WO2021221458A1 - Impact type actuator and automatic eccentricity compensation system and method using same - Google Patents

Impact type actuator and automatic eccentricity compensation system and method using same Download PDF

Info

Publication number
WO2021221458A1
WO2021221458A1 PCT/KR2021/005362 KR2021005362W WO2021221458A1 WO 2021221458 A1 WO2021221458 A1 WO 2021221458A1 KR 2021005362 W KR2021005362 W KR 2021005362W WO 2021221458 A1 WO2021221458 A1 WO 2021221458A1
Authority
WO
WIPO (PCT)
Prior art keywords
impact
eccentricity
workpiece
actuator
unit
Prior art date
Application number
PCT/KR2021/005362
Other languages
French (fr)
Korean (ko)
Inventor
노승국
김경호
최두선
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Publication of WO2021221458A1 publication Critical patent/WO2021221458A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/22Arrangements for observing, indicating or measuring on machine tools for indicating or measuring existing or desired position of tool or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q23/00Arrangements for compensating for irregularities or wear, e.g. of ways, of setting mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q2017/001Measurement or correction of run-out or eccentricity

Definitions

  • the technology disclosed in the present specification relates to an impact actuator and a system and method for automatic eccentricity correction using the same, and specifically, an impact actuator capable of correcting the eccentricity of a workpiece by applying an impact to a workpiece in a rotating state, and automatic correction of eccentricity using the same It relates to systems and methods.
  • the conventional centering device has a structure in which the eccentricity of the workpiece is measured for one to two rotations using a sensor, the spindle is stopped at the maximum eccentricity, and the eccentricity is corrected using the X-axis of the ultra-precision machining machine. For this reason, such a conventional centering device has a problem in that it is difficult to apply to a pin-core product having a small diameter, and the rotation of the spindle must be frequently stopped for correcting the amount of eccentricity.
  • Impact actuator and automatic eccentricity compensation system and method using the same are impact actuators and automatic eccentricity compensation system using the same to compensate the eccentricity of the workpiece by applying an impact to the workpiece in a rotating state and to provide a method.
  • An impact actuator for correcting an eccentricity of a workpiece fixed to a vacuum chuck and rotating together with the vacuum chuck, comprising: an impact part for applying an impact to the side of the workpiece; a dummy moving part positioned to face the impact part; an excitation unit connecting the impact unit and the dummy moving unit between the shock unit and the dummy moving unit, and reciprocating linearly moving the shock unit and the dummy moving unit in opposite directions; and an elastic connection part connecting the impact part and the dummy moving part between the impact part and the dummy moving part.
  • the dummy moving unit may include a dummy mass.
  • the excitation unit is connected to any one of the impact unit and the dummy moving unit, the coil holder having a cylindrical shape wound around the outer circumferential surface; It is connected to the other one of the impact part and the dummy moving part, a permanent magnet is positioned on the inner circumferential surface, and includes a cylindrical magnetic housing into which the coil holder is inserted into the inner space, but when an alternating current is applied to the coil, the coil holder and the magnetic housing can make reciprocating linear motion.
  • the impact actuator includes a support plate; a coil holder bracket to which the coil holder is fixed; a magnetic housing bracket to which the magnetic housing is fixed; a guide rail fixed to the support plate and extending along the reciprocating linear motion direction; a first sliding block fixed to the coil holder bracket and sliding along the guide rail; and a second sliding block fixed to the magnetic housing bracket and sliding along the guide rail.
  • the elastic connection part may be a coil spring having both ends connected to the coil holder bracket and the magnetic housing bracket, respectively.
  • the impact actuator may further include a torsion spring having both ends connected to the magnetic housing bracket and the support plate.
  • the automatic eccentricity compensation system is an eccentricity automatic compensation system for correcting the eccentricity of a workpiece that is fixed to a vacuum chuck connected to a spindle and rotates together with the vacuum chuck. It is located on one side of the workpiece an impact actuator that impacts the outer circumferential surface of the rotating workpiece; Displacement measuring device positioned on one side of the workpiece to measure the rotational displacement of the outer peripheral surface of the rotating workpiece; An eccentricity calculation unit for calculating the amount of eccentricity of the workpiece based on the outer circumferential rotational displacement and rotational angle; an impact force calculation unit for calculating an impact force of the impact actuator to reduce the eccentricity calculated by the eccentricity calculation unit; and an impact actuator driving unit for driving the impact actuator to apply the impact force calculated by the impact force calculation unit.
  • the impact actuator driving unit may drive the impact actuator to apply an impact to the work piece only at a rotation angle at which the eccentric amount of the work piece is generated.
  • the impact actuator includes an impact portion that impacts the side of the workpiece; a dummy moving part positioned to face the impact part; an excitation unit connecting the impact unit and the dummy moving unit between the shock unit and the dummy moving unit, and reciprocating linearly moving the shock unit and the dummy moving unit in opposite directions; and an elastic connection part connecting the impact part and the dummy moving part between the impact part and the dummy moving part.
  • the dummy moving unit may include a dummy mass.
  • the excitation unit is connected to any one of the impact unit and the dummy moving unit, the coil holder having a cylindrical shape wound around the outer circumferential surface; It is connected to the other one of the impact part and the dummy moving part, a permanent magnet is positioned on the inner circumferential surface, and includes a cylindrical magnetic housing into which the coil holder is inserted into the inner space, but when an alternating current is applied to the coil, the coil holder and the magnetic housing can make reciprocating linear motion.
  • the impact actuator includes a support plate; a coil holder bracket to which the coil holder is fixed; a magnetic housing bracket to which the magnetic housing is fixed; a guide rail fixed to the support plate and extending along the reciprocating linear motion direction; a first sliding block fixed to the coil holder bracket and sliding along the guide rail; and a second sliding block fixed to the magnetic housing bracket and sliding along the guide rail.
  • the elastic connection part may be a coil spring having both ends connected to the coil holder bracket and the magnetic housing bracket, respectively.
  • the impact actuator may further include a torsion spring having both ends connected to the magnetic housing bracket and the support plate.
  • the method for automatically correcting the amount of eccentricity is a method for automatically correcting the amount of eccentricity for correcting the amount of eccentricity of a workpiece fixed to a vacuum chuck connected to a spindle and rotating together with the vacuum chuck, (a) one side of the workpiece Measuring the rotational displacement of the outer peripheral surface of the rotating workpiece with a displacement measuring device located in; (b) calculating the amount of eccentricity of the workpiece based on the measured rotational displacement of the outer peripheral surface; (c) calculating the impact force of the impact actuator to reduce the amount of eccentricity calculated by the eccentricity calculation unit; and (d) driving the impact actuator to apply the calculated impact force.
  • the step (d) may be characterized in that the impact portion of the impact actuator reciprocates linearly to apply an impact to the work, and the dummy moving portion of the impact actuator reciprocates linearly in the opposite direction to the impact portion.
  • step (c) when the amount of eccentricity calculated in step (b) is greater than a reference value, calculating the impact force of the actuator as a relatively large first value; and when the amount of eccentricity calculated in step (b) is smaller than the reference value, calculating the impact force of the actuator as a relatively small second value.
  • a computer-readable recording medium recording a program for performing an eccentricity automatic correction method for correcting the eccentricity of a workpiece that is fixed to a vacuum chuck connected to a spindle according to an embodiment of the technology disclosed herein and rotates together with the vacuum chuck
  • An impact actuator includes a support plate; an impact unit that is slidably positioned on the support plate and applies an impact to the impact object; a dummy moving part facing the impact part and being slidably positioned on the support plate, including a dummy mass; a cylindrical coil holder connected to any one of the impact part and the dummy moving part, and having a coil wound around an outer circumferential surface; It is connected to the other one of the impact part and the dummy moving part, and a permanent magnet is positioned on the inner circumferential surface.
  • Enclosed cylindrical magnetic housing; a coil spring connecting the impact unit and the dummy moving unit between the shock unit and the dummy moving unit; And both ends may include a torsion spring connected to the magnetic housing and the support plate.
  • the amount of eccentricity of the work piece can be corrected by applying an impact to the work piece in the rotating state.
  • the amount of eccentricity can be corrected by applying the desired amount of impact to the desired rotation angle on the rotating workpiece.
  • FIG. 1 is a perspective view of an impact actuator according to one embodiment of the technology disclosed herein;
  • FIG. 2 is a perspective view illustrating an internal structure of an impact actuator according to an embodiment of the technology disclosed herein.
  • FIG. 3 is an exploded perspective view of an impact actuator according to an embodiment of the technology disclosed herein;
  • FIG. 4 is a schematic diagram of an automatic eccentricity correction system according to an embodiment of the technology disclosed herein.
  • FIG. 5 is a view for explaining the steps of the eccentricity correction method according to the present specification.
  • FIG. 6 is a view showing measurement data according to the result of performing the eccentricity correction method according to the present specification.
  • FIG. 7 is a view showing measurement data according to the result of performing the eccentricity correction method according to the present specification.
  • two or more components may be combined into one component, or one component may be divided into two or more for each more subdivided function.
  • each of the components to be described below may additionally perform some or all of the functions of other components in addition to the main functions that each component is responsible for, and some of the main functions of each of the components are different It goes without saying that it may be performed exclusively by the component.
  • first”, “second”, “first”, or “second” used in various embodiments can modify various components regardless of order and/or importance, and do not limit
  • a first component may be referred to as a second component, and similarly, a second component may also be renamed to a first component.
  • FIG. 1 is a perspective view of an impact actuator according to one embodiment of the technology disclosed herein; 2 is a perspective view illustrating an internal structure of an impact actuator according to an embodiment of the technology disclosed herein. 3 is an exploded perspective view of an impact actuator according to an embodiment of the technology disclosed herein;
  • the impact actuator 100 may be fixed to the vacuum chuck 10 to correct the eccentricity of the workpiece 1 rotating together with the vacuum chuck 10 .
  • the impact actuator 100 includes a shock unit 110, a dummy moving unit 120, an excitation unit 130, an elastic connection unit 140, a guide rail 151, a first sliding block 153, a second sliding block ( 154 ) and a torsion spring 155 . These may be accommodated in a space formed by the lower plate 101 , the upper plate 102 , the side cover 103 , and the support plate 150 .
  • the excitation unit 130 is a component including the coil holder 131 and the magnetic housing 132 , and may be, for example, a voice coil motor.
  • the support plate 150 may be a “a”-shaped wall plate, and a guide rail 151 may be fixed to each inner surface, and the guide rail 151 may be moved in the axial direction, that is, the impact unit 110 and the dummy moving unit. It may extend in the reciprocating linear motion direction of 120 .
  • a lower plate 101 may be connected to a lower surface of the support plate 150
  • an upper plate 102 may be connected to an upper surface of the support plate 150 .
  • the impact part opening 105 for the impact part 110 to pass through is formed in the lower plate 101
  • the dummy movable part opening 104 for the dummy movable part 120 to pass through is formed in the upper plate 102 .
  • the side cover 103 is also a “L”-shaped plate, and may be connected to the lower plate 101 , the upper plate 102 and the support plate 150 to close the inner space.
  • the impact unit 110 is fixed to the coil holder bracket 133 and can be slidably positioned in the x-axis direction on the support plate 150 , passes through the impact unit opening 105 , and the workpiece 1 in a rotating state ) is a member that repeatedly applies an impact to the side.
  • the x-axis direction is a direction perpendicular to the axis of rotation of the spindle rotating the workpiece 1 .
  • the workpiece 1 is a circular object having the same volume as a lens, it may correspond to the radial direction of the circular object.
  • the axis of rotation of the spindle may be in the y-axis direction or the z-axis direction, and the workpiece 1 may have an eccentricity with respect to the x-axis direction due to inaccurate centering.
  • the eccentricity can be corrected.
  • the dummy moving unit 120 is positioned to face the impact unit 110 , and may linearly move through the dummy moving unit opening 104 .
  • the dummy moving part 120 may be fixed to the magnetic housing bracket 134 and slidably positioned on the support plate 150 in the x-axis direction.
  • the dummy moving unit 120 may include a dummy mass, and the dummy mass preferably has a mass greater than that of the impact unit 110 .
  • the reaction force applied to the impact unit 110 is used to move the dummy moving unit 120 connected by the elastic connection unit 140, whereby the impact is It is absorbed and it can be prevented that the reaction force is directly transmitted to the impact actuator 100 itself. That is, according to the present invention, when the impact unit 110 slides in one direction of the x-axis (+x-axis direction), the dummy moving unit 120 slides in the opposite direction of the x-axis (-x-axis direction) due to the reaction force. do. That is, since the movement direction of the impact unit 110 and the movement direction of the dummy movement unit 120 are opposite to each other, the reaction force applied to the impact actuator 100 itself may be offset.
  • the excitation unit 130 connects the shock unit 110 and the dummy moving unit 120 between the shock unit 110 and the dummy moving unit 120 , and the shock unit 110 and the dummy moving unit 120 .
  • a reciprocating linear motion can be performed at a predetermined cycle.
  • the excitation unit 130 may be a voice coil motor, and may include a coil holder 131 and a magnetic housing 132 .
  • the coil holder 131 may be connected to any one of the shock unit 110 and the dummy moving unit 120 , and in this embodiment, the coil holder 131 is exemplified as being connected to the shock unit 110 .
  • the coil holder 131 may be a cylindrical member in which a coil is wound around an outer circumferential surface, and may be fixed to the coil holder bracket 133 .
  • the magnetic housing 132 may be connected to the other one of the impact unit 110 and the dummy moving unit 120 , and in this embodiment, the magnetic housing 132 is exemplified as being connected to the dummy moving unit 120 .
  • the magnetic housing 132 is a cylindrical member and may be fixed to the magnetic housing bracket 134 .
  • the magnetic housing 132 has a structure surrounding the coil holder 131, and the coil holder 131 is inserted into the inner space of the magnetic housing 132 or a reciprocating linear motion coming out of the inner space of the magnetic housing 132 can be made. can have an inner diameter.
  • a permanent magnet is positioned on the inner circumferential surface of the magnetic housing 132 , and when an alternating current is applied to the coil of the coil holder 131 , the coil holder 131 and the magnetic housing 132 may reciprocate linearly.
  • the elastic connection unit 140 may connect the shock unit 110 and the dummy moving unit 120 between the shock unit 110 and the dummy moving unit 120 , and may be a coil spring.
  • a first spring fixing member 161 may be installed in the coil holder bracket 133
  • a second spring fixing member 162 may be installed in the magnetic housing bracket 134 . Both ends of the elastic connection part 140 may be connected to the first spring fixing member 161 and the second spring fixing member 162, whereby the impact part 110 and the dummy moving part 120 are mutually tanned. be sexually connected.
  • the coil holder bracket 133 may be fixed to the first sliding block 153 , and the first sliding block 153 may slide along the guide rail 151 .
  • the magnetic housing bracket 134 may be fixed to the second sliding block 154 , and the second sliding block 154 may slide along the guide rail 151 .
  • the first sliding block 153 and the second sliding block 154, the guide rail 151 may be formed of an LM guide.
  • Both ends of the torsion spring 155 may be connected to the locking member 135 of the magnetic housing bracket 134 and the locking member 136 of the support plate 150 .
  • the torsion spring 155 may perform a function of returning the dummy moving unit 120 linearly moved by the excitation unit 130 or linearly moved by the reaction force transmitted to the impact unit 110 to its original position.
  • the impact actuator 100 of this configuration is fixed to the vacuum chuck 10 in the automatic eccentricity compensation system 200 and applies an impact to the workpiece 1 rotating together with the vacuum chuck 10 in one direction (x-axis direction). It is possible to perform a function of correcting the amount of eccentricity of the workpiece (1).
  • FIG. 4 is a schematic diagram of an automatic eccentricity correction system according to an embodiment of the technology disclosed herein.
  • the automatic eccentricity correction system 200 is fixed to the vacuum chuck 10 connected to the spindle 20 and corrects the eccentricity of the workpiece 1 rotating together with the vacuum chuck 10 .
  • the automatic eccentricity correction system 200 includes an impact actuator 100, a displacement measuring instrument 210, a rotation angle measuring unit 220, an eccentricity calculating unit 230, an impact force calculating unit 240, and an impact actuator driving unit 250.
  • the impact actuator 100 uses the first sliding block 153 , the second sliding block 154 and the guide rail 151 constituting the voice coil motor and the LM guide of the excitation unit 130 to the impact unit 110 . Since the precise guidance of the workpiece 1 is possible, the amount of eccentricity can be adjusted by applying an impact to the outer circumferential surface of the workpiece 1 positioned on one side of the workpiece 1 and rotating at a constant speed to generate a minute displacement in the impact direction. In addition, since the impact actuator 100 absorbs the reaction force according to the impact through the dummy moving part 120 , it is possible to block the impact transmitted to the impact actuator 100 or the table 40 .
  • the displacement measuring device 210 is located on one side of the workpiece 1 and can measure the rotational displacement of the outer circumferential surface of the workpiece 1 rotating at a constant speed, and the rotation angle measuring device 220 measures the rotation angle of the spindle 20 can be measured
  • a known contact/non-contact displacement measuring sensor may be used without limitation.
  • the eccentricity calculation unit 230 may calculate the eccentricity of the workpiece based on the rotational displacement of the outer peripheral surface of the workpiece 1 and the rotational angle of the spindle 20 .
  • a least mean square (LMS) filter for the rotation speed synchronization component can be used, and an excitation signal capable of correcting the extracted amount of eccentricity is generated.
  • the impact force calculation unit 240 may calculate an impact force (force or displacement) of the impact actuator 100 that will reduce the amount of eccentricity at a predetermined rotation angle calculated by the eccentricity calculation unit 230 .
  • the impact actuator driving unit 250 may drive the impact actuator 100 by transmitting a signal with the impact actuator 100 to apply the impact force calculated by the impact force calculation unit 240 .
  • the impact actuator driving unit 250 may drive the impact actuator 100 to apply an impact to the work piece 1 only at a rotation angle that exceeds the reference value by the amount of eccentricity of the work piece 1 .
  • a rotation angle that exceeds the reference value by the amount of eccentricity of the work piece 1 .
  • an excitation period is set to apply an impact to the work piece 1, and the impact actuator 100 is can drive
  • the impulse signal and the magnitude of the impact force may be generated at a constant frequency greater than the number of rotations of the spindle 20 .
  • the amount of eccentricity reduced by the impact is measured and fed back by the displacement measuring device 210 and the rotation angle measuring device 220, and a new impact force can be applied based on the fed back information.
  • a new impact force can be applied based on the fed back information.
  • An embodiment of the technology disclosed herein may include a method for automatically correcting the amount of eccentricity.
  • the method of automatically correcting the amount of eccentricity according to the present specification will be described later with reference to FIGS. 5 to 7 .
  • FIGS. 6 and 7 are views showing measurement data according to the result of performing the method for correcting the amount of eccentricity according to the present specification.
  • the graph (1) of FIG. 6 is a graph showing the amount of eccentricity (absolute value) of the workpiece fixed to the vacuum chuck connected to the spindle. .
  • the graph (2) of FIG. 6 is a graph showing the distance value measured by measuring the rotational displacement of the outer peripheral surface of the workpiece based on the rotational center of the spindle.
  • the horizontal axis is time and the unit is seconds, and the vertical axis is distance, and the unit is micrometer ( micrometer).
  • Graph (3) of FIG. 6 is a graph showing a calculated value of the impact force input to the excitation part of the impact actuator, the horizontal axis is time, the unit is seconds, and the vertical axis is force, the unit is Newton (N).
  • the excitation part of the impact actuator moves, and the motion of the impact part and the dummy moving part as shown in graphs (4) and (5) occurs according to the motion result of the excitation part. That is, the calculated impact force is a concept corresponding to the actual movement amount, but is not the same concept.
  • the graph (4) of FIG. 7 is a graph showing the measured value of the movement distance of the impact part of the impact actuator, and the horizontal axis is time and the unit is seconds, and the vertical axis is distance and the unit is meters.
  • Graph (5) of FIG. 7 is a graph showing the measured value of the moving distance of the dummy moving part of the impact actuator.
  • the horizontal axis is time and the unit is seconds, and the vertical axis is distance and the unit is meters.
  • the eccentricity correction method is an eccentricity automatic correction method for correcting the eccentricity amount of a workpiece fixed to a vacuum chuck connected to a spindle and rotating together with the vacuum chuck, specifically, the displacement of the outer peripheral surface of the rotating workpiece Measuring (S510), calculating the amount of eccentricity of the workpiece based on the rotational displacement of the outer peripheral surface (S520), calculating the impact force of the impact actuator (S530) and driving the impact actuator to apply the calculated impact force (S540) may be included.
  • step S510 the workpiece to be processed is fixed by the vacuum operation of the vacuum chuck connected to the rotatable spindle, and the step of rotating the workpiece may be performed.
  • a sensor such as the displacement measuring device 210 may measure the rotational displacement of the workpiece.
  • a non-contact displacement measurement sensor as well as a contact displacement measurement sensor may be used.
  • the result measured according to this step may be shown as graph (2).
  • the displacement of the workpiece means the distance to the outer peripheral surface of the workpiece measured based on the rotation axis of the spindle, and 0 to 2 seconds is the initial measurement section, and actually impacts the workpiece.
  • This applied section may be a section after 2 seconds.
  • the displacement of the workpiece may be rapidly reduced in the section from 2 seconds to about 6.2 seconds.
  • a reference value e.g. 5 micrometers
  • the impact force (graph (3)) is input as a relatively large first value (eg, 17N).
  • the displacement of the workpiece may gradually decrease in the section after about 6.2 seconds.
  • the amount of eccentricity (graph 1) is less than or equal to a reference value (eg, 5 micrometers)
  • the impact force (graph 3) is input as a relatively small second value (eg, 9N). In this way, it is possible to quickly correct the amount of eccentricity through the input of the impact force through two steps, as well as to fine-tune it.
  • a step of calculating the amount of eccentricity of the workpiece based on the previously measured rotational displacement of the outer circumferential surface may be performed.
  • the least mean square filter for the rotation speed synchronization component can be used.
  • the amount of eccentricity calculated according to this step may be shown as graph (1) and expressed as an absolute value.
  • the amount of eccentricity of the workpiece rapidly decreases as above the reference value (eg, 5 micrometers) during the interval from 2 seconds to about 6.2 seconds after the initial measurement interval from 0 to 2 seconds. can be In the section after about 6.2 seconds, the eccentricity is less than the reference value and can be gradually decreased.
  • the impact force is input as a relatively large first value (eg, 17N), and as the second step, in the section where the eccentricity is less than or equal to the reference value, the impact force is set to a relatively small second value (e.g., 9N).
  • a relatively large first value e.g. 17N
  • the impact force is set to a relatively small second value (e.g., 9N).
  • the reduction in the amount of eccentricity of the workpiece to within 1 micrometer can be achieved within 20 seconds.
  • step S530 the step of calculating the impact force of the impact actuator based on the previously calculated amount of eccentricity of the workpiece may be performed.
  • the impact force is a relatively large first value (for example, 17N) can be set to
  • the impact force may be set to a relatively small second value (eg, 9N).
  • the calculated impact force is input to the excitation unit, which may be a voice coil motor, so that the impact unit and the dummy moving unit may repeatedly reciprocate linearly as described below.
  • a step of driving the impact actuator according to the calculated impact force may be performed.
  • the impact unit and the dummy moving unit which are the excitation units of the impact actuator, may perform repeated reciprocating linear motion.
  • the impact unit of the impact actuator may move forward by 5 mm and backward by -1 mm along the x-axis. That is, the impact part moves 5 mm to impact the outer peripheral surface of the workpiece, and can move by -1 mm along the x-axis by the elastic force of the elastic connection part.
  • the dummy moving unit may move -6 mm along the x-axis.
  • the impact part moves 5 mm forward for 2 to 20 seconds, which is the time before the impact is applied, because the impact part and the outer circumferential surface of the workpiece are in contact.
  • the impact unit has a relatively large first value, and during a section from 2 seconds to about 6.2 seconds in which the impact force is input, the distance to move backward is a second value, which is a relatively small value, about 6.2 seconds, which is a section in which the impact force is input. It may be greater than the distance traveled backward during the subsequent section.
  • the dummy moving unit has a relatively large first value, and during a section from 2 seconds to about 6.2 seconds, in which the impact force is input, the distance moving backward is about 6.2, which is a section in which the impact force is input as a second value, which is a relatively small value. It may be greater than the distance traveled backward during the interval after seconds.
  • the moving distance of the dummy moving part may be smaller than the moving distance of the impacting part because the mass of the dummy moving part is larger than the mass of the impacting part.
  • Another embodiment not described herein may be a computer-readable medium in which a program is recorded, and the corresponding medium may be a medium in which instructions for implementing the method as described above are recorded.
  • the computer-readable medium in which the program according to this embodiment is recorded is a command for measuring the displacement of the outer circumferential surface of the rotating workpiece, a command for calculating the amount of eccentricity of the workpiece based on the rotational displacement of the outer circumferential surface, the impact actuator A command for calculating the impact force and a command for driving the impact actuator to apply the calculated impact force can be recorded.
  • Embodiments of the subject matter described herein are one or more computer program products, ie one or more modules directed to computer program instructions encoded on a tangible program medium for execution by or for controlling the operation of a data processing device.
  • a tangible program medium may be a radio wave signal or a computer-readable medium.
  • a radio wave signal is an artificially generated signal, eg a machine generated electrical, optical or electromagnetic signal, that is generated to encode information for transmission to an appropriate receiver device for execution by a computer.
  • the computer-readable medium may be a machine-readable storage device, a machine-readable storage substrate, a memory device, a combination of materials that affect a machine-readable radio wave signal, or a combination of one or more of these.
  • a computer program (also known as a program, software, software application, script or code) may be written in any form of programming language, including compiled or interpreted language or a priori or procedural language, and may be written as a stand-alone program or module; It can be deployed in any form, including components, subroutines, or other units suitable for use in a computer environment.
  • a computer program does not necessarily correspond to a file in a file system.
  • a program may be in a single file provided to the requested program, or in multiple interacting files (eg, files that store one or more modules, subprograms, or portions of code), or portions of files that hold other programs or data. (eg, one or more scripts stored within a markup language document).
  • a computer program may be deployed to be executed on a single computer or multiple computers located at one site or distributed over a plurality of sites and interconnected by a communication network.
  • processors suitable for the execution of computer programs include, for example, both general and special purpose microprocessors and any one or more processors of any kind of digital computer.
  • the processor will receive instructions and data from read-only memory, random access memory, or both.
  • a key element of a computer is one or more memory devices for storing instructions and data and a processor for executing instructions. Further, a computer is generally operably coupled to receive data from, transfer data to, or both of one or more mass storage devices for storing data, such as, for example, magnetic, magneto-optical disks or optical disks. or will include However, the computer need not have such a device.

