WO2021221100A1 - Composition, composition layer, optical multilayer body and image display device - Google Patents

Composition, composition layer, optical multilayer body and image display device Download PDF

Info

Publication number
WO2021221100A1
WO2021221100A1 PCT/JP2021/016952 JP2021016952W WO2021221100A1 WO 2021221100 A1 WO2021221100 A1 WO 2021221100A1 JP 2021016952 W JP2021016952 W JP 2021016952W WO 2021221100 A1 WO2021221100 A1 WO 2021221100A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
composition
photo
polymer
surfactant
Prior art date
Application number
PCT/JP2021/016952
Other languages
French (fr)
Japanese (ja)
Inventor
一茂 中川
大樹 脇阪
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2022518114A priority Critical patent/JP7355928B2/en
Publication of WO2021221100A1 publication Critical patent/WO2021221100A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation

Definitions

  • the present invention relates to a composition, a composition layer, an optical laminate, and an image display device.
  • Optical films such as an optical compensation sheet and a retardation film are used in various image display devices from the viewpoints of eliminating image coloring and expanding the viewing angle.
  • a stretched birefringent film has been used as the optical film, but in recent years, an optically anisotropic layer formed by using a liquid crystal compound has been proposed in place of the stretched birefringent film.
  • Patent Document 1 describes a predetermined photo-oriented polymer having a repeating unit containing a cleaving group which decomposes to form a polar group by the action of at least one selected from the group consisting of light, heat, acid and base.
  • a mode is described in which a binder layer is formed by using the above, and an optically anisotropic layer is provided on the layer (see [Claim 1], [Claim 7] to [Claim 9], etc.).
  • the present inventors provided it on an upper layer of a layer (hereinafter, also abbreviated as “lower layer”) formed by using this photo-oriented polymer.
  • the orientation of the optically anisotropic layer (hereinafter, also abbreviated as "liquid crystal orientation") was good, but from the viewpoint of suppressing uneven film thickness when forming the lower layer, there was no wind using a cooling plate and a heater. After drying, it was clarified that repellent may occur.
  • the present invention describes a composition for forming a lower layer, which suppresses the generation of cissing during formation of the lower layer, and improves the liquid crystal orientation of the optically anisotropic layer formed on the upper layer, and a composition formed by using the composition.
  • An object of the present invention is to provide an optical laminate having a material layer and a composition layer, and an image display device.
  • the present inventors have formed a lower layer by using a composition containing a specific photoalignable polymer and a surfactant and having a liquid surface tension satisfying a predetermined relationship.
  • the present invention has been completed by finding that the occurrence of cissing at the time is suppressed and the liquid crystal orientation of the optically anisotropic layer formed on the layer is improved. That is, the present inventors have found that the above-mentioned problems can be achieved by the following configurations.
  • a composition containing a photo-oriented polymer and a surfactant containing a photo-oriented polymer and a surfactant.
  • the photo-oriented polymer has a photo-oriented group and a fluorine atom or a silicon atom.
  • the surfactant has a fluorine atom or a silicon atom and has a weight average molecular weight of 10,000 or less.
  • a liquid surface tension A 1 surfactant, a liquid surface tension A 2 of the optical alignment polymer, satisfies the following formula (IA), composition.
  • the photo-oriented polymer has a repeating unit A containing a cleaving group that decomposes to produce a polar group by the action of at least one selected from the group consisting of light, heat, acid and base.
  • the photo-oriented group is a photo-oriented group in which at least one of dimerization and isomerization is generated by the action of light.
  • the photooriented group is selected from the group consisting of a cinnamoyl group, an azobenzene group, a chalconyl group, and a coumarin group.
  • the perfluoropolyether structure in the surfactant is a structure represented by the following formula (II). -(OCF 2 ) m (OCF 2 CF 2 ) n (OCF 2 CF 2 CF 2 ) p (OCF 2 CF 2 CF 2 ) q (OCF (CF 3 ) CF 2 ) r -...
  • m, n, p, q and r each independently represent an integer of 0 to 60, and at least one of m, n, p, q and r is 2 to 60. Represents an integer of.
  • the optically anisotropic layer contains a polymer of a liquid crystal compound, An optical laminate in which a composition layer and an optically anisotropic layer are laminated adjacent to each other.
  • a composition for forming a lower layer and a composition formed using the same which suppresses the generation of repellent during the formation of the lower layer and improves the liquid crystal orientation of the optically anisotropic layer formed on the lower layer.
  • An optical laminate having a material layer and a composition layer and an image display device can be provided.
  • the present invention will be described in detail.
  • the description of the constituent elements described below may be based on a typical embodiment of the present invention, but the present invention is not limited to such an embodiment.
  • the numerical range represented by using "-" means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
  • a substance corresponding to each component may be used alone or in combination of two or more.
  • the content of the component means the total content of the substances used in combination unless otherwise specified.
  • “(meth) acrylic” is a notation representing "acrylic" or "methacryl”.
  • the bonding direction of the divalent group (for example, -O-CO-) described in the present specification is not particularly limited, and for example, L 2 is-in the bonding of "L 1- L 2- L 3".
  • L 2 is * 1-O-CO- * 2. It may be * 1-CO-O- * 2.
  • composition of the present invention is a composition containing a photo-oriented polymer and a surfactant.
  • the photo-oriented polymer has a photo-oriented group and a fluorine atom or a silicon atom
  • the surfactant has a fluorine atom or a silicon atom
  • the weight average is 10,000 or less.
  • the liquid surface tension A 1 surfactant, a liquid surface tension A 2 of the optical alignment polymer satisfies the following formula (IA).
  • the liquid surface tension of the surfactant and the photoalignable polymer is measured on the surface of the following composition for measuring surface tension under the condition of 25 ° C. using an automatic surface tension meter CBVP? Z (manufactured by Kyowa Surfactant Co., Ltd.). Use the measured value of tension.
  • the following material X is the liquid surface tension in the case of the surfactant and the liquid surface tension A 1 surfactant to the liquid surface tension in the case of the optical alignment polymer and liquid surface tension A 2 of the optical alignment polymer.
  • ⁇ Composition for surface tension measurement ⁇ Material X 0.18 parts by mass Methyl ethyl ketone 59.82 parts by mass ⁇
  • the liquid surface tension A 1 of the surfactants described above, the liquid surface tension A 2 of the optical alignment polymer described above, the use of compositions which satisfy the above formula (IA), when the lower layer is formed The generation of repellent is suppressed, and the liquid crystal orientation of the optically anisotropic layer formed on the upper layer is improved.
  • the present inventors speculate as follows. First, the present inventors presume that a surfactant having a fluorine atom or a silicon atom and having a weight average molecular weight of 10,000 or less can exhibit a moderately low liquid surface tension.
  • the liquid surface tension A 1 surfactant, a liquid surface tension A 2 of the optical alignment polymer by satisfying the above formula (IA), the coating film surface during the lower forming, photoorientable It is considered that more surfactants are unevenly distributed than the polymer, and the generation of repellent is suppressed due to the decrease in liquid surface tension caused by the surfactants. Further, by satisfying the above formula (IA), the separability between the surfactant and the photo-aligned polymer is enhanced, and the weight average molecular weight of the surfactant is in the above-mentioned range. Is easy to extract. As a result, it is considered that the interaction between the photo-oriented group of the photo-oriented polymer existing in the lower layer and the liquid crystal compound existing in the upper layer is good, and the liquid crystal orientation is improved.
  • photo-oriented polymer contained in the composition of the present invention (hereinafter, also formally abbreviated as "photo-oriented polymer of the present invention") is a polymer having a photo-oriented group and a fluorine atom or a silicon atom. ..
  • the photo-oriented group of the photo-oriented polymer of the present invention has a photo-alignment function in which rearrangement or an heterogeneous chemical reaction is induced by irradiation with light having anisotropy (for example, planar polarization).
  • a photo-oriented group having at least one of dimerization and isomerization due to the action of light is preferable because it refers to a group having, has excellent orientation uniformity, and has good thermal stability and chemical stability.
  • the group dimerized by the action of light include the skeleton of at least one derivative selected from the group consisting of cinnamic acid derivatives, coumarin derivatives, chalcone derivatives, maleimide derivatives, and benzophenone derivatives.
  • a group having a group and the like are preferably mentioned.
  • the group isomerized by the action of light specifically, at least one selected from the group consisting of, for example, an azobenzene compound, a stilbene compound, a spiropyran compound, a cinnamic acid compound, and a hydrazono- ⁇ -ketoester compound.
  • Preferred examples include groups having a skeleton of a species compound.
  • the optically anisotropic layer formed on the upper layer is composed of a cinnamoyl group, an azobenzene group, a chalconyl group, and a coumarin group because the liquid crystal orientation of the optically anisotropic layer formed on the upper layer becomes better even with a small exposure amount. It is preferably a group selected from the group.
  • the photo-oriented polymer of the present invention is preferably a photo-oriented polymer containing a repeating unit having a photo-oriented group and a repeating unit having a fluorine atom or a silicon atom. Further, the photo-oriented polymer of the present invention is at least one selected from the group consisting of light, heat, acid and base because the liquid crystal orientation of the optically anisotropic layer formed on the upper layer becomes better.
  • the repeating unit A has a repeating unit A containing a cleaving group that decomposes to produce a polar group by the action of, and the repeating unit A has a cleaving group in the side chain, and a fluorine atom or a fluorine atom or a fluorine atom or It is preferably a photo-oriented polymer having a silicon atom (hereinafter, also abbreviated as “cleavable photo-oriented polymer”).
  • the "polar group" contained in the repeating unit A means a group having at least one hetero atom or a halogen atom, and specifically, for example, a hydroxyl group, a carbonyl group, a carboxy group, an amino group, or a nitro group.
  • the "cleaving group that produces a polar group” refers to a group that produces the above-mentioned polar group by cleavage, but in the present invention, it also includes a group that reacts with an oxygen molecule after radical cleavage to generate a polar group.
  • cleavage-type photo-oriented polymer examples include the photo-oriented polymers described in paragraphs [0014] to [0049] of Patent Document 1 (International Publication No. 2018/216812), and these paragraphs. Is incorporated herein by reference.
  • the photo-oriented polymer containing a repeating unit having a fluorine atom or a silicon atom a copolymer having a repeating unit having a group represented by the following formula (1) and a repeating unit having a photo-oriented group.
  • a polymer hereinafter, also abbreviated as "specific copolymer" is preferably mentioned.
  • L B represents a n + 1 valent carbon atoms one or more aliphatic hydrocarbon groups.
  • X represents a cleaving group that is decomposed by a single bond or the action of an acid to generate a hydroxyl group.
  • Y represents a group containing a fluorine atom or a silicon atom.
  • n represents an integer of 1 or more. * Represents the bond position.
  • L B may represent a n + 1 valent number 1 or more aliphatic hydrocarbon group having a carbon, -CH 2 constituting the aliphatic hydrocarbon group - some or all -CO- or It may be replaced with —O—.
  • the number of carbon atoms in the aliphatic hydrocarbon group is 1 or more, and 1 to 10 is preferable, and 1 to 5 is more preferable, because the liquid crystal orientation of the optically anisotropic layer formed on the upper layer is better. 1 to 3 are more preferable.
  • the aliphatic hydrocarbon group is n + 1 valent.
  • n 1, a divalent aliphatic hydrocarbon group (so-called alkylene group) is used, and when n is 2, a trivalent aliphatic hydrocarbon group is used. When n is 3, it represents a tetravalent aliphatic hydrocarbon group.
  • the aliphatic hydrocarbon group may be linear or branched. Further, the aliphatic hydrocarbon group may have a cyclic structure. Of these, a linear shape is preferable because the liquid crystal orientation of the optically anisotropic layer formed on the upper layer becomes better.
  • a part or all of -CH 2- constituting the aliphatic hydrocarbon group may be substituted with -CO- or -O-
  • a part or all of -CH 2- constituting the alkylene group for example, methylene group, ethylene group, propylene group, etc.
  • -CO- or -O- it means that it may be done.
  • examples of the n + 1-valent aliphatic hydrocarbon group having 1 or more carbon atoms include -CO-, -O -CO-O-, -CH 2 -O-, -CH 2- CH 2 -O-, and-. CH 2- CH 2- O-CO-, -CH 2 -CH 2 -O-CO-O- and the like are also included.
  • X represents a cleaving group that decomposes by the action of a single bond or an acid to generate a hydroxyl group.
  • X is preferably a cleaving group which is decomposed by the action of an acid to generate a hydroxyl group.
  • Examples of such a cleaving group include cleaving groups represented by the following formulas (B1) to (B5).
  • * in the following formulas (B1) to (B5) represents a coupling position.
  • RB1 independently represents a hydrogen atom or a substituent. Provided that at least one of the two R B1 represents a substituent, it may form two R B1 is bonded to each other to form a ring.
  • the substituent include a monovalent aliphatic hydrocarbon group and a monovalent aromatic hydrocarbon group, and more specifically, an alkyl group, an alkenyl group, an alkynyl group, an aryl group and an amino group.
  • the above-mentioned substituent may be further substituted with a substituent.
  • RB2 independently represents a substituent. However, the two RBs may be combined with each other to form a ring.
  • RB3 represents a substituent and m represents an integer of 0 to 3. When m is 2 or 3, the plurality of RB3s may be the same or different.
  • RB4 represents a hydrogen atom or a substituent.
  • RB5 represents a substituent.
  • N represents an integer of 1 or more. Among them, an integer of 1 to 10 is preferable, an integer of 1 to 5 is more preferable, and an integer of 1 to 3 is further preferable, for the reason that the liquid crystal orientation becomes better.
  • Equation (2) * -L B2- Cf LB2 represents a single bond or a divalent linking group, and is preferably a single bond or a divalent aliphatic hydrocarbon group having 1 to 10 carbon atoms.
  • Cf represents a fluorine atom-containing alkyl group.
  • the fluorine atom-containing alkyl group represents an alkyl group containing a fluorine atom, and a perfluoroalkyl group is preferable.
  • the number of carbon atoms of the fluorine atom-containing alkyl group is not particularly limited, and 1 to 30 is preferable, and 3 to 20 is more preferable, because the liquid crystal orientation of the optically anisotropic layer formed on the upper layer becomes better.
  • the repeating unit represented by the following formula (B) is represented by the following formula (B) because the liquid crystal orientation of the optically anisotropic layer formed on the upper layer becomes better. Is preferable.
  • R B represents a hydrogen atom or a substituent
  • A represents, -O- or -NR Z - represents
  • R Z represents a hydrogen atom or a substituent.
  • the kind of the substituent represented by R B is not particularly limited, include known substituents, include the groups exemplified in the substituents represented by R B1. Of these, an alkyl group is preferable.
  • the type of the substituents represented by R Z is not particularly limited, it includes known substituents, include the groups exemplified in the substituents represented by R B1. Of these, an alkyl group is preferable.
  • L B, X, definitions of Y and n in the formula (B) is the same as the respective definitions of L B, X, Y and n in the above formula (1).
  • repeating unit having a group represented by the above formula (1) include the following.
  • the content of the repeating unit having a group represented by the formula (1) in the photoalignable polymer is not particularly limited, and the liquid crystal orientation of the optically anisotropic layer formed on the upper layer is improved. It is preferably 3% by mass or more, more preferably 5% by mass or more, further preferably 10% by mass or more, particularly preferably 20% by mass or more, and preferably 95% by mass or less, based on all the repeating units of the photoorientation polymer. 80% by mass or less is more preferable, 70% by mass or less is further preferable, 60% by mass or less is particularly preferable, and 50% by mass or less is most preferable.
  • the structure of the main chain of the repeating unit having a photo-oriented group is not particularly limited, and known structures can be mentioned.
  • a skeleton selected from the group consisting of aromatic ester systems is preferred.
  • a skeleton selected from the group consisting of (meth) acrylic type, siloxane type, and cycloolefin type is more preferable, and (meth) acrylic type skeleton is further preferable.
  • repeating unit having a photo-oriented group examples include the following.
  • the content of the repeating unit having a photo-oriented group in the photo-oriented polymer is not particularly limited, and the photo-aligned polymer has a reason that the liquid crystal orientation of the optically anisotropic layer formed on the upper layer is better. It is preferably 5 to 60% by mass, more preferably 10 to 50% by mass, still more preferably 15 to 40% by mass, based on all the repeating units.
  • the specific copolymer may further have a repeating unit having a crosslinkable group in addition to the repeating unit having a group represented by the above formula (1) and the repeating unit having a photo-oriented group.
  • the type of the crosslinkable group is not particularly limited, and examples thereof include known crosslinkable groups. Among them, an epoxy group, an epoxycyclohexyl group, an oxetanyl group, an acryloyl group, a methacryloyl group, a vinyl group, a styryl group, and an allyl group can be mentioned.
  • the structure of the main chain of the repeating unit having a crosslinkable group is not particularly limited, and known structures can be mentioned, for example, (meth) acrylic type, styrene type, siloxane type, cycloolefin type, methylpentene type, amide type, and the like. And a skeleton selected from the group consisting of aromatic ester systems is preferred. Of these, a skeleton selected from the group consisting of (meth) acrylic type, siloxane type, and cycloolefin type is more preferable, and (meth) acrylic type skeleton is further preferable.
  • repeating unit having a crosslinkable group examples include the following.
  • the content of the repeating unit having a crosslinkable group in the specific copolymer is not particularly limited, and the photo-oriented polymer is fully repeated because the liquid crystal orientation of the optically anisotropic layer formed on the upper layer becomes better. It is preferably 10 to 60% by mass, more preferably 20 to 50% by mass, based on the unit.
  • Examples of the monomer (radical polymerizable monomer) forming other repeating units other than the above include acrylic acid ester compound, methacrylic acid ester compound, maleimide compound, acrylamide compound, acrylonitrile, maleic anhydride, styrene compound, and the like. And vinyl compounds.
  • the method for synthesizing the photo-orientating polymer of the present invention is not particularly limited, and for example, a monomer forming a repeating unit having a group represented by the above-mentioned formula (1) and a repeating unit having the above-mentioned photoreactive group are formed. It can be synthesized by mixing a monomer to be polymerized and a monomer forming any other repeating unit and polymerizing in an organic solvent using a radical polymerization initiator.
  • the weight average molecular weight (Mw) of the photo-oriented polymer of the present invention is not particularly limited, but is preferably 25,000 or more because the liquid crystal orientation of the optically anisotropic layer formed on the upper layer becomes better. 25,000 to 500,000 is more preferable, 25,000 to 300,000 is further preferable, and 30,000 to 150,000 is particularly preferable.
  • the weight average molecular weight of the photo-oriented polymer and the surfactant described later is a value measured by a gel permeation chromatography (GPC) method under the conditions shown below.
  • the surfactant contained in the composition of the present invention (hereinafter, formally abbreviated as "surfactant of the present invention") has a fluorine atom or a silicon atom and has a weight average molecular weight of 10,000 or less. It is a surfactant.
  • examples of the surfactant having a fluorine atom include those having a weight average molecular weight of 10,000 or less among conventionally known fluorine-based surfactants.
  • examples of the surfactant having a silicon atom include those having a weight average molecular weight of 10,000 or less among conventionally known silicone-based surfactants.
  • the weight average molecular weight (Mw) of the surfactant of the present invention is 1000 because the generation of repellent during the formation of the lower layer can be further suppressed and the liquid crystal orientation of the optically anisotropic layer formed in the upper layer becomes better. It is preferably from 8000 to 8000, more preferably from 1000 to 6000, and even more preferably from 1300 to 4000.
  • the surfactant of the present invention preferably has a perfluoropolyether structure, and has a structure represented by the following formula (II), for the reason that the generation of repellent during the formation of the lower layer can be further suppressed. It is more preferable to have. -(OCF 2 ) m (OCF 2 CF 2 ) n (OCF 2 CF 2 CF 2 ) p (OCF 2 CF 2 CF 2 ) q (OCF (CF 3 ) CF 2 ) r -...
  • n, p, q and r each independently represent an integer of 0 to 60, and at least one of m, n, p, q and r is 2 to 60. Represents an integer of.
  • the surfactant of the present invention preferably further has a phosphazene group.
  • the phosphazene group-containing perfluoropolyether compound described in JP-A-2019-19278 can be preferably used.
  • the content of the surfactant is preferably 0.1 to 100% by mass, more preferably 1.5 to 50% by mass, based on the mass of the photooriented polymer. , 2.5 to 25% by mass, more preferably.
  • the composition of the present invention preferably further contains a binder.
  • the type of the binder is not particularly limited, and it may be a resin that is simply dried and solidified (hereinafter, also referred to as "resin binder") that is composed only of a resin that does not have a polymerization reactivity, and is polymerizable. It may be a compound.
  • ⁇ Resin binder examples include epoxy resin, diallyl phthalate resin, silicone resin, phenol resin, unsaturated polyester resin, polyimide resin, polyurethane resin, melamine resin, urea resin, ionomer resin, ethylene ethyl acrylate resin, and acrylonitrile acrylate styrene copolymer.
  • acrylonitrile styrene resin acrylonitrile polyethylene chloride styrene copolymer resin, ethylene vinegar resin, ethylene vinyl alcohol copolymer resin, acrylonitrile butadiene styrene copolymer resin, vinyl chloride resin, chlorinated polyethylene resin, polyvinylidene chloride resin, cellulose acetate resin , Fluorine resin, polyoxymethylene resin, polyamide resin, polyarylate resin, thermoplastic polyurethane elastomer, polyether ether ketone resin, polyether sulfone resin, polyethylene, polypropylene, polycarbonate resin, polystyrene, polystyrene maleic acid copolymer resin, polystyrene acrylic Acid copolymer resin, polyphenylene ether resin, polyphenylene sulfide resin, polybutadiene resin, polybutylene terephthalate resin, acrylic resin, methacrylic resin, methylpentene resin,
  • polymerizable compound examples include an epoxy-based monomer, a (meth) acrylic-based monomer, and an oxetanyl-based monomer, and an epoxy-based monomer or a (meth) acrylic-based monomer is preferable.
  • a polymerizable liquid crystal compound as a polymerizable compound.
  • Examples of the epoxy group-containing monomer which is an epoxy-based monomer include bisphenol A type epoxy resin, bisphenol F type epoxy resin, brominated bisphenol A type epoxy resin, bisphenol S type epoxy resin, diphenyl ether type epoxy resin, and hydroquinone type epoxy resin.
  • Naphthalene type epoxy resin biphenyl type epoxy resin, fluorene type epoxy resin, phenol novolac type epoxy resin, orthocresol novolac type epoxy resin, trishydroxyphenylmethane type epoxy resin, trifunctional epoxy resin, tetraphenylol ethane type epoxy resin, Dicyclopentadienephenol type epoxy resin, hydrogenated bisphenol A type epoxy resin, bisphenol A nucleated polyol type epoxy resin, polypropylene glycol type epoxy resin, glycidyl ester type epoxy resin, glycidylamine type epoxy resin, glioxal type epoxy resin, alicyclic Examples thereof include a type epoxy resin and a heterocyclic epoxy resin.
  • the trifunctional monomer includes trimethylolpropane triacrylate, trimethylolpropane PO (propylene oxide) modified triacrylate, and trimethylolpropane EO (ethylene oxide).
  • Modified triacrylate, trimethylolpropane trimethacrylate, and pentaerythritol triacrylate is particularly useful as the (meth) acrylic monomer, the acrylate-based monomer and the methacrylate-based monomer, the trifunctional monomer includes trimethylolpropane triacrylate, trimethylolpropane PO (propylene oxide) modified triacrylate, and trimethylolpropane EO (ethylene oxide).
  • tetrafunctional or higher functional monomer examples include pentaerythritol tetraacrylate, pentaerythritol tetramethritol, dipentaerythritol pentaacrylate, dipentaerythritol pentamethacrylate, dipentaerythritol hexaacrylate, and dipentaerythritol hexamethacrylate. ..
  • the polymerizable liquid crystal compound is not particularly limited, and examples thereof include compounds capable of any of homeotropic orientation, homogeneous orientation, hybrid orientation, and cholesteric orientation.
  • liquid crystal compounds can be classified into rod-shaped type and disk-shaped type according to their shapes.
  • a polymer generally refers to a polymer having a degree of polymerization of 100 or more (Polymer Physics / Phase Transition Dynamics, Masao Doi, p. 2, Iwanami Shoten, 1992).
  • any liquid crystal compound can be used, but a rod-shaped liquid crystal compound or a discotic liquid crystal compound (disk-shaped liquid crystal compound) is preferable.
  • a liquid crystal compound which is a monomer or has a relatively low molecular weight with a degree of polymerization of less than 100 is preferable.
  • the polymerizable group contained in the polymerizable liquid crystal compound include an acryloyl group, a methacryloyl group, an epoxy group, and a vinyl group.
