WO2021223179A1 - 激光雷达及自动驾驶设备 - Google Patents

激光雷达及自动驾驶设备 Download PDF

Info

Publication number
WO2021223179A1
WO2021223179A1 PCT/CN2020/089038 CN2020089038W WO2021223179A1 WO 2021223179 A1 WO2021223179 A1 WO 2021223179A1 CN 2020089038 W CN2020089038 W CN 2020089038W WO 2021223179 A1 WO2021223179 A1 WO 2021223179A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
rotating part
lidar
mirror
reflecting
Prior art date
Application number
PCT/CN2020/089038
Other languages
English (en)
French (fr)
Inventor
杨迪
卢盘
Original Assignee
深圳市速腾聚创科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市速腾聚创科技有限公司 filed Critical 深圳市速腾聚创科技有限公司
Priority to PCT/CN2020/089038 priority Critical patent/WO2021223179A1/zh
Priority to CN202080004643.7A priority patent/CN113906310A/zh
Publication of WO2021223179A1 publication Critical patent/WO2021223179A1/zh
Priority to US17/980,504 priority patent/US20230048902A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • G01S7/4815Constructional features, e.g. arrangements of optical elements of transmitters alone using multiple transmitters

Definitions

  • This application relates to the technical field of laser detection, in particular to a laser radar and automatic driving equipment.
  • Lidar is a radar system that emits a laser beam to detect the position and speed of an object. Its working principle is that the transmitting system first emits the outgoing laser for detection to the detection area, and then the receiving system receives the reflection from the object in the detection area. The reflected laser is compared with the outgoing laser, and the relevant information of the object can be obtained after processing, such as distance, azimuth, height, speed, posture, and even shape parameters.
  • the current laser radar includes a laser emitting device, a laser receiving device, and a reflecting mirror.
  • the reflecting mirror can rotate relative to the axis of rotation.
  • the outgoing laser emitted by the laser emitting device is scanned outward through a rotating mirror, and at the same time, it is received by a rotating mirror.
  • the laser light is reflected and directed to the laser receiving device, so that the lidar can detect it.
  • detection can be achieved through the rotation of the reflector in the existing lidar, the detection field of view is limited and the detection resolution is poor.
  • the present application provides a lidar and automatic driving equipment, which can obtain a larger detection field of view.
  • a lidar including:
  • the rotating device includes a first rotating part and a second rotating part, and the first rotating part and the second rotating part can rotate mutually around the rotating axis;
  • the laser transceiver component is connected to the first rotating part and is configured to emit outgoing laser light and receive reflected laser light.
  • the reflected laser light is the laser light reflected back after the outgoing laser light is irradiated to the object to be detected;
  • the reflecting component is connected to the second rotating part, the reflecting component includes at least two reflecting mirrors, each reflecting mirror is arranged around a rotation axis, and the angle between the at least two reflecting mirrors and a plane perpendicular to the rotating axis is different;
  • each reflector is configured to reflect the emitted laser light emitted by the laser transceiver component to the object to be detected, and at the same time reflect the reflected laser light reflected from the object to be detected to the corresponding laser transceiver component.
  • every two adjacent mirrors are connected to each other.
  • the second rotating part has a rotating stroke relative to the first rotating part, and the rotating stroke is 360 degrees.
  • the number of mirrors is at least three, and the mirrors are connected to form a ring-shaped mirror group.
  • the included angle of each mirror with the plane perpendicular to the axis of rotation is different.
  • each reflector includes an initial reflector and an end reflector adjacent to the initial reflector.
  • the sum of each reflector is perpendicular to the axis of rotation. The angle of the plane gradually increases.
  • the included angle between every two adjacent mirrors is equal.
  • the minimum value of the angle between each mirror and the axis of rotation is greater than 0 degrees, and the maximum value is less than 90 degrees.
  • the lidar includes a plurality of laser transceiver components, and each laser transceiver component is arranged around a rotation axis;
  • each laser transceiver component can be reflected by at least one reflector, and can receive the reflected laser light reflected by at least one reflector.
  • the number of laser transceiver components is the same as the number of mirrors, and within the rotation stroke of the second rotating part, each mirror corresponds to reflecting the emitted laser light of one laser transceiver component, and corresponds to one reflected laser. Reflected to the laser transceiver assembly.
  • the first rotating part is provided with a fixing structure, and the fixing structure is used to fix the lidar.
  • the first rotating part includes:
  • a base the fixing structure is arranged on the base, the base includes a mounting surface, and the laser transceiver component is mounted on the mounting surface;
  • the supporting shaft is connected to the mounting surface, and the central axis of the supporting shaft is perpendicular to the mounting surface, the second rotating part is connected to the end of the supporting shaft away from the first rotating part, and the rotating axis is parallel or coincident with the central axis of the supporting shaft;
  • the value range of the included angle ⁇ between the optical axis of the laser transceiver component and the reflector is: 0° ⁇ 90°.
  • the second rotating part further includes:
  • the bottom shell is connected to the base and defines a containing cavity together with the surface of the base away from the mounting surface.
  • the containing cavity is used for containing the circuit board of the laser radar, and the circuit board is electrically connected with the laser transceiver component.
  • the base includes an outer shell and a bottom plate, the outer shell is arranged around an outer circumference of the bottom plate, and the outer shell, the bottom plate and the bottom shell jointly define a receiving cavity;
  • the bottom plate includes a mounting surface, the mounting surface has a through hole penetrating the bottom plate, and the laser transceiver component is electrically connected to the circuit board through the through hole.
  • the lidar includes a plurality of laser transceiver components, and each laser transceiver component is arranged around a rotation axis;
  • a plurality of through holes are arranged on the bottom plate, and the laser transceiver components are electrically connected to the circuit board through the through holes in a one-to-one correspondence.
  • the second rotating part includes a rotating table, and the rotating table is connected to an end of the support shaft facing away from the base;
  • the rotating table includes a reflecting surface, and the reflecting mirror is connected to the reflecting surface.
  • the rotating table includes a plurality of reflective surfaces, and each reflective surface is arranged around the support axis;
  • the reflecting component includes a plurality of reflecting mirrors, and each reflecting mirror is connected to each reflecting surface in a one-to-one correspondence.
  • it further includes:
  • the driving device is connected to the first rotating part and the second rotating part, and is configured to drive the second rotating part to rotate relative to the first rotating part around the rotation axis.
  • the second aspect of the present application also provides an automatic driving device, including any one of the above-mentioned lidars.
  • each laser transceiver assembly forms a field of view that covers a certain angle in the direction perpendicular to the axis of rotation.
  • the reflective assembly has at least two mirrors with different included angles from the plane perpendicular to the axis of rotation, so the detection field of view formed by the laser transceiver assembly relative to the mirrors with different included angles is staggered in the direction parallel to the axis of rotation, and the laser
  • the at least two detection fields of view formed by the radar are staggered in the direction parallel to the rotation axis.
  • the field of view is wider.
  • the at least two detection fields of view formed by the lidar are also It can be partially overlapped, and the detection accuracy of the overlapped field of view is higher.
  • FIG. 1 is a three-dimensional schematic diagram of a lidar provided by an embodiment of this application.
  • FIG. 2 is a schematic diagram of a full cross-sectional view of a lidar provided by an embodiment of this application;
  • FIG. 3 is a schematic diagram of a full cross-sectional view of a lidar provided by an embodiment of the application, in which a schematic path of the emitted laser light and the reflected laser light is shown;
  • FIG. 4 is a schematic diagram of a full cross-sectional view of a lidar provided by an embodiment of the application, in which the lidar is exploded;
  • FIG. 5 is a schematic diagram of the first explosion of the lidar provided by an embodiment of the application.
  • FIG. 6 is a schematic diagram of a second explosion of the lidar provided by an embodiment of this application.
  • FIG. 7 is an exploded schematic diagram of a rotating body and a mirror group provided by an embodiment of this application.
  • FIG. 8 is an exploded schematic diagram of a rotating body and a mirror group provided by another embodiment of the application, which shows the structure of the glue-brushing groove;
  • FIG. 9 is a schematic diagram of a combination of a rotating body, a mirror group, and each laser transceiver assembly provided by an embodiment of the application;
  • FIG. 10 is a perspective schematic diagram of part of the components of the first rotating part and the driving device according to an embodiment of the application;
  • FIG. 11 is a perspective schematic diagram of part of the components of the first rotating part and the laser transceiver assembly provided by an embodiment of the application after being combined;
  • FIG. 12 is an exploded schematic diagram of a lidar provided by an embodiment of this application.
  • FIG. 13 is a three-dimensional schematic diagram of a laser transceiver assembly provided in an embodiment of this application.
  • FIG. 14 is a schematic diagram of a full cross-section of a laser transceiver assembly provided in an embodiment of the application;
  • 15 is a schematic diagram of a full cross-section of a laser transceiver assembly provided in an embodiment of the application, in which the laser transceiver assembly is exploded;
  • FIG. 16 is a three-dimensional schematic diagram of a laser transceiver assembly in an embodiment of the application, in which the laser transceiver assembly is schematically shown in cross-section;
  • Figure 17 is an exploded schematic diagram of the laser transceiver assembly in Figure 16.
  • FIG. 19 is a schematic front view of the first reflector in an embodiment of the application.
  • 20 is a schematic diagram of a combination of a laser transceiver component and a reflector in another embodiment of the application, wherein the surface of the reflector facing the rotation axis is a reflective surface;
  • FIG. 21 is a schematic structural diagram of an automatic driving device in an embodiment of this application.
  • FIG. 22 is a schematic structural diagram of an automatic driving device in another embodiment of the application.
  • Lidar is a radar system that emits a laser beam to detect the position and speed of an object. Its working principle is that the transmitting system first emits the outgoing laser for detection to the detection area, and then the receiving system receives the reflection from the object in the detection area. The reflected laser is compared with the outgoing laser, and the relevant information of the object can be obtained after processing, such as distance, azimuth, height, speed, posture, and even shape parameters.
  • the current laser radar includes a laser emitting device, a laser receiving device, and a reflecting mirror.
  • the reflecting mirror can rotate relative to the axis of rotation.
  • the outgoing laser emitted by the laser emitting device is scanned outward through a rotating mirror, and at the same time, it is received by a rotating mirror.
  • the laser light is reflected and directed to the laser receiving device, so that the lidar can detect it.
  • detection can be achieved through the rotation of the reflector in the existing lidar, the detection field of view is limited and the detection resolution is poor.
  • this embodiment provides a laser radar 10, which can have a larger detection field of view compared to the prior art.
  • the laser radar 10 in this embodiment includes a rotating device, a laser transceiver assembly 300, and a reflective assembly 400.
  • the rotating device includes a first rotating part 100 and a second rotating part 200.
  • the first rotating part 100 and the second rotating part 200 can rotate mutually, and the first rotating part 100 and the second rotating part 200 can rotate mutually. At this time, both rotate around the axis of rotation 20. That is, the first rotating part 100 does not move, and when the second rotating part 200 rotates, the second rotating part 200 rotates around the above-mentioned rotation axis 20. Similarly, the second rotating part 200 does not move, and when the first rotating part 100 rotates, the first rotating part 100 rotates around the rotation axis 20.
  • the first rotating part 100 and the second rotating part 200 can also rotate around the rotation axis 20 at the same time (in this case, it can be considered that the external reference, such as the earth, is a fixed object).
  • the first rotating part 100 and the second rotating part 200 may be components located on two sides of the lidar 10 respectively, and in this case, the two may rotate independently or at the same time.
  • the lidar 10 may also include a support, which is connected to the first rotating part 100 and the second rotating part 200 at the same time, and the first rotating part 100 and the second rotating part 200 are simultaneously opposed to the above-mentioned support. Rotate around the axis of rotation 20.
  • the second rotating part 200 when one of the first rotating part 100 and the second rotating part 200 rotates around the other, for example, when the first rotating part 100 does not move, the second rotating part 200 is relative to the first rotating part.
  • the rotating part 100 rotates around the rotation axis 20
  • the second rotating part 200 can be provided inside the first rotating part 100.
  • the first rotating part 100 may include a shell of the lidar 10, and the second rotating part 200 is disposed inside the shell and can rotate around the rotation axis 20 inside the first rotating part 100.
  • the first rotating part 100 when the second rotating part 200 does not move and the first rotating part 100 rotates about the rotation axis 20 relative to the second rotating part 200, the first rotating part 100 can be arranged inside the second rotating part 200.
  • the second rotating part 200 may include a shell of the lidar 10, and the first rotating part 100 is disposed inside the shell and can rotate around the rotation axis 20 inside the second rotating part 200.
  • the lidar 10 can also include a housing (the housing is part of the first rotating part 100 but not the second rotating part. Part 200), the first rotating part 100 and the second rotating part 200 may both be arranged in the housing, and the housing is used for fixed installation with external components (for example, when the lidar 10 is installed on a car, the housing of the lidar 10 is connected to the car And relative to the car is still stationary).
  • the first rotating part 100 includes an outer housing 112 and the second rotating part 200 is disposed inside the outer housing 112 and can be located inside the outer housing 112. Spin.
  • the laser transceiver assembly 300 includes a laser emitting device 310 and a laser receiving device 320.
  • the laser emitting device 310 can emit an outgoing laser for detection, and the outgoing laser is used to irradiate the object to be detected.
  • the outgoing laser light is reflected by the detected object to form a reflected laser light, and the laser receiving device 320 is used to receive the above-mentioned reflected laser light.
  • the laser emitting device 310 and the laser receiving device 320 can be integrated into a complete module, and the two can also be two independent components.
  • the laser transceiver assembly 300 in this embodiment is connected to the first rotating part 100 and can rotate with the rotation of the first rotating part 100.
  • the light emitted by the laser emitting device 310 and irradiated to the object to be detected is called the outgoing laser. Regardless of whether the light emitted by the laser emitting device 310 undergoes other reflection processes before irradiating the object to be detected, All of them become outgoing lasers.
  • the light reflected by the detected object and transmitted to the laser receiving device 320 is called reflected laser. Regardless of whether the light reflected by the detected object undergoes other reflection processes before being received by the laser receiving device 320, it is called reflection. laser.
  • this embodiment also provides a laser transceiver assembly 300 of the laser radar 10.
  • the laser transmitter 310 and the laser receiver 320 in the laser transceiver assembly 300 are combined into a complete module.
  • the laser transceiving assembly 300 includes a laser emitting device 310, a laser receiving device 320 and a transceiving housing 330.
