WO2021223495A1 - 用于控制空调升温灭菌的方法及装置、空调 - Google Patents

用于控制空调升温灭菌的方法及装置、空调 Download PDF

Info

Publication number
WO2021223495A1
WO2021223495A1 PCT/CN2021/077583 CN2021077583W WO2021223495A1 WO 2021223495 A1 WO2021223495 A1 WO 2021223495A1 CN 2021077583 W CN2021077583 W CN 2021077583W WO 2021223495 A1 WO2021223495 A1 WO 2021223495A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
air conditioner
indoor coil
sterilization
indoor
Prior art date
Application number
PCT/CN2021/077583
Other languages
English (en)
French (fr)
Inventor
徐菲菲
张立龙
连建春
王德平
罗祖春
杨文钧
潘孝军
柯慧
Original Assignee
青岛海尔空调器有限总公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2021223495A1 publication Critical patent/WO2021223495A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0063Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0071Indoor units, e.g. fan coil units with means for purifying supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • This application relates to the technical field of smart home appliances, for example, to a method and device for controlling the temperature increase and sterilization of an air conditioner, and an air conditioner.
  • the cleanliness and health of the home environment have been valued by more and more users.
  • the level of cleanliness can greatly affect the cleanliness of the indoor environment.
  • From the long-term use experience of the air conditioner after the air conditioner is running for a long time, there may be microorganisms such as germs, bacteria, molds, etc. on the surface of the indoor heat exchanger.
  • the conventional self-cleaning cannot be effectively sterilized, causing the germs to circulate in the room through the air conditioner, which is not conducive to Human health.
  • existing air-conditioning manufacturers have also developed and manufactured many air-conditioning products with high-temperature cleaning functions to achieve high-temperature sterilization and cleaning by increasing the temperature of the indoor heat exchanger.
  • the temperature of the inner coil fluctuates greatly, which causes the heat exchanger to be unable to be stably maintained at the target temperature, resulting in poor sterilization effect.
  • the embodiments of the present disclosure provide a method and device for controlling the temperature increase and sterilization of an air conditioner, and an air conditioner to solve the problem that the temperature of the inner coil tube cannot be stabilized at the target temperature due to large fluctuations in the temperature of the inner coil when the indoor heat exchanger is heated and sterilized. Above, the technical problem of poor sterilization effect.
  • the method includes: raising the temperature of the target heat exchanger above the target temperature for sterilization; The difference in target temperature is less than the threshold.
  • the device includes a processor and a memory storing program instructions, and the processor is configured to execute the above-mentioned method for controlling the temperature rise and sterilization of an air conditioner when the program instructions are executed.
  • the air conditioner includes the above-mentioned device for controlling the temperature increase and sterilization of the air conditioner.
  • the method and device for controlling temperature rise and sterilization of an air conditioner, and the air conditioner provided by the embodiments of the present disclosure can achieve the following technical effects:
  • the refrigerant flowing in the pipeline can be adjusted so that the temperature of the indoor coil is close to the target temperature of the heat exchanger.
  • bacteria are attached to the indoor coil and the fins of the heat exchanger through air circulation.
  • the temperature of the indoor coil can be stabilized near the target temperature under the adjustment of the throttling device, the heat exchanger temperature After reaching the target temperature quickly and stably, it can also be stabilized at the target temperature, avoiding the occurrence of unsatisfactory sterilization effects caused by temperature fluctuations, so that the air conditioner can efficiently and stably perform sterilization and cleaning at the target temperature.
  • Fig. 1 is a schematic diagram of a method for controlling temperature rise and sterilization of an air conditioner provided by an embodiment of the present disclosure
  • Fig. 2 is a schematic diagram of another method for controlling temperature rise and sterilization of an air conditioner provided by an embodiment of the present disclosure
  • Fig. 3 is a schematic diagram of another method for controlling temperature rise and sterilization of an air conditioner provided by an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of another method for controlling temperature rise and sterilization of an air conditioner provided by an embodiment of the present disclosure
  • Fig. 5 is a schematic diagram of a device for controlling temperature rise and sterilization of an air conditioner provided by an embodiment of the present disclosure.
  • A/B means: A or B.
  • a and/or B means: A or B, or, A and B.
  • an embodiment of the present disclosure provides a method for controlling temperature rise and sterilization of an air conditioner, including:
  • step S01 the temperature of the target heat exchanger is raised to above the target temperature for sterilization.
  • the refrigerant flow direction in the air conditioning adjustment system is consistent with the refrigerant flow direction of the heating mode, so that the input target heat exchanger (ie, indoor heat exchanger)
  • the refrigerant is a high-temperature refrigerant, which uses the high-temperature refrigerant to heat the target heat exchanger to achieve the cleaning effect of high-temperature sterilization.
  • a cleaning option such as "sterilization function” or "sterilization function” is newly added to the remote control and control panel of the air conditioner.
  • This cleaning option can be used to trigger the operation of the air conditioner in this embodiment.
  • the cleaning process of heating and sterilizing is used to trigger the operation of the air conditioner in this embodiment.
  • the air conditioner generates a related cleaning instruction and executes it in response, so that the temperature of the target heat exchanger rises above the target temperature.
  • the air conditioner can also generate related cleaning instructions through detection triggering, timing triggering, etc.
  • the air conditioner is equipped with a microorganism detection device that can be used to detect the content of one or more specific types of microorganisms.
  • the air conditioner breeds more microorganisms, and the air conditioner generates related cleaning instructions; or, the air conditioner has a timing module, which can be used to count the cumulative operation time of the air conditioner, such as refrigeration. The cumulative operating time of the mode or dehumidification mode.
  • the air conditioner As the cumulative operating time of the cooling mode or dehumidification mode of the air conditioner increases, the more condensed water inside the air conditioner is condensed and the number of microorganisms multiplying and increasing in this kind of humid environment is also increased. Therefore, it can be set that when the cumulative operating time of the air conditioner exceeds the set time threshold, the air conditioner generates a related cleaning instruction, so that the target heat exchanger temperature rises above the target temperature for sterilization and cleaning.
  • the air conditioner may also be triggered in conjunction with the original cleaning function of the air conditioner.
  • the cleaning instruction is generated and the original cleaning function is executed before the cleaning process defined by the original cleaning function is executed.
  • Execute the cleaning method process of this application or generate a cleaning instruction and execute the cleaning method process of this application after executing the cleaning process defined by the original cleaning function; that is, after the user selects an original cleaning function, the air conditioner executes successively Two different cleaning processes are used to effectively ensure the cleanliness of the air conditioner through the double cleaning method.
  • the original cleaning function of the air conditioner is the spray cleaning function.
  • the spray cleaning function sprays water onto the heat exchanger of the air conditioner and cleans the heat exchanger by flushing with running water.
  • the process of the heating and sterilization method of this application is run before the spray cleaning function is executed, that is, after the user selects the spray cleaning function, the process of the heating and sterilization method of this application is first controlled to kill bacteria and other microorganisms, and then it is executed Spray cleaning function, so that running water can not only wash away dust, oil and other dirt, but also wash away the killed microorganisms on the heat exchanger.
  • the original cleaning function of the air conditioner is a frost-defrost cleaning mode, which includes first adjusting the flow direction of the refrigerant in the air conditioning system to be consistent with the flow direction of the refrigerant in the cooling mode, so that the refrigerant input to the indoor heat exchanger is a low-temperature refrigerant to use
  • the heat absorption and evaporation effect of the low temperature refrigerant reduces the temperature of the indoor heat exchanger, so that when the indoor air flows through the indoor heat exchanger, water vapor is condensed on the indoor heat exchanger, and the water vapor can be transformed from gas to liquid to solid.
  • Stripping the dirt, oil and other dirt on the surface of the indoor heat exchanger can not only improve the cleaning effect of larger pollutants, but also expose the microorganisms in the deep layer of the dirt, so that it is easier to be killed.
  • adjust the flow direction of the refrigerant in the air conditioning system to be consistent with the direction of the refrigerant flow in the heating mode.
  • the refrigerant input to the indoor heat exchanger is a high-temperature refrigerant, so that the high-temperature refrigerant is used to heat the indoor heat exchanger, and the indoor heat exchange
  • the frost condensed on the surface of the device melts after absorbing heat, thereby achieving "defrosting".
  • the indoor heat exchanger continues to heat up to above the target temperature, thereby further achieving "sterilization" cleaning on the basis of defrosting.
  • step S02 the opening degree of the throttling device is set according to the temperature of the indoor coil, so that the difference between the temperature of the indoor coil and the target temperature is smaller than the threshold.
  • the threshold is used to represent a small value.
  • the indoor coil temperature is considered to be close to the target temperature, so as to stabilize the indoor coil temperature near the target temperature.
  • the value range of the threshold is [0.5, 2], which can be 0.5, 1, 1.5, or 2.
  • the opening degree of the throttling device is set according to the temperature of the indoor coil when the air conditioner is self-cleaning and performs the temperature increase process, so as to adjust the refrigerant circulating in the pipeline, so that The indoor coil temperature is close to the target temperature of the heat exchanger. In this way, during the heating and sterilization process, bacteria are attached to the indoor coil and the fins of the heat exchanger through air circulation.
  • the heat exchanger temperature After reaching the target temperature quickly and stably, it can also be stabilized at the target temperature, so the air conditioner can efficiently and stably perform sterilization and cleaning at the target temperature.
  • the target temperature satisfies the following conditions:
  • T 0 is the target temperature
  • T is the adjustable threshold value, which is in the range of 2 °C ⁇ 3.5 °C
  • T pmax is the maximum temperature of the indoor coil.
  • the target temperature of the heat exchanger is determined according to the maximum temperature of the indoor coil, so that the target temperature meets the sterilization requirements without affecting the pressure conditions of the entire air conditioning system.
  • the maximum temperature T pmax of the indoor coil is determined according to the type of refrigerant.
  • the maximum temperature of the indoor coil is 63°C
  • the sum of the target temperature and the adjusted value is less than 63°C.
  • the adjustment value T threshold is set to 3°C
  • the value range of the target temperature T 0 is less than 60°C.
  • the target temperature is set to 56 degrees Celsius or more.
  • the high-temperature sterilization function of the air conditioner can be realized, the bacteria that grow or adhere to the heat exchanger fins can be cleaned and removed in a high-temperature environment, and the viruses and bacteria attached to the indoor air can be removed; on the other hand, it can Satisfy the system pressure conditions to make the refrigeration system operate stably.
  • the indoor coil temperature refers to the temperature of the indoor coil during the heating process and/or within a preset time period after reaching the target temperature.
  • the opening degree of the throttling device By setting the opening degree of the throttling device according to the temperature of the indoor coil, the temperature of the indoor coil is stabilized at the target temperature.
  • increase the opening of the throttle device to increase the flow speed of the refrigerant, accelerate the cooling, and stabilize the temperature of the indoor coil at the target temperature.
  • the opening of the throttle device is set to a smaller opening of the first threshold.
  • the refrigerant flow rate is low, causing the indoor coil temperature to rise slowly and approaching Set temperature; when the indoor coil temperature is higher than the target temperature, set the opening of the throttling device to the opening of the second threshold, where the opening corresponding to the second threshold is higher than the first threshold.
