WO2021226774A1 - 转换关系的获取方法、检测设备及检测方法 - Google Patents

转换关系的获取方法、检测设备及检测方法 Download PDF

Info

Publication number
WO2021226774A1
WO2021226774A1 PCT/CN2020/089524 CN2020089524W WO2021226774A1 WO 2021226774 A1 WO2021226774 A1 WO 2021226774A1 CN 2020089524 W CN2020089524 W CN 2020089524W WO 2021226774 A1 WO2021226774 A1 WO 2021226774A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection device
coordinate system
feature point
detection
relationship
Prior art date
Application number
PCT/CN2020/089524
Other languages
English (en)
French (fr)
Inventor
陈鲁
吕肃
李青格乐
张嵩
Original Assignee
深圳中科飞测科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳中科飞测科技有限公司 filed Critical 深圳中科飞测科技有限公司
Priority to PCT/CN2020/089524 priority Critical patent/WO2021226774A1/zh
Publication of WO2021226774A1 publication Critical patent/WO2021226774A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/80Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration

Definitions

  • This application relates to the field of detection, and in particular to a method for obtaining conversion relationships, detection equipment and detection methods.
  • the existing three-dimensional distortion detection equipment can be divided into contact detection equipment and non-contact detection equipment.
  • the non-contact detection equipment does not contact the object to be tested, which can reduce the damage to the surface of the object to be tested.
  • Non-contact detection methods are more and more widely used in three-dimensional distortion detection. Non-contact detection methods include: laser triangulation, interferometry, confocal and other optical measurement methods.
  • the detection speed is slow and the accuracy is poor.
  • the problem to be solved by this application is to provide a conversion relationship acquisition method, detection equipment, and detection method to quickly detect a specific area to be tested.
  • the present application provides a method for obtaining a conversion relationship, including: providing an initial detection device, including: a first coordinate system and a second coordinate system, the first coordinate system is used to determine the relative relationship between at least two points in space Position relationship; the second coordinate system is used to determine the relative position relationship between any two points in space; the first detection device is used to obtain the position information of the measurement area of the object to be measured in the first coordinate system; the second detection device , Used to obtain the position information of the test area of the test object in the second coordinate system, the field of view of the first detection device is larger than the field of view of the second detection device; provide a standard object, the standard object includes at least one feature point, feature A point is a point that can be recognized by the first detection device and the second detection device; the first feature point coordinate of at least one feature point in the first coordinate system is acquired by the first detection device; the at least one feature point is acquired by the second detection device The second feature point coordinates in the second coordinate system; the conversion relationship between the first coordinate system
  • the at least one feature point includes a first feature point; the conversion relationship includes a translation relationship between the first coordinate system and the second coordinate system; the step of obtaining the translation relationship includes: according to the coordinates of the first feature point and the second feature point The difference of the coordinates obtains the translation vector; the translation relationship is obtained according to the translation vector.
  • the at least one feature point includes a first feature point and a second feature point
  • the conversion relationship includes a rotation relationship between the first coordinate system and the second coordinate system
  • the step of obtaining the rotation relationship includes: obtaining the first feature point relative to The first displacement vector of the second feature point in the first coordinate system; obtain the second displacement vector of the first feature point relative to the second feature point in the second coordinate system; according to the first displacement vector and the second displacement vector The angle between to obtain the rotation relationship.
  • the initial detection equipment further includes a translation device for moving the object to be measured in a first direction and a second direction relative to the first detection device and the second detection device; the second coordinate system is used to move according to the translation device The vector and the detection position of the second device determine the relative positional relationship between any two points in space.
  • the first detection device is fixedly connected to the second detection device, and the first coordinate system is used to determine the relative positional relationship between two points in the field of view of the first detection device; or, the first coordinate system is used to The movement vector of and the detection position of the first detection device determine the relative positional relationship between any two points in the space.
  • the number of feature points is multiple, the standard object rotates around any axis parallel to the third direction and any angle less than 360° does not coincide with itself, and the third direction is perpendicular to the first direction and the second direction .
  • the second detection device is a height detection device, and the height of the standard object surface at the characteristic point has an extreme value; or, the second detection device is an imager, and the light intensity reflected on the standard object surface at the characteristic point has an extreme value .
  • the standard includes a hole, depression or protrusion; the characteristic point includes the center of the hole, depression or protrusion.
  • the technical solution of the present application also provides a detection device, including: a first coordinate system and a second coordinate system, the first coordinate system is used to determine the relative position relationship between at least two points in the space; the second coordinate system is used to determine the space The relative position relationship between any two points; the first detection device is used to obtain the position information of the measurement area of the object to be measured in the first coordinate system; the conversion relationship is used to determine the first coordinate system and the second coordinate system The relationship between the relative coordinate transformation; the second detection device is used to obtain the detection information of the area to be measured according to the coordinates of the area to be measured in the second coordinate system of the object to be measured, and the field of view of the first detection device is larger than that of the second The field of view of the detection device.
  • the conversion relationship includes: a translation relationship between the first coordinate system and the second coordinate system, and/or a rotation relationship between the first coordinate system and the second coordinate system.
  • it also includes a translation device for driving the object to be measured to move in the first direction and the second direction relative to the first detection device and the second detection device, the first detection device and the second detection device are relatively fixed; the translation relationship Including: the first distance between the first coordinate system and the second coordinate system along the first direction; the second distance between the first coordinate system and the second coordinate system along the second direction; the rotation angle relationship includes: the first coordinate system relative to the second coordinate system The rotation angle of the coordinate system around a third direction, which is perpendicular to the first direction and the second direction.
  • the first detection device is an imager
  • the second detection device is a confocal detection device, a three-coordinate detection device, a film thickness detection device, an interferometric detection device, or an imager.
  • the conversion relationship is configured to be obtained by the foregoing conversion relationship obtaining method.
  • the technical solution of the present application also provides a detection method, including: providing detection equipment; providing an object to be measured, which has an area to be measured; acquiring first position information of the area to be measured in a first coordinate system through a first detection device Obtain the second position information of the first position information in the second coordinate system according to the conversion relationship; use the second detection device to detect the area to be measured according to the second position information, and obtain the detection information of the area to be measured.
  • the initial detection equipment further includes a translation device for moving the object to be measured in a first direction and a second direction relative to the first detection device and the second detection device, the first direction and the second direction being parallel to the translation plane
  • the step of obtaining the first position information includes: making the detection area enter the field of view of the first detection device; after making the detection area enter the field of view of the first detection device, positioning the area to be measured and obtaining the first Position information; the step of acquiring detection information includes: using a translation device to translate the second detection device relative to the object to be measured according to the second position information, and align the detection area; Detect, obtain the detection information of the area to be tested.
  • the first detection device is an imager
  • the second detection device is an imager, a height detection device, or a thickness detection device.
  • the second detection device is a dispersive confocal device, an interferometric detection device, a three-coordinate device or a reflection spectrum detection device.
  • the detection equipment includes a conversion relationship that can determine the positional relationship between the first coordinate system and the second coordinate system, and the field of view of the first detection device is relatively large.
  • the device can easily locate the area to be measured and convert it to the second coordinate system through a conversion relationship, and then can detect the area to be measured according to the coordinates of the area to be measured in the second coordinate system by the second detection device. Therefore, the second detection device can quickly locate the area to be measured, thereby speeding up the detection speed.
  • FIG. 1 is a flowchart of each step of an embodiment of a method for obtaining a conversion relationship according to the present application
  • Figure 2 is a schematic diagram of the structure of the provided initial detection equipment
  • Figure 3 is a schematic diagram of a standard provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of acquiring the first feature point coordinates of the feature point in the first coordinate system
  • FIG. 5 is a schematic diagram of acquiring the second feature point coordinates of the feature point in the second coordinate system
  • Fig. 6 is a flowchart of each step in an embodiment of the detection method of the present application.
  • the detection speed of a specific area to be measured is slow.
  • the detection device is a dispersive confocal device
  • the object to be measured is generally detected by one or more spot light spots.
  • the method for detecting the detection area by the detection equipment includes: setting a detection step; controlling one or more light spots to move a detection step distance on the surface of the object to be tested each time until the height information of the detection area is collected. Due to the small spot size, the field of view of the detection device is small, and it is not easy to detect the detection area if the detection step size is large, resulting in a slow detection speed.
  • this application provides a method for obtaining a conversion relationship, a detection device, and a detection method.
  • the method for obtaining the conversion relationship includes: providing an initial detection device, including: a first coordinate system and a second coordinate system; and providing a standard object ,
  • the standard includes at least one feature point, the feature point is a point recognizable by the first detection device and the second detection device; the first feature point coordinate of the at least one feature point in the first coordinate system is acquired by the first detection device;
  • the second detection device obtains the second feature point coordinates of at least one feature point in the second coordinate system; obtains the conversion relationship between the first coordinate system and the second coordinate system through the first feature point coordinates and the second feature point coordinates.
  • the method can obtain the conversion relationship between the first coordinate system and the second coordinate system, so that the detection speed of the retrieval device with the conversion relationship can be obtained.
  • FIG. 1 is a flowchart of each step in an embodiment of the method for obtaining conversion relations according to the present application.
  • the methods for obtaining the conversion relationship include:
  • Step S01 Provide an initial detection device, the detection device comprising: a first coordinate system and a second coordinate system, the first coordinate system is used to determine the relative position relationship between at least two points in the space; the second coordinate system is used to determine the space The relative positional relationship between any two points; the first detection device is used to obtain the coordinates of the measurement area of the object to be measured in the first coordinate system; the second detection device is used to obtain the measurement area of the object to be measured in the first coordinate system For the coordinates in the second coordinate system, the field of view of the two-dimensional detection device is larger than the field of view of the three-dimensional detection device;
  • Step S02 providing a standard object, the standard object includes at least one characteristic point, and the characteristic point is a point recognizable by the first detection device and the second detection device;
  • Step S03 Acquire the first feature point coordinates of the at least one feature point in the first coordinate system through the first detection device;
  • Step S04 Obtain the second feature point coordinates of the at least one feature point in the second coordinate system through the second detection device;
  • Step S05 Obtain the conversion relationship between the first coordinate system and the second coordinate system through the first feature point coordinates and the second feature point coordinates.
  • FIG. 2 is a schematic diagram of the structure of the initial detection device provided for performing step S01.
  • the detection device includes: a first coordinate system and a second coordinate system, the first coordinate system is used to determine the relative position relationship between at least two points in space; the second coordinate system is used to determine the relative position between any two points in space
  • the first detection device 30 is used to obtain the position information of the measurement area of the object under the first coordinate system; the second detection device 20 is used to obtain the measurement area of the object under the second coordinate system According to the position information, the field of view of the first detection device 30 is larger than the field of view of the second detection device 20.
  • the first detection device 30 is an imager, such as an industrial camera. In other embodiments, the first detection device 30 may also be a microscope.