Abstract

The technique disclosed in the present specification relates to an automatic eccentricity compensation system using an impact type actuator, such that the eccentricity of a workpiece can be compensated for by applying an impact to the workpiece that is rotating. The automatic eccentricity compensation system, which compensates for the eccentricity of the workpiece that is fixed to a vacuum chuck connected to a spindle and rotated along with the vacuum chuck, comprises: an impact type actuator located at one side of the workpiece and applying an impact to the outer circumferential surface of the rotating workpiece; a displacement measurer located at one side of the workpiece and measuring the rotational displacement of the outer circumferential surface of the rotating workpiece; an eccentricity calculator for calculating the eccentricity of the workpiece on the basis of the rotational displacement of the outer circumferential surface and the rotating angle; an impact force calculator for calculating the impact force of the impact type actuator to reduce the eccentricity calculated by the eccentricity calculator; and an impact type actuator driver for driving the impact type actuator so as to apply the impact force calculated by the impact force calculator.

Description

충격 액튜에이터 및 이를 이용한 편심량 자동 보정 시스템 및 방법Impact actuator and automatic eccentricity compensation system and method using the same
본 명세서에 개시된 기술은 충격 액튜에이터 및 이를 이용한 편심량 자동 보정 시스템 및 방법에 관한 것으로서, 구체적으로는 회전하는 상태의 공작물에 충격을 가하여 공작물의 편심량을 보정할 수 있도록 하는 충격 액튜에이터 및 이를 이용한 편심량 자동 보정 시스템 및 방법에 관한 것이다.The technology disclosed in the present specification relates to an impact actuator and a system and method for automatic eccentricity correction using the same, and specifically, an impact actuator capable of correcting the eccentricity of a workpiece by applying an impact to a workpiece in a rotating state, and automatic correction of eccentricity using the same It relates to systems and methods.
렌즈 금형과 같은 초정밀 광학부품의 다이아몬드 선삭 등을 위해서는 스핀들에 가공물 설치시에 가공물의 중심과 스핀들의 회전축의 회전 중심을 일치시키는 센터링 작업이 필요하다. 특히, 정밀한 금형 부품일수록 1um 이하의 편심을 가지도록 정렬해야만 한다.For diamond turning of ultra-precision optical parts such as lens molds, a centering operation is required to match the center of the workpiece with the rotational center of the spindle's rotation axis when the workpiece is installed on the spindle. In particular, the more precise the mold part, the more it must be aligned to have an eccentricity of 1 μm or less.
종래에는 작업자가 수동으로 센터링 작업을 하였으며, 이로 인해 많은 시간이 소요되었으며, 이러한 수동 센터링 작업은 핀코어 가공 등의 자동화를 저해하는 요소가 되었다.Conventionally, an operator manually performed the centering operation, which took a lot of time, and this manual centering operation became a factor hindering automation such as pin core processing.
특히, 종래의 센터링 장치에서는 센서를 이용해 가공물의 편심량을 1~2회의 회전 동안 측정하고, 최대 편심각에서 스핀들을 정지시키고 초정밀 가공기의 X축을 이용하여 편심량을 보정하는 구조를 가지고 있었다. 이로 인해, 이러한 종래의 센터링 장치는 직경이 작은 핀코어 제품 등에 대한 적용이 어려우며, 편심량 보정을 위해 빈번하게 스핀들의 회전을 정지시켜야 하는 문제점을 가지고 있다. In particular, the conventional centering device has a structure in which the eccentricity of the workpiece is measured for one to two rotations using a sensor, the spindle is stopped at the maximum eccentricity, and the eccentricity is corrected using the X-axis of the ultra-precision machining machine. For this reason, such a conventional centering device has a problem in that it is difficult to apply to a pin-core product having a small diameter, and the rotation of the spindle must be frequently stopped for correcting the amount of eccentricity.
이러한 종래의 문제점을 해결하고자 하는 연구가 많이 진행되어 왔으나, 아직까지 만족할 만한 결과가 공개되지 못하고 있다.Although many studies have been conducted to solve these conventional problems, satisfactory results have not yet been published.
본 명세서에 개시된 기술의 일 실시예에 따른 충격 액튜에이터 및 이를 이용한 편심량 자동 보정 시스템 및 방법은 회전하는 상태의 공작물에 충격을 가하여 공작물의 편심량을 보정할 수 있도록 하는 충격 액튜에이터 및 이를 이용한 편심량 자동 보정 시스템 및 방법을 제공하는 것이다.Impact actuator and automatic eccentricity compensation system and method using the same according to an embodiment of the technology disclosed in the present specification are impact actuators and automatic eccentricity compensation system using the same to compensate the eccentricity of the workpiece by applying an impact to the workpiece in a rotating state and to provide a method.
본 명세서에 개시된 기술의 기술적 사상에 따른 충격 액튜에이터 및 이를 이용한 편심량 자동 보정 시스템 및 방법이 이루고자 하는 기술적 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제는 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.The technical problem to be achieved by the impact actuator and the automatic eccentricity correction system and method using the same according to the technical spirit of the technology disclosed in the present specification is not limited to the above-mentioned tasks, and another task not mentioned is from the description below. It will be clearly understood by a technician.
본 명세서에 개시된 기술의 일 실시예에 따른 충격 액튜에이터는, 진공 척에 고정되어 진공 척과 함께 회전하는 공작물의 편심량을 보정하기 위한 충격 액튜에이터로서, 공작물의 측면에 충격을 가하는 충격부; 충격부와 마주 보도록 위치된 더미 이동부; 충격부와 더미 이동부의 사이에서 충격부와 더미 이동부를 연결하며, 충격부와 더미 이동부를 서로 반대 방향으로 왕복 직선 운동시키는 가진부; 및 충격부와 더미 이동부의 사이에서 충격부와 더미 이동부를 연결하는 탄성 연결부를 포함할 수 있다. 더미 이동부는 더미 매스를 포함할 수 있다.An impact actuator according to an embodiment of the technology disclosed herein is an impact actuator for correcting an eccentricity of a workpiece fixed to a vacuum chuck and rotating together with the vacuum chuck, comprising: an impact part for applying an impact to the side of the workpiece; a dummy moving part positioned to face the impact part; an excitation unit connecting the impact unit and the dummy moving unit between the shock unit and the dummy moving unit, and reciprocating linearly moving the shock unit and the dummy moving unit in opposite directions; and an elastic connection part connecting the impact part and the dummy moving part between the impact part and the dummy moving part. The dummy moving unit may include a dummy mass.
가진부는 충격부와 더미 이동부 중 어느 하나와 연결되며, 외주면에 코일이 감긴 원통형의 코일 홀더; 충격부와 더미 이동부 중 나머지 하나와 연결되고, 내주면에 영구 자석이 위치되며, 코일 홀더가 내부 공간에 삽입되는 원통형의 마그네틱 하우징을 포함하되, 코일에 교번 전류가 가해지면, 코일 홀더와 마그네틱 하우징은 왕복 직선 운동을 할 수 있다.The excitation unit is connected to any one of the impact unit and the dummy moving unit, the coil holder having a cylindrical shape wound around the outer circumferential surface; It is connected to the other one of the impact part and the dummy moving part, a permanent magnet is positioned on the inner circumferential surface, and includes a cylindrical magnetic housing into which the coil holder is inserted into the inner space, but when an alternating current is applied to the coil, the coil holder and the magnetic housing can make reciprocating linear motion.
충격 액튜에이터는 지지 플레이트; 코일 홀더가 고정되는 코일 홀더 브라켓; 마그네틱 하우징이 고정되는 마그네틱 하우징 브라켓; 지지 플레이트에 고정되며, 상기 왕복 직선 운동 방향을 따라 연장된 가이드 레일; 코일 홀더 브라켓에 고정되며, 가이드 레일을 따라 슬라이딩되는 제 1 슬라이딩 블록; 및 마그네틱 하우징 브라켓에 고정되며, 가이드 레일을 따라 슬라이딩되는 제 2 슬라이딩 블록을 더 포함할 수 있다.The impact actuator includes a support plate; a coil holder bracket to which the coil holder is fixed; a magnetic housing bracket to which the magnetic housing is fixed; a guide rail fixed to the support plate and extending along the reciprocating linear motion direction; a first sliding block fixed to the coil holder bracket and sliding along the guide rail; and a second sliding block fixed to the magnetic housing bracket and sliding along the guide rail.
탄성 연결부는 양 단이 각각 코일 홀더 브라켓과 마그네틱 하우징 브라켓에 연결된 코일 스프링일 수 있다.The elastic connection part may be a coil spring having both ends connected to the coil holder bracket and the magnetic housing bracket, respectively.
충격 액튜에이터는 양 단이 마그네틱 하우징 브라켓과 지지 플레이트에 연결된 비틀림 스프링을 더 포함할 수 있다.The impact actuator may further include a torsion spring having both ends connected to the magnetic housing bracket and the support plate.
본 명세서에 개시된 기술의 일 실시예에 따른 편심량 자동 보정 시스템은, 스핀들에 연결된 진공 척에 고정되어 진공 척과 함께 회전하는 공작물의 편심량을 보정하기 위한 편심량 자동 보정 시스템으로서, 공작물의 일 측에 위치되어 회전하는 공작물의 외주면에 충격을 가하는 충격 액튜에이터; 공작물의 일 측에 위치되어 회전하는 공작물의 외주면 회전 변위를 측정하는 변위 측정기; 외주면 회전 변위와 회전 각도를 바탕으로 공작물의 편심량을 계산하는 편심량 계산부; 편심량 계산부에 의해 계산된 편심량을 감소시킬 충격 액튜에이터의 충격력을 계산하는 충격력 계산부; 및 충격력 계산부에 의해 계산된 충격력을 가하도록 충격 액튜에이터를 구동하는 충격 액튜에이터 구동부를 포함할 수 있다.The automatic eccentricity compensation system according to an embodiment of the technology disclosed herein is an eccentricity automatic compensation system for correcting the eccentricity of a workpiece that is fixed to a vacuum chuck connected to a spindle and rotates together with the vacuum chuck. It is located on one side of the workpiece an impact actuator that impacts the outer circumferential surface of the rotating workpiece; Displacement measuring device positioned on one side of the workpiece to measure the rotational displacement of the outer peripheral surface of the rotating workpiece; An eccentricity calculation unit for calculating the amount of eccentricity of the workpiece based on the outer circumferential rotational displacement and rotational angle; an impact force calculation unit for calculating an impact force of the impact actuator to reduce the eccentricity calculated by the eccentricity calculation unit; and an impact actuator driving unit for driving the impact actuator to apply the impact force calculated by the impact force calculation unit.
충격 액튜에이터 구동부는 공작물의 편심량이 발생되는 회전 각도에서만 공작물에 충격을 가하도록 충격 액튜에이터를 구동할 수 있다.The impact actuator driving unit may drive the impact actuator to apply an impact to the work piece only at a rotation angle at which the eccentric amount of the work piece is generated.
충격 액튜에이터는 공작물의 측면에 충격을 가하는 충격부; 충격부와 마주 보도록 위치된 더미 이동부; 충격부와 더미 이동부의 사이에서 충격부와 더미 이동부를 연결하며, 충격부와 더미 이동부를 서로 반대 방향으로 왕복 직선 운동시키는 가진부; 및 충격부와 더미 이동부의 사이에서 충격부와 더미 이동부를 연결하는 탄성 연결부를 포함할 수 있다. 더미 이동부는 더미 매스를 포함할 수 있다.The impact actuator includes an impact portion that impacts the side of the workpiece; a dummy moving part positioned to face the impact part; an excitation unit connecting the impact unit and the dummy moving unit between the shock unit and the dummy moving unit, and reciprocating linearly moving the shock unit and the dummy moving unit in opposite directions; and an elastic connection part connecting the impact part and the dummy moving part between the impact part and the dummy moving part. The dummy moving unit may include a dummy mass.
가진부는 충격부와 더미 이동부 중 어느 하나와 연결되며, 외주면에 코일이 감긴 원통형의 코일 홀더; 충격부와 더미 이동부 중 나머지 하나와 연결되고, 내주면에 영구 자석이 위치되며, 코일 홀더가 내부 공간에 삽입되는 원통형의 마그네틱 하우징을 포함하되, 코일에 교번 전류가 가해지면, 코일 홀더와 마그네틱 하우징은 왕복 직선 운동을 할 수 있다.The excitation unit is connected to any one of the impact unit and the dummy moving unit, the coil holder having a cylindrical shape wound around the outer circumferential surface; It is connected to the other one of the impact part and the dummy moving part, a permanent magnet is positioned on the inner circumferential surface, and includes a cylindrical magnetic housing into which the coil holder is inserted into the inner space, but when an alternating current is applied to the coil, the coil holder and the magnetic housing can make reciprocating linear motion.
충격 액튜에이터는 지지 플레이트; 코일 홀더가 고정되는 코일 홀더 브라켓; 마그네틱 하우징이 고정되는 마그네틱 하우징 브라켓; 지지 플레이트에 고정되며, 상기 왕복 직선 운동 방향을 따라 연장된 가이드 레일; 코일 홀더 브라켓에 고정되며, 가이드 레일을 따라 슬라이딩되는 제 1 슬라이딩 블록; 및 마그네틱 하우징 브라켓에 고정되며, 가이드 레일을 따라 슬라이딩되는 제 2 슬라이딩 블록을 더 포함할 수 있다.The impact actuator includes a support plate; a coil holder bracket to which the coil holder is fixed; a magnetic housing bracket to which the magnetic housing is fixed; a guide rail fixed to the support plate and extending along the reciprocating linear motion direction; a first sliding block fixed to the coil holder bracket and sliding along the guide rail; and a second sliding block fixed to the magnetic housing bracket and sliding along the guide rail.