  • the opening degree of the flow device is a higher third threshold opening degree, where the opening degree corresponding to the third threshold value is higher than the second threshold value.
  • Table 1 shows an optional correspondence between the indoor coil temperature T p and the opening degree F s of the throttle device.
  • F 1 represents a preset opening degree of the throttling device corresponding to the temperature of the corresponding indoor coil
  • x and y respectively represent different opening degree increments
  • the opening degree increment represented by x is smaller than the opening degree increment represented by y .
  • Table 1 shows the value of the opening degree of the throttling device corresponding to the different temperature ranges where the indoor coil temperature is located.
  • the value of the opening degree of the throttling device during the self-cleaning process of heating sterilization can be It is determined by looking up the meter.
  • the opening degree of the throttling device is determined according to the following method:
  • F s is the opening degree of the throttling device
  • T p is the temperature of the indoor coil
  • k is a correction parameter
  • a is a weighted value greater than 0.
  • the opening degree of the throttle device of the air conditioner can be set by the indoor coil temperature.
  • the higher the indoor coil temperature the higher the opening of the throttling device.
  • the air conditioner presets an association relationship between the indoor coil temperature and the weighted value a.
  • the association relationship includes the one-to-one correspondence between the indoor coil temperature and the weighted value a.
  • searching for the association relationship the current indoor coil temperature can be obtained.
  • the value of the corresponding weighted value a obtains an opening value of the throttling device before correction corresponding to the current indoor coil temperature.
  • the value of the weighted value a is also related to the working mode of the air conditioner before receiving the cleaning instruction. According to different working modes, different values are set for the weighting value a.
  • the correction parameter k is determined according to the difference between the indoor coil temperature and the target temperature and the outdoor ambient temperature.
  • the difference between the indoor coil temperature and the target temperature and the outdoor ambient temperature are used to correct the opening degree of the throttling device, so that the opening degree of the throttling device is corrected.
  • the adjustment of the air conditioner is more precise, and the temperature of the indoor coil can be further stabilized at the target temperature through the adjustment of the opening of the throttling device, so that the air conditioner runs smoothly and the high temperature sterilization effect is good.
  • determining the correction coefficient according to the difference between the indoor coil temperature and the target temperature and the outdoor ambient temperature includes: determining the temperature range where the difference between the indoor coil temperature and the target temperature is located; determining the temperature according to a preset correspondence relationship The correction factor corresponding to the interval and outdoor ambient temperature.
  • the air conditioner presets the correlation between the difference between the indoor coil temperature and the target temperature, the outdoor ambient temperature and the correction coefficient.
  • the correlation includes the temperature range where the difference between the indoor coil temperature and the target temperature is, the outdoor ambient temperature and the Correspondence of correction coefficient values. Therefore, by searching for the correlation, the correction coefficient corresponding to the difference between the current indoor coil temperature and the target temperature and the outdoor ambient temperature can be obtained, and then the throttle device can be controlled to adjust the opening degree according to the correction coefficient to change the refrigerant in the pipeline. Of traffic.
  • the higher the temperature range of the difference between the indoor coil temperature and the target temperature the larger the value of the correction coefficient k.
  • the value of the correction coefficient k is adjusted according to the temperature interval where the difference between the indoor coil temperature and the target temperature is located to correct the opening of the throttling device so that it can The coil temperature has an effect, and it keeps approaching the target temperature.
  • the value of the correction coefficient k is adjusted according to the outdoor environment temperature to correct the opening of the throttling device so that it can affect the indoor coil temperature, and it is constantly trending. Near target temperature.
  • the indoor coil temperature is acquired in real time or at predetermined time intervals.
  • the indoor coil temperature is obtained in real time to set the opening degree of the throttling device. It is also possible to obtain the indoor coil temperature at predetermined time intervals during the heating process of the heat exchanger to set the opening degree of the throttling device.
  • the predetermined time interval may be 1 min, 2 min, 4 min, or 5 min.
  • the opening of the throttling device is adjusted according to the temperature of the indoor coil during the self-cleaning of the air conditioner and the temperature rise process is performed to adjust the refrigerant circulating in the pipeline. Make the indoor coil temperature close to the target temperature of the heat exchanger. In this way, during the heating and sterilization process, bacteria are attached to the indoor coil and the fins of the heat exchanger through air circulation.
  • the indoor coil temperature can be stabilized near the target temperature under the adjustment of the throttling device, the heat exchanger temperature After reaching the target temperature quickly and stably, it can also be stabilized at the target temperature, so the air conditioner can efficiently and stably perform sterilization and cleaning at the target temperature.
  • another method for controlling temperature rise and sterilization of an air conditioner includes:
  • step S11 the temperature of the target heat exchanger is raised to above the target temperature for sterilization.
  • step S12 the opening degree of the throttling device is set according to the temperature of the indoor coil, so that the difference between the temperature of the indoor coil and the target temperature is smaller than the threshold.
  • Step S13 in the case where the difference between the indoor coil temperature and the target temperature is greater than or equal to the threshold, the rotation speed of the indoor fan is set according to the indoor coil temperature and the outdoor ambient temperature.
  • the indoor coil temperature can be driven closer to the target temperature and the heat exchanger temperature After reaching the target temperature quickly and stably, it can also be stabilized at the target temperature, so the air conditioner can efficiently and stably perform sterilization and cleaning at the target temperature
  • the rotation speed of the indoor fan is jointly set according to the indoor coil temperature and the outdoor ambient temperature, so that the difference between the indoor coil temperature and the target temperature is less than a threshold.
  • the threshold here has the same meaning as the threshold in the previous embodiment. It is used to express a smaller value.
  • the indoor coil temperature is considered to be close to the target temperature to achieve the The indoor coil temperature is stabilized near the target temperature.
  • the indoor coil temperature refers to the temperature of the indoor coil during the heating process and/or within a preset time period after reaching the target temperature.
  • the speed of the indoor fan is adjusted according to the temperature of the indoor coil.
  • the temperature of the indoor coil is stabilized at the target temperature.
  • the indoor coil temperature is high, increase the speed of the indoor fan to speed up the air supply to achieve a rapid cooling of the indoor coil temperature and maintain it at the target temperature.
  • the indoor fan when the indoor coil temperature is close to the target temperature, set the indoor fan to rotate at a lower speed and blow slowly, so that the indoor coil temperature keeps approaching the target temperature; when the indoor coil temperature is higher than the target temperature , Set the indoor fan to transmit at a higher speed to speed up the air supply, so that the temperature of the indoor coil is gradually reduced to the target temperature; when the temperature of the indoor coil is close to the maximum temperature of the indoor coil, the indoor fan is set to rotate at a high speed to achieve rapid cooling, so that The indoor coil temperature can be maintained at the target temperature.
  • the air conditioner presets the corresponding relationship between indoor coil temperature, outdoor ambient temperature and indoor fan speed.
  • the speed of the indoor fan is set according to the indoor coil temperature and the outdoor ambient temperature.
  • the indoor coil temperature is positively correlated with the speed of the indoor fan;
  • the outdoor ambient temperature is positively correlated with the speed of the indoor fan.
  • the horizontal header of Table 3 is a number of outdoor ambient temperature values set from small to large, column(n) is the column where the outdoor ambient temperature value and the corresponding indoor fan speed are located; the vertical header is a number of values set from small to large.
  • the indoor coil temperature value, line(l) is the line where the indoor coil temperature value and the corresponding indoor fan speed are located; the intersection of column(n) and line(l) is the indoor corresponding to the outdoor ambient temperature and the indoor coil temperature Fan speed.
  • the rotation speed of the indoor fan can be a specific number of rotations or a gear at which the rotation speed is located.
  • the indoor coil temperature and outdoor ambient temperature after obtaining the indoor coil temperature and outdoor ambient temperature, take the row and column corresponding to the row and column of the value closest to the actual temperature in Table 3 by looking up the table, so as to realize the The ambient temperature jointly sets the speed of the indoor fan, which can adjust the speed of the indoor fan to keep the indoor coil temperature close to the target temperature and meet the requirements of sterilization and cleaning.
  • Table 3 shows an optional correspondence between indoor ambient temperature, outdoor ambient temperature, and indoor fan speed.
  • R1 indicates that the range of indoor fan speed is (430,470), x, y, and z are speed increments respectively, where the speed increment represented by x is smaller than the speed increment represented by y.
  • the fan speed after increasing the speed increment is still less than or equal to the preset maximum mute speed of the air conditioner under the same conditions.
  • the air conditioner operates at the maximum silent speed of the air conditioner.
  • the opening of the throttling device is adjusted according to the temperature of the indoor coil during the self-cleaning of the air conditioner and the temperature rise process is performed to adjust the refrigerant circulating in the pipeline.
  • Make the indoor coil temperature close to the target temperature of the heat exchanger and when the indoor coil temperature cannot approach the target temperature of the heat exchanger, adjust the indoor fan speed according to the indoor coil temperature and the outdoor ambient temperature to make the indoor coil
  • the tube temperature stabilizes at the target temperature.
  • the indoor coil temperature is high, increase the speed of the indoor fan to speed up the air supply to achieve a rapid cooling of the indoor coil temperature and maintain it at the target temperature.
  • the air conditioner can efficiently and stably perform sterilization and cleaning at the target temperature.
  • an embodiment of the present disclosure provides another method for controlling temperature rise and sterilization of an air conditioner, including:
  • Step S21 in response to the cleaning instruction, frost the target heat exchanger.
  • the target heat exchanger By controlling the air conditioner, the target heat exchanger is condensed.
  • the indoor heat exchanger is used as the target heat exchanger.
  • the frosting operation of the target heat exchanger includes closing the four-way valve, controlling the guide plate of the indoor unit upward, controlling the operating frequency of the compressor, and fixing the opening of the throttling device to make the indoor heat exchanger frost.
  • step S22 after the defrosting conditions are met, the temperature of the target heat exchanger is raised to above the target temperature for defrosting and sterilization.
  • the target temperature is a value higher than the defrosting temperature, and the range of the target temperature is 55°C to 65°C. It can be 55°C, 60°C, or 65°C.
  • the flow direction of the refrigerant in the air conditioning adjustment system is consistent with the flow direction of the refrigerant in the heating mode.
  • the refrigerant input to the indoor heat exchanger is a high-temperature refrigerant, so that the high-temperature refrigerant is used to heat the indoor heat exchanger, and the indoor heat exchange The frost condensed on the surface of the device melts after absorbing heat, thereby achieving "defrosting".
