WO2021227051A1 - 一种像素补偿方法、装置及电子设备 - Google Patents

一种像素补偿方法、装置及电子设备 Download PDF

Info

Publication number
WO2021227051A1
WO2021227051A1 PCT/CN2020/090623 CN2020090623W WO2021227051A1 WO 2021227051 A1 WO2021227051 A1 WO 2021227051A1 CN 2020090623 W CN2020090623 W CN 2020090623W WO 2021227051 A1 WO2021227051 A1 WO 2021227051A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
value
pixel value
sub
compensation
Prior art date
Application number
PCT/CN2020/090623
Other languages
English (en)
French (fr)
Inventor
郑佳卉
徐康华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/090623 priority Critical patent/WO2021227051A1/zh
Priority to CN202080100915.3A priority patent/CN115605941A/zh
Publication of WO2021227051A1 publication Critical patent/WO2021227051A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]

Definitions

  • This application relates to the field of display technology, and in particular to a pixel compensation method, device and electronic equipment.
  • the active matrix organic light emitting diode (AMOLED) display uses a pixel circuit composed of two or more thin film transistors (TFT) to drive the light-emitting devices in the pixels (for example, organic light emitting diodes (organic light emitting diodes)).
  • TFT thin film transistors
  • OLED light emitting diode
  • V Data data voltage driving transistor generates a current (Idata) that flows through the OLED in the pixel, so that the pixel emits light.
  • IR dorp static voltage drop
  • IR drop dynamic voltage drop
  • dynamic voltage drop IR drop during the light-emitting process of the pixel.
  • static IR dorp is caused by the different internal resistances of internal traces of different lengths when Idata flows through the internal traces of the display; static IR dorp will cause the display brightness of pixels on the image of the display to fail to reach the corresponding standard of the pixel value brightness.
  • the dynamic voltage drop is the effect on the display brightness of the pixels in the unchanged area when the image content of the display screen changes.
  • the compensation of pixels usually only considers the compensation of static IR dorp; or calculate the compensation voltage by constructing the expected current lookup table of the pixel position, or by calculating the display load and the maximum voltage drop of the pixel, one pixel by pixel is calculated. Compensation coefficient, so that the static IR dorp and dynamic IR drop are compensated together, and the compensation accuracy is limited.
  • the present application provides a pixel compensation method, device, and electronic equipment, which can improve the accuracy of pixel compensation.
  • an embodiment of the present application provides a pixel compensation method.
  • the pixel compensation device may be the electronic device itself or a chip or functional entity provided in the electronic device.
  • the pixel compensation method includes the following steps: first, obtain the position coordinates of the target pixel in the current image displayed on the display screen and the initial pixel value of the target pixel; look up the first look-up table according to the position information of the target pixel and the initial pixel value of the target pixel.
  • the static compensation coefficient is used to compensate the static voltage drop IR drop of the target pixel through the static compensation coefficient to generate the first pixel value.
  • the first look-up table contains the position information of the pixel and the corresponding relationship between the pixel value of the pixel and the static compensation coefficient;
  • the first pixel value queries the dynamic compensation coefficient in the second look-up table, where the second look-up table contains the corresponding relationship between the pixel value of the pixel and the dynamic compensation coefficient; finally, the dynamic IR drop of the target pixel is compensated and generated by the dynamic compensation coefficient The compensation pixel value of the target pixel.
  • the pixel compensation device first obtains the position coordinates of the target pixel and the initial pixel value of the target pixel in the current image displayed on the display screen, and then searches the static state in the first lookup table according to the position information of the target pixel and the initial pixel value of the target pixel. Compensation coefficient.
  • the static voltage drop IR drop of the target pixel is compensated by the static compensation coefficient to generate the first pixel value to complete the compensation of the static voltage drop IR drop of the target pixel; then, the second look-up table is based on the first pixel value Query the dynamic compensation coefficient in the, and finally compensate the dynamic IR drop of the target pixel through the dynamic compensation coefficient to generate the compensated pixel value of the target pixel, which completes the compensation of the dynamic IR drop of the target pixel.
  • the prior art if only static IR dorp is considered, dynamic IR drop cannot be compensated.
  • the static compensation process The load of the image on the display screen will change, and the accuracy of pixel compensation is usually not guaranteed.
  • the static compensation coefficient is determined by the first lookup table
  • the dynamic compensation coefficient is determined by the second lookup table
  • the static IR dorp is compensated based on the static compensation coefficient
  • the dynamic IR drop is respectively determined based on the dynamic compensation coefficient. Perform compensation to improve the accuracy of pixel compensation.
  • the compensation of the dynamic IR drop mainly considers the current image The relationship between the brightness of the background area and the brightness of the target pixel.
  • the dynamic compensation coefficient in the second look-up table before querying the dynamic compensation coefficient in the second look-up table according to the first pixel value, it also includes: obtaining the first average load of the background area of the current image and the load of the target pixel, where the background area of the current image is the current image In the area other than the target pixel, the first average load is the average value of the load of the pixels in the background area of the current image; querying the dynamic compensation coefficient in the second look-up table according to the first pixel value includes: according to the first pixel value , The first average load and the load of the target pixel are queried for the dynamic compensation coefficient in the second look-up table, where the second look-up table contains the pixel value of the pixel, the first average load, and the corresponding relationship between the load of the target pixel and the dynamic compensation coefficient.
  • a pixel in the field of display technology, usually contains one or more sub-pixels.
  • the current image is a three-channel image; when the pixel contains four sub-pixels, the current image It is a four-channel image; of course, the target pixel may contain one or more sub-pixels in the actual solution.
  • the initial pixel value includes the pixel value of the first sub-pixel and the pixel value of the second sub-pixel; then according to the position information of the target pixel and the initial pixel value of the target pixel
  • Finding the static compensation coefficient in the first look-up table includes: looking up the static compensation coefficient of the first sub-pixel in the first look-up table according to the position information of the target pixel and the pixel value of the first sub-pixel of the target pixel; The position information and the pixel value of the second sub-pixel of the target pixel are searched for the static compensation coefficient of the second sub-pixel in the first look-up table.
  • obtaining the first average load of the background area of the current image and the load of the target pixel includes: querying a third look-up table according to the pixel value of the first pixel in the background area to obtain the load of the first pixel in the background area.
  • the pixel is any pixel in the background area; the third look-up table is queried according to the pixel value of the target pixel to obtain the load of the target pixel; wherein the third look-up table contains the corresponding relationship between the pixel value and the load of the pixel.
  • the target pixel includes at least one sub-pixel.
  • the method further includes: acquiring from the first characteristic image For the position information of any pixel, the first characteristic image is a single-channel image including only one sub-pixel, and the pixel values of all pixels of the first characteristic image are the same; obtain the standard brightness of any pixel and the value of any pixel on the display screen.
  • Display brightness calculate the gamma value according to the pixel value and display brightness of any pixel; calculate the first compensation pixel value according to the gamma value and standard brightness; generate the value of any pixel according to the first compensation pixel value and the pixel value of any pixel Static compensation coefficient: the position information of any pixel, the pixel value of any pixel, and the static compensation coefficient of any pixel are correspondingly written into the first look-up table.
  • the first look-up table contains the correspondence between the position information of the pixel, the pixel value of the pixel, and the static compensation coefficient.
  • the first look-up table may contain three look-up tables about sub-pixels R, G, and B respectively.
  • the first look-up table contains the position information of the pixel and the pixel's position information.
  • the first look-up table contains the corresponding relationship between the position information of the pixel and the pixel value of the sub-pixel G of the pixel and the static compensation coefficient; for the sub-pixel B , The first look-up table contains the correspondence between the position information of the pixel and the pixel value of the sub-pixel B of the pixel and the static compensation coefficient. In this way, because in the process of forming the static compensation coefficient, the conversion between the pixel value and the brightness of the pixel occurs twice.
  • the gamma value will be calculated by the display brightness and the pixel value of the pixel, and in the second conversion , Use the same gamma value as the previous conversion to get the compensated pixel value according to the standard brightness, so that when the pixel is displayed on the screen according to the compensated pixel value, the brightness is the standard brightness, which compensates for the static voltage drop. Without changing the gamma value, the original gamma curve of the display screen is guaranteed and the accuracy of pixel compensation is guaranteed. In addition, the calculation of the coefficient of static compensation can be generated only by calculating the first feature images of different pixels, and the calculation complexity is relatively low, which is beneficial to reduce the hardware cost.
  • the target pixel includes at least one sub-pixel. According to the first pixel value, the first average load and the load of the target pixel, the dynamic compensation coefficient is queried in the second look-up table, which includes: obtaining on the display screen.
  • the pixel values of all pixels in the background area in the second feature image are the same;
  • the second average load is the average of the loads of the pixels in the background area of the second feature image, and
  • the third average load is the target area of the second feature image
  • the average value of the load of the pixels of the second feature image obtain the pixel value of any pixel in the target area in the second feature image; obtain the standard brightness of the pixel value of any pixel and the display brightness of any pixel on the display; according to any Calculate the gamma value based on the pixel value and display brightness of the pixel; calculate the second compensation pixel value based on the gamma value and standard brightness; generate the dynamic compensation coefficient of any pixel based on the second compensation pixel value and the pixel value of any pixel;
  • the second look-up table contains the correspondence between the second average load, the third average load, the pixel value of any pixel in the target area, and the dynamic compensation coefficient.
  • the second look-up table can Contains three look-up tables about sub-pixels R, G, and B respectively.
  • the second look-up table contains the pixel value R of sub-pixel R, the second average load and the third average load corresponding to sub-pixel R, and dynamics. Correspondence of compensation coefficient.
  • the principle is the same as that of the sub-pixel R and will not be repeated here.
  • the gamma value will be calculated from the display brightness and the pixel value of the pixel.
  • the second conversion Use the same gamma value as the first conversion to obtain the compensated pixel value according to the standard brightness, so that when the pixel is displayed on the screen according to the compensated pixel value, the brightness is the standard brightness, which compensates for the dynamic voltage drop. Without changing the gamma value, the original gamma curve of the display screen is guaranteed and the accuracy of pixel compensation is guaranteed.
  • the calculation of the coefficient of dynamic compensation can be generated only by calculating the second feature images with different pixel values, and the calculation complexity is relatively low, which is beneficial to reduce the hardware cost.
  • a pixel compensation device for implementing the above-mentioned various methods.
  • the pixel compensation device includes a module, unit, or means corresponding to the foregoing method, and the module, unit, or means can be implemented by hardware, software, or hardware execution of corresponding software.
  • the hardware or software includes one or more modules or units corresponding to the above-mentioned functions.
  • a pixel compensation device including: a processor and a memory; the memory is used to store computer instructions, and when the processor executes the instructions, the pixel compensation device executes the method of any one of the above aspects.
  • a pixel compensation device including: a processor and a transmission interface; the processor is configured to call program instructions stored in a memory to execute the method as in any one of the above aspects.
  • the pixel compensation device further includes a memory for storing necessary program instructions and data.
  • the pixel compensation device is a chip system, it may be composed of a chip, or may include a chip and other discrete devices.
  • a computer-readable storage medium stores program instructions.
  • the program instructions run on a computer or a processor, the computer or the processor can execute any of the above aspects. Methods.
  • a computer program product containing instructions is provided.
  • the instructions When the instructions are run on a computer or a processor, the computer or the processor can execute the method in any of the foregoing aspects.
  • an electronic device including the pixel compensation device described above.
  • FIG. 1 is a schematic structural diagram of an electronic device provided by an embodiment of the application.
  • FIG. 2 is a schematic structural diagram of a display screen provided by an embodiment of the application.
  • FIG. 3 is a schematic structural diagram of a pixel circuit provided by an embodiment of the application.
  • FIG. 4 is a schematic structural diagram of a pixel circuit provided by another embodiment of the application.
  • FIG. 5 is a schematic diagram of an image with a black background provided by an embodiment of the application.
  • FIG. 6 is a schematic diagram of an image of a white background provided by an embodiment of the application.
  • FIG. 7 is a schematic flowchart of a pixel compensation method provided by an embodiment of the application.
  • FIG. 8 is a schematic diagram of a first lookup table provided by an embodiment of the application.
  • FIG. 9 is a schematic diagram of a first lookup table provided by another embodiment of this application.
  • FIG. 10 is a schematic diagram of a feature image provided by an embodiment of this application.
  • FIG. 11 is a schematic diagram of a feature image provided by another embodiment of this application.
  • FIG. 12 is a schematic diagram of a feature image provided by still another embodiment of this application.
  • FIG. 13 is a schematic diagram of a second lookup table provided by an embodiment of this application.
  • FIG. 14 is a schematic diagram of a second lookup table provided by another embodiment of this application.
  • FIG. 15 is a schematic diagram of a first feature image provided by an embodiment of this application.
  • FIG. 16 is a schematic diagram of a first feature image provided by another embodiment of this application.
  • FIG. 17 is a schematic diagram of a first feature image provided by still another embodiment of this application.
  • FIG. 18 is a schematic diagram of a second characteristic image provided by an embodiment of this application.
  • FIG. 19 is a schematic diagram of a second characteristic image provided by another embodiment of this application.
  • FIG. 20 is a schematic diagram of a second feature image provided by still another embodiment of this application.
  • FIG. 21 is a schematic diagram of a pixel compensation device provided by an embodiment of the application.
  • FIG. 22 is a schematic diagram of a pixel compensation device according to another embodiment of the application.
  • the meaning of “plurality” means two or more.
  • multiple processing units refer to two or more processing units; multiple systems refer to two or more systems.
  • first”, “second”, etc. are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features.
  • the features defined with “first”, “second”, etc. may explicitly or implicitly include one or more of these features.
  • “plurality” means two or more.
  • Pixel value represents the average brightness information or average reflection (transmission) density information of the smallest unit in the picture, and the pixel value can usually be expressed as grayscale.
  • Standard brightness refers to the brightness corresponding to the current pixel value calculated according to Grassmann's law. For example, taking a pixel including three sub-pixels of RGB as an example, according to Glassman's fourth law, the intensity of mixed light is the sum of the intensities of each component. So there is the following formula:
  • the standard brightness of the sub-pixel R is Y r
  • the standard brightness of the sub-pixel G is Y g
  • the standard brightness of the sub-pixel B is Y b .
  • the standard brightness of each sub-pixel can be calculated based on the above formula, where x and y represent the color coordinates, and x r and y r represent the chromaticity information of the sub-pixel R in the x and y color coordinates.
  • x g , y g represent the chromaticity information of the sub-pixel G in the x and y color coordinates
  • x b , y b represent the chromaticity information of the sub-pixel B in the x and y color coordinates
  • W is white
  • y W represents the chromaticity information of W in the x and y color coordinates
  • the standard brightness of W is Y W; in this way, a three-channel picture with all pixel values RGB can be made according to the current pixel value RGB of the pixel, and a white W can be made Picture, and then use a measuring instrument to measure the aforementioned picture to obtain the above-mentioned chromaticity information x r , y r , x g , y g , x b , y b , x W , y W and Y W , and substitute the above formula to calculate Y r , Y g , Y
  • Display brightness the brightness measured by the measuring device when the current pixel value is displayed on the screen.
  • the embodiments of the present application provide a pixel compensation method and device, which can be applied to electronic equipment with a display screen.
  • the electronic equipment with a display screen can be a mobile phone, a tablet computer, a notebook computer, or an ultra-mobile personal computer (ultra-mobile personal computer, UMPC), netbooks, personal digital assistants (PDAs), vehicle-mounted mobile devices, etc.
  • UMPC ultra-mobile personal computer
  • PDAs personal digital assistants
  • vehicle-mounted mobile devices etc.
  • FIG. 1 is a schematic structural diagram of an exemplary apparatus provided by an embodiment of the application.
  • the device 01 includes: a processor 11, a radio frequency (RF) circuit 12, a power supply 13, a memory 14, an input unit 15, a display unit 16, an audio circuit 17, and other components.
  • RF radio frequency
  • FIG. 1 does not constitute a limitation on the device.
  • the device may include more or less components such as those shown in FIG. 1, or may be combined as shown in FIG. 1. Some of the components shown may or may be arranged differently from the components shown in FIG. 1.
  • the processor 11 is the control center of the device. It uses various interfaces and lines to connect various parts of the entire device. By running or executing software programs and/or modules stored in the memory 14, and calling data stored in the memory 14, Perform various functions of the device and process data to monitor the device as a whole.
  • the processor 11 may include one or more processing units; preferably, the processor 11 may integrate an application processor and a modem processor, where the application processor mainly processes an operating system, a user interface, and application programs, etc. , The modem processor mainly deals with wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 11.