  • the transceiving housing 330 is connected to the laser emitting device 310 and the laser receiving device 320.
  • the transceiving housing 330 may define a laser receiving channel 334 and a laser emitting channel 333, and the emitted laser light emitted by the laser emitting device 310 passes through the laser emitting channel 333 to irradiate the detected object.
  • the reflected laser light reflected by the detected object passes through the laser receiving channel 334 and is directed to the laser receiving device 320.
  • the channel axis of the laser emission channel 333 ie, the central axis extending along the length of the laser emission channel 333
  • the channel axis of the laser receiving channel 334 ie, the central axis extending along the length of the laser receiving channel 334) cross or parallel, specifically Ground, in order to facilitate the processing and facilitate the adjustment of the optical path.
  • the channel axis of the laser emitting channel 333 and the channel axis of the laser receiving channel 334 are arranged in parallel.
  • the transceiver housing 330 includes a housing, a first mirror 331 and a second mirror 332.
  • the housing defines the aforementioned laser emitting channel 333 and laser receiving channel 334.
  • the first reflecting mirror 331 is disposed in the laser emission channel 333, and the first reflecting mirror 331 is provided with a light-passing hole 3311, which is used for passing the emitted laser light.
  • the first reflecting mirror 331 is used to reflect the reflected laser light to the second reflecting mirror 332.
  • the second reflecting mirror 332 is disposed in the laser receiving channel 334, and the second reflecting mirror 332 is used to reflect the reflected laser light reflected by the first reflecting mirror 331 to the laser receiving device 323.
  • the mirror surface of the first mirror 331 faces away from the direction of the laser emitting device 310
  • the mirror surface of the second mirror 332 faces the laser receiving device 320.
  • the emitted laser light emitted by the laser emitting device 310 passes through the light hole 3311 of the first reflector 331 and then is used to irradiate the object to be detected.
  • the mirror surface of the second reflecting mirror 332 located in the laser receiving channel 334, and the reflected laser light reflected by the second reflecting mirror 332 passes through the laser receiving channel 334 and is directed to the laser receiving device 320.
  • the above structure allows both the emitted laser and the reflected laser to be emitted or received from the same opening (that is, the opening of the laser emission channel 333).
  • the relative layout position of the device 310 becomes more flexible.
  • the relative positions of the laser receiving device 320 and the laser emitting device 310 change, only the relative distance and relative angle of the first mirror 331 and the second mirror 332 need to be adjusted to compensate The positions of the laser receiving device 320 and the laser emitting device 310 change.
  • the same opening of the laser transceiver component transmits or receives (that is, the laser transceiver component coaxially transmits and receives), because it only receives the reflected laser light incident at a specific angle, it can receive as little stray light as possible (including ambient light, and other radars and light sources). ⁇ ), improve the signal-to-noise ratio and improve the detection effect.
  • the transceiving housing 330 may also have two independent channels, one channel is used to transmit the emitted laser light, and the other channel is used to receive the reflected laser light, and the light in the two channels does not crosstalk with each other.
  • the laser emitting device 310 includes a first emitting mirror group 312, a second emitting mirror group 311 and a laser emitting device 313.
  • the laser emitting device 313 is connected to the first emitting mirror group 312, and the emitted laser light emitted by the laser emitting device 313 sequentially passes through the first emitting mirror group 312 and the second emitting mirror group 311, the second emitting mirror group 311 and the first emitting mirror group 311
  • the group 312 is connected, and the second emitting lens group 311 is configured to be movable relative to the first emitting lens group 312 in a direction parallel to the emitted laser light.
  • the laser emitting device 313 can be positioned on the focal plane of the laser emitting device 310 by adjusting the relative position between the first emitting lens group 312 and the second emitting lens group 311, and,
  • the first emission mirror group 312 collimates the fast axis of the emitted laser light
  • the second emission mirror group 311 collimates the slow axis of the emitted laser light to adjust the relative relationship between the first emission mirror, 312 and the second emission mirror group 311.
  • the positional relationship can also adjust the spot size of the outgoing laser, so that the outgoing laser can pass through the through hole smoothly without being blocked or lost.
  • the relative position between the first emitting lens group 312 and the second emitting lens group 311 can be changed only means that the laser transceiver assembly 300 can be adjusted before the light adjustment, but the laser transceiver assembly 300 as a whole After the light is adjusted, the relative position between the first emitting lens group 312 and the second emitting lens group 311 may be fixed, so the first emitting lens group 312 and the second emitting lens group 311 in the laser transceiver assembly 300 after the light adjusting The relative position between them may not be adjusted.
  • the laser receiving device 320 includes a receiving mirror group 321, a fixing member 322 and a laser receiving device 323.
  • the fixing member 322 defines a through hole.
  • One side of the fixing member 322 is provided with a receiving mirror group 321, and the other side is provided with a laser receiving device 323, so that the laser receiving device 323 can receive the reflected laser light that sequentially passes through the receiving mirror group 321 and the through hole. .
  • the laser emitting device 310 and the laser receiving device 320 are both fixedly connected to the transceiving housing 330, so that the optical paths of the emitted laser light and the reflected laser light are related.
  • the optical path of each laser transceiver assembly 300 can be adjusted individually, so that the emitted laser light emitted by the laser emitting device 310 of each laser transceiver assembly 300 matches the reflected laser light received by the laser receiving device 320 .
  • the lidar 10 has a plurality of laser emitting devices 310 and a plurality of laser receiving devices 320, it is sufficient to configure a plurality of laser transceiver components 300 after the matching of optical paths is completed, which reduces the assembly cycle of the lidar 10.
  • the focal length can be adjusted separately by changing the distance between the first emitting lens group 312 and the second emitting lens group 311, thereby enhancing the adaptability of the laser emitting device 310 .
  • the first emitting lens group 312 includes a first emitting lens barrel
  • the second emitting lens group 311 includes a second emitting lens barrel.
  • the end of the first emitting lens barrel facing away from the laser emitting device 313 is sleeved on the end of the second emitting lens barrel close to the laser emitting device 313, and the second emitting lens barrel can translate in the direction parallel to the optical axis in the first emitting lens barrel.
  • the change of the size of the part of the second emitting lens barrel that extends into the first lens barrel will change the distance between the center of the first emitting lens group 312 and the center of the second emitting lens group 311, so that the first emitting lens can be adjusted
  • the end of the first emitting lens barrel facing away from the laser emitting device 313 may be threadedly connected to the end of the second emitting lens barrel close to the laser emitting device 313.
  • the second emitting lens barrel can be controlled relative to the first emitting lens barrel. Rotate to adjust the distance between the center of the first emitting lens barrel and the center of the second emitting lens barrel.
  • the end of the first emitting lens barrel facing away from the laser emitting device 313 may be bonded to the end of the second emitting lens barrel close to the laser emitting device 313. It should be noted that when the first emitting lens barrel and the second emitting lens barrel are bonded, the bonding needs to be performed after the optical path adjustment of the laser emitting device 310 is completed, that is, by adjusting the center of the first emitting lens barrel and the second emitting lens barrel.
  • the distance between the centers of the second emitting lens barrels is such that the laser emitting device 313 is on the focal plane of the first emitting lens group 312 and the second emitting lens group 311 as a whole, and then the first emitting lens barrel and the second emitting lens barrel are glued together. After the two are glued and fixed, the distance between the first emitting lens barrel and the second emitting lens barrel cannot be adjusted.
  • the distance between the laser emitting device 310 and the transceiver housing 330 can be adjusted.
  • the end of the second emitting lens barrel facing away from the first emitting lens barrel can be extended into the laser emitting channel 333 of the transceiving housing 330, and can be moved in the laser emitting channel 333 in a direction parallel to the emitted laser light.
  • the second transmitting lens barrel may also be screwed or bonded to the inner peripheral wall of the transceiver housing 330.
  • the first emitting lens group 312 and the second emitting lens group 311 are directly connected, so that the distance between the two can be adjusted (referring to the distance adjustment between the centers of the two).
  • the distance between the two can be adjusted without being directly connected.
  • the second emitting lens barrel can be completely embedded in the laser emitting channel 333 of the transmitting and receiving housing 330, and the end of the first emitting lens barrel close to the second emitting lens barrel can be embedded in the laser emitting channel 333, and can be inserted in the laser emitting channel 333.
  • the inside of the emission channel 333 moves in a direction parallel to the direction of the emitted laser light.
  • the first transmitting lens barrel moves relative to the transceiving housing 330, the distance between the first transmitting lens barrel and the second transmitting lens barrel also changes accordingly.
  • the first emitting lens barrel can be screwed or bonded to the inner peripheral wall of the laser emitting channel 333 .
  • the first emitting lens barrel may extend into the laser emitting channel 333 only close to the end of the second emitting lens barrel, and the first emitting lens barrel may also extend into the laser emitting channel 333 as a whole.
  • the distance between the receiving lens group 321 and the fixing member 322 can be adjusted (the optical path can be adjusted before the adjustment of the optical path is completed).
  • the receiving lens barrel of the receiving lens group 321 can be extended into the through hole of the fixing member 322.
  • the end of the receiving lens group 321 close to the fixing member 322 can be threaded or glued to the fixing member 322. Connect (bonding after the optical path adjustment is completed). In this embodiment, as shown in FIGS.
  • the receiving mirror group 321 is completely arranged in the laser receiving channel 334, the end of the fixing member 322 facing away from the laser receiving device 323 is threadedly connected to the transceiver housing 330, and the laser receiving device 323 It is connected with the end of the fixing member 322 away from the receiving lens group 321.
  • the receiving mirror group 321 can move in the laser receiving channel 334 in a direction parallel to the channel axis of the laser receiving channel 334.
  • the above movement of the laser receiving mirror group 321 can adjust the relative position between it and the laser receiving device 323, so that The laser receiving device 323 is located on the focal plane of the receiving mirror group 321, so that the reflected laser light condensed by the receiving mirror group 321 can be completely received by the laser receiving device 323.
  • the receiving lens group 321 may be screwed or bonded with the inner peripheral wall of the laser receiving channel 334 (bonding after the optical path adjustment is completed).
  • the laser receiving assembly needs to be provided with a connecting portion 3222, and the connecting portion 3222 is used to fix the laser transceiver assembly 300 in the laser radar 10.
  • the connecting portion 3222 of the laser transceiver assembly 300 may be connected to the transceiver housing 330, which makes the manufacture of the laser receiving device 320 and the laser emitting device 310 easier.
  • the connecting portion 3222 of the laser transceiver assembly 300 is a part of the fixing member 322, that is, the fixing member 322 includes a channel housing 3221 and a connecting portion 3222.
  • the channel housing 3221 defines the aforementioned Through hole, one side of the through hole is provided with a laser receiving device 323, and the other end is provided with a receiving mirror group 321.
  • the connecting portion 3222 is connected to the channel housing 3221, and the connecting portion 3222 is used to fix the laser transceiver assembly 300 and external components (a component of the laser radar 10 excluding the laser transceiver assembly 300, such as the base of the laser radar 10).
  • the connecting portion 3222 may be provided with threaded holes, bolt holes, or pin holes for fixing, so that the laser transceiver assembly 300 can be fixed in the lidar 10 using fasteners such as screws, bolts, or pins. .
  • the structural design of the connecting portion 3222 as a part of the fixing member 322 can be adjusted
  • the connection relationship between the connecting portion 3222 and the channel housing 3221 can adjust the angle of the laser emitted or received by the laser transceiver assembly 300 relative to the external components of the laser transceiver assembly 300.
  • the connecting portion 3222 when used as a part of the fixing member 322, by adjusting the angle of the hole axis of the threaded hole, bolt hole or pin hole of the connecting portion 3222 with respect to the hole axis of the through hole of the passage housing 3221, In this way, the angle of the laser light emitted or received by the laser transceiver assembly 300 in the laser radar 10 can be adjusted indirectly.
  • the angle of the laser emitted or received by the laser transceiver assembly 300 relative to the rotation axis 20 needs to be specially designed according to actual needs, and when the connecting part 3222 is used as a fixed
  • the angle between the threaded hole, bolt hole or pin hole on the connecting part 3222 and the hole axis of the through hole of the fixing part 322 can be adjusted indirectly to adjust the transmission or reception of the laser transceiver assembly 300
  • the included angle of the laser relative to the rotation axis 20, that is, the design of the arrangement position of the laser transceiver assembly 300 relative to the laser radar 10 is transformed into the structural design of the simple component of the fixing member 322, which reduces the design difficulty.
  • Each mirror group in the laser emitting device 310 is used to collimate the emitted outgoing laser, but it is also difficult to make the outgoing laser a beam of 0° in an ideal state, so the outgoing laser will have a smaller spread angle, which makes The light spot formed by the reflected laser light is larger than the light spot formed by the outgoing laser. Therefore, if the outgoing laser passing through the light hole 3311 is reflected back by a non-detected object (for example, the outgoing laser is not directed toward the object to be detected, but is reflected by other parts in the middle). Back), a part of it will inevitably fall on the mirror surface around the light-passing hole 3311, and be received by the laser receiving device 320 after reflection. The laser light reflected by the non-detected object is useless interference laser light. If this part of the interference laser light is reflected by the first reflector 331 to the second reflector 332, it is easily received by the laser receiving device 320 to form an interference signal.
  • the laser emitting device 313 includes a plurality of emitting cells, each emitting cell can emit laser light, and each emitting cell is arranged along a straight line, and the straight line arranged by each emitting cell It is perpendicular to the channel axis of the laser emission channel 333.
  • the first reflecting mirror 331 is provided with a straight non-reflecting area, the length direction of the non-reflecting area is parallel to the straight line arranged by each emitting unit, and the center of the non-reflecting area and The centers of the light-transmitting holes coincide.
  • the laser light reflected by the non-detected object is likely to be reflected to the non-emitting area, and the non-reflective area does not reflect the laser light, so the laser light reflected by the non-detected object It will not be reflected to the second mirror 332, so that an interference signal cannot be formed, and the detection accuracy of the laser transceiver assembly 300 is improved.