  • the defrosting temperature may be jointly determined according to one or more of the thickness of the frost layer, the ambient temperature, and the ambient humidity. After reaching the defrosting temperature, the indoor heat exchanger continues to heat up to above the set temperature, thereby further achieving "sterilization" on the basis of defrosting.
  • step S23 the opening degree of the throttling device is jointly set according to the indoor coil temperature and the outdoor ambient temperature, so that the difference between the indoor coil temperature and the target temperature is smaller than the threshold.
  • the air conditioner is preset with the corresponding relationship between the indoor coil temperature, the outdoor ambient temperature and the opening degree of the throttle device.
  • the temperature of the indoor coil is positively related to the opening degree of the throttling device;
  • the outdoor ambient temperature is positively related to the opening degree of the throttling device. relation.
  • the above-mentioned corresponding relationship can be obtained by fitting the opening degree of the throttling device determined according to the indoor coil temperature and the opening degree of the throttling device determined according to the outdoor ambient temperature according to the experimental data of the typical working conditions in the research and development stage.
  • the opening degree of the throttle device can be a specific opening degree value or a gear position where the opening degree is located.
  • the throttling device opening degree corresponding to the row and column where the value closest to the actual temperature is located is selected from the pre-stored correspondence relationship by looking up the table, so as to realize the
  • the tube temperature and outdoor ambient temperature jointly set the opening degree of the throttling device, and the refrigerant circulating in the pipeline can be adjusted by adjusting the opening degree of the throttling device, so that the indoor coil temperature keeps approaching the target temperature and meets the requirements of sterilization and cleaning.
  • Table 4 shows an optional correspondence between the indoor ambient temperature, the outdoor ambient temperature and the opening degree of the throttle device.
  • F1 represents the opening degree of the throttling device when the outdoor ambient temperature is lower than 17°C and the difference between the indoor coil temperature and the target temperature is less than 1
  • m, n, and k are the opening degree increments, where n The opening increment indicated by m is greater than the opening increment indicated by m.
  • step S24 after the sterilization completion conditions are met, the cleaning mode is exited, and the air conditioner is controlled to return to the working mode before cleaning.
  • the sterilization completion conditions include one or more of the following conditions: the coil temperature of the indoor heat exchanger is continuously greater than the first set temperature during the first preset period of time; the coil temperature of the indoor heat exchanger changes In the first preset time period, the value is continuously smaller than the first set change amount; the continuous operation time of the compressor is greater than the second preset time period; the time period for the heat exchanger to reach the target temperature satisfies the second preset time period.
  • the first preset duration is set to 5-7 minutes
  • the second preset duration is set to 30-35 minutes. In this way, the cleaning mode is exited after the sterilization completion condition is met by counting the temperature change or the working condition of the compressor within the set time during the heating process.
  • the temperature increase process is continued after the self-cleaning frost-defrost procedure of the air conditioner, and the opening of the throttle device of the room is adjusted according to the temperature of the indoor coil, Make the indoor coil temperature close to the target temperature of the heat exchanger.
  • bacteria are attached to the fins of the indoor coil and heat exchanger through air circulation.
  • the heat exchanger temperature is fast After reaching the target temperature stably, it can also be stabilized at the target temperature, so the air conditioner can efficiently and stably perform sterilization and cleaning at the target temperature.
  • a method for controlling temperature rise and sterilization of an air conditioner includes:
  • step S31 the temperature of the target heat exchanger is raised to above the target temperature for sterilization.
  • step S32 the rotation speed of the indoor fan is set according to the temperature of the indoor coil, so that the difference between the temperature of the indoor coil and the target temperature is smaller than the threshold.
  • Step S33 When the conditions for completion of the sterilization are met, it is determined whether the defrosting conditions are met. When the defrosting conditions are met, the outdoor heat exchanger is defrosted; otherwise, the cleaning mode of heating sterilization is exited, and the air conditioner is controlled to return to Working mode before sterilization and cleaning.
  • the defrosting conditions are determined based on the outdoor ambient temperature and the outdoor heat exchanger coil temperature.
  • the outdoor heat exchanger coil temperature can be collected by the defrost sensor on the outdoor heat exchanger.
  • the dew point temperature of outdoor air can be calculated by collecting outdoor ambient temperature. Compare the condensation dew point temperature with the outdoor heat exchanger coil temperature. When the outdoor heat exchanger coil temperature is continuously less than or equal to the condensation dew point temperature within the set time, the defrost condition is met, and the outdoor heat exchanger The heater defrosts.
  • the condensing dew point temperature is obtained as follows:
  • T es is the dew point temperature
  • Tao is the outdoor ambient temperature
  • C is a weighted value determined according to the outdoor ambient temperature
  • e is a constant.
  • the value of the weighting value C when the outdoor environment temperature is less than 0°C, the value of the weighting value C is set to 0.8; when the outdoor environment temperature is greater than or equal to 0°C, the value of the weighting value C is set to 0.6.
  • the value range of the constant e is 4-7, and it can be 4, 5, 6, or 7.
  • the heating and defrosting of the outdoor heat exchanger can be realized by the defrosting circuit provided on the outdoor heat exchanger; it can also be switched by the refrigerant flow direction, so that the air conditioner can be switched to
  • the outdoor heat exchanger works as a condenser
  • it defrosts the outdoor heat exchanger so that the refrigerant condenses and releases heat when it flows through the outdoor heat exchanger, which increases the temperature of the outdoor heat exchanger to eliminate the heat
  • the attached frost and the attached frost on the outdoor heat exchanger are removed, keep the outdoor heat exchanger as the condenser and continue to run, so that the temperature of the outdoor heat exchanger continues to rise until it exits the defrost mode.
  • a defrost sensor can also be installed on the outdoor heat exchanger, and the defrosting mode can be entered by the defrost sensor sensing the surface frost condition of the outdoor heat exchanger or the coil temperature of the outdoor heat exchanger. quit.
  • the defrost condition includes that the defrost sensor detects that the temperature of the outer coil of the outdoor heat exchanger is lower than the third set temperature. At this time, it enters the defrost mode, and the defrost circuit set on the outdoor heat exchanger is turned on for heating and defrosting.
  • the defrost sensor detects that the temperature of the outer coil of the outdoor heat exchanger is greater than or equal to the fourth set temperature, exit the defrost mode.
  • the temperature increase process is executed after the frost process, and after the temperature increase process, the defrost process is executed when the air conditioner meets the defrosting conditions.
  • the defrosting process on the one hand, the frost layer generated by the outdoor heat exchanger during the rapid heating process of the indoor heat exchanger is cleaned, and on the other hand, the outdoor heat exchanger is cleaned.
  • the opening degree of the throttling device is adjusted according to the temperature of the indoor coil during the heating process, so that the temperature of the indoor coil is close to the target temperature of the heat exchanger.
  • the indoor coil temperature can be stabilized near the target temperature under the adjustment of the throttling device, the heat exchanger temperature After reaching the target temperature quickly and stably, it can also be stabilized at the target temperature, so the air conditioner can efficiently and stably perform sterilization and cleaning at the target temperature.
  • an embodiment of the present disclosure provides a device for controlling temperature rise and sterilization of an air conditioner, which includes a processor (processor) 100 and a memory (memory) 101.
  • the device may further include a communication interface (Communication Interface) 102 and a bus 103.
  • the processor 100, the communication interface 102, and the memory 101 can communicate with each other through the bus 103.
  • the communication interface 102 can be used for information transmission.
  • the processor 100 may call the logic instructions in the memory 101 to execute the method for controlling the temperature rise and sterilization of the air conditioner in the foregoing embodiment.
  • the above-mentioned logical instructions in the memory 101 can be implemented in the form of a software functional unit and when sold or used as an independent product, they can be stored in a computer readable storage medium.
  • the memory 101 can be used to store software programs and computer-executable programs, such as program instructions/modules corresponding to the methods in the embodiments of the present disclosure.
  • the processor 100 executes functional applications and data processing by running the program instructions/modules stored in the memory 101, that is, realizes the method for controlling the temperature rise and sterilization of the air conditioner in the above-mentioned embodiment.
  • the memory 101 may include a program storage area and a data storage area.
  • the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of a terminal device, and the like.
  • the memory 101 may include a high-speed random access memory, and may also include a non-volatile memory.
  • An embodiment of the present disclosure provides an air conditioner, including the above-mentioned device for controlling the temperature increase and sterilization of the air conditioner.
  • the embodiment of the present disclosure provides a computer-readable storage medium that stores computer-executable instructions, and the computer-executable instructions are configured to execute the above-mentioned method for controlling temperature rise and sterilization of an air conditioner.
  • the embodiments of the present disclosure provide a computer program product, the computer program product includes a computer program stored on a computer-readable storage medium, the computer program includes program instructions, and when the program instructions are executed by a computer, the computer program The computer executes the above-mentioned method for controlling the temperature increase and sterilization of the air conditioner.
  • the aforementioned computer-readable storage medium may be a transitory computer-readable storage medium or a non-transitory computer-readable storage medium.
  • the technical solutions of the embodiments of the present disclosure can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium and includes one or more instructions to enable a computer device (which can be a personal computer, a server, or a network). Equipment, etc.) execute all or part of the steps of the method described in the embodiments of the present disclosure.
  • the aforementioned storage medium may be a non-transitory storage medium, including: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disks or optical disks, etc.
  • the term “and/or” as used in this application refers to any and all possible combinations that include one or more of the associated lists.
  • the term “comprise” and its variants “comprises” and/or including (comprising) and the like refer to the stated features, wholes, steps, operations, elements, and/or The existence of components does not exclude the existence or addition of one or more other features, wholes, steps, operations, elements, components, and/or groups of these. If there are no more restrictions, the element defined by the sentence “including a" does not exclude the existence of other same elements in the process, method, or device that includes the element.
  • each embodiment focuses on the differences from other embodiments, and the same or similar parts between the various embodiments can be referred to each other.
  • the relevant parts can be referred to the description of the method parts.
  • the disclosed methods and products can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units may only be a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined. Or it can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to implement this embodiment.
  • the functional units in the embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • each block in the flowchart or block diagram may represent a module, program segment, or part of the code, and the module, program segment, or part of the code contains one or more functions for realizing the specified logical function.
  • Executable instructions may also occur in a different order from the order marked in the drawings. For example, two consecutive blocks can actually be executed substantially in parallel, and they can sometimes be executed in the reverse order, depending on the functions involved.

