WO2021226986A1 - 一种定位方法、定位芯片和终端设备 - Google Patents

一种定位方法、定位芯片和终端设备 Download PDF

Info

Publication number
WO2021226986A1
WO2021226986A1 PCT/CN2020/090446 CN2020090446W WO2021226986A1 WO 2021226986 A1 WO2021226986 A1 WO 2021226986A1 CN 2020090446 W CN2020090446 W CN 2020090446W WO 2021226986 A1 WO2021226986 A1 WO 2021226986A1
Authority
WO
WIPO (PCT)
Prior art keywords
satellite signal
carrier phase
positioning
satellite
tracking
Prior art date
Application number
PCT/CN2020/090446
Other languages
English (en)
French (fr)
Inventor
王康
黄威
董光利
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202080099761.0A priority Critical patent/CN115380224A/zh
Priority to PCT/CN2020/090446 priority patent/WO2021226986A1/zh
Priority to EP20935716.9A priority patent/EP4141490A4/en
Publication of WO2021226986A1 publication Critical patent/WO2021226986A1/zh
Priority to US17/987,300 priority patent/US20230103074A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/40Correcting position, velocity or attitude
    • G01S19/41Differential correction, e.g. DGPS [differential GPS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/29Acquisition or tracking or demodulation of signals transmitted by the system carrier including Doppler, related
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/43Determining position using carrier phase measurements, e.g. kinematic positioning; using long or short baseline interferometry
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • H03L7/087Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal using at least two phase detectors or a frequency and phase detector in the loop
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L2207/00Indexing scheme relating to automatic control of frequency or phase and to synchronisation
    • H03L2207/12Indirect frequency synthesis using a mixer in the phase-locked loop