  • the rod-shaped liquid crystal compound for example, those described in claim 1 of JP-A-11-513019 or paragraphs [0026] to [0998] of JP-A-2005-289980 are preferable, and the discotic liquid crystal compound is preferably a discotic liquid crystal compound.
  • the discotic liquid crystal compound is preferably a discotic liquid crystal compound.
  • those described in paragraphs [0020] to [0067] of JP-A-2007-108732 or paragraphs [0013] to [0108] of JP-A-2010-2404038 are preferable.
  • the polymerizable liquid crystal compound a liquid crystal compound having a reverse wavelength dispersibility can be used.
  • the liquid crystal compound having "reverse wavelength dispersibility” is a retardation film produced by using the liquid crystal compound, and the in-plane retardation (Re) value at a specific wavelength (visible light range) is measured. In this case, it means that the Re value becomes equal or higher as the measurement wavelength becomes larger.
  • the reverse wavelength dispersible liquid crystal compound is not particularly limited as long as it can form a reverse wavelength dispersible film as described above, and is represented by, for example, the general formula (I) described in JP-A-2008-297210. (In particular, the compounds described in paragraphs [0034] to [0039]), and compounds represented by the general formula (1) described in JP-A-2010-084032 (particularly, paragraphs [0067] to [0073]. ], And compounds represented by the general formula (1) described in JP-A-2016-081035 (particularly, compounds described in paragraphs [0043] to [0055]).
  • the composition of the present invention preferably contains a photoacid generator.
  • the photoacid generator is not particularly limited, and a compound that is sensitive to active light having a wavelength of 300 nm or more, preferably a wavelength of 300 to 450 nm and generates an acid is preferable. Further, a photoacid generator that is not directly sensitive to active light having a wavelength of 300 nm or more can be used as a sensitizer if it is a compound that is sensitive to active light having a wavelength of 300 nm or more and generates an acid when used in combination with a sensitizer. It can be preferably used in combination.
  • a photoacid generator that generates an acid having a pKa of 4 or less is preferable, a photoacid generator that generates an acid having a pKa of 3 or less is more preferable, and a photoacid generator that generates an acid of 2 or less is more preferable.
  • the agent is more preferred.
  • pKa basically refers to pKa in water at 25 ° C. Those that cannot be measured in water refer to those measured by changing to a solvent suitable for measurement. Specifically, pKa described in the Chemistry Handbook and the like can be referred to.
  • As the acid having a pKa of 3 or less sulfonic acid or phosphonic acid is preferable, and sulfonic acid is more preferable.
  • Examples of the photoacid generator include onium salt compounds, trichloromethyl-s-triazines, sulfonium salts, iodonium salts, quaternary ammonium salts, diazomethane compounds, imide sulfonate compounds, and oxime sulfonate compounds. Among them, an onium salt compound, an imide sulfonate compound, or an oxime sulfonate compound is preferable, and an onium salt compound or an oxime sulfonate compound is more preferable.
  • the photoacid generator may be used alone or in combination of two or more.
  • the composition of the present invention preferably contains a polymerization initiator.
  • the polymerization initiator is not particularly limited, and examples thereof include a thermal polymerization initiator and a photopolymerization initiator depending on the type of the polymerization reaction.
  • a photopolymerization initiator capable of initiating a polymerization reaction by irradiation with ultraviolet rays is preferable.
  • the photopolymerization initiator include ⁇ -carbonyl compounds (described in US Pat. Nos. 2,376,661 and 236,670), acidoin ethers (described in US Pat. No.
  • the composition of the present invention preferably contains a solvent from the viewpoint of workability for forming the lower layer.
  • Solvents include, for example, ketones (eg, acetone, 2-butanone, methylisobutylketone, cyclopentanone, and cyclohexanone), ethers (eg, dioxane, and tetrahydrofuran), aliphatic hydrocarbons (eg, eg,).
  • Serosolves Serosolves
  • cellosolve acetates eg, cellosolve acetates
  • sulfoxides eg, dimethylsulfoxides
  • amides eg, dimethylformamides, and dimethylacetamides
  • One type of solvent may be used alone, or two or more types may be used in combination.
  • composition layer of the present invention that is, the lower layer is a layer formed by using the composition of the present invention described above, and the surface thereof has an orientation control ability.
  • the composition layer of the present invention is a layer formed by applying the above-mentioned composition of the present invention and then subjecting it to a photoalignment treatment. That is, the method for forming the composition layer of the present invention is a step of forming the composition layer by subjecting the coating film obtained by applying the composition of the present invention described above to a photoalignment treatment (step 1). ) Is preferable.
  • having an orientation control ability means having a function of orienting a liquid crystal compound arranged on a composition layer in a predetermined direction.
  • the coating film obtained by using the above-mentioned composition of the present invention is contained in the coating film. It is preferable to perform a treatment for generating an acid from a photoacid generator (hereinafter, also simply referred to as “acid generation treatment”) and then a photoalignment treatment to form a composition layer.
  • acid generation treatment also simply referred to as “acid generation treatment”
  • the coating film obtained by using the composition of the present invention described above is subjected to a curing treatment and then a photoalignment treatment. It is preferable to apply to form a composition layer.
  • the curing treatment and the acid generation treatment may be carried out at the same time.
  • the method for forming the coating film of the composition of the present invention is not particularly limited, and examples thereof include a method of applying the composition on a support and performing a drying treatment as necessary.
  • the support will be described in detail later. Further, an orientation layer may be arranged on the support.
  • the method of applying the composition is not particularly limited, and examples of the application method include a spin coating method, an air knife coating method, a curtain coating method, a roller coating method, a wire bar coating method, a gravure coating method, and a die coating method. Can be mentioned.
  • the method of photoalignment treatment performed on the coating film of the composition of the present invention is not particularly limited, and known methods can be mentioned.
  • the photoalignment treatment for example, the coating film of the composition of the present invention (including the cured film of the composition that has been cured) is polarized or depolarized from an oblique direction with respect to the surface of the coating film. A method of irradiating can be mentioned.
  • the polarized light to be irradiated is not particularly limited, and examples thereof include linearly polarized light, circularly polarized light, and elliptically polarized light, and linearly polarized light is preferable.
  • the "diagonal direction" of irradiating the non-polarized film is not particularly limited as long as it is tilted by a polar angle ⁇ (0 ⁇ ⁇ 90 °) with respect to the normal direction of the coating film surface, depending on the purpose. However, it is preferable that ⁇ is 20 to 80 °.
  • the wavelength in polarized light or unpolarized light is not particularly limited as long as it is light to which the photoaligning group is sensitive, and examples thereof include ultraviolet rays, near-ultraviolet rays, and visible light, and near-ultraviolet rays having a diameter of 250 to 450 nm are preferable.
  • the light source for irradiating polarized or unpolarized light include a xenon lamp, a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, and a metal halide lamp.
  • an interference filter, a color filter, or the like for ultraviolet rays or visible rays obtained from such a light source the wavelength range to be irradiated can be limited.
  • linearly polarized light can be obtained by using a polarizing filter or a polarizing prism for the light from these light sources.
  • the amount of polarized or unpolarized integrated light is not particularly limited, and is preferably 1 to 300 mJ / cm 2 and more preferably 5 to 100 mJ / cm 2 .
  • the illuminance of the polarized light or unpolarized light is not particularly limited, preferably 0.1 ⁇ 300mW / cm 2, more preferably 1 ⁇ 100mW / cm 2.
  • Examples of the curing treatment include light irradiation treatment and heat treatment.
  • the conditions of the curing treatment are not particularly limited, but it is preferable to use ultraviolet rays in the polymerization by light irradiation.
  • Irradiation dose is preferably 10mJ / cm 2 ⁇ 50J / cm 2, more preferably 20mJ / cm 2 ⁇ 5J / cm 2, more preferably 30mJ / cm 2 ⁇ 3J / cm 2, particularly 50 ⁇ 1000mJ / cm 2 preferable.
  • it may be carried out under heating conditions.
  • the treatment for generating an acid from a photoacid generator in a coating film is a treatment for generating an acid by irradiating light that is exposed to an arbitrary photoacid generator contained in the composition of the present invention. ..
  • cleavage at the cleaving group proceeds in the cleaving type photo-oriented polymer, and the group containing a fluorine atom or a silicon atom is eliminated.
  • the light irradiation treatment carried out in the above treatment may be any treatment in which the photoacid generator is exposed to light, and examples thereof include a method of irradiating ultraviolet rays.
  • a lamp that emits ultraviolet rays such as a high-pressure mercury lamp and a metal halide lamp, can be used.
  • the irradiation amount is preferably 10mJ / cm 2 ⁇ 50J / cm 2, more preferably 20mJ / cm 2 ⁇ 5J / cm 2, more preferably 30mJ / cm 2 ⁇ 3J / cm 2, 50 ⁇ 1000mJ / cm 2 Is particularly preferable.
  • the thickness of the composition layer is not particularly limited, and 0.1 to 10 ⁇ m is preferable, and 0.3 to 3 ⁇ m is more preferable, because the liquid crystal orientation of the optically anisotropic layer formed on the upper layer is better.
  • the optical laminate of the present invention has a composition layer of the present invention and an optically anisotropic layer provided on the composition layer.
  • the optically anisotropic layer provided on the composition layer contains a polymer of a liquid crystal compound, and the composition layer and the optically anisotropic layer There is an embodiment in which the two are laminated adjacent to each other.
  • the optical laminate of the present invention preferably has a support that supports the composition layer.
  • the optically anisotropic layer is preferably a positive A plate and the composition layer is preferably a positive C plate because of its usefulness as a compensating layer for a circularly polarizing plate or a liquid crystal display device.
  • the positive A plate (positive A plate) and the positive C plate (positive C plate) are defined as follows.
  • the refractive index in the slow axis direction in the film plane (the direction in which the refractive index in the plane is maximized) is nx
  • the refractive index in the direction orthogonal to the slow phase axis in the plane in the plane is ny
  • the refraction in the thickness direction is defined as follows.
  • includes not only the case where both are completely the same, but also the case where both are substantially the same. “Substantially the same” means that in a positive A plate, for example, (ny-nz) ⁇ d (where d is the thickness of the film) is -10 to 10 nm, preferably -5 to 5 nm.
  • ny ⁇ nz when (nx-nz) xd is -10 to 10 nm, preferably -5 to 5 nm, it is also included in “nx ⁇ nz”.
  • nx ⁇ nz when (nx ⁇ ny) ⁇ d (where d is the thickness of the film) is 0 to 10 nm, preferably 0 to 5 nm, it is also included in “nx ⁇ ny”.
  • Re (550) is preferably 100 to 180 nm, more preferably 120 to 160 nm, and 130 to 150 nm from the viewpoint of functioning as a ⁇ / 4 plate. Is more preferable.
  • the " ⁇ / 4 plate” is a plate having a ⁇ / 4 function, and specifically, a function of converting linearly polarized light having a specific wavelength into circularly polarized light (or converting circularly polarized light into linearly polarized light). It is a plate having.
  • Examples of the support include a glass substrate and a polymer film.
  • Materials for the polymer film include cellulose-based polymers; acrylic polymers having acrylic acid ester polymers such as polymethylmethacrylate and lactone ring-containing polymers; thermoplastic norbornene-based polymers; polycarbonate-based polymers; polyethylene terephthalates, and polyethylene na.
  • Polyester polymers such as phthalate; styrene polymers such as polystyrene and acrylonitrile styrene copolymers; polyolefin polymers such as polyethylene, polypropylene and ethylene / propylene copolymers; vinyl chloride polymers; nylon, aromatic polyamides, etc.
  • the thickness of the support is not particularly limited, and is preferably 5 to 200 ⁇ m, more preferably 10 to 100 ⁇ m, and even more preferably 20 to 90 ⁇ m.
  • composition layer is the composition layer of the present invention described above.
  • the composition layer is a positive C plate, it preferably has a polymerizable liquid crystal compound.
  • the polymerizable liquid crystal compound may be a rod-shaped liquid crystal compound or a liquid crystal compound having an inverse wavelength dispersion.
  • the optically anisotropic layer is preferably formed by using a polymerizable liquid crystal composition containing a polymerizable liquid crystal compound.
  • a polymerizable liquid crystal composition for forming the optically anisotropic layer for example, a composition containing the polymerizable liquid crystal compound described as an optional component in the composition of the present invention, a polymerization initiator, a solvent and the like. Can be mentioned.
  • the optically anisotropic layer is a positive A plate, it is preferable to contain a liquid crystal compound having a reverse wavelength dispersion as the polymerizable liquid crystal compound.
  • the thickness of the optically anisotropic layer is not particularly limited, and is preferably 0.1 to 10 ⁇ m, more preferably 0.5 to 5 ⁇ m.
  • the image display device of the present invention is an image display device having the composition layer of the present invention or the optical laminate of the present invention.
  • the display element used in the image display device of the present invention is not particularly limited, and examples thereof include a liquid crystal cell, an organic electroluminescence (hereinafter abbreviated as “EL”) display panel, and a plasma display panel.
  • EL organic electroluminescence
  • a liquid crystal cell or an organic EL display panel is preferable, and a liquid crystal cell is more preferable. That is, as the image display device of the present invention, a liquid crystal display device using a liquid crystal cell as a display element or an organic EL display device using an organic EL display panel as a display element is preferable.
  • the liquid crystal display device which is an example of the image display device of the present invention, is a liquid crystal display device having the above-mentioned optically anisotropic layer of the present invention or the optical laminate of the present invention and a liquid crystal cell.
  • the liquid crystal cell used in the liquid crystal display device is a VA (Vertical Element) mode, an OCB (Optically Compensated Bend) mode, an IPS (In-Plane-Switching) mode, an FFS (Fringe-Field-Switching) mode, or a TN (Twisted) mode.
  • VA Vertical Element
  • OCB Optically Compensated Bend
  • IPS In-Plane-Switching
  • FFS Frringe-Field-Switching
  • TN Transmission (Twisted) mode.
  • the Nematic mode is preferred, but is not limited to these.
  • Organic EL display device As the organic EL display device which is an example of the image display device of the present invention, for example, from the viewing side, the polarizer, the optically anisotropic layer of the present invention or the optical laminate of the present invention, and the organic EL display panel are used. Aspects having in order are preferably mentioned.
  • the above-mentioned polarizer is not particularly limited as long as it is a member having a function of converting light into specific linearly polarized light, and conventionally known absorption-type polarizers and reflection-type polarizers can be used.
  • the absorption type polarizer include an iodine-based polarizer, a dye-based polarizer using a dichroic dye, and a polyene-based polarizer.
  • the iodine-based polarizer and the dye-based polarizer include a coating type polarizing element and a stretching type polarizing element, and both can be applied.
  • Japanese Patent No. 5048120 Japanese Patent No. 5143918, Japanese Patent No. 46910205, and the like. Examples thereof include the methods described in Japanese Patent No. 4751481 and Japanese Patent No. 4751486.
  • the reflective polarizer include a polarizer in which thin films having different birefringences are laminated, a wire grid type polarizer, and a polarizer in which a cholesteric liquid crystal having a selective reflection region and a 1/4 wave plate are combined.
  • a polymer containing a polyvinyl alcohol-based resin (-CH 2- CHOH- as a repeating unit.
  • a polyvinyl alcohol-based resin (-CH 2- CHOH- as a repeating unit.
  • a polarizer containing (1) is preferable.
  • the thickness of the polarizer is not particularly limited, and is preferably 3 to 60 ⁇ m, more preferably 5 to 30 ⁇ m, and even more preferably 5 to 15 ⁇ m.
  • the organic EL display panel is a member in which a plurality of organic compound thin films including a light emitting layer or a light emitting layer are formed between a pair of electrodes of an anode and a cathode.
  • a hole injection layer, a hole transport layer, and an electron injection It may have a layer, an electron transport layer, a protective layer, and the like, and each of these layers may have other functions.
  • Various materials can be used to form each layer.
  • reaction solution was stirred at 50 ° C. for 6 hours.
  • the reaction mixture was cooled to room temperature, washed separately with water, and the obtained organic phase was dried over anhydrous magnesium sulfate. Magnesium sulfate was filtered off, and the obtained solution was concentrated to obtain a yellowish white solid.
  • the obtained yellowish white solid was dissolved by heating in methyl ethyl ketone (400 g) and recrystallized to obtain 76 g of the following monomer mb-1 as a white solid (yield 40%).
  • the reaction solution was allowed to cool to room temperature, and the obtained polymer solution was poured into a large excess of methanol to precipitate the polymer. Then, the precipitate was collected by filtration, and the recovered solid content was washed with a large amount of methanol and then vacuum dried at 40 ° C. for 6 hours to obtain a polymer A-1c represented by the following formula.
  • the photo-oriented polymer A-2 was synthesized in the same manner as the photo-oriented polymer A-1 except that 2- (perfluorohexyl) ethyl methacrylate was used instead of the monomer mA-1.
  • the numerical values described in each repeating unit in the following structural formula represent the content (mass%) of each repeating unit with respect to all the repeating units, and below, 43% by mass and 27% by mass from the left repeating unit. , 30% by mass.
  • the weight average molecular weight of the photooriented polymer A-2 measured by the above method was 60,000.
  • the photooriented polymer A-3 was synthesized in the same manner as the photooriented polymer A-1 except that the monomer mA-2 was used instead of the monomer mA-1.
  • the numerical values described in each repeating unit in the following structural formula represent the content (mass%) of each repeating unit with respect to all the repeating units, and below, 43% by mass and 27% by mass from the left repeating unit. , 30% by mass.
  • the weight average molecular weight of the photooriented polymer A-3 measured by the method described above was 63000.
  • each repeating unit in the following structural formula represent the content (mass%) of each repeating unit with respect to all the repeating units, and below, 76% by mass and 24% by mass from the left repeating unit. Met. Moreover, the weight average molecular weight of the surfactant B-3 measured by the above-mentioned method was 2500.
  • Surfactant B-4 was synthesized in the same manner as that of surfactant B-3 except that the amount of "V-601" added was changed to 0.11 g.
  • the weight average molecular weight of the surfactant B-4 measured by the above method was 12000.
  • composition 1 for forming the lower layer was prepared as follows.
  • ⁇ Composition for lower layer formation 1 ⁇ -The following polymerizable liquid crystal compound L-1 83.00 parts by mass-The following polymerizable liquid crystal compound L-2 15.00 parts by mass-The following polymerizable liquid crystal compound L-3 2.00 parts by mass-The polymerizable monomer (A-400) (Manufactured by Shin-Nakamura Chemical Industry Co., Ltd.) 4.00 parts by mass, the following polymerization initiator S-1 (oxym type) 5.00 parts by mass, the following photoacid generator D-1 3.00 parts by mass, the following polymer M- 1 2,000 parts by mass ⁇ The following vertical alignment agent S01 2,000 parts by mass ⁇ The photo-orientation polymer A-1 2,000 parts by mass ⁇ The surfactant B-1 0.20 parts by mass ⁇ Methyl ethyl ketone 42.30 parts by mass Part ⁇ Methyl isobuty
  • composition layer As the cellulose acylate film, the same film as in Example 6 of JP2012-215689A was used. The composition 1 prepared above was applied to one side of the film with a # 3.0 wire bar. After that, both ends of the film were held, and a cooling plate (9 ° C.) was installed on the side of the surface on which the film coating was formed so that the distance from the film was 5 mm, and the film coating was formed. A heater (75 ° C.) was installed on the side opposite to the surface so that the distance from the film was 5 mm, and the film was dried for 2 minutes. Next, the mixture was heated with warm air at 60 ° C.
  • the precursor layer was formed by annealing at 120 ° C. for 1 minute with warm air.
  • the surface of the obtained precursor layer was irradiated with UV light (ultra-high pressure mercury lamp; UL750; manufactured by HOYA) at room temperature at 7.9 mJ / cm 2 (wavelength: 313 nm).
  • a composition layer having an orientation control ability was formed.
  • the film thickness of the formed composition layer was about 0.5 ⁇ m.
  • composition 1 for forming an optically anisotropic layer was applied onto the composition layer with a wire bar of # 7.0.
  • the coating film formed on the composition layer is heated to 120 ° C. with warm air, then cooled to 60 ° C., and then UV- at 365 nm while purging nitrogen so that the oxygen concentration becomes 100 ppm or less.
  • An LED was used to irradiate ultraviolet rays with an irradiation amount of 100 mJ / cm 2. Subsequently, the irradiation amount was 500 mJ / cm 2 (wavelength: 365 nm) using an ultra-high pressure mercury lamp (UL750; manufactured by HOYA) while heating to 120 ° C.
  • UL750 ultra-high pressure mercury lamp
  • Example 1 including the optically anisotropic layer (thickness 2.9 ⁇ m) was produced.
  • the Re (550) of the obtained laminate was 140 nm.
  • Example 2 An optical laminate was produced in the same manner as in Example 1 except that the surfactant B-1 of Example 1 was changed to the surfactant B-2.
  • Example 3 An optical laminate was prepared in the same manner as in Example 1 except that the surfactant B-1 of Example 1 was changed to the surfactant B-3.
  • Example 4 An optical laminate was produced in the same manner as in Example 1 except that the photo-oriented polymer A-1 of Example 1 was changed to the photo-oriented polymer A-2.
  • Example 5 An optical laminate was produced in the same manner as in Example 1 except that the photo-oriented polymer A-1 of Example 1 was changed to the photo-oriented polymer A-3.
  • Example 6 An optical laminate was produced in the same manner as in Example 1 except that the composition 1 for forming the lower layer of Example 1 was changed to the composition 6 for forming the lower layer below.
  • ⁇ Composition for lower layer formation 6 ⁇ -The polymerization initiator S-1 (oxime type) 5.00 parts by mass-The photoacid generator D-1 3.00 parts by mass-The photooriented polymer A-1 100.00 parts by mass-The surfactant B-1 2.50 parts by mass, methyl ethyl ketone 42.30 parts by mass, methyl isobutyl ketone 627.50 parts by mass ⁇ ⁇
  • Example 7 An optical laminate was produced in the same manner as in Example 1 except that the composition 1 for forming the lower layer of Example 1 was changed to the composition 7 for forming the lower layer below.
  • ⁇ Composition for lower layer formation 7 ⁇ -The following polymerizable liquid crystal compound L-5 54.00 parts by mass-The above polymerizable liquid crystal compound L-1 28.00 parts by mass-The following polymerizable liquid crystal compound L-6 10.00 parts by mass-The following polymerizable liquid crystal compound L- 7 8.00 parts by mass, polymerizable monomer (A-400, manufactured by Shin-Nakamura Chemical Industry Co., Ltd.) 4.00 parts by mass, the polymerization initiator S-1 (oxime type) 5.00 parts by mass, the photoacid generator D-1 3,000 parts by mass, polymer M-1 2,000 parts by mass, vertical alignment agent S01 2,000 parts by mass, photoalignable polymer A-1 2,000 parts by mass, surfactant B-1 0.20 parts by mass, toluene 669.80 parts by mass ⁇
  • Example 8 An optical laminate was produced in the same manner as in Example 1 except that the amount of the surfactant B-1 added in Example 1 was changed to 0.02 parts by mass.
  • Example 9 An optical laminate was produced in the same manner as in Example 1 except that the amount of the surfactant B-1 added in Example 1 was changed to 1.60 parts by mass.
  • Example 1 An optical laminate was produced in the same manner as in Example 1 except that the composition 1 for forming the lower layer of Example 1 was changed to the composition 10 for forming the lower layer below.
  • ⁇ Composition for lower layer formation 10 ⁇ -The above-mentioned polymerizable liquid crystal compound L-1 83.00 parts by mass-The above-mentioned polymerizable liquid crystal compound L-2 15.00 parts by mass-The above-mentioned polymerizable liquid crystal compound L-3 2,000 parts by mass-The polymerizable monomer (A-400) (Manufactured by Shin-Nakamura Chemical Industry Co., Ltd.) 4.00 parts by mass, the polymerization initiator S-1 (oxym type) 5.00 parts by mass, the photoacid generator D-1 3.00 parts by mass, the polymer M- 1 2,000 parts by mass ⁇
  • Example 3 An optical laminate was produced in the same manner as in Example 1 except that the surfactant B-1 of Example 1 was changed to Megafuck F-554 (manufactured by DIC Corporation).
  • Example 4 An optical laminate was produced in the same manner as in Example 1 except that the surfactant B-1 of Example 1 was changed to Megafuck F-447 (manufactured by DIC Corporation).
  • the weight average molecular weight of the surfactant having a fluorine atom or a silicon atom is 10,000 or less, the liquid surface tension A 1 surfactant, a liquid photo-alignment polymer surface tension A 2 and the above formula ( It was found that when a composition satisfying IA) was used, the generation of repellent during the formation of the lower layer was suppressed, and the liquid crystal orientation of the optically anisotropic layer formed on the upper layer was improved (Examples 1 to 9). ).
  • the liquid surface tension A 1 surfactant when a liquid surface tension A 2 of the optical alignment polymer using a composition satisfying the above formula (IB), formed in the upper layer It was found that the liquid crystal orientation of the optically anisotropic layer was improved, and that when the surfactant had a perfluoro structure, the generation of repellent during the formation of the lower layer could be further suppressed. Further, from the comparison between Examples 1 and 4, when the photo-oriented polymer is a cleaved photo-oriented polymer, the liquid crystal orientation of the optically anisotropic layer formed on the upper layer becomes better. I found out.