Abstract

一种用于控制空调升温灭菌的方法,包括:将目标换热器的温度升至目标温度以上进行灭菌;根据室内盘管温度设置节流装置的开度,使室内盘管温度与目标温度的差值小于阈值。还提供了一种用于控制空调升温灭菌的装置及空调。该用于控制空调升温灭菌的方法避免了温度波动导致灭菌效果不理想情况的发生,空调能够在目标温度上高效稳定的进行灭菌清洁。

Description

用于控制空调升温灭菌的方法及装置、空调
本申请基于申请号为202010759123.9、申请日为2020年07月31日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及智能家电技术领域,例如涉及一种用于控制空调升温灭菌的方法及装置、空调。
背景技术
目前,家居环境的洁净和健康性已被越来越多的用户所重视,空调作为一种常见调节室内环境温湿度的空气设备,其洁净程度的高低能够极大的影响到室内环境的洁净性。从空调长期的使用经验来看,在空调长时间运行后,室内换热器表面可能存在病菌、细菌、霉菌等微生物,常规自清洁无法有效灭菌,导致病菌通过空调在房间内循环,不利于人体健康。针对这一情况,现有空调厂家也研发制造了很多具备高温清洁功能的空调产品,通过升高室内换热器的温度,实现高温杀菌、清洁。
在实现本公开实施例的过程中,发现相关技术中至少存在如下问题:
在室内换热器升温灭菌的过程中,内盘管温度波动较大,导致换热器不能稳定的维持在目标温度上,使得灭菌效果差。
发明内容
为了对披露的实施例的一些方面有基本的理解,下面给出了简单的概括。所述概括不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围,而是作为后面的详细说明的序言。
本公开实施例提供了一种用于控制空调升温灭菌的方法及装置、空调,以解决室内换热器升温灭菌时,内盘管温度波动较大导致换热器温度不能稳定在目标温度上,灭菌效果差的技术问题。
在一些实施例中,所述方法包括:将目标换热器的温度升至目标温度以上进行灭菌;根据室内盘管温度设置节流装置的开度,使所述室内盘管温度与所述目标温度的差值小于阈值。
在一些实施例中,所述装置包括处理器和存储有程序指令的存储器,所述处理器被配置为在执行所述程序指令时,执行上述的用于控制空调升温灭菌的方法。
在一些实施例中,所述空调包括上述的用于控制空调升温灭菌的装置。
本公开实施例提供的用于控制空调升温灭菌的方法及装置、空调,可以实现以下技术 效果:
通过在空调自清洁执行升温过程时,根据室内盘管温度设置节流装置的开度,以调节管路内流动的制冷剂,使得室内盘管温度靠近换热器的目标温度。如此,在升温灭菌过程中,细菌通过空气循环附着在室内盘管和换热器的翅片上,由于室内盘管温度在节流装置的调节下能够稳定在目标温度附近,使得换热器温度快速稳定达到目标温度后,也能够稳定在目标温度上,避免了温度波动导致灭菌效果不理想情况的发生,使得空调能够在目标温度上高效稳定的进行灭菌清洁。
以上的总体描述和下文中的描述仅是示例性和解释性的,不用于限制本申请。
附图说明
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明和附图并不构成对实施例的限定,附图中具有相同参考数字标号的元件示为类似的元件,附图不构成比例限制,并且其中:
图1是本公开实施例提供的一个用于控制空调升温灭菌的方法的示意图;
图2是本公开实施例提供的另一个用于控制空调升温灭菌的方法的示意图;
图3是本公开实施例提供的另一个用于控制空调升温灭菌的方法的示意图;
图4是本公开实施例提供的另一个用于控制空调升温灭菌的方法的示意图;
图5是本公开实施例提供的一个用于控制空调升温灭菌的装置的示意图。
具体实施方式
为了能够更加详尽地了解本公开实施例的特点与技术内容,下面结合附图对本公开实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本公开实施例。在以下的技术描述中,为方便解释起见,通过多个细节以提供对所披露实施例的充分理解。然而,在没有这些细节的情况下,一个或多个实施例仍然可以实施。在其它情况下,为简化附图,熟知的结构和装置可以简化展示。
本公开实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开实施例的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。
除非另有说明,术语“多个”表示两个或两个以上。
本公开实施例中,字符“/”表示前后对象是一种“或”的关系。例如,A/B表示:A或B。
术语“和/或”是一种描述对象的关联关系,表示可以存在三种关系。例如,A和/或B,表示:A或B,或,A和B这三种关系。
结合图1所示,本公开实施例提供一种用于控制空调升温灭菌的方法,包括:
步骤S01,将目标换热器的温度升至目标温度以上进行灭菌。
在执行步骤S01的升温过程时,在目标换热器为室内换热器时,空调调整系统内冷媒流向与制热模式的冷媒流向一致,使得输入目标换热器(即室内换热器)的冷媒为高温冷媒,以利用高温冷媒加热目标换热器,实现高温灭菌的清洁作用。
这里,在一些可选的实施例中,空调的遥控器和控制面板上新增有“灭菌功能”或“灭菌功能”等的清洁选项,该清洁选项可用于触发运行本实施例中空调升温灭菌的清洁流程。这样在用户对该清洁选项进行选定操作后,空调生成相关的清洁指令,并响应执行,使得目标换热器的温度升至目标温度以上。
在又一些可选的实施例中,空调也可以通过检测触发、定时触发等方式生成相关的清洁指令,例如,空调增设有微生物检测装置,可用于检测一种或多种特定类型微生物的含量,则在检测到的微生物的含量高于设定的含量阈值时,说明空调滋生的微生物较多,空调生成相关的清洁指令;又或者,空调具有计时模块,可用于统计空调累计运行的时长如制冷模式或者除湿模式的累计运行时长,这里随着空调制冷模式或者除湿模式的累计运行时长的增加,空调内部冷凝的冷凝水也就越多并且在该种湿润环境中微生物繁殖增长的数目也就越多,因此可以设定在空调累计运行时长超过设定时长阈值时,空调生成相关的清洁指令,使得目标换热器温度升至目标温度以上进行灭菌清洁。
在又一些可选的实施例中,空调也可以与空调原有清洁功能进行联动触发,如在用户选定原有清洁功能后,在执行该原有清洁功能限定的清洁流程之前生成清洁指令并执行本申请的清洁方法流程,或者在执行该原有清洁功能限定的清洁流程之后生成清洁指令并执行本申请的清洁方法流程;也即用户在选定一原有清洁功能之后,空调是先后执行了两种不同的清洁流程,通过双重清洁的方式有效保障了空调内部的洁净度。
例如,空调原有清洁功能为喷淋清洗功能,该喷淋清洗功能是将水喷淋至空调的换热器上,以通过流水冲刷的方式清洁换热器,则一种可选的实施方式是本申请的升温灭菌方法流程是在执行喷淋清洗功能之前运行,也即在用户选定喷淋清洗功能之后,先控制执行本申请升温灭菌方法流程杀灭细菌等微生物,之后在执行喷淋清洗功能,这样流水不仅可以冲洗掉灰尘、油污等污垢,同时也可以将换热器上被杀灭的微生物一并冲刷掉。
又例如,空调原有清洁功能为凝霜-化霜的清洁模式,包括先将空调系统内冷媒流向调整为与制冷模式的冷媒流向一致,使输入室内换热器的冷媒为低温冷媒,以利用低温冷媒的吸热蒸发作用降低室内换热器的温度,使得室内空气流经室内换热器时,水蒸气就在室内换热器上进行凝结,水汽从气态-液态-固态的转变过程中能够剥离室内换热器表面的灰尘、油污等污垢,不仅可以提高对体积较大的污染物的清洁效果,同时也能够使污垢深层的微生物裸露出来,从而更易被杀灭。在满足化霜条件后,将空调系统内冷媒流向调整为与制热模式的冷媒流向一致,此时输入室内换热器的冷媒为高温冷媒,以利用高温冷媒加热室内换热器,室内换热器表面上凝结的冰霜在吸收热量后融化,从而实现“化霜”。达到化霜温度后,室内换热器继续升温至目标温度以上,从而在化霜基础上进一步的实现 “灭菌”的清洁。
步骤S02,根据室内盘管温度设置节流装置的开度,使室内盘管温度与目标温度的差值小于阈值。