Definitions

  • This application relates to the technical field of satellite positioning, and in particular to a positioning method, positioning chip and terminal equipment.
  • the chip structure shown in Figure 1 is generally used.
  • the global navigation satellite system (GNSS) positioning chip includes: PVT module, inertial navigation module, capture and tracking module, etc. .
  • PVT indicates position, speed, and time (Position, Velocity, Time) in navigation.
  • the GNSS positioning chip receives the Global Positioning System (GPS), Beidou, and Galileo satellite navigation system through the antenna of the mobile phone.
  • GPS Global Positioning System
  • Beidou Beidou
  • Galileo satellite navigation system capture and track the received satellite signals, and generate necessary measurement information such as pseudorange observations for use by the PVT module.
  • the PVT module is mainly used to calculate the position, speed, and time of the mobile phone terminal, and after the calculation, transmits the position, speed and other information to the mobile phone operating system, such as the Apple (IOS) or Android (Android) system.
  • the inertial navigation module can be used to interact and assist the PVT module with the measurement parameters reported by sensors such as speedometers and accelerometers to further improve the navigation performance of the mobile phone.
  • the current mobile phone positioning solution uses pseudo-range observations output by the GNSS positioning chip to achieve positioning.
  • the traditional solution is relatively simple, but the accuracy is low.
  • the positioning accuracy can only be determined to a granularity of a few meters, which cannot meet the requirements of high-precision positioning and navigation. need.
  • the present application provides a positioning method and device, which are used to improve the accuracy of mobile phone positioning and meet the needs of users. Specifically, the following technical solutions are disclosed:
  • the present application provides a positioning method, which can be applied to a terminal device, the terminal device includes a positioning chip and a system-on-chip SoC chip, and further, the method includes: the positioning chip receives at least one satellite transmitted For the satellite signal, the difference correction value sent by the reference station is obtained through the SoC chip, and based on the carrier phase difference technology, the satellite signal and the difference correction value are used for positioning calculation.
  • the carrier phase difference technology is an RTK technology
  • the positioning chip is a GNSS positioning chip.
  • This method proposes a new RTK architecture based on the mobile phone GNSS positioning chip.
  • the terminal equipment can correct the rough positioning results, so that the positioning accuracy can reach the sub-meter level, and further improve the mobile phone positioning and navigation field. Performance to meet user needs.
  • the method further includes: the positioning chip performs synchronization detection on the satellite signal, and completes the synchronization After detection, a tracking loop is used to track the satellite signal to obtain carrier phase tracking information of the satellite signal.
  • the positioning calculation using the satellite signal and the differential correction amount includes: the positioning chip uses the carrier phase tracking information of the satellite signal and the differential correction amount to perform positioning calculation to obtain the position information of the terminal device.
  • the location information is accurate location information.
  • the carrier phase tracking information includes a carrier phase measurement value.
  • the received satellite signal includes a first satellite signal and a second satellite signal.
  • the first satellite signal is a traditional satellite signal
  • the second satellite signal is a modern satellite signal.
  • the first satellite signal is a traditional satellite signal
  • the foregoing steps After completing the synchronization detection, using a tracking loop to track the satellite signal to obtain carrier phase tracking information of the satellite signal includes:
  • the method further includes: the positioning chip determines whether the carrier phase has a cycle slip according to the first carrier phase measurement value, if not, , Then execute the aforementioned step of using the carrier phase tracking information of the satellite signal and the difference correction amount to perform positioning calculation.
  • the differential positioning principle is used to perform differential operations on the carrier phase to compensate for errors generated during rough position positioning. Then use the four-quadrant phase detector to track the satellite signal to expand the phase detection range to avoid being restricted by the two-quadrant phase detector tracking loop, resulting in a 180° phase ambiguity in the tracking phase, and the copied carrier phase will be wrong. Adjust the ground in the opposite direction, and finally solve the cycle slip and half cycle slip problem generated by the receiver during re-engraving through cycle slip and half cycle slip repair.
  • the above method further includes: after the positioning chip completes the synchronization detection, if there is no navigation message to assist tracking, use the second tracking loop to track the location
  • the first satellite signal is tracked, the second tracking loop includes a two-quadrant phase detector, and the first satellite signal outputs a second carrier phase measurement value after passing through the two-quadrant phase detector.
  • the method further includes:
  • the positioning chip determines whether a cycle slip occurs in the carrier phase according to the second carrier phase measurement value; if not, it queries the frame header of the navigation message on the demodulated first satellite signal to determine whether it is in phase with the actual navigation message frame header; if In phase, the aforementioned positioning chip uses the carrier phase tracking information of the satellite signal and the differential correction amount to perform positioning calculation.
  • the method further includes: if it is determined that the frame header of the actual navigation message is out of phase, the positioning chip performs phase compensation on the second carrier phase measurement value, For example, add 0.5 cycles of phase to compensate to obtain the third carrier phase measurement value; and the foregoing steps use the carrier phase tracking information and the differential correction amount of the satellite signal to perform positioning calculation, including: using the third carrier phase measurement value and The differential correction amount performs positioning calculation.
  • the carrier phase tracking information is recorded while the carrier phase tracking is performed, and the cycle slip problem generated by the carrier phase measurement value is solved by detecting whether the carrier phase has a cycle slip.
  • the cycle slip problem generated by the carrier phase measurement value is solved by detecting whether the carrier phase has a cycle slip.
  • 0.5 cycles of phase are added to compensate, which overcomes the 180° phase ambiguity caused by phase loss and solves the positioning chip re-engraving The half-cycle jump problem that occurs at the time.
  • the second satellite signal when the satellite signal transmitted by the at least one satellite includes a second satellite signal, the second satellite signal is a modern satellite signal.
  • tracking the satellite signal using a tracking loop to obtain carrier phase tracking information of the satellite signal includes: tracking the second satellite signal using a first tracking loop, and the first tracking The loop includes a four-quadrant phase detector, and the second satellite signal outputs a fourth carrier phase measurement value after passing through the four-quadrant phase detector.
  • the aforementioned positioning chip uses the carrier phase tracking information of the satellite signal and the difference correction amount to perform positioning calculation, it further includes: judging whether the carrier phase has a cycle slip according to the fourth carrier phase measurement value, and if not, execute the utilization The step of performing positioning calculation on the carrier phase tracking information of the satellite signal and the difference correction amount.
  • the positioning chip detects that the modern satellite signal has completed its position synchronization, it can directly track the signal with a four-quadrant phase detector to determine the carrier phase measurement value of the satellite signal.
  • the method further includes: the positioning chip performs demodulation processing on the received satellite signal Obtain rough position information of the terminal device; send the rough position information to a reference station, so that the reference station feeds back a difference correction amount according to the rough position information.
  • the differential correction quantity includes: the carrier phase measurement value of the common-view satellite signal, the common-view satellite signal is the satellite signal tracked by the terminal equipment and the reference station; the aforementioned positioning chip uses the carrier phase of the satellite signal to track
  • the step of performing positioning calculation on the information and the difference correction amount includes: the positioning chip uses the carrier phase measurement value of the common-view satellite signal and the first carrier phase measurement value to perform differential calculation to obtain the first round ambiguity; The rounding ambiguity determines the corrected carrier phase measurement value; and performs positioning calculation according to the corrected carrier phase measurement value to obtain the position information of the terminal device.
  • the location information is accurate location information.
  • This implementation method uses RTK technology to obtain the corrected carrier phase measurement value from the carrier phase measurement value sent by the reference station and the first carrier phase measurement value output by the tracking loop of the positioning chip, and use the corrected carrier phase measurement value Value for positioning calculation to improve the positioning accuracy of the terminal device.
  • the present application also provides a positioning device, such as a positioning chip
  • the positioning chip includes: a transceiver circuit and a processing circuit, and further, the transceiver circuit is used for receiving satellite signals transmitted by at least one satellite; the processing circuit is used for It obtains the difference correction value sent by the base station through the system-on-chip SoC chip, and uses the satellite signal and the difference correction value to perform positioning calculation based on the carrier phase difference technology.
  • the processing circuit is also used to implement the following function: after the transceiver circuit receives the satellite signal transmitted by at least one satellite, synchronize the satellite signal Detect, and after completing the synchronization detection, use a tracking loop to track the satellite signal to obtain carrier phase tracking information of the satellite signal; and use the carrier phase tracking information of the satellite signal and the differential correction amount to perform Positioning calculation to obtain the position information of the terminal device.
  • the processing circuit when the received satellite signal transmitted by at least one satellite includes the first satellite signal, the processing circuit is further configured to implement the following functions:
  • the first tracking loop After completing the synchronization detection, determine whether there is navigation message assisted tracking; if so, use the first tracking loop to track the first satellite signal, and the first tracking loop includes a four-quadrant phase detector After the first satellite signal passes through the four-quadrant phase detector, the first carrier phase measurement value is output. And, before the positioning calculation, determine whether a cycle slip occurs in the carrier phase according to the first carrier phase measurement value, and if not, use the carrier phase tracking information of the satellite signal and the difference correction amount to perform positioning calculation .
  • the processing circuit is further configured to implement the following function: after completing the synchronization detection, if there is no navigation message to assist tracking, use the first
  • the second tracking loop tracks the first satellite signal.
  • the second tracking loop includes a two-quadrant phase detector, and the first satellite signal outputs a second carrier phase measurement value after passing through the two-quadrant phase detector.
  • the processing circuit Before the processing circuit performs the positioning calculation, it is judged whether the carrier phase cycle slip occurs according to the second carrier phase measurement value; if not, the frame header of the navigation message on the demodulated first satellite signal is inquired and judged Whether it is in phase with the actual navigation message frame header; if it is in phase, the carrier phase tracking information of the satellite signal and the difference correction amount are used for positioning calculation.
  • the processing circuit is further configured to implement the following function: determine that when the frame header of the actual navigation message is out of phase, measure the phase of the second carrier The phase compensation is performed to obtain the third carrier phase measurement value. And, using the third carrier phase measurement value and the difference correction amount to perform positioning calculation.
  • the processing circuit when the received satellite signal transmitted by at least one satellite includes the second satellite signal, the processing circuit is further configured to implement the following function: A tracking loop tracks the second satellite signal, wherein the first tracking loop includes a four-quadrant phase detector, and the second satellite signal outputs a fourth carrier phase after passing through the four-quadrant phase detector Measurements.
  • the processing circuit is further configured to implement the following function: after receiving a satellite signal transmitted by at least one satellite, demodulate the satellite signal The rough position information of the terminal device is obtained through processing; and the rough position information is sent to a reference station, so that the reference station feeds back the difference correction amount according to the rough position information.
  • the differential correction quantity includes a carrier phase measurement value of a common-view satellite signal
  • the common-view satellite signal is a satellite signal tracked by the positioning chip and the reference station.
  • the processing circuit is also used to implement the following functions: use the carrier phase measurement value of the common-view satellite signal and the first carrier phase measurement value to do a differential calculation to obtain the first round ambiguity, and use the first round ambiguity to determine The corrected carrier phase measurement value; and performing positioning calculation according to the corrected carrier phase measurement value to obtain the position information of the terminal device.
  • the present application provides a tracking loop, including: a control circuit, a four-quadrant phase detector, a phase-locked loop, a loop filter, a voltage-controlled oscillator, and a first switch; wherein one end of the first switch is connected to The control circuit is connected, and the other end is connected to the four-quadrant phase detector; the four-quadrant phase detector is sequentially connected to the loop filter and the voltage-controlled oscillator; the control circuit is connected to When there is a navigation message to assist in tracking satellite signals, the first switch is controlled to be closed, and the first tracking loop including the four-quadrant phase detector, the loop filter and the voltage-controlled oscillator is used to compare all the signals. The satellite signal is tracked.
  • the tracking loop further includes: a two-quadrant phase detector and a second switch, and one end of the second switch is connected to the The control circuit is connected, and the other end is connected to the two-quadrant phase detector; the two-quadrant phase detector is sequentially connected to the loop filter and the voltage-controlled oscillator;
  • the second switch is controlled to be closed and the first switch is opened, and the two-quadrant phase detector, the loop filter, and the voltage-controlled oscillator are used.
  • the second tracking loop tracks the satellite signal.
  • this application also provides a terminal device, including: a positioning chip and an SoC chip, where the positioning chip and the SoC chip can be connected through an interface.
  • the SoC chip is used to receive the differential correction value sent by the reference station, and The differential correction value is sent to the positioning chip;
  • the positioning chip includes a processing circuit for performing positioning calculation based on the carrier phase difference technology using the satellite signal and the differential correction value.
  • the satellite signal can be obtained through a transceiver.
  • the satellite signal is a satellite signal transmitted by at least one satellite.
  • the processing circuit may be the processing circuit described in any one of the foregoing third aspect and the third aspect, and when the processing circuit executes the computer program stored in the memory, it may implement the foregoing first aspect and the first aspect.
  • the positioning method in any one of the implementation modes.
  • the present application also provides a computer-readable storage medium that stores instructions in the storage medium, so that when the instructions run on a computer or a processor, they can be used to execute the foregoing first aspect and each of the first aspects.
  • a computer-readable storage medium that stores instructions in the storage medium, so that when the instructions run on a computer or a processor, they can be used to execute the foregoing first aspect and each of the first aspects.
  • the present application also provides a computer program product.
  • the computer program product includes computer instructions. When the instructions are executed by a computer or a processor, the foregoing first aspect and the methods in the first aspect can be implemented.
  • FIG. 1 is a schematic diagram of a structure of positioning using a mobile phone chip provided by this application;
  • FIG. 2a is a schematic structural diagram of a GPS system provided by this application.
  • Figure 2b is a schematic diagram of a carrier phase and a ranging code phase provided by this application;
  • FIG. 2c is a schematic diagram of the working principle of a differential GPS provided by this application.
  • FIG. 2d is a schematic diagram of the working principle of a GPS receiver provided by this application.
  • Figure 2e is a schematic structural diagram of a phase-locked loop provided by this application.
  • Figure 2f is a structural diagram of a phase-locked loop including an I/Q demodulation mechanism provided by this application;
  • Fig. 2g is a phasor representation diagram of I and Q signals provided by this application.
  • FIG. 3 is a waveform diagram of a carrier signal modulation provided by this application.
  • Figure 4 is a schematic structural diagram of a positioning system provided by this application.
  • FIG. 5 is a flowchart of a positioning method provided by this application.
  • Fig. 6 is a flow chart of tracking and processing traditional satellite signals provided by this application.
  • FIG. 7 is a schematic structural diagram of a tracking loop provided by this application.
  • FIG. 8 is a waveform diagram of a carrier signal with hopping provided by this application.
  • FIG. 9 is a flow chart of tracking and processing modern satellite signals provided by this application.
  • FIG. 10 is a schematic structural diagram of a positioning chip provided by this application.
  • FIG. 11 is a schematic structural diagram of a terminal device provided by this application.
  • a GPS system including but not limited to GPS system, GLONASS system, Galileo satellite positioning system and China's Beidou satellite navigation system.
  • a GPS system is taken as an example.
  • a GPS system includes three parts: a space constellation part, a ground monitoring part, and a user equipment part.
  • each GPS satellite in the space constellation part transmits satellite signals to the ground;
  • the orbit information of the satellites is transmitted to the satellites, and the satellites rebroadcast the orbit information of these satellites on the signals they transmit;
  • the user equipment part receives and measures the signals of each satellite, and obtains the orbit information of the satellites from the signals, and then Determine the spatial location of the user receiver itself.
  • the space constellation part and the user equipment part are unidirectionally connected, that is, the GPS satellites unidirectionally transmit satellite signals and information to the user equipment part.
  • the space constellation part includes multiple satellites, such as working satellites and standby satellites.
  • the ground monitoring part includes the main control station, the injection station and the monitoring station, etc., which can be used to collect data, monitor the orbit of the satellite, calculate the satellite clock error, and maintain the GPS time reference.
  • the user equipment part can be understood as a GPS receiver (or GPS user receiver, "receiver” for short), which is mainly used to obtain the required measurement values and navigation information after data processing of the received satellite signals , And finally complete the user's positioning calculation and navigation tasks.
  • Pseudorange is the most basic distance measurement value of GPS receiver to satellite signal. Pseudorange can be defined as the difference between the signal reception time and the signal transmission time multiplied by the speed of light. Among them, the signal reception time is directly read from the GPS receiver clock, and the transmission time acquired by the GPS receiver from the signal must involve the measurement of the phase of the ranging code (C/A code) in the signal, specifically, It can be obtained by the code tracking loop of the GPS receiver. Among them, the C/A code (coarse acquisition) can be translated into a coarse acquisition code.
  • C/A code coarse acquisition code
  • the code length of a C/A code is about 300 meters. In fact, the code length is equal to 293m. Because the length of a C/A code is 1023 chips, its code rate is 1.023 ⁇ 106 chips/sec. The C/A code is approximately 300m long, so in the pseudorange measurement, the code tracking loop can only determine the code phase to a few meters granularity, which leads to the rough positioning accuracy of the pseudorange measurement.
  • the carrier signal has different phase values at different positions on its propagation path at the same time.
  • point S represents the zero-phase center point of the satellite signal transmitter, and point A on the carrier signal propagation path is half a wavelength away from point S (that is, 0.5 ⁇ ), and the carrier phase of point A at any time It will always be 180° behind the phase of point S. If a point on the propagation path is farther away from point S, and the carrier phase at this point lags behind.
  • the carrier phase of point A is 180° behind the phase of point S, so point A is half a wavelength away from point S.
  • the distance between point B and point S is no longer 0.5 ⁇ , but (N+0.5) ⁇ , where N is an unknown integer, and N represents an integer cycle wavelength, and ⁇ is a wavelength.
  • the distance between the satellite and the receiver can be obtained by calculating the phase difference between the carrier phase at the receiver R point and the carrier phase at the S point.
  • the receiver relies on its internal crystal oscillator to produce a replica of the carrier signal, and the measured carrier phase value ⁇ can be defined as the phase of the receiver replicating the carrier signal Phase with the satellite carrier signal received by the receiver The difference between.
  • each carrier phase and phase difference are measured in cycles (or wavelengths), one cycle corresponds to a phase change of 360° (that is, 2 ⁇ radians), and a carrier wavelength corresponds to a distance, that is, carrier phase measurement in cycles.
  • the value ⁇ is multiplied by the wavelength ⁇ and then converted into a carrier phase measurement value in units of distance. Because the phase of the carrier signal is copied It is exactly equal to the phase of the actual satellite carrier signal at the satellite end, so the carrier phase measurement value ⁇ is the phase change amount of the satellite carrier signal from the satellite end to the receiver end.
  • r is the geometric distance between the satellite and the receiver
  • N is an unknown integer.
  • the unknown integer N is usually called the weekly ambiguity.
  • is the measured value of the carrier phase
  • is the wavelength
  • I is the ionospheric delay
  • T is the tropospheric delay
  • N is the rounded ambiguity
  • c is the speed of light
  • ⁇ ⁇ is the noise
  • ⁇ t u is the clock error of the receiver clock
  • ⁇ t s is the clock error of the satellite clock.
  • the carrier phase difference measurement value is simply referred to as carrier phase.
  • the carrier tracking loop can basically be divided into two forms: frequency lock loop (FLL) and phase lock loop (PLL).
  • FLL frequency lock loop
  • PLL phase lock loop
  • the embodiment of the present application mainly relates to a PLL.
  • the PLL continuously adjusts the phase of the replicated carrier to make it consistent with the carrier phase of the received satellite signal, and then outputs the integrated Doppler measurement value.
  • the measured value of the carrier phase output by the receiver is generated by FLL or PLL, it will always contain an unknown ambiguity N.
  • the carrier tracking loop loses lock on the signal and then relocks, the periodic ambiguity in the measured value of the carrier phase output by it will usually jump.
  • the value of the periodic ambiguity is different before and after the signal loses lock. of.
  • the receiver has not declared that the signal is completely out of lock, the measured value of the carrier phase of its output may have a jump error of a whole cycle or a half cycle. In general, the phenomenon that the carrier phase measurement value undergoes cycle ambiguity jumps is called cycle loss.
  • Differential GPS is a widely used method that can effectively reduce various GPS measurement errors, and can be applied to differential GPS systems, such as wide area augmentation system (WAAS) and local area augmentation system. system, LAAS) and so on.
  • WAAS wide area augmentation system
  • LAAS local area augmentation system. system
  • the basic principle of differential GPS positioning is mainly based on the spatial correlation and time correlation of satellite clock error, satellite ephemeris error, ionospheric delay, and tropospheric delay.
  • the location of the receiver is called a reference station (or base station).
  • this receiver is also called a reference station receiver.