Abstract

The present invention addresses the problem of providing: a composition for the formation of an underlayer, said composition suppressing the occurrence of cissing during the formation of an underlayer, while enabling an optically anisotropic layer formed on the underlayer to have good liquid crystal alignment properties; a composition layer which is formed using this composition; and an optical multilayer body and an image display device, each of which comprises this composition layer. A composition according to the present invention contains a photo-alignable polymer and a surfactant; the photo-alignable polymer has a photo-alignable group, and a fluorine atom or a silicon atom; the surfactant has a fluorine atom or a silicon atom, while having a weight average molecular weight of 10,000 or less; and the liquid surface tension A1 of the surfactant and the liquid surface tension A2 of the photo-alignable polymer satisfy formula (IA). (IA): A2 – A1 ≥ 0.5 mN/m

Description

組成物、組成物層、光学積層体および画像表示装置Compositions, composition layers, optical laminates and image display devices
 本発明は、組成物、組成物層、光学積層体および画像表示装置に関する。 The present invention relates to a composition, a composition layer, an optical laminate, and an image display device.
 光学補償シートおよび位相差フィルムなどの光学フィルムは、画像着色解消および視野角拡大などの点から、様々な画像表示装置で用いられている。
 光学フィルムとしては延伸複屈折フィルムが使用されていたが、近年、延伸複屈折フィルムに代えて、液晶化合物を用いて形成される光学異方性層が提案されている。
Optical films such as an optical compensation sheet and a retardation film are used in various image display devices from the viewpoints of eliminating image coloring and expanding the viewing angle.
A stretched birefringent film has been used as the optical film, but in recent years, an optically anisotropic layer formed by using a liquid crystal compound has been proposed in place of the stretched birefringent film.
 このような光学異方性層を形成する際には、液晶化合物を配向させるために、光配向処理を施して得られる光配向膜が用いられる場合がある。
 例えば、特許文献1には、光、熱、酸および塩基からなる群から選択される少なくとも1種の作用により分解して極性基を生じる開裂基を含む繰り返し単位を有する所定の光配向性ポリマーを用いてバインダー層を形成し、その上層に光学異方性層を設ける態様が記載されている([請求項1]、[請求項7]~[請求項9]など参照)。
When forming such an optically anisotropic layer, a photoalignment film obtained by subjecting a photoalignment treatment may be used in order to orient the liquid crystal compound.
For example, Patent Document 1 describes a predetermined photo-oriented polymer having a repeating unit containing a cleaving group which decomposes to form a polar group by the action of at least one selected from the group consisting of light, heat, acid and base. A mode is described in which a binder layer is formed by using the above, and an optically anisotropic layer is provided on the layer (see [Claim 1], [Claim 7] to [Claim 9], etc.).
国際公開第2018/216812号International Publication No. 2018/216812
 本発明者らは、特許文献1に記載された光配向性ポリマーについて検討を行ったところ、この光配向性ポリマーを用いて形成される層(以下、「下層」とも略す。)の上層に設けられる光学異方性層の配向性(以下、「液晶配向性」とも略す。)は良好であったが、下層の形成時に、膜厚ムラを抑制する観点から、冷却板とヒーターを用いた無風乾燥を行ったところ、ハジキが発生する場合があることを明らかとした。 As a result of examining the photo-oriented polymer described in Patent Document 1, the present inventors provided it on an upper layer of a layer (hereinafter, also abbreviated as “lower layer”) formed by using this photo-oriented polymer. The orientation of the optically anisotropic layer (hereinafter, also abbreviated as "liquid crystal orientation") was good, but from the viewpoint of suppressing uneven film thickness when forming the lower layer, there was no wind using a cooling plate and a heater. After drying, it was clarified that repellent may occur.
 そこで、本発明は、下層形成時のハジキの発生を抑制し、その上層に形成される光学異方性層の液晶配向性が良好となる下層形成用の組成物およびそれを用いて形成した組成物層、ならびに、組成物層を有する光学積層体および画像表示装置を提供することを課題とする。 Therefore, the present invention describes a composition for forming a lower layer, which suppresses the generation of cissing during formation of the lower layer, and improves the liquid crystal orientation of the optically anisotropic layer formed on the upper layer, and a composition formed by using the composition. An object of the present invention is to provide an optical laminate having a material layer and a composition layer, and an image display device.
 本発明者らは、上記課題を達成すべく鋭意検討した結果、特定の光配向性ポリマーと界面活性剤を含有し、これらの液表面張力が所定の関係を満たす組成物を用いると、下層形成時のハジキの発生を抑制し、その上層に形成される光学異方性層の液晶配向性が良好となることを見出し、本発明を完成させた。
 すなわち、本発明者らは、以下の構成により上記課題を達成することができることを見出した。
As a result of diligent studies to achieve the above problems, the present inventors have formed a lower layer by using a composition containing a specific photoalignable polymer and a surfactant and having a liquid surface tension satisfying a predetermined relationship. The present invention has been completed by finding that the occurrence of cissing at the time is suppressed and the liquid crystal orientation of the optically anisotropic layer formed on the layer is improved.
That is, the present inventors have found that the above-mentioned problems can be achieved by the following configurations.
 [1] 光配向性ポリマーおよび界面活性剤を含有する組成物であって、
 光配向性ポリマーが、光配向性基と、フッ素原子またはケイ素原子とを有し、
 界面活性剤が、フッ素原子またはケイ素原子を有し、かつ、重量平均分子量が10000以下であり、
 界面活性剤の液表面張力Aと、光配向性ポリマーの液表面張力Aとが、下記式(IA)を満たす、組成物。
 A-A≧0.5mN/m ・・・(IA)
[1] A composition containing a photo-oriented polymer and a surfactant.
The photo-oriented polymer has a photo-oriented group and a fluorine atom or a silicon atom.
The surfactant has a fluorine atom or a silicon atom and has a weight average molecular weight of 10,000 or less.
A liquid surface tension A 1 surfactant, a liquid surface tension A 2 of the optical alignment polymer, satisfies the following formula (IA), composition.
A 2- A 1 ≧ 0.5 mN / m ・ ・ ・ (IA)
 [2] 界面活性剤の液表面張力Aと、光配向性ポリマーの液表面張力Aとが、下記式(IB)を満たす、[1]に記載の組成物。
 A-A≧2.0mN/m ・・・(IB)
 [3] 光配向性ポリマーの重量平均分子量が25000以上である、[1]または[2]に記載の組成物。
 [4] 光配向性ポリマーが、光、熱、酸および塩基からなる群から選択される少なくとも1種の作用により分解して極性基を生じる開裂基を含む繰り返し単位Aを有し、
 繰り返し単位Aが、側鎖に開裂基を有し、かつ、側鎖の開裂基よりも末端側にフッ素原子またはケイ素原子を有する、[1]~[3]のいずれかに記載の組成物。
 [5] 光配向性基が、光の作用により二量化および異性化の少なくとも一方が生じる光配向性基である、[1]~[4]のいずれかに記載の組成物。
 [6] 光配向性基が、シンナモイル基、アゾベンゼン基、カルコニル基、および、クマリン基からなる群から選択される、[1]~[5]のいずれかに記載の組成物。
 [7] 界面活性剤が、パーフルオロポリエーテル構造を有する、[1]~[6]のいずれかに記載の組成物。
 [8] 界面活性剤中のパーフルオロポリエーテル構造が、下記式(II)で表される構造である、[7]に記載の組成物。
 -(OCF(OCFCF(OCFCFCF(OCFCFCFCF(OCF(CF)CF- ・・・(II)
 ここで、式(II)中、m、n、p、qおよびrは、それぞれ独立に、0~60の整数を表し、m、n、p、qおよびrの少なくとも1つは、2~60の整数を表す。
 [9] 界面活性剤の含有量が、光配向性ポリマーの質量に対して0.1~100質量%である、[1]~[8]のいずれかに記載の組成物。
 [10] 更に、バインダーを含有する、[1]~[9]のいずれかに記載の組成物。
[2] The composition according to [1], wherein the liquid surface tension A 1 of the surfactant and the liquid surface tension A 2 of the photooriented polymer satisfy the following formula (IB).
A 2- A 1 ≧ 2.0 mN / m ・ ・ ・ (IB)
[3] The composition according to [1] or [2], wherein the photo-oriented polymer has a weight average molecular weight of 25,000 or more.
[4] The photo-oriented polymer has a repeating unit A containing a cleaving group that decomposes to produce a polar group by the action of at least one selected from the group consisting of light, heat, acid and base.
The composition according to any one of [1] to [3], wherein the repeating unit A has a cleaving group in the side chain and has a fluorine atom or a silicon atom on the terminal side of the cleaving group in the side chain.
[5] The composition according to any one of [1] to [4], wherein the photo-oriented group is a photo-oriented group in which at least one of dimerization and isomerization is generated by the action of light.
[6] The composition according to any one of [1] to [5], wherein the photooriented group is selected from the group consisting of a cinnamoyl group, an azobenzene group, a chalconyl group, and a coumarin group.
[7] The composition according to any one of [1] to [6], wherein the surfactant has a perfluoropolyether structure.
[8] The composition according to [7], wherein the perfluoropolyether structure in the surfactant is a structure represented by the following formula (II).
-(OCF 2 ) m (OCF 2 CF 2 ) n (OCF 2 CF 2 CF 2 ) p (OCF 2 CF 2 CF 2 CF 2 ) q (OCF (CF 3 ) CF 2 ) r -... (II)
Here, in formula (II), m, n, p, q and r each independently represent an integer of 0 to 60, and at least one of m, n, p, q and r is 2 to 60. Represents an integer of.
[9] The composition according to any one of [1] to [8], wherein the content of the surfactant is 0.1 to 100% by mass with respect to the mass of the photooriented polymer.
[10] The composition according to any one of [1] to [9], further containing a binder.
 [11] [1]~[10]のいずれかに記載の組成物を用いて形成され、その表面が配向制御能を有する組成物層。
 [12] [11]に記載の組成物層と、組成物層上に設けられる光学異方性層とを有する光学積層体であって、
 光学異方性層が、液晶化合物の重合体を含有し、
 組成物層と光学異方性層とが互いに隣接して積層されている、光学積層体。
 [13] [11]に記載の組成物層または[12]に記載の光学積層体を有する、画像表示装置。
[11] A composition layer formed by using the composition according to any one of [1] to [10], the surface of which has an orientation control ability.
[12] An optical laminate having the composition layer according to [11] and an optically anisotropic layer provided on the composition layer.
The optically anisotropic layer contains a polymer of a liquid crystal compound,
An optical laminate in which a composition layer and an optically anisotropic layer are laminated adjacent to each other.
[13] An image display device having the composition layer according to [11] or the optical laminate according to [12].
 本発明によれば、下層形成時のハジキの発生を抑制し、その上層に形成される光学異方性層の液晶配向性が良好となる下層形成用の組成物およびそれを用いて形成した組成物層、ならびに、組成物層を有する光学積層体および画像表示装置を提供することができる。 According to the present invention, a composition for forming a lower layer and a composition formed using the same, which suppresses the generation of repellent during the formation of the lower layer and improves the liquid crystal orientation of the optically anisotropic layer formed on the lower layer. An optical laminate having a material layer and a composition layer and an image display device can be provided.
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 また、本明細書において、各成分は、各成分に該当する物質を1種単独で用いても、2種以上を併用してもよい。ここで、各成分について2種以上の物質を併用する場合、その成分についての含有量とは、特段の断りが無い限り、併用した物質の合計の含有量を指す。
 また、本明細書において、「(メタ)アクリル」は、「アクリル」または「メタクリル」を表す表記である。
 また、本明細書において表記される2価の基(例えば、-O-CO-)の結合方向は特に限定されず、例えば、「L-L-L」の結合においてLが-O-CO-である場合、L側に結合している位置を*1、L側に結合している位置を*2とすると、Lは*1-O-CO-*2であってもよく、*1-CO-O-*2であってもよい。
Hereinafter, the present invention will be described in detail.
The description of the constituent elements described below may be based on a typical embodiment of the present invention, but the present invention is not limited to such an embodiment.
In the present specification, the numerical range represented by using "-" means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
Further, in the present specification, as each component, a substance corresponding to each component may be used alone or in combination of two or more. Here, when two or more kinds of substances are used in combination for each component, the content of the component means the total content of the substances used in combination unless otherwise specified.
Further, in the present specification, "(meth) acrylic" is a notation representing "acrylic" or "methacryl".
Further, the bonding direction of the divalent group (for example, -O-CO-) described in the present specification is not particularly limited, and for example, L 2 is-in the bonding of "L 1- L 2- L 3". In the case of O-CO-, if the position bonded to the L 1 side is * 1 and the position bonded to the L 3 side is * 2, L 2 is * 1-O-CO- * 2. It may be * 1-CO-O- * 2.
[組成物]
 本発明の組成物は、光配向性ポリマーおよび界面活性剤を含有する組成物である。
 また、本発明の組成物においては、光配向性ポリマーが、光配向性基と、フッ素原子またはケイ素原子とを有し、界面活性剤が、フッ素原子またはケイ素原子を有し、かつ、重量平均分子量が10000以下である。
 更に、本発明の組成物においては、界面活性剤の液表面張力Aと、光配向性ポリマーの液表面張力Aとが、下記式(IA)を満たす。
 A-A≧0.5mN/m ・・・(IA)
[Composition]
The composition of the present invention is a composition containing a photo-oriented polymer and a surfactant.
Further, in the composition of the present invention, the photo-oriented polymer has a photo-oriented group and a fluorine atom or a silicon atom, the surfactant has a fluorine atom or a silicon atom, and the weight average. The molecular weight is 10,000 or less.
Furthermore, in the compositions of the present invention, the liquid surface tension A 1 surfactant, a liquid surface tension A 2 of the optical alignment polymer, satisfies the following formula (IA).
A 2- A 1 ≧ 0.5 mN / m ・ ・ ・ (IA)
 ここで、界面活性剤および光配向性ポリマーの液表面張力は、下記表面張力測定用組成物について、自動表面張力計CBVP?Z(協和界面科学社製)を用いて、25℃の条件で表面張力を測定した値を採用する。なお、下記素材Xが、界面活性剤の場合の液表面張力を界面活性剤の液表面張力Aとし、光配向ポリマーの場合の液表面張力を光配向ポリマーの液表面張力Aとする。
―――――――――――――――――――――――――――――――――
表面張力測定用組成物
―――――――――――――――――――――――――――――――――
素材X                       0.18質量部
メチルエチルケトン                59.82質量部
―――――――――――――――――――――――――――――――――
Here, the liquid surface tension of the surfactant and the photoalignable polymer is measured on the surface of the following composition for measuring surface tension under the condition of 25 ° C. using an automatic surface tension meter CBVP? Z (manufactured by Kyowa Surfactant Co., Ltd.). Use the measured value of tension. Incidentally, the following material X is the liquid surface tension in the case of the surfactant and the liquid surface tension A 1 surfactant to the liquid surface tension in the case of the optical alignment polymer and liquid surface tension A 2 of the optical alignment polymer.
―――――――――――――――――――――――――――――――――
Composition for surface tension measurement ―――――――――――――――――――――――――――――――――
Material X 0.18 parts by mass Methyl ethyl ketone 59.82 parts by mass ―――――――――――――――――――――――――――――――――
 本発明においては、上述した界面活性剤の液表面張力Aと、上述した光配向性ポリマーの液表面張力Aとが、上記式(IA)を満たす組成物を用いると、下層形成時のハジキの発生を抑制し、その上層に形成される光学異方性層の液晶配向性が良好となる。
 これは、詳細には明らかではないが、本発明者らは以下のように推測している。
 まず、本発明者らは、フッ素原子またはケイ素原子を有し、かつ、重量平均分子量が10000以下となる界面活性剤が、適度に低い液表面張力を発現できると推察している。
 その上で、界面活性剤の液表面張力Aと、光配向性ポリマーの液表面張力Aとが、上記式(IA)を満たすことにより、下層形成時の塗膜表面において、光配向性ポリマーよりも界面活性剤が多く偏在し、界面活性剤に起因した液表面張力の低下により、ハジキの発生が抑制されると考えられる。
 また、上記式(IA)を満たすことにより、界面活性剤と光配向ポリマーとの分離性が高まり、界面活性剤の重量平均分子量が上述した範囲であるため、上層形成時の溶媒に界面活性剤が抽出されやすくなる。その結果、下層に存在する光配向性ポリマーの光配向性基と上層に存在する液晶化合物との相互作用が良好となり、液晶配向性が良好になったと考えられる。
In the present invention, the liquid surface tension A 1 of the surfactants described above, the liquid surface tension A 2 of the optical alignment polymer described above, the use of compositions which satisfy the above formula (IA), when the lower layer is formed The generation of repellent is suppressed, and the liquid crystal orientation of the optically anisotropic layer formed on the upper layer is improved.
This is not clear in detail, but the present inventors speculate as follows.
First, the present inventors presume that a surfactant having a fluorine atom or a silicon atom and having a weight average molecular weight of 10,000 or less can exhibit a moderately low liquid surface tension.
On top of that, the liquid surface tension A 1 surfactant, a liquid surface tension A 2 of the optical alignment polymer, by satisfying the above formula (IA), the coating film surface during the lower forming, photoorientable It is considered that more surfactants are unevenly distributed than the polymer, and the generation of repellent is suppressed due to the decrease in liquid surface tension caused by the surfactants.
Further, by satisfying the above formula (IA), the separability between the surfactant and the photo-aligned polymer is enhanced, and the weight average molecular weight of the surfactant is in the above-mentioned range. Is easy to extract. As a result, it is considered that the interaction between the photo-oriented group of the photo-oriented polymer existing in the lower layer and the liquid crystal compound existing in the upper layer is good, and the liquid crystal orientation is improved.
 本発明においては、上層に形成される光学異方性層の液晶配向性がより良好となる理由から、界面活性剤の液表面張力Aと、光配向性ポリマーの液表面張力Aとが、下記式(IB)を満たすことが好ましく、下記式(IC)を満たすことがより好ましい。
 A-A≧2.0mN/m ・・・(IB)
 20.0mN/m≧A-A≧2.0mN/m ・・・(IC)
In the present invention, is the reason that the liquid crystal alignment of the optically anisotropic layer formed on the upper layer becomes better, the liquid surface tension A 1 surfactant, a liquid surface tension A 2 of the optical alignment polymer , It is preferable to satisfy the following formula (IB), and it is more preferable to satisfy the following formula (IC).
A 2- A 1 ≧ 2.0 mN / m ・ ・ ・ (IB)
20.0 mN / m ≧ A 2- A 1 ≧ 2.0 mN / m ・ ・ ・ (IC)
 〔光配向性ポリマー〕
 本発明の組成物が含有する光配向性ポリマー(以下、形式的に「本発明の光配向性ポリマー」とも略す。)は、光配向性基と、フッ素原子またはケイ素原子とを有するポリマーである。
[Photo-oriented polymer]
The photo-oriented polymer contained in the composition of the present invention (hereinafter, also formally abbreviated as "photo-oriented polymer of the present invention") is a polymer having a photo-oriented group and a fluorine atom or a silicon atom. ..
 本発明の光配向性ポリマーが有する光配向性基とは、異方性を有する光(例えば、平面偏光など)の照射により、再配列または異方的な化学反応が誘起される光配向機能を有する基をいい、配向の均一性に優れ、熱的安定性および化学的安定性も良好となる理由から、光の作用により二量化および異性化の少なくとも一方が生じる光配向性基が好ましい。 The photo-oriented group of the photo-oriented polymer of the present invention has a photo-alignment function in which rearrangement or an heterogeneous chemical reaction is induced by irradiation with light having anisotropy (for example, planar polarization). A photo-oriented group having at least one of dimerization and isomerization due to the action of light is preferable because it refers to a group having, has excellent orientation uniformity, and has good thermal stability and chemical stability.
 光の作用により二量化する基としては、具体的には、例えば、桂皮酸誘導体、クマリン誘導体、カルコン誘導体、マレイミド誘導体、および、ベンゾフェノン誘導体からなる群から選択される少なくとも1種の誘導体の骨格を有する基などが好適に挙げられる。
 一方、光の作用により異性化する基としては、具体的には、例えば、アゾベンゼン化合物、スチルベン化合物、スピロピラン化合物、桂皮酸化合物、および、ヒドラゾノ-β-ケトエステル化合物からなる群から選択される少なくとも1種の化合物の骨格を有する基などが好適に挙げられる。
Specific examples of the group dimerized by the action of light include the skeleton of at least one derivative selected from the group consisting of cinnamic acid derivatives, coumarin derivatives, chalcone derivatives, maleimide derivatives, and benzophenone derivatives. A group having a group and the like are preferably mentioned.
On the other hand, as the group isomerized by the action of light, specifically, at least one selected from the group consisting of, for example, an azobenzene compound, a stilbene compound, a spiropyran compound, a cinnamic acid compound, and a hydrazono-β-ketoester compound. Preferred examples include groups having a skeleton of a species compound.
 これらの光配向性基のうち、少ない露光量でも上層に形成される光学異方性層の液晶配向性がより良好となる理由から、シンナモイル基、アゾベンゼン基、カルコニル基、および、クマリン基からなる群から選択される基であることが好ましい。 Of these photo-oriented groups, the optically anisotropic layer formed on the upper layer is composed of a cinnamoyl group, an azobenzene group, a chalconyl group, and a coumarin group because the liquid crystal orientation of the optically anisotropic layer formed on the upper layer becomes better even with a small exposure amount. It is preferably a group selected from the group.
 本発明の光配向性ポリマーは、光配向性基を有する繰り返し単位と、フッ素原子またはケイ素原子とを有する繰り返し単位を含む光配向性ポリマーであることが好ましい。
 また、本発明の光配向性ポリマーは、上層に形成される光学異方性層の液晶配向性がより良好となる理由から、光、熱、酸および塩基からなる群から選択される少なくとも1種の作用により分解して極性基を生じる開裂基を含む繰り返し単位Aを有し、繰り返し単位Aが、側鎖に開裂基を有し、かつ、側鎖の開裂基よりも末端側にフッ素原子またはケイ素原子を有する光配向性ポリマー(以下、「開裂型光配向性ポリマー」とも略す。)であることが好ましい。
 ここで、繰り返し単位Aが含む「極性基」とは、ヘテロ原子またはハロゲン原子を少なくとも1原子以上有する基をいい、具体的には、例えば、水酸基、カルボニル基、カルボキシ基、アミノ基、ニトロ基、アンモニウム基、シアノ基などが挙げられる。なかでも、水酸基、カルボニル基、カルボキシ基が好ましい。
 また、「極性基を生じる開裂基」とは、開裂によって上述した極性基を生じる基をいうが、本発明においては、ラジカル開裂後に酸素分子と反応し、極性基を生成する基も含む。
The photo-oriented polymer of the present invention is preferably a photo-oriented polymer containing a repeating unit having a photo-oriented group and a repeating unit having a fluorine atom or a silicon atom.
Further, the photo-oriented polymer of the present invention is at least one selected from the group consisting of light, heat, acid and base because the liquid crystal orientation of the optically anisotropic layer formed on the upper layer becomes better. It has a repeating unit A containing a cleaving group that decomposes to produce a polar group by the action of, and the repeating unit A has a cleaving group in the side chain, and a fluorine atom or a fluorine atom or a fluorine atom or It is preferably a photo-oriented polymer having a silicon atom (hereinafter, also abbreviated as “cleavable photo-oriented polymer”).
Here, the "polar group" contained in the repeating unit A means a group having at least one hetero atom or a halogen atom, and specifically, for example, a hydroxyl group, a carbonyl group, a carboxy group, an amino group, or a nitro group. , Ammonium group, cyano group and the like. Of these, a hydroxyl group, a carbonyl group, and a carboxy group are preferable.
The "cleaving group that produces a polar group" refers to a group that produces the above-mentioned polar group by cleavage, but in the present invention, it also includes a group that reacts with an oxygen molecule after radical cleavage to generate a polar group.
 このような開裂型光配向性ポリマーとしては、例えば、特許文献1(国際公開第2018/216812号)の段落[0014]~[0049]に記載された光配向性ポリマーが挙げられ、これらの段落の記載内容は本明細書に取り込まれる。 Examples of such a cleavage-type photo-oriented polymer include the photo-oriented polymers described in paragraphs [0014] to [0049] of Patent Document 1 (International Publication No. 2018/216812), and these paragraphs. Is incorporated herein by reference.
 フッ素原子またはケイ素原子を有する繰り返し単位を含む光配向性ポリマーの他の例としては、下記式(1)で表される基を有する繰り返し単位と、光配向性基を有する繰り返し単位とを有する共重合体(以下、「特定共重合体」とも略す。)が好適に挙げられる。 As another example of the photo-oriented polymer containing a repeating unit having a fluorine atom or a silicon atom, a copolymer having a repeating unit having a group represented by the following formula (1) and a repeating unit having a photo-oriented group. A polymer (hereinafter, also abbreviated as "specific copolymer") is preferably mentioned.
 <下記式(1)で表される基を有する繰り返し単位>
Figure JPOXMLDOC01-appb-C000001
<Repeating unit having a group represented by the following formula (1)>
Figure JPOXMLDOC01-appb-C000001
 上記式(1)中、Lは、n+1価の炭素数1以上の脂肪族炭化水素基を表す。
 Xは、単結合または酸の作用により分解して水酸基を生じる開裂基を表す。
 Yは、フッ素原子またはケイ素原子を含む基を表す。
 nは、1以上の整数を表す。
 *は、結合位置を表す。
In the above formula (1), L B represents a n + 1 valent carbon atoms one or more aliphatic hydrocarbon groups.
X represents a cleaving group that is decomposed by a single bond or the action of an acid to generate a hydroxyl group.
Y represents a group containing a fluorine atom or a silicon atom.
n represents an integer of 1 or more.
* Represents the bond position.
 上記式(1)中、Lは、n+1価の炭素数1以上の脂肪族炭化水素基を表すが、脂肪族炭化水素基を構成する-CH-の一部または全部が-CO-または-O-で置換されていてもよい。
 脂肪族炭化水素基中の炭素数は1以上であり、上層に形成される光学異方性層の液晶配向性がより良好となる理由から、1~10が好ましく、1~5がより好ましく、1~3がさらに好ましい。
 脂肪族炭化水素基はn+1価であり、例えば、nが1の場合は2価の脂肪族炭化水素基(いわゆるアルキレン基)を、nが2の場合は3価の脂肪族炭化水素基を、nが3の場合は4価の脂肪族炭化水素基を表す。
 脂肪族炭化水素基は、直鎖状でも、分岐鎖状でもよい。また、脂肪族炭化水素基は環状構造を有していてもよい。なかでも、上層に形成される光学異方性層の液晶配向性がより良好となる理由から、直鎖状が好ましい。
 また、「脂肪族炭化水素基を構成する-CH-の一部または全部が-CO-または-O-で置換されていてもよい」とは、例えば、脂肪族炭化水素基が2価の脂肪族炭化水素基(アルキレン基)である場合、アルキレン基(例えば、メチレン基、エチレン基、プロピレン基など)を構成する-CH-の一部または全部が-CO-または-O-で置換されていてもよいことを意味する。すなわち、n+1価の炭素数1以上の脂肪族炭化水素基としては、例えば、-CO-、-O-CO-O-、-CH-O-、-CH-CH-O-、-CH-CH-O-CO-、-CH-CH-O-CO-O-なども含まれる。
In the above formula (1), L B may represent a n + 1 valent number 1 or more aliphatic hydrocarbon group having a carbon, -CH 2 constituting the aliphatic hydrocarbon group - some or all -CO- or It may be replaced with —O—.
The number of carbon atoms in the aliphatic hydrocarbon group is 1 or more, and 1 to 10 is preferable, and 1 to 5 is more preferable, because the liquid crystal orientation of the optically anisotropic layer formed on the upper layer is better. 1 to 3 are more preferable.
The aliphatic hydrocarbon group is n + 1 valent. For example, when n is 1, a divalent aliphatic hydrocarbon group (so-called alkylene group) is used, and when n is 2, a trivalent aliphatic hydrocarbon group is used. When n is 3, it represents a tetravalent aliphatic hydrocarbon group.
The aliphatic hydrocarbon group may be linear or branched. Further, the aliphatic hydrocarbon group may have a cyclic structure. Of these, a linear shape is preferable because the liquid crystal orientation of the optically anisotropic layer formed on the upper layer becomes better.
Further, "a part or all of -CH 2- constituting the aliphatic hydrocarbon group may be substituted with -CO- or -O-" means that, for example, the aliphatic hydrocarbon group is divalent. When it is an aliphatic hydrocarbon group (alkylene group), a part or all of -CH 2- constituting the alkylene group (for example, methylene group, ethylene group, propylene group, etc.) is replaced with -CO- or -O-. It means that it may be done. That is, examples of the n + 1-valent aliphatic hydrocarbon group having 1 or more carbon atoms include -CO-, -O -CO-O-, -CH 2 -O-, -CH 2- CH 2 -O-, and-. CH 2- CH 2- O-CO-, -CH 2 -CH 2 -O-CO-O- and the like are also included.
 Xは単結合または酸の作用により分解して水酸基を生じる開裂基を表す。上層に形成される光学異方性層の液晶配向性がより良好となる理由から、Xは酸の作用により分解して水酸基を生じる開裂基が好ましい。このような開裂基としては、例えば、下記式(B1)~(B5)で表される開裂基が挙げられる。
 なお、下記式(B1)~式(B5)中の*は、結合位置を表す。
X represents a cleaving group that decomposes by the action of a single bond or an acid to generate a hydroxyl group. For the reason that the liquid crystal orientation of the optically anisotropic layer formed on the upper layer becomes better, X is preferably a cleaving group which is decomposed by the action of an acid to generate a hydroxyl group. Examples of such a cleaving group include cleaving groups represented by the following formulas (B1) to (B5).
In addition, * in the following formulas (B1) to (B5) represents a coupling position.
Figure JPOXMLDOC01-appb-C000002

Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-C000002

Figure JPOXMLDOC01-appb-I000003
 上記式(B1)中、RB1は、それぞれ独立に水素原子または置換基を表す。ただし、2個のRB1の少なくとも一方は置換基を表し、2個のRB1が互いに結合して環を形成してもよい。置換基としては、例えば、1価の脂肪族炭化水素基、および、1価の芳香族炭化水素基が挙げられ、より具体的には、アルキル基、アルケニル基、アルキニル基、アリール基、アミノ基、アルコキシ基、アリールオキシ基、芳香族ヘテロ環オキシ基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、アシルオキシ基、アシルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルホニルアミノ基、スルファモイル基、カルバモイル基、アルキルチオ基、アリールチオ基、芳香族ヘテロ環チオ基、スルホニル基、スルフィニル基、ウレイド基、リン酸アミド基、ヒドロキシ基、メルカプト基、ハロゲン原子、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(例えば、ヘテロアリール基)、シリル基、および、これらを組み合わせた基が挙げられる。なお、上記置換基は、さらに置換基で置換されていてもよい。
 上記式(B2)中、RB2は、それぞれ独立に置換基を表す。ただし、2個のRB2が互いに結合して環を形成してもよい。
 上記式(B3)中、RB3は、置換基を表し、mは、0~3の整数を表す。mが2または3である場合、複数のRB3は、それぞれ同一であっても異なっていてもよい。
 上記式(B4)中、RB4は、水素原子または置換基を表す。
 上記式(B5)中、RB5は、置換基を表す。
In the above formula (B1), RB1 independently represents a hydrogen atom or a substituent. Provided that at least one of the two R B1 represents a substituent, it may form two R B1 is bonded to each other to form a ring. Examples of the substituent include a monovalent aliphatic hydrocarbon group and a monovalent aromatic hydrocarbon group, and more specifically, an alkyl group, an alkenyl group, an alkynyl group, an aryl group and an amino group. , Alkoxy group, aryloxy group, aromatic heterocyclic oxy group, acyl group, alkoxycarbonyl group, aryloxycarbonyl group, acyloxy group, acylamino group, alkoxycarbonylamino group, aryloxycarbonylamino group, sulfonylamino group, sulfamoyl group , Carbamoyl group, alkylthio group, arylthio group, aromatic heterocyclic thio group, sulfonyl group, sulfinyl group, ureido group, phosphate amide group, hydroxy group, mercapto group, halogen atom, cyano group, sulfo group, carboxyl group, nitro Examples thereof include a group, a hydroxamic acid group, a sulfino group, a hydradino group, an imino group, a heterocyclic group (for example, a heteroaryl group), a silyl group, and a group combining these. The above-mentioned substituent may be further substituted with a substituent.
In the above formula (B2), RB2 independently represents a substituent. However, the two RBs may be combined with each other to form a ring.
In the above formula (B3), RB3 represents a substituent and m represents an integer of 0 to 3. When m is 2 or 3, the plurality of RB3s may be the same or different.
In the above formula (B4), RB4 represents a hydrogen atom or a substituent.
In the above formula (B5), RB5 represents a substituent.
 nは、1以上の整数を表す。なかでも、液晶配向性がより良好となる理由から、1~10の整数が好ましく、1~5の整数がより好ましく、1~3の整数がさらに好ましい。 N represents an integer of 1 or more. Among them, an integer of 1 to 10 is preferable, an integer of 1 to 5 is more preferable, and an integer of 1 to 3 is further preferable, for the reason that the liquid crystal orientation becomes better.
 Yで表されるフッ素原子またはケイ素原子を含む基としては、上層に形成される光学異方性層の液晶配向性がより良好となる理由から、式(2)で表される基が好ましい。
 式(2)  *-LB2-Cf
 LB2は、単結合または2価の連結基を表し、単結合または炭素数1~10の2価の脂肪族炭化水素基であることが好ましい。Cfは、フッ素原子含有アルキル基を表す。フッ素原子含有アルキル基とは、フッ素原子を含むアルキル基を表し、パーフルオロアルキル基が好ましい。フッ素原子含有アルキル基の炭素数は特に限定されず、上層に形成される光学異方性層の液晶配向性がより良好となる理由から、1~30が好ましく、3~20がより好ましい。
As the group containing a fluorine atom or a silicon atom represented by Y, the group represented by the formula (2) is preferable because the liquid crystal orientation of the optically anisotropic layer formed on the upper layer becomes better.
Equation (2) * -L B2- Cf
LB2 represents a single bond or a divalent linking group, and is preferably a single bond or a divalent aliphatic hydrocarbon group having 1 to 10 carbon atoms. Cf represents a fluorine atom-containing alkyl group. The fluorine atom-containing alkyl group represents an alkyl group containing a fluorine atom, and a perfluoroalkyl group is preferable. The number of carbon atoms of the fluorine atom-containing alkyl group is not particularly limited, and 1 to 30 is preferable, and 3 to 20 is more preferable, because the liquid crystal orientation of the optically anisotropic layer formed on the upper layer becomes better.
 上記式(1)で表される基を有する繰り返し単位としては、上層に形成される光学異方性層の液晶配向性がより良好となる理由から、下記式(B)で表される繰り返し単位が好ましい。 As the repeating unit having a group represented by the above formula (1), the repeating unit represented by the following formula (B) is represented by the following formula (B) because the liquid crystal orientation of the optically anisotropic layer formed on the upper layer becomes better. Is preferable.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 上記式(B)中、Rは、水素原子または置換基を表し、Aは、-O-または-NR-を表し、Rは、水素原子または置換基を表す。
 ここで、Rで表される置換基の種類は特に限定されず、公知の置換基が挙げられ、上記RB1で表される置換基で例示した基が挙げられる。なかでも、アルキル基が好ましい。
 また、Rで表される置換基の種類は特に限定されず、公知の置換基が挙げられ、上記RB1で表される置換基で例示した基が挙げられる。なかでも、アルキル基が好ましい。
 また、上記式(B)中のL、X、Yおよびnの定義は、上記式(1)中のL、X、Yおよびnのそれぞれの定義と同じである。
In the formula (B), R B represents a hydrogen atom or a substituent, A represents, -O- or -NR Z - represents, R Z represents a hydrogen atom or a substituent.
Here, the kind of the substituent represented by R B is not particularly limited, include known substituents, include the groups exemplified in the substituents represented by R B1. Of these, an alkyl group is preferable.
The type of the substituents represented by R Z is not particularly limited, it includes known substituents, include the groups exemplified in the substituents represented by R B1. Of these, an alkyl group is preferable.
Further, L B, X, definitions of Y and n in the formula (B) is the same as the respective definitions of L B, X, Y and n in the above formula (1).
 上記式(1)で表される基を有する繰り返し単位の具体例としては、以下が挙げられる。 Specific examples of the repeating unit having a group represented by the above formula (1) include the following.
Figure JPOXMLDOC01-appb-C000005

Figure JPOXMLDOC01-appb-I000006

Figure JPOXMLDOC01-appb-I000007

Figure JPOXMLDOC01-appb-I000008
Figure JPOXMLDOC01-appb-C000005

Figure JPOXMLDOC01-appb-I000006

Figure JPOXMLDOC01-appb-I000007

Figure JPOXMLDOC01-appb-I000008
 光配向性ポリマー中における式(1)で表される基を有する繰り返し単位の含有量は特に限定されず、上層に形成される光学異方性層の液晶配向性がより良好となる理由から、光配向性ポリマーの全繰り返し単位に対して、3質量%以上が好ましく、5質量%以上がより好ましく、10質量%以上がさらに好ましく、20質量%以上が特に好ましく、95質量%以下が好ましく、80質量%以下がより好ましく、70質量%以下がさらに好ましく、60質量%以下が特に好ましく、50質量%以下が最も好ましい。 The content of the repeating unit having a group represented by the formula (1) in the photoalignable polymer is not particularly limited, and the liquid crystal orientation of the optically anisotropic layer formed on the upper layer is improved. It is preferably 3% by mass or more, more preferably 5% by mass or more, further preferably 10% by mass or more, particularly preferably 20% by mass or more, and preferably 95% by mass or less, based on all the repeating units of the photoorientation polymer. 80% by mass or less is more preferable, 70% by mass or less is further preferable, 60% by mass or less is particularly preferable, and 50% by mass or less is most preferable.
 <光配向性基を有する繰り返し単位>
 光配向性基を有する繰り返し単位の主鎖の構造は特に限定されず、公知の構造が挙げられ、例えば、(メタ)アクリル系、スチレン系、シロキサン系、シクロオレフィン系、メチルペンテン系、アミド系、および、芳香族エステル系からなる群から選択される骨格が好ましい。
 これらのうち、(メタ)アクリル系、シロキサン系、および、シクロオレフィン系からなる群から選択される骨格がより好ましく、(メタ)アクリル系骨格がさらに好ましい。
<Repeating unit with photo-oriented group>
The structure of the main chain of the repeating unit having a photo-oriented group is not particularly limited, and known structures can be mentioned. For example, (meth) acrylic type, styrene type, siloxane type, cycloolefin type, methylpentene type, and amide type. , And a skeleton selected from the group consisting of aromatic ester systems is preferred.
Of these, a skeleton selected from the group consisting of (meth) acrylic type, siloxane type, and cycloolefin type is more preferable, and (meth) acrylic type skeleton is further preferable.
 光配向性基を有する繰り返し単位の具体例としては、以下が挙げられる。 Specific examples of the repeating unit having a photo-oriented group include the following.
Figure JPOXMLDOC01-appb-C000009