  • the second detection device 20 is a height detection device, such as a dispersive confocal device. In other embodiments, the height detection device may also be a three-coordinate detection device, a laser confocal device, or an interference detection device.
  • the second detection device 20 is a film thickness detection device, such as a reflection spectrum detection device.
  • the first detection device 30 is a gray-white camera, and the second detection device 20 is a color camera.
  • the second detection device 20 is a high-resolution microscope.
  • the field of view of the first detection device 30 is larger than the field of view of the second detection device 20, so the first detection device 30 can easily locate the area to be measured.
  • the initial detection device also includes a translation device 40 for moving the object to be tested in the first direction and the second direction relative to the first detection device 30 and the second detection device 20.
  • the initial testing equipment also includes an object stage 10 for carrying the object to be tested.
  • the translation device 40 is fixedly connected to the stage 10 for driving the stage 10 to move.
  • the first detection device 30 and the second detection device 20 are relatively fixedly arranged.
  • the translation device is fixedly connected to the first detection device and the second detection device 20 for driving the first detection device and the second detection device to move.
  • the first detection device 30 has a first built-in coordinate system, which is used to determine the coordinate system of the positional relationship between two points in the same field of view of the first detection device 30, that is, to determine the coordinate system that the first detection device 30 captures.
  • the relative positional relationship between the points on the surface of the object to be measured corresponding to each pixel in the picture.
  • the first coordinate system is used to determine the relative positional relationship between at least two points in the space.
  • the first coordinate system may be the first built-in coordinate system of the first detection device 30, or the first coordinate system may be a coordinate system jointly determined by the movement vector of the translation device 40 and the first built-in coordinate system.
  • the first coordinate system may be the first built-in coordinate system of the first detection device 30. Using the first built-in coordinate system as the first coordinate can simplify the calculation process.
  • the second detection device 20 is a single-point detection device, such as a single-point dispersion confocal device, and the detector of the second detection device 20 is a point detector
  • the surface of the object to be measured is scanned by the movement of the translation device 40 to determine The position information of each point on the surface of the object to be measured in the second coordinate system. That is, according to the movement vector of the translation device 40 when a point in the space is in the field of view of the second detection device 20, the positional relationship between any two points in the space can be determined.
  • the coordinate system jointly determined by the detection position of the second detection device 20 and the movement vector of the translation device 40 is the second coordinate system.
  • the second detection device 20 is a multi-point detection device, a line detection device or an area detection device, that is, when the detector of the second detection device 20 is a line detector or an area detector, such as a camera, a microscope or a multi-point confocal device.
  • the second detection device 20 includes a second built-in coordinate system, which is used to determine the relative position relationship between two points in the field of view of the second detection device 20, that is, to determine the object to be measured corresponding to each pixel of the picture taken by the second detection device 20 The relative positional relationship between points on the surface.
  • the relative positional relationship between two points in the field of view determined by the movement vector of the translation device 40 and the second built-in coordinate system can determine the relative positional relationship between any two points in space. That is, the coordinate system jointly determined by the movement vector of the translation device 40 and the second built-in coordinate system can be used as the second coordinate system.
  • the translation device 40 is used to drive the object to be measured to move relative to the first detection device 30 and the second detection device 20 in the first direction and the second direction, and the first direction and the second direction are coplanar.
  • the detection device further includes a rotating table for driving the stage 10 to rotate around a rotating shaft parallel to a third direction, and the third direction is parallel to the first direction and the second direction.
  • the second coordinate system includes two second coordinate axes parallel to the first direction and the second direction, respectively, and the coordinate plane on which the two second coordinate axes are located is the second coordinate plane. Because the first coordinate system relative to the second coordinate system does not have a rotation angle around the first direction and the second direction, or the rotation angle of the first coordinate system relative to the second coordinate system around the first direction and the second direction is zero; A coordinate system includes a first coordinate plane parallel to the second coordinate plane.
  • the first coordinate system and the second coordinate system do not have a relative translation relationship in the third direction;
  • the rotation relationship between one direction and the second direction. Therefore, the first coordinate system and the second coordinate may be a two-dimensional coordinate system. In other embodiments, the first coordinate system and the second coordinate system may also be three-dimensional coordinate systems.
  • the first detection device and the second detection device are relatively movable;
  • the translation device includes a first translation stage for driving the first detection device to move relative to the stage; a second translation stage for driving The second detection device moves relative to the stage.
  • the first detection device is a multi-point detection device, an area or line detection device, and the first coordinate system is a coordinate system jointly determined by the first built-in coordinate system of the first detection device and the movement vector of the first translation stage;
  • the second coordinate system is a coordinate system determined by the detection position of the first detection device and the movement vector of the second translation stage;
  • the second detection device is a multi-point detection device, area or line detection device At this time, the second coordinate system is a coordinate system jointly determined by the second built-in coordinate system of the second detection device and the movement vector of the second translation stage.
  • FIG. 3 is a schematic diagram of the standard 100 provided in step S02.
  • the standard 100 has a characteristic structure 101, the characteristic structure 101 includes at least one characteristic point, and the characteristic point is a point that can be recognized by the first detection device and the second detection device.
  • the feature points are points that can be identified by the first detection device and the second detection device, that is, the feature structure 101 can be determined according to the detection information of the first detection device and the second detection device.
  • the first detection device is an imager
  • the second detection device is a height detection device, such as a dispersive confocal device, a confocal microscope, and an interference detection device.
  • the second detection device is a dispersive confocal device
  • the height of the surface of the standard object 100 at the characteristic point refers to the position information of the surface of the standard object 100 at the characteristic point along the third direction.
  • the first detection device is an imager
  • the second detection device is an imager (such as a color camera)
  • the light intensity reflected by the standard object at the characteristic point has an extreme value, that is, the first detection device and the second detection device
  • the gray value of the image of the feature point acquired by the detection device has an extreme value.
  • the first detection device is an imager
  • the second detection device is a film thickness detection device (for example, a reflection spectrum detection device)
  • the standard includes a standard thin film, and the light intensity reflected by the standard at the characteristic point has an extreme value.
  • the gray value of the image of the feature point acquired by a detection device has an extreme value
  • the thickness of the standard film at the feature point has an extreme value.
  • the standard 100 includes a substrate and a characteristic structure 101 on the substrate, and the characteristic structure 101 is used to be detected to determine the conversion relationship.
  • the characteristic structure 101 may include a hole, depression or protrusion, and the center of the hole, depression or protrusion is a characteristic point.
  • the characteristic structure 101 includes a plurality of holes, and the center of the hole is the characteristic point.
  • the number of feature points is multiple, and the standard object 100 rotates around a rotation axis parallel to the third direction at any angle that is less than 360° and does not coincide with itself.
  • the number of feature points is multiple. If the standard object 100 rotates around the axis parallel to the third direction at an arbitrary angle of less than 360° and does not coincide with itself, the standard object 100 has rotational asymmetry along the third direction, so that it can pass The detection of the standard 100 determines the rotational relationship between the first coordinate system and the second coordinate system.
  • the number of feature points when there is no relative rotation between the first coordinate system and the second coordinate, the number of feature points may be one.
  • At least one feature point includes a first feature point and a second feature point.
  • the characteristic structure 101 includes a plurality of circular holes, a square hole and a triangular hole.
  • the feature structure 101 may include protrusions, depressions, or other shapes of holes.
  • the characteristic structure 101 may include any two holes with different properties and/or sizes.
  • the characteristic structure 101 includes square holes and triangular holes.
  • the first characteristic point is the center of the square hole; the second characteristic point is the center of the triangular hole. Or the first characteristic point is the center of the triangular hole; the second characteristic point is the center of the square hole.
  • Fig. 4 is a schematic diagram of obtaining the first feature point coordinates of at least one feature point in the first coordinate system through the first detection device 30 in step S03.
  • the first feature point coordinates are the coordinates of the feature point in the first coordinate system.
  • the size of the standard object 100 is smaller than the field of view of the first detection device 30.
  • An image of the entire surface of the standard object 100 can be acquired by one shot, so that the first structure coordinates of the characteristic structure 101 in the first coordinate system can be acquired.
  • the step of obtaining the coordinates of the first feature point includes: detecting the positions of the first feature point and the second feature point by the first detection device 30 to obtain the first feature point coordinates of the first feature point and the second feature point.
  • the step of detecting the positions of the first feature point and the second feature point by the first detection device 30 includes: placing the first feature point and the second feature point in the view of the first detection device 30 In the field; after the first feature point and the second feature point are in the field of view of the first detection device 30, take pictures of the first feature point and the second feature point to obtain the first feature point and the second feature point A feature point coordinate.
  • first coordinate system and the second coordinate system do not have a rotational relationship, that is, when the coordinate axes of the first built-in coordinate system and the second coordinate system of the first detection device are parallel to each other, only one The first feature point coordinate of the feature point in the first coordinate system.
  • 10 to 100 first feature point coordinates can be acquired.
  • the first detection device 30 is a two-dimensional detection device, such as an imaging device.
  • the first detection device 30 can only obtain the coordinates of the area to be measured projected on the first coordinate plane.
  • the coordinate relationship only includes the translation relationship and the rotation relationship in the first coordinate plane.
  • the first feature point is the projected coordinates of the feature point on the first coordinate plane, which can be two-dimensional coordinates (x1, y1) or three-dimensional coordinates (x1, y1, C), where C is a constant.
  • FIG. 5 is a schematic diagram of performing step S04 to obtain the second feature point coordinates of at least one feature point in the second coordinate system through the second detection device 20.
  • the second feature point coordinates are the coordinates of the feature point in the second coordinate system.
  • the first coordinate system and the second coordinate system have a rotational relationship, and at least one feature point includes the first feature point and the second feature point. At least the second feature point coordinates of the first feature point and the second feature point are acquired.
  • only the second feature point coordinates of one feature point may be acquired.
  • the step of obtaining the second feature point coordinates of the first feature point and the second feature point includes: detecting the positions of the first feature point and the second feature point by the second detection device 20 to obtain the first feature point and the second feature point The second feature point coordinate of the point.
  • the step of detecting the positions of the first feature point and the second feature point by the second detection device 20 includes: acquiring the coordinates of each point on the surface of the feature structure 101 in the second coordinate system; The coordinates of each point on the surface of the structure 101 in the second coordinate system obtain the second feature point coordinates of the first feature point and the second feature point in the second coordinate system.
  • the second detection device 20 is a single-point detection device, and the translation device 40 does not move so that only one point can be in the field of view of the second detection device 20.
  • the step of obtaining the coordinates of each point on the surface of the characteristic structure 101 in the second coordinate system includes: driving the standard object 100 to move relative to the second detection device 20 through the translation device 40 so that the second detection device 20 scans the surface of the standard object 100.
  • the translation device when the field of view of the second detection device is large, and the entire feature structure can be located in the field of view of the second detection device when the translation device does not move, the translation device may not be moved.
  • the feature structure 101 includes holes, protrusions, or depressions.
  • the step of obtaining the second feature point coordinates of the first feature point and the second feature point in the second coordinate system according to the coordinates of each point on the surface of the feature structure 101 in the second coordinate system includes: fitting the edge of the feature structure 101 to obtain Edge coordinates: Obtain the coordinates of the center point of the feature structure 101 according to the edge coordinates.
