的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20935597

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020935597

Country of ref document: EP

Effective date: 20221212