Figure JPOXMLDOC01-appb-I000010

Figure JPOXMLDOC01-appb-I000011

Figure JPOXMLDOC01-appb-I000012

Figure JPOXMLDOC01-appb-I000013

Figure JPOXMLDOC01-appb-I000014
Figure JPOXMLDOC01-appb-C000009

Figure JPOXMLDOC01-appb-I000010

Figure JPOXMLDOC01-appb-I000011

Figure JPOXMLDOC01-appb-I000012

Figure JPOXMLDOC01-appb-I000013

Figure JPOXMLDOC01-appb-I000014
 光配向性ポリマー中における光配向性基を有する繰り返し単位の含有量は特に限定されず、上層に形成される光学異方性層の液晶配向性がより良好となる理由から、光配向性ポリマーの全繰り返し単位に対して、5~60質量%が好ましく、10~50質量%がより好ましく、15~40質量%がさらに好ましい。 The content of the repeating unit having a photo-oriented group in the photo-oriented polymer is not particularly limited, and the photo-aligned polymer has a reason that the liquid crystal orientation of the optically anisotropic layer formed on the upper layer is better. It is preferably 5 to 60% by mass, more preferably 10 to 50% by mass, still more preferably 15 to 40% by mass, based on all the repeating units.
 <架橋性基を有する繰り返し単位>
 特定共重合体は、上述した式(1)で表される基を有する繰り返し単位および光配向性基を有する繰り返し単位の他に、架橋性基を有する繰り返し単位を更に有していてもよい。
 架橋性基の種類は特に限定されず、公知の架橋性基が挙げられる。なかでも、エポキシ基、エポキシシクロヘキシル基、オキセタニル基、アクリロイル基、メタクリロイル基、ビニル基、スチリル基、および、アリル基が挙げられる。
<Repeating unit with crosslinkable group>
The specific copolymer may further have a repeating unit having a crosslinkable group in addition to the repeating unit having a group represented by the above formula (1) and the repeating unit having a photo-oriented group.
The type of the crosslinkable group is not particularly limited, and examples thereof include known crosslinkable groups. Among them, an epoxy group, an epoxycyclohexyl group, an oxetanyl group, an acryloyl group, a methacryloyl group, a vinyl group, a styryl group, and an allyl group can be mentioned.
 架橋性基を有する繰り返し単位の主鎖の構造は特に限定されず、公知の構造が挙げられ、例えば、(メタ)アクリル系、スチレン系、シロキサン系、シクロオレフィン系、メチルペンテン系、アミド系、および、芳香族エステル系からなる群から選択される骨格が好ましい。
 これらのうち、(メタ)アクリル系、シロキサン系、および、シクロオレフィン系からなる群から選択される骨格がより好ましく、(メタ)アクリル系骨格がさらに好ましい。
The structure of the main chain of the repeating unit having a crosslinkable group is not particularly limited, and known structures can be mentioned, for example, (meth) acrylic type, styrene type, siloxane type, cycloolefin type, methylpentene type, amide type, and the like. And a skeleton selected from the group consisting of aromatic ester systems is preferred.
Of these, a skeleton selected from the group consisting of (meth) acrylic type, siloxane type, and cycloolefin type is more preferable, and (meth) acrylic type skeleton is further preferable.
 架橋性基を有する繰り返し単位の具体例としては、以下が挙げられる。 Specific examples of the repeating unit having a crosslinkable group include the following.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 特定共重合体における架橋性基を有する繰り返し単位の含有量は特に限定されず、上層に形成される光学異方性層の液晶配向性がより良好となる理由から、光配向性ポリマーの全繰り返し単位に対して、10~60質量%が好ましく、20~50質量%がより好ましい。 The content of the repeating unit having a crosslinkable group in the specific copolymer is not particularly limited, and the photo-oriented polymer is fully repeated because the liquid crystal orientation of the optically anisotropic layer formed on the upper layer becomes better. It is preferably 10 to 60% by mass, more preferably 20 to 50% by mass, based on the unit.
 上記以外の他の繰り返し単位を形成するモノマー(ラジカル重合性単量体)としては、例えば、アクリル酸エステル化合物、メタクリル酸エステル化合物、マレイミド化合物、アクリルアミド化合物、アクリロニトリル、マレイン酸無水物、スチレン化合物、および、ビニル化合物が挙げられる。 Examples of the monomer (radical polymerizable monomer) forming other repeating units other than the above include acrylic acid ester compound, methacrylic acid ester compound, maleimide compound, acrylamide compound, acrylonitrile, maleic anhydride, styrene compound, and the like. And vinyl compounds.
 本発明の光配向性ポリマーの合成法は特に限定されず、例えば、上述した式(1)で表される基を有する繰り返し単位を形成するモノマー、上述した光反応性基を有する繰り返し単位を形成するモノマー、および、任意の他の繰り返し単位を形成するモノマーを混合し、有機溶剤中で、ラジカル重合開始剤を用いて重合することにより合成できる。 The method for synthesizing the photo-orientating polymer of the present invention is not particularly limited, and for example, a monomer forming a repeating unit having a group represented by the above-mentioned formula (1) and a repeating unit having the above-mentioned photoreactive group are formed. It can be synthesized by mixing a monomer to be polymerized and a monomer forming any other repeating unit and polymerizing in an organic solvent using a radical polymerization initiator.
 本発明の光配向性ポリマーの重量平均分子量(Mw)は特に限定されないが、上層に形成される光学異方性層の液晶配向性がより良好となる理由から、25000以上であることが好ましく、25000~500000がより好ましく、25000~300000が更に好ましく、30000~150000が特に好ましい。
 ここで、光配向性ポリマーおよび後述する界面活性剤における重量平均分子量は、以下に示す条件でゲル浸透クロマトグラフ(GPC)法により測定された値である。
 ・溶媒(溶離液):THF(テトラヒドロフラン)
 ・装置名:TOSOH HLC-8320GPC
 ・カラム:TOSOH TSKgel Super HZM-H(4.6mm×15cm)を3本接続して使用
 ・カラム温度:40℃
 ・試料濃度:0.1質量%
 ・流速:1.0ml/min
 ・校正曲線:TOSOH製TSK標準ポリスチレン Mw=2800000~1050(Mw/Mn=1.03~1.06)までの7サンプルによる校正曲線を使用
The weight average molecular weight (Mw) of the photo-oriented polymer of the present invention is not particularly limited, but is preferably 25,000 or more because the liquid crystal orientation of the optically anisotropic layer formed on the upper layer becomes better. 25,000 to 500,000 is more preferable, 25,000 to 300,000 is further preferable, and 30,000 to 150,000 is particularly preferable.
Here, the weight average molecular weight of the photo-oriented polymer and the surfactant described later is a value measured by a gel permeation chromatography (GPC) method under the conditions shown below.
-Solvent (eluent): THF (tetrahydrofuran)
-Device name: TOSOH HLC-8320GPC
-Column: Use by connecting three TOSOH TSKgel Super HZM-H (4.6 mm x 15 cm) -Column temperature: 40 ° C
-Sample concentration: 0.1% by mass
-Flow velocity: 1.0 ml / min
-Calibration curve: TOSOH TSK standard polystyrene Mw = 2800000 to 1050 (Mw / Mn = 1.03 to 1.06) 7 samples calibration curve is used.
 〔界面活性剤〕
 本発明の組成物が含有する界面活性剤(以下、形式的に「本発明の界面活性剤」とも略す。)は、フッ素原子またはケイ素原子を有し、かつ、重量平均分子量が10000以下となる界面活性剤である。
[Surfactant]
The surfactant contained in the composition of the present invention (hereinafter, formally abbreviated as "surfactant of the present invention") has a fluorine atom or a silicon atom and has a weight average molecular weight of 10,000 or less. It is a surfactant.
 フッ素原子を有する界面活性剤としては、例えば、従来公知のフッ素系界面活性剤のうち、重量平均分子量が10000以下のものが挙げられる。
 また、ケイ素原子を有する界面活性剤としては、例えば、従来公知のシリコーン系界面活性剤のうち、重量平均分子量が10000以下のものが挙げられる。
Examples of the surfactant having a fluorine atom include those having a weight average molecular weight of 10,000 or less among conventionally known fluorine-based surfactants.
Further, examples of the surfactant having a silicon atom include those having a weight average molecular weight of 10,000 or less among conventionally known silicone-based surfactants.
 本発明の界面活性剤の重量平均分子量(Mw)は、下層形成時のハジキの発生をより抑制でき、上層に形成される光学異方性層の液晶配向性がより良好となる理由から、1000~8000が好ましく、1000~6000がより好ましく、1300~4000が更に好ましい。 The weight average molecular weight (Mw) of the surfactant of the present invention is 1000 because the generation of repellent during the formation of the lower layer can be further suppressed and the liquid crystal orientation of the optically anisotropic layer formed in the upper layer becomes better. It is preferably from 8000 to 8000, more preferably from 1000 to 6000, and even more preferably from 1300 to 4000.
 本発明の界面活性剤は、下層形成時のハジキの発生をより抑制できる理由から、パーフルオロポリエーテル構造を有していることが好ましく、下記式(II)で表される構造を有していることがより好ましい。
 -(OCF(OCFCF(OCFCFCF(OCFCFCFCF(OCF(CF)CF- ・・・(II)
 ここで、式(II)中、m、n、p、qおよびrは、それぞれ独立に、0~60の整数を表し、m、n、p、qおよびrの少なくとも1つは、2~60の整数を表す。
The surfactant of the present invention preferably has a perfluoropolyether structure, and has a structure represented by the following formula (II), for the reason that the generation of repellent during the formation of the lower layer can be further suppressed. It is more preferable to have.
-(OCF 2 ) m (OCF 2 CF 2 ) n (OCF 2 CF 2 CF 2 ) p (OCF 2 CF 2 CF 2 CF 2 ) q (OCF (CF 3 ) CF 2 ) r -... (II)
Here, in formula (II), m, n, p, q and r each independently represent an integer of 0 to 60, and at least one of m, n, p, q and r is 2 to 60. Represents an integer of.
 本発明の界面活性剤は、更に、ホスファゼン基を有していることが好ましい。例えば、特開2019-19278号公報に記載のホスファゼン基含有パーフルオロポリエーテル化合物を好適に用いることができる。 The surfactant of the present invention preferably further has a phosphazene group. For example, the phosphazene group-containing perfluoropolyether compound described in JP-A-2019-19278 can be preferably used.
 本発明においては、上記界面活性剤の含有量は、上記光配向性ポリマーの質量に対して0.1~100質量%であることが好ましく、1.5~50質量%であることがより好ましく、2.5~25質量%であることが更に好ましい。 In the present invention, the content of the surfactant is preferably 0.1 to 100% by mass, more preferably 1.5 to 50% by mass, based on the mass of the photooriented polymer. , 2.5 to 25% by mass, more preferably.
 〔バインダー〕
 本発明の組成物は、更に、バインダーを含有していることが好ましい。
 上記バインダーの種類は特に限定されず、それ自体は重合反応性のない樹脂のみから構成されるような単に乾燥固化する樹脂(以下、「樹脂バインダー」ともいう。)であってもよく、重合性化合物であってもよい。
〔binder〕
The composition of the present invention preferably further contains a binder.
The type of the binder is not particularly limited, and it may be a resin that is simply dried and solidified (hereinafter, also referred to as "resin binder") that is composed only of a resin that does not have a polymerization reactivity, and is polymerizable. It may be a compound.
 <樹脂バインダー>
 樹脂バインダーとしては、例えば、エポキシ樹脂、ジアリルフタレート樹脂、シリコーン樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ポリイミド樹脂、ポリウレタン樹脂、メラミン樹脂、ユリア樹脂、アイオノマー樹脂、エチレンエチルアクリレート樹脂、アクリロニトリルアクリレートスチレン共重合樹脂、アクリロニトリルスチレン樹脂、アクリロニトリル塩化ポリエチレンスチレン共重合樹脂、エチレン酢ビ樹脂、エチレンビニルアルコール共重合樹脂、アクリロニトリルブタジエンスチレン共重合樹脂、塩化ビニル樹脂、塩素化ポリエチレン樹脂、ポリ塩化ビニリデン樹脂、酢酸セルロース樹脂、フッ素樹脂、ポリオキシメチレン樹脂、ポリアミド樹脂、ポリアリレート樹脂、熱可塑性ポリウレタンエラストマー、ポリエーテルエーテルケトン樹脂、ポリエーテルスルホン樹脂、ポリエチレン、ポリプロピレン、ポリカーボネート樹脂、ポリスチレン、ポリスチレンマレイン酸共重合樹脂、ポリスチレンアクリル酸共重合樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンサルファイド樹脂、ポリブタジエン樹脂、ポリブチレンテレフタレート樹脂、アクリル樹脂、メタクリル樹脂、メチルペンテン樹脂、ポリ乳酸、ポリブチレンサクシネート樹脂、ブチラール樹脂、ホルマール樹脂、ポリビニルアルコール、ポリビニルピロリドン、エチルセルロース、カルボキシメチルセルロース、ゼラチン、および、これらの共重合樹脂が挙げられる。
<Resin binder>
Examples of the resin binder include epoxy resin, diallyl phthalate resin, silicone resin, phenol resin, unsaturated polyester resin, polyimide resin, polyurethane resin, melamine resin, urea resin, ionomer resin, ethylene ethyl acrylate resin, and acrylonitrile acrylate styrene copolymer. Resin, acrylonitrile styrene resin, acrylonitrile polyethylene chloride styrene copolymer resin, ethylene vinegar resin, ethylene vinyl alcohol copolymer resin, acrylonitrile butadiene styrene copolymer resin, vinyl chloride resin, chlorinated polyethylene resin, polyvinylidene chloride resin, cellulose acetate resin , Fluorine resin, polyoxymethylene resin, polyamide resin, polyarylate resin, thermoplastic polyurethane elastomer, polyether ether ketone resin, polyether sulfone resin, polyethylene, polypropylene, polycarbonate resin, polystyrene, polystyrene maleic acid copolymer resin, polystyrene acrylic Acid copolymer resin, polyphenylene ether resin, polyphenylene sulfide resin, polybutadiene resin, polybutylene terephthalate resin, acrylic resin, methacrylic resin, methylpentene resin, polylactic acid, polybutylene succinate resin, butyral resin, formal resin, polyvinyl alcohol, polyvinyl Examples thereof include pyrrolidone, ethyl cellulose, carboxymethyl cellulose, gelatin, and copolymer resins thereof.
 <重合性化合物>
 重合性化合物としては、例えば、エポキシ系モノマー、(メタ)アクリル系モノマー、オキセタニル系モノマーが挙げられ、エポキシ系モノマーまたは(メタ)アクリル系モノマーが好ましい。
 また、重合性化合物として、重合性液晶化合物を用いてもよい。
<Polymerizable compound>
Examples of the polymerizable compound include an epoxy-based monomer, a (meth) acrylic-based monomer, and an oxetanyl-based monomer, and an epoxy-based monomer or a (meth) acrylic-based monomer is preferable.
Moreover, you may use a polymerizable liquid crystal compound as a polymerizable compound.
 エポキシ系モノマーであるエポキシ基含有モノマーとしては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、臭素化ビスフェノールA型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ジフェニルエーテル型エポキシ樹脂、ハイドロキノン型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、フルオレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、トリスヒドロキシフェニルメタン型エポキシ樹脂、3官能型エポキシ樹脂、テトラフェニロールエタン型エポキシ樹脂、ジシクロペンタジエンフェノール型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、ビスフェノールA含核ポリオール型エポキシ樹脂、ポリプロピレングリコール型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、グリオキザール型エポキシ樹脂、脂環型エポキシ樹脂、および、複素環型エポキシ樹脂が挙げられる。 Examples of the epoxy group-containing monomer which is an epoxy-based monomer include bisphenol A type epoxy resin, bisphenol F type epoxy resin, brominated bisphenol A type epoxy resin, bisphenol S type epoxy resin, diphenyl ether type epoxy resin, and hydroquinone type epoxy resin. Naphthalene type epoxy resin, biphenyl type epoxy resin, fluorene type epoxy resin, phenol novolac type epoxy resin, orthocresol novolac type epoxy resin, trishydroxyphenylmethane type epoxy resin, trifunctional epoxy resin, tetraphenylol ethane type epoxy resin, Dicyclopentadienephenol type epoxy resin, hydrogenated bisphenol A type epoxy resin, bisphenol A nucleated polyol type epoxy resin, polypropylene glycol type epoxy resin, glycidyl ester type epoxy resin, glycidylamine type epoxy resin, glioxal type epoxy resin, alicyclic Examples thereof include a type epoxy resin and a heterocyclic epoxy resin.
 (メタ)アクリル系モノマーである、アクリレート系モノマーおよびメタクリレート系モノマーとしては、3官能モノマーとしては、トリメチロールプロパントリアクリレート、トリメチロールプロパンPO(プロピレンオキサイド)変性トリアクリレート、トリメチロールプロパンEO(エチレンオキサイド)変性トリアクリレート、トリメチロールプロパントリメタクリレート、および、ペンタエリスリトールトリアクリレートが挙げられる。また、4官能以上のモノマーとしては、例えば、ペンタエリスリトールテトラアクリレート、ペンタエリスリトールテトラメタクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールペンタメタクリレート、ジペンタエリスリトールヘキサアクリレート、および、ジペンタエリスリトールヘキサメタクリレートが挙げられる。 As the (meth) acrylic monomer, the acrylate-based monomer and the methacrylate-based monomer, the trifunctional monomer includes trimethylolpropane triacrylate, trimethylolpropane PO (propylene oxide) modified triacrylate, and trimethylolpropane EO (ethylene oxide). ) Modified triacrylate, trimethylolpropane trimethacrylate, and pentaerythritol triacrylate. Examples of the tetrafunctional or higher functional monomer include pentaerythritol tetraacrylate, pentaerythritol tetramethritol, dipentaerythritol pentaacrylate, dipentaerythritol pentamethacrylate, dipentaerythritol hexaacrylate, and dipentaerythritol hexamethacrylate. ..
 重合性液晶化合物は特に限定されず、例えば、ホメオトロピック配向、ホモジニアス配向、ハイブリッド配向およびコレステリック配向のいずれかの配向が可能な化合物が挙げられる。
 ここで、一般的に、液晶化合物はその形状から、棒状タイプと円盤状タイプとに分類できる。さらに、それぞれ低分子と高分子タイプとがある。高分子とは一般に重合度が100以上のものを指す(高分子物理・相転移ダイナミクス,土井 正男 著,2頁,岩波書店,1992)。本発明では、いずれの液晶化合物を用いることもできるが、棒状液晶化合物またはディスコティック液晶化合物(円盤状液晶化合物)が好ましい。また、モノマーであるか、重合度が100未満の比較的低分子量な液晶化合物が好ましい。
 また、重合性液晶化合物が有する重合性基としては、例えば、アクリロイル基、メタクリロイル基、エポキシ基、および、ビニル基が挙げられる。
 このような重合性液晶化合物を重合させることにより、液晶化合物の配向を固定することができる。なお、液晶化合物が重合によって固定された後においては、もはや液晶性を示す必要はない。
The polymerizable liquid crystal compound is not particularly limited, and examples thereof include compounds capable of any of homeotropic orientation, homogeneous orientation, hybrid orientation, and cholesteric orientation.
Here, in general, liquid crystal compounds can be classified into rod-shaped type and disk-shaped type according to their shapes. In addition, there are small molecule and high molecular types, respectively. A polymer generally refers to a polymer having a degree of polymerization of 100 or more (Polymer Physics / Phase Transition Dynamics, Masao Doi, p. 2, Iwanami Shoten, 1992). In the present invention, any liquid crystal compound can be used, but a rod-shaped liquid crystal compound or a discotic liquid crystal compound (disk-shaped liquid crystal compound) is preferable. Further, a liquid crystal compound which is a monomer or has a relatively low molecular weight with a degree of polymerization of less than 100 is preferable.
Examples of the polymerizable group contained in the polymerizable liquid crystal compound include an acryloyl group, a methacryloyl group, an epoxy group, and a vinyl group.
By polymerizing such a polymerizable liquid crystal compound, the orientation of the liquid crystal compound can be fixed. After the liquid crystal compound is fixed by polymerization, it is no longer necessary to exhibit liquid crystallinity.
 棒状液晶化合物としては、例えば、特表平11-513019号公報の請求項1または特開2005-289980号公報の段落[0026]~[0098]に記載のものを好ましく、ディスコティック液晶化合物としては、例えば、特開2007-108732号公報の段落[0020]~[0067]または特開2010-244038号公報の段落[0013]~[0108]に記載のものを好ましい。 As the rod-shaped liquid crystal compound, for example, those described in claim 1 of JP-A-11-513019 or paragraphs [0026] to [0998] of JP-A-2005-289980 are preferable, and the discotic liquid crystal compound is preferably a discotic liquid crystal compound. For example, those described in paragraphs [0020] to [0067] of JP-A-2007-108732 or paragraphs [0013] to [0108] of JP-A-2010-2404038 are preferable.
 上記重合性液晶化合物として、逆波長分散性の液晶化合物を用いることができる。
 ここで、本明細書において「逆波長分散性」の液晶化合物とは、これを用いて作製された位相差フィルムの特定波長(可視光範囲)における面内のレターデーション(Re)値を測定した際に、測定波長が大きくなるにつれてRe値が同等または高くなるものをいう。
As the polymerizable liquid crystal compound, a liquid crystal compound having a reverse wavelength dispersibility can be used.
Here, in the present specification, the liquid crystal compound having "reverse wavelength dispersibility" is a retardation film produced by using the liquid crystal compound, and the in-plane retardation (Re) value at a specific wavelength (visible light range) is measured. In this case, it means that the Re value becomes equal or higher as the measurement wavelength becomes larger.
 逆波長分散性の液晶化合物は、上記のように逆波長分散性のフィルムを形成できるものであれば特に限定されず、例えば、特開2008-297210号公報に記載の一般式(I)で表される化合物(特に、段落[0034]~[0039]に記載の化合物)、特開2010-084032号公報に記載の一般式(1)で表される化合物(特に、段落[0067]~[0073]に記載の化合物)、および、特開2016-081035号公報に記載の一般式(1)で表される化合物(特に、段落[0043]~[0055]に記載の化合物)が挙げられる。
 さらに、特開2011-006360号公報の段落[0027]~[0100]、特開2011-006361号公報の段落[0028]~[0125]、特開2012-207765号公報の段落[0034]~[0298]、特開2012-077055号公報の段落[0016]~[0345]、WO12/141245号公報の段落[0017]~[0072]、WO12/147904号公報の段落[0021]~[0088]、WO14/147904号公報の段落[0028]~[0115]に記載の化合物が挙げられる。
The reverse wavelength dispersible liquid crystal compound is not particularly limited as long as it can form a reverse wavelength dispersible film as described above, and is represented by, for example, the general formula (I) described in JP-A-2008-297210. (In particular, the compounds described in paragraphs [0034] to [0039]), and compounds represented by the general formula (1) described in JP-A-2010-084032 (particularly, paragraphs [0067] to [0073]. ], And compounds represented by the general formula (1) described in JP-A-2016-081035 (particularly, compounds described in paragraphs [0043] to [0055]).
Further, paragraphs [0027] to [0100] of JP2011-006360, paragraphs [0028] to [0125] of JP2011-006361, and paragraphs [0034] to [0034] to [0034] to JP2012-207765. 0298], paragraphs [0016] to [0345] of JP2012-077055, paragraphs [0017] to [0072] of WO12 / 141245, paragraphs [0021] to [0088] of WO12 / 147904, Examples thereof include the compounds described in paragraphs [0028] to [0115] of WO14 / 147904.
 〔光酸発生剤〕
 本発明の組成物は、光配向性ポリマーとして上述した開裂型光配向性ポリマーを用いる場合には、光酸発生剤を含有していることが好ましい。
 光酸発生剤は特に限定されず、波長300nm以上、好ましくは波長300~450nmの活性光線に感応し、酸を発生する化合物が好ましい。また、波長300nm以上の活性光線に直接感応しない光酸発生剤についても、増感剤と併用することによって波長300nm以上の活性光線に感応し、酸を発生する化合物であれば、増感剤と組み合わせて好ましく用いることができる。
 光酸発生剤としては、pKaが4以下の酸を発生する光酸発生剤が好ましく、pKaが3以下の酸を発生する光酸発生剤がより好ましく、2以下の酸を発生する光酸発生剤がさらに好ましい。なお、本発明において、pKaは、基本的に25℃の水中におけるpKaを指す。水中で測定できないものは、測定に適する溶剤に変更し測定したものを指す。具体的には、化学便覧などに記載のpKaが参考にできる。pKaが3以下の酸としては、スルホン酸またはホスホン酸が好ましく、スルホン酸がより好ましい。
[Photoacid generator]