  • the second detection device 20 is a height detection device, which can obtain the edge of the hole according to the height of each point on the surface of the characteristic structure 101.
  • the second detection device 20 is a height detection device
  • the second feature point coordinates are the three-dimensional coordinates (x2, y2, z2) of the feature point in the second coordinate system.
  • the second detection device is a two-dimensional detection device, such as an imaging device.
  • the second detection device can only acquire the two-dimensional coordinates (x2, y2) of the feature point projected in the second coordinate plane.
  • the three-dimensional coordinates include coordinate values along the first direction, the second direction, and the third direction, respectively.
  • the coordinate value along the third direction in the three-dimensional coordinate is the height of the feature point.
  • the conversion relationship only includes the translation relationship and the rotation relationship in the second coordinate plane of the first coordinate system relative to the second coordinate system.
  • the method for obtaining the replacement relationship further includes: unifying the coordinates of the first feature point and the coordinates of the second feature point.
  • the step of unifying the first feature point coordinates and the second feature point coordinates includes: removing the coordinate values of the first feature point coordinates and the second feature point coordinates along the third direction; or, making the first feature point coordinates and the second feature point coordinates
  • the coordinate values of the characteristic point coordinates along the third direction are the same constant.
  • Step S05 is executed to obtain the conversion relationship between the first coordinate system and the second coordinate system through the coordinates of the first feature point and the coordinates of the second feature point.
  • the first detection device 30 there is a certain distance between the first detection device 30 and the second detection device 20, and the first built-in coordinate system has a rotational relationship with the second coordinate system.
  • the conversion relationship includes the translation relationship between the first coordinate system and the second coordinate system; and the rotation relationship between the first coordinate system and the second coordinate system.
  • the conversion relationship may not include the rotation relationship between the first coordinate system and the second coordinate system.
  • the step of obtaining the rotation relationship includes: obtaining the first displacement vector of the first feature point relative to the second feature point in the first coordinate system; obtaining the second feature point relative to the second feature point in the second coordinate system Displacement vector; obtain the rotation relationship according to the angle between the first displacement vector and the second displacement vector.
  • the step of obtaining the first displacement vector includes: obtaining the difference between the first feature point coordinates of the first feature point and the second feature point to obtain the first displacement vector; the step of obtaining the first displacement vector includes: obtaining the first feature point and the first feature point The second feature point coordinate difference of the two feature points is used to obtain the second displacement vector.
  • the optical axes of the first detection device 30 and the second detection device 20 are parallel, and the rotation relationship only includes the rotation angle of the first coordinate system relative to the second coordinate system about the rotation axis parallel to the third direction.
  • the conversion relationship includes a translation relationship and a rotation relationship
  • the step of obtaining the translation relationship includes: performing rotation processing on the first feature point coordinates of the first feature point through the rotation relationship to eliminate the image of the translation relationship caused by the rotation angle , Acquire the coordinates of the third feature point; Acquire the translation vector according to the difference between the coordinates of the second feature point and the coordinates of the third feature point.
  • the translation relationship includes: a first distance between the first coordinate system and the second coordinate system along the first direction; and the second distance between the first coordinate system and the second coordinate system along the second direction.
  • the step of obtaining the translation relationship includes: obtaining the component of the translation vector in the first direction to obtain the first distance; obtaining the component of the translation vector in the second direction to obtain the second distance.
  • the first feature coordinates in the first coordinate system are (x1, y1, z1); the second feature coordinates in the second coordinate system are (x2, y2, z2), the translation relationship is T, and the rotation relationship is R ,
  • the first feature coordinate, the second feature coordinate, the translation relationship and the conversion relationship satisfy the following formula (1):
  • the translation relationship T and the rotation relationship R can be obtained by solving formula (1).
  • R and T According to the first feature point coordinates and the second feature point coordinates of the at least three feature points and applying formula (1), R and T can be obtained.
  • R and T can be obtained according to the first feature point coordinates and the second feature point coordinates of at least two feature points.
  • the first coordinate system does not have a translation in the third direction and a rotation angle around the first direction and the second direction relative to the second coordinate system
  • the first feature point coordinates and the second feature point coordinates are omitted.
  • the direction component is:
  • the first feature coordinates in the first coordinate system are (x1, y1); the second feature coordinates in the second coordinate system are (x2, y2), the translation relationship is T, and the rotation relationship is R.
  • the first feature coordinates, the second feature coordinates, the translation relationship and the conversion relationship satisfy the following formula (3):
  • the step of obtaining the translation relationship includes: obtaining a translation vector according to the difference between the coordinates of the first feature point and the coordinate of the second feature point; obtaining the translation relationship according to the translation vector .
  • the rotation relationship further includes: the rotation angle of the first coordinate system relative to the second coordinate system around the first direction and the second direction.
  • the technical solution of the present application also provides a detection device, including:
  • a first coordinate system and a second coordinate system the first coordinate system is used to determine the relative positional relationship between at least two points in space; the second coordinate system is used to determine the relative positional relationship between any two points in the space;
  • the first detection device 30 is configured to obtain first position information of the area to be measured of the object to be measured in the first coordinate system
  • the conversion relationship is used to determine the relative coordinate conversion relationship between the first coordinate system and the second coordinate system
  • the second detection device 20 is configured to obtain detection information of the area to be measured according to the second position information of the area to be measured in the second coordinate system of the object to be measured.
  • the field of view of the first detection device 30 is larger than that of the second detection device 20 Field of view.
  • the conversion relationship includes: the translation relationship between the first coordinate system and the second coordinate system, and/or the rotation angle relationship between the first coordinate system and the second coordinate system.
  • the detection equipment further includes a translation device 40 for driving the object to be measured to move in a first direction and a second direction relative to the first detection device 30 and the second detection device 20.
  • the first direction and the second direction share the same noodle;
  • the translation relationship includes: the first distance between the first coordinate system and the second coordinate system in the first direction; the second distance between the first coordinate system and the second coordinate system in the second direction; the rotation angle relationship includes: the first coordinate system relative to The rotation angle of the second coordinate system around a third direction, the third direction being perpendicular to the first direction and the second direction.
  • the first detection device 30 is an imager; the second detection device 20 is a confocal detection device, a three-coordinate detection device, a film thickness detection device, an interferometric detection device, or an imager.
  • the second coordinate system is used to determine the relative positional relationship between any two points in space according to the movement vector of the translation device 40 and the detection position of the second device.
  • the first detection device 30 is fixedly connected to the second detection device 20, and the first coordinate system is used to determine the relative positional relationship between two points in the field of view of the first detection device 30;
  • the first coordinate system is used to determine the relative positional relationship between any two points in space according to the movement vector of the translation device 40 and the detection position of the first detection device 30.
  • the conversion relationship is configured to be acquired according to the conversion relationship acquisition method of the previous embodiment.
  • the detection equipment provided by the technical solution of the present application includes a conversion relationship that can determine the positional relationship between the first coordinate system and the second coordinate system, and the field of view of the first detection device 30 is relatively large. It is easier to locate the area to be measured and convert it to the second coordinate system through the conversion relationship, and then the second detection device 20 can detect the area to be measured according to the coordinates of the area to be measured in the second coordinate system. Therefore, the second detection device 20 can quickly locate the area to be measured, thereby accelerating the detection speed.
  • Fig. 6 is a flowchart of each step of an embodiment of the detection method of the present application.
  • the technical solution of the present application also provides an embodiment of a detection method.
  • step S12 to provide an object to be tested, and the object to be tested has an area to be tested;
  • the initial detection equipment also includes a translation device 40 for moving the object to be measured relative to the first detection device 30 and the second detection device 20 in a first direction and a second direction, the first direction and the second direction being parallel to the translation plane.
  • the detection device is the same as the detection device in the previous embodiment, and will not be repeated here.
  • the area to be tested is an area whose detection information needs to be obtained by the second detection device.
  • the detection zone may include one or more points.
  • Step S13 is executed to obtain the first position information of the area to be measured in the first coordinate system through the first detection device 30.
  • the step of obtaining the first position information includes: bringing the detection area into the field of view of the first detection device 30; after bringing the detection area into the field of view of the first detection device 30, positioning the area to be measured and obtaining the first detection area One location information.
  • the object to be measured is translated in the translation plane relative to the first detection device 30 by the translation device 40, so that the detection area enters the field of view of the first detection device 30.
  • the step of locating the area to be measured and acquiring first position information of the area to be measured includes: taking an image of the object to be measured; and acquiring the first position information of the area to be measured according to the image.
  • the first position information is the coordinate information of the area to be measured projected in a plane parallel to the first direction and the second direction.
  • the rotation angle relationship only includes the rotation angle of the first coordinate system relative to the second coordinate system around the third direction.
  • Step S14 is executed to obtain the second position information of the first position information in the second coordinate system according to the conversion relationship.
  • the first position information in the first coordinate system is (x3, y3, z3); the second position information in the second coordinate system (x4, y4, z4), the translation relationship is T, the rotation relationship is R, then the formula is satisfied (4):
  • the first position information be (x3, y3); the second position information in the second coordinate system (x4, y4), the translation relationship is T, and the rotation relationship is R, then the formula (5) is satisfied:
  • Step S15 is performed, and the second detection device 20 detects the area to be tested according to the second position information, and obtains the detection information of the area to be tested.
  • the step of acquiring detection information includes: using the translation device 40 to translate the second detection device 20 relative to the object to be measured according to the second position information, and align the detection area; Detect, obtain the detection information of the area to be tested.
  • the step of aligning the detection area further includes: acquiring the second position information in the second coordinate plane. Projection information; according to the projection information, the second detection device 20 is translated relative to the object to be measured.
  • the second position information is three-dimensional coordinates (x4, y4, z4)
  • the coordinates of the second position information along the third direction are removed, that is, the second position information is converted into (x4, y4).
  • the second position information is two-dimensional coordinates (x4, y4), let the projection information be equal to the second position information.
  • the second detection device 20 is a height detection device, and the detection information is the height information of the area to be measured.
  • the detection information is the film thickness information of the area to be measured.
  • the detection information is image information of the area to be measured, such as a color image.
  • the field of view of the first detection device 30 is relatively large, and the area to be measured can be easily located by the first detection device 30, and converted to the second coordinate system through the conversion relationship, and then The second detection device 20 can detect the area to be measured according to the coordinates of the area to be measured in the second coordinate system. Therefore, the second detection device 20 can quickly locate the area to be measured, thereby accelerating the detection speed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种转换关系的获取方法、检测设备及检测方法,其中,所述转换关系的获取方法包括:提供初始检测设备,包括:第一坐标系和第二坐标系;提供标准物,所述标准物包括至少一个特征点,所述特征点为所述第一检测装置和第二检测装置可识别的点;通过所述第一检测装置获取所述至少一个特征点在第一坐标系中的第一特征点坐标;通过所述第二检测装置获取所述至少一个特征点在第二坐标系中的第二特征点坐标;通过所述第一特征点坐标和第二特征点坐标,获取所述第一坐标系和第二坐标系的转换关系。所述方法能够获取第一坐标系和第二坐标系的转换关系,从而能够提高具有所述转换关系的检测设备的检测速度。