탄성 연결부는 양 단이 각각 코일 홀더 브라켓과 마그네틱 하우징 브라켓에 연결된 코일 스프링일 수 있다.The elastic connection part may be a coil spring having both ends connected to the coil holder bracket and the magnetic housing bracket, respectively.
충격 액튜에이터는 양 단이 마그네틱 하우징 브라켓과 지지 플레이트에 연결된 비틀림 스프링을 더 포함할 수 있다.The impact actuator may further include a torsion spring having both ends connected to the magnetic housing bracket and the support plate.
본 명세서에 개시된 기술의 일 실시예에 따른 편심량 자동 보정 방법은, 스핀들에 연결된 진공 척에 고정되어 진공 척과 함께 회전하는 공작물의 편심량을 보정하기 위한 편심량 자동 보정 방법으로서, (a) 공작물의 일 측에 위치된 변위 측정기로, 회전하는 공작물의 외주면 회전 변위를 측정하는 단계; (b) 측정된 외주면 회전 변위를 바탕으로 공작물의 편심량을 계산하는 단계; (c) 편심량 계산부에 의해 계산된 편심량을 감소시킬 충격 액튜에이터의 충격력을 계산하는 단계; 및 (d) 상기 계산된 충격력을 가하도록 충격 액튜에이터를 구동하는 단계를 포함할 수 있다.The method for automatically correcting the amount of eccentricity according to an embodiment of the technology disclosed in the present specification is a method for automatically correcting the amount of eccentricity for correcting the amount of eccentricity of a workpiece fixed to a vacuum chuck connected to a spindle and rotating together with the vacuum chuck, (a) one side of the workpiece Measuring the rotational displacement of the outer peripheral surface of the rotating workpiece with a displacement measuring device located in; (b) calculating the amount of eccentricity of the workpiece based on the measured rotational displacement of the outer peripheral surface; (c) calculating the impact force of the impact actuator to reduce the amount of eccentricity calculated by the eccentricity calculation unit; and (d) driving the impact actuator to apply the calculated impact force.
상기 (d) 단계는 상기 충격 액튜에이터의 충격부를 왕복 직선 운동시켜 상기 공작물에 충격을 가하고 상기 충격 액튜에이터의 더미 이동부를 상기 충격부와 반대 방향으로 왕복 직선 운동시키는 것을 특징으로 할 수 있다.The step (d) may be characterized in that the impact portion of the impact actuator reciprocates linearly to apply an impact to the work, and the dummy moving portion of the impact actuator reciprocates linearly in the opposite direction to the impact portion.
상기 상기 (c) 단계는 상기 (b) 단계에서 계산된 편심량이 기준값보다 큰 경우, 상기 액튜에이터의 충격력을 상대적으로 큰 값인 제1값으로 계산하는 단계; 및 상기 (b) 단계에서 계산된 편심량이 상기 기준값보다 작은 경우, 상기 액튜에이터의 충격력을 상대적으로 작인 값인 제2값으로 계산하는 단계를 포함할 수 있다.In the step (c), when the amount of eccentricity calculated in step (b) is greater than a reference value, calculating the impact force of the actuator as a relatively large first value; and when the amount of eccentricity calculated in step (b) is smaller than the reference value, calculating the impact force of the actuator as a relatively small second value.
본 명세서에 개시된 기술의 일 실시예에 따른 스핀들에 연결된 진공 척에 고정되어 진공 척과 함께 회전하는 공작물의 편심량을 보정하기 위한 편심량 자동 보정 방법을 수행하기 위한 프로그램을 기록한 컴퓨터로 읽을 수 있는 기록 매체로서, 전술한 방법을 수행하기 위한 명령들을 저장하는 컴퓨터로 읽을 수 있는 기록 매체일 수 있다.As a computer-readable recording medium recording a program for performing an eccentricity automatic correction method for correcting the eccentricity of a workpiece that is fixed to a vacuum chuck connected to a spindle according to an embodiment of the technology disclosed herein and rotates together with the vacuum chuck , may be a computer-readable recording medium storing instructions for performing the above-described method.
본 명세서에 개시된 기술의 일 실시예에 따른 충격 액튜에이터는, 지지 플레이트; 지지 플레이트 상에 슬라이딩 가능하게 위치되며, 충격 대상물에 충격을 가하는 충격부; 충격부와 마주 보며 지지 플레이트 상에 슬라이딩 가능하게 위치되는, 더미 매스를 포함하는 더미 이동부; 충격부와 더미 이동부 중 어느 하나와 연결되며, 외주면에 코일이 감긴 원통형의 코일 홀더; 충격부와 더미 이동부 중 나머지 하나와 연결되고, 내주면에 영구 자석이 위치되며, 코일에 교번 전류가 가해지면 코일 홀더가 내부 공간에 삽입되거나 내부 공간으로부터 나오는 왕복 직선 운동이 이루어질 수 있도록 코일 홀더를 감싸는 원통형의 마그네틱 하우징; 충격부와 더미 이동부의 사이에서 충격부와 더미 이동부를 연결하는 코일 스프링; 및 양 단이 마그네틱 하우징과 지지 플레이트에 연결된 비틀림 스프링을 포함할 수 있다.An impact actuator according to an embodiment of the technology disclosed herein includes a support plate; an impact unit that is slidably positioned on the support plate and applies an impact to the impact object; a dummy moving part facing the impact part and being slidably positioned on the support plate, including a dummy mass; a cylindrical coil holder connected to any one of the impact part and the dummy moving part, and having a coil wound around an outer circumferential surface; It is connected to the other one of the impact part and the dummy moving part, and a permanent magnet is positioned on the inner circumferential surface. Enclosed cylindrical magnetic housing; a coil spring connecting the impact unit and the dummy moving unit between the shock unit and the dummy moving unit; And both ends may include a torsion spring connected to the magnetic housing and the support plate.
본 명세서에 개시된 기술의 일 실시예에 따른 충격 액튜에이터 및 이를 이용한 편심량 자동 보정 시스템 및 방법은 하기와 같은 효과를 가진다.The impact actuator and the automatic eccentricity correction system and method using the same according to an embodiment of the technology disclosed herein have the following effects.
(1) 회전하는 상태의 공작물에 충격을 가하여 공작물의 편심량을 보정할 수 있다.(1) The amount of eccentricity of the work piece can be corrected by applying an impact to the work piece in the rotating state.
(2) 회전하는 공작물에 원하는 회전 각도에 원하는 충격량을 가해 편심량을 보정할 수 있다.(2) The amount of eccentricity can be corrected by applying the desired amount of impact to the desired rotation angle on the rotating workpiece.
(3) 회전하는 공작물에 충격을 가할 때, 충격 액튜에이터에 가해지는 반력을 흡수할 수 있다.(3) When an impact is applied to a rotating workpiece, the reaction force applied to the impact actuator can be absorbed.
(4) 초정밀 선삭 부품의 셋업 시간을 단축할 수 있다.(4) The setup time of ultra-precision turning parts can be shortened.
(5) 자동 센터링 기능을 통한 자동화 구축이 가능하게 되며, 장비의 경쟁력이 강화될 수 있다.(5) It is possible to build automation through the automatic centering function, and the competitiveness of equipment can be strengthened.
(6) 고가의 피에조 부품을 사용하지 않는 실용적인 장치의 구성이 가능하게 된다.(6) It becomes possible to construct a practical device that does not use expensive piezo parts.
다만, 본 명세서에 개시된 기술의 일 실시예에 따른 충격 액튜에이터 및 이를 이용한 편심량 자동 보정 시스템 및 방법이 달성할 수 있는 효과는 이상에서 언급한 것들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.However, the effects that can be achieved by the impact actuator and the automatic eccentricity correction system and method using the same according to an embodiment of the technology disclosed in the present specification are not limited to those mentioned above, and other effects not mentioned below are It will be clearly understood by those skilled in the art from the description.
본 명세서에서 인용되는 도면을 보다 충분히 이해하기 위하여 각 도면의 간단한 설명이 제공된다.In order to more fully understand the drawings cited herein, a brief description of each drawing is provided.
도 1은 본 명세서에 개시된 기술의 일 실시예에 따른 충격 액튜에이터의 사시도이다.1 is a perspective view of an impact actuator according to one embodiment of the technology disclosed herein;
도 2는 본 명세서에 개시된 기술의 일 실시예에 따른 충격 액튜에이터의 내부 구조를 도시한 사시도이다.2 is a perspective view illustrating an internal structure of an impact actuator according to an embodiment of the technology disclosed herein.
도 3은 본 명세서에 개시된 기술의 일 실시예에 따른 충격 액튜에이터의 분해 사시도이다. 3 is an exploded perspective view of an impact actuator according to an embodiment of the technology disclosed herein;
도 4는 본 명세서에 개시된 기술의 일 실시예에 따른 편심량 자동 보정 시스템의 개략적인 도면이다.4 is a schematic diagram of an automatic eccentricity correction system according to an embodiment of the technology disclosed herein.
도 5는 본 명세서에 따른 편심량 보정 방법의 단계를 설명하기 위한 도면이다. 5 is a view for explaining the steps of the eccentricity correction method according to the present specification.
도 6은 본 명세서에 따른 편심량 보정 방법을 실시한 결과에 따른 측정 데이터를 나타내는 도면이다.6 is a view showing measurement data according to the result of performing the eccentricity correction method according to the present specification.
도 7은 본 명세서에 따른 편심량 보정 방법을 실시한 결과에 따른 측정 데이터를 나타내는 도면이다.7 is a view showing measurement data according to the result of performing the eccentricity correction method according to the present specification.
본 명세서에 개시된 기술은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고, 이를 상세한 설명을 통해 상세히 설명하고자 한다. 그러나, 이는 본 명세서에 개시된 기술을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 명세서에 개시된 기술은 본 명세서에 개시된 기술의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.Since the technology disclosed in this specification can have various changes and can have various embodiments, specific embodiments are illustrated in the drawings, and this will be described in detail through the detailed description. However, this is not intended to limit the technology disclosed herein to specific embodiments, and it is understood that the technology disclosed herein includes all modifications, equivalents and substitutions included in the spirit and scope of the technology disclosed herein. should be
본 명세서에 개시된 기술을 설명함에 있어서, 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 기술의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 본 명세서의 설명 과정에서 이용되는 숫자(예를 들어, 제 1, 제 2 등)는 하나의 구성요소를 다른 구성요소와 구분하기 위한 식별기호에 불과하다.In describing the technology disclosed in the present specification, if it is determined that a detailed description of a related known technology may unnecessarily obscure the subject matter of the technology disclosed herein, the detailed description thereof will be omitted. In addition, numbers (eg, first, second, etc.) used in the description process of the present specification are only identifiers for distinguishing one component from other components.
또한, 본 명세서에서, 일 구성요소가 다른 구성요소와 "연결된다" 거나 "결합된다" 등으로 언급된 때에는, 상기 일 구성요소가 상기 다른 구성요소와 직접 연결 또는 결합될 수도 있지만, 특별히 반대되는 기재가 존재하지 않는 이상, 중간에 또 다른 구성요소를 매개하여 연결 또는 결합될 수도 있다고 이해되어야 할 것이다.In addition, in this specification, when a component is referred to as "connected" or "coupled" to another component, the component may be directly connected or coupled to the other component, but the opposite is particularly true. Unless there is a description, it should be understood that other elements may be interposed or connected or combined therebetween.
또한, 본 명세서에서 '~부'로 표현되는 구성요소는 2개 이상의 구성요소가 하나의 구성요소로 합쳐지거나 또는 하나의 구성요소가 보다 세분화된 기능별로 2개 이상으로 분화될 수도 있다. 또한, 이하에서 설명할 구성요소 각각은 자신이 담당하는 주기능 이외에도 다른 구성요소가 담당하는 기능 중 일부 또는 전부의 기능을 추가적으로 수행할 수도 있으며, 구성요소 각각이 담당하는 주기능 중 일부 기능이 다른 구성요소에 의해 전담되어 수행될 수도 있음은 물론이다.In addition, in the present specification, two or more components may be combined into one component, or one component may be divided into two or more for each more subdivided function. In addition, each of the components to be described below may additionally perform some or all of the functions of other components in addition to the main functions that each component is responsible for, and some of the main functions of each of the components are different It goes without saying that it may be performed exclusively by the component.
다양한 실시예에서 사용된 “제 1”, “제 2”, “첫째”, 또는 “둘째” 등의 표현들은 다양한 구성요소들을, 순서 및/또는 중요도에 상관없이 수식할 수 있고, 해당 구성요소들을 한정하지 않는다. 예를 들면, 본 명세서에 개시된 기술의 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 바꾸어 명명될 수 있다.Expressions such as “first”, “second”, “first”, or “second” used in various embodiments can modify various components regardless of order and/or importance, and do not limit For example, without departing from the scope of the technology disclosed herein, a first component may be referred to as a second component, and similarly, a second component may also be renamed to a first component.
이하, 본 명세서에 개시된 기술의 실시예들을 차례로 상세히 설명한다. Hereinafter, embodiments of the technology disclosed herein will be described in detail in turn.
도 1은 본 명세서에 개시된 기술의 일 실시예에 따른 충격 액튜에이터의 사시도이다. 도 2는 본 명세서에 개시된 기술의 일 실시예에 따른 충격 액튜에이터의 내부 구조를 도시한 사시도이다. 도 3은 본 명세서에 개시된 기술의 일 실시예에 따른 충격 액튜에이터의 분해 사시도이다. 1 is a perspective view of an impact actuator according to one embodiment of the technology disclosed herein; 2 is a perspective view illustrating an internal structure of an impact actuator according to an embodiment of the technology disclosed herein. 3 is an exploded perspective view of an impact actuator according to an embodiment of the technology disclosed herein;