  • the position of the base station receiver (hereinafter referred to as the "base station") is accurately known in advance, and then the true geometric distance from the satellite to the base station can be accurately calculated. If the distance measurement value of the reference station to the satellite is compared with this true geometric distance, the difference between them is equal to the measurement error of the reference station to the satellite. Since other receivers in the same area have related or similar errors to the distance measurement value of the same satellite at the same time, as shown in Figure 2c, the reference station transmits the measurement error of its receiver to the rover (ie, the user Receiver), the rover can use the received measurement error of the reference station to correct the distance measurement value of the same satellite by the rover, thereby improving the measurement and positioning accuracy of the rover. This is the basic working principle of differential GPS.
  • the correction quantity broadcast by the reference station to reduce or even eliminate the GPS measurement error of the rover is called the differential correction quantity.
  • Real-time kinematic (RTK) positioning is a technology for real-time kinematic relative positioning based on carrier phase observations. The principle is to send out the satellite data observed by the GPS receiver on the reference station in real time through the data communication link (radio station), while the nearby GPS user receiver (also known as the rover) is observing the satellite at the same time. It also receives electrical signals from the reference station, and through real-time processing of the received signals, the three-dimensional coordinates of the mobile station are given, and its accuracy is estimated.
  • RTK Real-time kinematic
  • the rover uses RTK software to process the received data (satellite signal and the differential correction of the reference station) in real time, which mainly completes the solution of double-difference ambiguity, the solution of the baseline vector, and the conversion of coordinates.
  • the baseline length between the reference station and the rover in the RTK system should not exceed 10km, and the location of the reference station must be known.
  • Differential GPS positioning can be divided into static positioning and dynamic positioning.
  • dynamic positioning applications because the rover of the differential system will move relative to the reference station, it usually must quickly solve the ambiguity of the circumference and complete the positioning in real time, and its positioning accuracy can reach centimeter level.
  • the RTK positioning technology can complete the precise positioning of the rover in real time, and it can obtain positioning accuracy above the decimeter level with high positioning accuracy.
  • LAMBDA east square AMBiguity decorrelation adjustment
  • GPS receiver namely GPS user receiver, referred to as “receiver” in a differential GPS positioning system is a kind of rover, or a kind of terminal equipment, its internal working process is shown in Figure 2d, generally including radio frequency , RF) three functional modules: front-end processing, baseband digital signal processing (Digital Signal Processing, DSP), and positioning and navigation operations.
  • RF radio frequency
  • the RF front-end processing module receives all visible GPS satellite signals through the antenna, and after filtering and amplifying by the pre-filter and pre-amplifier, it is then mixed with the sine wave local oscillator signal generated by the local oscillator and down-converted into Intermediate frequency (IF) signals are finally converted into discrete-time digital intermediate frequency signals through an analog-to-digital (Analog to Digital, A/D) converter.
  • IF Intermediate frequency
  • the radio frequency front-end processing module is generally integrated in an application specific integrated circuit (ASIC) chip, which can be referred to as a radio frequency integrated circuit (RFIC).
  • ASIC application specific integrated circuit
  • RFIC radio frequency integrated circuit
  • the baseband digital signal processing module processes the digital intermediate frequency signal output by the RF front-end and copies the local carrier signal that is consistent with the received satellite signal to achieve the capture and tracking of the GPS signal, and obtain the carrier phase and other measured values from it. And demodulate the navigation message.
  • the GPS carrier signal is modulated with C/A code and navigation message data code, then correspondingly at the GPS signal receiving end.
  • the baseband digital signal processing module needs to thoroughly strip the carrier including the Doppler shift in the digital intermediate frequency signal through mixing, and pass the C/A code correlation operation Then, the C/A code in the signal is completely stripped, and the remaining signal is the navigation message data code modulated by bi-phase shift keying (BPSK).
  • BPSK bi-phase shift keying
  • the GPS receiver continuously adjusts its internal replicated carrier through the carrier tracking loop (carrier loop), so that the replicated carrier frequency (or phase) is consistent with the carrier frequency (or phase) in the digital intermediate frequency signal, and then Down-conversion mixing realizes carrier stripping; on the other hand, the receiver continuously adjusts the C/A code copied inside through the code tracking loop (code loop), which is to copy the phase of the C/A code and the digital intermediate frequency signal The phase of the C/A code is kept the same, and then the C/A code is stripped through the code correlation operation.
  • PLL Phase locked loop
  • the carrier loop In order to completely strip the carrier in the digital intermediate frequency input signal and make it down-converted from the intermediate frequency to the baseband, the carrier loop must include a mixer, and the carrier copied by it must be consistent with the input carrier. If the carrier loop detects the phase difference between the replicated carrier and the input carrier, and then adjusts the phase of the replicated carrier accordingly to keep the phases of the two consistent, then the implementation of this carrier loop becomes a phase-locked loop.
  • Phase-locked loop is abbreviated as phase-locked loop, which is a carrier loop that aims to lock the phase of the input carrier signal. It is an electronic control loop that generates and outputs periodic signals. It constantly adjusts the phase of its output signal to keep the phase between the output signal and the input signal consistent at all times.
  • the phase-locked loop is running in the pull-in state, and the phase-locked loop at this time shows its transient characteristics. If the transient process does not converge or the interference is too intense and the phase-locked loop fails to enter the locked state, it is said that the phase-locked loop is temporarily out of lock.
  • a typical phase-locked loop is mainly composed of three parts: a phase discriminator (or called a phase discriminator), a loop filter, and a voltage controlled oscillator (VCO).
  • a phase discriminator or called a phase discriminator
  • VCO voltage controlled oscillator
  • the input signal u i (t) of the phase-locked loop and the output signal u o (t) generated by the voltage controlled oscillator are respectively expressed as:
  • the angular frequency ⁇ i and the initial phase ⁇ i of the input signal, and the angular frequency ⁇ o and the initial phase ⁇ o of the output signal are all a function of time.
  • the phase detector used to discriminate the phase difference between the input signal u i (t) and the output signal u o (t) can be simply regarded as a multiplier, then when u i (t) and u o (t) are discriminated After the multiplication of the phaser, the output signal u d (t) of the phase detection result is equal to
  • the gain K d of the phase detector is
  • the angular frequency ⁇ o of its output signal is very close to the angular frequency ⁇ i of the input signal, that is, ⁇ i ⁇ o , so the first term on the right side of the last equal sign in equation (6) It is the high-frequency signal component whose angular frequency is about twice the ⁇ i , and the second term is the low-frequency (or DC) signal component in the phase discrimination result u d (t).
  • the loop filter is a low-pass filter used to reduce the noise in the loop.
  • the output signal u d (t) of the phase detector passes through an ideal low-pass filter, its high-frequency signal components and noise Is filtered out, so the output signal u f (t) of the filter is equal to the low-frequency signal component in u d (t).
  • the coefficient K f is the filter gain
  • the GPS receiver phase-locked loop usually uses In-phase/Quadrature (I/Q) demodulation method to help complete the carrier stripping, phase discrimination and data of the input signal. Demodulation and other work.
  • I/Q In-phase/Quadrature
  • a phase-locked loop including an I/Q demodulation mechanism in which the continuous time signal u i (t) input to the system can be expressed as,
  • D(t) represents the data code modulated on the carrier.
  • the difference between equation (8) and equation (4) is that the signal amplitude of the former is a constant, and the amplitude of the latter is Multiply by the data level D(t) that contains the information and the value is ⁇ 1, where the sign of D(t) changes with the jump of the data code, n represents the mean value is 0, the variance For Gaussian white noise.
  • the phase-locked loop shown in Figure 2f replicates two sine and cosine carrier signals with a phase difference of 90°, and multiplies them with the input signal to realize down-conversion (or carrier stripping) of the input signal.
  • the loop branch that mixes the input signal with the copy signal of the sine carrier is called the in-phase branch (abbreviated as "I branch")
  • the other loop branch that mixes the copy signal of the cosine carrier is called the sine branch.
  • Jiaozhilu (referred to as "Q-branch").
  • One function of the I/Q demodulation method is to demodulate the data code D(t) in the input signal u i (t).
  • phase angle of the phasor r p (t) is equal to the phase difference between the input signal and the copied signal ⁇ c (t), that is
  • the angle value returned by the two-quadrant arctangent function arctan is between - ⁇ /2 and + ⁇ /2.
  • I p (t) and Q p (t) are distributed as the coordinate values on the X-axis and Y-axis, then from the coordinate origin O to the data point (I p (t), Q p ( The directional connection of t)) is exactly the phasor r p (t), and the angle from the X axis to the phasor r p (t) is equal to the phase difference ⁇ c (t).
  • the technical solutions of the embodiments of the present application are mainly used to solve two technical problems.
  • the RTK carrier phase difference technology is used to improve the positioning accuracy of the mobile phone and meet the user's high-precision requirements.
  • it is based on the satellite signal tracking information on the chip side to detect cycle slips and half cycle slips, realize half cycle slip repair, improve the stability of carrier phase use and related performance, so that RTK carrier phase differential technology can be applied stably on mobile phones .
  • the satellite signal transmitted by the satellite contains an input carrier, and the receiver demodulates it after receiving it to obtain a navigation message.
  • a sequence of random numbers composed of -1.
  • the first half is the carrier waveform of the +1 sequence transmission
  • the second half is the carrier waveform of the real -1 sequence transmission
  • the thick lined part of the waveform in the second half of Fig. 3 is the imaginary modulation of the carrier waveform of the +1 sequence transmission.
  • the phase difference between the first half and the second half of the sequence is 180°, which indicates that the carrier phase is reversed during modulation.
  • the modulation process includes the basic communication principle BPSK modulation. The specific BPSK modulation process is not described in detail in this embodiment. .
  • the carrier waveform of the +1 sequence can be expressed as the local carrier 1 (Local carrier 1), which is the carrier waveform copied on the receiver chip side.
  • the receiver tracks the carrier and locks to the correct (without 180° phase ambiguity) carrier.
  • the carrier waveform of the -1 sequence when the local carrier 2 is tracking the carrier, its copy waveform is the third line of carrier waveform shown in Figure 3. Because the navigation message of the -1 sequence needs to be internally modulated by the receiver , So there is a 180° phase ambiguity, which in turn leads to a half cycle jump (180° phase jump) of the carrier phase.
  • the local receiver uses a two-quadrant phase detector to discriminate the phase
  • the two-quadrant phase detector has a limited phase discrimination range, it cannot discriminate the bit transitions of +1 and -1 sequence, so it will Tracking according to the waveform of the input carrier; for example, when tracking the carrier of the second half of the input carrier, removing the influence of the navigation message, it will be modulated according to the carrier waveform of the hypothetical +1 sequence (thick line), but the actual tracking of the receiver It is the carrier waveform (thin line) of the -1 sequence, and the phase ambiguity of the difference between the two is 180°, which further affects the accuracy of positioning.
  • This embodiment provides a positioning method that uses carrier phase differential technology, or RTK technology, to perform RTK positioning calculations through satellite carrier phase measurement values and differential corrections, thereby improving the positioning accuracy of terminal equipment.
  • carrier phase differential technology or RTK technology
  • the GPS system includes multiple GPS satellites, reference stations and rover stations.
  • the number of GPS satellites currently used for positioning is not less than 3, such as satellite 1, satellite 2, and satellite 3.
  • the reference station is a reference station receiver in the aforementioned differential positioning system, and the position of the reference station is fixed and A known.
  • the rover is a device to be located, and the rover is also a type of terminal device, which is located near the reference station and its location is not fixed.
  • the terminal equipment may refer to user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, mobile equipment, wireless communication equipment, user agent or user device, etc.
  • the terminal device may also be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a personal digital assistant (PDA), a handheld device with wireless communication functions, such as a mobile phone, Computing equipment, in-vehicle equipment, wearable equipment, terminal equipment in the future 5G network or terminal equipment in the future evolved public land mobile network (PLMN), etc.
  • UE user equipment
  • PDA personal digital assistant
  • PLMN public land mobile network
  • the terminal device includes: a positioning chip and a system on chip (System on Chip, SoC) chip, and the positioning chip and the SoC chip are connected through at least one interface.
  • SoC System on Chip
  • the positioning chip is a global navigation satellite system (GNSS) positioning chip.
  • GNSS global navigation satellite system
  • the GNSS positioning chip has position positioning and calculation functions, where the GNSS may include GPS, global navigation satellite system (GLONASS), Beidou navigation satellite system (BDS), and the like.
  • GLONASS global navigation satellite system
  • BDS Beidou navigation satellite system
  • the method can perform positioning for any of the foregoing terminal devices, and the terminal device includes a positioning chip and an SoC chip. Specifically, the method includes:
  • the positioning chip receives satellite signals transmitted by at least one satellite.
  • the satellite signal transmitted by the satellite can be divided into three levels in structure: carrier, pseudo code and data code.
  • the pseudo code and the data code are first modulated and attached to a carrier in the form of a sine wave, and then the satellite broadcasts the modulated carrier signal.
  • each GPS satellite can use two L-band frequencies (ie, L1 and L2) to transmit carrier wireless signals.
  • the satellite signal may include a first satellite signal and a second satellite signal according to frequency division.
  • the first satellite signal is a traditional satellite signal
  • the second satellite signal is a modern satellite signal.
  • the traditional satellite signals generally include GPSL1C/A, Beidou B1I, QZSSL1CA and other satellite signals
  • GPSL1C/A represents a satellite signal with a nominal carrier frequency of 1575.42 MHz (megahertz) in the GPS system.
  • the modern satellite signals generally include satellite signals such as GPSL5, GALE5, QZSSL5, etc.
  • the GPSL5C represents a satellite signal with a nominal carrier frequency of 1176.45 MHz in the GPS BLOCK III system. It should be understood that the satellite signal may also include signals of other frequencies.
  • the method includes:
  • the positioning chip demodulates the satellite signal to obtain first position information of the terminal device, where the first position information is rough position information of the terminal device.
  • the positioning chip sends the rough position information to the reference station.
  • the reference station receives the rough position information, and sends a differential correction amount to the terminal device.
  • the positioning chip performs PVT calculation based on the information carried by the satellite signal, the measured pseudo-range observations, Doppler observations, and ephemeris information, and then obtains the results through the least squares algorithm (LSQ). Describe rough location information.
  • a specific demodulation process includes that the positioning chip performs carrier demodulation and pseudo-code despreading on the received satellite signal to obtain a data code, and then compiles the data code into a navigation message according to the format of the navigation message.
  • the navigation message contains important information for positioning, such as time, satellite orbit, and ionospheric delay. Then the positioning chip completes the rough position positioning according to the navigation message, and obtains the rough position information.
  • step 101 it also includes:
  • the positioning chip performs synchronization detection on the satellite signal, and uses the tracking loop to track the satellite signal after completing the synchronization detection to obtain carrier phase tracking information of the satellite signal.
  • the carrier phase tracking information includes Carrier phase measurement value.
  • the positioning chip obtains the differential correction value sent by the base station through the SoC chip.
  • the SoC chip is coupled with the positioning chip, and the SoC chip is connected with a communication module.
  • the communication module can receive the differential correction amount from the reference station. After the SoC chip obtains the differential correction amount received by the communication module Transfer to the positioning chip.
  • the communication module may be a short-range communication module, and the SoC chip may communicate with other communication devices through the short-range communication module to obtain the differential correction value forwarded by other communication devices; or, the communication module may be a transceiver,
  • the SoC chip includes a baseband processor coupled to the transceiver, and the baseband processor accesses a mobile communication network through the transceiver, and then obtains the differential correction value from the network.
  • the reference station is generally an unattended satellite monitoring device, which can access the communication network and transmit the monitored data through the communication network.
  • the differential correction value includes a carrier phase measurement value of a common-view satellite signal, which is a satellite signal tracked by the terminal device and the reference station together, and comes from the same GPS satellite.
  • the differential correction value also includes the pseudo-range observation value, signal-to-noise ratio, ionospheric delay, tropospheric delay and other parameters of the common-view satellite.
  • the method before acquiring the differential correction value sent by the reference station, the method further includes: determining the reference station, so as to ensure that the reference station is located near the terminal device, so as to provide the terminal device with an accurate differential correction value.
  • the reference station may be determined by rough location information sent by the terminal device.
  • the terminal device sends the rough location information to a master control station, and the master control station selects a reference station closer to the terminal device according to the rough location information, and the reference station may be a virtual The reference station then sends the difference correction value measured by the virtual reference station to the terminal device.
  • the positioning chip is based on the carrier phase difference technology and uses the satellite signal and the difference correction amount to perform positioning calculation.
  • step 103 specifically includes: the positioning chip uses the carrier phase tracking information of the satellite signal and the differential correction amount to perform positioning calculation to obtain the position information of the terminal device.
  • the positioning chip determines a common-view satellite, which is a GPS satellite that the reference station and the terminal device track together, that is, the satellite signal tracked by the terminal device and the differential correction value sent by the reference station have the same satellite number. Then, the positioning chip obtains the relationship between the carrier phase measurement value and the round ambiguity through double-difference calculation, and finally calculates the round ambiguity N according to the relationship.
  • a common-view satellite which is a GPS satellite that the reference station and the terminal device track together, that is, the satellite signal tracked by the terminal device and the differential correction value sent by the reference station have the same satellite number.
  • the difference modes include single difference, double difference, and triple difference.
  • double-difference is taken as an example, and each double-difference measurement value relates to the measurement value of two devices on two satellites at the same time. For example, assuming that the two devices in the positioning system are the terminal device j and the reference station i, and the two common-view satellites are satellite p and satellite q, then the terminal device j obtains the carrier phase measurement through double difference calculation The relationship of the value is as follows:
  • base station i, terminal equipment j, satellite p and satellite q base station i, terminal equipment j, satellite p and satellite q
  • is the carrier wavelength
  • r i p is the geometric distance between base station i and satellite p
  • r i q is the geometric distance between the reference station i and the satellite q
  • I is the ionospheric delay
  • T is the tropospheric delay
  • is the noise
  • c is the speed of light
  • ⁇ t i is the clock error of the terminal
  • the differential correction value in the foregoing step 102 includes: the carrier phase measurement value of the reference station i relative to the satellite p And the measured value of the carrier phase of the base station i relative to the satellite q And ionospheric delay I and tropospheric delay T, etc.
  • a fixed carrier ambiguity can be solved Then get the corrected carrier phase measurement value And use the corrected carrier phase measurement value Perform positioning calculation to obtain the second location information of the terminal device.
  • the second location information is accurate location information of the terminal device.
  • This method proposes a new RTK architecture based on the mobile phone GNSS positioning chip.
  • the terminal equipment can correct the rough positioning results, so that the positioning accuracy can reach the sub-meter level, and further improve the mobile phone positioning and navigation field. Performance to meet user needs.
  • the method achieves lane-level navigation and positioning; for the navigation and positioning of open elevated scenes, lane changes, and lane changes at high-speed intersections, precise positioning is achieved, which meets the application requirements of vehicle navigation, thereby effectively reducing the cost of vehicle navigation applications (such as car navigation system, ETC charging system), increase related applications in the field of mobile phone positioning and navigation, and enhance market competitiveness.
  • vehicle navigation applications Such as car navigation system, ETC charging system
  • the technical solution of this embodiment can also detect cycle slips and half cycle slips that occur during carrier phase tracking, and compensate for the phases of the half cycle slips, thereby improving positioning accuracy.
  • step 101' of the foregoing embodiment the positioning chip performs synchronization detection on the satellite signal, and after completing the synchronization detection, uses the tracking loop to track the satellite signal to obtain the carrier phase tracking of the satellite signal Information, the carrier phase tracking information includes a carrier phase measurement value.
  • step 101' in the foregoing embodiment will be described in detail below.
  • step 101' specifically includes:
  • the positioning chip performs synchronization detection on the traditional satellite signal, and detects whether it has completed bit synchronization.
  • the bit synchronization is also called bit synchronization. It is the receiving channel determining the position of the current satellite signal in a certain data bit according to a certain algorithm, or in other words, determining the starting edge position of the bit in the received satellite signal. Furthermore, the positioning chip can use multiple channels to receive the traditional satellite signals transmitted by multiple GPS satellites, capture and track each satellite signal, firstly need to complete the position synchronization of the satellite signal, that is, find from the received satellite signal The edge of the data bit, and then the frame synchronization is realized, and the frame synchronization refers to finding the starting edge of the subframe from the satellite signal.
  • the positioning chip can use the histogram to detect whether the bit synchronization is completed.
  • the positioning chip also performs positioning calculations on the traditional satellite signals to obtain rough position information of the terminal device.
  • the process of obtaining and sending the rough position information by the positioning chip is the same as steps 1011 to steps in the foregoing embodiment. 1013 is the same and will not be repeated here.
  • the positioning chip performs positioning and tracking of traditional satellite signals, which specifically includes:
  • the phase-locked loop When the tracking loop is positioning and tracking the traditional satellite signal, the phase-locked loop outputs the Doppler frequency shift, integrated Doppler and carrier phase measurement values according to the state of the carrier signal it replicates, and the code tracking loop
  • the copied C/A code signal state outputs the code phase and pseudorange measurement value, and the carrier loop discriminator can additionally adjust the navigation message data bits on the satellite signal.
  • the positioning chip includes a tracking loop
  • the tracking loop includes a phase-locked loop.
  • the structure of the phase-locked loop may be similar to the structure shown in FIG. 2e, including a phase detector, a loop filter, and a voltage Controlled oscillator, etc. Or, as shown in FIG. 7, it includes components such as an in-phase branch, a quadrature branch, a control circuit, a first switch K1, a second switch K2, a four-quadrant phase detector, and a two-quadrant phase detector.