Description

转换关系的获取方法、检测设备及检测方法 技术领域
本申请涉及检测领域,特别涉及一种转换关系的获取方法、检测设备及检测方法。
背景技术
随着现代工业的发展,精密加工被应用到越来越多的领域。同时,在许多应用场景下,对于加工精度也有越来越高的要求。为了满足对加工精度的需求,提高所加工产品的合格率,需要经常对加工过程及加工的产品进行关于形貌畸变的测试,以确保形貌畸变在可容忍的范围之内。
现有的三维畸变检测设备可以分为接触式检测设备和非接触式检测设备。非接触式检测设备与待测物不接触,能够减少对待测物表面的损伤。非接触式检测手段在三维畸变检测中的应用越来越广泛。非接触式检测方法包括:激光三角法、干涉法、共聚焦法等光学测量方法。
由于三维检测设备的视场较小,不容易对待测物表面特定位置进行定位,因此检测速度较慢,准确性较差。
发明内容
本申请解决的问题是提供一种转换关系获取方法、检测设备及检测方法,以对待测物特定的待测区进行快速检测。
为解决上述问题,本申请提供一种转换关系获取方法,包括:提供初始检测设备,包括:第一坐标系和第二坐标系,第一坐标系用于确定空间中至少两点之间的相对位置关系;第二坐标系用于确定空间任意两点之间的相对位置关系;第一检测装置,用于获取待测物的待测区在第一坐标系下的位置信息;第二检测装置,用于获取待测物的待测区在第二坐标系下的位置信息,第一检测装置的视场大于第二检测装置的视场;提供标准物,标准物包括至少一个特征点,特征点为第一检测装置和第二检测装置可识别的点;通过第一检测装置获取至少一个特征点在第一坐标系中的第一特征点坐标;通过第二检测装置获取至少一个特征点在第二坐标系中的第二特征点坐标;通过第一特征点坐标和第二特征点坐标,获取第一坐标系和第二坐标系的转换关系。
可选的,至少一个特征点包括第一特征点;转换关系包括第一坐标系和 第二坐标系之间的平移关系;获取平移关系的步骤包括:根据第一特征点坐标与第二特征点坐标之差获取平移矢量;根据平移矢量获取平移关系。
可选的,至少一个特征点包括第一特征点和第二特征点;转换关系包括第一坐标系和第二坐标系之间的旋转关系,获取旋转关系的步骤包括:获取第一特征点相对于第二特征点在第一坐标系中的第一位移矢量;获取第一特征点相对于第二特征点在第二坐标系下的第二位移矢量;根据第一位移矢量和第二位移矢量之间的夹角,获取旋转关系。
可选的,初始检测设备还包括平移装置,用于使待测物相对于第一检测装置和第二检测装置沿第一方向和第二方向移动;第二坐标系用于根据平移装置的移动矢量及第二装置的检测位置确定空间任意两点之间的相对位置关系。
可选的,第一检测装置相对第二检测装置固定连接,第一坐标系用于确定第一检测装置视场中两点之间的相对位置关系;或者,第一坐标系用于根据平移装置的移动矢量和第一检测装置的检测位置确定空间任意两点之间的相对位置关系。
可选的,特征点的个数为多个,标准物绕平行于第三方向的任一转轴旋转小于360°的任一角度不与自身重合,第三方向垂直于第一方向和第二方向。
可选的,第二检测装置为高度检测设备,在特征点处标准物表面的高度具有极值;或者,第二检测装置为影像仪,在特征点处标准物表面反射的光强具有极值。
可选的,标准物包括孔、凹陷或凸起;特征点包括孔、凹陷或凸起的中心。
本申请技术方案还提供一种检测设备,包括:第一坐标系和第二坐标系,第一坐标系用于确定空间中至少两点之间的相对位置关系;第二坐标系用于确定空间任意两点之间的相对位置关系;第一检测装置,用于获取待测物的待测区在第一坐标系下的位置信息;转换关系,用于确定第一坐标系与第二坐标系之间的相对坐标变换关系;第二检测装置,用于根据待测物的待测区在第二坐标系下的坐标,获取待测区的检测信息,第一检测装置的视场大于第二检测装置的视场。
可选的,转换关系包括:第一坐标系与第二坐标系之间的平移关系,和/或,第一坐标系与第二坐标系之间的旋转关系。
可选的,还包括平移装置,用于带动待测物相对于第一检测装置和第二检测装置沿第一方向和第二方向移动,第一检测装置和第二检测装置相对固定;平移关系包括:第一坐标系与第二坐标系沿第一方向的第一距离;第一坐标系与第二坐标系沿第二方向的第二距离;转角关系包括:第一坐标系相对于第二坐标系绕第三方向的旋转角,第三方向垂直于第一方向和第二方向。
可选的,第一检测装置为影像仪;第二检测装置为共聚焦检测设备、三坐标检测设备、膜厚检测设备、干涉法检测设备或影像仪。
可选的,转换关系被配置为前述提供的转换关系的获取方法获取。
本申请技术方案还提供一种检测方法,包括:提供检测设备;提供待测物,待测物具有待测区;通过第一检测装置获取待测区在第一坐标系下的第一位置信息;根据转换关系获取第一位置信息在第二坐标系下的第二位置信息;通过第二检测装置根据第二位置信息对待测区进行检测,获取待测区的检测信息。
可选的,初始检测设备还包括平移装置,用于使待测物相对于第一检测装置和第二检测装置沿第一方向和第二方向移动,第一方向和第二方向平行于平移面;获取第一位置信息的步骤包括:使检测区进入第一检测装置的视场中;使检测区进入第一检测装置的视场中之后,对待测区进行定位,获取待测区的第一位置信息;获取检测信息的步骤包括:通过平移装置根据第二位置信息使第二检测装置相对于待测物平移,对检测区进行对准;对准之后,通过第二检测装置对待测区进行检测,获取待测区的检测信息。
可选的,第一检测装置为影像仪;第二检测装置为影像仪、高度检测设备或厚度检测设备。
可选的,第二检测装置为色散共聚焦设备、干涉法检测设备、三坐标设备或反射谱检测设备。
与现有技术相比,本申请的技术方案具有以下优点:
本申请技术方案提供的检测设备中,检测设备包括转换关系,转换关系能够确定第一坐标系和第二坐标系之间的位置关系,且第一检测装置的视场较大,通过第一检测装置能够较容易地对待测区进行定位,并通过转换关系转换至第二坐标系中,进而能够通过第二检测装置根据待测区在第二坐标系下的坐标对待测区进行检测。因此,第二检测装置能够快速地对待测区进行定位,从而加 快检测速度。
附图说明
图1是本申请的转换关系的获取方法一实施例各步骤的流程图;
图2是提供的初始检测设备的结构示意图;
图3为本申请实施例提供的一种标准物的示意图;
图4为一种获取特征点在第一坐标系中的第一特征点坐标的示意图;
图5为一种获取特征点在第二坐标系中的第二特征点坐标的示意图;
图6是本申请的检测方法一实施例中各步骤的流程图。
具体实施方式
检测设备存在诸多问题,例如:对特定待测区的检测速度较慢。现结合一种检测设备分析其对特定待测区检测速度慢的原因。
若检测设备为色散共聚焦设备,由于色散共聚焦设备的视场较小,一般通过一个或多个点光斑对待测物进行检测。通过检测设备对检测区进行检测的方法包括:设定一个检测步长;每采样一次控制一个或多个光斑在待测物表面移动一个检测步长的距离,直至采集到检测区的高度信息。由于光斑尺寸较小,检测设备的视场较小,且如果检测步长较大不容易检测到检测区,从而导致检测速度较慢。
为解决技术问题,本申请提供了转换关系的获取方法、检测设备及检测方法,其中,转换关系的获取方法包括:提供初始检测设备,包括:第一坐标系和第二坐标系;提供标准物,标准物包括至少一个特征点,特征点为第一检测装置和第二检测装置可识别的点;通过第一检测装置获取至少一个特征点在第一坐标系中的第一特征点坐标;通过第二检测装置获取至少一个特征点在第二坐标系中的第二特征点坐标;通过第一特征点坐标和第二特征点坐标,获取第一坐标系和第二坐标系的转换关系。方法能够获取第一坐标系和第二坐标系的转换关系,从而能够具有转换关系的检索设备的检测速度。
为使本申请的上述目的、特征和优点能够更为明显易懂,下面结合附图对本申请的具体实施例做详细的说明。
图1是本申请的转换关系的获取方法一实施例中各步骤的流程图。
请参考图1,转换关系获取方法包括:
步骤S01,提供初始检测设备,该检测设备包括:第一坐标系和第二坐标 系,第一坐标系用于确定空间中至少两点之间的相对位置关系;第二坐标系用于确定空间任意两点之间的相对位置关系;第一检测装置,用于获取待测物的待测区在第一坐标系下的坐标;第二检测装置,用于获取待测物的待测区在第二坐标系下的坐标,二维检测装置的视场大于三维检测装置的视场;
步骤S02,提供标准物,标准物包括至少一个特征点,特征点为第一检测装置和第二检测装置可识别的点;
步骤S03,通过第一检测装置获取至少一个特征点在第一坐标系中的第一特征点坐标;
步骤S04,通过第二检测装置获取至少一个特征点在第二坐标系中的第二特征点坐标;
步骤S05,通过第一特征点坐标和第二特征点坐标,获取第一坐标系和第二坐标系的转换关系。
以下结合附图对转换关系的获取方法各步骤进行详细说明。
请参考图2,该图为执行步骤S01提供的初始检测设备的结构示意图。该检测设备包括:第一坐标系和第二坐标系,第一坐标系用于确定空间中至少两点之间的相对位置关系;第二坐标系用于确定空间任意两点之间的相对位置关系;第一检测装置30,用于获取待测物的待测区在第一坐标系下的位置信息;第二检测装置20,用于获取待测物的待测区在第二坐标系下的位置信息,第一检测装置30的视场大于第二检测装置20的视场。
本实施例中,第一检测装置30为影像仪,例如工业相机。在其他实施例中,第一检测装置30还可以为显微镜。
本实施例中,第二检测装置20为高度检测设备,例如色散共聚焦设备。在其他实施例中,高度检测设备还可以为三坐标检测设备、激光共聚焦设备或干涉检测设备等。或者,第二检测装置20为膜厚检测设备,例如反射谱检测设备。或者,第一检测装置30为灰白相机,第二检测装置20为彩色相机。或者,第二检测装置20为高分辨率的显微镜。
第一检测装置30的视场大于第二检测装置20的视场,则第一检测装置30容易对待测区进行定位。
初始检测设备还包括平移装置40,用于使待测物相对于第一检测装置30 和第二检测装置20沿第一方向和第二方向移动。