  • the RF circuit 12 can be used for receiving and sending signals during the process of sending and receiving information or talking. In particular, after receiving the downlink information of the base station, it is processed by the processor 11; in addition, the uplink data is sent to the base station.
  • the RF circuit includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier (LNA), a duplexer, and the like.
  • the RF circuit 12 can also communicate with the network and other devices through wireless communication.
  • Wireless communication can use any communication standard or protocol, including but not limited to global system of mobile communication (GSM), general packet radio service (GPRS), code division multiple access (code division multiple) access, CDMA), wideband code division multiple access (WCDMA), long term evolution (LTE), email, short messaging service (SMS), etc.
  • GSM global system of mobile communication
  • GPRS general packet radio service
  • code division multiple access code division multiple access
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • LTE long term evolution
  • email short messaging service
  • the device includes a power source 13 (such as a battery) for supplying power to various components.
  • a power source 13 such as a battery
  • the power source can be logically connected to the processor 11 through a power management system, so that functions such as charging, discharging, and power consumption management can be managed through the power management system.
  • the memory 14 may be used to store software programs and modules.
  • the processor 11 executes various functional applications and data processing of the device by running the software programs and modules stored in the memory 14.
  • the memory 14 may mainly include a storage program area and a storage data area.
  • the storage program area may store an operating system, an application program required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; Data created by the use of mobile phones (such as audio data, image data, phone book, etc.), etc.
  • the memory 14 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the input unit 15 may be used to receive inputted numeric or character information, and generate key signal input related to user settings and function control of the device.
  • the input unit 15 may include a touch screen 151 and other input devices 152.
  • the touch screen 151 also called a touch panel, can collect the user's touch operations on or near the touch screen (for example, the user uses any suitable objects or accessories such as fingers, stylus, etc. to operate on the touch screen 151 or near the touch screen 151).
  • the pre-set program drives the corresponding connection device.
  • the touch screen 151 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it To the processor 11, and can receive the command sent by the processor 11 and execute it.
  • the touch screen 151 can be implemented in multiple types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the other input device 152 may include, but is not limited to, one or more of a physical keyboard, function keys (such as a volume control button, a power switch button, etc.), a trackball, a mouse, and a joystick.
  • the display unit 16 may be used to display information input by the user or information provided to the user and various menus of the device.
  • the display unit 16 may include a display panel 161.
  • an AMOLED display screen may be used to configure the display panel 161.
  • the touch screen 151 can cover the display panel 161.
  • the touch screen 151 detects a touch operation on or near the touch screen 151, it is transmitted to the processor 11 to determine the type of the touch event, and then the processor 11 displays the display according to the type of the touch event.
  • Corresponding visual output is provided on the panel 161.
  • the touch screen 151 and the display panel 161 are used as two independent components to realize the input and output functions of the device, in some embodiments, the touch screen 151 and the display panel 161 can be integrated to realize the input of the device. And output function.
  • the audio circuit 17, the speaker 171 and the microphone 172 are used to provide an audio interface between the user and the device.
  • the audio circuit 17 can transmit the electric signal after the conversion of the received audio data to the speaker 171, which is converted into a sound signal by the speaker 171 for output; on the other hand, the microphone 172 converts the collected sound signal into an electric signal, and the audio circuit 17 After being received, the audio data is converted into audio data, and then the audio data is output to the RF circuit 12 to be sent to, for example, another device, or the audio data is output to the memory 14 for further processing.
  • the device shown in FIG. 1 may also include various sensors.
  • a gyroscope sensor for example, a hygrometer sensor, an infrared sensor, a magnetometer sensor, etc.
  • the device shown in FIG. 1 may also include a wireless fidelity (WiFi) module, a Bluetooth module, etc., which will not be repeated here.
  • WiFi wireless fidelity
  • the electronic device for example, the device shown in FIG. 1 above
  • the electronic device can perform some or all of the steps in the embodiment of this application. These steps or operations are only examples, and the embodiment of this application can also perform Other operations or variations of various operations.
  • each step may be executed in a different order presented in the embodiments of the present application, and it may not be necessary to perform all the operations in the embodiments of the present application.
  • the embodiments of this application can be implemented individually or in any combination, which is not limited in this application.
  • the display screen 10 includes an active display area (AA) 100 and a non-display area 101 located around the AA area 100.
  • the AA area 100 includes a plurality of pixels (pixels) 21.
  • pixels pixels
  • the pixels 21 arranged in a row along the horizontal direction X in FIG. 2 are referred to as the same row of pixels, and the pixels 21 arranged in a row along the vertical direction Y are referred to as the same row of pixels.
  • the above-mentioned display screen 10 is an OLED display screen.
  • the OLED display can realize self-luminescence.
  • the pixel 21 in the AA area 100 is provided with an OLED device as shown in FIG. 3 and a pixel circuit 201 for driving the OLED device to emit light.
  • the above-mentioned device may further include a display driving circuit for driving the display screen 10 to display, and the display driving circuit may be coupled to the display screen 10.
  • the display driver circuit may be a display driver integrated circuit (DDIC).
  • the DDIC 20 is disposed in the non-display area 101 of the display screen 10.
  • the pixel circuits 201 in the same column of pixels 21 are coupled to the DDIC 20 through the same data line (DL).
  • the above-mentioned DDIC 20 may also be set independently of the display screen 10.
  • the aforementioned device 01 further includes a printed circuit board (PCB) and a system on chip (System on Chip, SoC) mounted on the PCB.
  • An application processor application processor, AP
  • the DDIC 20 in FIG. 2 is coupled to the SoC through a flexible printed circuit (FPC).
  • FPC flexible printed circuit
  • each pixel circuit 201 After the display data output by the SoC passes through the DDIC 20, it is converted into a data voltage Vdata and transmitted to the pixel circuit 201 of each pixel 21 coupled to each data line DL.
  • each pixel circuit 201 generates a driving current I matching the data voltage Vdata through the data voltage Vdata on the data line DL to drive the OLED device in the pixel 21 to emit light. Specifically, as shown in FIG.
  • a schematic diagram of a pixel circuit which includes a switching transistor M1 and a driving transistor M2, wherein the gate (gate, g) of M1 is coupled to the scan line SCAN, and the source (s) of M1 ) Is coupled to the data line DL, the drain of M1 is coupled to the gate g of M2, the source of M2 is coupled to the power line VDD, the drain of M2 is coupled to the ground line VEE through the OLED, and one of the source s and the gate g of M2 The capacitor Cst is indirectly coupled.
  • the data voltage (V Data ) is applied to the OLED through the driving transistor M2, and the driving transistor generates a current (Idata) that flows through the OLED to emit light.
  • V Data data voltage
  • Idata current
  • the N-type drive transistor in order to ensure the stability of the source voltage of the drive transistor to avoid the problem of source voltage floating, which affects the unstable gate-source (gs) voltage of the drive transistor
  • the source s of the driving transistor is coupled to VEE, and the OLED is coupled between VDD and the drain d of the driving transistor.
  • FIG. 4 is only an example of a pixel circuit, and those skilled in the art can also replace the pixel circuit shown in FIG. 4 with other forms of pixel circuits.
  • the pixel circuit 201, the OLED device, and the data line DL in each pixel 21 in the display screen 10 can be fabricated on a base substrate.
  • the base substrate can be made of a flexible resin material.
  • the OLED display can be used as a folding display.
  • the base substrate in the above-mentioned OLED display screen can also be made of a relatively hard material, such as glass. In this case, the above-mentioned OLED display is a hard display.
  • the embodiments of the present application provide a pixel compensation method and device.
  • the device that executes the pixel compensation method is called a pixel compensation device, that is, the execution subject in the following method flow is the pixel compensation device.
  • the pixel compensation device may be an electronic device with a display screen (such as a mobile phone).
  • the display screen is the display screen of the pixel compensation device; the pixel compensation device may also be another device with an image.
  • the device for processing functions is not specifically limited in the embodiment of the present application.
  • the static IR dorp and dynamic IR drop are mainly compensated separately to improve the accuracy of pixel compensation; if only the static IR dorp is considered, the dynamic IR drop cannot be compensated; if the static IR drop is considered Dorp and dynamic IR drop are compensated together by a compensation voltage or a compensation coefficient. As the load of the image on the display screen will change after the static compensation process, the accuracy of pixel compensation is usually not guaranteed.
  • the pixel compensation method provided by the embodiment of the present application may include the following steps:
  • the position coordinates can be the pixel coordinates that characterize the position of the pixel in the current image, specifically the row and column where the pixel is located, for example, X represents the column and Y represents the row, then in the current image (X, Y) can represent the position information of any pixel.
  • the above-mentioned pixel includes one or more sub-pixels.
  • the current image is a three-channel image.
  • the three sub-pixels of the pixel are In the case of the three primary colors of RGB, the color of each sub-pixel is red (red, R), green (green, G), and blue (blue, B), then the pixel value of the sub-pixel can represent the gray of the sub-pixel R or G or B.
  • RGB image is a three-channel image
  • an RGGB image is a four-channel image.
  • the colors of the sub-pixels are cyan (C), magenta (M), and yellow (Yellow, Y).
  • a pixel may also include more than three primary colors. For example, two green primary colors of grass green and emerald are introduced according to the characteristic that the human eye is most sensitive to green. This application does not limit this.
  • compensating the static voltage drop IR drop of the target pixel by the static compensation coefficient to generate the first pixel value may be multiplying the initial pixel value of the target pixel by the static compensation coefficient to generate the first pixel value.
  • this is only an example, and the form of the static compensation coefficient needs to be specifically considered, and other calculation methods may also be used to calculate the static compensation coefficient and the initial pixel value of the target pixel to generate the first pixel value.
  • the static compensation coefficient is a pixel value
  • the pixel value can be directly used as the first pixel value; or the static compensation coefficient is a difference value
  • the initial pixel value can be directly added to the difference value as the first pixel value.
  • the first look-up table is also called a static look-up-table (static look-up-table, referred to as static LUT), which contains the position information of the pixel and the corresponding relationship between the pixel value of the pixel and the static compensation coefficient.
  • the static compensation coefficient is used for Compensate for the voltage drop of the pixel caused by the line transmission on the display screen.
  • the voltage drop of the pixel caused by the line transmission on the display screen here is the static IR dorp . Then, when the position information of the pixel and the initial pixel value of the pixel are input in the first look-up table, the corresponding static compensation coefficient can be found.
  • the pixel includes one or more sub-pixels.
  • the initial pixel value includes the pixel value of the first sub-pixel and the pixel value of the second sub-pixel; then step 102 In the first look-up table according to the position information of the target pixel and the initial pixel value of the target pixel, including: according to the position information of the target pixel and the pixel value of the first sub-pixel of the target pixel, in the first Look up the static compensation coefficient of the first sub-pixel in the look-up table; look up the static compensation coefficient of the second sub-pixel in the first look-up table according to the position information of the target pixel and the pixel value of the second sub-pixel of the target pixel.
  • the first look-up table can also be split into three look-up tables. As shown in FIG. 9, the first look-up table may include three static display look-up tables for sub-pixels R, G, and B, for example, for sub-pixels.
  • R static LUT contains the corresponding relationship between the position information of the pixel and the pixel value of sub-pixel R and the static compensation coefficient
  • G static LUT contains the position information of the pixel and the pixel value of sub-pixel G and the static compensation
  • B static LUT contains the corresponding relationship between the position information of the pixel and the pixel value of sub-pixel B and the static compensation coefficient.
  • step 103 it also includes: acquiring the first average load of the background area of the current image and the load of the target pixel.
  • Step 103 specifically includes: querying the dynamic compensation coefficient in a second look-up table according to the first pixel value, the first average load, and the load of the target pixel, where the second look-up table includes the pixel value of the pixel, the first average load, and the target pixel. The corresponding relationship between the load and the dynamic compensation coefficient.
  • the background area of the current image is an area other than the target pixel in the current image
  • the first average load is an average value of the loads of pixels in the background area of the current image.
  • loading refers to the current or voltage consumed by converting electric energy into light and other forms of energy in the circuit of the display screen.
  • the method for obtaining the first average load and the load of the target pixel is as follows: query the third lookup table according to the pixel value of the first pixel in the background area to obtain the load of the first pixel in the background area, and the first pixel is the load of the first pixel in the background area. Any pixel; query the third lookup table according to the pixel value of the target pixel to obtain the load of the target pixel; wherein the third lookup table contains the corresponding relationship between the pixel value and the load of the pixel.
  • the corresponding relationship between the pixel value of the pixel in the third look-up table and the load is obtained in the following manner: when the pixel contains at least one sub-pixel; the ratio between the pixel values of the at least one sub-pixel of the pixel is fixed to a preset conversion ratio, Wherein, when the ratio between the pixel value of at least one sub-pixel of the pixel is the preset conversion ratio, the pixel value of each sub-pixel of the pixel corresponds to the same load; the pixel value of each sub-pixel of the pixel is adjusted to obtain each pixel value. Correspondence between the pixel value of the sub-pixel and the load.
  • a pixel can contain three sub-pixels or more sub-pixels, for example, four sub-pixels or five sub-pixels. Then the above-mentioned preset conversion ratio can be obtained by referring to the following method : First make a feature image.
  • the feature image is shown in Figure 10, Figure 11, and Figure 12.
  • the gray values of the sub-pixels of the channel are all 0; a color block is a pure color block of R (shown in Figure 10), G (shown in Figure 11) or B (shown in Figure 12), that is, the color block It is a single-channel image including only one type of sub-pixel R or G or B; the other color block is a color mixing block (white block), that is, the gray values of the sub-pixels of each channel of the three sub-pixels RGB are mixed to become white.
  • the R color block, the G color block, and the B color block when the loading of the color mixing block is equal, the loading of the R color block, the G color block, and the B color block are also equal.
  • the ratio between the pixel values of the sub-pixels that is, the preset conversion ratio.
  • the preset conversion ratio by adjusting the pixel values of the R color block, G color block, and B color block, the loading of the color mixing block under different pixel values is obtained, and finally the loading of the color mixing block is divided by the resolution of the color block.
  • the average loading of the pixel Since the color block R, the color block G, and the color block B are all single-channel images of one sub-pixel, the relationship between the pixel value of the pixel's sub-pixel and the loading can be established, and then it can be the sub-pixel of the pixel.
  • the pixel value establishes a corresponding relationship between the 1D pixel value and the load gray (gray)-to-loading. Then when step 103 is performed on the current image, the loading of each sub-pixel of each pixel of the current pixel can be obtained by searching for the corresponding relationship, and the load of all pixels in the arbitrary area can be directly accumulated and divided by the resolution of the arbitrary area Get the average value of the pixel load of any area on the current image.
  • This part provides a way to obtain the corresponding relationship between the pixel value of the sub-pixel of the pixel and the load through a simple experiment. Of course, in practical applications, those skilled in the art can also obtain the pixel value of each sub-pixel of the pixel in other ways. Correspondence with load gray-to-loading.
  • the above-mentioned second look-up table is also called a dynamic display look-up table (dynamic LUT) including the pixel value of the pixel, the first average load, and the correspondence relationship between the load of the target pixel and the dynamic compensation coefficient.
  • the dynamic compensation coefficient is used to compensate the voltage drop of the pixels in the target area caused by the brightness change of the background outside the target area on the display screen.
  • the first average load can reflect the brightness of the background area
  • the load of the target pixel can reflect the brightness of the target pixel. Therefore, the relationship established by the second look-up table mainly reflects the brightness of the background area under a certain pixel value. The voltage drop of the target pixel caused by the change.
  • the voltage drop of the target pixel caused by the brightness change of the background area on the display screen is the dynamic IR drop. Then, when the first pixel value and the first average load and the load of the target pixel are input in the second look-up table, the corresponding dynamic compensation coefficient can be found.
  • the dynamic IR drop of the sub-pixel R is compensated according to the dynamic compensation coefficient of the sub-pixel R
  • the dynamic IR drop of the sub-pixel G is compensated according to the dynamic compensation coefficient of the sub-pixel G
  • the sub-pixel B is compensated according to the dynamic compensation coefficient of the sub-pixel B Dynamic IR drop is used for compensation, then the compensated pixel value can be obtained.
  • the second look-up table can also be split into three look-up tables. As shown in FIG.
  • the second look-up table may include three dynamic display look-up tables about sub-pixels R, G, and B, for example, for sub-pixel R
  • the dynamic LUT of the sub-pixel R includes the pixel value R of the sub-pixel R, the first average load corresponding to the sub-pixel R, and the corresponding relationship between the load of the sub-pixel R of the target pixel and the dynamic compensation coefficient.