본 명세서에 개시된 기술의 일 실시예에 따른 충격 액튜에이터(100)는 진공 척(10)에 고정되어 진공 척(10)과 함께 회전하는 공작물(1)의 편심량을 보정할 수 있다. 충격 액튜에이터(100)는 충격부(110), 더미 이동부(120), 가진부(130), 탄성 연결부(140), 가이드 레일(151), 제 1 슬라이딩 블록(153), 제 2 슬라이딩 블록(154) 및 비틀림 스프링(155)을 포함할 수 있다. 이들은 하부 플레이트(101), 상부 플레이트(102), 측면 커버(103) 및 지지 플레이트(150)에 의해 형성된 공간에 수용될 수 있다. 여기서 가진부(130)는 코일 홀더(131) 및 마그네틱 하우징(132)을 포함하는 구성요소로서, 예를 들어 보이스 코일 모터일 수 있다.The impact actuator 100 according to an embodiment of the technology disclosed herein may be fixed to the vacuum chuck 10 to correct the eccentricity of the workpiece 1 rotating together with the vacuum chuck 10 . The impact actuator 100 includes a shock unit 110, a dummy moving unit 120, an excitation unit 130, an elastic connection unit 140, a guide rail 151, a first sliding block 153, a second sliding block ( 154 ) and a torsion spring 155 . These may be accommodated in a space formed by the lower plate 101 , the upper plate 102 , the side cover 103 , and the support plate 150 . Here, the excitation unit 130 is a component including the coil holder 131 and the magnetic housing 132 , and may be, for example, a voice coil motor.
지지 플레이트(150)는 “ㄱ” 형상의 벽체 플레이트일 수 있으며, 각 내면에는 가이드 레일(151)이 고정될 수 있으며, 가이드 레일(151)은 축 방향, 즉 충격부(110)와 더미 이동부(120)의 왕복 직선 운동 방향으로 연장될 수 있다.The support plate 150 may be a “a”-shaped wall plate, and a guide rail 151 may be fixed to each inner surface, and the guide rail 151 may be moved in the axial direction, that is, the impact unit 110 and the dummy moving unit. It may extend in the reciprocating linear motion direction of 120 .
지지 플레이트(150)의 하면에는 하부 플레이트(101)가 연결되며, 지지 플레이트(150)의 상면에는 상부 플레이트(102)가 연결될 수 있다. 하부 플레이트(101)에는 충격부(110)가 통과하기 위한 충격부 개구(105)가 형성되며, 상부 플레이트(102)에는 더미 이동부(120)가 통과하기 위한 더미 이동부 개구(104)가 형성될 수 있다. A lower plate 101 may be connected to a lower surface of the support plate 150 , and an upper plate 102 may be connected to an upper surface of the support plate 150 . The impact part opening 105 for the impact part 110 to pass through is formed in the lower plate 101 , and the dummy movable part opening 104 for the dummy movable part 120 to pass through is formed in the upper plate 102 . can be
측면 커버(103)도 “ㄱ” 형상의 플레이트이며, 하부 플레이트(101), 상부 플레이트(102) 및 지지 플레이트(150)와 연결되어 내부 공간을 폐쇄할 수 있다.The side cover 103 is also a “L”-shaped plate, and may be connected to the lower plate 101 , the upper plate 102 and the support plate 150 to close the inner space.
충격부(110)는 코일 홀더 브라켓(133)에 고정되어 지지 플레이트(150) 상에서 x축 방향으로 슬라이딩 가능하게 위치될 수 있으며, 충격부 개구(105)를 통과하여, 회전하는 상태의 공작물(1)의 측면에 반복적으로 충격을 가하는 부재이다. 여기서 x축 방향은 공작물(1)을 회전시키는 스핀들의 회전축에 대해 수직한 방향이다. 예를 들어, 공작물(1)이 렌즈와 같은 부피를 갖는 원형의 물체인 경우, 그 원형 물체의 반지름 방향에 해당할 수 있다. 예를 들어, 스핀들의 회전축은 y축 방향 또는 z축 방향일 수 있고, 공작물(1)은 센터링이 부정확하여 x축 방향에 대해 편심을 가진 상태일 수 있으며, 본 발명에 따라서 공작물(1)의 편심을 보정할 수 있게 된다.The impact unit 110 is fixed to the coil holder bracket 133 and can be slidably positioned in the x-axis direction on the support plate 150 , passes through the impact unit opening 105 , and the workpiece 1 in a rotating state ) is a member that repeatedly applies an impact to the side. Here, the x-axis direction is a direction perpendicular to the axis of rotation of the spindle rotating the workpiece 1 . For example, when the workpiece 1 is a circular object having the same volume as a lens, it may correspond to the radial direction of the circular object. For example, the axis of rotation of the spindle may be in the y-axis direction or the z-axis direction, and the workpiece 1 may have an eccentricity with respect to the x-axis direction due to inaccurate centering. The eccentricity can be corrected.
더미 이동부(120)는 충격부(110)와 마주 보도록 위치되며, 더미 이동부 개구(104)를 통과하여 직선 운동을 할 수 있다. 더미 이동부(120)는 마그네틱 하우징 브라켓(134)에 고정되어 지지 플레이트(150) 상에서 x축 방향으로 슬라이딩 가능하게 위치될 수 있다. 더미 이동부(120)는 더미 매스(dummy mass)를 포함할 수 있으며, 더미 매스는 충격부(110)의 질량보다 큰 질량을 가지는 것이 바람직하다. The dummy moving unit 120 is positioned to face the impact unit 110 , and may linearly move through the dummy moving unit opening 104 . The dummy moving part 120 may be fixed to the magnetic housing bracket 134 and slidably positioned on the support plate 150 in the x-axis direction. The dummy moving unit 120 may include a dummy mass, and the dummy mass preferably has a mass greater than that of the impact unit 110 .
충격부(110)가 공작물(1)에 충격을 가할 때, 충격부(110)에 가해지는 반력은 탄성 연결부(140)에 의해 연결된 더미 이동부(120)를 이동시키는데 사용되며, 이로 인해 충격이 흡수되며 충격 액튜에이터(100) 자체에 반력이 직접 전달되는 것이 방지될 수 있다. 즉, 본 발명에 따라 충격부(110)가 x축의 일 방향(+x축 방향)으로 슬라이딩하게 되면 더미 이동부(120)는 그 반력으로 인해 x축의 반대 방향(-x축 방향)으로 슬라이딩하게 된다. 즉, 충격부(110)의 이동 방향과 더미 이동부(120)의 이동 방향은 서로 반대 방향이기 때문에, 충격 액튜에이터(100) 자체에 가해지는 반력은 상쇄될 수 있다.When the impact unit 110 applies an impact to the work piece 1, the reaction force applied to the impact unit 110 is used to move the dummy moving unit 120 connected by the elastic connection unit 140, whereby the impact is It is absorbed and it can be prevented that the reaction force is directly transmitted to the impact actuator 100 itself. That is, according to the present invention, when the impact unit 110 slides in one direction of the x-axis (+x-axis direction), the dummy moving unit 120 slides in the opposite direction of the x-axis (-x-axis direction) due to the reaction force. do. That is, since the movement direction of the impact unit 110 and the movement direction of the dummy movement unit 120 are opposite to each other, the reaction force applied to the impact actuator 100 itself may be offset.
가진부(130)는 충격부(110)와 더미 이동부(120)의 사이에서 충격부(110)와 더미 이동부(120)를 연결하며, 충격부(110)와 더미 이동부(120)를 소정 주기로 왕복 직선 운동시킬 수 있다.The excitation unit 130 connects the shock unit 110 and the dummy moving unit 120 between the shock unit 110 and the dummy moving unit 120 , and the shock unit 110 and the dummy moving unit 120 . A reciprocating linear motion can be performed at a predetermined cycle.
가진부(130)는 보이스 코일 모터일 수 있으며, 코일 홀더(131) 및 마그네틱 하우징(132)을 포함할 수 있다.The excitation unit 130 may be a voice coil motor, and may include a coil holder 131 and a magnetic housing 132 .
코일 홀더(131)는 충격부(110)와 더미 이동부(120) 중 어느 하나와 연결될 수 있으며, 본 실시예에서는 코일 홀더(131)가 충격부(110)에 연결되는 것으로 예시가 된다. 코일 홀더(131)는 외주면에 코일이 감긴 원통형의 부재일 수 있으며, 코일 홀더 브라켓(133)에 고정될 수 있다. The coil holder 131 may be connected to any one of the shock unit 110 and the dummy moving unit 120 , and in this embodiment, the coil holder 131 is exemplified as being connected to the shock unit 110 . The coil holder 131 may be a cylindrical member in which a coil is wound around an outer circumferential surface, and may be fixed to the coil holder bracket 133 .
마그네틱 하우징(132)은 충격부(110)와 더미 이동부(120) 중 나머지 하나와 연결될 수 있으며, 본 실시예에서는 마그네틱 하우징(132)이 더미 이동부(120)에 연결되는 것으로 예시가 된다. 마그네틱 하우징(132)은 원통형의 부재로서 마그네틱 하우징 브라켓(134)에 고정이 될 수 있다. The magnetic housing 132 may be connected to the other one of the impact unit 110 and the dummy moving unit 120 , and in this embodiment, the magnetic housing 132 is exemplified as being connected to the dummy moving unit 120 . The magnetic housing 132 is a cylindrical member and may be fixed to the magnetic housing bracket 134 .
마그네틱 하우징(132)은 코일 홀더(131)를 감싸는 구조로서, 코일 홀더(131)가 마그네틱 하우징(132)의 내부 공간에 삽입되거나 마그네틱 하우징(132)의 내부 공간으로부터 나오는 왕복 직선 운동이 이루어질 수 있는 내경을 가질 수 있다. 마그네틱 하우징(132)의 내주면에는 영구 자석이 위치되며, 코일 홀더(131)의 코일에 교번 전류가 가해지면 코일 홀더(131)와 마그네틱 하우징(132)은 왕복 직선 운동을 할 수 있다.The magnetic housing 132 has a structure surrounding the coil holder 131, and the coil holder 131 is inserted into the inner space of the magnetic housing 132 or a reciprocating linear motion coming out of the inner space of the magnetic housing 132 can be made. can have an inner diameter. A permanent magnet is positioned on the inner circumferential surface of the magnetic housing 132 , and when an alternating current is applied to the coil of the coil holder 131 , the coil holder 131 and the magnetic housing 132 may reciprocate linearly.
탄성 연결부(140)는 충격부(110)와 더미 이동부(120)의 사이에서 충격부(110)와 더미 이동부(120)를 연결할 수 있으며, 코일 스프링일 수 있다. 코일 홀더 브라켓(133)에는 제 1 스프링 고정용 부재(161)가 설치될 수 있으며, 마그네틱 하우징 브라켓(134)에 제 2 스프링 고정용 부재(162)가 설치될 수 있다. 탄성 연결부(140)의 양단은 제 1 스프링 고정용 부재(161)와 제 2 스프링 고정용 부재(162)에 연결될 수 있으며, 이로 인해 충격부(110)와 더미 이동부(120)는 상호 간에 탄성적으로 연결될 수 있게 된다.The elastic connection unit 140 may connect the shock unit 110 and the dummy moving unit 120 between the shock unit 110 and the dummy moving unit 120 , and may be a coil spring. A first spring fixing member 161 may be installed in the coil holder bracket 133 , and a second spring fixing member 162 may be installed in the magnetic housing bracket 134 . Both ends of the elastic connection part 140 may be connected to the first spring fixing member 161 and the second spring fixing member 162, whereby the impact part 110 and the dummy moving part 120 are mutually tanned. be sexually connected.
코일 홀더 브라켓(133)은 제 1 슬라이딩 블록(153)에 고정될 수 있으며, 제 1 슬라이딩 블록(153)은 가이드 레일(151)을 따라 슬라이딩될 수 있다. 마그네틱 하우징 브라켓(134)은 제 2 슬라이딩 블록(154)에 고정될 수 있으며, 제 2 슬라이딩 블록(154)은 가이드 레일(151)을 따라 슬라이딩될 수 있다. 여기서, 제 1 슬라이딩 블록(153) 및 제 2 슬라이딩 블록(154)이 가이드 레일(151)은 LM 가이드의 구성으로 이루어질 수 있다.The coil holder bracket 133 may be fixed to the first sliding block 153 , and the first sliding block 153 may slide along the guide rail 151 . The magnetic housing bracket 134 may be fixed to the second sliding block 154 , and the second sliding block 154 may slide along the guide rail 151 . Here, the first sliding block 153 and the second sliding block 154, the guide rail 151 may be formed of an LM guide.
비틀림 스프링(155)은 양 단이 마그네틱 하우징 브라켓(134)의 걸림 부재(135)와 지지 플레이트(150)의 걸림 부재(136)에 연결될 수 있다. 비틀림 스프링(155)은, 가진부(130)에 의해 직선 이동하거나 충격부(110)로 전해진 반력에 의해 직선 이동한 더미 이동부(120)를 원위치로 복귀 시키는 기능을 수행할 수 있다.Both ends of the torsion spring 155 may be connected to the locking member 135 of the magnetic housing bracket 134 and the locking member 136 of the support plate 150 . The torsion spring 155 may perform a function of returning the dummy moving unit 120 linearly moved by the excitation unit 130 or linearly moved by the reaction force transmitted to the impact unit 110 to its original position.
이러한 구성의 충격 액튜에이터(100)는 편심량 자동 보정 시스템(200)에서 진공 척(10)에 고정되어 진공 척(10)과 함께 회전하는 공작물(1)에 일 방향(x축 방향)에 충격을 가하여 공작물(1)의 편심량을 보정하는 기능을 수행할 수 있다.The impact actuator 100 of this configuration is fixed to the vacuum chuck 10 in the automatic eccentricity compensation system 200 and applies an impact to the workpiece 1 rotating together with the vacuum chuck 10 in one direction (x-axis direction). It is possible to perform a function of correcting the amount of eccentricity of the workpiece (1).
도 4는 본 명세서에 개시된 기술의 일 실시예에 따른 편심량 자동 보정 시스템의 개략적인 도면이다. 4 is a schematic diagram of an automatic eccentricity correction system according to an embodiment of the technology disclosed herein.
본 명세서에 개시된 기술의 일 실시예에 따른 편심량 자동 보정 시스템(200)은 스핀들(20)에 연결된 진공 척(10)에 고정되어 진공 척(10)과 함께 회전하는 공작물(1)의 편심량을 보정하기 위하여 사용될 수 있다. 편심량 자동 보정 시스템(200)은 충격 액튜에이터(100), 변위 측정기(210), 회전 각도 측정기(220), 편심량 계산부(230), 충격력 계산부(240) 및 충격 액튜에이터 구동부(250)를 포함할 수 있다.The automatic eccentricity correction system 200 according to an embodiment of the technology disclosed herein is fixed to the vacuum chuck 10 connected to the spindle 20 and corrects the eccentricity of the workpiece 1 rotating together with the vacuum chuck 10 . can be used to The automatic eccentricity correction system 200 includes an impact actuator 100, a displacement measuring instrument 210, a rotation angle measuring unit 220, an eccentricity calculating unit 230, an impact force calculating unit 240, and an impact actuator driving unit 250. can