初始检测设备还包括载物台10,用于承载待测物。
具体的,本实施例中,平移装置40与载物台10固定连接,用于带动载物台10移动。第一检测装置30与第二检测装置20相对固定设置而成。
在其他实施例中,平移装置与第一检测装置和第二检测装置20固定连接,用于带动第一检测装置和第二检测装置移动。
本实施例中,第一检测装置30具有第一内建坐标系,用于确定第一检测装置30同一视场中两个点之间位置关系的坐标系,即确定第一检测装置30拍摄的图片各像素对应的待测物表面各点之间的相对位置关系。
第一坐标系用于确定空间中至少两点之间的相对位置关系。第一坐标系可以为第一检测装置30的第一内建坐标系,或者,第一坐标系可以为由平移装置40的移动矢量和第一内建坐标系共同确定的坐标系。具体的,本实施例中,第一坐标系可以为第一检测装置30的第一内建坐标系。将第一内建坐标系作为第一坐标能够简化计算过程。
当第二检测装置20为单点检测装置,例如单点色散共聚焦设备,且第二检测装置20的探测器为点探测器时,通过平移装置40的移动对待测物表面进行扫描,从而确定待测物表面各点在第二坐标系中的位置信息。即根据当空间一点处于第二检测装置20视场中时,平移装置40的移动矢量能够确定空间任意两点之间的位置关系。本实施例中,第二检测装置20的检测位置及平移装置40的移动矢量共同确定的坐标系为第二坐标系。
当第二检测装置20为多点检测装置、线检测装置或区域检测装置,即第二检测装置20的探测器为线探测器或区域探测器时,例如相机、显微镜或多点共聚焦设备。第二检测装置20包括第二内建坐标系,用于确定第二检测装置20视场中两点之间的相对位置关系,即确定第二检测装置20拍摄的图片各像素对应的待测物表面各点之间的相对位置关系。通过平移装置40的移动矢量及第二内建坐标系确定的视场中两点之间的相对位置关系,能够确定空间任意两点之间的相对位置关系。即可以将平移装置40的移动矢量及第二内建坐标系共同确定的坐标系作为第二坐标系。
具体的,本实施例中,平移装置40用于带动待测物相对于第一检测装置 30和第二检测装置20沿第一方向和第二方向移动,第一方向和第二方向共面。
本实施例中,检测设备还包括旋转台,用于带动载物台10绕平行于第三方向的转轴旋转,第三方向平行于第一方向和第二方向。
本实施例中,第二坐标系包括分别平行于第一方向和第二方向的两个第二坐标轴,两个第二坐标轴所在的坐标平面为第二坐标平面。由于第一坐标系相对第二坐标系不具有绕第一方向和第二方向的旋转角,或说第一坐标系相对第二坐标系绕第一方向和第二方向的旋转角为零;第一坐标系包括平行于第二坐标平面的第一坐标平面。
由于本实施例中,第一检测装置30和第二检测装置20物镜的光轴相互平行,则第一坐标系和第二坐标系不存在沿第三方向的相对平移关系;且不具有绕第一方向和第二方向的旋转关系。因此,第一坐标系和第二坐标可以为二维坐标系。在其他实施例中,第一坐标系和第二坐标系也可以为三维坐标系。
在另一实施例中,第一检测装置和第二检测装置可相对移动;平移装置包括第一平移台,用于带动第一检测装置相对于载物台移动;第二平移台,用于带动第二检测装置相对于载物台移动。第一检测装置为多点检测装置、区域或线检测装置,第一坐标系为第一检测装置的第一内建坐标系及第一平移台的移动矢量共同确定的坐标系;当第二检测装置为单点检测装置时,第二坐标系为第一检测装置的检测位置及第二平移台的移动矢量共同确定的坐标系;当第二检测装置为多点检测装置、区域或线检测装置时,第二坐标系为第二检测装置的第二内建坐标系及第二平移台的移动矢量共同确定的坐标系。
请参考图3,该图为执行步骤S02提供的标准物100的示意图。该标准物100具有特征结构101,特征结构101包括至少一个特征点,特征点为第一检测装置和第二检测装置可识别的点。
特征点为第一检测装置和第二检测装置可识别的点,即根据第一检测装置和第二检测装置的检测信息能够确定特征结构101。
本实施例中,第一检测装置为影像仪,第二检测装置为高度检测设备,例如:色散共聚焦设备、共聚焦显微镜和干涉检测装置,具体的,第二检测装置为色散共聚焦设备,则在特征点处标准物100反射的光强具有极值,第一检测装置获取的特征点的图像的灰度值具有极值,且特征点处标准物100表面的高 度具有极值。
特征点处标准物100表面的高度指的是特征点处标准物100表面沿第三方向的位置信息。
在其他实施例中,第一检测装置为影像仪,第二检测装置为影像仪(例如彩色相机),则在特征点处标准物反射的光强具有极值,即第一检测装置和第二检测装置获取的特征点的图像的灰度值具有极值。
或者,第一检测装置为影像仪,第二检测装置为膜厚检测设备(例如,反射谱检测设备),标准物包括标准薄膜,则在特征点处标准物反射的光强具有极值,第一检测装置获取的特征点的图像的灰度值具有极值,且特征点处标准薄膜的厚度具有极值。
本实施例中,标准物100包括基板和位于基板上的特征结构101,特征结构101用于被检测从而确定转换关系。
特征结构101可以包括孔、凹陷或凸起,孔、凹陷或凸起的中心为特征点。具体的,本实施例中,特征结构101包括多个孔,孔的中心为特征点。
本实施例中,特征点的个数为多个,标准物100绕平行于第三方向的转轴旋转小于360°的任意角度与自身不重合。
特征点的个数为多个,标准物100绕平行于第三方向的转轴旋转小于360°的任意角度与自身不重合,则标准物100具有沿第三方向的旋转不对称性,从而能够通过标准物100的检测确定第一坐标系和第二坐标系之间的旋转关系。
在其他实施例中,当第一坐标系和第二坐标没有相对旋转时,特征点的个数可以为一个。
本实施例中,至少一个特征点包括第一特征点和第二特征点。具体的,特征结构101包括:多个圆孔、一个方孔和一个三角形孔。在其他实施例中,特征结构101可以包括凸起、凹陷或其他形状的孔。
本实施例中,特征结构101可以包括任意两个不同性质和/或尺寸的孔。
具体的,特征结构101包括方孔和三角形孔。第一特征点为方孔的中心;第二特征点为三角孔的中心。或者第一特征点为三角孔的中心;第二特征点为方形孔的中心。
请参考图4,该图为执行步骤S03通过第一检测装置30获取至少一个特 征点在第一坐标系中的第一特征点坐标的示意图。
第一特征点坐标为特征点在第一坐标系下的坐标。
本实施例中,标准物100的尺寸小于第一检测装置30的视野。通过一次拍摄能够获取标准物100整个表面的图像,从而能够获取特征结构101在第一坐标系中的第一结构坐标。
获取第一特征点坐标的步骤包括:通过第一检测装置30对第一特征点和第二特征点的位置进行检测,获取第一特征点和第二特征点的第一特征点坐标。
具体的,本实施例中,通过第一检测装置30对第一特征点和第二特征点的位置进行检测的步骤包括:使第一特征点和第二特征点处于第一检测装置30的视场中;使第一特征点和第二特征点处于第一检测装置30的视场中之后,对第一特征点和第二特征点拍摄图片,获取第一特征点和第二特征点的第一特征点坐标。
在其他实施例中,当第一坐标系和第二坐标系不具有旋转关系时,即第一检测装置的第一内建坐标系与第二坐标系的坐标轴相互平行时,可以仅获取一个特征点在第一坐标系中的第一特征点坐标。
本实施例中,为提高转换关系的计算精度,可以获取10至100个第一特征点坐标。
需要说明的是本实施例中,第一检测装置30为二维检测装置,例如影像设备。第一检测装置30仅能够获取待测区在第一坐标平面投影的坐标。由于本实施例中,坐标关系仅包括第一坐标平面内的平移关系和旋转关系。第一特征点为特征点在第一坐标平面投影的坐标,可以为二维坐标(x1,y1),也可以为三维坐标(x1,y1,C),其中,C为常数。
请参考图5,该图为执行步骤S04通过第二检测装置20获取至少一个特征点在第二坐标系中的第二特征点坐标的示意图。
第二特征点坐标为特征点在第二坐标系下的坐标。
本实施例中,第一坐标系和第二坐标系具有旋转关系,至少一个特征点包括第一特征点和第二特征点。至少获取第一特征点和第二特征点的第二特征点坐标。
在其他实施例中,当第一坐标系和第二坐标系不存在旋转关系时,可以仅 获取一个特征点的第二特征点坐标。
获取第一特征点和第二特征点的第二特征点坐标的步骤包括:通过第二检测装置20对第一特征点和第二特征点的位置进行检测,获取第一特征点和第二特征点的第二特征点坐标。
具体的,本实施例中,通过第二检测装置20对第一特征点和第二特征点的位置进行检测的步骤包括:获取特征结构101表面各点在第二坐标系下的坐标;根据特征结构101表面各点在第二坐标系下的坐标获取第一特征点和第二特征点在第二坐标系中的第二特征点坐标。
本实施例中,第二检测装置20为单点检测设备,在平移装置40不移动使仅能有一个点处于第二检测装置20的视场中。获取特征结构101表面各点在第二坐标系下的坐标的步骤包括:通过平移装置40带动标准物100相对于第二检测装置20移动,使第二检测装置20对标准物100表面进行扫描。
在其他实施例中,当第二检测装置的视场较大,在平移装置不移动的情况下,整个特征结构均能够位于第二检测装置的视场中,则可以不移动平移装置。
特征结构101包括孔、凸起或凹陷。根据特征结构101表面各点在第二坐标系下的坐标获取第一特征点和第二特征点在第二坐标系中的第二特征点坐标的步骤包括:拟合特征结构101的边缘,获取边缘坐标;根据边缘坐标获取特征结构101中心点的坐标。
第二检测装置20为高度检测装置,能够根据特征结构101表面各点的高度,获取孔的边缘。
本实施例中,第二检测装置20为高度检测装置,第二特征点坐标为特征点在第二坐标系下的三维坐标(x2,y2,z2)。
在其他实施例中,第二检测装置为二维检测装置,例如影像设备。第二检测装置仅能够获取特征点在第二坐标平面内投影的二维坐标(x2,y2)。
三维坐标包括:分别沿第一方向、第二方向和第三方向的坐标值。其中三维坐标中沿第三方向的坐标值为特征点的高度。