这里,阈值用于表示一个较小的数值,在室内盘管温度与目标温度的差值小于该阈值时,认为室内盘管温度接近目标温度,以实现将室内盘管温度稳定在目标温度附近的目的。可选地,阈值的取值范围为[0.5,2],可以是0.5、1、1.5或2。
在持续升温过程中,以及达到目标温度后的设定时长内,根据室内盘管温度设置节流装置的开度,使得室内盘管温度靠近目标温度,避免室内盘管温度波动导致换热器温度不稳定,不能很好的完成灭菌清洁。
采用本公开实施例提供的用于控制空调升温灭菌的方法,通过在空调自清洁执行升温过程时,根据室内盘管温度设置节流装置的开度,以调节管道内流通的制冷剂,使得室内盘管温度靠近换热器的目标温度。如此,在升温灭菌过程中,细菌通过空气循环附着在室内盘管和换热器的翅片上,由于室内盘管温度在节流装置的调节下能够稳定在目标温度附近,使得换热器温度快速稳定达到目标温度后,也能够稳定在目标温度上,因此空调能够在目标温度上高效稳定的进行灭菌清洁。
可选地,目标温度满足如下条件:
T 0+T 阈值<T pmax          (1)
其中,T 0为目标温度,T 阈值为调节数值,其取值范围为2℃~3.5℃,T pmax为室内盘管的最高温度。如此,根据室内盘管的最高温度确定换热器的目标温度,使得目标温度在满足灭菌要求的同时,不影响空调系统的整机压力条件。可选地,室内盘管的最高温度T pmax是根据制冷剂种类确定的。
例如是,对于其内流通R32制冷剂的空调制冷系统来说,室内盘管的最高温度为63℃,则目标温度与调节数值之和小于63℃。具体地,调节数值T 阈值设置为3℃,则目标温度T 0的取值范围为小于60℃。考虑到杀菌清洁的要求,将目标温度设定为56摄氏度以上。如此,在该目标温度下,一方面能够实现空调的高温杀菌功能,在高温环境下清洁清除换热器翅片上滋生或附着的细菌,清除室内空气中附着的病毒、细菌;另一方面,能够满足系统压力条件,使得制冷系统稳定运行。
可选地,室内盘管温度越高,节流装置的开度越大。这里,室内盘管温度是指升温过程中和/或达到目标温度后的预设时长内,室内盘管的温度。通过根据室内盘管温度设置节流装置的开度,使得室内盘管温度稳定在目标温度上。室内盘管温度较高时,增大节流装置的开度,以增加制冷剂的流动速度,加快降温,使室内盘管温度稳定在目标温度上。
例如是,当室内盘管温度与目标温度相近时,设置节流装置开度为第一阈值的较小开度,此时制冷剂流量较低,使得室内盘管温度缓慢上升,不断趋近到设定温度;当室内盘管温度相对于目标温度较高时,设置节流装置开度为第二阈值的开度,这里第二阈值对应的开度高于第一阈值。此时,通过增加节流装置的开度提高管路内制冷剂流量,实现降温, 使得室内盘管温度逐渐降低至设定温度;当室内盘管温度接近室内盘管的最高温度时,设置节流装置开度为较高的第三阈值的开度,这里第三阈值对应的开度高于第二阈值。此时,通过增大节流装置的开度,增加管路内制冷剂流量、流速,实现快速降温,使得室内盘管温度可以维持在目标温度上。
示例性的,表1中示出一种可选的室内盘管温度T p与节流装置开度F s的对应关系。
表1
室内盘管温度T p(℃) 节流装置开度F s
T p<T 0+1 F 1
T 0+1≤T p≤T 0+3 F 1+x
T p>T 0+3 F 1+y
其中,F 1表示一对应于相应室内盘管温度的节流装置预设开度,x、y分别表示不同的开度增量,其中x表示的开度增量小于y表示的开度增量。
如表1所示,在本实施例中,对室内盘管温度预设3个温度区间,其对应的节流装置开度的数值依次增大。表1中示出了室内盘管温度所在的不同温度区间所对应的节流装置开度的取值,在本实施例中,升温灭菌的自清洁过程中节流装置开度的取值可以通过查表的方式确定。
可选地,节流装置的开度根据如下方式确定:
F s=a×T p+k           (2)
其中,F s为节流装置的开度,T p为室内盘管温度,k为修正参数,a为大于0的加权值。
如此,根据算式(2)可通过室内盘管温度设定空调的节流装置开度。室内盘管温度越高,节流装置开度就越高。需要注意的是,在算式(2)的计算时,进行F s、T p数值的代数式求值,不进行单位换算。
这里,空调预设有室内盘管温度与加权值a的关联关系,该关联关系包括室内盘管温度与加权值a的一一对应关系,通过查找该关联关系就能够获取与当前室内盘管温度所对应的加权值a的取值,得到一与当前室内盘管温度对应的修正前的节流装置开度值。可选地,加权值a的取值还与空调接收清洁指令前的工作模式有关。根据不同的工作模式,为加权值a设置不同的数值。
可选地,修正参数k根据室内盘管温度与目标温度的差值以及室外环境温度确定的。如此,在根据室内盘管温度设置节流装置的开度时,通过室内盘管温度与目标温度的差值以及室外环境温度共同对节流装置的开度进行修正,使得对节流装置开度的调整更加精准,能够通过节流装置开度的调节,进一步将室内盘管温度稳定在目标温度上,使得空调整机运行平稳,高温灭菌效果好。
可选地,根据室内盘管温度与目标温度的差值及室外环境温度确定修正系数,包括:确定室内盘管温度与目标温度的差值所在的温度区间;根据预设的对应关系,确定温度区 间和室外环境温度所对应的修正系数。
这里,空调预设有室内盘管温度与目标温度的差值、室外环境温度与修正系数的关联关系,该关联关系包括室内盘管温度与目标温度的差值所在的温度区间、室外环境温度与修正系数取值的对应关系。因此通过查找该关联关系就能够获取与当前室内盘管温度与目标温度的差值和室外环境温度所对应的修正系数,进而控制节流装置根据该修正系数调节开度后改变管路内制冷剂的流量。
可选地,在室外环境温度相同的情况下,室内盘管温度与目标温度的差值所在的温度区间越高,修正系数k的取值越大。
如此,对于同一室外环境温度下的不同室内机,根据其室内盘管温度与目标温度差值所在的温度区间调节修正系数k的取值,以修正节流装置的开度,使其能够对室内盘管温度产生影响,不断趋近目标温度。
可选地,在室内盘管温度与目标温度的差值相同的情况下,室外环境温度越高,修正系数k的取值越大。如此,在室内盘管温度、空调目标温度相同的情况下,根据室外环境温度调节修正系数k的取值,以修正节流装置的开度,使其能够对室内盘管温度产生影响,不断趋近目标温度。
可选地,实时的或按照预定时间间隔获取室内盘管温度。例如是,在对换热器的升温过程中,实时的获取室内盘管温度以设置节流装置的开度。也可以是,在对换热器的升温过程中,按照预定时间间隔获取室内盘管温度以设置节流装置的开度。这里,预定时间间隔可以是1min,2min,4min或5min。
采用本公开实施例提供的用于控制空调升温灭菌的方法,通过在空调自清洁执行升温过程时,根据室内盘管温度调节节流装置的开度,以调整管路内流通的制冷剂,使得室内盘管温度靠近换热器的目标温度。如此,在升温灭菌过程中,细菌通过空气循环附着在室内盘管和换热器的翅片上,由于室内盘管温度在节流装置的调节下能够稳定在目标温度附近,使得换热器温度快速稳定达到目标温度后,也能够稳定在目标温度上,因此空调能够在目标温度上高效稳定的进行灭菌清洁。
结合图2所示,本公开实施例提供的另一种用于控制空调升温灭菌的方法,包括:
步骤S11,将目标换热器的温度升至目标温度以上进行灭菌。
步骤S12,根据室内盘管温度设置节流装置的开度,使室内盘管温度与目标温度的差值小于阈值。
步骤S13,在室内盘管温度与所述目标温度的差值大于或等于阈值的情况下,根据室内盘管温度和室外环境温度设置室内风机的转速。
在调节节流装置开度后,无法使得室内盘管温度与目标温度的差值小于阈值的情况下,通过调节室内风机转速,实现驱使室内盘管温度不断趋近目标温度,使得换热器温度快速稳定达到目标温度后,也能够稳定在目标温度上,因此空调能够在目标温度上高效稳定的进行灭菌清洁
可选地,根据室内盘管温度、室外环境温度共同设置室内风机的转速,使室内盘管温度与目标温度的差值小于阈值。这里的阈值与前述实施例中的阈值意义相同,用于表述一个较小的数值,在室内盘管温度与目标温度的差值小于该阈值时,认为室内盘管温度接近目标温度,以实现将室内盘管温度稳定在目标温度附近的目的。