  • the dynamic LUT of the sub-pixel G and the dynamic LUT of the sub-pixel B may also be included. The principle is the same as that of the dynamic LUT of the sub-pixel R and will not be repeated here.
  • compensating the dynamic IR drop of the target pixel by the dynamic compensation coefficient to generate the compensated pixel value may be multiplying the first pixel value by the dynamic compensation coefficient to generate the compensated pixel value.
  • this is only an example, and the specific form of the dynamic compensation coefficient needs to be considered, and other calculation methods may also be used to calculate the compensation pixel value by using the dynamic compensation coefficient and the first pixel value.
  • the dynamic compensation coefficient is a pixel value
  • the pixel value can be directly used as the compensation pixel value.
  • the dynamic compensation coefficient is a difference value
  • the first pixel value can be directly added to the difference value as the compensation pixel value.
  • the pixel compensation device first obtains the position coordinates of the target pixel and the initial pixel value of the target pixel in the current image displayed on the display screen, and then searches the first look-up table according to the position information of the target pixel and the initial pixel value of the target pixel Static compensation coefficient.
  • the static compensation coefficient is used to compensate the static voltage drop IR drop of the target pixel to generate the first pixel value, which completes the compensation of the static voltage drop IR drop of the target pixel; then, according to the first pixel value in the second search
  • the dynamic compensation coefficient is queried in the table, and finally the dynamic IR drop of the target pixel is compensated by the dynamic compensation coefficient to generate the compensated pixel value of the target pixel, which completes the compensation of the dynamic IR drop of the target pixel.
  • dynamic IR drop cannot be compensated.
  • the static compensation process The load of the image on the display screen will change, and the accuracy of pixel compensation is usually not guaranteed.
  • the static compensation coefficient is determined by the first lookup table
  • the dynamic compensation coefficient is determined by the second lookup table
  • the static IR dorp is compensated based on the static compensation coefficient
  • the dynamic IR drop is respectively determined based on the dynamic compensation coefficient. Perform compensation to improve the accuracy of pixel compensation.
  • the first characteristic image is displayed on the display screen as a pure color image of any single color of the pixel.
  • the first feature image may be a single-channel image containing only sub-pixels R or G or B.
  • the first feature image is a single-channel image of sub-pixel R.
  • the first characteristic image is a single-channel image of sub-pixel G, or as shown in FIG. 17, the first characteristic image is a single-channel image of sub-pixel B.
  • the standard brightness and display brightness of any pixel in the image are measured.
  • the standard brightness is obtained by calculating the pixel value of the pixel based on Glassman's law, and the display brightness is obtained by brightness measurement tracking detection.
  • the static compensation coefficient generated according to the first pixel value and the pixel value of any pixel may be the quotient of the first pixel value and the pixel value of any pixel, or the static compensation coefficient may be calculated by other calculation methods.
  • the first look-up table contains the correspondence between the position information of the pixel and the pixel value of the pixel and the static compensation coefficient.
  • the sub-pixel RGB is included.
  • the first look-up table may contain three sub-pixels R, G, and B respectively.
  • the first look-up table for example, for sub-pixel R, the first look-up table contains the correspondence between the position information of the pixel and the pixel value of the sub-pixel R of the pixel and the static compensation coefficient; for sub-pixel G, the first look-up table contains the position of the pixel The corresponding relationship between the information and the pixel value of the sub-pixel G of the pixel and the static compensation coefficient; for the sub-pixel B, the first look-up table contains the corresponding relationship between the position information of the pixel and the pixel value of the sub-pixel B of the pixel and the static compensation coefficient.
  • step S4 the same gamma value in step S3 is used to obtain the compensated pixel value according to the standard brightness, so that when the pixel is displayed on the display screen according to the compensated pixel value, the brightness is the standard brightness, which compensates for the static voltage Without changing the gamma value, the original gamma curve of the display screen is guaranteed and the accuracy of pixel compensation is guaranteed.
  • the calculation of the coefficient of static compensation can be generated only by calculating the first feature images of different pixels, and the calculation complexity is relatively low, which is beneficial to reduce the hardware cost.
  • the target area in the second feature image is a single-channel image that includes only one type of sub-pixel, and all pixels in the background area in the second feature image have the same pixel value; the second average load is in the background area of the second feature image The average value of the loads of the pixels, and the third average load is the average of the loads of the pixels in the target area of the second feature image.
  • three examples of second feature images are provided.
  • the pixel values of all pixels in the background area are the same.
  • the background areas of Figure 18, Figure 19, and Figure 20 can be different.
  • the pixel value of, the target area in the middle position is a single-channel image that includes only one type of sub-pixel.
  • generating the dynamic compensation coefficient according to the second compensation pixel value and the pixel value of the pixel in the target area may be the quotient of the second compensation pixel value and the pixel value of the pixel in the target area, or calculating the dynamic compensation coefficient through other calculation methods.
  • step S1 in order to calculate the first average load and the load of the target pixel in step 102, and to calculate the second average load and the third average load when constructing the second look-up table, it is first necessary to generate the corresponding relationship between the pixel value of the pixel and the load, that is, the above step 102 In gray-to-loading. Then when step S1 is performed on the second feature image, the loading of each pixel of the second feature image can be obtained by searching for the corresponding relationship. Then, for the average value of the pixel loading of any area on the current pixel, the loading can be directly added. The load of all pixels in an arbitrary area is divided by the resolution of the arbitrary area to obtain.
  • the second average load of the background area you can query gray-to-loading for the pixels of the background of the second feature image to obtain the loading, the loading of each pixel in the background is accumulated and divided by the resolution of the background area (the resolution of the background area is the total number of pixels in the background area) to get the second average load; similarly for the target area
  • the third average load of the second feature image you can query gray-to-loading for the pixels in the target area of the second feature image to obtain the loading of each pixel.
  • the loading of each pixel in the target area is accumulated and divided by the resolution of the target area.
  • the third average load can be obtained.
  • the second look-up table contains the second average load, the third average load, the pixel value of any pixel in the target area, and the corresponding relationship of the dynamic compensation coefficient.
  • the second look-up table may contain Three look-up tables for sub-pixels R, G, and B, for example, for sub-pixel R, the dynamic LUT of sub-pixel R contains the pixel value R of sub-pixel R, the second average load and third average corresponding to sub-pixel R Correspondence between load and dynamic compensation coefficient.
  • the dynamic LUT of the sub-pixel G and the dynamic LUT of the sub-pixel B may also be included. The principle is the same as the dynamic LUT of the sub-pixel R and will not be repeated here.
  • step S4 the same gamma value in step S3 is used to obtain the compensated pixel value according to the standard brightness, so that when the pixel is displayed on the display screen according to the compensated pixel value, the brightness is the standard brightness, which makes the dynamic voltage drop
  • the compensation is obtained without changing the gamma value, thereby ensuring the original gamma curve of the display screen and ensuring the accuracy of pixel compensation.
  • the calculation of the coefficient of dynamic compensation can be generated only by calculating the second feature images with different pixel values, and the calculation complexity is relatively low, which is beneficial to reduce the hardware cost.
  • the methods and/or steps implemented by the pixel compensation device may also be implemented by components (such as chips or circuits) that can be used in the pixel compensation device.
  • the pixel compensation device includes hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiments of the present application may divide the pixel compensation device into functional modules according to the foregoing method embodiments.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 21 shows a schematic structural diagram of a pixel compensation device.
  • the pixel compensation device includes: a static compensation module 2101, an acquisition module 2102, and a dynamic compensation module 2103.
  • the obtaining module 2102 is used to obtain the position coordinates of the target pixel and the initial pixel value of the target pixel in the current image displayed on the display screen.
  • the static compensation module 2101 is configured to look up a static compensation coefficient in a first look-up table according to the position information of the target pixel and the initial pixel value of the target pixel, and use the static compensation coefficient to determine the static voltage drop IR of the target pixel. drop compensation to generate a first pixel value, where the first look-up table contains the position information of the pixel and the corresponding relationship between the pixel value of the pixel and the static compensation coefficient;
  • the dynamic compensation module 2103 is configured to query the dynamic compensation coefficient in a second look-up table according to the first pixel value, where the second look-up table contains the corresponding relationship between the pixel value of the pixel and the dynamic compensation coefficient;
  • the dynamic compensation coefficient compensates the dynamic IR drop of the target pixel to generate a compensated pixel value of the target pixel.
  • the acquiring module 2102 is further configured to acquire the first average load of the background area of the current image and the load of the target pixel, wherein the background area of the current image is the target pixel in the current image
  • the first average load is the average of the loads of pixels in the background area of the current image
  • the dynamic compensation module 2103 is specifically configured to perform according to the first pixel value and the first average load Query the dynamic compensation coefficient in the second look-up table with the load of the target pixel, wherein the second look-up table includes the pixel value of the pixel, the first average load, and the load of the target pixel The corresponding relationship between the load and the dynamic compensation coefficient.
  • the target pixel includes a first sub-pixel and a second sub-pixel
  • the initial pixel value includes the pixel value of the first sub-pixel and the pixel value of the second sub-pixel
  • the static compensation module 2101 is specifically configured to look up the static compensation coefficient of the first sub-pixel in the first look-up table according to the position information of the target pixel and the pixel value of the first sub-pixel of the target pixel;
  • the position information of the target pixel and the pixel value of the second sub-pixel of the target pixel are searched for the static compensation coefficient of the second sub-pixel in the first look-up table.
  • the acquiring module 2102 is specifically configured to query a third look-up table according to the pixel value of the first pixel in the background area to acquire the load of the first pixel in the background area, and the first pixel Is any pixel in the background area; query the third look-up table to obtain the load of the target pixel according to the pixel value of the target pixel; wherein the third look-up table includes the pixel value and load of the pixel Correspondence.
  • the pixel includes at least one sub-pixel; the acquisition module 2102 is specifically configured to fix the ratio between the pixel values of the at least one sub-pixel of the pixel to a preset conversion ratio, where When the ratio between the pixel values of the at least one sub-pixel of the pixel is the preset conversion ratio, the load corresponding to the pixel value of each sub-pixel of the pixel is the same; adjusting the pixel value of each sub-pixel of the pixel The corresponding relationship between the pixel value of each sub-pixel of the pixel and the load is obtained.
  • the target pixel includes at least one sub-pixel
  • the pixel compensation device further includes: a preprocessing module 2104, configured to obtain position information of any pixel in the first characteristic image, the first characteristic image being A single-channel image including only one type of sub-pixel, and all pixels of the first characteristic image have the same pixel value; obtaining the standard brightness of any pixel and the display brightness of any pixel on the display screen; according to Calculate a gamma value based on the pixel value of the any pixel and the display brightness; calculate a first compensation pixel value based on the gamma value and the standard brightness; calculate a first compensation pixel value based on the first compensation pixel value and the any pixel Generate the static compensation coefficient of any pixel; write the position information of any pixel, the pixel value of any pixel, and the static compensation coefficient of any pixel into the first search surface.
  • a preprocessing module 2104 configured to obtain position information of any pixel in the first characteristic image, the first characteristic image being A single-channel image including only
  • the target pixel includes at least one sub-pixel
  • the pixel compensation device further includes: a preprocessing module 2104, configured to obtain a second average of the background area of the second characteristic image displayed on the display screen. Load, and the third average load of the target area in the second characteristic image; wherein the target area in the second characteristic image is a single-channel image including only one type of sub-pixel, and the background in the second characteristic image
  • the pixel values of all pixels in the area are the same;
  • the second average load is the average of the loads of the pixels in the background area of the second feature image, and the third average load is the target area of the second feature image
  • the display brightness on the screen calculate the gamma value according to the pixel value of any pixel and the display brightness; calculate the second compensation pixel value according to the gamma value and
  • an embodiment of the present application provides a schematic diagram of the hardware structure of a pixel compensation device.
  • the pixel compensation device includes at least one processor (in FIG. 22 exemplarily includes a processor 2201 as an example for illustration) and at least one transmission interface 2203 (for example, it may be an interface circuit, in FIG. 22 exemplarily includes one The transmission interface 2203 is taken as an example for description).
  • the pixel compensation device may further include at least one memory (in FIG. 22, one memory 2202 is exemplarily described as an example).
  • the processor 2201, the memory 2202, and the transmission interface 2203 are connected through a communication line.
  • the communication line may include a path to transmit information between the above-mentioned components.
  • the processor 2201 may be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more integrated circuits used to control the execution of the program of this application Circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the processor 2201 may also include multiple CPUs, and the processor 2201 may be a single-CPU processor or a multi-CPU processor.
  • the processor here may refer to one or more devices, circuits, or processing cores for processing data (for example, computer program instructions).
  • the memory 2202 may be a device having a storage function. For example, it can be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types that can store information and instructions. Dynamic storage devices can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM) or other optical disk storage, optical disc storage ( Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program codes in the form of instructions or data structures and can be stored by a computer Any other media taken, but not limited to this.
  • the memory 2202 may exist independently, and is connected to the processor 2201 through a communication line.
  • the memory 2202 may also be integrated with the processor 2201.
  • the memory 2202 is used to store computer-executable instructions for executing the solution of the present application, and the processor 2201 controls the execution.
  • the processor 2201 is configured to execute computer-executable instructions stored in the memory 2202, so as to implement the pixel compensation method described in the embodiment of the present application.
  • the processor 2201 may also perform processing-related functions in the pixel compensation method provided in the following embodiments of the present application, and the transmission interface 2203 is responsible for connecting with other components to realize signal transmission. For example, transmitting the current image to the pixel compensation device, outputting the compensated pixel value after compensation, etc., which are not specifically limited in the embodiment of the present application.
  • the computer execution instructions in the embodiments of the present application may also be referred to as application program code or computer program code, which is not specifically limited in the embodiments of the present application.
  • the processor 2201 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 22.
  • the control apparatus of the electronic device may include multiple processors, such as the processor 2201 and the processor 2204 in FIG. 22.
  • processors can be a single-CPU (single-CPU) processor or a multi-core (multi-CPU) processor.
  • the processor here may refer to one or more devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • the processor 2201 in the pixel compensation device may invoke the computer-executable instructions stored in the memory 2202, so that the pixel compensation device executes the method in the foregoing method embodiment.
  • the function/implementation process of the static compensation module 2101, the acquisition module 2102, the dynamic compensation module 2103, and the preprocessing module 2104 in FIG. 21 can be stored in the memory 2202 through the processor 2201 in the pixel compensation device shown in FIG. 22
  • the computer executes instructions to achieve. Since the pixel compensation device provided in this embodiment can perform the above-mentioned method, the technical effects that can be obtained can refer to the above-mentioned method embodiment, which will not be repeated here.
  • an embodiment of the present application further provides a pixel compensation device (for example, the pixel compensation may be a chip or a chip system), and the pixel compensation includes a processor for implementing the method in any of the foregoing method embodiments.
  • the pixel compensation device further includes a memory.
  • the memory is used to store necessary program instructions and data, and the processor can call the program instructions stored in the memory to instruct the pixel compensation device to execute the method in any of the foregoing method embodiments.
  • the memory may not be in the pixel compensation device.
  • the pixel compensation device is a chip system, it may be composed of a chip, or may include a chip and other discrete devices, which is not specifically limited in the embodiment of the present application.
  • the electronic device provided by the embodiment of the present application includes the pixel compensation device described above.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • a software program it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or includes one or more data storage devices such as servers, data centers, etc. that can be integrated with the medium.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • the computer may include the aforementioned device.