충격 액튜에이터(100)는 가진부(130)의 보이스 코일 모터와 LM 가이드를 구성하는 제 1 슬라이딩 블록(153), 제 2 슬라이딩 블록(154) 및 가이드 레일(151)을 이용하여 충격부(110)의 정밀한 안내가 가능하므로, 공작물(1)의 일 측에 위치되어 일정한 속도로 회전하는 상태의 공작물(1)의 외주면에 충격을 가하여 충격 방향으로 미소 변위를 발생시켜 편심량을 조정할 수 있다. 또한, 충격 액튜에이터(100)는 충격에 따른 반력을 더미 이동부(120)를 통해 흡수하므로, 충격 액튜에이터(100)나 테이블(40)에 전달되는 충격을 차단할 수 있게 된다.The impact actuator 100 uses the first sliding block 153 , the second sliding block 154 and the guide rail 151 constituting the voice coil motor and the LM guide of the excitation unit 130 to the impact unit 110 . Since the precise guidance of the workpiece 1 is possible, the amount of eccentricity can be adjusted by applying an impact to the outer circumferential surface of the workpiece 1 positioned on one side of the workpiece 1 and rotating at a constant speed to generate a minute displacement in the impact direction. In addition, since the impact actuator 100 absorbs the reaction force according to the impact through the dummy moving part 120 , it is possible to block the impact transmitted to the impact actuator 100 or the table 40 .
변위 측정기(210)는 공작물(1)의 일 측에 위치되어 일정한 속도로 회전하는 공작물(1)의 외주면 회전 변위를 측정할 수 있으며, 회전 각도 측정기(220)는 스핀들(20)의 회전 각도를 측정할 수 있다. 변위 측정기(210)는 공지의 접촉/비접촉 변위 측정 센서가 제한 없이 사용될 수 있다.The displacement measuring device 210 is located on one side of the workpiece 1 and can measure the rotational displacement of the outer circumferential surface of the workpiece 1 rotating at a constant speed, and the rotation angle measuring device 220 measures the rotation angle of the spindle 20 can be measured As the displacement measuring device 210, a known contact/non-contact displacement measuring sensor may be used without limitation.
편심량 계산부(230)는 공작물(1)의 외주면 회전 변위와 스핀들(20)의 회전 각도를 바탕으로 공작물의 편심량을 계산할 수 있다. 편심량을 실시간 검출하는 방법으로 회전수 동기성분에 대한 LMS(least mean square) 필터를 이용할 수 있으며, 추출된 편심량을 보정할 수 있는 가진 신호가 발생하게 된다.The eccentricity calculation unit 230 may calculate the eccentricity of the workpiece based on the rotational displacement of the outer peripheral surface of the workpiece 1 and the rotational angle of the spindle 20 . As a method of detecting the amount of eccentricity in real time, a least mean square (LMS) filter for the rotation speed synchronization component can be used, and an excitation signal capable of correcting the extracted amount of eccentricity is generated.
충격력 계산부(240)는 편심량 계산부(230)에 의해 계산된, 소정 회전 각도에서의 편심량을 감소시킬 충격 액튜에이터(100)의 충격력(힘 또는 변위)을 계산할 수 있다.The impact force calculation unit 240 may calculate an impact force (force or displacement) of the impact actuator 100 that will reduce the amount of eccentricity at a predetermined rotation angle calculated by the eccentricity calculation unit 230 .
충격 액튜에이터 구동부(250)는 충격력 계산부(240)에 의해 계산된 충격력을 가하도록 충격 액튜에이터(100)에 가진 신호를 전송하여 충격 액튜에이터(100)를 구동할 수 있다. The impact actuator driving unit 250 may drive the impact actuator 100 by transmitting a signal with the impact actuator 100 to apply the impact force calculated by the impact force calculation unit 240 .
충격 액튜에이터 구동부(250)는 공작물(1)의 편심량이 기준치를 넘어서는 회전 각도에서만 공작물(1)에 충격을 가하도록 충격 액튜에이터(100)를 구동할 수 있다. 예를 들어, 일정한 속도로 회전하는 스핀들(20)의 회전 각도들 중 가장 큰 편심량이 발생되는 회전 각도가 될 때마다 공작물(1)에 충격을 가하도록 가진 주기를 설정하여 충격 액튜에이터(100)를 구동할 수 있다. 여기서, 충격량 신호 및 충격력 크기는 스핀들(20)의 회전수보다 큰 일정 주파수로 발생될 수 있다. The impact actuator driving unit 250 may drive the impact actuator 100 to apply an impact to the work piece 1 only at a rotation angle that exceeds the reference value by the amount of eccentricity of the work piece 1 . For example, among the rotation angles of the spindle 20 rotating at a constant speed, whenever the rotation angle at which the largest amount of eccentricity is generated, an excitation period is set to apply an impact to the work piece 1, and the impact actuator 100 is can drive Here, the impulse signal and the magnitude of the impact force may be generated at a constant frequency greater than the number of rotations of the spindle 20 .
이러한 충격에 의해 감소된 편심량은 변위 측정기(210)와 회전 각도 측정기(220)에 의해 측정되어 피드백되며, 피드백된 정보를 기초로 하여 새로운 충격력이 가해질 수 있게 된다. 이렇게 스핀들(20)의 회전축과 공작물(1) 중심 사이의 거리가 기준 값 아래로 들어오게 되면 공구(30)로 가공이 가능한 상태가 된다.The amount of eccentricity reduced by the impact is measured and fed back by the displacement measuring device 210 and the rotation angle measuring device 220, and a new impact force can be applied based on the fed back information. When the distance between the axis of rotation of the spindle 20 and the center of the work 1 falls below the reference value, machining with the tool 30 is possible.
본 명세서에 개시된 기술의 일 실시예는 편심량 자동 보정 방법을 포함할 수 있다. 본 명세서에 따른 편심량 자동 보정 방법은 도 5 내지 도 7을 참조하여 후술하기로 한다.An embodiment of the technology disclosed herein may include a method for automatically correcting the amount of eccentricity. The method of automatically correcting the amount of eccentricity according to the present specification will be described later with reference to FIGS. 5 to 7 .
도 5는 본 명세서에 따른 편심량 보정 방법의 단계를 설명하기 위한 도면이고, 도 6 및 도 7은 본 명세서에 따른 편심량 보정 방법을 실시한 결과에 따른 측정 데이터를 나타내는 도면이다. 5 is a view for explaining the steps of the method for correcting the amount of eccentricity according to the present specification, and FIGS. 6 and 7 are views showing measurement data according to the result of performing the method for correcting the amount of eccentricity according to the present specification.
도 6의 그래프 (1)은 스핀들에 연결된 진공 척에 고정된 공작물의 편심량(절대값)을 나타내는 그래프로서, 가로축은 시간으로 단위는 초(second)이고 세로축은 거리로서 단위는 미터(meter)이다.The graph (1) of FIG. 6 is a graph showing the amount of eccentricity (absolute value) of the workpiece fixed to the vacuum chuck connected to the spindle. .
도 6의 그래프 (2)는 스핀들의 회전 중심을 기준으로 공작물의 외주면 회전 변위를 측정한 거리값을 나타내는 그래프로서, 가로축은 시간으로 단위는 초(second)이고 세로축은 거리로서 단위는 마이크로 미터(micro meter)이다.The graph (2) of FIG. 6 is a graph showing the distance value measured by measuring the rotational displacement of the outer peripheral surface of the workpiece based on the rotational center of the spindle. The horizontal axis is time and the unit is seconds, and the vertical axis is distance, and the unit is micrometer ( micrometer).
도 6의 그래프 (3)은 충격 액튜에이터의 가진부에 입력되는 충격력을 계산한 값을 나타내는 그래프로서, 가로축은 시간으로 단위는 초(second)이고 세로축은 힘으로서 단위는 뉴턴(N)이다. 그래프 (3)에 따라서 계산된 충격력에 기초하여 충격 액츄에이터의 가진부가 운동하게 되며, 가진부의 운동 결과에 따라서 그래프 (4) 및 그래프 (5)와 같은 충격부 및 더미 이동부의 운동이 발생하게 된다. 즉, 계산된 충격력은 실제 발생하는 이동량에 대응하는 개념이지만 동일한 개념은 아니다.Graph (3) of FIG. 6 is a graph showing a calculated value of the impact force input to the excitation part of the impact actuator, the horizontal axis is time, the unit is seconds, and the vertical axis is force, the unit is Newton (N). Based on the impact force calculated according to graph (3), the excitation part of the impact actuator moves, and the motion of the impact part and the dummy moving part as shown in graphs (4) and (5) occurs according to the motion result of the excitation part. That is, the calculated impact force is a concept corresponding to the actual movement amount, but is not the same concept.
도 7의 그래프 (4)는 충격 액튜에이터의 충격부의 이동 거리를 측정한 값을 나타내는 그래프로서, 가로축은 시간으로 단위는 초(second)이고 세로축은 거리로서 단위는 미터(meter)이다.The graph (4) of FIG. 7 is a graph showing the measured value of the movement distance of the impact part of the impact actuator, and the horizontal axis is time and the unit is seconds, and the vertical axis is distance and the unit is meters.
도 7의 그래프 (5)는 충격 액튜에이터의 더미 이동부의 이동 거리를 측정한 값을 나타내는 그래프로서, 가로축은 시간으로 단위는 초(second)이고 세로축은 거리로서 단위는 미터(meter)이다.Graph (5) of FIG. 7 is a graph showing the measured value of the moving distance of the dummy moving part of the impact actuator. The horizontal axis is time and the unit is seconds, and the vertical axis is distance and the unit is meters.
도 5를 참조하면, 본 명세서에 따른 편심량 보정 방법은 스핀들에 연결된 진공척에 고정되어 진공 척과 함께 회전하는 공작물의 편심량을 보정하기 위한 편심량 자동 보정 방법으로서, 구체적으로는 회전하는 공작물의 외주면의 변위를 측정하는 단계(S510), 외주면의 회전 변위를 바탕으로 공작물의 편심량을 계산하는 단계(S520), 충격 액튜에이터의 충격력을 계산하는 단계(S530) 및 계산된 충격력을 가하도록 충격 액튜에이터를 구동하는 단계(S540)을 포함할 수 있다.5, the eccentricity correction method according to the present specification is an eccentricity automatic correction method for correcting the eccentricity amount of a workpiece fixed to a vacuum chuck connected to a spindle and rotating together with the vacuum chuck, specifically, the displacement of the outer peripheral surface of the rotating workpiece Measuring (S510), calculating the amount of eccentricity of the workpiece based on the rotational displacement of the outer peripheral surface (S520), calculating the impact force of the impact actuator (S530) and driving the impact actuator to apply the calculated impact force (S540) may be included.
단계(S510)에 따르면 회전이 가능한 스핀들에 연결된 진공척의 진공 동작에 의해 가공하고자 하는 공작물이 고정되어, 해당 공작물이 회전하는 단계가 수행될 수 있다. 또한, 본 단계에 따라 전술한 바와 같이 변위 측정기(210)와 같은 센서가 공작물의 회전 변위를 측정할 수 있다. 이러한 센서는 접촉식 변위 측정 센서는 물론 비접촉식 변위 측정 센서가 이용될 수 있다. 본 단계에 따라서 측정되는 결과는 그래프 (2)와 같이 도시될 수 있다. 도 6의 그래프 (2)에 도시된 바와 같이, 공작물의 변위는 스핀들의 회전 축을 기준으로 측정되는 공작물의 외주면 까지의 거리를 의미하며, 0초부터 2초까지는 초기 측정 구간이며, 실제로 공작물에 충격이 가해지는 구간은 2초 이후의 구간일 수 있다. 도 6의 그래프 (2)에 도시된 바와 같이 2초 내지 약 6.2초까지의 구간에서는 공작물의 변위는 급격히 감소할 수 있다. 이는 편심량(그래프 (1))이 기준값(예컨대 5 마이크로 미터) 이상인 경우에는 충격력(그래프 (3))을 상대적으로 큰 값인 제1값(예컨대 17N)으로 입력하기 때문이다. 도 6의 그래프 (2)에 도시된 바와 같이 약 6.2초 이후의 구간에서는 공작물의 변위는 서서히 감소할 수 있다. 이는 편심량(그래프(1))이 기준값(예컨대 5 마이크로미터) 이하인 경우에는 충격력(그래프(3))을 상대적으로 작은 값인 제2값(예컨대 9N)으로 입력하기 때문이다. 이와 같이, 2 단계에 걸친 충격력 입력을 통해서 편심량을 빠르게 보정할 수 있을 뿐만 아니라 미세하게 조장할 수도 있게 된다.According to step S510, the workpiece to be processed is fixed by the vacuum operation of the vacuum chuck connected to the rotatable spindle, and the step of rotating the workpiece may be performed. In addition, according to this step, as described above, a sensor such as the displacement measuring device 210 may measure the rotational displacement of the workpiece. As such a sensor, a non-contact displacement measurement sensor as well as a contact displacement measurement sensor may be used. The result measured according to this step may be shown as graph (2). As shown in the graph (2) of FIG. 6, the displacement of the workpiece means the distance to the outer peripheral surface of the workpiece measured based on the rotation axis of the spindle, and 0 to 2 seconds is the initial measurement section, and actually impacts the workpiece. This applied section may be a section after 2 seconds. As shown in the graph (2) of FIG. 6 , the displacement of the workpiece may be rapidly reduced in the section from 2 seconds to about 6.2 seconds. This is because, when the amount of eccentricity (graph (1)) is equal to or greater than a reference value (eg, 5 micrometers), the impact force (graph (3)) is input as a relatively large first value (eg, 17N). As shown in the graph (2) of FIG. 6 , the displacement of the workpiece may gradually decrease in the section after about 6.2 seconds. This is because, when the amount of eccentricity (graph 1) is less than or equal to a reference value (eg, 5 micrometers), the impact force (graph 3) is input as a relatively small second value (eg, 9N). In this way, it is possible to quickly correct the amount of eccentricity through the input of the impact force through two steps, as well as to fine-tune it.