When the above-mentioned cleavage-type photo-oriented polymer is used as the photo-oriented polymer, the composition of the present invention preferably contains a photoacid generator.
The photoacid generator is not particularly limited, and a compound that is sensitive to active light having a wavelength of 300 nm or more, preferably a wavelength of 300 to 450 nm and generates an acid is preferable. Further, a photoacid generator that is not directly sensitive to active light having a wavelength of 300 nm or more can be used as a sensitizer if it is a compound that is sensitive to active light having a wavelength of 300 nm or more and generates an acid when used in combination with a sensitizer. It can be preferably used in combination.
As the photoacid generator, a photoacid generator that generates an acid having a pKa of 4 or less is preferable, a photoacid generator that generates an acid having a pKa of 3 or less is more preferable, and a photoacid generator that generates an acid of 2 or less is more preferable. The agent is more preferred. In the present invention, pKa basically refers to pKa in water at 25 ° C. Those that cannot be measured in water refer to those measured by changing to a solvent suitable for measurement. Specifically, pKa described in the Chemistry Handbook and the like can be referred to. As the acid having a pKa of 3 or less, sulfonic acid or phosphonic acid is preferable, and sulfonic acid is more preferable.
 光酸発生剤としては、例えば、オニウム塩化合物、トリクロロメチル-s-トリアジン類、スルホニウム塩、ヨードニウム塩、第四級アンモニウム塩類、ジアゾメタン化合物、イミドスルホネート化合物、および、オキシムスルホネート化合物が挙げられる。なかでも、オニウム塩化合物、イミドスルホネート化合物、または、オキシムスルホネート化合物が好ましく、オニウム塩化合物、または、オキシムスルホネート化合物がより好ましい。光酸発生剤は、1種単独または2種類以上を組み合わせて使用できる。 Examples of the photoacid generator include onium salt compounds, trichloromethyl-s-triazines, sulfonium salts, iodonium salts, quaternary ammonium salts, diazomethane compounds, imide sulfonate compounds, and oxime sulfonate compounds. Among them, an onium salt compound, an imide sulfonate compound, or an oxime sulfonate compound is preferable, and an onium salt compound or an oxime sulfonate compound is more preferable. The photoacid generator may be used alone or in combination of two or more.
 〔重合開始剤〕
 本発明の組成物は、バインダーとして重合性化合物を用いた場合には、重合開始剤を含有していることが好ましい。
 重合開始剤は特に限定されず、重合反応の形式に応じて、熱重合開始剤および光重合開始剤が挙げられる。
 重合開始剤としては、紫外線照射によって重合反応を開始可能な光重合開始剤が好ましい。
 光重合開始剤としては、例えば、α-カルボニル化合物(米国特許第2367661号、同2367670号の各明細書記載)、アシロインエーテル(米国特許第2448828号明細書記載)、α-炭化水素置換芳香族アシロイン化合物(米国特許第2722512号明細書記載)、多核キノン化合物(米国特許第3046127号、同2951758号の各明細書記載)、トリアリールイミダゾールダイマーとp-アミノフェニルケトンとの組み合わせ(米国特許第3549367号明細書記載)、アクリジンおよびフェナジン化合物(特開昭60-105667号公報、米国特許第4239850号明細書記載)、オキサジアゾール化合物(米国特許第4212970号明細書記載)、および、アシルフォスフィンオキシド化合物(特公昭63-040799号公報、特公平5-029234号公報、特開平10-095788号公報、および、特開平10-029997号公報記載)が挙げられる。
[Polymerization initiator]
When a polymerizable compound is used as the binder, the composition of the present invention preferably contains a polymerization initiator.
The polymerization initiator is not particularly limited, and examples thereof include a thermal polymerization initiator and a photopolymerization initiator depending on the type of the polymerization reaction.
As the polymerization initiator, a photopolymerization initiator capable of initiating a polymerization reaction by irradiation with ultraviolet rays is preferable.
Examples of the photopolymerization initiator include α-carbonyl compounds (described in US Pat. Nos. 2,376,661 and 236,670), acidoin ethers (described in US Pat. No. 2,448,828), and α-hydrogen-substituted fragrances. Group acidoine compounds (described in US Pat. No. 2722512), polynuclear quinone compounds (described in US Pat. 3549367 (described in US Pat. No. 3,549,67), aclysine and phenazine compounds (Japanese Patent Laid-Open No. 60-105667, US Pat. No. 4,239,850), oxadiazole compounds (described in US Pat. No. 4,212,970), and acyl. Examples thereof include phosphine oxide compounds (described in JP-A-63-040799, JP-A-5-209234, JP-A-10-095788, and JP-A-10-02997).
 〔溶媒〕
 本発明の組成物は、下層を形成する作業性の点から、溶媒を含有していることが好ましい。
 溶媒としては、例えば、ケトン類(例えば、アセトン、2-ブタノン、メチルイソブチルケトン、シクロペンタノン、および、シクロヘキサノン)、エーテル類(例えば、ジオキサン、および、テトラヒドロフラン)、脂肪族炭化水素類(例えば、ヘキサン)、脂環式炭化水素類(例えば、シクロヘキサン)、芳香族炭化水素類(例えば、トルエン、キシレン、および、トリメチルベンゼン)、ハロゲン化炭素類(例えば、ジクロロメタン、ジクロロエタン、ジクロロベンゼン、および、クロロトルエン)、エステル類(例えば、酢酸メチル、酢酸エチル、および、酢酸ブチル)、水、アルコール類(例えば、エタノール、イソプロパノール、ブタノール、および、シクロヘキサノール)、セロソルブ類(例えば、メチルセロソルブ、および、エチルセロソルブ)、セロソルブアセテート類、スルホキシド類(例えば、ジメチルスルホキシド)、アミド類(例えば、ジメチルホルムアミド、および、ジメチルアセトアミド)が挙げられる。
 溶媒を1種単独で用いてもよく、2種以上を併用してもよい。
〔solvent〕
The composition of the present invention preferably contains a solvent from the viewpoint of workability for forming the lower layer.
Solvents include, for example, ketones (eg, acetone, 2-butanone, methylisobutylketone, cyclopentanone, and cyclohexanone), ethers (eg, dioxane, and tetrahydrofuran), aliphatic hydrocarbons (eg, eg,). (Hexane), alicyclic hydrocarbons (eg, cyclohexane), aromatic hydrocarbons (eg, toluene, xylene, and trimethylbenzene), carbon halides (eg, dichloromethane, dichloroethane, dichlorobenzene, and chloro). (Toluene), esters (eg, methyl acetate, ethyl acetate, and butyl acetate), water, alcohols (eg, ethanol, isopropanol, butanol, and cyclohexanol), cellosolves (eg, methylserosolves, and ethyl). Serosolves), cellosolve acetates, sulfoxides (eg, dimethylsulfoxides), amides (eg, dimethylformamides, and dimethylacetamides).
One type of solvent may be used alone, or two or more types may be used in combination.
[組成物層]
 本発明の組成物層、すなわち下層は、上述した本発明の組成物を用いて形成され、その表面が配向制御能を有する層である。
 具体的には、本発明の組成物層は、上述した本発明の組成物を塗布した後、光配向処理を施して形成される層である。つまり、本発明の組成物層を形成する方法は、上述した本発明の組成物を塗布して得られた塗膜に対して光配向処理を施して、組成物層を形成する工程(工程1)を有することが好ましい。
 なお、配向制御能を有するとは、組成物層上に配置される液晶化合物を所定の方向に配向させる機能を有することを意味する。
 本発明の組成物が、光配向性ポリマーとして開裂型光配向性ポリマーを用いる場合、上記工程1においては、上述した本発明の組成物を用いて得られる塗膜に対して、塗膜中の光酸発生剤から酸を発生させる処理(以後、単に「酸発生処理」ともいう。)を実施した後、光配向処理を施して、組成物層を形成することが好ましい。
 また、本発明の組成物が重合性化合物を含む場合、上記工程1においては、上述した本発明の組成物を用いて得られる塗膜に対して、硬化処理を施した後、光配向処理を施して、組成物層を形成することが好ましい。
 なお、硬化処理と、酸発生処理とは同時に実施してもよい。
[Composition layer]
The composition layer of the present invention, that is, the lower layer is a layer formed by using the composition of the present invention described above, and the surface thereof has an orientation control ability.
Specifically, the composition layer of the present invention is a layer formed by applying the above-mentioned composition of the present invention and then subjecting it to a photoalignment treatment. That is, the method for forming the composition layer of the present invention is a step of forming the composition layer by subjecting the coating film obtained by applying the composition of the present invention described above to a photoalignment treatment (step 1). ) Is preferable.
In addition, having an orientation control ability means having a function of orienting a liquid crystal compound arranged on a composition layer in a predetermined direction.
When the composition of the present invention uses a cleaved photo-oriented polymer as the photo-oriented polymer, in the above step 1, the coating film obtained by using the above-mentioned composition of the present invention is contained in the coating film. It is preferable to perform a treatment for generating an acid from a photoacid generator (hereinafter, also simply referred to as “acid generation treatment”) and then a photoalignment treatment to form a composition layer.
When the composition of the present invention contains a polymerizable compound, in the above step 1, the coating film obtained by using the composition of the present invention described above is subjected to a curing treatment and then a photoalignment treatment. It is preferable to apply to form a composition layer.
The curing treatment and the acid generation treatment may be carried out at the same time.
 <塗膜の形成>
 本発明の組成物の塗膜を形成する方法は特に限定されず、例えば、支持体上に組成物を塗布して、必要に応じて乾燥処理を施す方法が挙げられる。
 支持体は、後段で詳述する。
 また、支持体上には配向層が配置されていてもよい。
 組成物を塗布する方法は特に限定されず、塗布方法としては、例えば、スピンコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法、および、ダイコート法が挙げられる。
<Formation of coating film>
The method for forming the coating film of the composition of the present invention is not particularly limited, and examples thereof include a method of applying the composition on a support and performing a drying treatment as necessary.
The support will be described in detail later.
Further, an orientation layer may be arranged on the support.
The method of applying the composition is not particularly limited, and examples of the application method include a spin coating method, an air knife coating method, a curtain coating method, a roller coating method, a wire bar coating method, a gravure coating method, and a die coating method. Can be mentioned.
 <光配向処理>
 本発明の組成物の塗膜(硬化処理が施された組成物の硬化膜を含む)に対して、実施される光配向処理の方法は特に限定されず、公知の方法が挙げられる。
 光配向処理としては、例えば、本発明の組成物の塗膜(硬化処理が施された、組成物の硬化膜を含む)に対して、偏光または塗膜表面に対して斜め方向から非偏光を照射する方法が挙げられる。
<Photo-alignment treatment>
The method of photoalignment treatment performed on the coating film of the composition of the present invention (including the cured film of the cured composition) is not particularly limited, and known methods can be mentioned.
As the photoalignment treatment, for example, the coating film of the composition of the present invention (including the cured film of the composition that has been cured) is polarized or depolarized from an oblique direction with respect to the surface of the coating film. A method of irradiating can be mentioned.
 光配向処理において、照射する偏光は特に限定されず、例えば、直線偏光、円偏光、および、楕円偏光が挙げられ、直線偏光が好ましい。
 また、非偏光を照射する「斜め方向」とは、塗膜表面の法線方向に対して極角θ(0<θ<90°)傾けた方向である限り、特に限定されず、目的に応じて適宜選択できるが、θが20~80°が好ましい。
In the photo-alignment treatment, the polarized light to be irradiated is not particularly limited, and examples thereof include linearly polarized light, circularly polarized light, and elliptically polarized light, and linearly polarized light is preferable.
Further, the "diagonal direction" of irradiating the non-polarized film is not particularly limited as long as it is tilted by a polar angle θ (0 <θ <90 °) with respect to the normal direction of the coating film surface, depending on the purpose. However, it is preferable that θ is 20 to 80 °.
 偏光または非偏光における波長としては、光配向性基が感光する光であれば特に限定されず、例えば、紫外線、近紫外線、および、可視光線が挙げられ、250~450nmの近紫外線が好ましい。
 また、偏光または非偏光を照射するための光源としては、例えば、キセノンランプ、高圧水銀ランプ、超高圧水銀ランプ、および、メタルハライドランプが挙げられる。このような光源から得た紫外線または可視光線に対して、干渉フィルタまたは色フィルタなどを用いることで、照射する波長範囲を限定できる。また、これらの光源からの光に対して、偏光フィルタまたは偏光プリズムを用いることで、直線偏光を得ることができる。
The wavelength in polarized light or unpolarized light is not particularly limited as long as it is light to which the photoaligning group is sensitive, and examples thereof include ultraviolet rays, near-ultraviolet rays, and visible light, and near-ultraviolet rays having a diameter of 250 to 450 nm are preferable.
Examples of the light source for irradiating polarized or unpolarized light include a xenon lamp, a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, and a metal halide lamp. By using an interference filter, a color filter, or the like for ultraviolet rays or visible rays obtained from such a light source, the wavelength range to be irradiated can be limited. Further, linearly polarized light can be obtained by using a polarizing filter or a polarizing prism for the light from these light sources.
 偏光または非偏光の積算光量は特に限定されず、1~300mJ/cmが好ましく、5~100mJ/cmがより好ましい。
 偏光または非偏光の照度は特に限定されず、0.1~300mW/cmが好ましく、1~100mW/cmがより好ましい。
The amount of polarized or unpolarized integrated light is not particularly limited, and is preferably 1 to 300 mJ / cm 2 and more preferably 5 to 100 mJ / cm 2 .
The illuminance of the polarized light or unpolarized light is not particularly limited, preferably 0.1 ~ 300mW / cm 2, more preferably 1 ~ 100mW / cm 2.
 <硬化処理>
 硬化処理としては、光照射処理または加熱処理が挙げられる。
 また、硬化処理の条件は特に限定されないが、光照射による重合においては、紫外線を用いることが好ましい。照射量は、10mJ/cm~50J/cmが好ましく、20mJ/cm~5J/cmがより好ましく、30mJ/cm~3J/cmがさらに好ましく、50~1000mJ/cmが特に好ましい。また、重合反応を促進するため、加熱条件下で実施してもよい。
<Hardening process>
Examples of the curing treatment include light irradiation treatment and heat treatment.
The conditions of the curing treatment are not particularly limited, but it is preferable to use ultraviolet rays in the polymerization by light irradiation. Irradiation dose is preferably 10mJ / cm 2 ~ 50J / cm 2, more preferably 20mJ / cm 2 ~ 5J / cm 2, more preferably 30mJ / cm 2 ~ 3J / cm 2, particularly 50 ~ 1000mJ / cm 2 preferable. Further, in order to promote the polymerization reaction, it may be carried out under heating conditions.
 <酸発生処理>
 塗膜中の光酸発生剤から酸を発生させる処理とは、本発明の組成物中に含まれている任意の光酸発生剤が感光する光を照射して、酸を発生させる処理である。本処理を実施することにより、開裂型光配向性ポリマーにおいて開裂基での開裂が進行し、フッ素原子またはケイ素原子を含む基が脱離する。
 上記処理で実施される光照射処理は、光酸発生剤が感光する処理であればよく、例えば、紫外線を照射する方法が挙げられる。光源としては、高圧水銀ランプおよびメタルハライドランプなどの紫外線を発光するランプを用いることが可能である。また、照射量は、10mJ/cm~50J/cmが好ましく、20mJ/cm~5J/cmがより好ましく、30mJ/cm~3J/cmがさらに好ましく、50~1000mJ/cmが特に好ましい。
<Acid generation treatment>
The treatment for generating an acid from a photoacid generator in a coating film is a treatment for generating an acid by irradiating light that is exposed to an arbitrary photoacid generator contained in the composition of the present invention. .. By carrying out this treatment, cleavage at the cleaving group proceeds in the cleaving type photo-oriented polymer, and the group containing a fluorine atom or a silicon atom is eliminated.
The light irradiation treatment carried out in the above treatment may be any treatment in which the photoacid generator is exposed to light, and examples thereof include a method of irradiating ultraviolet rays. As the light source, a lamp that emits ultraviolet rays, such as a high-pressure mercury lamp and a metal halide lamp, can be used. The irradiation amount is preferably 10mJ / cm 2 ~ 50J / cm 2, more preferably 20mJ / cm 2 ~ 5J / cm 2, more preferably 30mJ / cm 2 ~ 3J / cm 2, 50 ~ 1000mJ / cm 2 Is particularly preferable.
 組成物層の厚みは特に限定されず、上層に形成される光学異方性層の液晶配向性がより良好となる理由から、0.1~10μmが好ましく、0.3~3μmがより好ましい。 The thickness of the composition layer is not particularly limited, and 0.1 to 10 μm is preferable, and 0.3 to 3 μm is more preferable, because the liquid crystal orientation of the optically anisotropic layer formed on the upper layer is better.
[光学積層体]
 本発明の光学積層体は、本発明の組成物層と、組成物層上に設けられる光学異方性層とを有する。
 本発明の光学積層体の好適な態様の一つとしては、組成物層上に設けられる光学異方性層が液晶化合物の重合体を含有し、また、組成物層と光学異方性層とが互いに隣接して積層されている態様が挙げられる。
 また、本発明の光学積層体は、組成物層を支持する支持体を有していることが好ましい。
[Optical laminate]
The optical laminate of the present invention has a composition layer of the present invention and an optically anisotropic layer provided on the composition layer.
As one of the preferred embodiments of the optical laminate of the present invention, the optically anisotropic layer provided on the composition layer contains a polymer of a liquid crystal compound, and the composition layer and the optically anisotropic layer There is an embodiment in which the two are laminated adjacent to each other.
Further, the optical laminate of the present invention preferably has a support that supports the composition layer.
 本発明の光学積層体は、円偏光板や液晶表示装置の補償層として利用できる有用性から、光学異方性層がポジティブAプレートであり、組成物層がポジティブCプレートであることが好ましい。ここで、ポジティブAプレート(正のAプレート)とポジティブCプレート(正のCプレート)は以下のように定義される。
 フィルム面内の遅相軸方向(面内での屈折率が最大となる方向)の屈折率をnx、面内の遅相軸と面内で直交する方向の屈折率をny、厚み方向の屈折率をnzとしたとき、ポジティブAプレートは式(A1)の関係を満たすものであり、ポジティブCプレートは式(C1)の関係を満たすものである。なお、ポジティブAプレートはRthが正の値を示し、ポジティブCプレートはRthが負の値を示す。
 式(A1)  nx>ny≒nz
 式(C1)  nz>nx≒ny
 なお、上記「≒」とは、両者が完全に同一である場合だけでなく、両者が実質的に同一である場合も包含する。
 「実質的に同一」とは、ポジティブAプレートでは、例えば、(ny-nz)×d(ただし、dはフィルムの厚みである)が、-10~10nm、好ましくは-5~5nmの場合も「ny≒nz」に含まれ、(nx-nz)×dが、-10~10nm、好ましくは-5~5nmの場合も「nx≒nz」に含まれる。また、ポジティブCプレートでは、例えば、(nx-ny)×d(ただし、dはフィルムの厚みである)が、0~10nm、好ましくは0~5nmの場合も「nx≒ny」に含まれる。
In the optical laminate of the present invention, the optically anisotropic layer is preferably a positive A plate and the composition layer is preferably a positive C plate because of its usefulness as a compensating layer for a circularly polarizing plate or a liquid crystal display device. Here, the positive A plate (positive A plate) and the positive C plate (positive C plate) are defined as follows.
The refractive index in the slow axis direction in the film plane (the direction in which the refractive index in the plane is maximized) is nx, the refractive index in the direction orthogonal to the slow phase axis in the plane in the plane is ny, and the refraction in the thickness direction. When the rate is nz, the positive A plate satisfies the relation of the formula (A1), and the positive C plate satisfies the relation of the formula (C1). The positive A plate shows a positive value for Rth, and the positive C plate shows a negative value for Rth.
Equation (A1) nx> ny≈nz
Equation (C1) nz> nx≈ny
The above "≈" includes not only the case where both are completely the same, but also the case where both are substantially the same.
“Substantially the same” means that in a positive A plate, for example, (ny-nz) × d (where d is the thickness of the film) is -10 to 10 nm, preferably -5 to 5 nm. It is included in "ny≈nz", and when (nx-nz) xd is -10 to 10 nm, preferably -5 to 5 nm, it is also included in "nx≈nz". Further, in the positive C plate, for example, when (nx−ny) × d (where d is the thickness of the film) is 0 to 10 nm, preferably 0 to 5 nm, it is also included in “nx≈ny”.
 光学異方性層がポジティブAプレートである場合、λ/4板として機能する観点から、Re(550)が100~180nmであることが好ましく、120~160nmであることがより好ましく、130~150nmであることが更に好ましい。
 ここで、「λ/4板」とは、λ/4機能を有する板であり、具体的には、ある特定の波長の直線偏光を円偏光に(または円偏光を直線偏光に)変換する機能を有する板である。
 以下、本発明の光学積層体の好適態様について詳述する。
When the optically anisotropic layer is a positive A plate, Re (550) is preferably 100 to 180 nm, more preferably 120 to 160 nm, and 130 to 150 nm from the viewpoint of functioning as a λ / 4 plate. Is more preferable.
Here, the "λ / 4 plate" is a plate having a λ / 4 function, and specifically, a function of converting linearly polarized light having a specific wavelength into circularly polarized light (or converting circularly polarized light into linearly polarized light). It is a plate having.
Hereinafter, preferred embodiments of the optical laminate of the present invention will be described in detail.
 〔支持体〕
 支持体としては、例えば、ガラス基板およびポリマーフィルムが挙げられる。
 ポリマーフィルムの材料としては、セルロース系ポリマー;ポリメチルメタクリレート、ラクトン環含有重合体などのアクリル酸エステル重合体を有するアクリル系ポリマー;熱可塑性ノルボルネン系ポリマー;ポリカーボネート系ポリマー;ポリエチレンテレフタレート、および、ポリエチレンナフタレートなどのポリエステル系ポリマー;ポリスチレン、アクリロニトリルスチレン共重合体などのスチレン系ポリマー;ポリエチレン、ポリプロピレン、および、エチレン・プロピレン共重合体などのポリオレフィン系ポリマー;、塩化ビニル系ポリマー;ナイロン、芳香族ポリアミドなどのアミド系ポリマー;イミド系ポリマー;スルホン系ポリマー;ポリエーテルスルホン系ポリマー;ポリエーテルエーテルケトン系ポリマー;ポリフェニレンスルフィド系ポリマー;塩化ビニリデン系ポリマー;ビニルアルコール系ポリマー;ビニルブチラール系ポリマー;アリレート系ポリマー;ポリオキシメチレン系ポリマー;エポキシ系ポリマー;またはこれらのポリマーを混合したポリマーが挙げられる。
[Support]
Examples of the support include a glass substrate and a polymer film.
Materials for the polymer film include cellulose-based polymers; acrylic polymers having acrylic acid ester polymers such as polymethylmethacrylate and lactone ring-containing polymers; thermoplastic norbornene-based polymers; polycarbonate-based polymers; polyethylene terephthalates, and polyethylene na. Polyester polymers such as phthalate; styrene polymers such as polystyrene and acrylonitrile styrene copolymers; polyolefin polymers such as polyethylene, polypropylene and ethylene / propylene copolymers; vinyl chloride polymers; nylon, aromatic polyamides, etc. Amid polymer; imide polymer; sulfone polymer; polyether sulfone polymer; polyether ether ketone polymer; polyphenylene sulfide polymer; vinylidene chloride polymer; vinyl alcohol polymer; vinyl butyral polymer; allylate polymer; Polyoxymethylene-based polymers; epoxy-based polymers; or polymers in which these polymers are mixed can be mentioned.