Abstract

一种像素补偿方法、装置(01)及电子设备。涉及显示技术领域,能够提高像素补偿的精度。像素补偿方法包括:获取显示屏(10)显示的当前图像中目标像素的位置坐标以及目标像素的初始像素值(101);根据目标像素的位置信息以及目标像素的初始像素值在第一查找表查找静态补偿系数,通过静态补偿系数对目标像素的静态电压降IR drop进行补偿生成第一像素值(102);根据第一像素值在第二查找表中查询动态补偿系数(103);通过动态补偿系数对目标像素的动态IR drop进行补偿生成目标像素的补偿像素值(104)。

Description

一种像素补偿方法、装置及电子设备 技术领域
本申请涉及显示技术领域,尤其涉及一种像素补偿方法、装置及电子设备。
背景技术
有源矩阵有机发光二极管(active matrix organic light emitting diode,AMOLED)显示屏采用两个及以上薄膜晶体管(thin film transistor,TFT)组成的像素电路驱动像素中的发光器件(例如,有机发光二极管(organic light emitting diode,OLED))实现显示功能。通常当像素被扫描线选址后,数据电压(V Data)驱动晶体管产生电流(Idata)流经该像素中的OLED,从而使该像素发光。
像素在发光过程中存在静态电压降(IR dorp)和动态电压降IR drop。其中,静态IR dorp是由Idata流经显示屏内部走线时,不同长度的内部走线内阻不同引起的;静态IR dorp会造成显示屏的图像上像素的显示亮度不能达到像素值对应的标准亮度。动态电压降是在显示屏的图像内容发生变化时,对未发生变化的区域的像素的显示亮度造成的影响。
现有技术中,通常对像素的补偿仅考虑对静态IR dorp的补偿;或者通过构建像素位置的预期电流查找表计算补偿电压,或者通过计算显示屏负载以及像素的最大电压降,逐像素计算一个补偿系数,从而将静态IR dorp与动态IR drop一同补偿,补偿精度受限。
发明内容
本申请提供一种像素补偿方法、装置及电子设备,能够提高像素补偿的精度。
第一方面,本申请实施例提供一种像素补偿方法。应用于像素补偿装置,该像素补偿装置可以为电子设备本身或者设置于电子设备中的芯片或功能实体。该像素补偿方法包括如下步骤:首先,获取显示屏显示的当前图像中目标像素的位置坐标以及目标像素的初始像素值;根据目标像素的位置信息以及目标像素的初始像素值在第一查找表查找静态补偿系数,通过静态补偿系数对目标像素的静态电压降IR drop进行补偿生成第一像素值,该第一查找表包含像素的位置信息以及像素的像素值与静态补偿系数的对应关系;然后根据第一像素值在第二查找表中查询动态补偿系数,其中,第二查找表包含像素的像素值与动态补偿系数的对应关系;最后,通过动态补偿系数对目标像素的动态IR drop进行补偿生成目标像素的补偿像素值。
这样一来,像素补偿装置首先获取显示屏显示的当前图像中目标像素的位置坐标以及目标像素的初始像素值,然后根据目标像素的位置信息以及目标像素的初始像素值在第一查找表查找静态补偿系数,最后通过静态补偿系数对目标像素的静态电压降IR drop进行补偿生成第一像素值,完成对目标像素的静态电压降IR drop的补偿;然后,根据第一像素值在第二查找表中查询动态补偿系数,最后通过动态补偿系数对目标像素的动态IR drop进行补偿生成目标像素的补偿像素值,完成了对目标像素的动态IR drop的补偿。而现有技术中,若将仅考虑静态IR dorp,则并不能对动态IR drop进行补偿,若将静态IR dorp与动态IR drop通过一个补偿电压或一个补偿系数一同补偿,则由于静态补偿过程后显示屏上图像的负载会发生变化,通常不能保证像素补偿 的精度。本申请提供的上述过程中,通过第一查找表确定静态补偿系数,通过第二查找表确定动态补偿系数,然后基于静态补偿系数对静态IR dorp进行补偿,并基于动态补偿系数对动态IR drop分别进行补偿,提高了像素补偿的精度。
在一种可能的设计中,由于动态IR drop主要表现为当显示屏的图像内容发生变化时,对未发生变化的区域的像素的显示亮度造成的影响,因此动态IR drop的补偿主要考虑当前图像的背景区域的亮度与目标像素的亮度的关系。因此,根据第一像素值在第二查找表中查询动态补偿系数之前,还包括:获取当前图像的背景区域的第一平均负载、以及目标像素的负载,其中当前图像的背景区域为当前图像中所述目标像素以外的区域,第一平均负载为当前图像的背景区域中的像素的负载的平均值;根据第一像素值在第二查找表中查询动态补偿系数,包括:根据第一像素值、第一平均负载和目标像素的负载在第二查找表中查询动态补偿系数,其中,第二查找表包含像素的像素值、第一平均负载以及目标像素的负载与动态补偿系数的对应关系。
在一种可能的设计中,其中在显示技术领域,像素通常包含一个或多个子像素,例如,当像素包含三个子像素时,当前图像为三通道图像;当像素包含四个子像素时,当前图像为四通道图像;当然在实际方案中目标像素可能包含一个或多个子像素。例如,目标像素包括第一子像素和第二子像素时,初始像素值包含第一子像素的像素值和第二子像素的像素值;则根据目标像素的位置信息以及目标像素的初始像素值在第一查找表查找静态补偿系数,包括:根据目标像素的位置信息以及目标像素的第一子像素的像素值,在第一查找表中查找第一子像素的静态补偿系数;根据目标像素的位置信息以及目标像素的第二子像素的像素值,在第一查找表中查找第二子像素的静态补偿系数。
在一种可能的设计中,还提供了获取像素的像素值与负载的对应关系的具体方法。例如:获取当前图像的背景区域的第一平均负载、以及目标像素的负载包括:根据背景区域中的第一像素的像素值查询第三查找表获取背景区域中的第一像素的负载,第一像素为所述背景区域中任一像素;根据目标像素的像素值查询第三查找表获取目标像素的负载;其中第三查找表包含像素的像素值与负载的对应关系。其中,像素包含至少一个子像素;获取像素的像素值与负载的对应关系的具体方法包括:将像素的至少一个子像素的像素值之间的比例固定为预设换算比例,其中,当像素的至少一个子像素的像素值之间的比例为预设换算比例时,像素的各子像素的像素值对应的负载相同;调整像素的各子像素的像素值,获取像素的各子像素的像素值与负载的对应关系。
在一种可能的设计中,目标像素包括至少一个子像素,根据目标像素的位置信息以及目标像素的初始像素值在第一查找表查找静态补偿系数之前,还包括:在第一特征图像中获取任一像素的位置信息,第一特征图像为仅包括一种子像素的单通道图像,第一特征图像的所有像素的像素值相同;获取任一像素的标准亮度和任一像素在显示屏上的显示亮度;根据任一像素的像素值以及显示亮度计算伽马值;根据伽马值以及标准亮度计算第一补偿像素值;根据第一补偿像素值与任一像素的像素值生成任一像素的静态补偿系数;将任一像素的位置信息、任一像素的像素值以及任一像素的静态补偿系数对应写入第一查找表。
其中,根据任一像素的像素值以及显示亮度计算伽马值,包括:根据如下公式计算 伽马值:(gray1/255)^gamma/Lv255=Lva;其中,Lva为显示亮度,所述gray1为任一像素的像素值,Lv255为像素的像素值取255时在显示屏上的显示亮度;根据所述伽马值以及标准亮度计算第一补偿像素值,包括:根据如下公式计算第一补偿像素值:(gray2/255)^gamma/Lv255=Lvb;其中,Lvb为标准亮度,gray2为第一补偿像素值,Lv255为像素的像素值取255时在显示屏上的显示亮度。
这样,第一查找表中包含像素的位置信息与像素的像素值以及静态补偿系数的对应关系。例如:对于像素包含子像素RGB时,该第一查找表可以包含分别关于子像素R、G、B的三查找表,例如对于子像素R,第一查找表中包含像素的位置信息与像素的子像素R的像素值以及静态补偿系数的对应关系;对于子像素G,第一查找表中包含像素的位置信息与像素的子像素G的像素值以及静态补偿系数的对应关系;对于子像素B,第一查找表中包含像素的位置信息与像素的子像素B的像素值以及静态补偿系数的对应关系。这样由于在形成静态补偿系数的过程中,像素的像素值与亮度的转换出现了两次,第一次转换中将通过显示亮度和像素的像素值计算出伽玛值,在第二次转换中,使用与上一次转换相同的伽马值按照标准亮度得到补偿后的像素值,这样按照补偿后的像素值在显示屏上显示该像素时,亮度是标准亮度,这样即补偿了静态电压降,又不改变伽马值,从而保证了显示屏原有的伽马曲线,保证了像素补偿的精度。另外,静态补偿的系数的计算仅需要通过对不同像素的第一特征图像进行计算即可生成,计算复杂度较低,有利于降低硬件成本。
在一种可能的设计中,目标像素包括至少一个子像素,根据第一像素值以及第一平均负载和目标像素的负载在第二查找表中查询动态补偿系数,之前包括:获取在显示屏上显示的第二特征图像的背景区域的第二平均负载、以及第二特征图像中的目标区域的第三平均负载;其中第二特征图像中的目标区域为仅包括一种子像素的单通道图像,第二特征图像中的背景区域的所有像素的像素值相同;第二平均负载为第二特征图像的背景区域中的像素的负载的平均值,第三平均负载为第二特征图像的目标区域中的像素的负载的平均值;获取第二特征图像中的目标区域的任一像素的像素值;获取任一像素的像素值的标准亮度以及任一像素在显示屏上的显示亮度;根据任一像素的像素值以及显示亮度计算伽马值;根据伽马值以及标准亮度计算第二补偿像素值;根据第二补偿像素值与任一像素的像素值生成任一像素的动态补偿系数;将第二平均负载、第三平均负载、任一像素的像素值以及任一像素的动态补偿系数对应写入第二查找表。
在一种可能的设计中,根据任一像素的像素值以及显示亮度计算伽马值,包括:根据如下公式计算伽马值:(gray1/255)^gamma/Lv255=Lva;其中,Lva为显示亮度,gray1为任一像素的像素值,Lv255为像素的像素值取255时在显示屏上的显示亮度;根据伽马值以及标准亮度计算第二补偿像素值,包括:根据如下公式计算第二补偿像素值:(gray3/255)^gamma/Lv255=Lvb;其中,Lvb为标准亮度,gray3为第二补偿像素值,Lv255为像素的像素值取255时在显示屏上的显示亮度。
这样,第二查找表中包含第二平均负载、第三平均负载、目标区域的任一像素的像素值以及动态补偿系数的对应关系,其中对于像素包含子像素RGB时,该第二查找表可以包含分别关于子像素R、G、B的三个查找表,例如对于子像素R第二查找表包含 子像素R的像素值R、子像素R对应的第二平均负载和第三平均负载与动态补偿系数的对应关系。对于子像素G、子像素R,其原理与子像素R相同不在赘述。这样由于在形成动态补偿系数的过程中,存在两次像素的像素值与亮度的转换,第一次转换中,将通过显示亮度和像素的像素值计算出伽玛值,第二次转换中,使用与第一次转换相同的伽马值按照标准亮度得到补偿后的像素值,这样按照补偿后的像素值在显示屏上显示该像素时,亮度是标准亮度,这样即补偿了动态电压降,又不改变伽马值,从而保证了显示屏原有的伽马曲线,保证了像素补偿的精度。另外,动态补偿的系数的计算仅需要通过对不同像素值的第二特征图像进行计算即可生成,计算复杂度较低,有利于降低硬件成本。
第二方面,提供了一种像素补偿装置用于实现上述各种方法。该像素补偿装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
第三方面,提供了一种像素补偿装置,包括:处理器和存储器;该存储器用于存储计算机指令,当该处理器执行该指令时,以使该像素补偿装置执行上述任一方面的方法。
第四方面,提供了一种像素补偿装置,包括:处理器和传输接口;处理器被配置为调用存储在存储器中的程序指令以执行如上述任一方面的方法。
在一种可能的设计中,该像素补偿装置还包括存储器,该存储器,用于保存必要的程序指令和数据。该像素补偿装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件。
第五方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有程序指令,当该程序指令在计算机或处理器上运行时,使得计算机或处理器可以执行上述任一方面的方法。
第六方面,提供了一种包含指令的计算机程序产品,当该指令在计算机或处理器上运行时,使得计算机或处理器可以执行上述任一方面的方法。
第七方面,提供一种电子设备,包括上述的像素补偿装置。
其中,第二方面至第七方面中任一种设计方式所带来的技术效果可参见上述第一方面中不同设计方式所带来的技术效果,此处不再赘述。
附图说明
图1为本申请的实施例提供的一种电子设备的结构示意图;
图2为本申请的实施例提供的一种显示屏的结构示意图;
图3为本申请的实施例提供的一种像素电路结构示意图;
图4为本申请的另一实施例提供的一种像素电路结构示意图;
图5为本申请的实施例提供的一种黑色背景的图像示意图;
图6为本申请的实施例提供的一种白色背景的图像示意图;
图7为本申请的实施例提供的一种像素补偿方法的流程示意图;
图8为本申请的实施例提供的一种第一查找表的示意图;
图9为本申请的另一实施例提供的一种第一查找表的示意图;
图10为本申请的实施例提供的一种特征图像的示意图;
图11为本申请的另一实施例提供的一种特征图像的示意图;
图12为本申请的再一实施例提供的一种特征图像的示意图;
图13为本申请的实施例提供的一种第二查找表的示意图;
图14为本申请的另一实施例提供的一种第二查找表的示意图;
图15为本申请的实施例提供的一种第一特征图像的示意图;
图16为本申请的另一实施例提供的一种第一特征图像的示意图;
图17为本申请的再一实施例提供的一种第一特征图像的示意图;
图18为本申请的实施例提供的一种第二特征图像的示意图;
图19为本申请的另一实施例提供的一种第二特征图像的示意图;
图20为本申请的再一实施例提供的一种第二特征图像的示意图;
图21为本申请的实施例提供的一种像素补偿装置的示意图;
图22为本申请的另一实施例提供的一种像素补偿装置的示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。在本申请实施例的描述中,除非另有说明,“多个”的含义是指两个或两个以上。例如,多个处理单元是指两个或两个以上的处理单元;多个系统是指两个或两个以上的系统。以下,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
首先对本申请实施例提供的一种像素补偿方法及装置中涉及的一些概念做解释说明。
像素值:代表了图片中最小单位的平均亮度信息或平均反射(透射)密度信息,像素值通常也可以表示为灰度。
标准亮度:指依据格拉斯曼定律(Grassmann’s law)计算出的当前像素值对应的亮度。例如,以像素包含RGB三个子像素为例,根据格拉斯曼第四定律可知:混合光的强度是各个成分强度的总和。因此有如下公式:
Figure PCTCN2020090623-appb-000001
其中,子像素R的标准亮度为Y r、子像素G的标准亮度为Y g、子像素B的标准亮度为Y b。对于当前像素值取RGB的像素,各子像素的标准亮度可以基于上述公式计算,其中x、y表示色坐标,x r、y r表示子像素R在x、y色坐标下的色度信息,x g、y g表示子像素G在x、y色坐标下的色度信息,x b、y b表示子像素B在x、y色坐标下的色度信息,W为白色,x W、y W表示W在x、y色坐标下的色度信息,W的标准亮度为Y W;这样,可以根据像素的当前像素值RGB制作所有像素值均为RGB的三通道图片,并制作白色W的图片,然后使用测量仪器对前述图片进行测量得到上述的色度信息x r、y r、x g、y g、x b、y b、x W、y W以及Y W,并代入上述公式计算Y r、Y g、Y b
显示亮度:当前像素值在屏幕上显示时,通过测量设备实测的亮度。
本申请实施例提供一种像素补偿方法及装置,可以应用于具有显示屏的电子设备,具有显示屏的电子设备可以为手机、平板电脑、笔记本电脑、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本、个人数字助理(personal digital assistant,PDA)、车载的移动装置等。
图1为本申请实施例提供的一种示例性的装置的架构示意图。如图1所示,该装置01包括:处理器11,射频(radio frequency,RF)电路12、电源13、存储器14、输入单元15、显示单元16、音频电路17等部件。本领域技术人员可以理解,图1中示出的装置的结构并不构成对该装置的限定,该装置可以包括比如图1所示的部件更多或更少的部件,或者可以组合如图1所示的部件中的某些部件,或者可以与如图1所示的部件布置不同。
处理器11是该装置的控制中心,利用各种接口和线路连接整个装置的各个部分,通过运行或执行存储在存储器14内的软件程序和/或模块,以及调用存储在存储器14内的数据,执行装置的各种功能和处理数据,从而对装置进行整体监控。可选的,处理器11可包括一个或多个处理单元;优选的,处理器11可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器11中。
RF电路12可用于收发信息或通话过程中,信号的接收和发送,特别地,将基站的下行信息接收后,给处理器11处理;另外,将上行的数据发送给基站。通常,RF电路包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器(low noise amplifier,LNA)、双工器等。此外,RF电路12还可以通过无线通信与网络和其他设备通信。无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯系统(global system of mobile communication,GSM)、通用分组无线服务(general packet radio service,GPRS)、码分多址(code division multiple access,CDMA)、宽带 码分多址(wideband code division multiple access,WCDMA)、长期演进(long term evolution,LTE)、电子邮件、短消息服务(short messaging service,SMS)等。
该装置包括给各个部件供电的电源13(比如电池),可选的,电源可以通过电源管理系统与处理器11逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