可选地,室内盘管温度越高,室内风机的转速越高。这里,室内盘管温度是指升温过程中和/或达到目标温度后的预设时长内,室内盘管的温度。通过根据室内盘管温度调节室内风机转速,使得室内盘管温度稳定在目标温度上。室内盘管温度较高时,提高室内风机转速以加快送风实现室内盘管温度的快速降温,使其维持在目标温度上。
例如是,当室内盘管温度与目标温度相近时,设置室内风机以较低转速转动,缓慢吹风,使得室内盘管温度不断趋近到目标温度;当室内盘管温度相对于目标温度较高时,设置室内风机以较高转速转送,加快送风,使得室内盘管温度逐渐降低至目标温度;当室内盘管温度接近室内盘管的最高温度时,设置室内风机高速转动,实现快速降温,使得室内盘管温度可以维持在目标温度上。
如表2所示,空调内预设有室内盘管温度、室外环境温度与室内风机转速之间的对应关系。
表2
  室外环境温度T ao T r1 T r2 T r3 T r4 T r5
室内盘管温度T p 室内风机转速R column1 column2 column3 column4 column5
T ao1 1ine1 2 3 4 5 6
T ao2 line2 3 4 5 6 7
T ao3 line3 4 5 6 7 8
T ao4 line4 5 6 7 8 9
T ao5 line5 6 7 8 9 10
根据室内盘管温度与室外环境温度共同设置室内风机的转速,其中室内盘管温度与室内风机的转速成正相关关系;室外环境温度与室内风机的转速成正相关关系。表3的横表头为从小到大依次设置的多个室外环境温度数值,column(n)为室外环境温度数值与对应室内风机转速所在的列;纵表头为从小到大依次设置的多个室内盘管温度数值,line(l)为室内盘管温度数值与对应室内风机转速所在的行;column(n)与line(l)所交集处为室外环境温度与室内盘管温度所对应的室内风机转速。可以根据研发阶段对典型工况的实验数据,对根据室内盘管温度确定的室内风机转速、根据室外环境温度确定的室内风机转速进行拟合后获得上述的对应关系。这里,室内风机转速可以是具体的转数,也可以是转速所在的档位。
可选地,在获取室内盘管温度、室外环境温度后,通过查表的方式在表3中取最接近实际温度的数值所在行、列对应的室内风机转速,实现根据室内盘管温度、室外环境温度 共同设置室内风机的转速,能够通过室内风机转速的调节,使室内盘管温度不断趋近目标温度,达到杀菌清洁的要求。
具体地,表3示出了一种可选的室内环境温度、室外环境温度与室内风机转速之间的对应关系。
表3
  室外环境温度T ao T ao1 T ao2 T ao3
室内盘管温度T p 室内风机转速R T ao<17 17≤T ao≤30 T ao>30
T p1 T p<T s+1 R1 R1+k R1+2k
T p2 T s+1≤T p≤T s+3 R1+m R1+k+m R1+2k+m
T p3 T p>T s+3 R1+n R1+k+n R1+2k+n
其中,R1表示室内风机转速的范围为(430,470),x、y、z分别为转速增量,其中,x表示的转速增量小于y表示的转速增量。这里,需要注意的是,增加转速增量后的风机转速仍然小于或等于相同条件下预设的空调静音最大转速。当增加转速增量后的风机转速高于该条件下的空调静音最大转速时,以空调静音最大转速运转。
采用本公开实施例提供的用于控制空调升温灭菌的方法,通过在空调自清洁执行升温过程时,根据室内盘管温度调节节流装置的开度,以调整管路内流通的制冷剂,使得室内盘管温度靠近换热器的目标温度,并在室内盘管温度无法趋近换热器目标温度的情况下,根据室内盘管温度与室外环境温度共同调节室内风机转速,以使得室内盘管温度稳定在目标温度上。室内盘管温度较高时,提高室内风机转速以加快送风实现室内盘管温度的快速降温,使其维持在目标温度上。如此,在升温灭菌过程中,细菌通过空气循环附着在室内盘管和换热器的翅片上,由于室内盘管温度在节流装置的调节下能够稳定在目标温度附近,使得换热器温度快速稳定达到目标温度后,也能够稳定在目标温度上,因此空调能够在目标温度上高效稳定的进行灭菌清洁。
结合图3所示,本公开实施例提供另一种用于控制空调升温灭菌的方法,包括:
步骤S21,响应于清洁指令,对目标换热器进行凝霜。
通过控制空调,使目标换热器凝霜。在本实施例中以室内换热器作为目标换热器。对目标换热器的凝霜操作包括关闭四通阀,控制室内机导板向上,控制压缩机运行频率、节流装置开度固定,使得室内换热器凝霜。
步骤S22,满足化霜条件后,将目标换热器的温度升至目标温度以上进行化霜和灭菌。
可选地,目标温度为一高于化霜温度的数值,目标温度的取值范围为55℃至65℃。可以是55℃、60℃或65℃。在执行步骤S12的升温过程时,空调调整系统内冷媒流向与制热模式的冷媒流向一致,此时输入室内换热器的冷媒为高温冷媒,以利用高温冷媒加热室内换热器,室内换热器表面上凝结的冰霜在吸收热量后融化,从而实现“化霜”。这里,化霜温度可以根据霜层厚度、环境温度、环境湿度中的一个或多个共同确定。达到化霜温度后,室内换热器继续升温至设定温度以上,从而在化霜基础上进一步的实现“灭菌”。
步骤S23,根据室内盘管温度、室外环境温度共同设置节流装置的开度,使室内盘管温度与目标温度的差值小于阈值。
空调内预设有室内盘管温度、室外环境温度与节流装置开度之间的对应关系。根据室内盘管温度与室外环境温度共同设置节流装置的开度,其中室内盘管温度的高低与节流装置开度的大小正相关关系;室外环境温度与节流装置开度的大小成正相关关系。可以根据研发阶段对典型工况的实验数据,对根据室内盘管温度确定的节流装置开度、根据室外环境温度确定的节流装置开度进行拟合后获得上述的对应关系。这里,节流装置开度可以是具体的开度数值,也可以是开度所在的档位。
可选地,在获取室内盘管温度、室外环境温度后,通过查表的方式在预存的对应关系中取最接近实际温度的数值所在行、列对应的节流装置开度,实现根据室内盘管温度、室外环境温度共同设置节流装置开度,能够通过节流装置开度的调节,调整管路内流通的制冷剂,使室内盘管温度不断趋近目标温度,达到杀菌清洁的要求。
具体地,表4示出了一种可选的室内环境温度、室外环境温度与节流装置开度之间的对应关系。
表4
  室外环境温度T ao T ao1 T ao2 T ao3
室内盘管温度T p 节流装置开度F T ao<17 17≤T ao≤30 T ao>30
T p1 T p<T s+1 F1 F1+k F1+2k
T p2 T s+1≤T p≤T s+3 F1+m F1+k+m F1+2k+m
T p3 T p>T s+3 F1+n F1+k+n F1+2k+n
其中,F1表示室外环境温度低于17℃,室内盘管温度与目标温度的差值小于1的情况下对应的节流装置开度,m、n、k分别为开度增量,其中,n表示的开度增量大于m表示的开度增量。
步骤S24,满足灭菌完成条件后,退出清洁模式,控制空调恢复到清洁前的工作模式。
其中,灭菌完成条件包括以下条件中的一个或多个:室内换热器的盘管温度在第一预设时长中,数值持续大于第一设定温度;室内换热器的盘管温度变化量,在第一预设时长中,数值持续小于第一设定变化量;压缩机的连续运行时间大于第二预设时长;换热器达到目标温度的时长满足第二预设时长。其中,第一预设时长设定为5-7分钟,第二预设时长设定为30-35分钟。这样,通过统计升温过程中设定时间内温度变化情况或压缩机的工作情况,在满足灭菌完成条件后,退出清洁模式。
采用本公开实施例提供的用于控制空调升温灭菌的方法,通过在空调自清洁的凝霜-化霜程序后,继续执行升温过程,并根据室内盘管温度调节室节流装置开度,使得室内盘管温度靠近换热器的目标温度。如此,在升温灭菌过程中,细菌通过空气循环附着在室内盘管和换热器的翅片上,由于室内盘管温度在室内风机的调节下能够稳定在目标温度附近,使得换热器温度快速稳定达到目标温度后,也能够稳定在目标温度上,因此空调能够 在目标温度上高效稳定的进行灭菌清洁。
如图4所示,本公开实施例提供的一种用于控制空调升温灭菌的方法,包括:
步骤S31,将目标换热器的温度升至目标温度以上进行灭菌。
步骤S32,根据室内盘管温度设置室内风机的转速,使室内盘管温度与目标温度的差值小于阈值。