  • the two-quadrant phase detector is a costas phase locked loop.
  • costas phase-locked loops refer to those phase-locked loops that are insensitive to 180° carrier phase changes caused by data bit jumps that can work with data code modulated carrier signals by selecting appropriate phase detectors.
  • the difference between costas phase-locked loop and four-quadrant phase detector is that the phase-detection range is different.
  • the costas phase-locked loop mainly uses the two-quadrant arctangent function method for phase discrimination. It is a two-quadrant phase detector with a phase discrimination range of -90° to +90°.
  • the phase discrimination range of the four-quadrant phase detector is -180° to +180°.
  • phase interval of -90° to +90°, or -180° to +180° is called the pull-in range of the phase detector.
  • phase difference between the replica carrier and the received carrier is close to zero.
  • the BPSK modulation mechanism in the satellite signal can make the carrier phase of the received signal jump at the data bit level, for example, jump from +1 Change value -1, or jump value +1 from -1, a 180° phase jump occurs.
  • a phase detection result of less than 0° will be output.
  • the phase of the replicated carrier of the loop will be adjusted in the opposite direction by mistake, resulting in a tracking loop.
  • the signal is out of lock, so in order to avoid being restricted by the pull-in range of the two-quadrant phase detector, a four-quadrant phase detector with a larger pull-in range will be used to discriminate the phase.
  • FIG 7 is a circuit diagram of a tracking loop, including in-phase branch, quadrature branch, four-quadrant phase detector, two-quadrant phase detector, first switch K1, second switch K2, control circuit, and loop Filters and voltage-controlled oscillators, among which K1 is connected with a four-quadrant phase detector, and K2 is connected with a two-quadrant phase detector.
  • the control circuit is used to control the closing and opening of K2 of K1. Specifically, when the control circuit controls K1 to close and K2 to open, the four-quadrant phase detector, loop filter, and voltage-controlled oscillator form the first track Loop. When K1 is open and K2 is closed, a second tracking loop is formed through the two-quadrant phase detector, the loop filter and the voltage-controlled oscillator.
  • step 2031 when a message assisted tracking is caused, step 2032 is executed, and the positioning chip uses the first tracking loop to track the traditional satellite signal, and outputs the first carrier phase measurement value.
  • step 2033 is executed, and the positioning chip uses the second tracking loop to track the traditional satellite signal, and outputs the second carrier phase measurement value.
  • the positioning chip records carrier phase tracking information.
  • the carrier phase tracking information includes the first carrier phase measurement value or the second carrier phase measurement value, and parameters such as the Doppler frequency shift and integrated Doppler of the carrier signal locally replicated by the positioning chip.
  • the carrier phase tracking information also includes other information, such as whether the tracking of the carrier phase is continuity, whether there is loss of lock, etc., so as to be used for the subsequent determination of the cycle slip of the carrier phase.
  • the positioning chip records the change of the carrier phase in real time, so as to subsequently detect whether the phase has cycle slip.
  • the four-quadrant phase detector is used to expand the pull-in range, so as to avoid the 180° phase ambiguity generated when the digital bit jumps.
  • pseudo-random sequence is a string of data code sequences, such as
  • the first row in Figure 8 represents the input carrier signal, and the second row represents the modulated pseudo-random sequence.
  • the modulated pseudo-random sequence needs to be multiplied by the carrier signal. In this way, a pseudo-random sequence that is the same as the input carrier signal and eliminated is obtained.
  • the original data code sequence is changed to a sequence of all 1s.
  • phase discriminator If a two-quadrant phase discriminator is used for phase discrimination, a phase ambiguity of 180° will be generated; if a four-quadrant phase discriminator is used for phase discrimination, because the four-quadrant phase discriminator has a large pull-in range, it can be compared with the input carrier The same carrier signal avoids the 180° phase ambiguity when the two-quadrant phase detector is used for phase discrimination.
  • the method further includes:
  • the positioning chip determines whether a cycle slip occurs in the phase of the tracked carrier.
  • a possible implementation is that, for the first carrier phase measurement value output after passing through the first tracking loop, if the first carrier phase in the carrier phase tracking information has a cycle slip, the tracking fails, To end the process, the satellite signal needs to be reacquired. If the cycle slip phenomenon does not occur, that is, the judgment result is "No", then step 207 is executed.
  • step 205 is executed.
  • 205 Query the frame header of the navigation message on the demodulated satellite signal to determine whether it is in phase with the actual navigation message frame header. That is, it detects whether the carrier phase has a half cycle slip.
  • step 207 is executed. If not, that is, the frame header of the actual navigation message is reversed, it indicates that a half cycle jump has occurred, and step 206 is executed.
  • phase compensation on the second carrier phase measurement value is performed to obtain the third carrier phase measurement value.
  • the phase of the second carrier phase measurement value is added to the phase of 0.5 cycles in order to repair the 180° phase ambiguity caused by the half cycle slip.
  • Step 207 Use the carrier phase tracking information and the difference correction amount to perform positioning calculations to obtain second location information of the terminal device.
  • This step is the same as "Step 103" in the foregoing embodiment, and specifically includes:
  • the difference correction quantity is the measurement quantity sent by the reference station in the foregoing step 1013, including information such as carrier phase measurement value, ionospheric delay, and tropospheric delay.
  • the carrier phase tracking information includes a first carrier phase measurement value, a second carrier phase measurement value, or a third carrier phase measurement value.
  • the positioning chip obtains the corrected carrier phase measurement value according to the difference correction value and the first carrier phase measurement value, and uses the corrected carrier phase measurement value to perform positioning calculation to obtain the The second location information. or,
  • the positioning chip obtains the corrected carrier phase measurement value according to the differential correction value and the second carrier phase measurement value, and uses the corrected carrier phase measurement value to perform positioning calculation to obtain the The second location information. or,
  • the positioning chip obtains the corrected carrier phase measurement value according to the difference correction value and the third carrier phase measurement value, and uses the corrected carrier phase measurement value to perform positioning calculation to obtain the The second location information.
  • step 103 for the process of obtaining the second position information by using the difference correction value and the carrier phase measurement value, refer to the foregoing step 103, which will not be repeated here. It should be noted that this embodiment does not limit the aforementioned carrier phase tracking process, that is, step 203 and the process of obtaining rough position information through demodulation, that is, the sequence of steps 1011 to 1013.
  • This embodiment provides a method for tracking and processing traditional satellite signals.
  • the positioning chip detects that the traditional satellite signal has navigation message assisted tracking, it uses the carrier tracking loop of the four-quadrant phase detector to track the carrier signal. , Thus avoiding the use of the tracking loop of the two-quadrant phase detector to adjust the phase of the replica carrier in the opposite direction, which will eventually cause the tracking loop to lose lock on the signal.
  • the carrier phase tracking information is recorded, and the cycle slip problem generated by the carrier phase measurement value is solved by detecting whether the carrier phase has cycle slips.
  • the cycle slip problem generated by the carrier phase measurement value is solved by detecting whether the carrier phase has cycle slips.
  • 0.5 cycles of phase are added to compensate, which overcomes the 180° phase ambiguity caused by phase loss and solves the positioning chip re-engraving The half-cycle jump problem that occurs at the time.
  • the satellite signal received by the receiving chip is a second satellite signal, that is, a modern satellite signal, such as GPSL5, GALE1, GALE5, QZSSL5 or BD1C, etc., most of these signals are around the 1176.42 MHz frequency band.
  • the modern satellite signal includes a data channel and a pilot channel.
  • the positioning chip detects whether the position synchronization of the modern satellite signal is completed.
  • the specific process is the same as step 201 in the foregoing embodiment, and will not be repeated here.
  • the positioning chip uses a four-quadrant phase detector to track a modern satellite signal. After the modern satellite signal is processed by the first tracking loop containing the four-quadrant phase detector, it outputs carrier phase tracking information.
  • the phase tracking information includes the fourth carrier phase measurement value.
  • the positioning chip determines whether a cycle slip occurs in the phase of the tracked carrier.
  • step 305 is executed.
  • the positioning chip uses the differential correction value and the fourth carrier phase measurement value for positioning calculation to obtain the second position information of the terminal device.
  • the difference correction value is the difference correction value sent by the reference station in steps 1011 to 1013 of the foregoing embodiment.
  • the processing procedure of step 305 is also the same as that of step 207 of the foregoing embodiment, so it will not be described again.
  • the positioning chip while tracking the carrier phase, the positioning chip also records carrier phase tracking information to filter out the cycle slip signal, thereby solving the cycle slip problem that occurs when the carrier phase measurement value is used for differential positioning.
  • the pilot channel processing, four-quadrant phase detector and phase-locked loop are used for tracking during tracking, so as to avoid the phenomenon of half-cycle jumps in the carrier phase.
  • FIG. 10 is a schematic structural diagram of a positioning device provided by an embodiment of the application.
  • the device may be a terminal device, or may also be a positioning chip located in the terminal device.
  • the device can execute all the steps in a positioning method in the foregoing embodiment.
  • the device may include: a transceiver circuit 41, a processing circuit 42, and a storage unit 43.
  • the device may also include other units or modules. This application does not restrict this.
  • the transceiver circuit 41 is used to receive the satellite signal transmitted by at least one satellite; the processing circuit 42 is used to obtain the differential correction value sent by the reference station through the system-on-chip SoC chip, and based on the carrier phase difference technology, use the satellite signal and the satellite signal.
  • the difference correction amount is used for positioning calculation.
  • the processing circuit 42 is further configured to perform synchronization detection on the satellite signal after the positioning chip receives the satellite signal transmitted by at least one satellite, and After completing the synchronization detection, the satellite signal is tracked by using a tracking loop to obtain carrier phase tracking information of the satellite signal.
  • the processing circuit 42 specifically uses the carrier phase tracking information of the satellite signal and the difference correction amount to perform positioning calculations to obtain the position information of the terminal device.
  • the satellite signal transmitted by the at least one satellite includes the first satellite signal
  • the processing circuit 42 is specifically configured to determine whether there is navigation message assisted tracking after completing the synchronization detection; if so, use the first tracking loop
  • the circuit tracks the first satellite signal
  • the first tracking loop includes a four-quadrant phase detector
  • the first satellite signal outputs a first carrier phase measurement value after passing through the four-quadrant phase detector.
  • the processing circuit 42 is further configured to determine whether a cycle slip occurs in the carrier phase according to the first carrier phase measurement value before the positioning calculation is performed, and if not, use the carrier phase tracking information of the satellite signal and the carrier phase tracking information
  • the differential correction quantity is used for positioning calculation.
  • the processing circuit 42 is further configured to, after completing the synchronization detection, if there is no navigation message to assist tracking, use the second tracking loop to perform The first satellite signal is tracked, the second tracking loop includes a two-quadrant phase detector, and the first satellite signal outputs a second carrier phase measurement value after passing through the two-quadrant phase detector.
  • the two-quadrant phase detector is a costas phase locked loop.
  • the processing circuit 42 is further configured to determine whether a cycle slip occurs in the carrier phase according to the measured value of the second carrier phase before the positioning calculation;
  • the frame header is inquired to determine whether it is in phase with the actual navigation message frame header; if it is in phase, the carrier phase tracking information of the satellite signal and the difference correction amount are used for positioning calculation.
  • the processing circuit 42 is further configured to determine that the second carrier phase measurement value is phase-compensated when it is out of phase with the actual navigation message frame header. , Get the third carrier phase measurement value.
  • the processing circuit 42 is specifically configured to perform positioning calculation using the third carrier phase measurement value and the difference correction amount.
  • the processing circuit 42 is specifically configured to use the first tracking loop to track the second satellite signal, and the first tracking loop
  • the path includes a four-quadrant phase detector, and the second satellite signal outputs a fourth carrier phase measurement value after passing through the four-quadrant phase detector.
  • the processing circuit 42 is further configured to determine whether a cycle slip occurs in the carrier phase according to the fourth carrier phase measurement value before the positioning calculation is performed, and if not, use the carrier phase tracking information of the satellite signal and the carrier phase tracking information The differential correction quantity is used for positioning calculation.
  • the processing circuit 42 is further configured to perform demodulation processing on the satellite signal transmitted by at least one satellite to obtain a rough image of the terminal device after receiving the satellite signal transmitted by the at least one satellite.
  • Position information the transceiver circuit 41 is also used to send the rough position information to the reference station, so that the reference station feeds back the difference correction amount according to the rough position information.
  • the differential correction value includes a carrier phase measurement value of a common-view satellite signal
  • the common-view satellite signal is a satellite signal tracked by the positioning chip and the reference station.
  • the processing circuit 42 is specifically configured to use the carrier phase measurement value of the common-view satellite signal and the first carrier phase measurement value to perform a differential calculation to obtain the first round ambiguity, and use the first round ambiguity to determine the corrected ambiguity
  • the measured value of the carrier phase; and the positioning calculation is performed according to the measured value of the corrected carrier phase to obtain the position information of the terminal device.
  • this embodiment provides a terminal device, as shown in FIG. 11, including: a communication module 110, an SoC chip 120, and a positioning chip 130, and the SoC chip 120 and the positioning chip 130 pass The communication interface is connected, and the communication module 110 and the SoC chip 120 can be connected through a communication bus.
  • the communication module 110 is used to establish a communication channel, so that the terminal device can connect to the network through the communication channel, so as to realize the communication transmission between the terminal device and other devices.
  • the communication module 110 may be a module that completes the function of sending and receiving.
  • it may include communication modules such as a wireless local area network (WLAN) module, a Bluetooth module, a baseband (baseband) module, and a radio frequency (RF) circuit corresponding to the communication device for performing wireless local area network Network communication, Bluetooth communication, infrared communication and/or cellular communication system communication, such as wideband code division multiple access (WCDMA) and/or high speed downlink packet access (HSDPA) .
  • WCDMA wideband code division multiple access
  • HSDPA high speed downlink packet access
  • the communication module 110 supports direct memory access (direct memory access).
  • the communication module 110 includes various transceiver modules, such as a transceiver and an antenna, such as antenna 1, etc.
  • the communication module 110 may also include a preamplifier, a down converter, an A/D converter, and a baseband processor. And other parts.
  • various transceiver modules in the communication module 110 generally appear in the form of integrated circuits, and can be selectively combined, without including all transceiver modules and corresponding antenna groups.
  • the communication module 110 may also include a radio frequency chip and a corresponding antenna to provide a communication function in a cellular communication system so that it can be connected to a communication network.
  • the communication module 110 is used to receive the differential correction value sent by the base station, and transmit it to the SoC chip 120.
  • the positioning chip 130 is used to implement functions such as tracking processing of satellite signals and positioning calculations.
  • the positioning chip 130 includes a transceiver 1301, a digital signal processor (DSP) 1302, a microprocessor 1303, a memory 1304, an interface 1305, and so on.
  • DSP digital signal processor
  • the transceiver 1301 can be used to receive satellite signals transmitted by at least one GPS satellite, such as traditional satellite signals and modern satellite signals.
  • the transceiver 1301 includes at least one antenna, such as antenna 2, and receives satellite signals through the antenna 2, filtered and amplified by the pre-filter and pre-amplifier, and then combined with the sine wave local oscillator signal generated by the local oscillator It is mixed and down-converted into an intermediate frequency (IF) signal, and finally the intermediate frequency signal is converted into a discrete-time digital intermediate frequency signal through an analog-to-digital (Analog to Digital, A/D) converter.
  • IF intermediate frequency
  • the DSP 1302 may include components such as a digital signal processor and a tracking loop.
  • the digital signal processor uses the digital intermediate frequency signal output by the radio frequency front end (RF) to replicate the local carrier and the local pseudo code signal consistent with the received satellite signal, thereby realizing the acquisition and tracking of the GPS satellite signal.
  • RF radio frequency front end
  • the GPS carrier signal is modulated with C/A code and navigation message data code.
  • the baseband The digital signal processor needs to completely strip the carrier including the Doppler shift in the digital intermediate frequency signal through mixing, and completely strip the C/A code in the signal through the C/A code correlation operation, and the remaining signal is Navigation message data code modulated by BPSK.
  • the tracking loop is used to track the GPS signal and continuously modulate the internally replicated carrier so that the phase of the replicated carrier is consistent with the phase of the carrier in the digital intermediate frequency signal, thereby achieving carrier stripping.
  • the tracking loop includes: a control circuit, a four-quadrant phase detector, a phase-locked loop, a loop filter, a voltage-controlled oscillator, and a first switch; wherein, one end of the first switch is connected to the control The circuit is connected, and the other end is connected to the four-quadrant phase detector; the four-quadrant phase detector is sequentially connected to the loop filter and the voltage-controlled oscillator; the control circuit is connected to the navigation message
  • the first switch is controlled to be closed, and the first tracking loop including the four-quadrant phase detector, the loop filter, and the voltage-controlled oscillator is used to detect the satellite signal.
  • the tracking loop further includes: a two-quadrant phase detector and a second switch, one end of the second switch is connected to the control circuit, and the other end is connected to the two-quadrant phase detector;
  • the two-quadrant phase detector is sequentially connected to the loop filter and the voltage-controlled oscillator;
  • the control circuit controls the second switch to close when there is no navigation message to assist in tracking satellite signals, and the first A switch is turned off, and the satellite signal is tracked using a second tracking loop including the two-quadrant phase detector, the loop filter and the voltage-controlled oscillator.
  • the microprocessor 1303 is used for differential positioning calculation to obtain accurate position information of the terminal device.
  • the microprocessor 1303 includes a positioning and navigation module and at least one interface 1305.
  • the positioning and navigation module is also called the position calculation module.
  • This module is mainly used to calculate the position, speed, and time (PVT) of the receiver. After the calculation, the position, speed and other information are reported to the The operating system of the terminal device.
  • the interface 1305 is a Google interface.
  • the microprocessor 1303 may also include an inertial navigation module, which mainly uses sensors such as speedometers and accelerometers to perform data interaction and assistance with the position calculation module, thereby further improving navigation performance.
  • inertial navigation module which mainly uses sensors such as speedometers and accelerometers to perform data interaction and assistance with the position calculation module, thereby further improving navigation performance.
  • Common auxiliary methods include loose coupling, tight coupling, and deep coupling.
  • the positioning chip 130 is a GNSS positioning chip.
  • the memory 1304 may include a volatile memory (volatile memory), such as random access memory (Random Access Memory, RAM); and may also include a non-volatile memory (non-volatile memory), such as flash memory (flash memory) , Hard Disk (Hard Sisk Drive, HDD) or Solid State Drive (Solid State Drive, SSD); or may also include a combination of the above types of storage.
  • volatile memory such as random access memory (Random Access Memory, RAM
  • non-volatile memory such as flash memory (flash memory) , Hard Disk (Hard Sisk Drive, HDD) or Solid State Drive (Solid State Drive, SSD); or may also include a combination of the above types of storage.
  • flash memory flash memory
  • HDD Hard Disk
  • SSD Solid State Drive
  • a program or code may be stored in the memory, and the microprocessor can implement the function of the terminal device by executing the program or code.
  • the memory 1304 may exist independently, or may also be integrated with the microprocessor 1303.
  • the aforementioned positioning chip 130 may also be used as a processor.
  • the processor can use various interfaces and lines to connect the various parts of the entire terminal device, by running or executing software programs and/or units stored in the memory 1304, and calling data stored in the memory 1304 to execute the terminal device Various functions and/or processing data.
  • the processor may be composed of an integrated circuit (Integrated Circuit, IC), for example, may be composed of a single packaged IC, or may be composed of connecting multiple packaged ICs with the same function or different functions.
  • the processor may only include a combination of a central processing unit (CPU) and a control chip (such as a baseband chip) in the transceiver.
  • CPU central processing unit
  • control chip such as a baseband chip
  • the terminal device may also include other more or less components, or a combination of some components, or different components, which are not limited in the embodiment of the present application.
  • the terminal device when used as a GPS receiver, the method steps shown in FIG. 5, FIG. 6 and FIG. 9 in the foregoing embodiment can be implemented, and in the embodiment shown in FIG.
  • the function of the circuit 41 can be realized by the DSP 1302 and the antenna 2, and the function to be realized by the processing circuit 42 can be realized by the DSP 1302; the function of the storage unit 43 can be realized by the memory 1304.
  • the method provided by this application integrates a DSP and a microprocessor in the GNSS positioning chip, thereby realizing the satellite signal tracking and calculation on the positioning chip side, obtaining the carrier phase measurement value, and obtaining the carrier phase from the recorded carrier phase tracking information Whether a cycle slip occurs, this method uses RTK technology to perform positioning calculations, with strong real-time performance and low algorithm complexity.
  • an embodiment of the present application also provides a computer storage medium, which may store a program, and the program may include some or all of the steps in each embodiment of the positioning method provided in the present application when the program is executed.
  • the storage medium can be a magnetic disk, an optical disc, a read-only storage memory ROM, or a random storage memory RAM, etc.
  • all or part of it may be implemented by software, hardware, firmware or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions, such as signal receiving instructions, signal tracking instructions, sending instructions, etc., when the computer program instructions are loaded and executed by the computer, all or part of them are generated according to the foregoing various embodiments of the application.
  • the method flow or function.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium, such as a floppy disk, a hard disk, a magnetic tape, an optical medium (such as a DVD), or a semiconductor medium, such as a solid-state hard disk, SSD, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