 支持体の厚みは特に限定されず、5~200μmが好ましく、10~100μmがより好ましく、20~90μmがさらに好ましい。 The thickness of the support is not particularly limited, and is preferably 5 to 200 μm, more preferably 10 to 100 μm, and even more preferably 20 to 90 μm.
 〔組成物層〕
 組成物層は、上述した本発明の組成物層である。組成物層がポジティブCプレートである場合、重合性液晶化合物を有することが好ましい。重合性液晶化合物は、棒状液晶化合物であっても、逆波長分散性の液晶化合物であってもよい。
[Composition layer]
The composition layer is the composition layer of the present invention described above. When the composition layer is a positive C plate, it preferably has a polymerizable liquid crystal compound. The polymerizable liquid crystal compound may be a rod-shaped liquid crystal compound or a liquid crystal compound having an inverse wavelength dispersion.
 〔光学異方性層〕
 光学異方性層は、重合性液晶化合物を含む重合性液晶組成物を用いて形成されることが好ましい。
 ここで、光学異方性層を形成するための重合性液晶組成物としては、例えば、本発明の組成物において任意成分として記載した重合性液晶化合物、重合開始剤および溶媒などを配合した組成物が挙げられる。光学異方性層がポジティブAプレートである場合、重合性液晶化合物として逆波長分散性の液晶化合物を含むことが好ましい。
[Optically anisotropic layer]
The optically anisotropic layer is preferably formed by using a polymerizable liquid crystal composition containing a polymerizable liquid crystal compound.
Here, as the polymerizable liquid crystal composition for forming the optically anisotropic layer, for example, a composition containing the polymerizable liquid crystal compound described as an optional component in the composition of the present invention, a polymerization initiator, a solvent and the like. Can be mentioned. When the optically anisotropic layer is a positive A plate, it is preferable to contain a liquid crystal compound having a reverse wavelength dispersion as the polymerizable liquid crystal compound.
 光学異方性層の厚みは特に限定されず、0.1~10μmが好ましく、0.5~5μmがより好ましい。 The thickness of the optically anisotropic layer is not particularly limited, and is preferably 0.1 to 10 μm, more preferably 0.5 to 5 μm.
[画像表示装置]
 本発明の画像表示装置は、本発明の組成物層または本発明の光学積層体を有する、画像表示装置である。
 本発明の画像表示装置に用いられる表示素子は特に限定されず、例えば、液晶セル、有機エレクトロルミネッセンス(以下、「EL」と略す。)表示パネル、および、プラズマディスプレイパネルが挙げられる。
 これらのうち、液晶セル、または、有機EL表示パネルが好ましく、液晶セルがより好ましい。すなわち、本発明の画像表示装置としては、表示素子として液晶セルを用いた液晶表示装置、または、表示素子として有機EL表示パネルを用いた有機EL表示装置が好ましい。
[Image display device]
The image display device of the present invention is an image display device having the composition layer of the present invention or the optical laminate of the present invention.
The display element used in the image display device of the present invention is not particularly limited, and examples thereof include a liquid crystal cell, an organic electroluminescence (hereinafter abbreviated as “EL”) display panel, and a plasma display panel.
Of these, a liquid crystal cell or an organic EL display panel is preferable, and a liquid crystal cell is more preferable. That is, as the image display device of the present invention, a liquid crystal display device using a liquid crystal cell as a display element or an organic EL display device using an organic EL display panel as a display element is preferable.
 〔液晶表示装置〕
 本発明の画像表示装置の一例である液晶表示装置は、上述した本発明の光学異方性層または本発明の光学積層体と、液晶セルとを有する液晶表示装置である。
 液晶表示装置に利用される液晶セルは、VA(Vertical Alignment)モード、OCB(Optically Compensated Bend)モード、IPS(In-Plane-Switching)モード、FFS(Fringe-Field-Switching)モード、又はTN(Twisted Nematic)モードであることが好ましいが、これらに限定されるものではない。
[Liquid crystal display]
The liquid crystal display device, which is an example of the image display device of the present invention, is a liquid crystal display device having the above-mentioned optically anisotropic layer of the present invention or the optical laminate of the present invention and a liquid crystal cell.
The liquid crystal cell used in the liquid crystal display device is a VA (Vertical Element) mode, an OCB (Optically Compensated Bend) mode, an IPS (In-Plane-Switching) mode, an FFS (Fringe-Field-Switching) mode, or a TN (Twisted) mode. The Nematic mode is preferred, but is not limited to these.
 〔有機EL表示装置〕
 本発明の画像表示装置の一例である有機EL表示装置としては、例えば、視認側から、偏光子、本発明の光学異方性層または本発明の光学積層体、および、有機EL表示パネルをこの順で有する態様が好適に挙げられる。
[Organic EL display device]
As the organic EL display device which is an example of the image display device of the present invention, for example, from the viewing side, the polarizer, the optically anisotropic layer of the present invention or the optical laminate of the present invention, and the organic EL display panel are used. Aspects having in order are preferably mentioned.
 <偏光子>
 上記偏光子は、光を特定の直線偏光に変換する機能を有する部材であれば特に限定されず、従来公知の吸収型偏光子および反射型偏光子を利用できる。
 吸収型偏光子としては、ヨウ素系偏光子、二色性染料を利用した染料系偏光子、およびポリエン系偏光子が挙げられる。ヨウ素系偏光子および染料系偏光子には、塗布型偏光子と延伸型偏光子とがあり、いずれも適用できる。
 また、基材上にポリビニルアルコール層を形成した積層フィルムの状態で延伸および染色を施すことで偏光子を得る方法としては、特許第5048120号公報、特許第5143918号公報、特許第4691205号公報、特許第4751481号公報、および、特許第4751486号公報に記載される方法が挙げられる。
 反射型偏光子としては、複屈折の異なる薄膜を積層した偏光子、ワイヤーグリッド型偏光子、および、選択反射域を有するコレステリック液晶と1/4波長板とを組み合わせた偏光子が挙げられる。
 これらのうち、密着性がより優れる点で、ポリビニルアルコール系樹脂(-CH-CHOH-を繰り返し単位として含むポリマー。特に、ポリビニルアルコールおよびエチレン-ビニルアルコール共重合体からなる群から選択される少なくとも1つ)を含む偏光子が好ましい。
<Polarizer>
The above-mentioned polarizer is not particularly limited as long as it is a member having a function of converting light into specific linearly polarized light, and conventionally known absorption-type polarizers and reflection-type polarizers can be used.
Examples of the absorption type polarizer include an iodine-based polarizer, a dye-based polarizer using a dichroic dye, and a polyene-based polarizer. The iodine-based polarizer and the dye-based polarizer include a coating type polarizing element and a stretching type polarizing element, and both can be applied.
Further, as a method for obtaining a polarizer by stretching and dyeing a laminated film having a polyvinyl alcohol layer formed on a substrate, Japanese Patent No. 5048120, Japanese Patent No. 5143918, Japanese Patent No. 46910205, and the like. Examples thereof include the methods described in Japanese Patent No. 4751481 and Japanese Patent No. 4751486.
Examples of the reflective polarizer include a polarizer in which thin films having different birefringences are laminated, a wire grid type polarizer, and a polarizer in which a cholesteric liquid crystal having a selective reflection region and a 1/4 wave plate are combined.
Among these, a polymer containing a polyvinyl alcohol-based resin (-CH 2- CHOH- as a repeating unit. In particular, at least selected from the group consisting of polyvinyl alcohol and ethylene-vinyl alcohol copolymers, in that the adhesion is more excellent. A polarizer containing (1) is preferable.
 偏光子の厚みは特に限定されず、3~60μmが好ましく、5~30μmがより好ましく、5~15μmがさらに好ましい。 The thickness of the polarizer is not particularly limited, and is preferably 3 to 60 μm, more preferably 5 to 30 μm, and even more preferably 5 to 15 μm.
 <有機EL表示パネル>
 有機EL表示パネルは、陽極、陰極の一対の電極間に発光層または発光層を含む複数の有機化合物薄膜を形成した部材であり、発光層のほか正孔注入層、正孔輸送層、電子注入層、電子輸送層、および、保護層などを有してもよく、またこれらの各層はそれぞれ他の機能を備えたものであってもよい。各層の形成にはそれぞれ種々の材料を用いることができる。
<Organic EL display panel>
The organic EL display panel is a member in which a plurality of organic compound thin films including a light emitting layer or a light emitting layer are formed between a pair of electrodes of an anode and a cathode. In addition to the light emitting layer, a hole injection layer, a hole transport layer, and an electron injection It may have a layer, an electron transport layer, a protective layer, and the like, and each of these layers may have other functions. Various materials can be used to form each layer.
 以下に、実施例を挙げて本発明をさらに詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、および、処理手順などは、本発明の趣旨を逸脱しない限り適宜変更できる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. The materials, amounts used, ratios, treatment contents, treatment procedures, etc. shown in the following examples can be appropriately changed as long as they do not deviate from the gist of the present invention. Therefore, the scope of the present invention should not be construed as limiting by the examples shown below.
 〔モノマーmA-1の合成〕
 100mLナスフラスコに、1,1-ジメトキシシクロヘキサン5.0g、2-ヒドロキシメタクリレート9.0g、1H,1H,2H,2H-パーフルオロオクタノール25.0g、ピリジニウムパラトルエンスルホナート0.87g、および、トルエン30mLを量りとり、40℃で1時間撹拌した。
 次いで、100mmHgの減圧下で40℃で4時間攪拌した。
 反応液を室温(23℃)まで冷却した後、飽和炭酸水素ナトリウム水で分液洗浄し、得られた有機層を無水硫酸マグネシウムで乾燥し、濃縮し、シリカゲルカラムクロマトグラフィーを行うことにより、以下に示すモノマーmA-1を無色液体として8.0g得た(収率40%)。
Figure JPOXMLDOC01-appb-C000016
[Synthesis of monomer mA-1]
In a 100 mL eggplant flask, 5.0 g of 1,1-dimethoxycyclohexane, 9.0 g of 2-hydroxymethacrylate, 1H, 1H, 2H, 2H-perfluorooctanol 25.0 g, pyridinium paratoluene sulfonate 0.87 g, and toluene 30 mL was weighed and stirred at 40 ° C. for 1 hour.
Then, the mixture was stirred at 40 ° C. for 4 hours under a reduced pressure of 100 mmHg.
The reaction mixture was cooled to room temperature (23 ° C.), washed separately with saturated aqueous sodium hydrogen carbonate solution, the obtained organic layer was dried over anhydrous magnesium sulfate, concentrated, and subjected to silica gel column chromatography. 8.0 g of the monomer mA-1 shown in (1) as a colorless liquid was obtained (yield 40%).
Figure JPOXMLDOC01-appb-C000016
 〔モノマーmA-2の合成〕
 国際公開第2018/216812号に記載の方法を参照して、以下に示すモノマーmA-2を合成した。
Figure JPOXMLDOC01-appb-C000017
[Synthesis of monomer mA-2]
The monomer mA-2 shown below was synthesized with reference to the method described in WO 2018/216812.
Figure JPOXMLDOC01-appb-C000017
 〔モノマーmB-1の合成〕
 撹拌羽根、温度計、滴下ロートおよび還流管を備えた2L三口フラスコに、trans-4-アミノシクロヘキサノール(50.0g)、トリエチルアミン(48.3g)、および、N,N-ジメチルアセトアミド(800g)を入れて、得られた混合液を氷冷下で撹拌した。
 次に、滴下ロートを用いてメタクリル酸クロリド(47.5g)を40分かけて上記フラスコ内に滴下し、滴下終了後、反応液を40℃で2時間撹拌した。
 反応液を室温(23℃)まで冷却した後、反応液を吸引ろ過して、析出した塩を除去した。得られたろ液を撹拌羽根、温度計、滴下ロートおよび還流管を備えた2L三口フラスコに移し、水冷下で撹拌した。
 次いで、フラスコ内に、N,N-ジメチルアミノピリジン(10.6g)およびトリエチルアミン(65.9g)を添加し、滴下ロートを用いて、あらかじめテトラヒドロフラン(125g)に溶解させた4-n-オクチルオキシ桂皮酸クロリド(127.9g)を30分かけて上記フラスコ内に滴下した。滴下終了後、反応液を50℃で6時間撹拌した。反応液を室温まで冷却した後、水で分液洗浄し、得られた有機相を無水硫酸マグネシウムで乾燥した。硫酸マグネシウムをろ別し、得られた溶液を濃縮することにより黄白色固体を得た。
 得られた黄白色固体をメチルエチルケトン(400g)に加熱溶解させ、再結晶を行うことで、以下に示すモノマーmB-1を白色固体として76g得た(収率40%)。
Figure JPOXMLDOC01-appb-C000018
[Synthesis of monomer mb-1]
Trans-4-aminocyclohexanol (50.0 g), triethylamine (48.3 g), and N, N-dimethylacetamide (800 g) in a 2 L three-necked flask equipped with a stirrer, a thermometer, a dropping funnel and a reflux tube. Was added, and the obtained mixed solution was stirred under ice-cooling.
Next, methacrylic acid chloride (47.5 g) was added dropwise to the flask over 40 minutes using a dropping funnel, and after completion of the dropping, the reaction solution was stirred at 40 ° C. for 2 hours.
After cooling the reaction solution to room temperature (23 ° C.), the reaction solution was suction-filtered to remove the precipitated salt. The obtained filtrate was transferred to a 2 L three-necked flask equipped with a stirring blade, a thermometer, a dropping funnel and a reflux tube, and stirred under water cooling.
Next, N, N-dimethylaminopyridine (10.6 g) and triethylamine (65.9 g) were added to the flask, and 4-n-octyloxy previously dissolved in tetrahydrofuran (125 g) using a dropping funnel. Choride chloride (127.9 g) was added dropwise into the flask over 30 minutes. After completion of the dropping, the reaction solution was stirred at 50 ° C. for 6 hours. The reaction mixture was cooled to room temperature, washed separately with water, and the obtained organic phase was dried over anhydrous magnesium sulfate. Magnesium sulfate was filtered off, and the obtained solution was concentrated to obtain a yellowish white solid.
The obtained yellowish white solid was dissolved by heating in methyl ethyl ketone (400 g) and recrystallized to obtain 76 g of the following monomer mb-1 as a white solid (yield 40%).
Figure JPOXMLDOC01-appb-C000018
 〔モノマーmC-1cの合成〕
 撹拌羽根、温度計、滴下ロート、および、還流管を備えた3L三口フラスコに、ヒドロキシエチルメタクリレート(100.0g)、および、ジメチルアセトアミド(600mL)を添加した後、得られた混合液を0℃で撹拌しながら、3-クロロプロピオン酸クロリド(126.6g)をフラスコ内に滴下し、室温で3時間反応させた。
 得られた反応液に酢酸エチル(1L)を加え、1N塩酸、飽和重曹水、イオン交換水、および、飽和食塩水で逐次分液洗浄し、得られた有機相を硫酸マグネシウムで乾燥した。硫酸マグネシウムをろ別し、有機相を濃縮した後、シリカゲルカラム(ヘキサン/酢酸エチル=3/1)で精製することで、以下に示すモノマーmC-1cを148.8g得た。
Figure JPOXMLDOC01-appb-C000019
[Synthesis of monomer mC-1c]
After adding hydroxyethyl methacrylate (100.0 g) and dimethylacetamide (600 mL) to a 3 L three-necked flask equipped with a stirring blade, a thermometer, a dropping funnel, and a reflux tube, the obtained mixed solution was added to 0 ° C. 3-Chloropropionic acid chloride (126.6 g) was added dropwise to the flask and reacted at room temperature for 3 hours with stirring.
Ethyl acetate (1 L) was added to the obtained reaction solution, and the mixture was sequentially separated and washed with 1N hydrochloric acid, saturated aqueous sodium hydrogen carbonate, ion-exchanged water, and saturated brine, and the obtained organic phase was dried over magnesium sulfate. Magnesium sulfate was filtered off, the organic phase was concentrated, and then purified by a silica gel column (hexane / ethyl acetate = 3/1) to obtain 148.8 g of the monomer mC-1c shown below.
Figure JPOXMLDOC01-appb-C000019
 〔光配向性ポリマーA-1の合成〕
 冷却管、温度計、および撹拌機を備えたフラスコに、2-ブタノン(23g)、モノマーmA-1(4.2g)、モノマーmB-1(2.7g)、モノマーmC-1c(3.5g)、および、2,2’-アゾビス(イソブチロニトリル)(0.075g)を仕込み、フラスコ内に窒素を15mL/min流しながら、得られた溶液を水浴加熱により7時間還流状態を維持したまま撹拌した。
 反応終了後、反応液を室温まで放冷し、得られた重合体溶液を大過剰のメタノール中へ投入して重合体を沈殿させた。その後、沈殿物をろ別して回収し、回収した固形分を大量のメタノールで洗浄した後、40℃において6時間真空乾燥することにより、下記式で表される重合体A-1cを得た。
Figure JPOXMLDOC01-appb-C000020
[Synthesis of photo-oriented polymer A-1]
In a flask equipped with a cooling tube, a thermometer, and a stirrer, 2-butanone (23 g), monomer mA-1 (4.2 g), monomer mb-1 (2.7 g), monomer mC-1c (3.5 g). ) And 2,2'-azobis (isobutyronitrile) (0.075 g) were charged, and the obtained solution was kept in a reflux state for 7 hours by heating with a water bath while flowing 15 mL / min of nitrogen in the flask. It was stirred as it was.
After completion of the reaction, the reaction solution was allowed to cool to room temperature, and the obtained polymer solution was poured into a large excess of methanol to precipitate the polymer. Then, the precipitate was collected by filtration, and the recovered solid content was washed with a large amount of methanol and then vacuum dried at 40 ° C. for 6 hours to obtain a polymer A-1c represented by the following formula.
Figure JPOXMLDOC01-appb-C000020
 続いて、冷却管、温度計、および撹拌機を備えたフラスコに、重合体A-1cを3.3g、4-メトキシフェノール(0.016g)、トリエチルアミン(3.75g)、ジメチルアセトアミド(4.95g)を仕込み、得られた溶液を水浴加熱により60℃で4時間撹拌した。
 反応終了後、反応液を室温まで放冷し、得られた反応溶液を大過剰のメタノール/水(1/3)中へ投入して重合体を沈殿させた。沈殿物をろ別して回収して、沈殿物を大量のメタノール/水(1/3)で洗浄した後、40℃において12時間送風乾燥することにより、下記式で表される光配向性ポリマーA-1を得た。
 なお、以下の構造式中の各繰り返し単位中に記載の数値は、全繰り返し単位に対する、各繰り返し単位の含有量(質量%)を表し、以下では左側の繰り返し単位から43質量%、27質量%、30質量%であった。
 また、上述した方法で測定した光配向性ポリマーA-1の重量平均分子量は69800であった。
Figure JPOXMLDOC01-appb-C000021
Subsequently, in a flask equipped with a cooling tube, a thermometer, and a stirrer, 3.3 g of polymer A-1c, 4-methoxyphenol (0.016 g), triethylamine (3.75 g), and dimethylacetamide (4. 95 g) was charged, and the obtained solution was stirred at 60 ° C. for 4 hours by heating in a water bath.
After completion of the reaction, the reaction solution was allowed to cool to room temperature, and the obtained reaction solution was poured into a large excess of methanol / water (1/3) to precipitate the polymer. The precipitate was collected by filtration, washed with a large amount of methanol / water (1/3), and then air-dried at 40 ° C. for 12 hours. I got 1.
The numerical values described in each repeating unit in the following structural formula represent the content (mass%) of each repeating unit with respect to all the repeating units, and below, 43% by mass and 27% by mass from the left repeating unit. , 30% by mass.
The weight average molecular weight of the photooriented polymer A-1 measured by the method described above was 69,800.
Figure JPOXMLDOC01-appb-C000021
 〔重合体A-2の合成〕
 モノマーmA-1に代えて、2-(パーフルオロヘキシル)エチルメタクリレートを用いた以外は、光配向性ポリマーA-1と同様の方法で、光配向性ポリマーA-2を合成した。
 なお、以下の構造式中の各繰り返し単位中に記載の数値は、全繰り返し単位に対する、各繰り返し単位の含有量(質量%)を表し、以下では左側の繰り返し単位から43質量%、27質量%、30質量%であった。
 また、上述した方法で測定した光配向性ポリマーA-2の重量平均分子量は60000であった。
Figure JPOXMLDOC01-appb-C000022
[Synthesis of polymer A-2]
The photo-oriented polymer A-2 was synthesized in the same manner as the photo-oriented polymer A-1 except that 2- (perfluorohexyl) ethyl methacrylate was used instead of the monomer mA-1.
The numerical values described in each repeating unit in the following structural formula represent the content (mass%) of each repeating unit with respect to all the repeating units, and below, 43% by mass and 27% by mass from the left repeating unit. , 30% by mass.
The weight average molecular weight of the photooriented polymer A-2 measured by the above method was 60,000.
Figure JPOXMLDOC01-appb-C000022
 〔光配向性ポリマーA-3の合成〕
 モノマーmA-1に代えて、モノマーmA-2を用いた以外は、光配向性ポリマーA-1と同様の方法で、光配向性ポリマーA-3を合成した。
 なお、以下の構造式中の各繰り返し単位中に記載の数値は、全繰り返し単位に対する、各繰り返し単位の含有量(質量%)を表し、以下では左側の繰り返し単位から43質量%、27質量%、30質量%であった。
 また、上述した方法で測定した光配向性ポリマーA-3の重量平均分子量は63000であった。
Figure JPOXMLDOC01-appb-C000023
[Synthesis of photo-oriented polymer A-3]
The photooriented polymer A-3 was synthesized in the same manner as the photooriented polymer A-1 except that the monomer mA-2 was used instead of the monomer mA-1.
The numerical values described in each repeating unit in the following structural formula represent the content (mass%) of each repeating unit with respect to all the repeating units, and below, 43% by mass and 27% by mass from the left repeating unit. , 30% by mass.
The weight average molecular weight of the photooriented polymer A-3 measured by the method described above was 63000.
Figure JPOXMLDOC01-appb-C000023
 〔界面活性剤B-1の合成〕
 特開2019-19278号公報に記載の方法を参照して、以下に示す界面活性剤B-1(nは4~21の実数)を合成した。
 上述した方法で測定した界面活性剤B-1の重量平均分子量は2200であった。
Figure JPOXMLDOC01-appb-C000024
[Synthesis of Surfactant B-1]
The surfactant B-1 (n is a real number of 4 to 21) shown below was synthesized with reference to the method described in JP-A-2019-19278.
The weight average molecular weight of the surfactant B-1 measured by the method described above was 2200.
Figure JPOXMLDOC01-appb-C000024
 〔界面活性剤B-2の合成〕
 以下のスキームに従い、以下に示す界面活性剤B-2(mは4~21の実数)を合成した。
 また、上述した方法で測定した界面活性剤B-2の重量平均分子量は2150であった。
Figure JPOXMLDOC01-appb-C000025
[Synthesis of Surfactant B-2]
According to the following scheme, the following surfactant B-2 (m is a real number of 4 to 21) was synthesized.
The weight average molecular weight of the surfactant B-2 measured by the method described above was 2150.
Figure JPOXMLDOC01-appb-C000025
 〔界面活性剤B-3の合成〕
 攪拌機、温度計、還流冷却管および窒素ガス導入管を備えた200ミリリットル三口フラスコに、シクロヘキサノン25.0gを仕込んで、120℃まで昇温した。次いで、2-(パーフルオロヘキシル)エチルアクリレート(4.19g)、下記構造を有する化合物mD-1(1.32g)、シクロヘキサノン25.0g、および、「V-601」(富士フイルム和光純薬社製)1.8gからなる混合溶液を120分で滴下が完了するように等速で滴下した。滴下完了後、さらに3.5時間攪拌を続け、界面活性剤B-3を得た。
 なお、以下の構造式中の各繰り返し単位中に記載の数値は、全繰り返し単位に対する、各繰り返し単位の含有量(質量%)を表し、以下では左側の繰り返し単位から76質量%、24質量%であった。
 また、上述した方法で測定した界面活性剤B-3の重量平均分子量は2500であった。
Figure JPOXMLDOC01-appb-C000026