  • a light-absorbing coating or a light-absorbing coating can be provided on the mirror surface of the first reflecting mirror 331 to form a non-reflective area (that is, the mirror surface is first coated with a reflective coating, and then the non-reflective area is coated with a light-absorbing coating or light-absorbing coating. Coating); it is also possible to coat only the non-reflective area on the mirror surface of the first mirror 331 with a reflective coating (that is, no reflective coating is provided on the non-reflective area); The reflective coating is removed, for example, a groove can be opened in the non-reflective area on the first reflector 331, so that the non-emitting area cannot reflect laser light.
  • the reflective component 400 is used to reflect the emitted laser light and the reflected laser light, change the direction of the emitted laser light to irradiate the object to be detected, and receive the reflected laser light and change the direction to irradiate the corresponding laser transceiver component 300.
  • the reflective assembly 400 is connected to the second rotating part 200 and can rotate with the rotation of the second rotating part 200.
  • the angle of the outgoing laser on the plane perpendicular to the rotation axis 20 of the reflector assembly changes, and the reflection angle of the outgoing laser light through the reflector assembly changes accordingly, so that the lidar 10 Form a certain angle of view.
  • the outer housing 112 may include a light-transmitting part 113, and the light-transmitting part 113 is configured to be light-transmissive , So that the outgoing laser and the reflected laser pass through.
  • the outer shell 112 may be made of light-transmitting material as a whole, or it may be made of light-transmitting material, such as a high-light-transmitting filter, which only needs to pass through and reflect the laser light.
  • the outer casing 112 When the outer casing 112 has the light-transmitting part 113, the outer casing 112 can be integrally formed of two materials (one kind of light-transmitting material and one kind of opaque material); it can also be integrally formed of light-transmitting materials, and then the outer casing 112 can be integrally formed of light-transmitting materials.
  • a light-shielding layer is attached to the light part (the light-shielding layer can be a light-shielding ink or a light-shielding sticker, etc.); the outer shell 112 can also be divided into two parts that are transparent and opaque, and the two parts are separately molded, and then the two After being partially assembled, a complete outer shell 112 is formed.
  • the reflecting assembly 400 includes at least two reflecting mirrors 410.
  • the reflecting assembly 400 may include two reflecting mirrors 410, three reflecting mirrors 410, four reflecting mirrors 410 or more.
  • each mirror 410 in the reflection assembly 400 is arranged around the rotation axis 20, and the included angles of at least two mirrors 410 and a plane perpendicular to the rotation axis 20 are different.
  • the number of mirrors 410 is eight, there may be two mirrors 410 and the plane perpendicular to the rotation axis 20 at different angles, or there may be three mirrors 410 and the plane perpendicular to the rotation axis 20.
  • the angles are different, and the angles between the eight mirrors 410 and the plane perpendicular to the rotation axis 20 may all be different.
  • each of the reflecting mirrors 410 is configured to reflect the outgoing laser emitted by the laser transceiver assembly 300 to the object to be detected.
  • the reflected laser light reflected by the detected object can be reflected to the corresponding laser transceiver assembly 300. That is to say, the outgoing laser light reflected by each reflecting mirror 410 irradiates the object to be detected and then the reflected laser light is reflected back to the laser transceiver assembly 300 by this emitting mirror again.
  • the laser light emitted and received by the laser transceiver assembly 300 is reflected by a mirror 410,
  • the other mirrors 410 do not work (that is, they do not reflect laser light).
  • the previously working mirror 410 does not work, but some other emitting mirror works instead.
  • the number of the laser transceiver assembly 300 is multiple (two or more) and the number is less than the number of the reflector 410, two or more reflectors 410 can work simultaneously.
  • the number of laser transceiver components 300 is greater than the number of reflectors 410, it is also possible that one reflector 410 reflects two laser beams from different laser transceiver components 300 at the same time.
  • each laser transceiver assembly 300 forms a field angle covering a certain angle in the direction perpendicular to the rotation axis 20, and on the other hand,
  • the reflective assembly 400 in this embodiment has at least two reflective mirrors 410 with different included angles from the plane perpendicular to the rotation axis 20, so the laser transceiver assembly 300 forms a detection field of view with respect to the reflective mirrors 410 with different included angles.
  • the at least two detection fields of view formed by the lidar 10 are staggered in the direction parallel to the rotation axis 20.
  • the field of view is More broadly, at least two detection fields of view formed by the lidar 10 may also partially overlap, and the detection accuracy of the overlapped fields of view is higher.
  • the laser radar 10 may have only one laser transceiver assembly 300, and then the laser light generated and received by the laser transceiver assembly 300 is alternately reflected by a plurality of mirrors 410, and each mirror 410 passes around the rotation axis 20. It rotates to reflect the laser light of the laser transceiver assembly 300 alternately.
  • the second rotating part 200 may be reciprocated within a preset angle to realize the switching of the working state of each mirror 410.
  • the second rotating part 200 includes two mirrors 410 with different included angles from a plane perpendicular to the rotation axis 20, and each mirror 410 corresponds to ten degrees of the second rotating part 200 (here only an exemplary When the second rotating part 200 rotates relative to the first rotating part 100 within a specific ten-degree range, one of the mirrors 410 can reflect the laser light of the laser transceiver assembly 300, and the second rotating part 200 When the part 200 rotates relative to the first rotating part 100 within another specific ten-degree range, the other mirror 410 can reflect the laser light of the laser transceiver assembly 300), and the second rotating part 200 can rotate along the rotation axis 20 along the first The two mirrors 410 are rotated by twenty degrees to switch the working state of the two mirrors 410, and then the rotation axis 20 is rotated by twenty degrees in the second direction (the opposite direction to the first direction), thereby switching the two mirrors 410 again. In the working state, during the above-mentioned working process, the second rotating part 200
  • the second rotating part 200 can also continuously rotate relative to the first rotating part 100 (That is, always keep rotating in a single direction).
  • the second rotating part 200 is configured to have a rotating stroke relative to the first rotating part, and the rotating stroke is 360 degrees.
  • the second rotating part 200 rotates about the rotation axis 20 relative to the first rotating part 100, it only continues to rotate in one direction (that is, the second rotating part 200 repeats the above-mentioned rotation stroke), rather than in a certain direction.
  • the reciprocating rotation within a specific angle and the continuous rotation in one direction can also achieve the purpose of switching the working state of the mirrors 410, and the rotation process of the second rotating part 200 does not need to be precisely controlled.
  • the stroke of the second rotating part 200 is likely to be wasted (that is, the second rotating part 200 may appear When rotating to a certain position, there is no reflector 410 that can reflect the laser light of the laser transceiver assembly 300, so the laser radar 10 cannot work at this moment).
  • every two adjacent mirrors 410 may be connected to each other, so that the mirrors 410 are connected to each other. There is no gap.
  • the number of the reflecting mirrors 410 in this embodiment may be three or more, and the reflecting mirrors 410 are connected to form a ring-shaped reflecting mirror group.
  • the reflecting surfaces of the three reflecting mirrors 410 may be the outer surface of a triangular pyramid or the outer surface of a triangular pyramid.
  • the reflecting surfaces of the four reflecting mirrors 410 may be the outer surface of a quadrangular pyramid or the outer surface of a quadrangular pyramid.
  • the number of mirrors 410 is multiple, the combined structure can be deduced by analogy, which will not be repeated here.
  • the reflection mirrors are combined to form the above structure, no matter where the second rotating part 200 rotates, the reflection mirror 410 can reflect the laser light of the laser transceiver assembly 300, so that the working efficiency of the laser radar 10 is improved.
  • the second rotating part 200 may include a rotating table 210 connected to the second rotating part 200 and capable of rotating around the rotating axis 20.
  • the rotation axis 20 may pass through the rotation table 210 or may deviate from the rotation table 210.
  • the rotating table 210 includes a plurality of reflecting surfaces 211, and each reflecting mirror 410 is arranged on the reflecting surface 211 in a one-to-one correspondence.
  • the rotating table 210 is in the shape of a triangular pyramid.
  • the rotating table 210 can be in the shape of a triangular prism.
  • the reflecting assembly 400 includes eight reflecting mirrors 410, and the rotating table 210 is in the shape of an octagonal trellis. Side (ie, the eight reflecting surfaces 211 of the rotating table 210).
  • the number of reflecting surfaces 211 of the rotating table 210 may be greater than the number of reflecting mirrors 410.
  • the rotating table 210 may still be in the shape of an octagonal trellis and rotate.
  • a reflecting mirror 410 is arranged on one of the reflecting surfaces 211 on the stage 210, and a reflecting mirror 410 is not arranged on the other reflecting surfaces 211.
  • the number of mirror groups can be multiple, and the multiple mirror groups are along a direction parallel to the rotation axis 20 of the lidar 10 Arrangement.
  • the number of mirror groups in a ring shape can be two, each mirror group has eight mirrors 410, and sixteen mirrors 410 in the two mirror groups are clamped between the plane perpendicular to the rotation axis 20.
  • the angles are different, and the angle between each mirror 410 in one mirror group and the plane perpendicular to the rotation axis 20 is greater than the angle between each mirror 410 in the other mirror group and the plane perpendicular to the rotation axis 20
  • the minimum value of the included angle between the mirror 410 in one mirror group and the plane perpendicular to the rotation axis 20 is greater than the minimum value of the angle between the mirror 410 in the other mirror group and the plane perpendicular to the rotation axis 20
  • the maximum value of the included angle are configured to be translatable in a direction parallel to the rotation axis 20.
  • the two mirror groups when the two mirror groups are at a certain position, the laser light emitted and received by the laser transceiver assembly 300 is reflected by one of the mirror groups, and the laser radar 10 has a detection field of view at this time.
  • the two mirror groups can be adjusted so that the two emitter mirror groups are translated in the direction parallel to the rotation axis 20, thereby switching the working mirror group and the switched mirror
  • the detection field of view corresponding to the group is different from the detection field of view corresponding to the previous mirror group. Therefore, the above structure enables the lidar 10 to have two different detection fields of view, so that the lidar 10 can adapt to two different working scenarios.
  • the number of mirror groups can be multiple, and the mirror groups are arranged in a direction parallel to the rotation axis 20.
  • any component having a reflective surface capable of reflecting laser light can be referred to as a mirror 410.
  • the reflector 410 can be a reflective coating (specifically, silver coating) on the reflective surface 211 of the rotating table 210, and the reflector 410 can also be a complete mirror structure, and it can be bonded to the reflective surface of the rotating table 210 by bonding. 211 connections.
  • adhesive glue can be applied to the reflective surface 211 of the rotating table 210 first, and then the reflector 410 is attached to the adhesive glue on the reflective surface 211.
  • the amount of adhesive can be appropriately increased, so that after the reflector 410 is attached to the adhesive, the angle between the reflector 410 and the rotation axis 20 can be fine-tuned, so that the positioning of the reflector 410 is more accurate.
  • each reflective surface 211 of the rotating table 210 is provided with glue brush grooves 2111, and each glue groove 2111 is used to fill the glue glue of the reflecting mirror 410. .
  • the firmness of the adhesion between the reflecting mirror 410 and the rotating table 210 is ensured. Due to the presence of the brush groove 2111, the thickness of the adhesive on the reflective surface 211 becomes uneven. After the adhesive is solidified, the stress on the mirror 410 is uneven. In addition, the adhesive with uneven thickness makes it possible to install the mirror.
  • each reflecting surface 211 is provided with a plurality of glue gushing grooves 2111. The centers of the two glue-brushing grooves 2111 coincide. In this way, when the reflector 410 is squeezed toward the reflecting surface 211 and after the adhesive is solidified, the force on the reflector 410 is relatively uniform, so that the deformation of the reflector 410 can be reduced, and the accuracy of the detection field of view can be improved. Spend.
  • each reflector 410 includes an initial reflector 410a and an end reflector 410b adjacent to the initial reflector 410a.
  • this structure can facilitate the processing and manufacturing of the mirror assembly, and on the other hand, it can also make the detection field of view of the laser transceiver assembly 20 shift from bottom to top or from top to bottom (when the rotation axis 20 is vertically arranged), Thereby, the correlation between the scanned data is stronger, and it is convenient to analyze the detected data.
  • the angle between every two adjacent mirrors 410 can also be equal.
  • the reflecting assembly 400 has eight reflecting mirrors 410.
  • the reflecting mirror 410 with the smallest included angle with the plane perpendicular to the rotation axis 20 is called the initial reflecting mirror 410a.
  • the reflector 410 with the largest included angle is called the end reflector 410b.
  • the first reflector 410 ie, the initial reflector 410a
  • the end reflector 410b is connected to the end reflector 410b.
  • the included angle between the second mirror 410 can be one degree (here is only an example, and other degrees can be used in other embodiments), and the included angle between the second mirror 410 and the third mirror 410 is also For one degree, the angle between the third mirror 410 and the fourth mirror 410 is one degree, and so on, the angle between the seventh mirror 410 and the eighth mirror 410 is one degree.
  • the angle between the eighth mirror 410 (that is, the end mirror 410b) and the first mirror 410 is seven degrees.
  • the angle between each reflector 410 and the rotation axis 20 is The minimum value of is greater than 0 degrees, and the maximum value is less than 90 degrees.
  • the included angle between the mirror 410 and the rotation axis 20 may be 5 degrees, 10 degrees, 20 degrees, 40 degrees, 80 degrees, or 85 degrees.
  • the mirrors 410 In order to be able to smoothly reflect the laser light to the detection object, in an embodiment, referring to FIG. surface).
  • the surface of the mirror 410 facing the axis of rotation 20 is a reflective surface, in order to prevent the outgoing light from being blocked by other mirrors 410 (mirrors 410 that do not reflect light in the current state), the mirrors 410 cannot be combined into a closed ring. , And at least form a gap in the path of the emitted laser light, so that the emitted laser light is directed toward the object to be detected.
  • each laser transceiver assembly 300 (regardless of the number) in the lidar 10 only has half the time to work during the rotation of the mirror group around the rotation axis 20.
  • each laser transceiver assembly 300 (regardless of the number) in the lidar 10 only takes a quarter of the time Work.
  • the reflector 410 may be a plane mirror.
  • the reflector 410 may be a convex mirror, and the mirror surface may specifically be a circular arc surface.
  • the center axis corresponding to the circular arc surface intersects the rotation axis 20, and at the same time, the circular arc The radius corresponding to the surface is greater than the maximum distance from the mirror 410 to the axis of rotation 20.
  • the reflecting mirror 410 may be a concave mirror, and the mirror surface may specifically be a circular arc surface, and the center axis corresponding to the circular arc surface intersects the rotation axis 20.
  • the mirror 410 may be a plane mirror.
  • the reflector 410 may be a concave mirror, and the mirror surface may specifically be a circular arc surface, and the central axis corresponding to the circular arc surface intersects the rotation axis 20, and at the same time, the circular arc surface The radius corresponding to the arc is greater than the maximum distance from the mirror 410 to the rotation axis 20.
  • the reflecting mirror 410 in order to increase the detection field angle, the reflecting mirror 410 may be a convex mirror, and the mirror surface may be a circular arc surface, and the center axis corresponding to the circular arc surface intersects the rotation axis 20.