存储器14可用于存储软件程序以及模块,处理器11通过运行存储在存储器14的软件程序以及模块,从而执行装置的各种功能应用以及数据处理。存储器14可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、图像数据、电话本等)等。此外,存储器14可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
输入单元15可用于接收输入的数字或字符信息,以及产生与装置的用户设置以及功能控制有关的键信号输入。具体地,输入单元15可包括触摸屏151以及其他输入设备152。触摸屏151,也称为触摸面板,可收集用户在触摸屏上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触摸屏151上或在触摸屏151附近的操作),并根据预先设定的程式驱动相应的连接装置。可选的,触摸屏151可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器11,并能接收处理器11发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触摸屏151。其他输入设备152可以包括但不限于物理键盘、功能键(比如音量控制按键、电源开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。
显示单元16可用于显示由用户输入的信息或提供给用户的信息以及装置的各种菜单。显示单元16可包括显示面板161,在本申请中,可以采用AMOLED显示屏来配置显示面板161。进一步的,触摸屏151可覆盖显示面板161,当触摸屏151检测到在触摸屏151上或附近的触摸操作后,传送给处理器11以确定触摸事件的类型,随后处理器11根据触摸事件的类型在显示面板161上提供相应的视觉输出。虽然在图1中,触摸屏151与显示面板161是作为两个独立的部件来实现装置的输入和输出功能,但是在某些实施例中,可以将触摸屏151与显示面板161集成而实现装置的输入和输出功能。
音频电路17、扬声器171和麦克风172,用于提供用户与装置之间的音频接口。音频电路17可将接收到的音频数据转换后的电信号,传输到扬声器171,由扬声器171转换为声音信号输出;另一方面,麦克风172将收集的声音信号转换为电信号,由音频电路17接收后转换为音频数据,再将音频数据输出至RF电路12以发送给比如另一装置,或者将音频数据输出至存储器14以便进一步处理。
可选的,如图1所示的装置还可以包括各种传感器。例如陀螺仪传感器、湿度计传感器、红外线传感器、磁力计传感器等,在此不再赘述。可选的,如图1所示的装置还可以包括无线保真(wireless fidelity,WiFi)模块、蓝牙模块等,在此不再赘述。
可以理解的,本申请实施例中,电子设备(例如上述图1示出的装置)可以执行本申请实施例中的部分或全部步骤,这些步骤或操作仅是示例,本申请实施例还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照本申请实施例呈现的不同的顺序来执行,并且有可能并非要执行本申请实施例中的全部操作。本申请各实施例可以单独实施,也可以任意组合实施,本申请对此不作限定。
在AMOLED显示屏中,通常采用两个及以上TFT组成的像素电路驱动像素中的发光器件(例如OLED)实现显示功能。如图2所示,显示屏10包括有效显示区(active area,AA)100和位于该AA区100周边的非显示区101。该AA区100包括多个像素(pixel)21。为了方便说明,本申请中上述多个像素21是以矩阵形式排列为例进行的说明。
需要说明的是,本申请实施例中,图2中沿水平方向X排列成一排的像素21称为同一行像素,沿竖直方向Y排列成一排的像素21称为同一列像素。
在本申请的实施例中,上述显示屏10为OLED显示屏。该OLED显示屏能够实现自发光。在此情况下,AA区100中的像素21内,设置有如图3所示的OLED器件以及用于驱动该OLED器件进行发光的像素电路201。
此外,上述装置还可以包括用于驱动显示屏10进行显示的显示驱动电路,该显示驱动电路可以与显示屏10耦接。示例的,该显示驱动电路可以为显示驱动芯片(display driver integrated circuit,DDIC)。在本申请的一些实施例中,如图2所示,DDIC20设置于显示屏10的非显示区101中。同一列像素21中的像素电路201通过同一条数据线(data line,DL)与DDIC20耦接。在本申请的另一些实施例中,上述DDIC 20还可以独立于显示屏10设置。上述装置01还包括印刷电路板(printed circuit board,PCB),以及安装于该PCB上的片上系统(System on Chip,SoC)。该SoC内可以设置有应用处理器(application processor,AP),该AP可以为图1中的处理器11。图2中的DDIC20通过柔性电路板(flexible printed circuit,FPC)与SoC耦接。
这样一来,SoC输出的显示数据通过DDIC20后,转换成数据电压Vdata传输至各条数据线DL所耦接的各个像素21的像素电路201中。接下来,各个像素电路201通过数据线DL上的数据电压Vdata,生成与该数据电压Vdata相匹配的驱动电流I,以驱动像素21中的OLED器件发光。具体的,如图4所示,提供了一种像素电路的示意图,其包括开关晶体管M1和驱动晶体管M2,其中M1的栅极(gate,g)耦接扫描线SCAN,M1的源极(s)耦接数据线DL,M1的漏极耦接M2的栅极g,M2的源极耦接电源线VDD,M2的漏极通过OLED耦接地线VEE,M2的源极s和栅极g之间耦接电容Cst。这样,通常当像素被扫描线SCAN选址后,数据电压(V Data)通过驱动晶体管M2施加在OLED,驱动晶体管产生电流(Idata)流经OLED从而发光。以上是以P型驱动晶体管为例进行说明,当采用N型驱动晶体管时,为保证驱动晶体管的源极电压稳定避免源极电压浮地问题,从而影响驱动晶体管的栅源(gs)电压不稳定,通常将驱动晶体管的源极s耦接VEE,将OLED耦接在VDD和驱动晶体管的漏极d之间。图4仅是一种像素电路的示例,本领域技术人员还可以将图4示出的像素电路替换为其他形式的像素电路。
显示屏10中各个像素21中的像素电路201、OLED器件以及数据线DL等可以制作 于一衬底基板上。该衬底基板可以采用柔性树脂材料构成。在此情况下,该OLED显示屏可以作为折叠显示屏。或者,上述OLED显示屏中的衬底基板还可以采用质地较硬的材料,例如玻璃构成。在此情况下,上述OLED显示屏为硬质显示屏。
由于OLED发光过程中,不同亮度对应的电流不同,而电流流经面板内部走线时,会使驱动晶体管漏极(drain,d)电压产生压降ΔV,因此驱动电流大小为I Data=K*(V Data-V S-ΔV-V th) 2,其中,K为耦接OLED的驱动晶体管M2决定的常数系数,通常与驱动晶体管M2的物理尺寸、材料等相关,V S为驱动晶体管M2的源极s电压,V th为驱动晶体管的阈值电压;Idata流经显示屏内部走线时,不同长度的内部走线内阻不同,由于显示屏上不同位置电流流经的走线长度不同,因此每个像素位置驱动晶体管的漏极产生的电压降ΔV也不相同,产生静态IR dorp(电压降,其中I表示流经线路的电流,R表示线路的电阻,IR表示电压),从而会使显示屏亮度产生变化,反映在图像上是显示亮度不能达到像素的像素值对应的标准亮度。另外,电路中流过的电流和显示屏的显示亮度是成正比的,因此,当显示屏中部分显示内容变化时(例如一幅图像中的黑色背景(如图5所示)变为了白色背景(如图6所示)),则整个显示屏总的显示亮度发生了变化,因此电路中流过的电流也随之发生变化,而因电流受到电阻影响产生的电压降也会发生变化,而电压降的变化会导致在电子设备给显示屏供给电压恒定的情况下电流发生变化,从而影响显示屏中未发生变化部分像素的显示亮度(例如上述图像背景以外部分图像的显示亮度),这种现象为动态IR drop,其主要表现为当显示屏的图像内容发生变化时,对未发生变化的区域的像素的显示亮度造成的影响。
现有技术中,通常对像素的补偿仅考虑静态IR dorp;或者通过构建像素位置的预期电流查找表计算补偿电压,或者通过计算显示屏负载以及像素的最大电压降,逐像素计算补偿系数,从而将静态IR dorp与动态IR drop一同补偿,补偿精度受限。
为解决上述的问题,本申请实施例中提供一种像素补偿方法及装置,将执行像素补偿方法的设备称为像素补偿装置,即下述方法流程中的执行主体为像素补偿装置。需要说明的是,上述像素补偿装置可以为具有显示屏的电子设备(例如手机),在这种情况下,上述显示屏是该像素补偿装置的显示屏;该像素补偿装置也可以为其他具有图像处理功能的设备,本申请实施例不作具体限定。在该像素补偿方法中,主要通过将静态IR dorp与动态IR drop分别进行补偿,提高了像素补偿的精度;若将仅考虑静态IR dorp,则并不能对动态IR drop进行补偿;若将静态IR dorp与动态IR drop通过一个补偿电压或一个补偿系数一同补偿,则由于静态补偿过程后显示屏上图像的负载会发生变化,通常不能保证像素补偿的精度。
如图7所示,本申请实施例提供的像素补偿方法可以包括如下步骤:
101、获取显示屏显示的当前图像中目标像素的位置坐标以及目标像素的初始像素值。
在步骤101中,位置坐标可以为表征像素在当前图像中所处位置的像素坐标,具体可以是像素所处的行和列,例如,以X表示列,以Y表示行,则在当前图像中(X,Y)可以表示任一像素的位置信息。
需要说明的是,在本申请实施例的一些实施例中,上述像素包含一个或多个子像素, 例如,当像素包含三个子像素时,当前图像为三通道图像,例如:像素的三个子像素采用RGB三原色时,各子像素的颜色分别是红色(red,R)、绿色(green,G)以及蓝色(blue,B),则子像素的像素值可以表示R or G or B子像素的灰度,RGB图像为三通道图像,又例如RGGB图像为四通道图像。或者,在另一些实施例中,子像素的颜色分别是青色(cyan,C)、品红色(magenta,M)以及黄色(yellow,Y)。在某些实施例中,一个像素还可以包括多于三种原色,例如根据人眼对绿色最为敏感的特性,引入草绿色和祖母绿两种绿色原色。本申请对此不作限定。
102、根据目标像素的位置信息以及目标像素的初始像素值在第一查找表查找静态补偿系数,通过静态补偿系数对目标像素的静态电压降IR drop进行补偿生成第一像素值。
其中,通过静态补偿系数对目标像素的静态电压降IR drop进行补偿生成第一像素值可以是将目标像素的初始像素值乘以静态补偿系数生成第一像素值。当然这仅是一个示例,具体需要考虑静态补偿系数的形式,还可以是采用其他运算方式将静态补偿系数与目标像素的初始像素值进行运算生成第一像素值。例如,如果静态补偿系数为一个像素值,则可以直接将该像素值作为第一像素值;或者该静态补偿系数是一个差值,则可以直接将初始像素值加上该差值作为第一像素值。
其中,第一查找表也称作静态显示查找表(static look-up-table,简称:static LUT)包含像素的位置信息以及像素的像素值与静态补偿系数的对应关系,其中静态补偿系数用于对显示屏上线路传输造成的像素的电压降进行补偿,其中结合上述图1、图2、图3、图4中的描述,这里的显示屏上线路传输造成的像素的电压降即静态IR dorp。则在第一查找表中输入像素的位置信息以及像素的初始像素值时可以查到对应的静态补偿系数。
如上所述,像素包含一个或多个子像素,当目标像素包括第一子像素和第二子像素时,初始像素值包含第一子像素的像素值和第二子像素的像素值;则步骤102中,根据目标像素的位置信息以及目标像素的初始像素值在第一查找表查找静态补偿系数,包括:根据目标像素的位置信息以及目标像素的所述第一子像素的像素值,在第一查找表中查找第一子像素的静态补偿系数;根据目标像素的位置信息以及目标像素的第二子像素的像素值,在第一查找表中查找第二子像素的静态补偿系数。
以像素包含三个子像素RGB为例,如图8所示,当将像素的位置信息(例如像素的坐标(X,Y))以及像素的初始像素值R||G||B输入static LUT,输出是子像素R的静态补偿系数||子像素G的静态补偿系数||子像素B的静态补偿系数。其中,“a||b”表示a或b。基于子像素R的静态补偿系数对子像素R的静态IR drop进行补偿,基于子像素G的静态补偿系数对子像素G的静态IR drop进行补偿,基于子像素B的静态补偿系数对子像素B的静态IR drop进行补偿,则可以得到第一像素值R’,G’和B’。当然也可以将第一查找表拆分成三个查找表,如图9所示,该第一查找表可以包含分别关于子像素R、G、B的三个静态显示查找表,例如对于子像素R,R静态LUT中包含像素的位置信息与子像素R的像素值以及静态补偿系数的对应关系;对于子像素G,G静态LUT中包含像素的位置信息与子像素G的像素值以及静态补偿系数的对应关系;对于子像素B,B静态LUT中包含像素的位置信息与子像素B的像素值以及静态 补偿系数的对应关系。
103、根据第一像素值在第二查找表中查询动态补偿系数,其中,第二查找表包含像素的像素值与动态补偿系数的对应关系。
由于动态IR drop主要表现为当显示屏的图像内容发生变化时,对未发生变化的区域的像素的显示亮度造成的影响,因此动态IR drop的补偿主要是考虑当前图像的背景区域的显示亮度与目标像素的亮度的关系。因此在步骤103之前还包括:获取当前图像的背景区域的第一平均负载、以及目标像素的负载。步骤103具体包括:根据第一像素值、第一平均负载和目标像素的负载在第二查找表中查询动态补偿系数,其中,第二查找表包含像素的像素值、第一平均负载以及目标像素的负载与动态补偿系数的对应关系。
其中,当前图像的背景区域为当前图像中目标像素以外的区域,第一平均负载为当前图像的背景区域中的像素的负载的平均值。这里,负载(loading)指在显示屏的电路中把电能转换成光等其他形式能所消耗的电流或电压。
其中,第一平均负载以及目标像素的负载的获取方式为:根据背景区域中的第一像素的像素值查询第三查找表获取背景区域中的第一像素的负载,第一像素为背景区域中任一像素;根据目标像素的像素值查询第三查找表获取目标像素的负载;其中第三查找表包含像素的像素值与负载的对应关系。第三查找表中像素的像素值与负载的对应关系的获取方式如下:当像素中包含至少一个子像素时;将像素的至少一个子像素的像素值之间的比例固定为预设换算比例,其中,当像素的至少一个子像素的像素值之间的比例为预设换算比例时,像素的各子像素的像素值对应的负载相同;调整像素的各子像素的像素值,获取像素的各子像素的像素值与负载的对应关系。
以像素包含三个子像素RGB为例进行说明,当然像素可以包含三个子像素也可以包含更多的子像素,例如四个子像素或五个子像素,则上述预设换算比例的获取方式可以参考如下方式:首先制作特征图像,该特征图像如图10、图11、图12所示,包括背景区域以及被背景区域包围的大小相同的两个色块,其中,背景区域为黑色即三个子像素RGB各通道的子像素的灰度值均为0;一个色块为R(如图10所示)或G(如图11所示)或B(如图12所示)的纯色块,即该色块为仅包括一种子像素R或G或B的单通道图像;另一个色块为混色块(白色块),即三个子像素RGB各通道的子像素的灰度值混色后为白色。其中,通过对R色块、G色块以及B色块取不同的像素值,使得混色块的负载(loading)相等时,R色块、G色块以及B色块的loading也相等,此时获取子像素的像素值之间的比例,即预设换算比例。在该预设换算比例下,通过调整R色块、G色块以及B色块的像素值获得不同像素值下混色块的loading,最后将该混色块的loading除以色块的分辨率即可得到像素的平均loading,由于色块R、色块G以及色块B均为一个子像素的单通道图像,这样可以建立像素的子像素的像素值与loading的关系,进而可为像素的子像素的像素值建立一个1D的像素值与负载的对应关系gray(灰度)-to-loading。那么在对当前图像执行步骤103时,可以通过查找该对应关系获取当前像素的每个像素的各子像素的loading,可以直接累加该任意区域的所有像素的负载后除以该任意区域的分辨率获取当前图像上任意区域的像素的负载的平均值。该部分提供了一种通过简单的实验获取像素的子像素的像素值与负载 的对应关系的方式,当然在实际应用中,本领域技术人员还可以通过其他方式获取像素的各子像素的像素值与负载的对应关系gray-to-loading。
另外,上述的第二查找表也称作动态显示查找表(dynamic LUT)包含像素的像素值、第一平均负载以及目标像素的负载与动态补偿系数的对应关系。动态补偿系数用于对显示屏上目标区域以外的背景的亮度变化造成的目标区域的像素的电压降进行补偿。需要说明的是,第一平均负载能够反映背景区域的亮度、目标像素的负载能够反映目标像素的亮度,因此该第二查找表所建立的关系主要反映像素在某像素值下,背景区域的亮度变化造成的目标像素的电压降。结合上述图5、图6的描述,该显示屏上背景区域的亮度变化造成的目标像素的电压降即为动态IR drop。则在第二查找表中输入第一像素值以及第一平均负载以及目标像素的负载时可以查到对应的动态补偿系数。
以像素包含三个子像素RGB为例,如图13所示,当将第一像素值R’||G’||B’以及任意子像素对应的当前图像的背景区域的第一平均负载和目标像素的负载输入dynamic LUT,输出是子像素R的动态补偿系数||子像素G的动态补偿系数||子像素B的动态补偿系数。根据子像素R的动态补偿系数对子像素R的动态IR drop进行补偿,根据子像素G的动态补偿系数对子像素G的动态IR drop进行补偿,根据子像素B的动态补偿系数对子像素B动态IR drop进行补偿,则可以得到补偿像素值。当然也可以将第二查找表拆分成三个查找表,如图14所示,该第二查找表可以包含关于子像素R、G、B的三个动态显示查找表,例如对于子像素R,子像素R的动态LUT中包含子像素R的像素值R、子像素R对应的第一平均负载和目标像素的子像素R的负载与动态补偿系数的对应关系。此外还可以包含子像素G的动态LUT,子像素B的动态LUT,其原理与子像素R的动态LUT相同不在赘述。
104、通过动态补偿系数对目标像素的动态IR drop进行补偿生成目标像素的补偿像素值。
其中,通过动态补偿系数对目标像素的动态IR drop进行补偿生成补偿像素值可以是将第一像素值乘以动态补偿系数生成补偿像素值。当然这仅是一个示例,具体需要考虑动态补偿系数的形式,还可以是采用其他运算方式将动态补偿系数与第一像素值进行运算生成补偿像素值。例如,如果动态补偿系数为一个像素值,则可以直接将该像素值作为补偿像素值。或者该动态补偿系数是一个差值,则可以直接将第一像素值加上该差值作为补偿像素值。