단계(S520)에 따르면 앞서 측정된 외주면의 회전 변위를 바탕으로 공작물의 편심량을 계산하는 단계가 수행될 수 있다. 편심량을 실시간으로 검출하는 방법으로 회전수 동기 성분에 대한 Least mean square 필터를 이용할 수 있다. 본 단계에 따라 계산되는 편심량은 그래프 (1)과 같이 도시될 수 있으며 절대값으로 표현될 수 있다. 도 6의 그래프 (1)에 도시된 바와 같이, 공작물의 편심량은 0초에서 2초까지의 초기 측정 구간을 거쳐 2초 내지 약 6.2초까지의 구간 동안 기준값(예컨대 5 마이크로 미터) 이상으로서 급격히 감소될 수 있다. 약 6.2초 이후의 구간에서는 편심량은 기준값 이하로서 서서히 감소될 수 있다. 이는 전술한 바와 같이 1단계로서 편심량이 기준값 이상인 구간에서는 충격력을 상대적으로 큰 값인 제1값(예컨대 17N)으로 입력하고 2단계로서 편심량이 기준값 이하인 구간에서는 충격력을 상대적으로 작인 값인 제2값(예컨대 9N)으로 입력하기 때문이다. 그래프 (1)에 도시된 바와 같이, 본 명세서에 개시된 발명에 따라 보정을 실시하면 공작물의 편심량이 1마이크로미터 이내로 감소시키는 것이 20 second 이내에 달성할 수 있게 된다.According to step S520, a step of calculating the amount of eccentricity of the workpiece based on the previously measured rotational displacement of the outer circumferential surface may be performed. As a method of detecting the amount of eccentricity in real time, the least mean square filter for the rotation speed synchronization component can be used. The amount of eccentricity calculated according to this step may be shown as graph (1) and expressed as an absolute value. As shown in graph (1) of FIG. 6, the amount of eccentricity of the workpiece rapidly decreases as above the reference value (eg, 5 micrometers) during the interval from 2 seconds to about 6.2 seconds after the initial measurement interval from 0 to 2 seconds. can be In the section after about 6.2 seconds, the eccentricity is less than the reference value and can be gradually decreased. As described above, as the first step, in the section where the eccentricity is greater than or equal to the reference value, the impact force is input as a relatively large first value (eg, 17N), and as the second step, in the section where the eccentricity is less than or equal to the reference value, the impact force is set to a relatively small second value (e.g., 9N). As shown in graph (1), when the correction is carried out according to the invention disclosed herein, the reduction in the amount of eccentricity of the workpiece to within 1 micrometer can be achieved within 20 seconds.
단계(S530)에 따르면 앞서 계산된 공작물의 편심량에 기초하여 충격 액튜에이터의 충격력을 계산하는 단계가 수행될 수 있다. 도 6의 그래프 (3)에 도시된 바와 같이, 공작물의 편심량이 기준값(예컨대 5 마이크로 미터) 이상인 구간인 2초 내지 약 6.2초까지의 구간에서는 충격력은 상대적으로 큰 값인 제1값(예컨대 17N)으로 설정할 수 있다. 또한, 공작물의 편심량이 기준값 이하인 구가인 약 6.2초 이후의 구간에서는 충격력은 상대적으로 작인 값인 제2값(예컨대, 9N)으로 설정할 수 있다. 이와 같이 계산된 충격력은 보이스 코일 모터일 수 있는 가진부에 입력됨으로써 후술하는 바와 같이 충격부 및 더미 이동부가 반복 왕복 직선 운동할 수 있다.According to step S530, the step of calculating the impact force of the impact actuator based on the previously calculated amount of eccentricity of the workpiece may be performed. As shown in the graph (3) of FIG. 6 , in the section from 2 seconds to about 6.2 seconds in which the amount of eccentricity of the workpiece is equal to or greater than the reference value (for example, 5 micrometers), the impact force is a relatively large first value (for example, 17N) can be set to In addition, in a section after about 6.2 seconds in which the eccentricity of the work piece is equal to or less than the reference value, the impact force may be set to a relatively small second value (eg, 9N). The calculated impact force is input to the excitation unit, which may be a voice coil motor, so that the impact unit and the dummy moving unit may repeatedly reciprocate linearly as described below.
단계(S540)에 따르면 계산된 충격력에 따라서 충격 액튜에이터가 구동되는 단계가 수행될 수 있다. 구체적으로 충격 액튜에이터의 가진부인 충격부 및 더미 이동부가 반복 왕복 직선 운동을 수행할 수 있다. 도 7의 그래프 (4)를 참조하면 충격 액튜에이터의 충격부는 x축을 따라서 5mm 전진 및 -1mm의 후진 운동을 할 수 있다. 즉, 충격부는 5mm를 이동하여 공작물의 외주면을 충격하고 탄성 연결부의 탄성력에 의해 x축을 따라서 -1mm만큼 이동할 수 있다. 또한, 충격부가 5mm 이동하는 동안 더미 이동부는 x축을 따라서 -6mm를 이동할 수 있다. 또한, 충격부는 충격이 가해지는 전 시간인 2초 내지 20초까지 5mm 전진 이동을 하는데 이는 충격부와 공작물의 외주면이 접촉하기 때문이다. 또한, 충격부는 상대적으로 큰 값인 제1값으로 충격력이 입력되는 구간인 2초 내지 약 6.2초까지의 구간 동안에 후진 이동하는 거리가 상대적으로 작인 값인 제2값으로 충격력이 입력되는 구간인 약 6.2초 이후의 구간 동안에 후진 이동하는 거리보다 더 클 수 있다. 또한, 더미 이동부는 상대적으로 큰 값인 제1값으로 충격력이 입력되는 구간인 2초 내지 약 6.2초까지의 구간 동안 후진 이동하는 거리가 상대적으로 작은 값인 제2값으로 충격력이 입력되는 구간인 약 6.2초 이후의 구간 동안에 후진 이동하는 거리보다 더 클 수 있다. 또한, 충격부의 이동 거리보다 더미 이동부의 이동 거리가 더 작을 수 있는데 이는 더미 이동부의 질량을 충격부의 질량보다 더 크게 구성하기 때문이다.According to step S540, a step of driving the impact actuator according to the calculated impact force may be performed. Specifically, the impact unit and the dummy moving unit, which are the excitation units of the impact actuator, may perform repeated reciprocating linear motion. Referring to the graph (4) of FIG. 7 , the impact unit of the impact actuator may move forward by 5 mm and backward by -1 mm along the x-axis. That is, the impact part moves 5 mm to impact the outer peripheral surface of the workpiece, and can move by -1 mm along the x-axis by the elastic force of the elastic connection part. In addition, while the impact unit moves 5 mm, the dummy moving unit may move -6 mm along the x-axis. In addition, the impact part moves 5 mm forward for 2 to 20 seconds, which is the time before the impact is applied, because the impact part and the outer circumferential surface of the workpiece are in contact. In addition, the impact unit has a relatively large first value, and during a section from 2 seconds to about 6.2 seconds in which the impact force is input, the distance to move backward is a second value, which is a relatively small value, about 6.2 seconds, which is a section in which the impact force is input. It may be greater than the distance traveled backward during the subsequent section. In addition, the dummy moving unit has a relatively large first value, and during a section from 2 seconds to about 6.2 seconds, in which the impact force is input, the distance moving backward is about 6.2, which is a section in which the impact force is input as a second value, which is a relatively small value. It may be greater than the distance traveled backward during the interval after seconds. In addition, the moving distance of the dummy moving part may be smaller than the moving distance of the impacting part because the mass of the dummy moving part is larger than the mass of the impacting part.
본 명세서에 땨른 다른 실시예는 프로그램을 기록한 컴퓨터로 읽을 수 있는 매체일 수 있고, 해당 매체 전술한 바와 같은 방법을 실시하기 위한 명령을 기록하는 매체일 수 있다. 구체적으로, 본 실시예에 따른 프로그램을 기록한 컴퓨터로 읽을 수 있는 매체는 회전하는 공작물의 외주면의 변위를 측정하기 위한 명령, 외주면의 회전 변위를 바탕으로 공작물의 편심량을 계산하기 위한 명령, 충격 액튜에이터의 충격력을 계산하기 위한 명령 및 계산된 충격력을 가하도록 충격 액튜에이터를 구동하기 위한 명령을 기록할 수 있다.Another embodiment not described herein may be a computer-readable medium in which a program is recorded, and the corresponding medium may be a medium in which instructions for implementing the method as described above are recorded. Specifically, the computer-readable medium in which the program according to this embodiment is recorded is a command for measuring the displacement of the outer circumferential surface of the rotating workpiece, a command for calculating the amount of eccentricity of the workpiece based on the rotational displacement of the outer circumferential surface, the impact actuator A command for calculating the impact force and a command for driving the impact actuator to apply the calculated impact force can be recorded.
이상 본 명세서에서 설명한 기능적 동작과 본 주제에 관한 실시형태들은 본 명세서에서 개시한 구조들 및 그들의 구조적인 등가물을 포함하여 디지털 전자 회로나 컴퓨터 소프트웨어, 펌웨어 또는 하드웨어에서 혹은 이들 중 하나 이상의 조합에서 구현 가능하다.The functional operations described in this specification and the embodiments related to the present subject matter can be implemented in a digital electronic circuit, computer software, firmware, or hardware, including the structures disclosed herein and structural equivalents thereof, or in a combination of one or more thereof do.
본 명세서에서 기술하는 주제의 실시형태는 하나 이상의 컴퓨터 프로그램 제품, 다시 말해 데이터 처리 장치에 의한 실행을 위하여 또는 그 동작을 제어하기 위하여 유형의 프로그램 매체 상에 인코딩되는 컴퓨터 프로그램 명령에 관한 하나 이상의 모듈로서 구현될 수 있다. 유형의 프로그램 매체는 전파형 신호이거나 컴퓨터로 판독 가능한 매체일 수 있다. 전파형 신호는 컴퓨터에 의한 실행을 위하여 적절한 수신기 장치로 전송하기 위한 정보를 인코딩하기 위하여 생성되는 예컨대 기계가 생성한 전기적, 광학적 혹은 전자기 신호와 같은 인공적으로 생성된 신호이다. 컴퓨터로 판독 가능한 매체는 기계로 판독 가능한 저장장치, 기계로 판독 가능한 저장 기판, 메모리 장치, 기계로 판독 가능한 전파형 신호에 영향을 미치는 물질의 조합 혹은 이들 중 하나 이상의 조합일 수 있다.Embodiments of the subject matter described herein are one or more computer program products, ie one or more modules directed to computer program instructions encoded on a tangible program medium for execution by or for controlling the operation of a data processing device. can be implemented. A tangible program medium may be a radio wave signal or a computer-readable medium. A radio wave signal is an artificially generated signal, eg a machine generated electrical, optical or electromagnetic signal, that is generated to encode information for transmission to an appropriate receiver device for execution by a computer. The computer-readable medium may be a machine-readable storage device, a machine-readable storage substrate, a memory device, a combination of materials that affect a machine-readable radio wave signal, or a combination of one or more of these.
컴퓨터 프로그램(프로그램, 소프트웨어, 소프트웨어 어플리케이션, 스크립트 혹은 코드로도 알려져 있음)은 컴파일되거나 해석된 언어나 선험적 혹은 절차적 언어를 포함하는 프로그래밍 언어의 어떠한 형태로도 작성될 수 있으며, 독립형 프로그램이나 모듈, 컴포넌트, 서브루틴 혹은 컴퓨터 환경에서 사용하기에 적합한 다른 유닛을 포함하여 어떠한 형태로도 전개될 수 있다.A computer program (also known as a program, software, software application, script or code) may be written in any form of programming language, including compiled or interpreted language or a priori or procedural language, and may be written as a stand-alone program or module; It can be deployed in any form, including components, subroutines, or other units suitable for use in a computer environment.
컴퓨터 프로그램은 파일 시스템의 파일에 반드시 대응하는 것은 아니다. 프로그램은 요청된 프로그램에 제공되는 단일 파일 내에, 혹은 다중의 상호 작용하는 파일(예컨대, 하나 이상의 모듈, 하위 프로그램 혹은 코드의 일부를 저장하는 파일) 내에, 혹은 다른 프로그램이나 데이터를 보유하는 파일의 일부(예컨대, 마크업 언어 문서 내에 저장되는 하나 이상의 스크립트) 내에 저장될 수 있다.A computer program does not necessarily correspond to a file in a file system. A program may be in a single file provided to the requested program, or in multiple interacting files (eg, files that store one or more modules, subprograms, or portions of code), or portions of files that hold other programs or data. (eg, one or more scripts stored within a markup language document).
컴퓨터 프로그램은 하나의 사이트에 위치하거나 복수의 사이트에 걸쳐서 분산되어 통신 네트워크에 의해 상호 접속된 다중 컴퓨터 또는 하나의 컴퓨터 상에서 실행되도록 전개될 수 있다.A computer program may be deployed to be executed on a single computer or multiple computers located at one site or distributed over a plurality of sites and interconnected by a communication network.
본 명세서에서 기술하는 프로세스와 논리 흐름은 입력 데이터 상에서 동작하고 출력을 생성함으로써 기능을 수행하기 위하여 하나 이상의 컴퓨터 프로그램을 실행하는 하나 이상의 프로그래머블 프로세서에 의하여 수행 가능하다.The processes and logic flows described herein may be performed by one or more programmable processors executing one or more computer programs to perform functions by operating on input data and generating output.
컴퓨터 프로그램의 실행에 적합한 프로세서는, 예컨대 범용 및 특수 목적의 마이크로프로세서 양자 및 어떤 종류의 디지털 컴퓨터의 어떠한 하나 이상의 프로세서라도 포함한다. 일반적으로, 프로세서는 읽기 전용 메모리나 랜덤 액세스 메모리 혹은 양자로부터 명령어와 데이터를 수신할 것이다. Processors suitable for the execution of computer programs include, for example, both general and special purpose microprocessors and any one or more processors of any kind of digital computer. Typically, the processor will receive instructions and data from read-only memory, random access memory, or both.
컴퓨터의 핵심적인 요소는 명령어와 데이터를 저장하기 위한 하나 이상의 메모리 장치 및 명령을 수행하기 위한 프로세서이다. 또한, 컴퓨터는 일반적으로 예컨대 자기, 자기광학 디스크나 광학 디스크와 같은 데이터를 저장하기 위한 하나 이상의 대량 저장 장치로부터 데이터를 수신하거나 그것으로 데이터를 전송하거나 혹은 그러한 동작 둘 다를 수행하기 위하여 동작가능 하도록 결합되거나 이를 포함할 것이다. 그러나, 컴퓨터는 그러한 장치를 가질 필요가 없다.A key element of a computer is one or more memory devices for storing instructions and data and a processor for executing instructions. Further, a computer is generally operably coupled to receive data from, transfer data to, or both of one or more mass storage devices for storing data, such as, for example, magnetic, magneto-optical disks or optical disks. or will include However, the computer need not have such a device.
본 기술한 설명은 본 발명의 최상의 모드를 제시하고 있으며, 본 발명을 설명하기 위하여, 그리고 당업자가 본 발명을 제작 및 이용할 수 있도록 하기 위한 예를 제공하고 있다. 이렇게 작성된 명세서는 그 제시된 구체적인 용어에 본 발명을 제한하는 것이 아니다. The present description sets forth the best mode of the invention, and provides examples to illustrate the invention, and to enable any person skilled in the art to make or use the invention. This written specification does not limit the present invention to the specific terms presented.
따라서, 상술한 예를 참조하여 본 발명을 상세하게 설명하였지만, 당업자라면 본 발명의 범위를 벗어나지 않으면서도 본 예들에 대한 개조, 변경 및 변형을 가할 수 있다.Accordingly, although the present invention has been described in detail with reference to the above-described examples, those skilled in the art can make modifications, changes, and modifications to the examples without departing from the scope of the present invention.