  • each mirror 410 away from the rotation axis 20 is a reflective surface. This structure makes the laser light reflected between the mirrors 410 not interfere with each other, that is, the mirrors 410 can be combined into a ring-shaped mirror group.
  • the optical axis of the laser transceiver assembly 300 should be aligned with the above-mentioned reflector 410 (specifically, the reflective surface) It is ⁇ angle, and the value range of ⁇ angle is 0° ⁇ 90°.
  • the optical axis of the laser transceiver assembly 300 may be the center line of the emitted laser light emitted by the laser transceiver assembly 300 or the center line of the reflected laser light received by the laser transceiver assembly 300.
  • both the emitted laser and the reflected laser of the laser transceiver assembly 300 can be emitted or received from the same opening (that is, the opening of the laser emission channel 333), the center line of the emitted laser of the laser transceiver assembly 300 coincides with the center line of the reflected laser, and the laser
  • the optical axis of the transceiver assembly 300 is the coincident center line. That is, the minimum included angle between the optical axis of the laser transceiver assembly 300 and the reflective surface of the reflector 410 should be greater than 0 degrees, and the maximum included angle should be less than 90 degrees.
  • the angle between the laser light emitted or received by the laser transceiver assembly 300 and the reflective surface of the mirror 410 may be 5 degrees, 10 degrees, 20 degrees, 40 degrees, 80 degrees, 85 degrees, or the like.
  • the number of laser transceiver components 300 is one.
  • the angle between the optical axis of each laser transceiver component 300 and the reflective surface of each mirror 410 ⁇ should satisfy the above-mentioned relationship of 0° ⁇ 90°.
  • the angle between the laser light emitted or received by each laser transceiver assembly 300 and the reflective surface of the mirror 410 may be 5 degrees, 10 degrees, 20 degrees, 40 degrees, 80 degrees, or 85 degrees.
  • the number of the laser transceiver assembly 300 can be one or more. And when the number of laser transceiver components 300 is multiple, each laser transceiver component 300 can be arranged around the rotation axis 20. Specifically, each laser transceiver component 300 can also be arranged in a circular array with the rotation axis 20 as the central axis. During the rotation stroke of the rotating part 200 around the rotation axis 20, the outgoing laser light emitted by each laser transceiver assembly 300 can be reflected by at least one reflector 410, and can receive the reflected laser light reflected by at least one reflector 410.
  • the number of laser transceiver components 300 can be less than the number of reflectors 410 (at this time, a certain reflector 410 may not reflect laser light when the lidar 10 is working), or it can be equal to the reflector.
  • the number of 410 may also be greater than the number of reflectors 410 (at this time, one reflector 410 may reflect the laser light generated by two laser transceiver components 300 at the same time).
  • the number of laser transceiver components 300 is the same as the number of mirrors 410 .
  • the lidar 10 has eight reflectors 410, and the eight reflectors are combined into a ring-shaped reflector group.
  • the number of laser transceiver components 300 is the same as the number of reflectors 410, both There are eight, and during the rotation of the second rotating part 200 around the rotation axis 20, each mirror 410 can reflect the laser light generated by a laser transceiver assembly 300 (it may occur under the boundary conditions when the mirror 410 is switched).
  • One reflecting mirror 410 reflects the laser light generated by the two laser transceiver components 300, and the other reflecting mirror 410 does not reflect the laser light, this case is excluded).
  • the number of laser transceiver components 300 and the number of emitting mirrors are both multiple, and both have the same number.
  • the laser transceiver assembly 300 and the emitting mirror are all arranged around the rotation axis 20, and the mirrors 410 are enclosed to form a ring-shaped mirror group.
  • the angle between each mirror 410 and the plane perpendicular to the rotation axis 20 is different.
  • this structure enables each laser transceiver assembly 300 to be in working state at all times during the operation of the lidar 10, and each mirror 410 is also in working state at all times (when the number of mirrors 410 is large, each time At least one reflector 410 may not work.
  • the lidar 10 can also have a 360-degree field of view in the direction perpendicular to the rotation axis 20, and the detection range of the lidar 10 is wider.
  • each laser transceiver assembly 300 passes through a different mirror 410 The formed field of view does not overlap, and the detection range is larger in the direction parallel to the rotation axis 20.
  • the angle between the laser light emitted or received by each laser transceiving component 300 and the rotation axis 20 can also be different, so that a larger field of view can also be obtained.
  • the reflective surface formed by the mirrors 410 can also be a conical surface, and the first rotating part 100 can be rotated while the second rotating part 200 does not move. The angle between the laser and the rotation axis 20 is different, so when each laser transceiver 300 rotates with the first rotating part 100, each laser transceiver 300 can form an independent detection field of view.
  • the first rotating part 100 and the second rotating part 200 of the rotating device can rotate at the same time, or only one of them can rotate. Since the first rotating part 100 is connected to the laser transceiver assembly 300, the first rotating part 100 needs to be connected to electric equipment such as a circuit board 140. When the first rotating part 100 rotates, how to direct the power to the first rotating part 100 will become A difficult problem. At the same time, when the first rotating part 100 rotates, the data signal detected by the laser transceiving assembly 300 on the first rotating part 100 needs to be transmitted to the fixed second rotating part 200, resulting in higher signal transmission costs.
  • the first rotating part 100 may be provided with a fixing structure, and the fixing structure is used to fix the lidar 10.
  • the fixing structure may be any mechanical structure capable of fixing the lidar 10.
  • the fixing structure may be a fixing member 322 having a bolt hole, a pin, or a threaded hole. That is to say, when the lidar 10 is installed, the fixing structure on the first rotating part 100 can be installed with the parts that need to be installed with the lidar 10, so that the first rotating part 100 is stationary relative to the above-mentioned parts. In the working state of the lidar 10, the first rotating part 100 does not move, and the second rotating part 200 rotates relative to the first rotating part 100.
  • the rotating part of the lidar 10 does not need to be equipped with electrical equipment, so the structure is more It is simple and has a lower manufacturing cost; on the other hand, the laser transceiver assembly 300 is not fixed, so the detected signal is easier to transmit.
  • the second rotating part 200 can also be provided with a fixing structure. After the lidar 10 is installed, the second rotating part 200 does not move, and the first rotating part 100 is relative to the second rotating part 200. Rotate. This can facilitate the positioning of the reflector 410, thereby facilitating the adjustment of the detection position of the laser light reflected by the reflector 410, and improving the detection accuracy.
  • the second rotating part 200 is fixed and the first rotating part 100 rotates, the data detected on the first rotating part 100 needs to be transmitted to the second rotating part 200, and the power on the second rotating part 200 needs to be transferred. It is transmitted to the first rotating part 100.
  • the specific implementation method has been publicized in the prior art, and will not be repeated here.
  • both the first rotating part 100 and the second rotating part 200 may be provided with a fixed structure, and the user can decide which part to fix and which part to rotate according to actual needs.
  • the first rotating part 100 may include a base and a supporting shaft 130
  • the second rotating part 200 is rotatably connected with the supporting shaft 130 of the first rotating part 100 and can rotate around the central axis of the supporting shaft 130 (That is, the aforementioned rotation axis 20 can be parallel or coincident with the central axis of the support shaft 130).
  • the second rotating part 200 may be connected to the middle of the support shaft 130, or may be connected to the end of the support shaft 130 facing away from the base. As shown in FIGS. 2, 3 and 10, in this embodiment, the second rotating part 200 is connected to the end of the support shaft 130 facing away from the first rotating part 100.
  • the rotating table 210 may also be connected to the end of the support shaft 130 facing away from the first rotating part 100. Moreover, after the rotating table 210 is arranged on the supporting shaft 130, the reflecting surfaces 211 on the rotating table 210 are arranged around the central axis of the supporting shaft 130.
  • the first rotating part 100 and the second rotating part 200 can be rotated manually.
  • the second rotating part 200 can be directly connected with the supporting shaft 130 through a shaft hole, and the two can also be connected by a bearing.
  • the rotation between the first rotating part 100 and the second rotating part 200 may be driven by the driving device 500.
  • the driving device 500 drives the first rotating part 100 and the second rotating part 200 to rotate relative to each other
  • the second rotating part 200 can be connected to the supporting shaft 130 through a shaft hole or bearing, and the second rotating part 200 is connected to the supporting shaft 130.
  • the driving device 500 may also be connected at the same time.
  • the second rotating part 200 may be connected to the stator of the driving device 500, and the support shaft 130 may be connected to the rotor of the driving device 500; or the second rotating part 200 may be connected to the driving device 500.
  • the rotor and the support shaft 130 are connected to the stator of the driving device 500 described above. Utilizing the driving device 500 to connect the second rotating part 200 and the supporting shaft 130 at the same time can omit the rotating connecting elements (such as redundant bearings) between the second rotating part 200 and the supporting shaft 130, thereby reducing the production cost.
  • the support shaft 130 includes a cut surface 131 extending in the axial direction of the support shaft 130, and the cut surface 131 is a flat surface.
  • the cut surface 131 can facilitate the positioning of the support shaft 130, so that the support shaft 130 can transmit torque to the second rotating part 200 well; on the other hand, the wire connected to the driving device 500 can also be attached to the cut surface 131 to extend.
  • the wire can be closely attached to the supporting shaft 130, which facilitates the arrangement of the wire.
  • the rotating table 210 may be connected to the aforementioned driving device 500.
  • the rotating table 210 may be connected to the rotor of the driving device 500 and the support shaft 130 may be connected to the stator of the driving device 500. Since the driving device 500 generally only needs to be connected to electric power equipment on the stator, the support shaft 130 is connected to the stator so that the second rotating part 200 and the rotating table 210 do not need to be connected to electric power equipment.
  • the stator of the driving device 500 may be connected to the rotating table 210, and the rotor may be connected to the support shaft 130.
  • the interior of the rotating table 210 may be a hollow structure, that is, the rotating table 210 defines an internal cavity, the driving device 500 is arranged in the internal cavity of the rotating table 210, and the driving device The rotating shaft of the rotor of 500 extends out of the inner cavity of the rotating table 210 and is connected with the support shaft 130.
  • the structure in which the driving device 500 is disposed in the inner cavity of the rotating table 210 can make the driving device 500 hardly occupy additional space, and improve the space utilization rate of the lidar 10.
  • the fixed structure When the fixed structure is connected to the first rotating part 100, the fixed structure may be specifically connected to the base of the first rotating part 100.
  • the base further includes a mounting surface 1111, the above-mentioned support shaft 130 is connected to the mounting surface 1111 of the base, and the central axis of the support shaft 130 may also be arranged perpendicular to the mounting surface 1111.
  • the aforementioned laser transceiver assembly 300 is connected to the mounting surface 1111 of the base, so as to facilitate the emission of laser light toward the reflector 410 and the reception of reflected laser light from the reflector 410.
  • the first rotating part 100 In order to supply power to the laser transceiver assembly 300 connected to the base and transmit the data detected by the laser transceiver assembly 300, the first rotating part 100 also needs to be connected to the circuit board 140.
  • the circuit board 140 has a large number of components and a complex structure. The surface that can reflect light is uneven, and stray light is easily generated. The stray light is easily mixed with the reflected laser light and affects the detection accuracy of the lidar 10.
  • the temperature of the laser transceiver assembly 300 is higher when the power is higher, and the circuit board 140 is prone to damage when exposed to a high temperature environment for a long time.
  • the second rotating part 200 may further include a bottom shell 120.
  • the bottom shell 120 is connected to a side of the base away from the mounting surface 1111 and is connected to the The surfaces of the seat facing away from the mounting surface 1111 jointly define a receiving cavity.
  • the accommodating cavity is used for accommodating the circuit board 140 of the laser radar 10, and the circuit board 140 is electrically connected to the laser transceiver assembly 300.
  • the circuit board 140 is isolated from the laser transceiver assembly 300 by the base, so the stray light emitted by the circuit board 140 will not affect the reflected laser light, and the stray light entering the laser transceiver assembly 300 is reduced.
  • the high temperature generated by the laser transceiver assembly 300 will reduce the impact of the circuit board 140 and extend the life of the circuit board 140.
  • the base may specifically include an outer shell 112 and a bottom plate 111.
  • the outer shell 112 is arranged around the outer periphery of the bottom plate 111, and one end of the outer shell 112, the bottom plate 111 and the bottom shell 120 jointly define the aforementioned accommodation.
  • the accommodating cavity of the circuit board 140, the other end of the outer housing 112, and the side of the bottom plate 111 having the aforementioned mounting surface 1111 jointly define a cavity for accommodating the laser transceiver assembly 300.
  • a plurality of through holes 1112 are provided on the bottom plate 111 of the base, and the laser transceiver assembly 300 is electrically connected to the circuit board 140 through the through holes 1112.
  • each laser transceiver assembly 300 facing away from the mirror 410 is passed through the bottom shell in a one-to-one correspondence.
  • the position of the through hole 1112 on the 111 facilitates the electrical connection between the laser transceiver assembly 300 and the circuit board 140, on the other hand, it also makes each through hole 1112 be sealed by each laser transceiver assembly 300, which improves the accommodating cavity The tightness.
  • the lidar 10 also includes angle measuring equipment.
  • the angle measuring device includes a code wheel 610 and an optical device 620.
  • the code wheel 610 is connected to the second rotating part 200, and the code wheel 610 includes code teeth arranged around the rotation axis 20.
  • the optical device 620 is connected to the end of the supporting shaft 130 away from the first rotating part 100, and the optical device 620 cooperates with the code disc 610 to monitor the number of teeth of the swept code teeth, so as to monitor the second rotating part 200 relative to The angle at which the first rotating part 100 rotates.
  • the code disc 610 can be arranged in the inner cavity of the rotary table 210, and the code teeth of the code disc 610 extend out of the inner cavity of the rotary table 210
  • the chamber is matched with the optical device 620.
  • the second aspect of the embodiments of the present application also provides an automatic driving device 1, and the automatic driving device 1 includes the lidar 10 in any of the foregoing embodiments.
  • the device 1 may be any device 1 capable of performing laser detection, and specifically, the device may be an automobile.
  • the car includes a car body 20, and the lidar 10 can be installed outside the car body 20 or embedded in the car body 20. When the lidar 10 is installed outside the car body 20, the lidar 10 is preferably installed on the roof of the car body 20.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种激光雷达(10)及自动驾驶设备(1),包括:旋转设备,包括第一旋转部(100)以及第二旋转部(200),第一旋转部(100)与第二旋转部(200)之间可产生绕旋转轴线(20)的相互转动;激光收发组件(300)与第一旋转部(100)连接,且配置成可发射出射激光以及接收反射激光;反射组件(400)与第二旋转部(200)连接,反射组件(400)包括至少两个反射镜(410),各反射镜(410)绕旋转轴线(20)布置,且至少两个反射镜(410)与垂直于旋转轴线(20)的平面的夹角不同。该方案中由被探测物反射回的反射激光能够由同一个反射镜反射回,使得同一个反射镜既能够反射出射激光,又能够反射反射激光。该方案具有至少两个布置角度不同的反射镜,从而使得上述两个反射镜行程的视场为两个平面,增大了激光雷达的探测视场。