一种定位方法和装置,定位方法应用于终端设备,终端设备包括定位芯片(130)和片上系统SoC芯片(120),定位方法包括:定位芯片(130)接收至少一颗卫星发射的卫星信号(101),定位芯片(130)通过SoC芯片(120)获取基准站发送的差分校正量(102),定位芯片(130)基于载波相位差分技术,利用卫星信号和差分校正量进行定位计算(103)。载波相位差分技术为一种RTK技术,定位方法提供一种基于终端定位芯片(130)的新的RTK架构,通过载波相位的差分技术,实现手机对粗糙定位结果的校正,使得定位精度达到亚米级,进一步提升手机定位及导航领域的性能,满足用户需求。

Description

一种定位方法、定位芯片和终端设备 技术领域
本申请涉及卫星定位技术领域,尤其是涉及一种定位方法、定位芯片和终端设备。
背景技术
随着科技的发展,利用手机定位和导航应用已变得越来越广泛,比如车载导航、滴滴打车、电子不停车收费系统(Electronic Toll Collection,ETC)、虚拟手机游戏等。对于车载导航来说,需要有车道级别的定位精度来提示车辆拐弯,上、下高架;对于出行打车来说,需要准确的知道用户所在位置;这些应用场景对手机定位与导航的精度要求越来越高。
对于传统的手机定位技术而言,普遍采用如图1所示的芯片结构,比如在全球导航卫星系统(global navigation satellite system,GNSS)定位芯片中包括:PVT模块、惯导模块和捕获跟踪模块等。其中PVT在导航中表示位置、速度、时间(Position、Velocity、Time),GNSS定位芯片通过手机天线接收到全球定位系统(Global Positioning System,GPS),北斗,伽利略卫星导航系统(Galileo satellite navigation system),格洛纳斯(GLONASS)系统等卫星信号,对接收的卫星信号进行捕获和跟踪,生成比如伪距观测值等必要的测量信息,以便供PVT模块使用。PVT模块主要用于对手机终端的位置、速度、时间进行解算,并在解算后,将位置、速度等信息输送给手机的操作系统,比如苹果(IOS)或安卓(Android)系统。此外,惯导模块可用于借助速度计、加速度计等传感器上报的测量参数,与PVT模块进行数据交互与辅助,进一步提升手机的导航性能。
目前的手机定位方案,通过GNSS定位芯片输出的伪距观测量来实现定位,方案实现传统也比较简单,但精度偏低,定位精度只能确定到几米的粒度,无法满足高精度定位与导航的需求。
发明内容
本申请提供一种定位方法和装置,用于提高手机定位的精确度,满足用户需求。具体地,公开了如下技术方案:
第一方面,本申请提供一种定位方法,该方法可应用于一种终端设备,该终端设备包括定位芯片和片上系统SoC芯片,进一步地,该方法包括:定位芯片接收至少一颗卫星发射的卫星信号,通过所述SoC芯片获取基准站发送的差分校正量,以及基于载波相位差分技术,利用所述卫星信号和所述差分校正量进行定位计算。
其中,所述载波相位差分技术为一种RTK技术,所述定位芯片为GNSS定位芯片。
本方法提出一种基于手机GNSS定位芯片的新的RTK架构,通过载波相位的差分技术,实现终端设备对粗糙的定位结果的校正,使得定位精度达到亚米级,进一步提升手机定位及导航领域的性能,满足用户需求。
结合第一方面,在第一方面的一种可能的实现方式中,在定位芯片接收至少一颗卫星发射的卫星信号之后,方法还包括:该定位芯片对卫星信号做同步检测,并在完成同步检 测后利用跟踪环路对所述卫星信号进行跟踪,获得卫星信号的载波相位跟踪信息。所述利用所述卫星信号和所述差分校正量进行定位计算,包括:定位芯片利用所述卫星信号的载波相位跟踪信息和所述差分校正量进行定位计算,得到终端设备的位置信息。其中,该位置信息为精确位置信息。所述载波相位跟踪信息中包括载波相位测量值。
其中,所述接收的卫星信号包括第一卫星信号和第二卫星信号,具体地,第一卫星信号为传统卫星信号,第二卫星信号为现代化卫星信号。
结合第一方面,在第一方面的另一种可能的实现方式中,当所述至少一颗卫星发射的卫星信号包括第一卫星信号时,所述第一卫星信号为传统卫星信号,前述步骤在完成所述同步检测后利用跟踪环路对所述卫星信号进行跟踪,获得卫星信号的载波相位跟踪信息,包括:
在完成所述同步检测后,判断是否有导航电文辅助跟踪;如果是,则利用所述第一跟踪环路对所述第一卫星信号进行跟踪,所述第一跟踪环路中包括四象限鉴相器,所述第一卫星信号经过所述四象限鉴相器后输出第一载波相位测量值。并且,在定位芯片利用所述卫星信号的载波相位跟踪信息和所述差分校正量进行定位计算之前,还包括:定位芯片根据所述第一载波相位测量值判断载波相位是否发生周跳,如果否,则执行前述利用所述卫星信号的载波相位跟踪信息和所述差分校正量进行定位计算的步骤。
本实现方式中,利用差分定位原理对载波相位做差分运算,进而补偿粗略位置定位时产生的误差。然后利用四象限鉴相器跟踪卫星信号,扩大鉴相范围,避免受到二象限鉴相器跟踪环路的牵入范围限制,导致跟踪相位产生180°的相位模糊度,使复制载波相位会被错误地朝着相反方向调整,最后通过周跳、半周跳修复解决接收机复刻时产生的周跳、半周跳问题。
结合第一方面,在第一方面的又一种可能的实现方式中,上述方法还包括:在定位芯片完成所述同步检测后,如果没有导航电文辅助跟踪,则利用第二跟踪环路对所述第一卫星信号进行跟踪,所述第二跟踪环路中包括二象限鉴相器,所述第一卫星信号经过所述二象限鉴相器后输出第二载波相位测量值。并且,在上述定位芯片利用所述卫星信号的载波相位跟踪信息和所述差分校正量进行定位计算之前,还包括:
定位芯片根据第二载波相位测量值判断载波相位是否发生周跳;如果否,则对解调的第一卫星信号上的导航电文的帧头进行查询,判断是否与实际导航电文帧头同相;如果同相,则执行前述定位芯片利用卫星信号的载波相位跟踪信息和差分校正量进行定位计算的步骤。
结合第一方面,在第一方面的又一种可能的实现方式中,方法还包括:如果判断与所述实际导航电文帧头不同相,则定位芯片对第二载波相位测量值进行相位补偿,比如增加0.5周相位来进行补偿,得到第三载波相位测量值;并且前述步骤利用所述卫星信号的载波相位跟踪信息和差分校正量进行定位计算,包括:利用所述第三载波相位测量值和所述差分校正量进行定位计算。
本实现方式,在进行载波相位跟踪的同时,记录载波相位跟踪信息,通过检测载波相位是否发生周跳,来解决载波相位测量值产生的周跳问题。另外,对于半周跳的修复,当检测到后续载波相位测量值发生半周跳时,增加0.5周相位来进行补偿,从而克服了相位失锁产生的180°的相位模糊度,解决了定位芯片复刻时产生的半周跳问题。
结合第一方面,在第一方面的又一种可能的实现方式中,当所述至少一颗卫星发射的卫星信号包括第二卫星信号时,所述第二卫星信号为现代化卫星信号,前述在完成所述同步检测后利用跟踪环路对所述卫星信号进行跟踪,获得卫星信号的载波相位跟踪信息,包括:利用第一跟踪环路对所述第二卫星信号进行跟踪,所述第一跟踪环路中包括四象限鉴相器,所述第二卫星信号经过所述四象限鉴相器后输出第四载波相位测量值。此外,前述定位芯片利用所述卫星信号的载波相位跟踪信息和所述差分校正量进行定位计算之前,还包括:根据第四载波相位测量值判断载波相位是否发生周跳,如果否,则执行利用所述卫星信号的载波相位跟踪信息和所述差分校正量进行定位计算的步骤。
本实现方式,在对现代化卫星信号的跟踪和处理过程中,由于现代化的卫星信号存在数据信道与导频信道,所以无需像对传统卫星信号跟踪流程那样,判断是否有导航电文辅助跟踪,而是直接处理导频信道即可。当定位芯片检测到该现代化的卫星信号完成位同步之后,可直接利用四象限鉴相器对信号进行跟踪,以便确定出该卫星信号的载波相位测量值。
结合第一方面,在第一方面的又一种可能的实现方式中,在定位芯片接收至少一颗卫星发射的卫星信号之后,方法还包括:定位芯片对接收的所述卫星信号做解调处理得到终端设备的粗略位置信息;将该粗略位置信息发送给基准站,以使所述基准站根据所述粗略位置信息反馈差分校正量。
其中,所述差分校正量中包括:共视卫星信号的载波相位测量值,所述共视卫星信号为终端设备与基准站共同跟踪的卫星信号;前述定位芯片利用所述卫星信号的载波相位跟踪信息和所述差分校正量进行定位计算的步骤,包括:定位芯片利用所述共视卫星信号的载波相位测量值和第一载波相位测量值做差分计算得到第一周整模糊度;利用第一周整模糊度确定校正后的载波相位测量值;以及根据所述校正后的载波相位测量值进行定位计算,得到终端设备的位置信息。该位置信息为精确的位置信息。
本实现方式,利用RTK技术通过基准站发送的载波相位测量值,和定位芯片的跟踪环路输出的第一载波相位测量值得到校正后的载波相位测量值,并利用该校正后的载波相位测量值进行定位计算,以此来提升终端设备的定位精度。
第二方面,本申请还提供一种定位装置,比如一种定位芯片,该定位芯片包括:收发电路和处理电路,进一步地,收发电路用于接收至少一颗卫星发射的卫星信号;处理电路用于通过片上系统SoC芯片获取基准站发送的差分校正量,以及基于载波相位差分技术,利用所述卫星信号和所述差分校正量进行定位计算。
结合第二方面,在第二方面的一种可能的实现方式中,所述处理电路还用于实现以下功能:在收发电路接收至少一颗卫星发射的卫星信号之后,对所述卫星信号做同步检测,并在完成所述同步检测后利用跟踪环路对所述卫星信号进行跟踪,获得卫星信号的载波相位跟踪信息;以及,利用所述卫星信号的载波相位跟踪信息和所述差分校正量进行定位计算,得到所述终端设备的位置信息。
结合第二方面,在第二方面的另一种可能的实现方式中,当接收的至少一颗卫星发射的卫星信号包括第一卫星信号时,所述处理电路还用于实现以下功能:
在完成所述同步检测后,判断是否有导航电文辅助跟踪;如果是,则利用第一跟踪环路对所述第一卫星信号进行跟踪,所述第一跟踪环路中包括四象限鉴相器,所述第一卫星 信号经过所述四象限鉴相器后输出第一载波相位测量值。以及,在所述进行定位计算之前,根据所述第一载波相位测量值判断载波相位是否发生周跳,如果否,则利用所述卫星信号的载波相位跟踪信息和所述差分校正量进行定位计算。
结合第二方面,在第二方面的又一种可能的实现方式中,所述处理电路还用于实现以下功能:在完成所述同步检测后,如果没有导航电文辅助跟踪,则利用所述第二跟踪环路对所述第一卫星信号进行跟踪。其中,第二跟踪环路中包括二象限鉴相器,所述第一卫星信号经过所述二象限鉴相器后输出第二载波相位测量值。
在处理电路进行定位计算之前,根据所述第二载波相位测量值判断载波相位是否发生周跳;如果否,则对解调的所述第一卫星信号上的导航电文的帧头进行查询,判断是否与实际导航电文帧头同相;如果同相,则利述卫星信号的载波相位跟踪信息和所述差分校正量进行定位计算。
结合第二方面,在第二方面的又一种可能的实现方式中,所述处理电路还用于实现以下功能:判断当与所述实际导航电文帧头不同相时,对第二载波相位测量值进行相位补偿,得到第三载波相位测量值。以及,利用所述第三载波相位测量值和所述差分校正量进行定位计算。
结合第二方面,在第二方面的又一种可能的实现方式中,当接收的至少一颗卫星发射的卫星信号包括第二卫星信号时,所述处理电路还用于实现以下功能:利用第一跟踪环路对所述第二卫星信号进行跟踪,其中所述第一跟踪环路中包括四象限鉴相器,所述第二卫星信号经过所述四象限鉴相器后输出第四载波相位测量值。
在所述进行定位计算之前,根据所述第四载波相位测量值判断载波相位是否发生周跳,如果否,则利用所述卫星信号的载波相位跟踪信息和所述差分校正量进行定位计算。
结合第二方面,在第二方面的又一种可能的实现方式中,所述处理电路还用于实现以下功能:在接收至少一颗卫星发射的卫星信号之后,对所述卫星信号做解调处理得到终端设备的粗略位置信息;以及,将所述粗略位置信息发送给基准站,以使所述基准站根据所述粗略位置信息反馈所述差分校正量。
其中,所述差分校正量中包括共视卫星信号的载波相位测量值,所述共视卫星信号为所述定位芯片与所述基准站共同跟踪的卫星信号。所述处理电路还用于实现以下功能:利用所述共视卫星信号的载波相位测量值和第一载波相位测量值做差分计算得到第一周整模糊度,利用该第一周整模糊度确定校正后的载波相位测量值;以及根据所述校正后的载波相位测量值进行定位计算,得到所述终端设备的位置信息。
第三方面,本申请提供一种跟踪环路,包括:控制电路、四象限鉴相器、锁相环、环路滤波器、压控振荡器和第一开关;其中,第一开关的一端与所述控制电路相连接,另一端与所述四象限鉴相器相连接;所述四象限鉴相器依次与所述环路滤波器和所述压控振荡器相连接;所述控制电路在有导航电文辅助跟踪卫星信号的情况下,控制所述第一开关闭合,利用包括所述四象限鉴相器、所述环路滤波器和所述压控振荡器的第一跟踪环路对所述卫星信号进行跟踪。
另外,结合第三方面,在第三方面的一种可能的实现方式中,所述跟踪环路中还包括:二象限鉴相器和第二开关,并且,所述第二开关的一端与所述控制电路相连接,另一端与所述二象限鉴相器相连接;所述二象限鉴相器依次与所述环路滤波器和所述压控振荡器相 连接;所述控制电路在没有导航电文辅助跟踪卫星信号的情况下,控制所述第二开关闭合,所述第一开关断开,利用包括所述二象限鉴相器、所述环路滤波器和所述压控振荡器的第二跟踪环路对所述卫星信号进行跟踪。
第四方面,本申请还提供一种终端设备,包括:定位芯片和SoC芯片,其中定位芯片和SoC芯片可以通过接口连接,具体地,SoC芯片用于接收基准站发送的差分校正量,并将该差分校正量发送给定位芯片;所述定位芯片包括处理电路,该处理电路用于基于载波相位差分技术,利用卫星信号和所述差分校正量进行定位计算。所述卫星信号可通过收发器获得。所述卫星信号为至少一颗卫星发射的卫星信号。
其中,所述处理电路可以是前述第三方面以及第三方面任意一种实现方式所述的处理电路,且该处理电路在执行存储器中存储的计算机程序时,可实现前述第一方面以及第一方面任意一种实现方式中的定位方法。
第五方面,本申请还提供了一种计算机可读存储介质,该存储介质中存储有指令,使得当指令在计算机或处理器上运行时,可以用于执行前述第一方面以及第一方面各种实现方式中的方法。
另外,本申请还提供了一种计算机程序产品,该计算机程序产品包括计算机指令,当该指令被计算机或处理器执行时,可实现前述第一方面以及第一方面各种实现方式中的方法。
需要说明的是,上述第二方面至第五方面的各种实现方式的技术方案所对应的有益效果与前述第一方面以及第一方面的各种实现方式的有益效果相同,具体参见上述第一方面以及第一方面的各种实现方式中的有益效果描述,不再赘述。
附图说明
图1为本申请提供的一种利用手机芯片定位的结构示意图;
图2a为本申请提供的一种GPS系统组成的结构示意图;
图2b为本申请提供的一种载波相位和测距码相位的示意图;
图2c为本申请提供的一种差分GPS工作原理的示意图;
图2d为本申请提供的一种GPS接收机工作原理的示意图;
图2e为本申请提供的一种锁相环的结构示意图;
图2f为本申请提供的一种包含I/Q解调机制的锁相环的结构图;
图2g为本申请提供的一种I和Q信号的相量表示图;
图3为本申请提供的一种载波信号调制的波形图;
图4为本申请提供的一种定位系统的结构示意图;
图5为本申请提供的一种定位方法的流程图;
图6为本申请提供的一种对传统卫星信号的跟踪和处理的流程图;
图7为本申请提供的一种跟踪环路的结构示意图;
图8为本申请提供的一种发生跳变的载波信号的波形图;
图9为本申请提供的一种对现代化卫星信号的跟踪和处理的流程图;
图10为本申请提供的一种定位芯片的结构示意图;
图11为本申请提供的一种终端设备的结构示意图。
具体实施方式
在介绍本申请的技术方案之前,首先对相关概念和定位原理进行解释和说明。下面结合图2a至图2g对本申请的技术方案可能涉及的相关概念和原理进行详细说明。
1、定位系统
本申请技术方案涉及一种定位系统,该定位系统包括但不限于GPS系统、GLONASS系统、伽利略卫星定位系统和中国的北斗卫星导航系统。本实施例以GPS系统为例,如图2a所示,在一个GPS系统包括三个部分组成,分别是:空间星座部分、地面监控部分和用户设备部分。概括性地,GPS系统的工作原理描述如下:首先,空间星座部分的各颗GPS卫星向地面发射卫星信号;其次,地面监控部分通过接收、测量各个卫星信号来确定卫星的运行轨道,并将卫星的运行轨道信息发射给卫星,让卫星在其发射的信号上转播这些卫星运行轨道信息;最后,用户设备部分通过接收、测量各颗卫星的信号,并从信号中获取卫星的运行轨道信息,进而确定用户接收机自身的空间位置。
一般地,空间星座部分与用户设备部分是单向联系的,即GPS卫星单向地向用户设备部分发射卫星信号和信息。其中,空间星座部分包括多颗卫星,比如工作卫星和备用卫星等。地面监控部分包括主控站、注入站和监测站等,可用于采集数据、监视卫星的运行轨道、计算卫星钟差、维护GPS时间基准等功能。用户设备部分可以理解为是一种GPS接收机(或称GPS用户接收机,简称“接收机”),主要用于对接收到的卫星信号经过数据处理后,获得所需的测量值和导航信息,最后完成对用户的定位计算和导航任务。
2、伪距
伪距是GPS接收机对卫星信号的一个最基本的距离测量值。伪距可以定义为信号接收时间与信号发射时间之差再乘以光速。其中,信号接收时间是直接从GPS接收机时钟上读出的,而GPS接收机从信号上获取的发射时间就得涉及对信号中测距码(C/A码)相位的测量,具体地,可通过GPS接收机的码跟踪环路来获得。其中,C/A码(coarse acquisition)可翻译为粗捕获码。
通常,一个C/A码的码长约300米,实际上码长等于293m,因为一个C/A码的长度为1023个码片,其码率为1.023×106码片/秒,通常将一个C/A码近似地说成300m长,所以在伪距测量中,受到码跟踪环路只能把码相位确定到几米的粒度限制,导致伪距测量的定位精度粗糙。
3、载波相位测量值
载波信号在其传播途径上的不同位置、在同一时刻有着不同的相位值。如图2b所示,点S代表卫星信号发射器的零相位中心点,而在载波信号传播途径上的A点相距S点半个波长(即0.5λ),并且在任一时刻A点的载波相位将始终落后S点的相位180°。若在传播途径上的一点离S点越远,且该点的载波相位越落后。在图2b中,A点的载波相位落后S点的相位180°,所以A点相距S点半个波长。B点与S点之间的距离不再是0.5λ,而是(N+0.5)λ,其中N为未知整数,且N表示整数周波长,λ为波长。同理地,可以通过计算接收机R点处的载波相位与S点处的载波相位间的相位差,可得到卫星与接收机之间的距离。
接收机依靠其内部的晶体振荡器产生一个载波信号复制品,载波相位测量值φ可定义为接收机复制载波信号的相位
Figure PCTCN2020090446-appb-000001
与接收机接收到的卫星载波信号的相位
Figure PCTCN2020090446-appb-000002
之间的差。即
Figure PCTCN2020090446-appb-000003
其中,各个载波相位和相位差均以周(或者说以波长)为单位,一周对应360°(即2π弧度)的相位变化,在距离上对应一个载波波长,即以周为单位的载波相位测量值φ乘以波长λ后就转换成以距离为单位的载波相位测量值。因为复制载波信号的相位
Figure PCTCN2020090446-appb-000004
刚好等于实际卫星载波信号在卫星端的相位,所以载波相位测量值φ也就是卫星载波信号从卫星端到接收机端的相位变化量。
4、周整模糊度
若假设载波相位的测量不受钟差、大气延时等其他各种误差的干扰,则根据前面讨论的在信号传播途径上两点间的载波相位测量值与距离的关系,可以通过式(2)表示,
φ=λ -1r+N               (2)
其中,r为卫星与接收机之间的几何距离,N为未知整数,在GPS领域该未知整数N通常称为周整模糊度。
若考虑接收机钟差、卫星钟差和大气延时等各种误差,则式(2)的载波相位测量方程为:
φ=λ -1(r+c(δt u-δt s)-I+T)-N+ε φ       (3)
其中,φ为载波相位测量值,λ为波长,I为电离层延时,T为对流层延时,N为周整模糊度,c为光速,ε φ为噪声,δt u为接收机时钟钟差,δt s为卫星时钟钟差。
本申请实施例中,将载波相位差测量值简称为载波相位。
5、载波跟踪环路和失周
接收机为了获得接收到的卫星信号的载波相位,接收机内部所复制的实际上不是频率始终为f的载波,而是通过其内部的载波跟踪环路每时每刻尽力去复制一个载波,并让该载波的频率或相位与接收到的卫星信号的载波相一致。这样,载波跟踪环路基本上可分为频率锁定环路(frequency lock loop,FLL)和相位锁定环路(phase lock loop,PLL)两种形式。其中,本申请实施例主要涉及PLL,所述PLL是通过不断地调整复制载波的相位,使其与接收到的卫星信号的载波相位相一致,然后输出积分多普勒测量值。
无论接收机输出的载波相位测量值是经过FLL还是PLL产生的,它总会包含一个未知的周整模糊度N。当载波跟踪环路对信号失锁后又重锁时,它输出的载波相位测量值中的周整模糊度通常会发生跳变,换言之,周整模糊度的值在信号失锁前后是不一样的。有时候接收机虽然尚未声明信号完全失锁,但是其输出的载波相位测量值有可能出现整周数、或半周数的跳变误差。通常,将载波相位测量值发生周整模糊度跳变的现象称为失周。
6、差分定位
差分GPS是一种应用广泛又能够有效地降低各种GPS测量误差的方法,并且可应用于差分GPS系统,比如广域增强系统(wide area augmentation system,WAAS)和局域增强系统(local area augmentation system,LAAS)等。
其中,差分GPS定位的基本原理主要是依据卫星时钟误差、卫星星历误差、电离层延时、对流层延时所具有的空间相关性和时间相关性等,对于处于同一地域内的不同接收机,他们的GPS测量值中所包含的上述各种误差成近似相等。通常将其中一个接收机作为参考使用,并称该接收机所在地为基准站(或基站),对应的,该接收机也称为基准站接收机。
基准站接收机(以下简称“基准站”)的位置是预先精确知道的,进而可以准确地计算出从卫星到基准站的真实几何距离。如果将基准站对卫星的距离测量值与这一真实几何距离相比较,则它们之间的差异就等于基准站对这一卫星的测量误差。由于同一时刻、同一地域内其他接收机对同一卫星的距离测量值有相关或者相近的误差,如图2c所示,因此,基准站将其接收机的测量误差通过电波发射给流动站(即用户接收机),则流动站就可以利用接收到的基准站的测量误差来校正流动站对同一卫星的测距离测量值,从而提高流动站的测量和定位精度,这就是差分GPS的基本工作原理。