在上述方案中,像素补偿装置首先获取显示屏显示的当前图像中目标像素的位置坐标以及目标像素的初始像素值,然后根据目标像素的位置信息以及目标像素的初始像素值在第一查找表查找静态补偿系数,最后通过静态补偿系数对目标像素的静态电压降IR drop进行补偿生成第一像素值,完成对目标像素的静态电压降IR drop的补偿;然后,根据第一像素值在第二查找表中查询动态补偿系数,最后通过动态补偿系数对目标像素的动态IR drop进行补偿生成目标像素的补偿像素值,完成了对目标像素的动态IR drop的补偿。而现有技术中,若将仅考虑静态IR dorp,则并不能对动态IR drop进行补偿,若将静态IR dorp与动态IR drop通过一个补偿电压或一个补偿系数一同补偿,则由于静态补偿过程后显示屏上图像的负载会发生变化,通常不能保证像素补偿 的精度。本申请提供的上述过程中,通过第一查找表确定静态补偿系数,通过第二查找表确定动态补偿系数,然后基于静态补偿系数对静态IR dorp进行补偿,并基于动态补偿系数对动态IR drop分别进行补偿,提高了像素补偿的精度。
以下对该第一查找表static LUT的具体生成方式说明如下:
S1、在第一特征图像中获取任一像素的位置信息,其中第一特征图像为仅包括一种子像素的单通道图像,第一特征图像的所有像素的像素值相同。
这样,第一特征图像在显示屏上显示为像素任一单色的纯色图像。具体的以像素包含子像素RGB为例,则第一特征图像可以为仅包含子像素R或G或B的单通道图像,如图15所示第一特征图像为子像素R的单通道图像,或者如图16所示第一特征图像为子像素G的单通道图像,或者如图17所示,第一特征图像为子像素B的单通道图像图。
S2、获取任一像素的标准亮度和在显示屏上的显示亮度。
根据上述子像素R或G或B的单通道图像,测量图像中任一像素的标准亮度和显示亮度。其中标准亮度为基于格拉斯曼定律对像素的像素值计算获得,显示亮度为通过亮度测量跟踪检测获取。
S3、根据任一像素的像素值以及显示亮度计算伽马值。
具体的,根据如下公式计算伽马值:(gray1/255)^gamma/Lv255=Lva;其中,Lva为显示亮度,gray1为任一像素的像素值,Lv255为像素的像素值取255时的亮度。
S4、根据伽马值以及标准亮度计算第一补偿像素值,根据第一像素值与任一像素的像素值生成静态补偿系数。
具体的,可以根据如下公式计算第一补偿像素值:(gray2/255)^gamma/Lv255=Lvb;其中,Lvb为标准亮度,gray2为第一补偿像素值,Lv255为像素的像素值取255时的亮度。其中根据第一像素值与任一像素的像素值生成静态补偿系数可以是将第一像素值与任一像素的像素值做商,或者通过其他运算方式计算该静态补偿系数。
S5、将任一像素的位置信息、任一像素的像素值以及任一像素的静态补偿系数对应写入第一查找表。
如上过程所示,只需要对使用不同像素值的第一特殊图片对不同位置的像素进行上述步骤S1-S5的一次测量,则可获得所有情况下的静态补偿系数。
这样第一查找表中包含像素的位置信息与像素的像素值以及静态补偿系数的对应关系,其中对于像素包含子像素RGB,该第一查找表可以包含分别关于子像素R、G、B的三查找表,例如对于子像素R,第一查找表中包含像素的位置信息与像素的子像素R的像素值以及静态补偿系数的对应关系;对于子像素G,第一查找表中包含像素的位置信息与像素的子像素G的像素值以及静态补偿系数的对应关系;对于子像素B,第一查找表中包含像素的位置信息与像素的子像素B的像素值以及静态补偿系数的对应关系。
这样由于在形成静态补偿系数的过程中,使用了两次上述S3和S4提供的像素的像素值与亮度的转换公式,在步骤S3中将通过显示亮度和像素的像素值计算出伽玛值,在步骤S4中使用步骤S3中相同的伽马值按照标准亮度得到补偿后的像素值,这样按照补偿后的像素值在显示屏上显示该像素时,亮度是标准亮度,这样即补偿了静态电 压降,又不改变伽马值,从而保证了显示屏原有的伽马曲线,保证了像素补偿的精度。另外,静态补偿的系数的计算仅需要通过对不同像素的第一特征图像进行计算即可生成,计算复杂度较低,有利于降低硬件成本。
以下对第二查找表dynamic LUT的说明如下:
S1、获取在显示屏上显示的第二特征图像的背景的第二平均负载、以及第二特征图像中的目标区域的第三平均负载。
其中,第二特征图像中的目标区域为仅包括一种子像素的单通道图像,第二特征图像中的背景区域的所有像素的像素值相同;第二平均负载为第二特征图像的背景区域中的像素的负载的平均值,第三平均负载为第二特征图像的目标区域中的像素的负载的平均值。示例性,如图18、图19、图20所示,提供了三种第二特征图像的示例,背景区域的所有像素的像素值相同,图18、图19、图20的背景区域可以取不同的像素值,位于中间位置的目标区域为仅包括一种子像素的单通道图像。
S2、获取第二特征图像中的目标区域的任一像素的像素值。
S3、获取该任一像素的像素值的标准亮度以及该任一像素在显示屏上的显示亮度。
S4、根据该任一像素的像素值以及显示亮度计算伽马值。
根据如下公式计算伽马值:(gray1/255)^gamma/Lv255=Lva;其中,Lva为显示亮度,Gray1为目标区域的任一像素的像素值,Lv255为像素的像素值取255时的亮度。
S5、根据伽马值以及标准亮度计算第二补偿像素值,根据第二补偿像素值与该任一像素的像素值生成动态补偿系数。
根据如下公式计算第二补偿像素值:(gray3/255)^gamma/Lv255=Lvb;其中,Lvb为标准亮度,gray3为第二补偿像素值,Lv255为像素的像素值取255时的亮度。其中根据第二补偿像素值与目标区域的像素的像素值生成动态补偿系数可以是将第二补偿像素值与目标区域的像素的像素值做商,或者通过其他运算方式计算该动态补偿系数。
S6、将第二平均负载、第三平均负载、该任一像素的像素值以及该任一像素的动态补偿系数对应写入第二查找表。
如上过程所示,只需通过调整背景区域的像素值以及目标区域的像素值,对使用不同像素值的背景区域以及不同像素值的目标区域的图像进行上述步骤S1-S6的一次测量,则可获得所有情况下的动态补偿系数。
此外为了计算步骤102中的第一平均负载、目标像素的负载以及构建第二查找表时计算第二平均负载和第三平均负载,首先需要生成像素的像素值与负载的对应关系即上述步骤102中的gray-to-loading。那么在对第二特征图像执行步骤S1时,可以通过查找该对应关系获取第二特征图像的每个像素的loading,则对于当前像素上任意区域的像素的负载的平均值,则可以直接累加该任意区域的所有像素的负载后除以该任意区域的分辨率获取,例如对于背景区域的第二平均负载,可以对第二特征图像的背景的像素查询gray-to-loading,获取每个像素的loading,对背景中每个像素的loading累加后除以背景区域的分辨率(其中背景区域的分辨率为背景区域的像素的总个数)即可得到该第二平均负载;类似的对于目标区域的第三平均负载,可以对第二特征图像的目标区域的像素查询gray-to-loading,获取每个像素的loading,对目 标区域中每个像素的loading累加后除以目标区域的分辨率即可得到该第三平均负载。
这样第二查找表中包含第二平均负载、第三平均负载、目标区域的任一像素的像素值以及动态补偿系数的对应关系,其中像素包含三个子像素RGB时,该第二查找表可以包含分别关于子像素R、G、B的三个查找表,例如对于子像素R,子像素R的动态LUT中包含子像素R的像素值R、子像素R对应的第二平均负载和第三平均负载与动态补偿系数的对应关系。此外还可以包含子像素G的动态LUT,子像素B的动态LUT,其原理与子像素R的动态LUT相同不再赘述。
这样由于在形成动态补偿系数的过程中,使用了两次上述S3和S4提供的像素的像素值与亮度的转换公式,在步骤S3中将通过显示亮度和像素的像素值计算出伽玛值,在步骤S4中使用步骤S3中相同的伽马值按照标准亮度得到补偿后的像素值,这样按照补偿后的像素值在显示屏上显示该像素时,亮度是标准亮度,这样即使得动态电压降得到了补偿,又不改变伽马值,从而保证了显示屏原有的伽马曲线,保证了像素补偿的精度。另外,动态补偿的系数的计算仅需要通过对不同像素值的第二特征图像进行计算即可生成,计算复杂度较低,有利于降低硬件成本。
可以理解的是,以上各个实施例中,由像素补偿装置实现的方法和/或步骤,也可以由可用于像素补偿装置的部件(例如芯片或者电路)实现。
可以理解的是,该像素补偿装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法实施例中对像素补偿装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
图21示出了一种像素补偿装置的结构示意图。该像素补偿装置包括:静态补偿模块2101、获取模块2102和动态补偿模块2103。
获取模块2102,用于获取显示屏显示的当前图像中目标像素的位置坐标以及所述目标像素的初始像素值。
静态补偿模块2101,用于根据所述目标像素的位置信息以及所述目标像素的初始像素值在第一查找表查找静态补偿系数,通过所述静态补偿系数对所述目标像素的静态电压降IR drop进行补偿生成第一像素值,其中所述第一查找表包含像素的位置信息以及所述像素的像素值与静态补偿系数的对应关系;
动态补偿模块2103,用于根据所述第一像素值在第二查找表中查询动态补偿系数,其中,所述第二查找表包含所述像素的像素值与动态补偿系数的对应关系;通过所述动态补偿系数对所述目标像素的动态IR drop进行补偿生成所述目标像素的补偿像素值。
可选的,获取模块2102还用于获取所述当前图像的背景区域的第一平均负载、以及所述目标像素的负载,其中所述当前图像的背景区域为所述当前图像中所述目标像素以外的区域,所述第一平均负载为所述当前图像的背景区域中的像素的负载的平均值;所述动态补偿模块2103具体用于根据所述第一像素值、所述第一平均负载和所述目标像素的负载在所述第二查找表中查询所述动态补偿系数,其中,所述第二查找表包含所述像素的像素值、所述第一平均负载以及所述目标像素的负载与所述动态补偿系数的对应关系。
可选的,所述目标像素包括第一子像素和第二子像素,所述初始像素值包含所述第一子像素的像素值和所述第二子像素的像素值;所述静态补偿模块2101具体用于根据所述目标像素的位置信息以及所述目标像素的所述第一子像素的像素值,在所述第一查找表中查找所述第一子像素的静态补偿系数;根据所述目标像素的位置信息以及所述目标像素的所述第二子像素的像素值,在所述第一查找表中查找所述第二子像素的静态补偿系数。
可选的,所述获取模块2102具体用于根据所述背景区域中的第一像素的像素值查询第三查找表获取所述背景区域中的所述第一像素的负载,所述第一像素为所述背景区域中任一像素;根据所述目标像素的像素值查询所述第三查找表获取所述目标像素的负载;其中所述第三查找表包含所述像素的像素值与负载的对应关系。
可选的,所述像素包含至少一个子像素;所述获取模块2102具体用于将所述像素的所述至少一个子像素的像素值之间的比例固定为预设换算比例,其中,当所述像素的所述至少一个子像素的像素值之间的比例为所述预设换算比例时,所述像素的各子像素的像素值对应的负载相同;调整所述像素的各子像素的像素值,获取所述像素的各子像素的像素值与负载的对应关系。
可选的,所述目标像素包括至少一个子像素,所述像素补偿装置还包括:预处理模块2104,用于在第一特征图像中获取任一像素的位置信息,所述第一特征图像为仅包括一种子像素的单通道图像,所述第一特征图像的所有像素的像素值相同;获取所述任一像素的标准亮度和所述任一像素在所述显示屏上的显示亮度;根据所述任一像素的像素值以及所述显示亮度计算伽马值;根据所述伽马值以及所述标准亮度计算第一补偿像素值;根据所述第一补偿像素值与所述任一像素的像素值生成所述任一像素的静态补偿系数;将所述任一像素的位置信息、所述任一像素的像素值以及所述任一像素的静态补偿系数对应写入所述第一查找表。
可选的,所述预处理模块2104具体用于根据如下公式计算伽马值:(gray1/255)^gamma/Lv255=Lva;其中,Lva为所述显示亮度,所述gray1为所述任一像素的像素值,所述Lv255为所述像素的像素值取255时在所述显示屏上的显示亮度;根据如下公式计算第一补偿像素值:(gray2/255)^gamma/Lv255=Lvb;其中,Lvb为所述标准亮度,所述gray2为所述第一补偿像素值,所述Lv255为所述像素的像素值取255时在所述显示屏上的显示亮度。
可选的,所述目标像素包括至少一个子像素,所述像素补偿装置还包括:预处理模块2104,用于:获取在所述显示屏上显示的第二特征图像的背景区域的第二平均负载、以及所述第二特征图像中的目标区域的第三平均负载;其中所述第二特征图像中的目 标区域为仅包括一种子像素的单通道图像,所述第二特征图像中的背景区域的所有像素的像素值相同;所述第二平均负载为所述第二特征图像的背景区域中的像素的负载的平均值,所述第三平均负载为所述第二特征图像的目标区域中的像素的负载的平均值;获取所述第二特征图像中的目标区域的任一像素的像素值;获取所述任一像素的像素值的标准亮度以及所述任一像素在所述显示屏上的显示亮度;根据所述任一像素的像素值以及所述显示亮度计算伽马值;根据所述伽马值以及所述标准亮度计算第二补偿像素值;根据所述第二补偿像素值与所述任一像素的像素值生成所述任一像素的动态补偿系数;将所述第二平均负载、所述第三平均负载、所述任一像素的像素值以及所述任一像素的动态补偿系数对应写入所述第二查找表。
可选的,所述预处理模块2104具体用于根据如下公式计算伽马值:(gray1/255)^gamma/Lv255=Lva;其中,Lva为所述显示亮度,所述gray1为所述任一像素的像素值,所述Lv255为所述像素的像素值取255时在所述显示屏上的显示亮度;根据如下公式计算第二补偿像素值:(gray3/255)^gamma/Lv255=Lvb;其中,Lvb为所述标准亮度,所述gray3为所述第二补偿像素值,所述Lv255为所述像素的像素值取255时在所述显示屏上的显示亮度。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
如图22所示,本申请的实施例提供一种像素补偿装置的硬件结构示意图。
其中,像素补偿装置包括至少一个处理器(图22中示例性的以包括一个处理器2201为例进行说明)和至少一个传输接口2203(例如可以是接口电路,图22中示例性的以包括一个传输接口2203为例进行说明)。可选的,像素补偿装置还可以包括至少一个存储器(图22中示例性的以包括一个存储器2202为例进行说明)。
处理器2201、存储器2202和传输接口2203通过通信线路相连接。通信线路可包括一通路,在上述组件之间传送信息。
处理器2201可以是通用中央处理器(central processing unit,CPU)、微处理器、特定应用集成电路(application-specific integrated circuit,ASIC),或者一个或多个用于控制本申请方案程序执行的集成电路。在具体实现中,作为一种实施例,处理器2201也可以包括多个CPU,并且处理器2201可以是单核(single-CPU)处理器或多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路或用于处理数据(例如计算机程序指令)的处理核。
存储器2202可以是具有存储功能的装置。例如可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备、随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器2202可以是独立存在,通过通信线路与处理器2201相连接。存储器2202也可以和处理器 2201集成在一起。
其中,存储器2202用于存储执行本申请方案的计算机执行指令,并由处理器2201来控制执行。具体的,处理器2201用于执行存储器2202中存储的计算机执行指令,从而实现本申请实施例中所述的像素补偿方法。
或者,可选的,本申请实施例中,也可以是处理器2201执行本申请下述实施例提供的像素补偿方法中的处理相关的功能,传输接口2203负责与其他部件连接以实现信号的传输,例如向像素补偿装置传输当前图像、输出补偿后的补偿像素值等,本申请实施例对此不作具体限定。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码或者计算机程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器2201可以包括一个或多个CPU,例如图22中的CPU0和CPU1。
在具体实现中,作为一种实施例,电子设备的控制装置可以包括多个处理器,例如图22中的处理器2201和处理器2204。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
像素补偿装置中的处理器2201可以通过调用存储器2202中存储的计算机执行指令,使得像素补偿装置执行上述方法实施例中的方法。具体的,图21中的静态补偿模块2101、获取模块2102和动态补偿模块2103、预处理模块2104的功能/实现过程可以通过图22所示的像素补偿装置中的处理器2201调用存储器2202中存储的计算机执行指令来实现。由于本实施例提供的像素补偿装置可执行上述的方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
可选的,本申请实施例还提供了一种像素补偿装置(例如,该像素补偿可以是芯片或芯片系统),该像素补偿包括处理器,用于实现上述任一方法实施例中的方法。在一种可能的设计中,该像素补偿装置还包括存储器。该存储器,用于保存必要的程序指令和数据,处理器可以调用存储器中存储的程序指令以指示该像素补偿装置执行上述任一方法实施例中的方法。当然,存储器也可以不在该像素补偿装置中。该像素补偿装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
本申请的实施例提供的电子设备包含上述的像素补偿装置。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质 (例如固态硬盘(solid state disk,SSD))等。本申请实施例中,计算机可以包括前面所述的装置。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (20)