Description

激光雷达及自动驾驶设备 技术领域
本申请涉及激光探测的技术领域,尤其涉及一种激光雷达及自动驾驶设备。
背景技术
激光雷达是以发射激光光束来探测物体的位置、速度等特征量的雷达系统,其工作原理是发射系统先向探测区域发射用于探测的出射激光,然后接收系统接收从探测区域内物体反射回来的反射激光,将反射激光与出射激光进行比较,处理后可获得物体的有关信息,如距离、方位、高度、速度、姿态、甚至形状等参数。
目前的激光雷达包括激光发射装置、激光接收装置以及反射镜,反射镜能够相对于旋转轴线转动,激光发射装置发射的出射激光通过转动的反射镜向外出射扫描,同时又通过转动的反射镜接收反射激光并射向激光接收装置,从而使得激光雷达实现探测。现有的激光雷达中虽然能通过反射镜转动而实现探测,但探测视场有限、探测分辨率较差。
发明内容
本申请提供一种激光雷达及自动驾驶设备,该激光雷达及自动驾驶设备能够获得更大的探测视场。
根据本申请的一个方面,提供了一种激光雷达,包括:
旋转设备,包括第一旋转部以及第二旋转部,第一旋转部与第二旋转部之间可产生绕旋转轴线的相互转动;
激光收发组件,与第一旋转部连接,且配置成可发射出射激光以及接收反射激光,反射激光为出射激光照射向被探测物后反射回的激光;
反射组件,与第二旋转部连接,反射组件包括至少两个反射镜,各反射镜绕旋转轴线布置,且至少两个反射镜与垂直于旋转轴线的平面的夹角不同;
其中,各反射镜均配置成可将激光收发组件发射的出射激光反射至被探测物,同时可将由被探测物反射回的反射激光反射至对应的激光收发组件。
根据一些实施例,沿绕旋转轴线的周向,每相邻两个反射镜之间相互连接。
根据一些实施例,第二旋转部具有相对于第一旋转部转动的转动行程,转动行程为360度。
根据一些实施例,反射镜的数量至少为三个,各反射镜连接形成呈环形的反射镜组。
根据一些实施例,每个反射镜的与垂直于旋转轴线的平面的夹角均不同。
根据一些实施例,各反射镜包括初始反射镜以及与初始反射镜相邻的结束反射镜,沿绕旋转轴线的周向,由初始反射镜至结束反射镜,各反射镜的与垂直于旋转轴线的平面的 夹角逐渐增大。
根据一些实施例,沿绕旋转轴线的周向,由初始反射镜至结束反射镜,每相邻两个反射镜之间的夹角相等。
根据一些实施例,各反射镜与旋转轴线的夹角的最小值大于0度,最大值小于90度。
根据一些实施例,激光雷达包括多个激光收发组件,各激光收发组件绕旋转轴线布置;
在第二旋转部的转动行程内,各激光收发组件发射的出射激光均至少可由一个反射镜反射,且至少可接收一个反射镜反射回的反射激光。
根据一些实施例,激光收发组件的数量与反射镜的数量相同,且在第二旋转部的转动行程内,每个反射镜均对应反射一个激光收发组件的出射激光,且均对应将一个反射激光反射至激光收发组件。
根据一些实施例,第一旋转部设置有固定结构,固定结构用于固定激光雷达。
根据一些实施例,第一旋转部包括:
基座,固定结构设置于基座,基座包括安装面,且激光收发组件安装于安装面;
支撑轴,连接于安装面,且支撑轴的中心轴线与安装面垂直,第二旋转部连接于支撑轴背离第一旋转部的端部,旋转轴线与支撑轴的中心轴线平行或重合;
其中,激光收发组件的光轴与反射镜的夹角θ的取值范围为:0°<θ<90°。
根据一些实施例,第二旋转部还包括:
底壳,连接于基座,且与基座的背离安装面的表面共同限定出容纳腔,容纳腔用于容纳激光雷达的电路板,电路板与激光收发组件电性连接。
根据一些实施例,基座包括外壳体以及底板,外壳体绕底板的外周布置,且外壳体、底板以及底壳共同限定出容纳腔;
底板包括安装面,安装面上具有贯穿底板的通孔,激光收发组件通过通孔而与电路板电性连接。
根据一些实施例,激光雷达包括多个激光收发组件,各激光收发组件绕旋转轴线布置;
底板上布置有多个通孔,各激光收发组件一一对应通过各通孔而与电路板电性连接。
根据一些实施例,第二旋转部包括旋转台,旋转台连接于支撑轴的背离基座的端部;
旋转台包括反射面,反射镜连接于反射面。
根据一些实施例,旋转台包括多个反射面,各反射面绕支撑轴布置;
反射组件包括多个反射镜,各反射镜一一对应连接于各反射面。
根据一些实施例,还包括:
驱动装置,连接第一旋转部以及第二旋转部,配置成可驱动第二旋转部相对于第一旋转部绕旋转轴线转动。
本申请的第二方面还提供了一种自动驾驶设备,包括上述任一项的激光雷达。
本申请提供的激光雷达,一方面,由于反射组件可相对于激光收发组件转动,每个激 光收发组件形成在垂直于旋转轴线方向上覆盖一定角度的视场角,另一方面,本实施例中的反射组件至少具有两个与垂直于旋转轴线的平面的夹角不同的反射镜,故激光收发组件相对于夹角不同的反射镜形成的探测视场在平行于旋转轴线方向上错开,进而激光雷达形成的至少两个探测视场在平行于旋转轴线方向上错开,相比于现有技术中的单一探测视场而言,视场范围更广,激光雷达形成的至少两个探测视场还可以部分重叠,重叠视场的探测精度更高。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一种实施例提供的激光雷达的立体示意图;
图2为本申请一种实施例提供的激光雷达的全剖视示意图;
图3为本申请一种实施例提供的激光雷达的全剖视示意图,其中示出了出射激光以及反射激光的示意性路径;
图4为本申请一种实施例提供的激光雷达的全剖视示意图,其中对激光雷达进行了爆炸示意;
图5为本申请一种实施例提供的激光雷达的第一爆炸示意图;
图6为本申请一种实施例提供的激光雷达的第二爆炸示意图;
图7为本申请一种实施例提供的旋转体以及反射镜组的爆炸示意图;
图8为本申请另一种实施例提供的旋转体以及反射镜组的爆炸示意图,其中示出了刷胶槽的结构;
图9为本申请一种实施例提供的旋转体、反射镜组以及各激光收发组件的组合示意图;
图10为本申请一种实施例提供的第一旋转部的部分部件以及驱动装置的立体示意图;
图11为本申请一种实施例提供的第一旋转部的部分部件以及激光收发组件组合后的立体示意图;
图12为本申请一种实施例提供的激光雷达的爆炸示意图;
图13为本申请一种实施例中提供的激光收发组件的立体示意图;
图14为本申请一种实施例中提供的激光收发组件的全剖示意图;
图15为本申请一种实施例中提供的激光收发组件的全剖示意图,其中对激光收发组件进行了爆炸示意;
图16为本申请一种实施例中的激光收发组件的立体示意图,其中,对激光收发组件进行了剖视示意;
图17为图16中的激光收发组件的爆炸示意图;
图18为本申请一种实施例中的固定轴与驱动装置的爆炸示意图;
图19为本申请一种实施例中的第一反射镜的正视示意图;
图20为本申请另一种实施例中的激光收发组件与反射镜的组合示意图,其中,反射镜的面向旋转轴线的表面为反射表面;
图21为本申请一种实施例中的自动驾驶设备的结构示意图;
图22为本申请另一种实施例中的自动驾驶设备的结构示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
激光雷达是以发射激光光束来探测物体的位置、速度等特征量的雷达系统,其工作原理是发射系统先向探测区域发射用于探测的出射激光,然后接收系统接收从探测区域内物体反射回来的反射激光,将反射激光与出射激光进行比较,处理后可获得物体的有关信息,如距离、方位、高度、速度、姿态、甚至形状等参数。
目前的激光雷达包括激光发射装置、激光接收装置以及反射镜,反射镜能够相对于旋转轴线转动,激光发射装置发射的出射激光通过转动的反射镜向外出射扫描,同时又通过转动的反射镜接收反射激光并射向激光接收装置,从而使得激光雷达实现探测。现有的激光雷达中虽然能通过反射镜转动而实现探测,但探测视场有限、探测分辨率较差。
如图1至图12所示,本实施例提供了一种激光雷达10,该激光雷达10能够相对于现有技术而言具有更大的探测视场。具体地,本实施例中的激光雷达10包括旋转设备、激光收发组件300以及反射组件400。
旋转设备包括第一旋转部100以及第二旋转部200,第一旋转部100以及第二旋转部200之间可产生相互转动,且第一旋转部100以及第二旋转部200之间产生相互转动时两者均绕旋转轴线20转动。即第一旋转部100不动,第二旋转部200转动时,第二旋转部200绕上述旋转轴线20转动。同样地,第二旋转部200不动,第一旋转部100转动时,第一旋转部100绕旋转轴线20转动。当然,第一旋转部100以及第二旋转部200还可以同时绕旋转轴线20转动(此时可认为外界参照例如大地为固定不动的物体)。
一种实施例中,第一旋转部100以及第二旋转部200可以为分别位于激光雷达10两侧的部件,此时两者既可以单独一者旋转,也可以两者同时旋转。当两者同时旋转时,激光雷达10还可以包括支撑件,支撑件同时连接第一旋转部100以及第二旋转部200,第一旋转部100以及第二旋转部200同时相对于上述支撑件而绕旋转轴线20转动。
另一种实施例中,当第一旋转部100以及第二旋转部200中的某一者绕另一者转动时, 例如当第一旋转部100不动,第二旋转部200相对于第一旋转部100而绕旋转轴线20转动时,可以使第二旋转部200设置于第一旋转部100的内部。例如第一旋转部100可以包括激光雷达10的外壳,第二旋转部200设置于外壳的内部,且能够在第一旋转部100的内部绕旋转轴线20转动。同样地,当第二旋转部200不动,第一旋转部100相对于第二旋转部200而绕旋转轴线20转动时,可以使第一旋转部100设置于第二旋转部200的内部。例如第二旋转部200可以包括激光雷达10的外壳,第一旋转部100设置于外壳的内部,且能够在第二旋转部200的内部绕旋转轴线20转动。同样地,当第一旋转部100以及第二旋转部200均相对于外界参照转动时,可以使激光雷达10还包括外壳(此时外壳即部属于第一旋转部100,又不属于第二旋转部200),第一旋转部100以及第二旋转部200可以均设置与外壳内,外壳用于与外部部件固定安装(例如当激光雷达10安装与汽车上时,激光雷达10的外壳与汽车连接且相对于汽车静止不动)。
本实施例中,如图2、图3、图4以及图14所示,第一旋转部100包括外壳体112,第二旋转部200设置于外壳体112的内部,且能在外壳体112内部旋转。
激光收发组件300包括激光发射装置310以及激光接收装置320。激光发射装置310可发射用于探测的出射激光,出射激光用于照射向被探测物。出射激光被被探测物反射后形成反射激光,激光接收装置320则用于接收上述的反射激光。激光发射装置310可以与激光接收装置320集成为一个完整的模块,两者亦可以为俩个相互独立的部件。本实施例中的激光收发组件300与第一旋转部100连接,其可随第一旋转部100的转动而转动。为了方便描述,本申请中,将激光发射装置310发射并照射向被探测物的光线称为出射激光,无论由激光发射装置310发射的光线在照射向被探测物前有没有经历其它反射过程,其均成为出射激光。本申请将被探测物反射回并传送至激光接收装置320的光线称为反射激光,无论由被探测物反射的光线在由激光接收装置320接收前有没有经历其它反射过程,其均称为反射激光。
如图13至图20所示,本实施例还提供了一种激光雷达10的激光收发组件300,该激光收发组件300中的激光发射装置310以及激光接收装置320合并为一个完整的模块。具体地,激光收发组件300包括激光发射装置310、激光接收装置320以及收发壳体330。收发壳体330连接激光发射装置310以及激光接收装置320。
收发壳体330可以限定出激光接收通道334以及激光发射通道333,激光发射装置310发射的出射激光穿过激光发射通道333而照射向被探测物。由被探测物反射回的反射激光穿过激光接收通道334而射向激光接收装置320。激光发射通道333的通道轴线(即沿激光发射通道333的长度方向延伸的中心轴线)以及激光接收通道334的通道轴线(即沿激光接收通道334的长度方向延伸的中心轴线)交叉或平行,具体地,为了方便加工以及便于调试光路。本实施例中,激光发射通道333的通道轴线与激光接收通道334的通道轴线平行设置。
如图15至图17所示,本实施例中,收发壳体330包括外壳、第一反射镜331以及第二反射镜332。外壳限定出前述的激光发射通道333以及激光接收通道334。第一反射镜331设于激光发射通道333,且第一反射镜331开设有通光孔3311,通光孔3311用于使出射激光穿过。第一反射镜331用于将反射激光反射至第二反射镜332。第二反射镜332设置于激光接收通道334,且第二反射镜332用于将第一反射镜331反射回的反射激光反射至激光接收器件323。也即是说,第一反射镜331的镜面背离激光发射装置310的方向,第二反射镜332的镜面面向激光接收装置320。激光发射装置310发射的出射激光穿过第一反射镜331的通光孔3311后用于照射向被探测物,由被探测物反射回的反射激光射向第一反射镜331的镜面后反射至位于激光接收通道334内的第二反射镜332的镜面,被第二反射镜332反射后的反射激光穿过激光接收通道334而射向激光接收装置320。上述结构使得出射激光以及反射激光均可以由同一个开口(即激光发射通道333的开口)发射或接收,一方面方便了对激光路径的调整,另一方面也可以使激光接收装置320以及激光发射装置310的相对布局位置变得更加灵活,当激光接收装置320以及激光发射装置310的相对位置改变时,仅需调整第一反射镜331以及第二反射镜332的相对距离以及相对角度即可补偿激光接收装置320以及激光发射装置310的位置变化。并且,激光收发组件的同一个开口发射或接收(即激光收发组件同轴收发),由于只接收特定角度入射的反射激光,能够尽量少的接收到杂散光(包括环境光,和其他雷达、光源的光),提高信噪比,提高探测效果。
当然,在其他实施例中,收发壳体330还可以具有两个相互独立的通道,一个通道用于传送出射激光,一个通道用于接收反射激光,两个通道内的光线不相互串扰。
如图17所示,激光发射装置310包括第一发射镜组312、第二发射镜组311以及激光发射器件313。激光发射器件313连接于第一发射镜组312,且激光发射器件313发射的出射激光依次穿过第一发射镜组312以及第二发射镜组311,第二发射镜组311与第一发射镜组312连接,且第二发射镜组311配置成可相对于第一发射镜组312沿平行于出射激光的方向移动。这样,便可以在装配激光发射装置310时,通过调整第一发射镜组312以及第二发射镜组311之间的相对位置来使得激光发射器件313处于激光发射装置310的焦平面上,并且,第一发射镜组312对出射激光的快轴进行准直,第二发射镜组311对出射激光的慢轴进行准直,调节第一发射镜,312和第二发射镜组311之间的相对位置关系,还能能调节出射激光的光斑大小,使出射激光能够顺利穿过通孔而不被遮挡损耗。
需要注意的是,本实施例中第一发射镜组312以及第二发射镜组311之间的相对位置可变化仅表示激光收发组件300在进行光调前能够进行调整,但激光收发组件300整体光调后,第一发射镜组312以及第二发射镜组311之间的相对位置可能会进行固定,所以光调后的激光收发组件300中第一发射镜组312以及第二发射镜组311之间的相对位置可能会无法调节。
如图15所示,激光接收装置320包括接收镜组321、固定件322以及激光接收器件323。固定件322限定出通孔,固定件322的一侧设置接收镜组321、另一侧设置激光接收器件323,以使得激光接收器件323可接收依次穿过接收镜组321以及通孔的反射激光。
本实施例中的激光收发组件300中,激光发射装置310以及激光接收装置320均固定连接于收发壳体330,使得出射激光和反射激光的光路路径具有关联性。在生产激光收发组件300时,可以对每个激光收发组件300进行单独的光路调整,使得每个激光收发组件300的激光发射装置310的发射的出射激光以及激光接收装置320接收的反射激光相匹配。这样,当激光雷达10具有多个激光发射装置310以及多个激光接收装置320时,通过配置多个光路匹配完成后的激光收发组件300即可,减小了激光雷达10的装配周期。并且激光发射装置310安装于收发壳体330之后,还能够通过改变第一发射镜组312以及第二发射镜组311之间的距离来单独调整焦距,从而能够增强激光发射装置310的适配性。
实现第一发射镜组312以及第二发射镜组311之间的距离调整的结构可以有多种,示例性的,如图15和图17所示,一种实施例中,第一发射镜组312包括第一发射镜筒,第二发射镜组311包括第二发射镜筒。第一发射镜筒背离激光发射器件313的一端套设于第二发射镜筒靠近激光发射器件313的一端,且第二发射镜筒能够在第一发射镜筒内沿平行于光轴的方向平移,即第二发射镜筒伸入第一镜筒内的部分的尺寸变化将改变第一发射镜组312的中心与第二发射镜组311的中心之间的距离,从而能够调整第一发射镜组312以及第二发射镜组311整体的焦距。具体地,第一发射镜筒背离激光发射器件313的一端可以与第二发射镜筒靠近激光发射器件313的一端螺纹连接,此时,可以通过控制第二发射镜筒相对于第一发射镜筒转动从而调节第一发射镜筒的中心与第二发射镜筒的中心之间的距离。或者,第一发射镜筒背离激光发射器件313的一端可以与第二发射镜筒靠近激光发射器件313的一端粘接。需要注意的是,当第一发射镜筒与第二发射镜筒之间粘接时,需要在激光发射装置310的光路调整完成后进行粘接,即通过调整第一发射镜筒的中心与第二发射镜筒的中心的距离,使得激光发射器件313处于第一发射镜组312与第二发射镜组311整体的焦平面上后,再将第一发射镜筒与第二发射镜筒进行粘接固定,当两者粘接固定后,第一发射镜筒以及第二发射镜筒之间的距离便无法调整。