本实施例中,转换关系仅包括第一坐标系相对第二坐标系沿第二坐标平面内的平移关系和旋转关系。为获取第一坐标系和第二坐标系之间的转换关系,装换关系的获取方法还包括:统一第一特征点坐标和第二特征点坐标。具体的, 统一第一特征点坐标和第二特征点坐标的步骤包括:去除第一特征点坐标和第二特征点坐标沿第三方向的坐标值;或者,令第一特征点坐标和第二特征点坐标沿第三方向的坐标值为相同的常数。
执行步骤S05,通过第一特征点坐标和第二特征点坐标,获取第一坐标系和第二坐标系的转换关系。
本实施例中,第一检测装置30和第二检测装置20之间具有一定距离,且第一内建坐标系相对第二坐标系具有旋转关系。
本实施例中,转换关系包括第一坐标系和第二坐标系之间的平移关系;第一坐标系和第二坐标系之间的旋转关系。在其他实施例中,当第一内建坐标系与第二坐标系的坐标轴分别平行且正方向相同时,转换关系可以不包括第一坐标系和第二坐标系之间的旋转关系。
获取旋转关系的步骤包括:获取第一特征点相对于第二特征点在第一坐标系中的第一位移矢量;获取第一特征点相对于第二特征点在第二坐标系下的第二位移矢量;根据第一位移矢量和第二位移矢量之间的夹角,获取旋转关系。
获取第一位移矢量的步骤包括:获取第一特征点和第二特征点的第一特征点坐标之差,得到第一位移矢量;获取第一位移矢量的步骤包括:获取第一特征点和第二特征点的第二特征点坐标之差,得到第二位移矢量。
本实施例中,第一检测装置30和第二检测装置20的光轴平行,旋转关系仅包括第一坐标系相对于第二坐标系绕平行于第三方向的转轴的旋转角。
具体的,本实施例中,转换关系包括平移关系和旋转关系,获取平移关系的步骤包括:通过旋转关系对第一特征点的第一特征点坐标进行旋转处理,消除旋转角对平移关系的影像,获取第三特征点坐标;根据第二特征点坐标与第三特征点坐标之差,获取平移矢量。
平移关系的包括:第一坐标系与第二坐标系沿第一方向的第一距离;第一坐标系与第二坐标系沿第二方向的第二距离。获取平移关系的步骤包括:获取平移矢量在第一方向上的分量,得到第一距离;获取平移矢量在第二方向上的分量,得到第二距离。
具体的,第一坐标系下的第一特征坐标为(x1,y1,z1);第二坐标系下的第二特征坐标为(x2,y2,z2),平移关系为T,旋转关系为R,第一特征坐标、 第二特征坐标、平移关系和转换关系满足以下公式(1):
Figure PCTCN2020089524-appb-000001
根据多个特征点在第一坐标系下的第一特征点坐标,及在第二坐标系下的第二特征坐标,求解公式(1)可以获得平移关系T和旋转关系R。
根据至少三个特征点的第一特征点坐标和第二特征点坐标并应用公式(1)即可以获取R和T。
本实施例中,由于平移关系不包括沿第三方向的平移关系,且旋转关系仅包括绕平行于第三方向转轴的旋转角,则z1=C;z2=C,C为常数,以下以C=1为例,即公式(1)演变为公式(2):
Figure PCTCN2020089524-appb-000002
根据至少两个特征点的第一特征点坐标和第二特征点坐标可以获取R和T。
或者,当第一坐标系相对于第二坐标系不具有沿第三方向的平移及绕第一方向第二方向的旋转角时,将第一特征点坐标和第二特征点坐标略去第三方向分量,则有:
第一坐标系下的第一特征坐标为(x1,y1);第二坐标系下的第二特征坐标为(x2,y2),平移关系为T,旋转关系为R。第一特征坐标、第二特征坐标、平移关系和转换关系满足以下公式(3):
Figure PCTCN2020089524-appb-000003
在其他实施例中,当转换关系仅包括平移关系不包括旋转关系时,获取平移关系的步骤包括:根据第一特征点坐标与第二特征点坐标之差获取平移矢量;根据平移矢量获取平移关系。或者,当第一检测装置和第二检测装置的光轴不平行时;旋转关系还包括:第一坐标系相对于第二坐标系绕第一方向和第二方向的旋转角。
基于前述实施例提供的转换关系的获取方法,本申请技术方案还提供一种检测设备,包括:
第一坐标系和第二坐标系,第一坐标系用于确定空间中至少两点之间的相对位置关系;第二坐标系用于确定空间任意两点之间的相对位置关系;
第一检测装置30,用于获取待测物的待测区在第一坐标系下的第一位置信息;
转换关系,用于确定第一坐标系与第二坐标系之间的相对坐标变换关系;
第二检测装置20,用于根据待测物的待测区在第二坐标系下的第二位置信息,获取待测区的检测信息,第一检测装置30的视场大于第二检测装置20的视场。
转换关系包括:第一坐标系与第二坐标系之间的平移关系,和/或,第一坐标系与第二坐标系之间的转角关系。
本实施例中,检测设备还包括平移装置40,用于带动待测物相对于第一检测装置30和第二检测装置20沿第一方向和第二方向移动,第一方向和第二方向共面;
平移关系包括:第一坐标系与第二坐标系沿第一方向的第一距离;第一坐标系与第二坐标系沿第二方向的第二距离;转角关系包括:第一坐标系相对于第二坐标系绕第三方向的旋转角,第三方向垂直于第一方向和第二方向。
第一检测装置30为影像仪;第二检测装置20为共聚焦检测设备、三坐标检测设备、膜厚检测设备、干涉法检测设备或影像仪。
本实施例中,第二坐标系用于根据平移装置40的移动矢量及第二装置的检测位置确定空间任意两点之间的相对位置关系。
第一检测装置30相对第二检测装置20固定连接,第一坐标系用于确定第一检测装置30视场中两点之间的相对位置关系;
或者,第一坐标系用于根据平移装置40的移动矢量和第一检测装置30的检测位置确定空间任意两点之间的相对位置关系。
本实施例中,转换关系被配置为根据上一实施例的转换关系获取方法获取。
本申请技术方案提供的检测设备包括转换关系,转换关系能够确定第一坐标系和第二坐标系之间的位置关系,且第一检测装置30的视场较大,通过第一检测装置30能够较容易地对待测区进行定位,并通过转换关系转换至第二坐标系中,进而能够通过第二检测装置20根据待测区在第二坐标系下的坐标对待测区进行检测。因此,第二检测装置20能够快速地对待测区进行定位,从而加快检测速度。
图6是本申请的检测方法一实施例各步骤的流程图。
请参考图6,本申请技术方案还提供一种检测方法的实施例。
执行步骤S11,提供检测设备;
执行步骤S12提供待测物,待测物具有待测区;
初始检测设备还包括平移装置40,用于使待测物相对于第一检测装置30和第二检测装置20沿第一方向和第二方向移动,第一方向和第二方向平行于平移面。
本实施中,检测设备与上一实施例的检测设备相同,在此不多做赘述。
待测区为需要通过第二检测装置获取其检测信息的区域。检测区可以包括一个或多个点。
执行步骤S13,通过第一检测装置30获取待测区在第一坐标系下的第一位置信息。
获取第一位置信息的步骤包括:使检测区进入第一检测装置30的视场中;使检测区进入第一检测装置30的视场中之后,对待测区进行定位,获取待测区的第一位置信息。
具体的,通过平移装置40使待测物相对于第一检测装置30在平移面内平移,使检测区进入第一检测装置30的视场中。
对待测区进行定位,获取待测区的第一位置信息的步骤包括:对待测物拍摄图像;根据图像获取待测区的第一位置信息。
本实施例中,第一位置信息为待测区在平行于第一方向和第二方向的平面内投影的坐标信息。
由于本实施例中第一检测装置30的物镜与第二检测装置20的物镜的光轴平行,转角关系仅包括第一坐标系相对于第二坐标系绕第三方向的旋转角。
执行步骤S14,根据转换关系获取第一位置信息在第二坐标系下的第二位置信息。
第一坐标系下的第一位置信息为(x3,y3,z3);第二坐标系下的第二位置信息(x4,y4,z4),平移关系为T,旋转关系为R,则满足公式(4):
Figure PCTCN2020089524-appb-000004
本实施例中,第一位置信息为待测区在平行于第一方向和第二方向的平面内投影的坐标信息,则可以令z4=z3=0;或者,
令第一位置信息为(x3,y3);第二坐标系下的第二位置信息(x4,y4),平移关系为T,旋转关系为R,则满足公式(5):
Figure PCTCN2020089524-appb-000005
执行步骤S15,通过第二检测装置20根据第二位置信息对待测区进行检测,获取待测区的检测信息。
获取检测信息的步骤包括:通过平移装置40根据第二位置信息使第二检测装置20相对于待测物平移,对检测区进行对准;对准之后,通过第二检测装置20对待测区进行检测,获取待测区的检测信息。
本实施例中,对准指的是检测区位于第二检测装置20的视场中,即使检测区与第二检测装置20的排列方向平行于第二检测装置20的光轴。第二检测装置20的物镜与待测物沿第三方向之间的距离不需要进行对准,因此,对检测区进行对准的步骤还包括:获取第二位置信息在第二坐标平面内的投影信息;根据投影信息使第二检测装置20相对于待测物平移。
具体的,当第二位置信息为三维坐标(x4,y4,z4)时,去除第二位置信息沿第三方向的坐标,即将第二位置信息转化为(x4,y4)。当第二位置信息为二维坐标(x4,y4)时,令投影信息等于第二位置信息。
本实施例中,第二检测装置20为高度检测装置,检测信息为待测区的高度信息。在其他实施例中,当第二检测装置20为膜厚检测设备时,检测信息为待测区的膜层厚度信息。当第二检测装置20为影像仪如彩色信息时,检测信息为待测区的图像信息,例如彩色图像。
本申请技术方案提供的检测方法中,第一检测装置30的视场较大,通过第一检测装置30能够较容易地对待测区进行定位,并通过转换关系转换至第二坐标系中,进而能够通过第二检测装置20根据待测区在第二坐标系下的坐标对待测区进行检测。因此,第二检测装置20能够快速地对待测区进行定位,从而加快检测速度。
应当理解,在本申请中,“多个”是指两个或两个以上。“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可 以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (17)