  1. 一种像素补偿方法,其特征在于,包括:
    获取显示屏显示的当前图像中目标像素的位置坐标以及所述目标像素的初始像素值;
    根据所述目标像素的位置信息以及所述目标像素的初始像素值在第一查找表查找静态补偿系数,通过所述静态补偿系数对所述目标像素的静态电压降IR drop进行补偿生成第一像素值,其中所述第一查找表包含像素的位置信息以及所述像素的像素值与静态补偿系数的对应关系;
    根据所述第一像素值在第二查找表中查询动态补偿系数,其中,所述第二查找表包含所述像素的像素值与动态补偿系数的对应关系;
    通过所述动态补偿系数对所述目标像素的动态IR drop进行补偿生成所述目标像素的补偿像素值。
  2. 根据权利要求1所述的像素补偿方法,其特征在于,所述根据所述第一像素值在第二查找表中查询动态补偿系数之前,还包括:
    获取所述当前图像的背景区域的第一平均负载、以及所述目标像素的负载,其中所述当前图像的背景区域为所述当前图像中所述目标像素以外的区域,所述第一平均负载为所述当前图像的背景区域中的像素的负载的平均值;
    所述根据所述第一像素值在第二查找表中查询动态补偿系数,包括:根据所述第一像素值、所述第一平均负载和所述目标像素的负载在所述第二查找表中查询所述动态补偿系数,其中,所述第二查找表包含所述像素的像素值、所述第一平均负载以及所述目标像素的负载与所述动态补偿系数的对应关系。
  3. 根据权利要求1或2所述的像素补偿方法,其特征在于,所述目标像素包括第一子像素和第二子像素,所述初始像素值包含所述第一子像素的像素值和所述第二子像素的像素值;
    所述根据所述目标像素的位置信息以及所述目标像素的初始像素值在第一查找表查找静态补偿系数,包括:
    根据所述目标像素的位置信息以及所述目标像素的所述第一子像素的像素值,在所述第一查找表中查找所述第一子像素的静态补偿系数;
    根据所述目标像素的位置信息以及所述目标像素的所述第二子像素的像素值,在所述第一查找表中查找所述第二子像素的静态补偿系数。
  4. 根据权利要求2所述的像素补偿方法,其特征在于,所述获取所述当前图像的背景区域的第一平均负载、以及所述目标像素的负载包括:
    根据所述背景区域中的第一像素的像素值查询第三查找表获取所述背景区域中的所述第一像素的负载,所述第一像素为所述背景区域中任一像素;
    根据所述目标像素的像素值查询所述第三查找表获取所述目标像素的负载;其中所述第三查找表包含所述像素的像素值与负载的对应关系。
  5. 根据权利要求4所述的像素补偿方法,其特征在于,所述像素包含至少一个子像素;所述方法还包括:
    将所述像素的所述至少一个子像素的像素值之间的比例固定为预设换算比例,其中, 当所述像素的所述至少一个子像素的像素值之间的比例为所述预设换算比例时,所述像素的各子像素的像素值对应的负载相同;
    调整所述像素的各子像素的像素值,获取所述像素的各子像素的像素值与负载的对应关系。
  6. 根据权利要求1-5任一项所述的像素补偿方法,其特征在于,所述目标像素包括至少一个子像素,根据所述目标像素的位置信息以及所述目标像素的初始像素值在第一查找表查找静态补偿系数之前,还包括:
    在第一特征图像中获取任一像素的位置信息,所述第一特征图像为仅包括一种子像素的单通道图像,所述第一特征图像的所有像素的像素值相同;
    获取所述任一像素的标准亮度和所述任一像素在所述显示屏上的显示亮度;
    根据所述任一像素的像素值以及所述显示亮度计算伽马值;
    根据所述伽马值以及所述标准亮度计算第一补偿像素值;
    根据所述第一补偿像素值与所述任一像素的像素值生成所述任一像素的静态补偿系数;
    将所述任一像素的位置信息、所述任一像素的像素值以及所述任一像素的静态补偿系数对应写入所述第一查找表。
  7. 根据权利要求6所述的像素补偿方法,其特征在于,所述根据所述任一像素的像素值以及所述显示亮度计算伽马值,包括:
    根据如下公式计算伽马值:(gray1/255)^gamma/Lv255=Lva;其中,Lva为所述显示亮度,所述gray1为所述任一像素的像素值,所述Lv255为所述像素的像素值取255时在所述显示屏上的显示亮度;
    所述根据所述伽马值以及所述标准亮度计算第一补偿像素值,包括:
    根据如下公式计算第一补偿像素值:(gray2/255)^gamma/Lv255=Lvb;其中,Lvb为所述标准亮度,所述gray2为所述第一补偿像素值,所述Lv255为所述像素的像素值取255时在所述显示屏上的显示亮度。
  8. 根据权利要求2所述的像素补偿方法,其特征在于,所述目标像素包括至少一个子像素,根据所述第一像素值以及所述第一平均负载和所述目标像素的负载在第二查找表中查询动态补偿系数,之前包括:
    获取在所述显示屏上显示的第二特征图像的背景区域的第二平均负载、以及所述第二特征图像中的目标区域的第三平均负载;其中所述第二特征图像中的目标区域为仅包括一种子像素的单通道图像,所述第二特征图像中的背景区域的所有像素的像素值相同;所述第二平均负载为所述第二特征图像的背景区域中的像素的负载的平均值,所述第三平均负载为所述第二特征图像的目标区域中的像素的负载的平均值;
    获取所述第二特征图像中的目标区域的任一像素的像素值;
    获取所述任一像素的像素值的标准亮度以及所述任一像素在所述显示屏上的显示亮度;
    根据所述任一像素的像素值以及所述显示亮度计算伽马值;
    根据所述伽马值以及所述标准亮度计算第二补偿像素值;
    根据所述第二补偿像素值与所述任一像素的像素值生成所述任一像素的动态补偿 系数;
    将所述第二平均负载、所述第三平均负载、所述任一像素的像素值以及所述任一像素的动态补偿系数对应写入所述第二查找表。
  9. 根据权利要求8所述的像素补偿方法,其特征在于,所述根据所述任一像素的像素值以及所述显示亮度计算伽马值,包括:
    根据如下公式计算伽马值:(gray1/255)^gamma/Lv255=Lva;其中,Lva为所述显示亮度,所述gray1为所述任一像素的像素值,所述Lv255为所述像素的像素值取255时在所述显示屏上的显示亮度;
    所述根据所述伽马值以及所述标准亮度计算第二补偿像素值,包括:
    根据如下公式计算第二补偿像素值:(gray3/255)^gamma/Lv255=Lvb;其中,Lvb为所述标准亮度,所述gray3为所述第二补偿像素值,所述Lv255为所述像素的像素值取255时在所述显示屏上的显示亮度。
  10. 一种像素补偿装置,其特征在于,
    获取模块,用于获取显示屏显示的当前图像中目标像素的位置坐标以及所述目标像素的初始像素值;
    静态补偿模块,用于根据所述目标像素的位置信息以及所述目标像素的初始像素值在第一查找表查找静态补偿系数,通过所述静态补偿系数对所述目标像素的静态电压降IR drop进行补偿生成第一像素值,其中所述第一查找表包含像素的位置信息以及所述像素的像素值与静态补偿系数的对应关系;
    动态补偿模块,用于根据所述第一像素值在第二查找表中查询动态补偿系数,其中,所述第二查找表包含所述像素的像素值与动态补偿系数的对应关系;通过所述动态补偿系数对所述目标像素的动态IR drop进行补偿生成所述目标像素的补偿像素值。
  11. 根据权利要求10所述的像素补偿装置,其特征在于,所述获取模块还用于获取所述当前图像的背景区域的第一平均负载、以及所述目标像素的负载,其中所述当前图像的背景区域为所述当前图像中所述目标像素以外的区域,所述第一平均负载为所述当前图像的背景区域中的像素的负载的平均值;
    所述动态补偿模块具体用于:
    根据所述第一像素值、所述第一平均负载和所述目标像素的负载在所述第二查找表中查询所述动态补偿系数,其中,所述第二查找表包含所述像素的像素值、所述第一平均负载以及所述目标像素的负载与所述动态补偿系数的对应关系。
  12. 根据权利要求10或11所述的像素补偿装置,其特征在于,所述目标像素包括第一子像素和第二子像素,所述初始像素值包含所述第一子像素的像素值和所述第二子像素的像素值;
    所述静态补偿模块具体用于:
    根据所述目标像素的位置信息以及所述目标像素的所述第一子像素的像素值,在所述第一查找表中查找所述第一子像素的静态补偿系数;根据所述目标像素的位置信息以及所述目标像素的所述第二子像素的像素值,在所述第一查找表中查找所述第二子像素的静态补偿系数。
  13. 根据权利要求11所述的像素补偿装置,其特征在于,所述获取模块具体用于:
    根据所述背景区域中的第一像素的像素值查询第三查找表获取所述背景区域中的所述第一像素的负载,所述第一像素为所述背景区域中任一像素;根据所述目标像素的像素值查询所述第三查找表获取所述目标像素的负载;其中所述第三查找表包含所述像素的像素值与负载的对应关系。
  14. 根据权利要求13所述的像素补偿装置,其特征在于,所述像素包含至少一个子像素;所述获取模块具体用于:
    将所述像素的所述至少一个子像素的像素值之间的比例固定为预设换算比例,其中,当所述像素的所述至少一个子像素的像素值之间的比例为所述预设换算比例时,所述像素的各子像素的像素值对应的负载相同;调整所述像素的各子像素的像素值,获取所述像素的各子像素的像素值与负载的对应关系。
  15. 根据权利要求10所述的像素补偿装置,其特征在于,所述目标像素包括至少一个子像素,所述像素补偿装置还包括:预处理模块,用于:
    在第一特征图像中获取任一像素的位置信息,所述第一特征图像为仅包括一种子像素的单通道图像,所述第一特征图像的所有像素的像素值相同;
    获取所述任一像素的标准亮度和所述任一像素在所述显示屏上的显示亮度;根据所述任一像素的像素值以及所述显示亮度计算伽马值;
    根据所述伽马值以及所述标准亮度计算第一补偿像素值;
    根据所述第一补偿像素值与所述任一像素的像素值生成所述任一像素的静态补偿系数;
    将所述任一像素的位置信息、所述任一像素的像素值以及所述任一像素的静态补偿系数对应写入所述第一查找表。
  16. 根据权利要求15所述的像素补偿装置,其特征在于,所述预处理模块具体用于:
    根据如下公式计算伽马值:(gray1/255)^gamma/Lv255=Lva;其中,Lva为所述显示亮度,所述gray1为所述任一像素的像素值,所述Lv255为所述像素的像素值取255时在所述显示屏上的显示亮度;
    根据如下公式计算第一补偿像素值:(gray2/255)^gamma/Lv255=Lvb;其中,Lvb为所述标准亮度,所述gray2为所述第一补偿像素值,所述Lv255为所述像素的像素值取255时在所述显示屏上的显示亮度。
  17. 根据权利要求10所述的像素补偿装置,其特征在于,所述目标像素包括至少一个子像素,所述像素补偿装置还包括:预处理模块,用于:获取在所述显示屏上显示的第二特征图像的背景区域的第二平均负载、以及所述第二特征图像中的目标区域的第三平均负载;其中所述第二特征图像中的目标区域为仅包括一种子像素的单通道图像,所述第二特征图像中的背景区域的所有像素的像素值相同;所述第二平均负载为所述第二特征图像的背景区域中的像素的负载的平均值,所述第三平均负载为所述第二特征图像的目标区域中的像素的负载的平均值;
    获取所述第二特征图像中的目标区域的任一像素的像素值;
    获取所述任一像素的像素值的标准亮度以及所述任一像素在所述显示屏上的显示亮度;
    根据所述任一像素的像素值以及所述显示亮度计算伽马值;
    根据所述伽马值以及所述标准亮度计算第二补偿像素值;
    根据所述第二补偿像素值与所述任一像素的像素值生成所述任一像素的动态补偿系数;
    将所述第二平均负载、所述第三平均负载、所述任一像素的像素值以及所述任一像素的动态补偿系数对应写入所述第二查找表。
  18. 根据权利要求17所述的像素补偿装置,其特征在于,所述预处理模块具体用于根据如下公式计算伽马值:(gray1/255)^gamma/Lv255=Lva;其中,Lva为所述显示亮度,所述gray1为所述任一像素的像素值,所述Lv255为所述像素的像素值取255时在所述显示屏上的显示亮度;根据如下公式计算第二补偿像素值:(gray3/255)^gamma/Lv255=Lvb;其中,Lvb为所述标准亮度,所述gray3为所述第二补偿像素值,所述Lv255为所述像素的像素值取255时在所述显示屏上的显示亮度。
  19. 一种的像素补偿装置,其特征在于,包括:处理器和传输接口;
    所述处理器被配置为调用存储在存储器中的程序指令,以执行如权利要求1-9中任一项所述的方法。
  20. 一种计算机可读存储介质,其特征在于,包括指令,所述计算机可读存储介质中存储有程序指令,当所述程序指令在计算机或处理器上运行时,使得所述计算机或所述处理器执行如权利要求1-9任意一项所述的方法。
PCT/CN2020/090623 2020-05-15 2020-05-15 一种像素补偿方法、装置及电子设备 WO2021227051A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/090623 WO2021227051A1 (zh) 2020-05-15 2020-05-15 一种像素补偿方法、装置及电子设备
CN202080100915.3A CN115605941A (zh) 2020-05-15 2020-05-15 一种像素补偿方法、装置及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/090623 WO2021227051A1 (zh) 2020-05-15 2020-05-15 一种像素补偿方法、装置及电子设备