可选的,将这种由基准站播发的、用于降低甚至消除流动站GPS测量误差的校正量称为差分校正量。
7、RTK定位
实时动态(real time kinematic,RTK)定位是以载波相位观测值进行实时动态相对定位的技术。其原理是将位于基准站上的GPS接收机观测的卫星数据,通过数据通信链(无线电台)实时发送出去,而位于附近的GPS用户接收机(也称流动站)在对卫星观测的同时,也接收来自基准站的电信号,通过对所收到的信号进行实时处理,给出移动站的三维坐标,并估“其精度。
利用RTK测量时,至少配备两台GPS接收机,一台固定安放在基准站上,另外一台作为流动站进行点位测量。在两台接收机之间还需要数据通信链,实时将基准站上的观测数据发送给流动站。流动站利用RTK软件对接收到的数据(卫星信号和基准站的差分校正量)进行实时处理,其主要完成双差模糊度的求解、基线向量的解算、坐标的转换等。通常,RTK系统中的基准站和流动站之间的基线长度应不超过10km,而且基准站的位置必须是已知的。
差分GPS定位可分为静态定位和动态定位两种。对于动态定位应用来讲,由于差分系统的流动站会相对于基准站运动,因而它通常必须迅速求解出周整模糊度而实时地完成定位,其定位精度可达厘米级。采用RTK定位技术可以实时地完成流动站的精密定位,它能获得分米级以上的定位精度,定位精度较高。
此外,在RTK定位过程中,可以采用LAMBDA(Least square AMBiguity decorrelation adjustment)算法来得到双差的周整模糊度。
8、GPS接收机工作原理
GPS接收机,即GPS用户接收机、简称“接收机”,在差分GPS定位系统中为一种流动站,或者一种终端设备,其内部工作流程如图2d所示,一般包括射频(radio frequency,RF)前端处理、基带数字信号处理(Digital Signal Processing,DSP)和定位导航运算三大功能模块。其中,射频前端处理模块通过天线接收所有可见GPS卫星信号,经前置滤波器和前置放大器的滤波放大处理后,再与本机振荡器产生的正弦波本振信号进行混频而下变频成中频(Intermediate frequency,IF)信号,最后经过模数(Analog to Digital,A/D)转换器将中频信号转变成离散时间的数字中频信号。
可选的,射频前端处理模块一般集成在一个专用集成电路(application specific Integrated circuit,ASIC)芯片中,可以将该集成电路称之为射频集成电路(RF Integrated circuit,RFIC)。
基带数字信号处理模块通过处理射频前端所输出的数字中频信号、复制出于接收到的 卫星信号相一致的本地载波信号,从而实现对GPS信号的捕获与跟踪,并从中获得载波相位等测量值,以及解调出导航电文。
进一步地,为了从接收到的卫星信号中解调出导航电文,在GPS卫星信号的发射端,GPS载波信号上调制有C/A码和导航电文数据码,那么相应地在GPS信号接收端,为了从接收到的卫星信号中调解出导航电文数据码,基带数字信号处理模块需要通过混频彻底地剥离数字中频信号中包括多普勒频移在内的载波,并且通过C/A码相关运算再彻底地剥离信号中的C/A码,而剩下的信号便是经过双相移键控(Bi phase shift keying,BPSK)调制的导航电文数据码。
一方面,GPS接收机通过载波跟踪环路(简称载波环)不断调整其内部所复制的载波,使复制载波频率(或相位)与数字中频信号中的载波频率(或相位)保持一致,然后经下变频混频实现载波剥离;另一方面,接收机通过码跟踪环路(简称码环)不断调整其内部所复制的C/A码,是的复制C/A码的相位与数字中频信号中的C/A码相位保持一致,然后经过码相关运算实现C/A码剥离。
9、相位锁定环路(PLL)
为了彻底剥离数字中频输入信号中的载波,使其从中频下变频到基带,载波环定包含一个混频器,并且它所复制的载波必须与输入载波保持一致。如果载波环通过检测其复制载波与输入载波之间的相位差异,然后再相应地调节复制载波的相位,使两者的相位保持一致,那么这种载波环的实现形式成为相位锁定环路。
相位锁定环路(PLL)简称锁相环,它是以锁定输入载波信号的相位为目标的一种载波环。它是一个产生、输出周期信号的电子控制环路,它通过不断地调整其输出信号的相位,使输出信号与输入信号之间的相位时刻保持一致。当输入和输出信号的相位尚未达到一致但正趋于一致时,锁相环运行在牵入状态,并且此时的锁相环表现为它的暂态特征。若暂态过程不收敛或干扰过于激烈而导致锁相环未能进入锁定状态,则称锁相环暂态失锁。
如图2e所示,一个典型的锁相环主要由相位鉴别器(或称鉴相器)、环路滤波器和压控振荡器(voltage controlled oscillator,VCO)三部分组成。其中,锁相环的输入信号u i(t)和有压控振荡器产生的输出信号u o(t)分别表达为:
u i(t)=U isin(ω it+θ i)                      (4)
u o(t)=U osin(ω ot+θ o)                      (5)
其中,输入信号的角频率ω i和初相位θ i,以及输出信号的角频率ω o和初相位θ o均是一个关于时间的函数。用于鉴别输入信号u i(t)和输出信号u o(t)之间相位差异的鉴相器可以简单地认为是一个乘法器,则当u i(t)和u o(t)经过鉴相器乘法运算后,鉴相结果输出信号u d(t)等于
u d(t)=u i(t)u o(t)
=U iU osin(ω it+θ i)sin(ω ot+θ o)                           (6)
=K d{sin[(ω io)t+θ io]+sin[(ω io)t+θ io]}
其中,鉴相器的增益K d
Figure PCTCN2020090446-appb-000005
当锁相环进入锁定状态后,其输出信号的角频率ω o非常接近于输入信号的角频率ω i,即ω i≈ω o,于是式(6)中最后一个等号的右边第一项是角频率约为2倍于ω i的高频信号成分,而第二项则为鉴相结果u d(t)中的低频(或说直流)信号成分。
环路滤波器是一个低通滤波器,用于降低环路中的噪声,当鉴相器的输出信号u d(t)经过一个理想的低通滤波器后,它的高频信号成分和噪声被滤除,于是滤波器的输出信号u f(t)就等于u d(t)中的低频信号成分。即
u f(t)=K dK fsinθ e(t)                        (7)
其中,系数K f是滤波增益,相位差sinθ e(t)是锁相环输入信号与输出信号之间的相位差异。即sinθ e(t)=θ io,当信号被锁相环锁定时,不仅输出信号的角频率率ω o等于ω i,而且输出信号的初相位值θ o也很接近于θ i,即相位差sinθ e(t)的值在零附附近。
10、同相/正交(I/Q)解调
此外,针对GPS信号的BPSK调制特点,GPS接收机锁相环通常采用同相/正交(In-phase/Quadrature,I/Q)解调法来帮助完成对输入信号的载波剥离、鉴相和数据解调等工作。
如图2f所示包含一个I/Q解调机制的锁相环,其中作为系统输入的连续时间信号u i(t)可表达成,
Figure PCTCN2020090446-appb-000006
其中,D(t)表示调制在载波上的数据码。式(8)与式(4)的区别在于,前者的信号幅值是一个常数,后者的幅值是
Figure PCTCN2020090446-appb-000007
乘以包含着信息的、值为±1的数据电平D(t),其中D(t)的正负号随着数据码的跳变而变化,n表示均值为0、方差
Figure PCTCN2020090446-appb-000008
为的高斯白噪声。
图2f所示的锁相环复制两份相位互差90°的正弦和余弦载波信号,并让它们各自与输入信号相乘后实现对输入信号的下变频(或者说是载波剥离)。其中,将输入信号与正弦载波复制信号的混频的那条环路分支称为同相支路(简称“I支路”),而与余弦载波复制信号混频的另一条环路分支称为正交支路(简称“Q支路”)。I/Q解调法的一个功能是将输入信号u i(t)中的数据码D(t)解调出来。
相量的相位角r p(t)等于输入信号与复制信号之间的相位差异φ c(t),即
Figure PCTCN2020090446-appb-000009
其中,二象限反正切函数arctan所返回的角度值在-π/2至+π/2之间。如图2g所示的向量图,I p(t)与Q p(t)分布作为X轴与Y轴上的坐标值,那么从坐标原点O至数据点(I p(t),Q p(t))的有向连线正是相量r p(t),而X轴转至相量r p(t)的角度等于相位差φ c(t)。
下面对本申请技术方案所要解决的技术问题进行说明。
本申请实施例的技术方案主要用于解决两方面的技术问题,一方面是使用RTK载波相位差分技术提升手机定位精度,满足用户高精度的需求。另一方面是基于芯片侧的卫星信号跟踪信息,检测周跳、半周跳,实现半周跳修复,提升载波相位使用的稳定性及相关性能,使RTK载波相位差分技术在手机上可以得到稳定的应用。
具体地,下面对第二方面中载波相位发生周跳、半周跳现象的原因进行说明。
以发生半周跳为例,如图3所示,假设卫星发射的卫星信号包含一个输入载波(Input carrier),接收机接收后对其进行解调得到导航电文,该导航电文中包含由+1、-1组成的随机数序列。其中,前半部分为+1序列传输的载波波形,后半部分为真实-1序列传输的载波波形,图3中后半部加粗线条部分的波形为假想的调制为+1序列传输的载波波形,可以看出前半部分和后半部分序列之间的相位差为180°,表明调制时载波相位发生翻转,所述调制的过程包括通信基础原理BPSK调制,具体的BPSK调制过程本实施例不详细赘述。
当本地接收机在BPSK调制过程中载波相位发生半周跳时,+1序列的载波波形可表示为本地载波1(Local carrier 1),该Local carrier 1为接收机芯片侧复制的载波波形。在正常情况下,接收机跟踪载波且锁定正确(无180°相位模糊度的)载波。对于-1序列的载波波形,本地载波2(local carrier 2)在进行载波跟踪时,其复制波形为图3所示的第三行载波波形,由于-1序列的导航电文要经过接收机内部调制,所以存在180°相位的模糊度,进而导致载波相位发生半周跳(180°相位跳变)。
在这种情况下,若本地接收机利用二象限鉴相器来鉴别相位时,由于二象限鉴相器的鉴相范围有限,无法鉴别出+1、-1序列的比特跳变,所以均会按照Input carrier的波形进行跟踪;比如在对Input carrier的后半部分进行载波跟踪时,除去导航电文的影响,会按照假想的+1序列(粗线条)的载波波形进行调制,但接收机实际跟踪的是-1序列的载波波形(细线条),两者相差180°的相位模糊度,进而影响定位的精确度。
另外,由于载波相位半周跳的跳动幅度小,因此不容易检测。
下面结合图4至图11对本申请实施例的技术方案做详细介绍。
本实施例提供了一种定位方法,利用载波相位差分技术,或称RTK技术,通过卫星载波相位测量值和差分校正量来进行RTK定位计算,从而提高终端设备的定位精度。
在一个GPS系统中,如图4所示,该GPS系统中包括多颗GPS卫星、基准站和流动站。其中,当前用于定位的GPS卫星个数不少于3颗,比如卫星1、卫星2和卫星3,基准站为前述差分定位系统中的一种基准站接收机,该基准站的位置固定且已知。
流动站为待定位设备,该流动站也是一种终端设备,位于基准站附近且位置不固定。
其中,所述终端设备可以指用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、移动设备、无线通信设备、用户代理或用户装置等。可选的,该终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备,比如手机、计算设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本实施例对终端设备的形态和结构并做不限定。
进一步地,所述终端设备包括:定位芯片和片上系统(System on Chip,SoC)芯片,且所述定位芯片和SoC芯片通过至少一个接口相连接。
可选的,所述定位芯片为全球导航卫星系统(global navigation satellite system,GNSS)定位芯片。该GNSS定位芯片具备位置定位和解算功能,其中,所述GNSS可以包括GPS,全球导航卫星系统(global navigation satellite system,GLONASS),北斗卫星导航系统(beidou navigation satellite system,BDS)等。
参见图5,为本实施例提供的一种定位方法的流程图,该方法可为前述任一种终端设 备做定位,且所述终端设备包括定位芯片和SoC芯片,具体地,该方法包括:
101:定位芯片接收至少一颗卫星发射的卫星信号。
一般地,卫星发射的卫星信号从结构上可分三个层次:载波、伪码和数据码。在这三个层次中,伪码和数据码一同先通过调制而依附在正弦波形式的载波上,然后卫星将调制后的载波信号播发出去。另外,每颗GPS卫星可用两个L波段频率(即L1和L2)发射载波无线信号。
其中,所述卫星信号按照频率划分可包括:第一卫星信号和第二卫星信号,具体地,所述第一卫星信号为传统卫星信号,所述第二卫星信号为现代化卫星信号。其中,所述传统卫星信号一般包含GPSL1C/A、北斗B1I、QZSSL1CA等卫星信号,并且GPSL1C/A表示GPS系统中标称载波频率为1575.42MHz(兆赫兹)的卫星信号。所述现代化卫星信号一般包含GPSL5、GALE5、QZSSL5等卫星信号,所述GPSL5C表示GPS BLOCK III系统中标称载波频率为1176.45MHz上的卫星信号。应理解,所述卫星信号中还可以包括其他频率的信号。
此外,方法还包括:
1011:定位芯片对所述卫星信号做解调处理得到终端设备的第一位置信息,所述第一位置信息为所述终端设备的粗略位置信息。
1012:定位芯片将该粗略位置信息发送给基准站。
1013:基准站接收所述粗略位置信息,并向所述终端设备发送差分校正量。
具体地,定位芯片根据所述卫星信号承载的信息,以及测量的伪距观测量、多普勒观测值与星历信息进行PVT解算,然后通过最小二乘算法(least squares,LSQ)得到所述粗略位置信息。更进一步地,一种具体的解调过程包括,定位芯片对接收的卫星信号进行载波解调和伪码解扩,得到数据码,然后再按照导航电文的格式将数据码编译成导航电文。其中,该导航电文中包含有时间、卫星运行轨道、电离层延时等用于定位的重要信息。然后定位芯片根据导航电文完成粗略位置定位,得到粗略位置信息。
另外,在步骤101之后还包括:
101’:定位芯片对所述卫星信号做同步检测,并在完成所述同步检测后利用跟踪环路对所述卫星信号进行跟踪,获得卫星信号的载波相位跟踪信息,所述载波相位跟踪信息包括载波相位测量值。
102:定位芯片通过SoC芯片获取基准站发送的差分校正量。
其中,所述SoC芯片与所述定位芯片耦合,所述SoC芯片与一通信模块相连接,该通信模块可接收来自基准站的差分校正量,SoC芯片获取通信模块接收的所述差分校正量后传输给定位芯片。其中,该通信模块可以是短距离通信模块,SoC芯片可以通过短距离通信模块与其它通信设备通信,获取由其它通信设备转发的所述差分校正量;或者,该通信模块可以是收发信机,SoC芯片中包括耦合至所述收发信机的基带(baseband)处理器,所述基带处理器通过所述收发信机接入移动通信网络,进而从网络中获取所述差分校正量。应当知道,基准站一般是无人值守的卫星监测设备,它可以接入通信网络,将监测到的数据通过通信网络进行传输。
所述差分校正量中包括共视卫星信号的载波相位测量值,所述共视卫星信号为所述终端设备与所述基准站共同跟踪的卫星信号,且来自相同的GPS卫星。此外,所述差分校正量中还包括共视卫星的伪距观测值、信噪比、电离层延时,对流层延等参数。
另外,在获取基准站发送的差分校正量之前,还包括:确定所述基准站,以便保证该基准站位于所述终端设备附近,从而为终端设备提供准确的差分校正量。具体地,可以通过终端设备发送的粗略位置信息来确定所述基准站。
一种可能实现方式是,终端设备将所述粗略位置信息发送给一个主控站,主控站根据该该粗略位置信息选择一个距离终端设备较近的基准站,该基准站可以是一虚拟的基准站,然后将该虚拟基准站将其测量的差分校正量发送给所述终端设备。
103:定位芯片基于载波相位差分技术,利用所述卫星信号和所述差分校正量进行定位计算。
其中,利用所述卫星信号是指在上述“步骤101’”中获得的卫星信号的载波相位跟踪信息,所述差分校正量是指上述“步骤102”中所述基准站发送的所述共视卫星信号的载波相位测量值,则步骤103具体包括:定位芯片利用所述卫星信号的载波相位跟踪信息和所述差分校正量进行定位计算,得到所述终端设备的位置信息。
具体地,定位芯片确定共视卫星,所述共视卫星为基准站和终端设备共同跟踪的GPS卫星,即终端设备跟踪的卫星信号与基准站发送的差分校正量具有相同的卫星编号。然后,定位芯片通过双差计算得到载波相位测量值与周整模糊度之间的关系式,最后根据该关系式计算出周整模糊度N。
在上述利用载波相位差分技术,即RTK技术来消除所述粗略位置信息中的载波相位测量误差时,其差分方式包括单差、双差和三差等。本实施例以双差为例,每个双差测量值涉及两个设备在同一时刻对两颗卫星的测量值。例如假设该定位系统中的两个设备分别是所述终端设备j和所述基准站i,两颗共视卫星分别为卫星p和卫星q,则终端设备j通过双差解算得到载波相位测量值的关系式如下:
Figure PCTCN2020090446-appb-000010
Figure PCTCN2020090446-appb-000011
Figure PCTCN2020090446-appb-000012
Figure PCTCN2020090446-appb-000013
其中,基准站i,终端设备j,卫星p和卫星q,λ为载波波长,r i p为基准站i与卫星p之间的几何距离,
Figure PCTCN2020090446-appb-000014
为终端设备j与卫星p之间的几何距离,r i q为基准站i与卫星q之间的几何距离,
Figure PCTCN2020090446-appb-000015
为终端设备j与卫星q之间的几何距离;I为电离层延时,T为对流层延时,
Figure PCTCN2020090446-appb-000016
为基准站i相对于卫星p的周整模糊度,
Figure PCTCN2020090446-appb-000017
为终端设备j相对于卫星p的周整模糊度,
Figure PCTCN2020090446-appb-000018
为基准站i相对于卫星q的周整模糊度,
Figure PCTCN2020090446-appb-000019
为终端设备j相对于卫星q的周整模糊度;ε为噪声,c为光速,δt i为终端设备钟差,δt p为卫星p钟差,δt q为卫星q钟差,
Figure PCTCN2020090446-appb-000020
为基准站i相对于卫星p的载波相位测量值;
Figure PCTCN2020090446-appb-000021
为终端设备j相对于卫星p的载波相位测量值,
Figure PCTCN2020090446-appb-000022
为基准站i相对于卫星q的载波相位测量值;
Figure PCTCN2020090446-appb-000023
为终端设备j相对于卫星q的载波相位测量值。
可选的,上述步骤102中所述差分校正量包括:基准站i相对于卫星p的载波相位测量值
Figure PCTCN2020090446-appb-000024
和基准站i相对于卫星q的载波相位测量值
Figure PCTCN2020090446-appb-000025
以及电离层延时I和对流层延时T 等。
根据上述公式(10)至公式(13)得到:
Figure PCTCN2020090446-appb-000026
Figure PCTCN2020090446-appb-000027
Figure PCTCN2020090446-appb-000028
Figure PCTCN2020090446-appb-000029
根据公式(14)和(15)可得,
Figure PCTCN2020090446-appb-000030
根据公式(16)和(17)可得,
Figure PCTCN2020090446-appb-000031
根据公式(19)可以解出一个固定的载波周整模糊度
Figure PCTCN2020090446-appb-000032
进而得到经过校正后的载波相位测量值
Figure PCTCN2020090446-appb-000033
并且利用该校正后的载波相位测量值
Figure PCTCN2020090446-appb-000034
进行定位计算,得到终端设备的第二位置信息。所述第二位置信息为终端设备的精确位置信息。
本方法提出一种基于手机GNSS定位芯片的新的RTK架构,通过载波相位的差分技术,实现终端设备对粗糙的定位结果的校正,使得定位精度达到亚米级,进一步提升手机定位及导航领域的性能,满足用户需求。
此外,本方法实现了车道级导航定位;对于开阔场景的上下高架,车道变换,高速路口变道的导航定位实现精准定位,满足车载导航的应用需求,从而可以有效减少车机导航应用的成本(如车载导航系统、ETC收费系统),加大手机定位及导航领域的相关应用,提升市场竞争力。
另外,本实施例的技术方案还可以检测载波相位跟踪时发生的周跳、半周跳,并对产生半周跳相位进行补偿,从而提高定位精度。
具体的过程为前述实施例的步骤101’:定位芯片对所述卫星信号做同步检测,并在完成所述同步检测后利用跟踪环路对所述卫星信号进行跟踪,获得卫星信号的载波相位跟踪信息,所述载波相位跟踪信息包括载波相位测量值。
下面对前述实施例中的“步骤101’”进行详细说明。
示例性地,当所述卫星信号为传统卫星信号时,比如GPSL1C/A、北斗B1I、QZSSL1CA、或载波频率为1575.42MHz的卫星信号,如图6所示,步骤101’具体包括:
201:定位芯片对所述传统卫星信号做同步检测,检测其是否完成位同步。
其中,所述位同步又称比特同步,它是接收通道根据一定算法确定当前卫星信号在某一个数据比特中的位置,或者说,是确定接收的卫星信号中的比特起始边缘位置。进一步地,定位芯片可利用多路通道来接收多颗GPS卫星发射的传统卫星信号,捕获每一路卫星信号并对其进行跟踪,首先需要完成卫星信号的位同步,即从接收的卫星信号中找到数据比特的边缘,然后再实现帧同步,所述帧同步是指从卫星信号中找到子帧起始边缘。