  1. 一种转换关系的获取方法,其特征在于,包括:
    提供初始检测设备,包括:第一坐标系和第二坐标系,所述第一坐标系用于确定空间中至少两点之间的相对位置关系;所述第二坐标系用于确定空间任意两点之间的相对位置关系;第一检测装置,用于获取待测物的待测区在第一坐标系下的位置信息;第二检测装置,用于获取待测物的待测区在第二坐标系下的位置信息,所述第一检测装置的视场大于第二检测装置的视场;
    提供标准物,所述标准物包括至少一个特征点,所述特征点为所述第一检测装置和所述第二检测装置可识别的点;
    通过所述第一检测装置获取所述至少一个特征点在所述第一坐标系中的第一特征点坐标;
    通过所述第二检测装置获取所述至少一个特征点在所述第二坐标系中的第二特征点坐标;
    通过所述第一特征点坐标和所述第二特征点坐标,获取所述第一坐标系和所述第二坐标系的转换关系。
  2. 如权利要求1所述的转换关系的获取方法,其特征在于,所述至少一个特征点包括第一特征点;
    所述转换关系包括所述第一坐标系和所述第二坐标系之间的平移关系;
    获取所述平移关系的步骤包括:根据所述第一特征点坐标与所述第二特征点坐标之差获取平移矢量;根据所述平移矢量获取所述平移关系。
  3. 如权利要求1所述的转换关系的获取方法,其特征在于,所述至少一个特征点包括第一特征点和第二特征点;
    所述转换关系包括所述第一坐标系和所述第二坐标系之间的旋转关系,获取所述旋转关系的步骤包括:获取第一特征点相对于第二特征点在第一坐标系中的第一位移矢量;获取第一特征点相对于第二特征点在第二坐标系下的第二位移矢量;根据所述第一位移矢量和第二位移矢量之间的夹角,获取所述旋转关系。
  4. 如权利要求1所述的转换关系的获取方法,其特征在于,所述初始检测设备还包括平移装置,用于使待测物相对于所述第一检测装置和第二检测装 置沿第一方向和第二方向移动;所述第二坐标系用于根据平移装置的移动矢量及第二装置的检测位置确定空间任意两点之间的相对位置关系。
  5. 如权利要求4所述的转换关系的获取方法,其特征在于,所述第一检测装置相对所述第二检测装置固定连接,所述第一坐标系用于确定所述第一检测装置视场中两点之间的相对位置关系;
    或者,所述第一坐标系用于根据平移装置的移动矢量和所述第一检测装置的检测位置确定空间任意两点之间的相对位置关系。
  6. 如权利要求4所述的转换关系的获取方法,其特征在于,所述特征点的个数为多个,所述标准物绕平行于第三方向的任一转轴旋转小于360°的任一角度不与自身重合,所述第三方向垂直于所述第一方向和所述第二方向。
  7. 如权利要求1所述的转换关系的获取方法,其特征在于,所述第二检测装置为高度检测设备,在所述特征点处标准物表面的高度具有极值;
    或者,所述第二检测装置为影像仪,在所述特征点处标准物表面反射的光强具有极值。
  8. 如权利要求1所述的转换关系的获取方法,其特征在于,所述标准物包括孔、凹陷或凸起;所述特征点包括孔、凹陷或凸起的中心。
  9. 一种检测设备,其特征在于,包括:
    第一坐标系和第二坐标系,所述第一坐标系用于确定空间中至少两点之间的相对位置关系;所述第二坐标系用于确定空间任意两点之间的相对位置关系;
    第一检测装置,用于获取待测物的待测区在所述第一坐标系下的位置信息;
    转换关系,用于确定所述第一坐标系与所述第二坐标系之间的相对坐标变换关系;
    第二检测装置,用于根据待测物的待测区在所述第二坐标系下的坐标,获取待测区的检测信息,所述第一检测装置的视场大于所述第二检测装置的视场。
  10. 如权利要求9所述的检测设备,其特征在于,所述转换关系包括:所述第一坐标系与所述第二坐标系之间的平移关系,和/或,所述第一坐标系与所述第二坐标系之间的旋转关系。
  11. 如权利要求10所述的检测设备,其特征在于,还包括平移装置,用于带动待测物相对于所述第一检测装置和所述第二检测装置沿第一方向和第 二方向移动,所述第一检测装置和所述第二检测装置相对固定;
    所述平移关系包括:所述第一坐标系与所述第二坐标系沿所述第一方向的第一距离;所述第一坐标系与所述第二坐标系沿所述第二方向的第二距离;所述转角关系包括:所述第一坐标系相对于所述第二坐标系绕所述第三方向的旋转角,所述第三方向垂直于所述第一方向和所述第二方向。
  12. 如权利要求9所述的检测设备,其特征在于,所述第一检测装置为影像仪;所述第二检测装置为共聚焦检测设备、三坐标检测设备、膜厚检测设备、干涉法检测设备或影像仪。
  13. 如权利要求9所述的检测设备,其特征在于,所述转换关系被配置为根据权利要求1至8任意一项所述的转换关系的获取方法获取。
  14. 一种检测方法,其特征在于,包括:
    提供如权利要求9至13任意一项所述的检测设备;
    提供待测物,所述待测物具有待测区;
    通过所述第一检测装置获取待测区在第一坐标系下的第一位置信息;
    根据所述转换关系获取所述第一位置信息在第二坐标系下的第二位置信息;
    通过所述第二检测装置根据所述第二位置信息对所述待测区进行检测,获取待测区的检测信息。
  15. 如权利要求14所述的检测方法,其特征在于,所述初始检测设备还包括平移装置,用于使待测物相对于所述第一检测装置和第二检测装置沿第一方向和第二方向移动,所述第一方向和所述第二方向平行于平移面;
    获取所述第一位置信息的步骤包括:使检测区进入第一检测装置的视场中;使检测区进入第一检测装置的视场中之后,对所述待测区进行定位,获取所述待测区的第一位置信息;
    获取所述检测信息的步骤包括:通过所述平移装置根据所述第二位置信息使第二检测装置相对于待测物平移,对所述检测区进行对准;所述对准之后,通过第二检测装置对所述待测区进行检测,获取所述待测区的检测信息。
  16. 如权利要求14所述的检测方法,其特征在于,所述第一检测装置为影像仪;所述第二检测装置为影像仪、高度检测设备或厚度检测设备。
  17. 如权利要求16所述的检测方法,其特征在于,所述第二检测装置为色散共聚焦设备、干涉法检测设备、三坐标设备或反射谱检测设备。
PCT/CN2020/089524 2020-05-11 2020-05-11 转换关系的获取方法、检测设备及检测方法 WO2021226774A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/089524 WO2021226774A1 (zh) 2020-05-11 2020-05-11 转换关系的获取方法、检测设备及检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/089524 WO2021226774A1 (zh) 2020-05-11 2020-05-11 转换关系的获取方法、检测设备及检测方法