Publications (1)

Publication Number Publication Date
WO2021227051A1 true WO2021227051A1 (zh) 2021-11-18

Family

ID=78525968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/090623 WO2021227051A1 (zh) 2020-05-15 2020-05-15 一种像素补偿方法、装置及电子设备

Country Status (2)

Country Link
CN (1) CN115605941A (zh)
WO (1) WO2021227051A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114758614B (zh) * 2021-12-21 2024-02-27 友达光电股份有限公司 显示驱动电路和其补偿亮度的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104505043A (zh) * 2014-12-29 2015-04-08 厦门天马微电子有限公司 一种图像数据的灰阶补偿方法及装置
CN107170419A (zh) * 2017-06-29 2017-09-15 惠科股份有限公司 显示面板驱动方法、系统及显示装置
CN107358926A (zh) * 2017-07-24 2017-11-17 惠科股份有限公司 显示面板的驱动方法、驱动装置及显示装置
CN109036268A (zh) * 2018-07-17 2018-12-18 深圳市华星光电半导体显示技术有限公司 Oled显示装置的补偿系统及补偿方法
CN109377945A (zh) * 2018-11-08 2019-02-22 京东方科技集团股份有限公司 像素补偿方法、装置及系统
US20200058261A1 (en) * 2015-09-23 2020-02-20 Samsung Display Co., Ltd. Display apparatus and a method of driving the same
CN110942754A (zh) * 2019-11-26 2020-03-31 Tcl华星光电技术有限公司 数据补偿方法及像素补偿装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104505043A (zh) * 2014-12-29 2015-04-08 厦门天马微电子有限公司 一种图像数据的灰阶补偿方法及装置
US20200058261A1 (en) * 2015-09-23 2020-02-20 Samsung Display Co., Ltd. Display apparatus and a method of driving the same
CN107170419A (zh) * 2017-06-29 2017-09-15 惠科股份有限公司 显示面板驱动方法、系统及显示装置
CN107358926A (zh) * 2017-07-24 2017-11-17 惠科股份有限公司 显示面板的驱动方法、驱动装置及显示装置
CN109036268A (zh) * 2018-07-17 2018-12-18 深圳市华星光电半导体显示技术有限公司 Oled显示装置的补偿系统及补偿方法
CN109377945A (zh) * 2018-11-08 2019-02-22 京东方科技集团股份有限公司 像素补偿方法、装置及系统
CN110942754A (zh) * 2019-11-26 2020-03-31 Tcl华星光电技术有限公司 数据补偿方法及像素补偿装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114758614B (zh) * 2021-12-21 2024-02-27 友达光电股份有限公司 显示驱动电路和其补偿亮度的方法

Also Published As

Publication number Publication date
CN115605941A (zh) 2023-01-13

Similar Documents

Publication Publication Date Title
US10885856B2 (en) Voltage drop compensation method and device thereof, display device
US9892682B2 (en) Electroluminescent display device for reducing color distortion of low gray values and method of operating same
US9368060B2 (en) Organic light emitting display device using an adjustable power source voltage and driving method thereof
US11176867B2 (en) Chroma compensation method and apparatus, device, display device and storage medium
KR20190029833A (ko) 표시 장치 및 표시 장치의 데이터 보상 방법
US20160217722A1 (en) Data compensator and display device including the same
US20160155384A1 (en) Organic light-emitting diode (oled) display, display system including the same and method of driving the same
US20160005342A1 (en) Method of detecting degradation of display panel and degradation detecting device for display panel
US20160005358A1 (en) Driving method, driving apparatus, and organic light emitting display
CN111883052B (zh) 显示装置和显示装置的驱动方法
KR102412677B1 (ko) 표시 장치 및 이를 포함하는 전자 기기
WO2022217698A1 (zh) 显示面板的驱动方法、装置及显示终端
US20190156763A1 (en) Device and method for image correction
WO2021227051A1 (zh) 一种像素补偿方法、装置及电子设备
US20240046874A1 (en) Compensating for Voltage Losses in OLED Displays
US20190019459A1 (en) System and method for external pixel compensation
KR20200094862A (ko) 표시 장치, 이를 포함하는 전자 기기 및 이의 구동 방법
US11176881B2 (en) Organic light emitting diode display device capable of performing low frequency driving, and method of operating the same
WO2024001094A1 (zh) 像素补偿方法、像素补偿装置及显示装置
US10096278B2 (en) Method of driving organic light emitting display device
WO2022040879A1 (zh) 一种像素驱动电路及微型发光二极管显示面板
KR20220026661A (ko) 표시 장치 및 이의 구동 방법
KR20210018576A (ko) 이미지의 픽셀 값을 보상하기 위한 전자 장치
US11929002B2 (en) Method of calculating respective gamma values for display areas of a display panel
US20230282174A1 (en) Display device and method of compensating image data

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20935192

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20935192

Country of ref document: EP

Kind code of ref document: A1