步骤S33,在满足灭菌完成条件的情况下,判断是否满足除霜条件,当满足除霜条件时,执行对室外换热器进行除霜,否则退出升温灭菌的清洁模式,控制空调恢复到灭菌清洁前的工作模式。
可选地,除霜条件是根据室外环境温度与室外换热器盘管温度确定的。其中,室外换热器盘管温度可以通过室外换热器上的除霜传感器采集。通过采集室外环境温度可以计算室外空气的凝露点温度。比较该凝露点温度与室外换热器盘管温度的大小,当室外换热器盘管温度在设定时间内持续小于或等于该凝露点温度时,满足该除霜条件,对室外换热器进行除霜。
可选地,凝露点温度是通过如下方式获得的:
T es=C×T ao-e           (3)
其中,T es为凝露点温度,T ao为室外环境温度,C为根据室外环境温度确定的加权值,e为常数。
可选地,当室外环境温度小于0℃时,加权值C的数值设定为0.8;当室外环境温度大于或等于0℃时,加权值C的数值设定为0.6。常数e的取值范围为4-7,可以是4、5、6或7。
可选地,对于室外换热器的除霜,可通过设置在室外换热器上的除霜电路实现对室外换热器的加热除霜;也可通过冷媒流向进行切换,使得空调切换到以室外换热器作为冷凝器工作的状态,对室外换热器进行除霜,使得冷媒在流经室外换热器时冷凝放热,提高室外换热器的温度,以化除室外换热器上附着的冰霜,并在室外换热器上附着的冰霜化除后,保持以室外换热器作为冷凝器的工作状态继续运行,使室外换热器的温度继续升高至退出除霜模式。
可选地,还可以通过在室外换热器上设置除霜传感器,已通过除霜传感器对室外换热器表面霜层情况或室外换热器的盘管温度的感应实现除霜模式的进入、退出。例如,除霜条件包括,除霜传感器检测室外换热器的外盘管温度小于第三设定温度。此时进入除霜模式,开启室外换热器上设置的除霜电路进行加热除霜。当除霜传感器检测到室外换热器的外盘管温度大于或等于第四设定温度时,退出除霜模式。可选地,同时退出升温灭菌的清洁模式,控制空调恢复到凝霜前的工作模式。
采用本公开实施例提供的用于控制空调升温灭菌的方法,通过在凝霜过程后执行升温流程,并在升温流程后,在空调满足除霜条件的情况下,执行除霜流程。通过除霜流程,一方面对室外换热器在室内换热器快速的升温过程中产生的霜层进行了清理,另一方面实 现了室外换热器的清洁。其中,在升温过程中根据室内盘管温度调节节流装置开度,使得室内盘管温度靠近换热器的目标温度。如此,在升温灭菌过程中,细菌通过空气循环附着在室内盘管和换热器的翅片上,由于室内盘管温度在节流装置的调节下能够稳定在目标温度附近,使得换热器温度快速稳定达到目标温度后,也能够稳定在目标温度上,因此空调能够在目标温度上高效稳定的进行灭菌清洁。
结合图5所示,本公开实施例提供一种用于控制空调升温灭菌的装置,包括处理器(processor)100和存储器(memory)101。可选地,该装置还可以包括通信接口(Communication Interface)102和总线103。其中,处理器100、通信接口102、存储器101可以通过总线103完成相互间的通信。通信接口102可以用于信息传输。处理器100可以调用存储器101中的逻辑指令,以执行上述实施例的用于控制空调升温灭菌的方法。
此外,上述的存储器101中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。
存储器101作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序,如本公开实施例中的方法对应的程序指令/模块。处理器100通过运行存储在存储器101中的程序指令/模块,从而执行功能应用以及数据处理,即实现上述实施例中用于控制空调升温灭菌的方法。
存储器101可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端设备的使用所创建的数据等。此外,存储器101可以包括高速随机存取存储器,还可以包括非易失性存储器。
本公开实施例提供了一种空调,包含上述的用于控制空调升温灭菌的装置。
本公开实施例提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行上述用于控制空调升温灭菌的方法。
本公开实施例提供了一种计算机程序产品,所述计算机程序产品包括存储在计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行上述用于控制空调升温灭菌的方法。
上述的计算机可读存储介质可以是暂态计算机可读存储介质,也可以是非暂态计算机可读存储介质。
本公开实施例的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括一个或多个指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开实施例所述方法的全部或部分步骤。而前述的存储介质可以是非暂态存储介质,包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等多种可以存储程序代码的介质,也可以是暂态存储介质。
以上描述和附图充分地示出了本公开的实施例,以使本领域的技术人员能够实践它们。其他实施例可以包括结构的、逻辑的、电气的、过程的以及其他的改变。实施例仅代 表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施例的部分和特征可以被包括在或替换其他实施例的部分和特征。而且,本申请中使用的用词仅用于描述实施例并且不用于限制权利要求。如在实施例以及权利要求的描述中使用的,除非上下文清楚地表明,否则单数形式的“一个”(a)、“一个”(an)和“所述”(the)旨在同样包括复数形式。类似地,如在本申请中所使用的术语“和/或”是指包含一个或一个以上相关联的列出的任何以及所有可能的组合。另外,当用于本申请中时,术语“包括”(comprise)及其变型“包括”(comprises)和/或包括(comprising)等指陈述的特征、整体、步骤、操作、元素,和/或组件的存在,但不排除一个或一个以上其它特征、整体、步骤、操作、元素、组件和/或这些的分组的存在或添加。在没有更多限制的情况下,由语句“包括一个…”限定的要素,并不排除在包括所述要素的过程、方法或者设备中还存在另外的相同要素。本文中,每个实施例重点说明的可以是与其他实施例的不同之处,各个实施例之间相同相似部分可以互相参见。对于实施例公开的方法、产品等而言,如果其与实施例公开的方法部分相对应,那么相关之处可以参见方法部分的描述。
本领域技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,可以取决于技术方案的特定应用和设计约束条件。所述技术人员可以对每个特定的应用来使用不同方法以实现所描述的功能,但是这种实现不应认为超出本公开实施例的范围。所述技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本文所披露的实施例中,所揭露的方法、产品(包括但不限于装置、设备等),可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,可以仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例。另外,在本公开实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
附图中的流程图和框图显示了根据本公开实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现 规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。在附图中的流程图和框图所对应的描述中,不同的方框所对应的操作或步骤也可以以不同于描述中所披露的顺序发生,有时不同的操作或步骤之间不存在特定的顺序。例如,两个连续的操作或步骤实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。