Publications (1)

Publication Number Publication Date
WO2021226774A1 true WO2021226774A1 (zh) 2021-11-18

Family

ID=78526086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/089524 WO2021226774A1 (zh) 2020-05-11 2020-05-11 转换关系的获取方法、检测设备及检测方法

Country Status (1)

Country Link
WO (1) WO2021226774A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103486969A (zh) * 2013-09-30 2014-01-01 上海大学 机器视觉对准方法及其装置
CN106709955A (zh) * 2016-12-28 2017-05-24 天津众阳科技有限公司 基于双目立体视觉的空间坐标系标定系统和方法
CN106780624A (zh) * 2016-12-14 2017-05-31 广东工业大学 一种基于参照物的多相机标定方法及装置
CN109061610A (zh) * 2018-09-11 2018-12-21 杭州电子科技大学 一种摄像头与雷达的联合标定方法
CN110322519A (zh) * 2019-07-18 2019-10-11 天津大学 一种用于激光雷达与相机联合标定的标定装置及标定方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103486969A (zh) * 2013-09-30 2014-01-01 上海大学 机器视觉对准方法及其装置
CN106780624A (zh) * 2016-12-14 2017-05-31 广东工业大学 一种基于参照物的多相机标定方法及装置
CN106709955A (zh) * 2016-12-28 2017-05-24 天津众阳科技有限公司 基于双目立体视觉的空间坐标系标定系统和方法
CN109061610A (zh) * 2018-09-11 2018-12-21 杭州电子科技大学 一种摄像头与雷达的联合标定方法
CN110322519A (zh) * 2019-07-18 2019-10-11 天津大学 一种用于激光雷达与相机联合标定的标定装置及标定方法

Similar Documents

Publication Publication Date Title
CN110940267B (zh) 测量方法及其测量系统
TWI734891B (zh) 沿著試樣之期望的x'方向成像該試樣的方法及顯微鏡系統
US7634128B2 (en) Stereoscopic three-dimensional metrology system and method
CN108458670B (zh) 一种双线激光的三维轮廓扫描装置及方法
WO2020228494A1 (zh) 检测设备及检测设备的工作方法
CN111435070A (zh) 转换关系的获取方法、检测设备及检测方法
CN110455198B (zh) 基于线结构光视觉的矩形花键轴键宽及直径测量方法
CN110806182A (zh) 基于远心镜头的高精度光学引伸计及测量方法
US20190080468A1 (en) Positioning and measuring system based on image scale
CN115753024A (zh) 一种用于镜头mtf测试的自动对心方法
TW201723422A (zh) 光滑物體的量測系統及其量測方法
CN209992407U (zh) 线面阵相机结合的大口径超净光滑表面缺陷检测装置
JP2001221749A (ja) 観察装置及び観察方法
CN113251953B (zh) 一种基于立体偏折技术的镜面夹角测量装置和方法
WO2021226774A1 (zh) 转换关系的获取方法、检测设备及检测方法
JP2016148569A (ja) 画像測定方法、及び画像測定装置
TWI585550B (zh) Pre-alignment measuring devices and methods
CN112734838B (zh) 一种空间目标定位方法、设备及存储介质
CN115127483A (zh) 用于测量同轴度的检测方法、以及检测同轴度的系统
CN112556614B (zh) 转换关系的获取方法、测量方法及测量系统
CN114543702A (zh) 基于立体视觉引导的目标位置三维形貌高精度快速测量方法和装置
CN109544639B (zh) 一种多镜面单相机三维振动测试装置及方法
CN113432551A (zh) 基于多轴精密运动机构的微小零件三维形貌测量方法
CN113916152B (zh) 基于相位偏折术的样品检测装置以及方法
Dai et al. High-Accuracy Calibration for a Multiview Microscopic 3-D Measurement System

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20935979

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03.04.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20935979

Country of ref document: EP

Kind code of ref document: A1