为了使得激光发射装置310与激光接收装置320之间的光路匹配,一种实施例中,激光发射装置310与收发壳体330之间的距离能够调整。具体地,可以使第二发射镜筒的背离第一发射镜筒的端部伸入收发壳体330的激光发射通道333内,且可以在激光发射通道333内沿平行于出射激光的方向移动。具体地,第二发射镜筒亦可以与收发壳体330的内周壁螺纹连接或粘接。
上述实施例中,第一发射镜组312以及第二发射镜组311之间直接连接,从而可以实现两者之间的距离调整(指两者的中心的距离调整)。一种实施例中,还可以让两者不直接连接而实现两者之间的距离调整。例如,可以让第二发射镜筒完全嵌入收发壳体330的 激光发射通道333内,并让第一发射镜筒的靠近第二发射镜筒的端部嵌入激光发射通道333内,且能在激光发射通道333内沿平行于出射激光的方向移动。这样,当第一发射镜筒相对于收发壳体330移动时,第一发射镜筒与第二发射镜筒之间的距离也相应产生变化。同样地,当第一发射镜筒的靠近第二发射镜筒的端部能够在激光发射通道333内移动时,第一发射镜筒可以与激光发射通道333的内周壁之间螺纹连接或粘接。具体地,第一发射镜筒可以仅靠近第二发射镜筒的端部伸入激光发射通道333内,第一发射镜筒也可以整体完全伸入激光发射通道333内。
为了使激光接收装置320的光路能够进行调整,可以让接收镜组321与固定件322之间的距离可以调节(光路调整完成前可以调节)。一种实施例中,可以让接收镜组321的接收镜筒伸入固定件322的通孔内,具体可以让接收镜组321的靠近固定件322的端部与固定件322进行螺纹连接或粘接(光路调节完成后粘接)。本实施例中,如图14至图16所示,接收镜组321完全设于激光接收通道334内,固定件322的背离激光接收器件323的一端与收发壳体330螺纹连接,激光接收器件323与固定件322的背离接收镜组321的端部连接。接收镜组321可在激光接收通道334内沿平行于激光接收通道334的通道轴线的方向移动,激光接收镜组321的上述移动便可调节其与激光接收器件323之间的相对位置,从而使激光接收器件323处于接收镜组321的焦平面上,使经过接收镜组321会聚后的反射激光,能够完全被激光接收器件323接收。具体地,接收镜组321可以与激光接收通道334的内周壁螺纹连接或粘接(光路调节完成后粘接)。
为了固定激光接收组件,激光接收组件需要设置连接部3222,连接部3222用于将激光收发组件300固定于激光雷达10内。一种实施例中,激光收发组件300的连接部3222可以连接于收发壳体330,这样使得激光接收装置320以及激光发射装置310的制造更加简单。本实施例中,如图15和17所示,激光收发组件300的连接部3222为固定件322的一部分,即固定件322包括通道壳体3221以及连接部3222,通道壳体3221限定出前述的通孔,通孔的一侧设置有激光接收器件323、另一端设置有接收镜组321。连接部3222连接通道壳体3221,且连接部3222用于使激光收发组件300与外部部件(激光雷达10的除开激光收发组件300的部件,例如激光雷达10的基座)进行固定。具体地,连接部3222上可以设置有螺纹孔、螺栓孔或销钉孔等用于固定的结构,从而使得激光收发组件300可以利用螺钉、螺栓或销钉等紧固件将其固定于激光雷达10内。
由于激光收发组件300发射和接收的激光的角度需根据实际设计需要而对应布置,而激光接收器件323连接于固定件322,故使连接部3222作为固定件322的一部分的结构设计能够使得通过调整连接部3222相对于通道壳体3221的连接关系便可以调整激光收发组件300发射或接收的激光相对于激光收发组件300的外部组件的角度。换句话说,当连接部3222作为固定件322的一部分时,通过调整连接部3222的螺纹孔、螺栓孔或销钉孔的孔轴线相对于通道壳体3221的通孔的孔轴线的夹角大小,便可以间接调整激光收发组件 300发射或接收的激光在激光雷达10内的角度。
例如,当激光收发组件300设置于前述的第一旋转部100时,激光收发组件300发射或接收的激光相对于旋转轴线20的夹角需要根据实际需求而特别设计,而当连接部3222作为固定件322的一部分时,仅需调整连接部3222上的螺纹孔、螺栓孔或销钉孔的孔轴线与固定件322的通孔的孔轴线的夹角便可间接调整激光收发组件300发射或接收的激光相对于旋转轴线20的夹角,即将激光收发组件300相对于激光雷达10的布置位置设计转变成对固定件322这一简单的部件的结构设计,降低了设计难度。
激光发射装置310中的各镜组用于对发射的出射激光进行准直,但也难以使出射激光为理想状态下的为0°的光束,故出射激光会具有较小的扩散角,这使得反射回的反射激光所形成的光斑比出射激光形成的光斑大,因此经过通光孔3311的出射激光若被非探测物反射回时(例如出射激光未射向被探测物,中途被其它部件反射回),势必会有部分落在通光孔3311周围的镜面上,反射后被激光接收装置320接收。而被非探测物反射回的激光为无用的干扰激光,这部分干扰激光若被第一反射镜331反射至第二反射镜332后,易被激光接收装置320接收而形成干扰信号。
为了解决上述问题,本实施例中,激光发射器件313包括多个发射单体,各发射单体均可发射出射激光,各发射单体沿直线排布,且各发射单体所排布的直线垂直于激光发射通道333的通道轴线。如图17和图19所示,第一反射镜331上设置有呈直条状的非反射区,非反射区的长度方向平行于各发射单体所布置的直线,且非反射区的中心与透光孔的中心重合。当第一反射镜331上形成上述的非反射区时,由非探测物反射回的激光大概率会反射至非发射区,而非反射区由于不反射激光,故由非探测物反射回的激光不会被反射至第二反射镜332,从而无法形成干扰信号,提升了激光收发组件300的探测精度。
具体地,可以在第一反射镜331的镜面上设置吸光涂层或吸光镀层而形成非反射区(即镜面上先全部涂上反射镀层,然后再在非反射区上涂覆吸光涂层或吸光镀层);也可以仅在第一反射镜331的镜面上的非反射区外涂上反射镀层(即非反射区上不设置反射镀层);还可以将第一反射镜331上的非反射区的反射镀层去掉,例如可以在第一反射镜331上的非反射区的位置开设槽体,从而使非发射区的部位无法反射激光。
反射组件400用于反射出射激光和反射激光,使出射激光改变方向而照射向被探测物,接收反射激光并改变方向照射向对应的激光收发组件300。特别地,反射组件400与第二旋转部200连接,并可随第二旋转部200地转动而转动。当第二旋转部200转动时,出射激光对于反射镜组件在垂直于旋转轴线20平面上的角度发生了变化,出射激光经反射镜组件的反射角度则相应产生了变化,从而可以使得激光雷达10形成一定大小的视场角。
可以理解地,当第一旋转部100包括外壳体112,且第二旋转部200设置于第一旋转部100内部时,外壳体112可以包括透光部113,透光部113配置为可透光,以使得出射激光以及反射激光穿过。外壳体112可以整体均为透光材料制成,也可以仅需要穿过出射 激光以及反射激光的部分为透光材料制成,如高透光的滤光片。当外壳体112具有透光部113时,外壳体112可以由两种材料(一种透光材料,一种不透光材料)一体成型;也可以由透光材料一体成型,然后在不需要透光的部分贴附上遮光层(遮光层可以为遮光油墨或或遮光贴纸等);还可以使外壳体112分为透光和不透光的两个部分,两个部分单独成型,而后使两部分组装后形成完整的外壳体112。
本实施例中,反射组件400包括至少两个反射镜410,例如反射组件400可以包括两个反射镜410、三个反射镜410、四个反射镜410或更多。特别地,反射组件400中的各反射镜410绕旋转轴线20布置,且至少两个反射镜410与垂直于旋转轴线20的平面的夹角不同。也就是说,不论反射镜410的数量如何,都有两个反射镜410能够朝不同方向反射来自激光收发组件300发射的出射激光,且上述两个方向在垂直于旋转轴线20的平面内的投影交叉。例如,当反射镜410的数量为八个时,可以有俩个反射镜410与垂直于旋转轴线20的平面的夹角不同,也可以有三个反射镜410与垂直于旋转轴线20的平面的夹角不同,亦可以八个反射镜410与垂直于旋转轴线20的平面的夹角均不同。
本实施例中,在反射组件400随第二旋转部200相对于第一旋转部100转动的行程中,各反射镜410均配置成可将激光收发组件300发射的出射激光反射至被探测物,同时可将由被探测物反射回的反射激光反射至对应的激光收发组件300。也就是说,每个反射镜410反射出去的出射激光照射向被探测物后反射回的反射激光会再次被此发射镜反射回激光收发组件300。当激光收发组件300的数量只有一个,且第一旋转部100相对于第二旋转部200在某一个角度内转动时,此激光收发组件300发射以及接收的激光均被一个反射镜410进行反射,其它反射镜410不工作(即不反射激光)。当第一旋转部100相对于第二旋转部200在另一个角度内转动时,前一个工作的反射镜410不工作,而改为其它某个发射镜进行工作。
当然,当激光收发组件300的数量为多个(两个或两个以上)且数量少于反射镜410的数量时,则可以对应有两个或两个以上的反射镜410同时工作。而当激光收发组件300的数量比反射镜410的数量多时,还可能出现一个反射镜410同时反射两束来自不同激光收发组件300的激光。
本实施例中的激光雷达10,一方面,由于反射组件400可相对于激光收发组件300转动,每个激光收发组件300形成在垂直于旋转轴线20方向上覆盖一定角度的视场角,另一方面,本实施例中的反射组件400至少具有两个与垂直于旋转轴线20的平面的夹角不同的反射镜410,故激光收发组件300相对于夹角不同的反射镜410形成的探测视场在平行于旋转轴线20方向上错开,进而激光雷达10形成的至少两个探测视场在平行于旋转轴线20方向上错开,相比于现有技术中的单一探测视场而言,视场范围更广,激光雷达10形成的至少两个探测视场还可以部分重叠,重叠视场的探测精度更高。
前述的实施例中,激光雷达10内可以仅具有一个激光收发组件300,然后激光收发组 件300产生和接收的激光均由多个反射镜410进行交替反射,且各反射镜410通过绕旋转轴线20转动从而交替反射激光收发组件300的激光。而为了实现切换各反射镜410的反射状态的目的,一种实施例中,可以使第二旋转部200在预设的角度内往复转动从而实现各反射镜410的工作状态的切换。例如,当第二旋转部200包括两个与垂直于旋转轴线20的平面的夹角不同的反射镜410,且每个反射镜410对应于第二旋转部200的十度(这里只是一个示例性的角度)的工作角度时(即第二旋转部200在一个特定的十度的范围内相对于第一旋转部100旋转时,其中一个反射镜410能够反射激光收发组件300的激光,第二旋转部200在另一个特定的十度的范围内相对于第一旋转部100旋转时,另一个反射镜410能够反射激光收发组件300的激光),第二旋转部200可以绕旋转轴线20沿第一方向转动二十度,从而切换两个反射镜410的工作状态,然后再以绕旋转轴线20沿第二方向(第一方向的反方向)转动二十度,从而再次切换两个反射镜410的工作状态,上述工作过程中,第二旋转部200呈往复转动的状态。
第二旋转部200除了能够相对于第一旋转部100在某一特定的角度内呈往复转动外,另一种实施例中,第二旋转部200还可以相对于第一旋转部100进行持续转动(即永远保持沿单一方向转动)。具体地,第二旋转部200配置为具有相对于第一旋转部转动的转动行程,且转动行程为360度。也即是说,第二旋转部200相对于第一旋转部100绕旋转轴线20转动时,仅沿一个方向持续转动(即第二旋转部200重复上述的转动行程即可),而不是在某个特定的角度内往复转动,而沿一个方向持续转动亦能够实现切换各反射镜410的工作状态的目的,且不用对第二旋转部200的转动过程进行精准的控制。
当第二旋转部200相对于第一旋转部100沿一个方向持续转动时,若各反射镜410之间存在间隙,容易造成第二旋转部200的行程的浪费(即可能出现第二旋转部200转动至某一个位置时,没有反射镜410能够对应反射激光收发组件300的激光,故此时刻激光雷达10无法进行工作)。为了能够完全利用第二旋转部200的转动行程,一种实施例中,沿绕旋转轴线20的周向,每相邻两个反射镜410之间可以相互连接,以使得各反射镜410之间不存在间隙。进一步地,本实施例中反射镜410的数量可以为三个或三个以上,且各反射镜410连接形成呈环形的反射镜组。例如,当反射镜410的数量为三个时,三个反射镜410的反射表面可以为三棱锥的外侧面或三棱台的外侧面。反射镜410的数量为四个时,四个反射镜410的反射表面可以为四棱锥的外侧面或四棱台的外侧面。当反射镜410的数量为多个时组合成的结构以此类推,这里不做赘述。当各反射镜组合形成上述结构时,无论第二旋转部200转动到何处,均能够有反射镜410反射激光收发组件300的激光,使得激光雷达10的工作效率提升。
当各反射镜组合形成呈环形的反射镜组时,为了布置各反射镜410,第二旋转部200可以包括旋转台210,旋转台210连接于第二旋转部200且可绕旋转轴线20转动。具体地,旋转轴线20可以穿过旋转台210也可以偏离于旋转台210。旋转台210包括多个反射面211, 各反射镜410一一对应布置于反射面211。特别地,当各反射镜组合成的呈环形的反射镜组为三棱锥的外侧面时,旋转台210即为三棱锥状。当各反射镜组合成的呈环形的反射镜组为三棱台的外侧面时,旋转台210即可以为三棱台状。本实施例中,如图6至图7所示,反射组件400包括八块反射镜410,且旋转台210呈八棱台状,各反射镜410一一对应布置于旋转台210的八个外侧面(即旋转台210的八个反射面211)。
当然,其他实施例中,旋转台210的反射面211的数量还可以比反射镜410的数量多,例如当反射镜410的数量为一个时,旋转台210仍然可以为八棱台状,且旋转台210上的其中一个反射面211上布置有反射镜410,其他反射面211上未布置反射镜410。
一种优选地实施例中,当各反射镜组合成呈环形的反射镜组时,反射镜组的数量可以为多个,且多个反射镜组沿平行于激光雷达10的旋转轴线20的方向排布。例如,呈环形的反射镜组的数量可以为两个,每个反射镜组具有八个反射镜410,两个反射镜组中的十六个反射镜410与垂直于旋转轴线20的平面的夹角均不相同,且其中一个反射镜组中的各反射镜410与垂直于旋转轴线20的平面的夹角均大于另一个反射镜组中的各反射镜410与垂直于旋转轴线20的平面的夹角,换句话说,其中一个反射镜组中反射镜410的与垂直于旋转轴线20的平面的夹角最小值大于另一个反射镜组中反射镜410的与垂直于旋转轴线20的平面的夹角的最大值。特别地,两个反射镜组配置成可沿平行于旋转轴线20的方向平移。上述结构使得激光雷达10的探测视场更大。可以理解的是,当两个反射镜组在某一个位置时,激光收发组件300发射和接收的激光均由其中一个反射镜组反射,此时激光雷达10具有一个探测视场。当激光雷达10需要转换运用于其他场景时,可以调节两个反射镜组,使两个发射镜组均沿平行于旋转轴线20的方向平移,从而切换工作的反射镜组,切换后的反射镜组对应的探测视场与之前的反射镜组对应的探测视场不同,故上述结构使得激光雷达10具有两个不同的探测视场,使得激光雷达10可以适配两个不同的工作场景。
当然,其他实施例中,反射镜组即使不组合成环形的结构,其数量也可以为多个,且各反射镜组沿平行于旋转轴线20的方向进行排列。
需要注意的是,任何具有能够反射激光的反射表面的部件均能够称为反射镜410。例如反射镜410可以为旋转台210的反射面211上的反射镀层(具体可以为银镀层),反射镜410也可以为完整的镜子结构,且通过粘接的方式与旋转台210上的反射面211连接。
当反射镜410与旋转台210上的反射面211粘接时,可以先在旋转台210的反射面211上涂抹粘接胶,然后将反射镜410贴合于反射面211的粘接胶上,粘接胶的量可以适当增大,从而使得反射镜410贴敷于粘接胶上后,能够微调反射镜410与旋转轴线20之间的夹角,从而使得反射镜410的定位更加精准。
为了储存一定量的粘接胶,本实施例中,旋转台210的各反射面211上均设置有刷胶槽2111,每个刷胶槽2111均用于填充粘接反射镜410的粘接胶。从而保证反射镜410与旋转台210的粘接的牢固性。由于刷胶槽2111的存在,反射面211上的粘接胶的厚度变得 不均匀,粘接胶凝固后使得反射镜410受到的应力不均匀,另外厚度不均匀的粘接胶使得安装反射镜410的过程中,将反射镜410朝向反射面211的方向挤压时,反射镜410的受力不均匀,这样将使得反射镜410易产生不规则的形变。为了解决上述问题,一种实施例中,如图8所示,每个反射面211上均设置有多个刷胶槽2111,各刷胶槽2111均呈环形且同一个反射面211上的每个刷胶槽2111的中心重合。这样能够使得反射镜410被朝反射面211的方向挤压时和粘接胶凝固后,反射镜410各处的受力相对均匀,从而能够减小反射镜410的形变,提升探测视场的精准度。
当反射镜410的数量为三个或三个以上时,优选地,可以让每个反射镜410的与垂直于旋转轴线20的平面的夹角均不相同。进一步地,本实施例中,如图7所示,各反射镜410包括初始反射镜410a以及与初始反射镜410a相邻的结束反射镜410b,沿绕旋转轴线20的周向,由初始反射镜410a至结束反射镜410b,各反射镜410的与垂直于旋转轴线20的平面的夹角逐渐增大。这样的结构一方面能够方便对反射镜组进行加工制造,另一方面也可以使得激光收发组件20的探测视场由下至上或由上至下偏移(当旋转轴线20竖向布置时),从而使扫描得到的数据之间的关联性更强,便于对探测到的数据进行分析。