Claims (10)

  1. 一种用于控制空调升温灭菌的方法,其特征在于,包括:
    将目标换热器的温度升至目标温度以上进行灭菌;
    根据室内盘管温度设置节流装置的开度,使所述室内盘管温度与所述目标温度的差值小于阈值。
  2. 根据权利要求1所述的方法,其特征在于,室内盘管温度越高,所述节流装置的开度越大。
  3. 根据权利要求1所述的方法,其特征在于,所述节流装置的开度根据如下方式确定:
    F s=a×T p+k
    其中,F s为节流装置的开度,T p为室内盘管温度,k为修正参数,a为大于0的加权值。
  4. 根据权利要求3所述的方法,其特征在于,所述修正参数k根据室内盘管温度与目标温度的差值以及室外环境温度确定。
  5. 根据权利要求4所述的方法,其特征在于,根据所述室内盘管温度与目标温度的差值及室外环境温度确定所述修正系数,包括:
    确定所述室内盘管温度与目标温度的差值所在的温度区间;
    根据预设的对应关系,确定所述温度区间和室外环境温度所对应的修正系数。
  6. 根据权利要求5所述的方法,其特征在于,在室外环境温度相同的情况下,所述室内盘管温度与目标温度的差值所在的温度区间越高,所述修正系数k的取值越大。
  7. 根据权利要求5所述的方法,其特征在于,在室内盘管温度与目标温度的差值相同的情况下,所述室外环境温度越高,所述修正系数k的取值越大。
  8. 根据权利要求1至7任一所述的方法,其特征在于,还包括:
    在室内盘管温度与所述目标温度的差值大于或等于阈值的情况下,根据室内盘管温度和室外环境温度设置室内风机的转速。
  9. 一种用于控制空调升温灭菌的装置,包括处理器和存储有程序指令的存储器,其特征在于,所述处理器被配置为在执行所述程序指令时,执行如权利要求1至8任一项所述的用于控制空调升温灭菌的方法。
  10. 一种空调,其特征在于,包括如权利要求9所述的用于控制空调升温灭菌的装置。
PCT/CN2021/077583 2020-07-31 2021-02-24 用于控制空调升温灭菌的方法及装置、空调 WO2021223495A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010759123.9 2020-07-31
CN202010759123.9A CN114061120A (zh) 2020-07-31 2020-07-31 用于控制空调升温灭菌的方法及装置、空调

Publications (1)

Publication Number Publication Date
WO2021223495A1 true WO2021223495A1 (zh) 2021-11-11

Family

ID=78467787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/077583 WO2021223495A1 (zh) 2020-07-31 2021-02-24 用于控制空调升温灭菌的方法及装置、空调

Country Status (2)

Country Link
CN (1) CN114061120A (zh)
WO (1) WO2021223495A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114234402A (zh) * 2021-11-12 2022-03-25 青岛海尔空调器有限总公司 用于除菌舱空调器除菌的方法及装置、除菌舱空调器
CN114659305A (zh) * 2022-03-25 2022-06-24 青岛海尔空调器有限总公司 空调冷媒循环的控制方法、控制系统、电子设备和介质

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000274787A (ja) * 1999-03-26 2000-10-06 Osaka Gas Co Ltd 空調機内での微生物繁殖抑制法
JP2006138545A (ja) * 2004-11-12 2006-06-01 Matsushita Electric Ind Co Ltd 空気調和機とその運転方法
CN104913429A (zh) * 2014-03-10 2015-09-16 广东美的制冷设备有限公司 空调器杀菌方法及空调器
CN109959120A (zh) * 2019-03-21 2019-07-02 宁波奥克斯电气股份有限公司 空调器的除霜方法及空调器
CN110094854A (zh) * 2018-01-31 2019-08-06 青岛海尔智能技术研发有限公司 一种空调室内机的杀菌方法及杀菌空调
CN110094840A (zh) * 2018-01-31 2019-08-06 青岛海尔智能技术研发有限公司 一种空调室内机的杀菌方法及杀菌空调
CN110094839A (zh) * 2018-01-31 2019-08-06 青岛海尔智能技术研发有限公司 一种空调室内机的杀菌方法及杀菌空调
CN110107990A (zh) * 2018-01-31 2019-08-09 青岛海尔智能技术研发有限公司 一种空调室内机的杀菌方法及杀菌空调
CN110470000A (zh) * 2019-07-28 2019-11-19 青岛海尔空调器有限总公司 用于空调除霜的控制方法、装置及空调
CN110529973A (zh) * 2019-09-10 2019-12-03 宁波奥克斯电气股份有限公司 一种空调的自清洁控制方法、自清洁控制装置及空调器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4215554A (en) * 1978-05-30 1980-08-05 General Electric Company Frost control system
CN110470006A (zh) * 2019-08-02 2019-11-19 青岛海尔空调器有限总公司 用于空调除霜的控制方法及装置、空调
CN110398040B (zh) * 2019-08-05 2021-09-21 宁波奥克斯电气股份有限公司 制冷调节方法、装置及空调器

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000274787A (ja) * 1999-03-26 2000-10-06 Osaka Gas Co Ltd 空調機内での微生物繁殖抑制法
JP2006138545A (ja) * 2004-11-12 2006-06-01 Matsushita Electric Ind Co Ltd 空気調和機とその運転方法
CN104913429A (zh) * 2014-03-10 2015-09-16 广东美的制冷设备有限公司 空调器杀菌方法及空调器
CN110094854A (zh) * 2018-01-31 2019-08-06 青岛海尔智能技术研发有限公司 一种空调室内机的杀菌方法及杀菌空调
CN110094840A (zh) * 2018-01-31 2019-08-06 青岛海尔智能技术研发有限公司 一种空调室内机的杀菌方法及杀菌空调
CN110094839A (zh) * 2018-01-31 2019-08-06 青岛海尔智能技术研发有限公司 一种空调室内机的杀菌方法及杀菌空调
CN110107990A (zh) * 2018-01-31 2019-08-09 青岛海尔智能技术研发有限公司 一种空调室内机的杀菌方法及杀菌空调
CN109959120A (zh) * 2019-03-21 2019-07-02 宁波奥克斯电气股份有限公司 空调器的除霜方法及空调器
CN110470000A (zh) * 2019-07-28 2019-11-19 青岛海尔空调器有限总公司 用于空调除霜的控制方法、装置及空调
CN110529973A (zh) * 2019-09-10 2019-12-03 宁波奥克斯电气股份有限公司 一种空调的自清洁控制方法、自清洁控制装置及空调器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114234402A (zh) * 2021-11-12 2022-03-25 青岛海尔空调器有限总公司 用于除菌舱空调器除菌的方法及装置、除菌舱空调器
CN114659305A (zh) * 2022-03-25 2022-06-24 青岛海尔空调器有限总公司 空调冷媒循环的控制方法、控制系统、电子设备和介质
CN114659305B (zh) * 2022-03-25 2024-03-19 青岛海尔空调器有限总公司 空调冷媒循环的控制方法、控制系统、电子设备和介质

Also Published As

Publication number Publication date
CN114061120A (zh) 2022-02-18

Similar Documents

Publication Publication Date Title
WO2021223496A1 (zh) 用于控制空调升温灭菌的方法及装置、空调
CN111536657B (zh) 用于空调器清洁的方法及空调器
CN105783199B (zh) 空调器智能自清洁方法
WO2021223495A1 (zh) 用于控制空调升温灭菌的方法及装置、空调
WO2021174896A1 (zh) 用于空调器清洁的方法及空调器
CN105928139B (zh) 空调器自清洁控制方法
CN111578452B (zh) 用于控制空调器升温灭菌的方法及装置、空调器
CN105910228B (zh) 空调器自清洁运行方法
WO2019148973A1 (zh) 利用自清洁进行防凝露的方法及空调
CN111536675A (zh) 空调器自清洁控制方法、空调器及存储介质
CN111780378A (zh) 用于控制空调器升温灭菌的方法及装置、空调器
CN111578451B (zh) 用于控制空调器升温灭菌的方法及装置、空调器
CN111594982B (zh) 用于空调器清洁的控制方法、控制装置及空调器
CN112254301B (zh) 用于空调控制的方法、装置及空调
CN111102729B (zh) 一种空调及其防凝露的方法
CN111102728B (zh) 一种空调及其防凝露的方法
CN111102726B (zh) 一种空调及其防凝露的方法
CN111594975A (zh) 用于空调器清洁的控制方法、控制装置及空调器
CN111102715A (zh) 一种空调及其防凝露的方法
JPWO2020035913A1 (ja) 空調装置、制御装置、空調方法及びプログラム
JPWO2020035911A1 (ja) 空調装置、制御装置、空調方法及びプログラム
CN103115415A (zh) 空调器及其控制方法和装置
CN111102722B (zh) 一种空调及其防凝露的方法
CN111102727B (zh) 一种空调及其防凝露的方法
CN111102716B (zh) 一种空调及其防凝露的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21799730

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21799730

Country of ref document: EP

Kind code of ref document: A1