Claims (18)

  1. 진공 척에 고정되어 진공 척과 함께 회전하는 공작물의 편심량을 보정하기 위한 충격 액튜에이터에 있어서,An impact actuator for correcting an eccentricity of a workpiece fixed to the vacuum chuck and rotating together with the vacuum chuck, the impact actuator comprising:
    공작물의 측면에 충격을 가하는 충격부; Impact part for impacting the side of the workpiece;
    충격부와 마주 보도록 위치된 더미 이동부;a dummy moving part positioned to face the impact part;
    충격부와 더미 이동부의 사이에서 충격부와 더미 이동부를 연결하며, 충격부와 더미 이동부를 서로 반대 방향으로 왕복 직선 운동시키는 가진부; 및an excitation unit connecting the impact unit and the dummy moving unit between the shock unit and the dummy moving unit, and reciprocating linearly moving the shock unit and the dummy moving unit in opposite directions; and
    충격부와 더미 이동부의 사이에서 충격부와 더미 이동부를 연결하는 탄성 연결부를 포함하는 것을 특징으로 하는 충격 액튜에이터.An impact actuator comprising an elastic connection part connecting the impact part and the dummy moving part between the impact part and the dummy moving part.
  2. 제 1 항에 있어서,The method of claim 1,
    더미 이동부는 더미 매스를 포함하는 것을 특징으로 하는 충격 액튜에이터.Impact actuator, characterized in that the dummy moving part comprises a dummy mass.
  3. 제 1 항에 있어서, The method of claim 1,
    가진부는wealthy
    충격부와 더미 이동부 중 어느 하나와 연결되며, 외주면에 코일이 감긴 원통형의 코일 홀더;a cylindrical coil holder connected to any one of the impact part and the dummy moving part, and having a coil wound around an outer circumferential surface;
    충격부와 더미 이동부 중 나머지 하나와 연결되고, 내주면에 영구 자석이 위치되며, 코일 홀더가 내부 공간에 삽입되는 원통형의 마그네틱 하우징을 포함하되,A cylindrical magnetic housing connected to the other of the impact part and the dummy moving part, a permanent magnet is positioned on the inner circumferential surface, and the coil holder is inserted into the internal space,
    코일에 교번 전류가 가해지면, 코일 홀더와 마그네틱 하우징은 왕복 직선 운동을 하는 것을 특징으로 하는 충격 액튜에이터.An impact actuator, characterized in that when an alternating current is applied to the coil, the coil holder and the magnetic housing make reciprocating linear motion.
  4. 제 3 항에 있어서, 충격 액튜에이터는4. The method of claim 3, wherein the impact actuator is
    지지 플레이트;support plate;
    코일 홀더가 고정되는 코일 홀더 브라켓;a coil holder bracket to which the coil holder is fixed;
    마그네틱 하우징이 고정되는 마그네틱 하우징 브라켓;a magnetic housing bracket to which the magnetic housing is fixed;
    지지 플레이트에 고정되며, 상기 왕복 직선 운동 방향을 따라 연장된 가이드 레일;a guide rail fixed to the support plate and extending along the reciprocating linear motion direction;
    코일 홀더 브라켓에 고정되며, 가이드 레일을 따라 슬라이딩되는 제 1 슬라이딩 블록; 및a first sliding block fixed to the coil holder bracket and sliding along the guide rail; and
    마그네틱 하우징 브라켓에 고정되며, 가이드 레일을 따라 슬라이딩되는 제 2 슬라이딩 블록을 더 포함하는 것을 특징으로 하는 충격 액튜에이터.The shock actuator further comprising a second sliding block fixed to the magnetic housing bracket and sliding along the guide rail.
  5. 제 4 항에 있어서, 5. The method of claim 4,
    탄성 연결부는 양 단이 각각 코일 홀더 브라켓과 마그네틱 하우징 브라켓에 연결된 코일 스프링인 것을 특징으로 하는 충격 액튜에이터.The resilient connection part is an impact actuator, characterized in that both ends are a coil spring connected to a coil holder bracket and a magnetic housing bracket, respectively.
  6. 제 5 항에 있어서, 충격 액튜에이터는6. The method of claim 5, wherein the impact actuator is
    양 단이 마그네틱 하우징 브라켓과 지지 플레이트에 연결된 비틀림 스프링을 더 포함하는 것을 특징으로 하는 충격 액튜에이터.Impact actuator, characterized in that both ends further include a torsion spring connected to the magnetic housing bracket and the support plate.
  7. 스핀들에 연결된 진공 척에 고정되어 진공 척과 함께 회전하는 공작물의 편심량을 보정하기 위한 편심량 자동 보정 시스템에 있어서,In the automatic eccentricity compensation system for compensating the amount of eccentricity of a workpiece which is fixed to the vacuum chuck connected to the spindle and rotates together with the vacuum chuck,
    공작물의 일 측에 위치되어 회전하는 공작물의 외주면에 충격을 가하는 충격 액튜에이터;an impact actuator positioned on one side of the workpiece to apply an impact to the outer peripheral surface of the rotating workpiece;
    공작물의 일 측에 위치되어 회전하는 공작물의 외주면 회전 변위를 측정하는 변위 측정기;Displacement measuring device positioned on one side of the workpiece to measure the rotational displacement of the outer peripheral surface of the rotating workpiece;
    외주면 회전 변위와 회전 각도를 바탕으로 공작물의 편심량을 계산하는 편심량 계산부;An eccentricity calculation unit for calculating the amount of eccentricity of the workpiece based on the outer circumferential rotational displacement and rotational angle;
    편심량 계산부에 의해 계산된 편심량을 감소시킬 충격 액튜에이터의 충격력을 계산하는 충격력 계산부; 및an impact force calculation unit for calculating an impact force of the impact actuator to reduce the amount of eccentricity calculated by the eccentricity calculation unit; and
    충격력 계산부에 의해 계산된 충격력을 가하도록 충격 액튜에이터를 구동하는 충격 액튜에이터 구동부를 포함하는 것을 특징으로 하는 편심량 자동 보정 시스템.Automatic eccentricity compensation system, characterized in that it comprises a shock actuator driving unit for driving the shock actuator to apply the impact force calculated by the impact force calculation unit.
  8. 제 7 항에 있어서, 8. The method of claim 7,
    충격 액튜에이터 구동부는 공작물의 편심량이 발생되는 회전 각도에서만 공작물에 충격을 가하도록 충격 액튜에이터를 구동하는 것을 특징으로 하는 편심량 자동 보정 시스템.The impact actuator drive unit drives the impact actuator to apply an impact to the workpiece only at a rotation angle at which the amount of eccentricity of the workpiece is generated.
  9. 제 7 항에 있어서, 충격 액튜에이터는8. The method of claim 7, wherein the impact actuator is
    공작물의 측면에 충격을 가하는 충격부; Impact part for impacting the side of the workpiece;
    충격부와 마주 보도록 위치된 더미 이동부;a dummy moving part positioned to face the impact part;
    충격부와 더미 이동부의 사이에서 충격부와 더미 이동부를 연결하며, 충격부와 더미 이동부를 서로 반대 방향으로 왕복 직선 운동시키는 가진부; 및an excitation unit connecting the impact unit and the dummy moving unit between the shock unit and the dummy moving unit, and reciprocating linearly moving the shock unit and the dummy moving unit in opposite directions; and
    충격부와 더미 이동부의 사이에서 충격부와 더미 이동부를 연결하는 탄성 연결부를 포함하는 것을 특징으로 하는 편심량 자동 보정 시스템.Automatic compensation system for eccentricity, characterized in that it includes an elastic connecting part connecting the impact part and the dummy moving part between the impact part and the dummy moving part.
  10. 제 9 항에 있어서, 10. The method of claim 9,
    더미 이동부는 더미 매스를 포함하는 것을 특징으로 하는 편심량 자동 보정 시스템.The automatic eccentricity compensation system, characterized in that the dummy moving part includes a dummy mass.
  11. 제 9 항에 있어서, 10. The method of claim 9,
    가진부는wealthy
    충격부와 더미 이동부 중 어느 하나와 연결되며, 외주면에 코일이 감긴 원통형의 코일 홀더;a cylindrical coil holder connected to any one of the impact part and the dummy moving part, and having a coil wound around an outer circumferential surface;
    충격부와 더미 이동부 중 나머지 하나와 연결되고, 내주면에 영구 자석이 위치되며, 코일 홀더가 내부 공간에 삽입되는 원통형의 마그네틱 하우징을 포함하되,A cylindrical magnetic housing connected to the other of the impact part and the dummy moving part, a permanent magnet is positioned on the inner circumferential surface, and the coil holder is inserted into the internal space,
    코일에 교번 전류가 가해지면, 코일 홀더와 마그네틱 하우징은 왕복 직선 운동을 하는 것을 특징으로 하는 편심량 자동 보정 시스템.When an alternating current is applied to the coil, the coil holder and the magnetic housing make a reciprocating linear motion.
  12. 제 11 항에 있어서, 충격 액튜에이터는12. The method of claim 11, wherein the impact actuator is
    지지 플레이트;support plate;
    코일 홀더가 고정되는 코일 홀더 브라켓;a coil holder bracket to which the coil holder is fixed;
    마그네틱 하우징이 고정되는 마그네틱 하우징 브라켓;a magnetic housing bracket to which the magnetic housing is fixed;
    지지 플레이트에 고정되며, 상기 왕복 직선 운동 방향을 따라 연장된 가이드 레일;a guide rail fixed to the support plate and extending along the reciprocating linear motion direction;
    코일 홀더 브라켓에 고정되며, 가이드 레일을 따라 슬라이딩되는 제 1 슬라이딩 블록; 및a first sliding block fixed to the coil holder bracket and sliding along the guide rail; and
    마그네틱 하우징 브라켓에 고정되며, 가이드 레일을 따라 슬라이딩되는 제 2 슬라이딩 블록을 더 포함하는 것을 특징으로 하는 편심량 자동 보정 시스템.The automatic eccentricity compensation system, fixed to the magnetic housing bracket, further comprising a second sliding block sliding along the guide rail.
  13. 제 12 항에 있어서,13. The method of claim 12,
    탄성 연결부는 양 단이 각각 코일 홀더 브라켓과 마그네틱 하우징 브라켓에 연결된 코일 스프링인 것을 특징으로 하는 편심량 자동 보정 시스템.The elastic connection part is an automatic eccentricity compensation system, characterized in that both ends are a coil spring connected to a coil holder bracket and a magnetic housing bracket, respectively.
  14. 제 13 항에 있어서, 충격 액튜에이터는14. The method of claim 13, wherein the impact actuator is
    양 단이 마그네틱 하우징 브라켓과 지지 플레이트에 연결된 비틀림 스프링을 더 포함하는 것을 특징으로 하는 편심량 자동 보정 시스템.Automatic eccentricity compensation system, characterized in that both ends further include a torsion spring connected to the magnetic housing bracket and the support plate.
  15. 스핀들에 연결된 진공 척에 고정되어 진공 척과 함께 회전하는 공작물의 편심량을 보정하기 위한 편심량 자동 보정 방법에 있어서,A method for automatically correcting the amount of eccentricity for correcting the amount of eccentricity of a workpiece fixed to a vacuum chuck connected to a spindle and rotating together with the vacuum chuck, the method comprising:
    (a) 공작물의 일 측에 위치된 변위 측정기로, 회전하는 공작물의 외주면 회전 변위를 측정하는 단계;(a) measuring the rotational displacement of the outer peripheral surface of the rotating workpiece with a displacement measuring device located on one side of the workpiece;
    (b) 상기 측정된 외주면 회전 변위를 바탕으로 공작물의 편심량을 계산하는 단계;(b) calculating the amount of eccentricity of the workpiece based on the measured outer peripheral rotational displacement;
    (c) 편심량 계산부에 의해 계산된 편심량을 감소시킬 충격 액튜에이터의 충격력을 계산하는 단계; 및 (c) calculating the impact force of the impact actuator to reduce the amount of eccentricity calculated by the eccentricity calculation unit; and
    (d) 상기 계산된 충격력을 가하도록 충격 액튜에이터를 구동하는 단계를 포함하는 것을 특징으로 하는 편심량 자동 보정 방법.(d) automatically correcting the amount of eccentricity comprising the step of driving an impact actuator to apply the calculated impact force.
  16. 제 15 항에 있어서, 상기 (d) 단계는16. The method of claim 15, wherein step (d) is
    상기 충격 액튜에이터의 충격부를 왕복 직선 운동시켜 상기 공작물에 충격을 가하고 상기 충격 액튜에이터의 더미 이동부를 상기 충격부와 반대 방향으로 왕복 직선 운동시키는 것을 특징으로 하는 편심량 자동 보정 방법.The method for automatically correcting eccentricity, characterized in that the impact part of the impact actuator reciprocates linearly to apply an impact to the work, and the dummy moving part of the impact actuator reciprocates and linearly moves in the opposite direction to the impact part.
  17. 제 16 항에 있어서, 상기 (c) 단계는 17. The method of claim 16, wherein step (c) is
    상기 (b) 단계에서 계산된 편심량이 기준값보다 큰 경우, 상기 액튜에이터의 충격력을 상대적으로 큰 값인 제1값으로 계산하는 단계; 및when the amount of eccentricity calculated in step (b) is greater than the reference value, calculating the impact force of the actuator as a relatively large first value; and
    상기 (b) 단계에서 계산된 편심량이 상기 기준값보다 작은 경우, 상기 액튜에이터의 충격력을 상대적으로 작인 값인 제2값으로 계산하는 단계를 포함하는 것을 특징으로 하는 편심량 자동 보정 방법.If the amount of eccentricity calculated in step (b) is smaller than the reference value, calculating the impact force of the actuator as a relatively small second value.
  18. 스핀들에 연결된 진공 척에 고정되어 진공 척과 함께 회전하는 공작물의 편심량을 보정하기 위한 편심량 자동 보정 방법을 수행하기 위한 프로그램을 기록한 컴퓨터로 읽을 수 있는 기록 매체로서,As a computer-readable recording medium recording a program for performing an automatic eccentricity correction method for correcting the eccentricity of a workpiece fixed to a vacuum chuck connected to a spindle and rotating together with the vacuum chuck,
    제15항 내지 제17항에 따른 방법을 수행하기 위한 명령들을 저장하는 것을 특징으로 하는, 컴퓨터로 읽을 수 있는 기록 매체.A computer-readable recording medium, characterized in that it stores instructions for performing the method according to any one of claims 15 to 17.
PCT/KR2021/005362 2020-04-28 2021-04-28 Impact type actuator and automatic eccentricity compensation system and method using same WO2021221458A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0051687 2020-04-28
KR1020200051687A KR20210133025A (en) 2020-04-28 2020-04-28 Impact actuator and automatic eccentricity correction system and method using the same