特别地,本实施例中,沿绕旋转轴线20的周向,由初始反射镜410a至结束反射镜410b,每相邻两个反射镜410之间的夹角还可以相等。例如,如图7所示中反射组件400具有八个反射镜410,与垂直于旋转轴线20的平面的夹角最小的反射镜410称为初始反射镜410a,与垂直于旋转轴线20的平面的夹角最大的反射镜410称为结束反射镜410b,沿绕旋转轴线20的周向,由初始反射镜410a至结束反射镜410b的方向,第一个反射镜410(即初始反射镜410a)与第二个反射镜410之间的夹角可以为一度(这里只是示例,其他实施例中还可以为其他度数),第二个反射镜410与第三个反射镜410之间的夹角亦为一度,第三个反射镜410与第四个反射镜410之间的夹角为一度,以此类推至第七个反射镜410与第八个反射镜410之间的夹角为一度。而第八个反射镜410(即结束反射镜410b)与第一个反射镜410之间的夹角则为七度。换句话说,初始反射镜410a与结束反射镜410b之间的夹角为X度时,沿绕旋转轴线20的周向,由初始反射镜410a至结束反射镜410b,每相邻两个反射镜410之间的夹角为X/7度。
当反射镜410的数量为多个(两个或两个以上)时,为了能够使反射镜410以合适的角度反射激光,本实施例中,各反射镜410与旋转轴线20之间的夹角的最小值大于0度,最大值小于90度。例如,反射镜410与旋转轴线20之间的夹角可以为5度、10度、20度、40度、80度或85度等。
当反射镜410具有多个时,为了能够将激光顺利反射至探测物,一种实施例中,参见图20,反射镜410的面向旋转轴线20的表面可以为反射表面(即用于反射激光的表面)。当反射镜410的面向旋转轴线20的表面为反射表面时,为了不使出射光线被其它反射镜410(当前状态下不反射光线的反射镜410)遮挡,各反射镜410不能组合成封闭的环形, 且至少在出射激光的路径上形成缺口,从而使出射激光射向被探测物。而由于反射组件400绕旋转轴线20转动,故各反射镜410围合的角度最大只能为180度,才能使反射镜组转动时激光收发组件300的出射激光不会被其它不反射光线的反射镜410遮挡。当各反射镜410围合的角度为180度时,反射镜组绕旋转轴线20转动的过程中,激光雷达10中的每个激光收发组件300(不论数量如何)均只有一半的时间工作。当各反射镜410围合的角度为90度时,反射镜组绕旋转轴线20转动的过程中,激光雷达10中的每个激光收发组件300(不论数量如何)均只有四分之一的时间工作。
当反射镜410的背离旋转轴线20的表面为反射表面时,为了便于反射镜410的加工,反射镜410可以为平面镜。一种实施例中,为了提升激光雷达10的分辨率,反射镜410可以为凸面镜,且镜面具体可以为圆弧面,圆弧面对应的中心轴线与旋转轴线20相交,同时,圆弧面对应的半径大于反射镜410到旋转轴线20的最大距离。另一种实施例中,为了增加探测视场角,反射镜410可以为凹面镜,且镜面具体可以为圆弧面,圆弧面对应的中心轴线与旋转轴线20相交。
当反射镜410的面向旋转轴线20的表面为反射表面时,为了便于反射镜410的加工,反射镜410可以为平面镜。一种实施例中,为了提升激光雷达10的分辨率,反射镜410可以为凹面镜,且镜面具体可以为圆弧面,且圆弧面对应的中心轴线与旋转轴线20相交,同时,圆弧面对应的半径大于反射镜410到旋转轴线20的最大距离。另一种实施例中,为了增加探测视场角,反射镜410可以为凸面镜,且镜面具体可以为圆弧面,且圆弧面对应的中心轴线与旋转轴线20相交。
以上为激光收发组件300为一个的情形,当激光收发组件300的数量为两个或更多时,各反射镜410围合的角度应对应设置得更小,由于实际角度需要根据各激光收发组件300的摆放位置以及激光收发组件300的数量来对应调整,故这里不做赘述。
相较于上述的实施例,本实施例中,如图2至图6所示,各反射镜410的背离旋转轴线20的表面为反射表面。这样的结构使得各反射镜410之间反射的激光不会产生相互影响,即各反射镜410能够组合成为呈环形的反射镜组。
不论反射镜410的面向旋转轴线20的表面为反射表面还是反射镜410的背离旋转轴线20的表面为反射表面,激光收发组件300的光轴均应与上述的反射镜410(具体为反射表面)呈θ角,且θ角的取值范围为0°<θ<90°。激光收发组件300的光轴,可以是激光收发组件300发射的出射激光的中心线,也可以是激光收发组件300接收的反射激光的中心线。当激光收发组件300的出射激光以及反射激光均可以由同一个开口(即激光发射通道333的开口)发射或接收,则激光收发组件300的出射激光的中心线和反射激光的中心线重合,激光收发组件300的光轴即为重合的中心线。即激光收发组件300的光轴与反射镜410的反射表面的最小夹角应大于0度、最大夹角应小于90度。例如,激光收发组件300发射或接收的激光与反射镜410的反射表面的夹角可以为5度、10度、20度、40度、80度或85 度等。以上为激光收发组件300的数量为一个的情形,类似的,当激光收发组件300的数量为多个时,每个激光收发组件300的光轴与各反射镜410的反射表面之间的夹角θ均应满足上述的0°<θ<90°的关系。例如,每个激光收发组件300发射或接收的激光与反射镜410的反射表面的夹角均可以为5度、10度、20度、40度、80度或85度等。
当各反射镜组合成为呈环形的反射镜组时,激光收发组件300的数量可以为一个、也可以为多个。且当激光收发组件300的数量为多个时,各激光收发组件300可以绕旋转轴线20布置,具体地,各激光收发组件300还可以旋转轴线20为中心轴圆形阵列布置,并且在第二旋转部200绕旋转轴线20转动的转动行程内,各激光收发组件300发射的出射激光均至少可由一个反射镜410反射,且至少可接收一个反射镜410反射回的反射激光。
当激光发射组件的数量为多个时,激光收发组件300的数量可以少于反射镜410的数量(此时激光雷达10工作时可能出现某个反射镜410不反射激光)、也可以等于反射镜410的数量、还可以大于反射镜410的数量(此时可能出现一个反射镜410同时反射两个激光收发组件300产生的激光)。而本实施例中,为了不使各激光收发组件300之间传递的激光产生相互干扰,且能够最大限度的利用各反射镜410的反射能力,激光收发组件300的数量与反射镜410的数量相同。示例性的,如图6至图7所示,激光雷达10具有八个反射镜410,八个反射镜组合成环形的反射镜组,激光收发组件300的数量与反射镜410的数量相同,均为八个,且在第二旋转部200绕旋转轴线20转动的过程中,每个反射镜410均能够对应反射一个激光收发组件300产生的激光(反射镜410切换时的边界条件下可能会出现一个反射镜410反射两个激光收发组件300产生的激光,另一个反射镜410不反射激光,这种情况排除在外)。
本实施例中,激光收发组件300的数量以及发射镜的数量均为多个,且两者数量相同。激光收发组件300以及发射镜均绕旋转轴线20布置,且各反射镜410围合形成呈环状的反射镜组。每个反射镜410与垂直于旋转轴线20的平面的夹角均不相同。这样的结构一方面使得激光雷达10的工作过程中,每个激光收发组件300可以时刻处于工作状态,且每个反射镜410也时刻处于工作状态(当反射镜410的数量较多时,每个时刻都会出现至少一个反射镜410不工作,当激光收发组件300的数量较多时,若各反射镜410不围合呈环状结构,也有可能会在某些时刻有部分激光收发组件300不工作),激光雷达10的工作效率更高。另一方面还能使得激光雷达10在垂直于旋转轴线20的方向上具有360度的视场角,激光雷达10的探测范围更广,又一方面,每个激光收发组件300通过不同反射镜410形成的视场不重合,平行于旋转轴线20的方向上探测范围更大。
当激光收发组件300的数量为多个时,一种实施例中,还可以使各激光收发组件300发射或接收的激光与旋转轴线20的夹角不同,这样也能获得更大的视场。另一种实施例中,还可以使各反射镜410组成的反射表面为圆锥面,且让第一旋转部100转动,第二旋转部200不动,这样,由于各激光收发组件300发射和接收的激光与旋转轴线20的夹角不同, 故各激光收发组件300随第一旋转部100转动的过程中,每个激光收发组件300均能够形成独立的探测视场。
旋转设备的第一旋转部100以及第二旋转部200可以同时旋转,也可以仅只有其中一者能够旋转。由于第一旋转部100连接有激光收发组件300,故第一旋转部100上需要连接电路板140等电力设备,而当第一旋转部100转动时,如何将电力导向第一旋转部100将成为一个难题。同时,当第一旋转部100转动时,还需要将第一旋转部100上的激光收发组件300探测到的数据信号传输至固定不动的第二旋转部200,导致信号传输的成本较高。
一种实施例中,为了便于激光雷达10的制造,可以使第一旋转部100设置有固定结构,固定结构用于固定激光雷达10。固定结构具体可以任意能够将激光雷达10进行固定的机械结构,例如,固定结构可以为具有螺栓孔、销钉或螺纹孔的固定件322。也就是说激光雷达10进行安装时,可以将第一旋转部100上的固定结构与需要安装激光雷达10的部件进行安装,从而使得第一旋转部100相对于上述部件静止不动。激光雷达10的工作状态下,第一旋转部100不动,第二旋转部200相对于第一旋转部100转动,一方面,使得激光雷达10的转动的部分不需要设置电力设备,故结构更简单,制造成本更小;另一方面,激光收发组件300固定不定,故其探测到的信号也更加便于传输。
当然,在其他实施例中,也可以使第二旋转部200上设置有固定结构,在安装完激光雷达10后,第二旋转部200不动,第一旋转部100相对于第二旋转部200转动。这样可以便于反射镜410的定位,从而方便调整反射镜410反射的激光的探测位置,提升探测精度。但当第二旋转部200固定不动,第一旋转部100转动时,需要将第一旋转部100上探测到的数据传递至第二旋转部200,且需要将第二旋转部200上的电力传递至第一旋转部100。而具体实现方式现有技术中已有公示,这里不做赘述。
另一种优选地实施例中,第一旋转部100以及第二旋转部200均可以设置有固定结构,具体选择让哪部分固定不动,哪部分转动,用户可以根据实际需求而定。
第一旋转部100与第二旋转部200之间可以采用已知的任意结构来实现两者的相对转动。具体地,本实施例中,第一旋转部100可以包括基座以及支撑轴130,第二旋转部200与第一旋转部100的支撑轴130转动连接,并可绕支撑轴130的中心轴线转动(即前述的旋转轴线20可以与支撑轴130的中心轴线平行或重合)。第二旋转部200可以与支撑轴130的中部连接、也可以与支撑轴130的背离基座的端部连接。如图2、3以及图10所示,本实施例中,第二旋转部200与支撑轴130的背离第一旋转部100的端部连接。特别地,旋转台210也可以连接于支撑轴130的背离第一旋转部100的端部。且旋转台210布置于支撑轴130后,旋转台210上的各反射面211绕支撑轴130的中心轴线布置。
第一旋转部100与第二旋转部200之间可以采取手动转动,此时第二旋转部200可以与支撑轴130直接进行轴孔配合连接,两者也可以利用轴承进行连接。为了方便探测,优 选地,本实施例中,第一旋转部100与第二旋转部200之间的转动可以采用驱动装置500来进行驱动。当利用驱动装置500驱动第一旋转部100以及第二旋转部200相对转动时,第二旋转部200除了可以与支撑轴130采用轴孔连接或轴承连接外,第二旋转部200与支撑轴130之间还可以同时连接上述驱动装置500,具体可以是第二旋转部200连接上述驱动装置500的定子,支撑轴130连接上述驱动装置500的转子;或第二旋转部200连接上述驱动装置500的转子,支撑轴130连接上述驱动装置500的定子。利用驱动装置500同时连接第二旋转部200以及支撑轴130的连接方式可以省略掉第二旋转部200与支撑轴130之间的转动连接元件(例如多余的轴承),降低了生产成本。
当激光雷达10采用驱动装置500进行驱动时,为了将电流导向驱动装置500,需要利用导线连接驱动装置500,而导线需要由支撑轴130的背离第二旋转部200的端部位置引入电流,即导线需要沿支撑轴130的长度方向延伸。为了不使导线杂乱,则需要使导线紧贴支撑轴130布置。优选地,如图6、图10以及图18所示,本实施例中,支撑轴130包括沿自身轴向延伸的切面131,切面131为平面。一方面,切面131能够便于支撑轴130的定位,使得支撑轴130可以良好地向第二旋转部200传递转矩;另一方面,与驱动装置500连接的导线也能够贴合于切面131延伸,使得导线能够紧密贴合于支撑轴130,便于导线的布置。
当第二旋转部200包括旋转台210,且旋转台210连接于支撑轴130的背离第一旋转部100的端部时,旋转台210可以连接前述的驱动装置500。具体地,可以让旋转台210连接驱动装置500的转子,支撑轴130连接驱动装置500的定子。由于驱动装置500一般仅定子需要连接电力设备,故支撑轴130连接定子可以使得第二旋转部200以及旋转台210上不需要导通电力设备。
当然,一种实施例中,也可以使驱动装置500的定子连接旋转台210,转子连接支撑轴130。当为上述结构时,为了减小激光雷达10的体积,旋转台210内部可以为空心结构,即旋转台210限定出内部腔室,驱动装置500设置于旋转台210的内部腔室内,且驱动装置500的转子的转动轴伸出旋转台210的内部腔室而与支撑轴130连接。驱动装置500设置于旋转台210的内部腔室内的结构能够使得驱动装置500几乎不占用额外的空间,提升了激光雷达10的空间利用率。
当固定结构连接于第一旋转部100时,固定结构可以具体连接于第一旋转部100的基座上。本实施例中,基座还包括安装面1111,上述的支撑轴130连接于基座的安装面1111,支撑轴130的中心轴线还可以与安装面1111垂直设置。前述的激光收发组件300连接于基座的安装面1111,从而便于朝反射镜410发射出射激光以及接收来自反射镜410的反射激光。
为了给基座上连接的激光收发组件300进行供电以及传输激光收发组件300探测到的数据,第一旋转部100还需要连接电路板140。而一方面。电路板140上的元件较多,结 构复杂,可反射光线的表面不平整,容易产生杂光,而杂光易与反射激光混合而影响激光雷达10的探测精度。另一方面,激光收发组件300的功率较高时其温度也较高,而电路板140长期处于高温的环境下易出现损坏。
为了解决上述问题,如图3至图4所示,本实施例中,第二旋转部200还可以包括底壳120,底壳120连接于基座的背离安装面1111的一侧,且与基座的背离安装面1111的表面共同限定出容纳腔。容纳腔用于容纳激光雷达10的电路板140,电路板140与激光收发组件300电性连接。一方面,电路板140与激光收发组件300被基座隔离,故电路板140发射的杂光不会影响反射激光,减少了进入激光收发组件300内的杂光。另一方面,电路板140由于不与激光收发组件300共处于同一个密闭空间,故激光收发组件300产生的高温对电路板140的影响降低,延长了电路板140的寿命。
如图2以及图10所示,基座具体可以包括外壳体112以及底板111,外壳体112绕底板111的外周布置,且外壳体112的一端、底板111以及底壳120共同限定出前述的容纳电路板140的容纳腔,外壳体112的另一端以及底板111的具有前述安装面1111的一侧共同限定出容纳激光收发组件300的腔室。为了将电路板140上的电力导向激光收发组件300,本实施例中,基座的底板111上设置有多个通孔1112,激光收发组件300通过通孔1112而与电路板140电性连接。
优选地,为了尽可能的增强容纳腔的密封性,如图11至图12所示,本实施例中,将每个激光收发组件300的背离反射镜410的端部一一对应穿过底壳111上的通孔1112位置,一方面,这样方便了激光收发组件300与电路板140电性连接,另一方面,也使得各通孔1112由各激光收发组件300进行封隔,提升了容纳腔的密封性。
本实施例中,如图4以及图6所示,为了监控第二旋转部200相对于第一旋转部100的转动角度。激光雷达10还包括角度测量设备。具体地,角度测量设备包括码盘610以及光学器件620。码盘610与第二旋转部200连接,且码盘610包括绕旋转轴线20布置的码齿。光学器件620与支撑轴130背离第一旋转部100的端部连接,光学器件620与所述码盘610配合,用于监控扫掠过的码齿的齿数,以监控第二旋转部200相对于第一旋转部100转动的角度。
优选地,当旋转台210内部空心时,为了减小激光雷达10的体积,可以将码盘610设置于旋转台210的内部腔室内,且码盘610的码齿伸出旋转台210的内部腔室而与光学器件620配合。
如图21至22所示,本申请实施例的第二方面还提供了一种自动驾驶设备1,该自动驾驶设备1包括上述任一实施例中的激光雷达10。该设备1可以为任意具有进行激光探测的设备1,具体地,该设备可以为汽车。汽车包括汽车本体20,激光雷达10可以安装于汽车本体20的外部或嵌入于汽车本体20内。当激光雷达10设置于汽车本体20外时,激光 雷达10优选为设置于汽车本体20的车顶。
本实施例的附图中相同或相似的标号对应相同或相似的部件;在本申请的描述中,需要理解的是,若有术语“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此附图中描述位置关系的用语仅用于示例性说明,不能理解为对本专利的限制,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。