可选的,定位芯片可利用直方图来检测是否完成位同步。
202:如果否,即未完成位同步,则退出跟踪流程,重新捕获卫星信号。
203:如果是,即完成位同步,则对所述传统卫星信号进行定位跟踪。
同时,所述定位芯片还对所述传统卫星信号进行定位解算,得到终端设备的粗略位置信息,具体地,定位芯片得到并发送所述粗略位置信息的过程与前述实施例的步骤1011 至步骤1013相同,此处不再赘述。
所述步骤203,定位芯片对传统卫星信号进行定位跟踪,具体包括:
2031:判断是否有导航电文辅助跟踪所述传统卫星信号。
2032:如果是,即有导航电文辅助跟踪,则使用四象限鉴相器对传统卫星信号进行跟踪,得到第一载波相位测量值。
2033:如果否,即没有导航电文辅助跟踪,则使用二象限鉴相器对传统卫星信号进行跟踪,得到第二载波相位测量值。
跟踪环路在对传统卫星信号进行定位跟踪时,锁相环根据其所复制的载波信号的状态输出多普勒频移、积分多普勒和载波相位测量值,同时码跟踪环路根据其所复制的C/A码信号状态输出码相位和伪距测量值,载波环鉴别器还可以额外地调解出卫星信号上的导航电文数据比特。
其中,定位芯片中包括跟踪环路,所述跟踪环路中包括锁相环,所述锁相环的结构可以类似于前述图2e所示的结构,包括鉴相器、环路滤波器和压控振荡器等。或者,如图7所示,包括同相支路、正交支路、控制电路、第一开关K1、第二开关K2、四象限鉴相器和二象限鉴相器等元件。
可选的,所述二象限鉴相器为科思塔(costas)锁相环。具体地,costas锁相环是指那些选用适当的鉴相器而能在数据码调制载波信号情况下工作的、对由数据比特跳变所引起的180°载波相变不敏感的锁相环。costas锁相环与四象限鉴相器的区别在于,鉴相范围不同。costas锁相环主要采用二象限反正切函数法来做相位鉴别,是一种二象限鉴相器,其鉴相范围为-90°至+90°。而四象限鉴相器的鉴相范围为-180°至+180°。
一般地,将-90°至+90°,或-180°至+180°这一相位区间称为鉴相器的牵入范围。
当锁相环处于锁定状态时,复制载波与接收载波之间的相位差接近于零,卫星信号中的BPSK调制机制可使接收信号的载波相位在数据比特电平跳变,比如从+1跳变值-1,或从-1跳变值+1,发生180°相位跳变。对于二象限鉴相器,当实际相位差异大于90°时,会输出一个小于0°的鉴相结果,此时环路的复制载波相位会被错误地朝着相反方向调整,最终导致跟踪环路对信号失锁,因此为了避免受到二象限鉴相器的牵入范围限制,将采用更大牵入范围的四象限鉴相器来鉴相。
参见图7,为一种跟踪环路的电路图,包括同相支路、正交支路、四象限鉴相器、二象限鉴相器,第一开关K1、第二开关K2、控制电路、环路滤波器和压控振荡器等,其中,K1与四象限鉴相器相连接,K2与二象限鉴相器相连接。控制电路用于控制K1的K2闭合和断开,具体地,当所述控制电路控制K1闭合、K2断开时,通过四象限鉴相器、环路滤波器和压控振荡器组成第一跟踪环路。当K1断开、K2闭合时,通过二象限鉴相器、所述环路滤波器和所述压控振荡器组成第二跟踪环路。
在前述步骤2031中,当有导致电文辅助跟踪时,执行步骤2032,定位芯片利用所述第一跟踪环路对所述传统卫星信号进行跟踪,输出所述第一载波相位测量值。当没有导航电文辅助跟踪时,执行步骤2033,定位芯片利用所述第二跟踪环路对所述传统卫星信号进行跟踪,输出所述第二载波相位测量值。
2034:定位芯片记录载波相位跟踪信息。
载波相位跟踪信息包括第一载波相位测量值或者第二载波相位测量值,以及定位芯片 本地复制的载波信号的多普勒频移、积分多普勒等参数。此外,所述载波相位跟踪信息中还包括其他信息,比如包括载波相位的跟踪是否连续性,是否有失锁等信息,以便用于后续载波相位周跳的判断。
需要说明的是,定位芯片在对传统信号进行跟踪过程中,实时地记录载波相位的变化,以便后续检测相位是否发生周跳。
本实施例在对传统卫星信号进行跟踪的过程中,通过四象限鉴相器来扩大了牵入范围,从而可避免数字比特跳变时产生的180°相位模糊度。
具体地,如图8所示,假设伪随机序列为一串数据码序列,比如
1,1,1,1,1,-1,1,1,-1,-1,1,-1,1,-1,1,1,-1,-1,-1,1,
图8中的第一行表示输入载波(input carrier)信号,第二行表示调制后(modulated)的伪随机序列,当卫星信号播发后,需要将调制后的伪随机序列与载波信号相乘,从而得到与input carrier信号相同且消除的伪随机序列,此时将原数据码序列变为全1序列
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
如果使用二象限鉴相器进行相位鉴别,则会产生180°的相位模糊度;如果使用四象限鉴相器进行相位鉴别,由于四象限鉴相器的牵入范围大,所以能够得到与input carrier相同的载波信号,避免二象限鉴相器做鉴相时产生180°的相位模糊度。
在上述步骤203定位芯片对传统卫星信号进行跟踪之后,方法还包括:
204:定位芯片判断跟踪的载波相位是否发生周跳。
具体地,一种可能的实施方式是,对于经过第一跟踪环路后输出的第一载波相位测量值来说,如果所述载波相位跟踪信息中第一载波相位发生周跳,则跟踪失败,结束流程,需要重新捕获卫星信号。如果未发生周跳现象,即判断结果为“否”,则执行步骤207。
另一种可能的实施方式是,对于经过第二跟踪环路后输出的第二载波相位测量值来说,如果所述载波相位跟踪信息中第二载波相位发生周跳,则跟踪失败,结束流程,需要重新捕获卫星信号。如果未发生周跳现象,即判断结果为“否”,则执行步骤205。
205:对解调的卫星信号上的导航电文的帧头进行查询,判断是否与实际导航电文帧头同相。即检测载波相位是否发生半周跳。
如果是,即与实际导航电文帧头同相,则表示未发生半周跳,则执行步骤207。如果否,即与实际导航电文帧头反相,则表示发生半周跳,则执行步骤206。
206:对第二载波相位测量值进行相位补偿,得到第三载波相位测量值。比如,将第二载波相位测量值的相位加上0.5周相位,以便修复半周跳产生的180°的相位模糊度。
207:利用所述载波相位跟踪信息和所述差分校正量做定位计算,得到终端设备的第二位置信息。该步骤与前述实施例的“步骤103”相同,具体地,包括:
其中,所述差分校正量为前述步骤1013中基准站发送的测量量,包括载波相位测量值、电离层延时和对流层延时等信息。所述载波相位跟踪信息包括第一载波相位测量值、第二载波相位测量值、或者第三载波相位测量值。具体地,
207-1:接步骤204,定位芯片根据所述差分校正量和第一载波相位测量值得到经过校正后的载波相位测量值,并利用该校正后的载波相位测量值进行定位计算,得到所述第二位置信息。或者,
207-2:接步骤205,定位芯片根据所述差分校正量和第二载波相位测量值得到经过校 正后的载波相位测量值,并利用该校正后的载波相位测量值进行定位计算,得到所述第二位置信息。或者,
207-3:接步骤206,定位芯片根据所述差分校正量和第三载波相位测量值得到经过校正后的载波相位测量值,并利用该校正后的载波相位测量值进行定位计算,得到所述第二位置信息。
更进一步地,利用差分校正量和载波相位测量值得到所述第二位置信息的过程,参见上述步骤103,此处不再赘述。需要说明的是,本实施例对前述载波相位的跟踪流程,即步骤203和解调得到粗略位置信息过程,即步骤1011至1013的先后顺序不进行限制。
本实施例提供了一种对传统卫星信号的跟踪和处理方法,定位芯片在检测到传统卫星信号有导航电文辅助跟踪的情况下,使用四象限鉴相器的载波跟踪环路对载波信号进行跟踪,从而避免采用二象限鉴相器的跟踪环路将复制载波相位朝着相反方向调整,最终导致跟踪环路对信号失锁。
此外,在进行载波相位跟踪的同时,记录载波相位跟踪信息,通过检测载波相位是否发生周跳,来解决载波相位测量值产生的周跳问题。另外,对于半周跳的修复,当检测到后续载波相位测量值发生半周跳时,增加0.5周相位来进行补偿,从而克服了相位失锁产生的180°的相位模糊度,解决了定位芯片复刻时产生的半周跳问题。
类似地,当步骤101中,接收芯片接收的卫星信号是第二卫星信号,即现代化卫星信号时,比如GPSL5、GALE1、GALE5、QZSSL5或BD1C等,这些信号大部分在1176.42MHz频段左右。并且,所述现代化卫星信号中包括数据信道(data channel)和导频信道(pilot channel)。其跟踪和处理流程如图9所示,具体包括:
301:定位芯片检测所述现代化卫星信号是否完成位同步。具体过程同前述实施例的步骤201,此处不再赘述。
302:如果否,即未完成位同步,则退出跟踪流程,重新捕获卫星信号。
303:如果是,则对所述现代化卫星信号进行跟踪处理。具体地,包括:
3031:定位芯片使用四象限鉴相器对现代化卫星信号进行跟踪,所述现代化卫星信号经过包含有所述四象限鉴相器的第一跟踪环路处理后,输出载波相位跟踪信息,所述载波相位跟踪信息中包括第四载波相位测量值。
3032:记录所述载波相位跟踪信息。具体过程同前述实施例的步骤2032和2034。
304:定位芯片判断跟踪的载波相位是否发生周跳。
如果是,则载波相位跟踪失败,结束流程。如果否,即未发生周跳,则执行步骤305。
305:定位芯片利用差分校正量和第四载波相位测量值做定位计算,得到终端设备的第二位置信息。
其中,所述差分校正量是前述实施例的步骤1011至1013中基准站发送的差分校正量,具体地可参见上述实施例的描述,此处不再赘述。并且,步骤305的处理过程也与前述实施例的步骤207相同,所以也不再赘述。
本实施例中,在对现代化卫星信号的跟踪和处理过程中,由于现代化的卫星信号存在数据信道与导频信道,所以无需像对传统卫星信号跟踪流程那样,判断是否有导航电文辅助跟踪,而是直接处理导频信道即可。当定位芯片检测到该现代化的卫星信号完成位同步之后,可直接利用四象限鉴相器对信号进行跟踪,以便确定出该卫星信号的载波相位测量 值。
此外,在对载波相位跟踪的同时,定位芯片还记录载波相位跟踪信息,将发生周跳的信号滤除,从而解决了利用载波相位测量值做差分定位时产生的周跳问题。对于现代化卫星信号,在跟踪时采用导频信道的处理,以及四象限鉴相器与锁相环进行跟踪,从而避免载波相位发生半周跳现象。
下面介绍与上述方法实施例对应的装置实施例。
图10为本申请实施例提供的一种定位装置的结构示意图。所述装置可以一种终端设备,或者还可以是位于该终端设备中的定位芯片。并且,该装置可以执行前述实施例中的一种定位方法中的所有步骤。
具体地,如图10所示,该装置可以包括:收发电路41、处理电路42和存储单元43,此外,所述装置还可以包括其他的单元或模块。本申请对此不予限制。
其中,收发电路41用于接收至少一颗卫星发射的卫星信号;处理电路42用于通过片上系统SoC芯片获取基准站发送的差分校正量,以及基于载波相位差分技术,利用所述卫星信号和所述差分校正量进行定位计算。
可选的,在本实施例的一种具体的实施方式中,处理电路42还用于在所述定位芯片接收至少一颗卫星发射的卫星信号之后,对所述卫星信号做同步检测,并在完成所述同步检测后利用跟踪环路对所述卫星信号进行跟踪,获得卫星信号的载波相位跟踪信息。所述处理电路42具体利用所述卫星信号的载波相位跟踪信息和所述差分校正量进行定位计算,得到所述终端设备的位置信息。
进一步地,所述至少一颗卫星发射的卫星信号包括第一卫星信号,处理电路42具体用于在完成所述同步检测后,判断是否有导航电文辅助跟踪;如果是,则利用第一跟踪环路对所述第一卫星信号进行跟踪,所述第一跟踪环路中包括四象限鉴相器,所述第一卫星信号经过所述四象限鉴相器后输出第一载波相位测量值。所述处理电路42还用于在所述进行定位计算之前,根据所述第一载波相位测量值判断载波相位是否发生周跳,如果否,则利用所述卫星信号的载波相位跟踪信息和所述差分校正量进行定位计算。
可选的,在本实施例的另一种具体的实施方式中,处理电路42还用于在完成所述同步检测后,如果没有导航电文辅助跟踪,则利用所述第二跟踪环路对所述第一卫星信号进行跟踪,所述第二跟踪环路中包括二象限鉴相器,所述第一卫星信号经过所述二象限鉴相器后输出第二载波相位测量值。
可选的,所述二象限鉴相器为科思塔(costas)锁相环。
处理电路42还用于在所述进行定位计算之前,根据所述第二载波相位测量值判断载波相位是否发生周跳;如果否,则对解调的所述第一卫星信号上的导航电文的帧头进行查询,判断是否与实际导航电文帧头同相;如果同相,则利用所述卫星信号的载波相位跟踪信息和所述差分校正量进行定位计算。
可选的,在本实施例的又一种具体的实施方式中,处理电路42还用于判断当与所述实际导航电文帧头不同相时,对所述第二载波相位测量值进行相位补偿,得到第三载波相位测量值。处理电路42具体用于利用所述第三载波相位测量值和所述差分校正量进行定位计算。
可选的,如果所述至少一颗卫星发射的卫星信号包括第二卫星信号,则处理电路42 具体用于利用第一跟踪环路对所述第二卫星信号进行跟踪,所述第一跟踪环路中包括四象限鉴相器,所述第二卫星信号经过所述四象限鉴相器后输出第四载波相位测量值。
此外,处理电路42还用于在所述进行定位计算之前,根据所述第四载波相位测量值判断载波相位是否发生周跳,如果否,则利用所述卫星信号的载波相位跟踪信息和所述差分校正量进行定位计算。
可选的,在本实施例的又一种具体的实施方式中,处理电路42还用于在接收至少一颗卫星发射的卫星信号之后,对所述卫星信号做解调处理得到终端设备的粗略位置信息;收发电路41,还用于将所述粗略位置信息发送给所述基准站,以使所述基准站根据所述粗略位置信息反馈所述差分校正量。
可选的,所述差分校正量中包括共视卫星信号的载波相位测量值,所述共视卫星信号为所述定位芯片与所述基准站共同跟踪的卫星信号。处理电路42具体用于利用所述共视卫星信号的载波相位测量值和所述第一载波相位测量值做差分计算得到第一周整模糊度,利用所述第一周整模糊度确定校正后的载波相位测量值;以及根据所述校正后的载波相位测量值进行定位计算,得到所述终端设备的位置信息。
另外,在具体的硬件实现层面,本实施例提供了一种终端设备,如图11所示,包括:通信模块110、SoC芯片120和定位芯片130,并且SoC芯片120与定位芯片130之间通过通信接口相连接,通信模块110与SoC芯片120之间可以通过通信总线连接。
其中,通信模块110用于建立通信信道,使终端设备通过所述通信信道以连接至网络,从而实现终端设备与其他设备之间的通信传输。其中,通信模块110可以是完成收发功能的模块。例如,可以包括无线局域网(wireless local area network,WLAN)模块、蓝牙模块、基带(base band)模块等通信模块,以及所述通信装置对应的射频(radio frequency,RF)电路,用于进行无线局域网络通信、蓝牙通信、红外线通信及/或蜂窝式通信系统通信,例如宽带码分多重接入(wideband code division multiple access,WCDMA)及/或高速下行封包存取(high speed downlink packet access,HSDPA)。并且,通信模块110支持直接内存存取(direct memory access)。
进一步地,通信模块110中包括各种收发模块,比如收发信机和天线,例如天线1等,此外,通信模块110还可以包括前置放大器、下变频器、A/D转换器、基带处理器等部件。在本申请的不同实施方式中,通信模块110中的各种收发模块一般以集成电路(integrated circuit)的形式出现,并可进行选择性组合,而不必包括所有收发模块及对应的天线组。例如,通信模块110还可以包括射频芯片以及相应的天线以在一个蜂窝通信系统中提供通信功能使其接入到通信网络。
本实施例中,通信模块110用于接收基准站发送的差分校正量,并将其传输给SoC芯片120。
定位芯片130用于实现对卫星信号的跟踪处理,以及定位计算等功能。具体地,定位芯片130中包括收发器1301、数字信号处理器(digital signal processor,DSP)1302、微处理器1303、存储器1304和接口1305等。
其中,收发器1301可用于接收至少一颗GPS卫星发射的卫星信号,比如传统卫星信号和现代化卫星信号。收发器1301中包括至少一个天线,比如天线2,并通过所述天线2接收卫星信号,经前置滤波器和前置放大器的滤波放大后,再与本机振荡器产生的正弦波 本振信号进行混频而下变频成中频(Intermediate Frequency,IF)信号,最后经过模数(Analog to Digital,A/D)转换器将中频信号转变成离散时间的数字中频信号。
DSP 1302中可以包括数字信号处理器和跟踪环路等部件。所述数字信号处理器通过射频前端(RF)输出的数字中频信号,复制出与接收到的卫星信号相一致的本地载波和本地伪码信号,从而实现对GPS卫星信号的捕获和跟踪。在GPS卫星信号发射端,GPS载波信号上调制有C/A码和导航电文数据码,相应地,在GPS信号接收端,为了从接收到的卫星信号中解调出导航电文数据码,基带的数字信号处理器需要通过混频彻底地剥离数字中频信号中包括多普勒频移在内的载波,并通过C/A码相关运算彻底地剥离信号中的C/A码,剩下的信号为经BPSK调制的导航电文数据码。
所述跟踪环路,用于对GPS信号进行跟踪,不断地调制其内部所复制的载波,使复制载波相位与数字中频信号中的载波相位保持一致,从而实现载波剥离。
具体地,所述跟踪环路包括:控制电路、四象限鉴相器、锁相环、环路滤波器、压控振荡器和第一开关;其中,所述第一开关的一端与所述控制电路相连接,另一端与所述四象限鉴相器相连接;所述四象限鉴相器依次与所述环路滤波器和所述压控振荡器相连接;所述控制电路在有导航电文辅助跟踪卫星信号的情况下,控制所述第一开关闭合,利用包括所述四象限鉴相器、所述环路滤波器和所述压控振荡器的第一跟踪环路对所述卫星信号进行跟踪。
此外,所述跟踪环路还包括:二象限鉴相器和第二开关,所述第二开关的一端与所述控制电路相连接,另一端与所述二象限鉴相器相连接;所述二象限鉴相器依次与所述环路滤波器和所述压控振荡器相连接;所述控制电路在没有导航电文辅助跟踪卫星信号的情况下,控制所述第二开关闭合,所述第一开关断开,利用包括所述二象限鉴相器、所述环路滤波器和所述压控振荡器的第二跟踪环路对所述卫星信号进行跟踪。
微处理器1303用于差分定位计算,得到终端设备精确的位置信息。可选的,微处理器1303中包括定位导航模块和至少一个接口1305。其中,定位导航模块又称为位置解算模块,该模块主要是用来对接收机位置、速度、时间(PVT)进行解算,并在解算后,将位置、速度等信息通过接口上报给终端设备的操作系统。可选的,所述接口1305为谷歌google接口。
此外,微处理器1303中还可以包括惯导模块,该模块主要借助速度计、加速度计等传感器,与位置解算模块进行数据交互与辅助,从而进一步提升导航性能。一般常见的辅助方式包括松耦合、紧耦合、深耦合。
可选的,所述定位芯片130为一种GNSS定位芯片。
存储器1304,可以包括易失性存储器(volatile memory),例如随机存取内存(Random Access Memory,RAM);还可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(Hard Sisk Drive,HDD)或固态硬盘(Solid State Drive,SSD);或者还可以包括上述种类的存储器的组合。存储器中可以存储有程序或代码,微处理器通过执行所述程序或代码可以实现所述终端设备的功能。另外,存储器1304可以是独立存在,或者也可以和微处理器1303集成在一起。
应理解,上述定位芯片130还可以是作为一种处理器。该处理器可利用各种接口和线路连接整个终端设备的各个部分,通过运行或执行存储在存储器1304内的软件程序和/或 单元,以及调用存储在存储器1304内的数据,以执行终端设备的各种功能和/或处理数据。进一步地,处理器可以由集成电路(Integrated Circuit,IC)组成,例如可以由单颗封装的IC所组成,也可以由连接多颗相同功能或不同功能的封装IC而组成。举例来说,处理器可以仅包括中央处理器(central processing unit,CPU)及收发器中的控制芯片(例如基带芯片)的组合等。
此外,该终端设备还可以包括其他更多或更少的部件,或者组合某些部件,或者不同的部件,本申请实施例对此不进行限定。
在本实施例中,当所述终端设备作为一种GPS接收机时,可以实现前述实施例中图5、图6和图9所示的方法步骤,并且前述图10所示实施例中,收发电路41的功能可以由DSP1302和天线2来实现,所述处理电路42所要实现的功能则可以由DSP 1302实现;所述存储单元43的功能可以由存储器1304实现。
本申请提供的方法,在GNSS定位芯片中集成DSP和微处理器,从而实现了在定位芯片侧对卫星信号跟踪和解算,得到载波相位测量值,并且从记录的载波相位跟踪信息中获知载波相位是否发生周跳,本方法利用RTK技术进行定位计算,实时性强且算法复杂度低。
此外,本申请实施例还提供一种计算机存储介质,该计算机存储介质可存储有程序,该程序执行时可包括本申请提供的定位方法的各实施例中的部分或全部步骤。所述的存储介质可为磁碟、光盘、只读存储记忆体ROM或随机存储记忆体RAM等。
在上述实施例中,可以全部或部分通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。
所述计算机程序产品包括一个或多个计算机指令,例如信号接收指令、信号跟踪指令、发送指令等,在计算机加载和执行所述计算机程序指令时,全部或部分地产生按照本申请上述各个实施例所述方法流程或功能。
所述计算机可以是通用计算机、专用计算机、计算机网络或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等存储设备。所述可用介质可以是磁性介质,例如软盘、硬盘、磁带、光介质(例如DVD)、或半导体介质,例如固态硬盘SSD等。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。此外,术语“包括”和“包含”以及他们的任何变形,意图在于覆盖不排他的包含。
本说明书中各个实施例之间相同相似的部分互相参见即可。尤其,对于终端设备以及装置而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例中的说明即可。
以上所述的本申请实施方式并不构成对本申请保护范围的限定。