Publications (1)

Publication Number Publication Date
WO2021221458A1 true WO2021221458A1 (en) 2021-11-04

Family

ID=78373679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/005362 WO2021221458A1 (en) 2020-04-28 2021-04-28 Impact type actuator and automatic eccentricity compensation system and method using same

Country Status (2)

Country Link
KR (2) KR20210133025A (en)
WO (1) WO2021221458A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06335801A (en) * 1993-05-24 1994-12-06 Okuma Mach Works Ltd Numerical control lathe with balance correction function
US20070082580A1 (en) * 2003-09-23 2007-04-12 Mikail Simakov Grinding machine with a concentricity correction system
US20080022818A1 (en) * 2006-07-29 2008-01-31 Heinz Hackh Machine tool with improved concentricity
KR20110068995A (en) * 2008-09-30 2011-06-22 엔티엔 가부시키가이샤 Centering device and centering method
JP2011224730A (en) * 2010-04-20 2011-11-10 Ntn Corp Centering device and centering method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL227379B1 (en) * 2013-10-29 2017-11-30 Centrum Badań Kosmicznych Polskiej Akademii Nauk Electromagnetic drive, the winding core and method for manufacturing the electromagnetic drive

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06335801A (en) * 1993-05-24 1994-12-06 Okuma Mach Works Ltd Numerical control lathe with balance correction function
US20070082580A1 (en) * 2003-09-23 2007-04-12 Mikail Simakov Grinding machine with a concentricity correction system
US20080022818A1 (en) * 2006-07-29 2008-01-31 Heinz Hackh Machine tool with improved concentricity
KR20110068995A (en) * 2008-09-30 2011-06-22 엔티엔 가부시키가이샤 Centering device and centering method
JP2011224730A (en) * 2010-04-20 2011-11-10 Ntn Corp Centering device and centering method

Also Published As

Publication number Publication date
KR102619376B1 (en) 2024-01-02
KR20210133025A (en) 2021-11-05
KR20230035549A (en) 2023-03-14

Similar Documents

Publication Publication Date Title
US20180217200A1 (en) Positioning device for a parallel tester for testing printed circuit boards and parallel tester for testing printed circuit boards
CN103673893A (en) Pipeline three-way displacement laser measuring device and method
KR0167780B1 (en) Device testing system with cable pivot
KR100247329B1 (en) Apparatus test system with cable pivot and its arranging method
CN109108613A (en) Device is matched in a kind of makeup of axis hole parts batch
CN209223528U (en) Device is matched in a kind of makeup of axis hole parts batch
KR102338759B1 (en) metrology system
KR102649529B1 (en) Gantry type positioning apparatus
WO2021221458A1 (en) Impact type actuator and automatic eccentricity compensation system and method using same
CN108247422A (en) A kind of automatic capturing method for axle journal class part in numerical control machine tool
WO2017018592A1 (en) Hybrid alignment
JP2011115885A (en) Locus measuring device
Bowden et al. Precision magnet movers for the final focus test beam
CN102564303B (en) A kind of measurement mechanism and method
WO2013058481A1 (en) Method and device for real time position correction by deformation of ball screw of machine tool
Fahim et al. An 8-mm diameter fibre robot positioner for massive spectroscopy surveys
WO2016195176A1 (en) Delta robot calibration method and delta robot calibration apparatus
WO2020022671A1 (en) Shape measurement apparatus
WO2018135788A1 (en) Control device of machine tool, machine tool including same, and method for controlling machine tool using same
CN113483784B (en) Optical fiber inertial measurement unit digital coordinate system and structure coordinate system error calibration test equipment and method
WO2018171274A1 (en) Method and apparatus for flexible detection and positioning
CN210004952U (en) kinds of displacement table resolution and precision detection device
JP6865963B2 (en) Probe unit and printed wiring board inspection equipment
CN205374004U (en) A upset machine for cell -phone camera module
WO2020105983A1 (en) Precision processing apparatus using robot arm, and operation method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21795659

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21795659

Country of ref document: EP

Kind code of ref document: A1