Claims (19)

  1. 一种激光雷达,其特征在于,包括:
    旋转设备,包括第一旋转部以及第二旋转部,所述第一旋转部与所述第二旋转部之间可产生绕旋转轴线的相互转动;
    激光收发组件,与所述第一旋转部连接,且配置成可发射出射激光以及接收反射激光,所述反射激光为所述出射激光照射向被探测物后反射回的激光;
    反射组件,与所述第二旋转部连接,所述反射组件包括至少两个反射镜,各所述反射镜绕所述旋转轴线布置,且至少两个所述反射镜与垂直于所述旋转轴线的平面的夹角不同;
    其中,在所述激光收发组件随所述第一旋转部相对于所述第二旋转部转动的行程中,各所述反射镜均配置成可将所述激光收发组件发射的所述出射激光反射至所述被探测物,同时可将由所述被探测物反射回的所述反射激光反射至对应的所述激光收发组件。
  2. 如权利要求1所述的激光雷达,其特征在于,
    沿绕所述旋转轴线的周向,每相邻两个所述反射镜之间相互连接。
  3. 如权利要求2所述的激光雷达,其特征在于,
    所述第二旋转部具有相对于所述第一旋转部转动的转动行程,所述转动行程为360度。
  4. 如权利要求3所述的激光雷达,其特征在于,
    所述反射镜的数量至少为三个,各所述反射镜连接形成呈环形的反射镜组。
  5. 如权利要求4所述的激光雷达,其特征在于,
    每个所述反射镜的与垂直于所述旋转轴线的平面的夹角均不同。
  6. 如权利要求4所述的激光雷达,其特征在于,
    各所述反射镜包括初始反射镜以及与所述初始反射镜相邻的结束反射镜,沿绕所述旋转轴线的周向,由所述初始反射镜至所述结束反射镜,各所述反射镜的与垂直于所述旋转轴线的平面的夹角逐渐增大。
  7. 如权利要求6所述的激光雷达,其特征在于,
    沿绕所述旋转轴线的周向,由所述初始反射镜至所述结束反射镜,每相邻两个所述反射镜之间的夹角相等。
  8. 如权利要求1所述的激光雷达,其特征在于,
    各所述反射镜与所述旋转轴线的夹角的最小值大于0度,最大值小于90度。
  9. 如权利要求4所述的激光雷达,其特征在于,
    所述激光雷达包括多个所述激光收发组件,各所述激光收发组件绕所述旋转轴线布置;
    在所述第二旋转部的所述转动行程内,各所述激光收发组件发射的所述出射激光均至少可由一个所述反射镜反射,且至少可接收一个所述反射镜反射回的所述反射激光。
  10. 如权利要求9所述的激光雷达,其特征在于,
    所述激光收发组件的数量与所述反射镜的数量相同,且在所述第二旋转部的所述转动行程内,每个所述反射镜均对应反射一个所述激光收发组件的出射激光,且均对应将一个所述反射激光反射至所述激光收发组件。
  11. 如权利要求1所述的激光雷达,其特征在于,
    所述第一旋转部设置有固定结构,所述固定结构用于固定所述激光雷达。
  12. 如权利要求11所述的激光雷达,其特征在于,所述第一旋转部包括:
    基座,所述固定结构设置于所述基座,所述基座包括安装面,且所述激光收发组件安装于所述安装面;
    支撑轴,连接于所述安装面,且所述支撑轴的中心轴线与所述安装面垂直,所述第二旋转部连接于所述支撑轴背离所述第一旋转部的端部,所述旋转轴线与所述支撑轴的中心轴线平行或重合;
    其中,所述激光收发组件的光轴与所述反射镜的夹角θ的取值范围为:0°<θ<90°。
  13. 如权利要求12所述的激光雷达,其特征在于,所述第二旋转部还包括:
    底壳,连接于所述基座,且与所述基座的背离所述安装面的表面共同限定出容纳腔,所述容纳腔用于容纳所述激光雷达的电路板,所述电路板与所述激光收发组件电性连接。
  14. 如权利要求13所述的激光雷达,其特征在于,
    所述基座包括外壳体以及底板,所述外壳体绕所述底板的外周布置,且所述外壳体、所述底板以及所述底壳共同限定出所述容纳腔;
    所述底板包括所述安装面,所述安装面上具有贯穿所述底板的通孔,所述激光收发组件通过所述通孔而与所述电路板电性连接。
  15. 如权利要求14所述的激光雷达,其特征在于,
    所述激光雷达包括多个所述激光收发组件,各所述激光收发组件绕所述旋转轴线布置;
    所述底板上布置有多个所述通孔,各所述激光收发组件一一对应通过各所述通孔而与所述电路板电性连接。
  16. 如权利要求12所述的激光雷达,其特征在于,
    所述第二旋转部包括旋转台,所述旋转台连接于所述支撑轴的背离所述基座的端部;
    所述旋转台包括反射面,所述反射镜连接于所述反射面。
  17. 如权利要求16所述的激光雷达,其特征在于,
    所述旋转台包括多个所述反射面,各所述反射面绕所述支撑轴布置;
    所述反射组件包括多个所述反射镜,各所述反射镜一一对应连接于各所述反射面。
  18. 如权利要求1所述的激光雷达,其特征在于,还包括:
    驱动装置,连接所述第一旋转部以及所述第二旋转部,配置成可驱动所述第二旋转部相对于所述第一旋转部绕所述旋转轴线转动。
  19. 一种自动驾驶设备,其特征在于,包括权利要求1-18任一项所述的激光雷达。
PCT/CN2020/089038 2020-05-07 2020-05-07 激光雷达及自动驾驶设备 WO2021223179A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2020/089038 WO2021223179A1 (zh) 2020-05-07 2020-05-07 激光雷达及自动驾驶设备
CN202080004643.7A CN113906310A (zh) 2020-05-07 2020-05-07 激光雷达及自动驾驶设备
US17/980,504 US20230048902A1 (en) 2020-05-07 2022-11-03 Lidar and autonomous driving vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/089038 WO2021223179A1 (zh) 2020-05-07 2020-05-07 激光雷达及自动驾驶设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/980,504 Continuation US20230048902A1 (en) 2020-05-07 2022-11-03 Lidar and autonomous driving vehicle

Publications (1)

Publication Number Publication Date
WO2021223179A1 true WO2021223179A1 (zh) 2021-11-11

Family

ID=78467670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/089038 WO2021223179A1 (zh) 2020-05-07 2020-05-07 激光雷达及自动驾驶设备

Country Status (3)

Country Link
US (1) US20230048902A1 (zh)
CN (1) CN113906310A (zh)
WO (1) WO2021223179A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5864391A (en) * 1996-04-04 1999-01-26 Denso Corporation Radar apparatus and a vehicle safe distance control system using this radar apparatus
CN102736075A (zh) * 2011-03-31 2012-10-17 电装波动株式会社 激光雷达装置
CN108445467A (zh) * 2018-03-26 2018-08-24 宁波傲视智绘光电科技有限公司 一种扫描激光雷达系统
CN109752704A (zh) * 2019-03-19 2019-05-14 深圳市镭神智能系统有限公司 一种棱镜及多线激光雷达系统
CN110231606A (zh) * 2018-11-27 2019-09-13 蔚来汽车有限公司 激光扫描装置和包括其的激光雷达装置
CN210376672U (zh) * 2019-06-11 2020-04-21 深圳市镭神智能系统有限公司 多线激光雷达

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5864391A (en) * 1996-04-04 1999-01-26 Denso Corporation Radar apparatus and a vehicle safe distance control system using this radar apparatus
CN102736075A (zh) * 2011-03-31 2012-10-17 电装波动株式会社 激光雷达装置
CN108445467A (zh) * 2018-03-26 2018-08-24 宁波傲视智绘光电科技有限公司 一种扫描激光雷达系统
CN110231606A (zh) * 2018-11-27 2019-09-13 蔚来汽车有限公司 激光扫描装置和包括其的激光雷达装置
CN109752704A (zh) * 2019-03-19 2019-05-14 深圳市镭神智能系统有限公司 一种棱镜及多线激光雷达系统
CN210376672U (zh) * 2019-06-11 2020-04-21 深圳市镭神智能系统有限公司 多线激光雷达

Also Published As

Publication number Publication date
US20230048902A1 (en) 2023-02-16
CN113906310A (zh) 2022-01-07

Similar Documents

Publication Publication Date Title
WO2021223182A1 (zh) 激光雷达及自动驾驶设备
US5808727A (en) Vehicle optical radar apparatus
US20210311173A1 (en) Laser measuring device and unmanned aerial vehicle
CN108267727B (zh) 一种水下激光周向扫描探测装置及系统
CN108872965B (zh) 一种激光雷达
CN210487977U (zh) 一种360度扫描激光雷达装置
CN113960566A (zh) 一种3d激光雷达及足式机器人
CN217156791U (zh) 一种360度旋转扫描激光雷达系统
CN220271559U (zh) 激光雷达及移动设备
CN209878990U (zh) 扫描模组、测距装置及移动平台
CN216209863U (zh) 一种3d激光雷达及足式机器人
CN216209860U (zh) 测距模组、激光雷达及可移动平台
WO2021223179A1 (zh) 激光雷达及自动驾驶设备
WO2021223183A1 (zh) 激光收发组件、激光雷达及自动驾驶设备
US20230028159A1 (en) Lidar, and detection method and manufacturing method for lidar
CN111279219A (zh) 扫描模组、测距装置及移动平台
CN219737761U (zh) 激光雷达
CN115144839A (zh) 一种3d激光雷达及应用其的足式机器人和清洁机器人
CN111381219A (zh) 一种激光发射接收组件以及激光雷达及其系统和扫描方法
CN113567957B (zh) 激光雷达的发射装置及激光雷达
CN111670372A (zh) 扫描模组、测距装置及移动平台
KR20210023052A (ko) 라이다 광학 장치
CN111279212A (zh) 扫描模组、测距装置及移动平台
WO2022141347A1 (zh) 激光测量装置及可移动平台
CN220105288U (zh) 光学测量装置、激光雷达以及移动机器人

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20934708

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09/03/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20934708

Country of ref document: EP

Kind code of ref document: A1