Claims (21)

  1. 一种定位方法,其特征在于,所述方法应用于终端设备,所述终端设备包括定位芯片和片上系统SoC芯片,所述方法包括:
    所述定位芯片接收至少一颗卫星发射的卫星信号;
    所述定位芯片通过所述SoC芯片获取基准站发送的差分校正量;
    所述定位芯片基于载波相位差分技术,利用所述卫星信号和所述差分校正量进行定位计算。
  2. 根据权利要求1所述的方法,其特征在于,所述定位芯片接收至少一颗卫星发射的卫星信号之后,还包括:
    所述定位芯片对所述卫星信号做同步检测,并在完成所述同步检测后利用跟踪环路对所述卫星信号进行跟踪,获得卫星信号的载波相位跟踪信息;
    所述利用所述卫星信号和所述差分校正量进行定位计算,包括:
    利用所述卫星信号的载波相位跟踪信息和所述差分校正量进行定位计算,得到所述终端设备的位置信息。
  3. 根据权利要求2所述的方法,其特征在于,所述至少一颗卫星发射的卫星信号包括第一卫星信号,
    所述在完成所述同步检测后利用跟踪环路对所述卫星信号进行跟踪,获得卫星信号的载波相位跟踪信息,包括:
    在完成所述同步检测后,判断是否有导航电文辅助跟踪;
    如果是,则利用所述第一跟踪环路对所述第一卫星信号进行跟踪,所述第一跟踪环路中包括四象限鉴相器,所述第一卫星信号经过所述四象限鉴相器后输出第一载波相位测量值;
    所述利用所述卫星信号的载波相位跟踪信息和所述差分校正量进行定位计算之前,还包括:
    根据所述第一载波相位测量值判断载波相位是否发生周跳,如果否,则执行所述利用所述卫星信号的载波相位跟踪信息和所述差分校正量进行定位计算的步骤。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    在完成所述同步检测后,如果没有导航电文辅助跟踪,则利用第二跟踪环路对所述第一卫星信号进行跟踪,所述第二跟踪环路中包括二象限鉴相器,所述第一卫星信号经过所述二象限鉴相器后输出第二载波相位测量值;
    所述利用所述卫星信号的载波相位跟踪信息和所述差分校正量进行定位计算之前,还包括:
    根据所述第二载波相位测量值判断载波相位是否发生周跳;
    如果否,则对解调的所述第一卫星信号上的导航电文的帧头进行查询,判断是否与实际导航电文帧头同相;
    如果同相,则执行所述利用所述卫星信号的载波相位跟踪信息和所述差分校正量进行定位计算的步骤。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    如果判断与所述实际导航电文帧头不同相,则对所述第二载波相位测量值进行相位补 偿,得到第三载波相位测量值;
    所述利用所述卫星信号的载波相位跟踪信息和所述差分校正量进行定位计算,包括:
    利用所述第三载波相位测量值和所述差分校正量进行定位计算。
  6. 根据权利要求2所述的方法,其特征在于,所述至少一颗卫星发射的卫星信号包括第二卫星信号,
    所述在完成所述同步检测后利用跟踪环路对所述卫星信号进行跟踪,获得卫星信号的载波相位跟踪信息,包括:
    利用第一跟踪环路对所述第二卫星信号进行跟踪,所述第一跟踪环路中包括四象限鉴相器,所述第二卫星信号经过所述四象限鉴相器后输出第四载波相位测量值;
    所述利用所述卫星信号的载波相位跟踪信息和所述差分校正量进行定位计算之前,还包括:
    根据所述第四载波相位测量值判断载波相位是否发生周跳,如果否,则执行所述利用所述卫星信号的载波相位跟踪信息和所述差分校正量进行定位计算的步骤。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述定位芯片接收至少一颗卫星发射的卫星信号之后,还包括:
    所述定位芯片对所述卫星信号做解调处理得到终端设备的粗略位置信息;
    将所述粗略位置信息发送给所述基准站,以使所述基准站根据所述粗略位置信息反馈所述差分校正量。
  8. 根据权利要求3所述的方法,其特征在于,所述差分校正量中包括共视卫星信号的载波相位测量值,所述共视卫星信号为所述终端设备与所述基准站共同跟踪的卫星信号;
    所述执行所述利用所述卫星信号的载波相位跟踪信息和所述差分校正量进行定位计算的步骤,包括:
    利用所述共视卫星信号的载波相位测量值和所述第一载波相位测量值做差分计算得到第一周整模糊度;
    利用所述第一周整模糊度确定校正后的载波相位测量值;
    根据所述校正后的载波相位测量值进行定位计算,得到所述终端设备的位置信息。
  9. 一种定位芯片,其特征在于,所述定位芯片包括:
    收发电路,用于接收至少一颗卫星发射的卫星信号;
    处理电路,用于通过片上系统SoC芯片获取基准站发送的差分校正量,以及基于载波相位差分技术,利用所述卫星信号和所述差分校正量进行定位计算。
  10. 根据权利要求9所述的定位芯片,其特征在于,
    所述处理电路,还用于在所述收发电路接收至少一颗卫星发射的卫星信号之后,对所述卫星信号做同步检测,并在完成所述同步检测后利用跟踪环路对所述卫星信号进行跟踪,获得卫星信号的载波相位跟踪信息;
    所述处理电路,具体利用所述卫星信号的载波相位跟踪信息和所述差分校正量进行定位计算,得到所述终端设备的位置信息。
  11. 根据权利要求10所述的定位芯片,其特征在于,所述至少一颗卫星发射的卫星信号包括第一卫星信号,
    所述处理电路,具体用于在完成所述同步检测后,判断是否有导航电文辅助跟踪;如果是,则利用第一跟踪环路对所述第一卫星信号进行跟踪,所述第一跟踪环路中包括四象限鉴相器,所述第一卫星信号经过所述四象限鉴相器后输出第一载波相位测量值;
    所述处理电路,还用于在所述进行定位计算之前,根据所述第一载波相位测量值判断载波相位是否发生周跳,如果否,则利用所述卫星信号的载波相位跟踪信息和所述差分校正量进行定位计算。
  12. 根据权利要求11所述的定位芯片,其特征在于,
    所述处理电路,还用于在完成所述同步检测后,如果没有导航电文辅助跟踪,则利用所述第二跟踪环路对所述第一卫星信号进行跟踪,所述第二跟踪环路中包括二象限鉴相器,所述第一卫星信号经过所述二象限鉴相器后输出第二载波相位测量值;
    所述处理电路,还用于在所述进行定位计算之前,根据所述第二载波相位测量值判断载波相位是否发生周跳;如果否,则对解调的所述第一卫星信号上的导航电文的帧头进行查询,判断是否与实际导航电文帧头同相;如果同相,则利用所述卫星信号的载波相位跟踪信息和所述差分校正量进行定位计算。
  13. 根据权利要求12所述的定位芯片,其特征在于,
    所述处理电路,还用于判断当与所述实际导航电文帧头不同相时,对所述第二载波相位测量值进行相位补偿,得到第三载波相位测量值;
    所述处理电路,具体用于利用所述第三载波相位测量值和所述差分校正量进行定位计算。
  14. 根据权利要求10所述的定位芯片,其特征在于,所述至少一颗卫星发射的卫星信号包括第二卫星信号,
    所述处理电路,具体用于利用第一跟踪环路对所述第二卫星信号进行跟踪,所述第一跟踪环路中包括四象限鉴相器,所述第二卫星信号经过所述四象限鉴相器后输出第四载波相位测量值;
    所述处理电路,还用于在所述进行定位计算之前,根据所述第四载波相位测量值判断载波相位是否发生周跳,如果否,则利用所述卫星信号的载波相位跟踪信息和所述差分校正量进行定位计算。
  15. 根据权利要求9-14任一项所述的定位芯片,其特征在于,
    所述处理电路,还用于在接收至少一颗卫星发射的卫星信号之后,对所述卫星信号做解调处理得到终端设备的粗略位置信息;
    所述收发电路,还用于将所述粗略位置信息发送给所述基准站,以使所述基准站根据所述粗略位置信息反馈所述差分校正量。
  16. 根据权利要求11所述的定位芯片,其特征在于,所述差分校正量中包括共视卫星信号的载波相位测量值,所述共视卫星信号为所述定位芯片与所述基准站共同跟踪的卫星信号;
    所述处理电路,具体用于利用所述共视卫星信号的载波相位测量值和所述第一载波相位测量值做差分计算得到第一周整模糊度,利用所述第一周整模糊度确定校正后的载波相位测量值;以及根据所述校正后的载波相位测量值进行定位计算,得到所述终端设备的位置信息。
  17. 一种跟踪环路,其特征在于,包括:控制电路、四象限鉴相器、锁相环、环路滤波器、压控振荡器和第一开关;其中,
    所述第一开关的一端与所述控制电路相连接,另一端与所述四象限鉴相器相连接;
    所述四象限鉴相器依次与所述环路滤波器和所述压控振荡器相连接;
    所述控制电路在有导航电文辅助跟踪卫星信号的情况下,控制所述第一开关闭合,利用包括所述四象限鉴相器、所述环路滤波器和所述压控振荡器的第一跟踪环路对所述卫星信号进行跟踪。
  18. 根据权利要求17所述的跟踪环路,其特征在于,还包括:二象限鉴相器和第二开关,
    所述第二开关的一端与所述控制电路相连接,另一端与所述二象限鉴相器相连接;
    所述二象限鉴相器依次与所述环路滤波器和所述压控振荡器相连接;
    所述控制电路在没有导航电文辅助跟踪卫星信号的情况下,控制所述第二开关闭合,所述第一开关断开,利用包括所述二象限鉴相器、所述环路滤波器和所述压控振荡器的第二跟踪环路对所述卫星信号进行跟踪。
  19. 一种终端设备,其特征在于,包括:定位芯片和片上系统SoC芯片,
    所述SoC芯片,用于向所述定位芯片发送来自基准站的差分校正量;
    所述定位芯片中包括处理电路,所述处理电路在执行存储器中存储的计算机程序时,实现如权利要求1至8中任一项所述的方法。
  20. 一种计算机可读存储介质,包括指令,当所述指令在计算机上运行时,使得计算机执行如权利要求1至8中任一项所述的方法。
  21. 一种计算机程序产品,当其在计算机上运行时,使得计算机执行如权利要求1至8中任一项所述的方法。
PCT/CN2020/090446 2020-05-15 2020-05-15 一种定位方法、定位芯片和终端设备 WO2021226986A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080099761.0A CN115380224A (zh) 2020-05-15 2020-05-15 一种定位方法、定位芯片和终端设备
PCT/CN2020/090446 WO2021226986A1 (zh) 2020-05-15 2020-05-15 一种定位方法、定位芯片和终端设备
EP20935716.9A EP4141490A4 (en) 2020-05-15 2020-05-15 POSITIONING METHOD, POSITIONING CHIP AND TERMINAL DEVICE
US17/987,300 US20230103074A1 (en) 2020-05-15 2022-11-15 Positioning Method, Positioning Chip, and Terminal Device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/090446 WO2021226986A1 (zh) 2020-05-15 2020-05-15 一种定位方法、定位芯片和终端设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/987,300 Continuation US20230103074A1 (en) 2020-05-15 2022-11-15 Positioning Method, Positioning Chip, and Terminal Device

Publications (1)

Publication Number Publication Date
WO2021226986A1 true WO2021226986A1 (zh) 2021-11-18

Family

ID=78525942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/090446 WO2021226986A1 (zh) 2020-05-15 2020-05-15 一种定位方法、定位芯片和终端设备

Country Status (4)

Country Link
US (1) US20230103074A1 (zh)
EP (1) EP4141490A4 (zh)
CN (1) CN115380224A (zh)
WO (1) WO2021226986A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116016075B (zh) * 2022-12-10 2023-09-19 湖南迈克森伟电子科技有限公司 一种鉴相预处理的方法、装置、电路、设备和存储介质

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7574215B1 (en) * 2000-11-06 2009-08-11 Trimble Navigation Limited System and method for distribution of GPS satellite information
CN101813760A (zh) * 2009-02-23 2010-08-25 安凯(广州)微电子技术有限公司 一种应用于全球定位系统接收器的载波跟踪电路
CN104345323A (zh) * 2013-07-24 2015-02-11 安凯(广州)微电子技术有限公司 一种gps卫星信号载波环跟踪方法和装置
CN104754729A (zh) * 2013-12-27 2015-07-01 上海博泰悦臻网络技术服务有限公司 导航定位方法、装置及系统
CN105372688A (zh) * 2015-12-08 2016-03-02 广州中海达卫星导航技术股份有限公司 一种小体积定位模块
CN105607079A (zh) * 2016-01-19 2016-05-25 东南大学 一种gnss定位精度增强方法及gnss定位系统
CN205280943U (zh) * 2015-11-18 2016-06-01 桂林电子科技大学 一种新型双模卫星定位装置
CN205656311U (zh) * 2016-05-24 2016-10-19 江苏北斗卫星应用产业研究院有限公司 一种基于北斗地基增强技术的高精度定位终端
CN206258588U (zh) * 2016-10-26 2017-06-16 广州市中海达测绘仪器有限公司 亚米级定位设备与定位系统
CN107831510A (zh) * 2017-11-21 2018-03-23 嘉兴佳利电子有限公司 一种智能gnss轨迹跟踪仪及记录方法
CN109116380A (zh) * 2018-07-17 2019-01-01 上海华测导航技术股份有限公司 一种gnss接收机、基于gnss接收机的定位系统和方法
CN111123318A (zh) * 2019-12-31 2020-05-08 泰斗微电子科技有限公司 一种卫星定位装置、卫星信号接收机及终端设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014047378A1 (en) * 2012-09-20 2014-03-27 Cornell University Methods and apparatus for detecting spoofing of global navigation satellite system signals using carrier phase measurements and known antenna motions
US11112507B2 (en) * 2016-10-27 2021-09-07 United States Of America As Represented By The Administrator Of Nasa Location correction through differential networks system

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7574215B1 (en) * 2000-11-06 2009-08-11 Trimble Navigation Limited System and method for distribution of GPS satellite information
CN101813760A (zh) * 2009-02-23 2010-08-25 安凯(广州)微电子技术有限公司 一种应用于全球定位系统接收器的载波跟踪电路
CN104345323A (zh) * 2013-07-24 2015-02-11 安凯(广州)微电子技术有限公司 一种gps卫星信号载波环跟踪方法和装置
CN104754729A (zh) * 2013-12-27 2015-07-01 上海博泰悦臻网络技术服务有限公司 导航定位方法、装置及系统
CN205280943U (zh) * 2015-11-18 2016-06-01 桂林电子科技大学 一种新型双模卫星定位装置
CN105372688A (zh) * 2015-12-08 2016-03-02 广州中海达卫星导航技术股份有限公司 一种小体积定位模块
CN105607079A (zh) * 2016-01-19 2016-05-25 东南大学 一种gnss定位精度增强方法及gnss定位系统
CN205656311U (zh) * 2016-05-24 2016-10-19 江苏北斗卫星应用产业研究院有限公司 一种基于北斗地基增强技术的高精度定位终端
CN206258588U (zh) * 2016-10-26 2017-06-16 广州市中海达测绘仪器有限公司 亚米级定位设备与定位系统
CN107831510A (zh) * 2017-11-21 2018-03-23 嘉兴佳利电子有限公司 一种智能gnss轨迹跟踪仪及记录方法
CN109116380A (zh) * 2018-07-17 2019-01-01 上海华测导航技术股份有限公司 一种gnss接收机、基于gnss接收机的定位系统和方法
CN111123318A (zh) * 2019-12-31 2020-05-08 泰斗微电子科技有限公司 一种卫星定位装置、卫星信号接收机及终端设备

Also Published As

Publication number Publication date
CN115380224A (zh) 2022-11-22
EP4141490A4 (en) 2023-08-23
US20230103074A1 (en) 2023-03-30
EP4141490A1 (en) 2023-03-01

Similar Documents

Publication Publication Date Title
JP4754783B2 (ja) Gps信号をトラッキングするオープンループに関する方法
JP3983812B2 (ja) 改良された多経路信号除去作用を有する受信器
US7764226B1 (en) Universal digital channel for receiving signals of global navigation satellite systems
US7995683B2 (en) Noise floor independent delay-locked loop discriminator
EP3258293B1 (en) Navigation signal data pilot frequency combined tracking method and device
CN106291614B (zh) 用于在多路径环境中跟踪卫星无线电导航信号的装置
US7693211B2 (en) Fast fourier transform based phase locked loop for navigational receivers
JP2005501219A (ja) 無線通信システムにおいて端末の速度を推定するための方法および装置
CN112578422A (zh) 复合导航信号接收方法及接收机
US10429515B2 (en) Method and apparatus for GNSS signal tracking
JP2008111684A (ja) 衛星信号追尾装置及びそれを備えた衛星信号受信機
US20090027261A1 (en) Method for the correction, upon reception in a moving object, of faults affecting the transmission of binary offset carrier radionavigation signals
CN112748449A (zh) 一种卫星导航接收机锁相环与锁频环结合的矢量跟踪方法
US20070253471A1 (en) Gps Receiver Using Differential Correlation
US20230103074A1 (en) Positioning Method, Positioning Chip, and Terminal Device
Yan et al. An INS-assisted vector tracking receiver with multipath error estimation for dense urban canyons
Khan et al. Acquisition strategies of GNSS receiver
Li et al. High dynamic carrier tracking using Kalman filter aided phase-lock loop
JP5933559B2 (ja) 信号捕捉装置及び方法
CN110320539B (zh) 一种应用于卫星定位系统的比特同步方法以及相关装置
Sarnadas et al. Trade-off analysis of robust carrier phase tracking techniques in challenging environments
Morosi et al. P2P cooperative GPS positioning with fine/coarse time assistance
Mongredien et al. Opportunities and challenges for multi-constellation, multi-frequency automotive GNSS receivers
Katsumoto et al. GNSS System Design and Evaluation for IoT Applications
CN108732592B (zh) 基于GNU Radio的GPS软件接收机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20935716

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020935716

Country of ref document: EP

Effective date: 20221123

NENP Non-entry into the national phase

Ref country code: DE