Figure JPOXMLDOC01-appb-C000027
[Synthesis of Surfactant B-3]
25.0 g of cyclohexanone was charged into a 200 ml three-necked flask equipped with a stirrer, a thermometer, a reflux condenser and a nitrogen gas introduction tube, and the temperature was raised to 120 ° C. Next, 2- (perfluorohexyl) ethyl acrylate (4.19 g), compound mD-1 (1.32 g) having the following structure, cyclohexanone 25.0 g, and "V-601" (Fuji Film Wako Pure Chemical Industries, Ltd.) A mixed solution consisting of 1.8 g was added dropwise at a constant velocity so that the addition was completed in 120 minutes. After the dropping was completed, stirring was continued for another 3.5 hours to obtain a surfactant B-3.
The numerical values described in each repeating unit in the following structural formula represent the content (mass%) of each repeating unit with respect to all the repeating units, and below, 76% by mass and 24% by mass from the left repeating unit. Met.
Moreover, the weight average molecular weight of the surfactant B-3 measured by the above-mentioned method was 2500.
Figure JPOXMLDOC01-appb-C000026

Figure JPOXMLDOC01-appb-C000027
 〔界面活性剤B-4の合成〕
 「V-601」の添加量を0.11gに変更した以外は、界面活性剤B-3と同様の方法で、界面活性剤B-4を合成した。
 また、上述した方法で測定した界面活性剤B-4の重量平均分子量は12000であった。
[Synthesis of Surfactant B-4]
Surfactant B-4 was synthesized in the same manner as that of surfactant B-3 except that the amount of "V-601" added was changed to 0.11 g.
The weight average molecular weight of the surfactant B-4 measured by the above method was 12000.
[実施例1]
 〔下層形成用の組成物の調製〕
 下記のように下層形成用の組成物1を調製した。
―――――――――――――――――――――――――――――――――
下層形成用の組成物1
―――――――――――――――――――――――――――――――――
・下記重合性液晶化合物L-1           83.00質量部
・下記重合性液晶化合物L-2           15.00質量部
・下記重合性液晶化合物L-3            2.00質量部
・重合性モノマー(A-400、新中村化学工業社製) 4.00質量部
・下記重合開始剤S-1(オキシム型)        5.00質量部
・下記光酸発生剤D-1               3.00質量部
・下記重合体M-1                 2.00質量部
・下記垂直配向剤S01               2.00質量部
・上記光配向性ポリマーA-1            2.00質量部
・上記界面活性剤B-1               0.20質量部
・メチルエチルケトン               42.30質量部
・メチルイソブチルケトン            627.50質量部
―――――――――――――――――――――――――――――――――
[Example 1]
[Preparation of composition for lower layer formation]
The composition 1 for forming the lower layer was prepared as follows.
―――――――――――――――――――――――――――――――――
Composition for lower layer formation 1
―――――――――――――――――――――――――――――――――
-The following polymerizable liquid crystal compound L-1 83.00 parts by mass-The following polymerizable liquid crystal compound L-2 15.00 parts by mass-The following polymerizable liquid crystal compound L-3 2.00 parts by mass-The polymerizable monomer (A-400) (Manufactured by Shin-Nakamura Chemical Industry Co., Ltd.) 4.00 parts by mass, the following polymerization initiator S-1 (oxym type) 5.00 parts by mass, the following photoacid generator D-1 3.00 parts by mass, the following polymer M- 1 2,000 parts by mass ・ The following vertical alignment agent S01 2,000 parts by mass ・ The photo-orientation polymer A-1 2,000 parts by mass ・ The surfactant B-1 0.20 parts by mass ・ Methyl ethyl ketone 42.30 parts by mass Part ・ Methyl isobutyl ketone 627.50 parts by mass ―――――――――――――――――――――――――――――――――
 重合性液晶化合物L-1
Figure JPOXMLDOC01-appb-C000028
Polymerizable liquid crystal compound L-1
Figure JPOXMLDOC01-appb-C000028
 重合性液晶化合物L-2
Figure JPOXMLDOC01-appb-C000029
Polymerizable liquid crystal compound L-2
Figure JPOXMLDOC01-appb-C000029
 重合性液晶化合物L-3
Figure JPOXMLDOC01-appb-C000030
Polymerizable liquid crystal compound L-3
Figure JPOXMLDOC01-appb-C000030
 重合開始剤S-1
Figure JPOXMLDOC01-appb-C000031
Polymerization Initiator S-1
Figure JPOXMLDOC01-appb-C000031
 光酸発生剤D-1
Figure JPOXMLDOC01-appb-C000032
Photoacid generator D-1
Figure JPOXMLDOC01-appb-C000032
 重合体M-1
Figure JPOXMLDOC01-appb-C000033
Polymer M-1
Figure JPOXMLDOC01-appb-C000033
 垂直配向剤S01
Figure JPOXMLDOC01-appb-C000034
Vertical alignment agent S01
Figure JPOXMLDOC01-appb-C000034
 〔下層(組成物層)の形成〕
 セルロースアシレートフィルムとして、特開2012-215689号公報の実施例6と同じものを用いた。このフィルムの片側の面に、上記で調製した組成物1を、#3.0のワイヤーバーで塗布した。その後、フィルムの両端を保持し、フィルムの塗膜が形成された面の側に、フィルムとの距離が5mmとなるように冷却板(9℃)を設置し、フィルムの塗膜が形成された面とは反対側に、フィルムとの距離が5mmとなるようにヒーター(75℃)を設置し、2分間乾燥させた。
 次いで、温風にて60℃1分間加熱し、酸素濃度が100ppm以下の雰囲気になるように窒素パージしながら365nmのUV-LEDを用いて、照射量100mJ/cmの紫外線を照射した。その後、温風にて120℃1分間アニーリングすることで、前駆体層を形成した。
 得られた前駆体層に、室温で、ワイヤーグリッド偏光子を通したUV光(超高圧水銀ランプ;UL750;HOYA製)を7.9mJ/cm(波長:313nm)照射することで、表面に配向制御能を有する組成物層を形成した。
 なお、形成した組成物層の膜厚は約0.5μmであった。
[Formation of lower layer (composition layer)]
As the cellulose acylate film, the same film as in Example 6 of JP2012-215689A was used. The composition 1 prepared above was applied to one side of the film with a # 3.0 wire bar. After that, both ends of the film were held, and a cooling plate (9 ° C.) was installed on the side of the surface on which the film coating was formed so that the distance from the film was 5 mm, and the film coating was formed. A heater (75 ° C.) was installed on the side opposite to the surface so that the distance from the film was 5 mm, and the film was dried for 2 minutes.
Next, the mixture was heated with warm air at 60 ° C. for 1 minute, and irradiated with ultraviolet rays having an irradiation amount of 100 mJ / cm 2 using a 365 nm UV-LED while purging nitrogen so that the atmosphere had an oxygen concentration of 100 ppm or less. Then, the precursor layer was formed by annealing at 120 ° C. for 1 minute with warm air.
The surface of the obtained precursor layer was irradiated with UV light (ultra-high pressure mercury lamp; UL750; manufactured by HOYA) at room temperature at 7.9 mJ / cm 2 (wavelength: 313 nm). A composition layer having an orientation control ability was formed.
The film thickness of the formed composition layer was about 0.5 μm.
 〔光学積層体の作製〕
 次いで、組成物層上に、下記光学異方性層形成用組成物1を、#7.0のワイヤーバーで塗布した。組成物層上に形成された塗膜を温風にて120℃に加熱し、次に、60℃に冷却した後に、酸素濃度が100ppm以下の雰囲気になるように窒素パージしながら365nmのUV-LEDを用いて、照射量100mJ/cmの紫外線を照射した。続いて、120℃に加熱し、酸素濃度が100ppm以下の雰囲気になるように窒素パージしながら超高圧水銀ランプ(UL750;HOYA製)を用いて、照射量500mJ/cm(波長:365nm)の紫外線を塗膜に照射した。上記手順によって、光学異方性層(膜厚2.9μm)を含む実施例1の光学積層体を作製した。得られた積層体のRe(550)は140nmであった。
――――――――――――――――――――――――――――――――――
光学異方性層形成用組成物1
――――――――――――――――――――――――――――――――――
・下記重合性液晶化合物L-4           39.00質量部
・下記重合性液晶化合物L-5           39.00質量部
・上記重合性液晶化合物L-1           17.00質量部
・下記重合性化合物A-1              5.00質量部
・上記重合開始剤S-1(オキシム型)        0.50質量部
・レベリング剤(下記化合物T-1)         0.20質量部
・シクロペンタノン               235.00質量部
――――――――――――――――――――――――――――――――――
[Preparation of optical laminate]
Next, the following composition 1 for forming an optically anisotropic layer was applied onto the composition layer with a wire bar of # 7.0. The coating film formed on the composition layer is heated to 120 ° C. with warm air, then cooled to 60 ° C., and then UV- at 365 nm while purging nitrogen so that the oxygen concentration becomes 100 ppm or less. An LED was used to irradiate ultraviolet rays with an irradiation amount of 100 mJ / cm 2. Subsequently, the irradiation amount was 500 mJ / cm 2 (wavelength: 365 nm) using an ultra-high pressure mercury lamp (UL750; manufactured by HOYA) while heating to 120 ° C. and purging nitrogen so that the oxygen concentration became 100 ppm or less. The coating film was irradiated with ultraviolet rays. By the above procedure, the optical laminate of Example 1 including the optically anisotropic layer (thickness 2.9 μm) was produced. The Re (550) of the obtained laminate was 140 nm.
――――――――――――――――――――――――――――――――――
Composition for forming an optically anisotropic layer 1
――――――――――――――――――――――――――――――――――
-The following polymerizable liquid crystal compound L-4 39.00 parts by mass-The following polymerizable liquid crystal compound L-5 39.00 parts by mass-The above-mentioned polymerizable liquid crystal compound L-1 17.00 parts by mass-The following polymerizable compound A-1 5.00 parts by mass ・ The above-mentioned polymerization initiator S-1 (oxym type) 0.50 parts by mass ・ Leveling agent (compound T-1 below) 0.20 parts by mass ・ Cyclopentanone 235.00 parts by mass ―――― ――――――――――――――――――――――――――――――
 重合性液晶化合物L-4
Figure JPOXMLDOC01-appb-C000035
Polymerizable liquid crystal compound L-4
Figure JPOXMLDOC01-appb-C000035
 重合性液晶化合物L-5
Figure JPOXMLDOC01-appb-C000036
Polymerizable liquid crystal compound L-5
Figure JPOXMLDOC01-appb-C000036
 重合性化合物A-1
Figure JPOXMLDOC01-appb-C000037
Polymerizable compound A-1
Figure JPOXMLDOC01-appb-C000037
 化合物T-1
Figure JPOXMLDOC01-appb-C000038
Compound T-1
Figure JPOXMLDOC01-appb-C000038
[実施例2]
 実施例1の界面活性剤B-1を、界面活性剤B-2に変更した以外は、実施例1と同様の方法で光学積層体を作製した。
[Example 2]
An optical laminate was produced in the same manner as in Example 1 except that the surfactant B-1 of Example 1 was changed to the surfactant B-2.
[実施例3]
 実施例1の界面活性剤B-1を、界面活性剤B-3に変更した以外は、実施例1と同様の方法で光学積層体を作製した。
[Example 3]
An optical laminate was prepared in the same manner as in Example 1 except that the surfactant B-1 of Example 1 was changed to the surfactant B-3.
[実施例4]
 実施例1の光配向性ポリマーA-1を、光配向性ポリマーA-2に変更した以外は、実施例1と同様の方法で光学積層体を作製した。
[Example 4]
An optical laminate was produced in the same manner as in Example 1 except that the photo-oriented polymer A-1 of Example 1 was changed to the photo-oriented polymer A-2.
[実施例5]
 実施例1の光配向性ポリマーA-1を、光配向性ポリマーA-3に変更した以外は、実施例1と同様の方法で光学積層体を作製した。
[Example 5]
An optical laminate was produced in the same manner as in Example 1 except that the photo-oriented polymer A-1 of Example 1 was changed to the photo-oriented polymer A-3.
[実施例6]
 実施例1の下層形成用の組成物1を、以下の下層形成用の組成物6に変更した以外は、実施例1と同様の方法で光学積層体を作製した。
―――――――――――――――――――――――――――――――――
下層形成用の組成物6
―――――――――――――――――――――――――――――――――
・上記重合開始剤S-1(オキシム型)        5.00質量部
・上記光酸発生剤D-1               3.00質量部
・上記光配向性ポリマーA-1          100.00質量部
・上記界面活性剤B-1               2.50質量部
・メチルエチルケトン               42.30質量部
・メチルイソブチルケトン            627.50質量部
―――――――――――――――――――――――――――――――――
[Example 6]
An optical laminate was produced in the same manner as in Example 1 except that the composition 1 for forming the lower layer of Example 1 was changed to the composition 6 for forming the lower layer below.
―――――――――――――――――――――――――――――――――
Composition for lower layer formation 6
―――――――――――――――――――――――――――――――――
-The polymerization initiator S-1 (oxime type) 5.00 parts by mass-The photoacid generator D-1 3.00 parts by mass-The photooriented polymer A-1 100.00 parts by mass-The surfactant B-1 2.50 parts by mass, methyl ethyl ketone 42.30 parts by mass, methyl isobutyl ketone 627.50 parts by mass ―――――――――――――――――――――――――― ―――――――
[実施例7]
 実施例1の下層形成用の組成物1を、以下の下層形成用の組成物7に変更した以外は、実施例1と同様の方法で光学積層体を作製した。
―――――――――――――――――――――――――――――――――
下層形成用の組成物7
―――――――――――――――――――――――――――――――――
・下記重合性液晶化合物L-5           54.00質量部
・上記重合性液晶化合物L-1           28.00質量部
・下記重合性液晶化合物L-6           10.00質量部
・下記重合性液晶化合物L-7            8.00質量部
・重合性モノマー(A-400、新中村化学工業社製) 4.00質量部
・上記重合開始剤S-1(オキシム型)        5.00質量部
・上記光酸発生剤D-1               3.00質量部
・上記重合体M-1                 2.00質量部
・上記垂直配向剤S01               2.00質量部
・上記光配向性ポリマーA-1            2.00質量部
・上記界面活性剤B-1               0.20質量部
・トルエン                   669.80質量部
―――――――――――――――――――――――――――――――――
[Example 7]
An optical laminate was produced in the same manner as in Example 1 except that the composition 1 for forming the lower layer of Example 1 was changed to the composition 7 for forming the lower layer below.
―――――――――――――――――――――――――――――――――
Composition for lower layer formation 7
―――――――――――――――――――――――――――――――――
-The following polymerizable liquid crystal compound L-5 54.00 parts by mass-The above polymerizable liquid crystal compound L-1 28.00 parts by mass-The following polymerizable liquid crystal compound L-6 10.00 parts by mass-The following polymerizable liquid crystal compound L- 7 8.00 parts by mass, polymerizable monomer (A-400, manufactured by Shin-Nakamura Chemical Industry Co., Ltd.) 4.00 parts by mass, the polymerization initiator S-1 (oxime type) 5.00 parts by mass, the photoacid generator D-1 3,000 parts by mass, polymer M-1 2,000 parts by mass, vertical alignment agent S01 2,000 parts by mass, photoalignable polymer A-1 2,000 parts by mass, surfactant B-1 0.20 parts by mass, toluene 669.80 parts by mass ――――――――――――――――――――――――――――――――――
 重合性液晶化合物L-5
Figure JPOXMLDOC01-appb-C000039
Polymerizable liquid crystal compound L-5
Figure JPOXMLDOC01-appb-C000039
 重合性液晶化合物L-6
Figure JPOXMLDOC01-appb-C000040
Polymerizable liquid crystal compound L-6
Figure JPOXMLDOC01-appb-C000040
 重合性液晶化合物L-7
Figure JPOXMLDOC01-appb-C000041
Polymerizable liquid crystal compound L-7
Figure JPOXMLDOC01-appb-C000041
[実施例8]
 実施例1の界面活性剤B-1の添加量を0.02質量部に変更した以外は、実施例1と同様の方法で光学積層体を作製した。
[Example 8]
An optical laminate was produced in the same manner as in Example 1 except that the amount of the surfactant B-1 added in Example 1 was changed to 0.02 parts by mass.
[実施例9]
 実施例1の界面活性剤B-1の添加量を1.60質量部に変更した以外は、実施例1と同様の方法で光学積層体を作製した。
[Example 9]
An optical laminate was produced in the same manner as in Example 1 except that the amount of the surfactant B-1 added in Example 1 was changed to 1.60 parts by mass.
[比較例1]
 実施例1の下層形成用の組成物1を、以下の下層形成用の組成物10に変更した以外は、実施例1と同様の方法で光学積層体を作製した。
―――――――――――――――――――――――――――――――――
下層形成用の組成物10
―――――――――――――――――――――――――――――――――
・上記重合性液晶化合物L-1           83.00質量部
・上記重合性液晶化合物L-2           15.00質量部
・上記重合性液晶化合物L-3            2.00質量部
・重合性モノマー(A-400、新中村化学工業社製) 4.00質量部
・上記重合開始剤S-1(オキシム型)        5.00質量部
・上記光酸発生剤D-1               3.00質量部
・上記重合体M-1                 2.00質量部
・上記垂直配向剤S01               2.00質量部
・上記光配向性ポリマーA-3            2.00質量部
・メチルエチルケトン               42.30質量部
・メチルイソブチルケトン            627.50質量部
―――――――――――――――――――――――――――――――――
[Comparative Example 1]
An optical laminate was produced in the same manner as in Example 1 except that the composition 1 for forming the lower layer of Example 1 was changed to the composition 10 for forming the lower layer below.
―――――――――――――――――――――――――――――――――
Composition for lower layer formation 10
―――――――――――――――――――――――――――――――――
-The above-mentioned polymerizable liquid crystal compound L-1 83.00 parts by mass-The above-mentioned polymerizable liquid crystal compound L-2 15.00 parts by mass-The above-mentioned polymerizable liquid crystal compound L-3 2,000 parts by mass-The polymerizable monomer (A-400) (Manufactured by Shin-Nakamura Chemical Industry Co., Ltd.) 4.00 parts by mass, the polymerization initiator S-1 (oxym type) 5.00 parts by mass, the photoacid generator D-1 3.00 parts by mass, the polymer M- 1 2,000 parts by mass ・ The vertical alignment agent S01 2.00 parts by mass ・ The photo-orientation polymer A-3 2.00 parts by mass ・ Methyl ethyl ketone 42.30 parts by mass ・ Methyl isobutyl ketone 627.50 parts by mass ――― ――――――――――――――――――――――――――――――
[比較例2]
 実施例1の界面活性剤B-1を、界面活性剤B-4に変更した以外は、実施例1と同様の方法で光学積層体を作製した。
[Comparative Example 2]
An optical laminate was prepared in the same manner as in Example 1 except that the surfactant B-1 of Example 1 was changed to the surfactant B-4.
[比較例3]
 実施例1の界面活性剤B-1を、メガファックF-554(DIC社製)に変更した以外は、実施例1と同様の方法で光学積層体を作製した。
[Comparative Example 3]
An optical laminate was produced in the same manner as in Example 1 except that the surfactant B-1 of Example 1 was changed to Megafuck F-554 (manufactured by DIC Corporation).
[比較例4]
 実施例1の界面活性剤B-1を、メガファックF-447(DIC社製)に変更した以外は、実施例1と同様の方法で光学積層体を作製した。
[Comparative Example 4]
An optical laminate was produced in the same manner as in Example 1 except that the surfactant B-1 of Example 1 was changed to Megafuck F-447 (manufactured by DIC Corporation).
 〔評価〕
 <ハジキ>
 各実施例および比較例で得られた組成物層から幅40mm、長さ40mmのフィルムを切り出した。表面領域を検査し、円形または楕円形に抜けているように見える故障をハジキとみなし、下記の基準で評価した。
 A:故障が見られなかった。
 B:2~9個の故障が見られた。
 C:10個以上の故障が見られた。
〔evaluation〕
<Hajiki>
A film having a width of 40 mm and a length of 40 mm was cut out from the composition layers obtained in each Example and Comparative Example. The surface area was inspected, and failures that appeared to be circular or oval were regarded as repellents and evaluated according to the following criteria.
A: No failure was found.
B: 2 to 9 failures were found.
C: More than 10 failures were found.
(液晶配向性評価)
 各実施例および比較例で得られた光学積層体から幅40mm、長さ40mmのフィルムを切り出した。試料をクロスニコル下の偏光顕微鏡(10倍の対物レンズ使用)で観察し、下記の基準で液晶配向性を評価した。
 A:観察視野内で光漏れがなかった。
 B:観察視野内で光漏れがわずかにあった。
 C:観察視野内で光漏れがあった。
(Evaluation of liquid crystal orientation)
A film having a width of 40 mm and a length of 40 mm was cut out from the optical laminates obtained in each Example and Comparative Example. The sample was observed with a polarizing microscope under a cross Nicol (using a 10x objective lens), and the liquid crystal orientation was evaluated according to the following criteria.
A: There was no light leakage in the observation field.
B: There was slight light leakage in the observation field of view.
C: There was light leakage in the observation field of view.
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000042
 表1に示す結果から、界面活性剤を用いない場合には、下層形成時のハジキの発生を抑制できないことが分かった(比較例1)。
 また、界面活性剤の重量平均分子量が10000より大きい場合には、上層に形成される光学異方性層の液晶配向性が劣ることが分かった(比較例2)。
 また、界面活性剤の液表面張力Aと、光配向性ポリマーの液表面張力Aとが、上記式(IA)を満たさない場合には、下層形成時のハジキの発生を抑制できず、その上層に形成される光学異方性層の液晶配向性も劣ることが分かった(比較例3および4)。
 これに対し、フッ素原子またはケイ素原子を有する界面活性剤の重量平均分子量が10000以下であり、界面活性剤の液表面張力Aと、光配向性ポリマーの液表面張力Aとが上記式(IA)を満たす組成物を用いると、下層形成時のハジキの発生を抑制し、その上層に形成される光学異方性層の液晶配向性が良好となることが分かった(実施例1~9)。
 特に、実施例1~3の対比から、界面活性剤の液表面張力Aと、光配向性ポリマーの液表面張力Aとが上記式(IB)を満たす組成物を用いると、上層に形成される光学異方性層の液晶配向性がより良好となることが分かり、界面活性剤がパーフルオロ構造を有していると、下層形成時のハジキの発生がより抑制できることが分かった。
 また、実施例1と実施例4との対比から、光配向性ポリマーが、開裂型光配向性ポリマーであると、上層に形成される光学異方性層の液晶配向性がより良好となることが分かった。
 更に、実施例1、8および9の対比から、界面活性剤の含有量が、上記光配向性ポリマーの質量に対して1.5~50質量%であると、下層形成時のハジキの発生をより抑制し、その上層に形成される光学異方性層の液晶配向性がより良好となることが分かった。
From the results shown in Table 1, it was found that the generation of repellent during the formation of the lower layer could not be suppressed when the surfactant was not used (Comparative Example 1).
Further, it was found that when the weight average molecular weight of the surfactant is larger than 10,000, the liquid crystal orientation of the optically anisotropic layer formed on the upper layer is inferior (Comparative Example 2).
Further, the liquid surface tension A 1 surfactant, a liquid surface tension A 2 of the optical alignment polymer, when not satisfied the above formula (IA) can not suppress the occurrence of cissing during underlayer formation, It was also found that the liquid crystal orientation of the optically anisotropic layer formed on the upper layer was also inferior (Comparative Examples 3 and 4).
In contrast, the weight average molecular weight of the surfactant having a fluorine atom or a silicon atom is 10,000 or less, the liquid surface tension A 1 surfactant, a liquid photo-alignment polymer surface tension A 2 and the above formula ( It was found that when a composition satisfying IA) was used, the generation of repellent during the formation of the lower layer was suppressed, and the liquid crystal orientation of the optically anisotropic layer formed on the upper layer was improved (Examples 1 to 9). ).
In particular, from comparison of Examples 1-3, the liquid surface tension A 1 surfactant, when a liquid surface tension A 2 of the optical alignment polymer using a composition satisfying the above formula (IB), formed in the upper layer It was found that the liquid crystal orientation of the optically anisotropic layer was improved, and that when the surfactant had a perfluoro structure, the generation of repellent during the formation of the lower layer could be further suppressed.
Further, from the comparison between Examples 1 and 4, when the photo-oriented polymer is a cleaved photo-oriented polymer, the liquid crystal orientation of the optically anisotropic layer formed on the upper layer becomes better. I found out.
Further, from the comparison of Examples 1, 8 and 9, when the content of the surfactant is 1.5 to 50% by mass with respect to the mass of the photooriented polymer, the generation of repellent during the formation of the lower layer occurs. It was found that the liquid crystal orientation of the optically anisotropic layer formed on the upper layer was improved.

Claims (13)

  1.  光配向性ポリマーおよび界面活性剤を含有する組成物であって、
     前記光配向性ポリマーが、光配向性基と、フッ素原子またはケイ素原子とを有し、
     前記界面活性剤が、フッ素原子またはケイ素原子を有し、かつ、重量平均分子量が10000以下であり、
     前記界面活性剤の液表面張力Aと、前記光配向性ポリマーの液表面張力Aとが、下記式(IA)を満たす、組成物。
     A-A≧0.5mN/m ・・・(IA)
    A composition containing a photo-oriented polymer and a surfactant.
    The photo-oriented polymer has a photo-oriented group and a fluorine atom or a silicon atom.
    The surfactant has a fluorine atom or a silicon atom, and has a weight average molecular weight of 10,000 or less.
    A composition in which the liquid surface tension A 1 of the surfactant and the liquid surface tension A 2 of the photooriented polymer satisfy the following formula (IA).
    A 2- A 1 ≧ 0.5 mN / m ・ ・ ・ (IA)
  2.  前記界面活性剤の液表面張力Aと、前記光配向性ポリマーの液表面張力Aとが、下記式(IB)を満たす、請求項1に記載の組成物。
     A-A≧2.0mN/m ・・・(IB)
    The composition according to claim 1, wherein the liquid surface tension A 1 of the surfactant and the liquid surface tension A 2 of the photooriented polymer satisfy the following formula (IB).
    A 2- A 1 ≧ 2.0 mN / m ・ ・ ・ (IB)
  3.  前記光配向性ポリマーの重量平均分子量が25000以上である、請求項1または2に記載の組成物。 The composition according to claim 1 or 2, wherein the photo-oriented polymer has a weight average molecular weight of 25,000 or more.
  4.  前記光配向性ポリマーが、光、熱、酸および塩基からなる群から選択される少なくとも1種の作用により分解して極性基を生じる開裂基を含む繰り返し単位Aを有し、
     前記繰り返し単位Aが、側鎖に前記開裂基を有し、かつ、前記側鎖の前記開裂基よりも末端側にフッ素原子またはケイ素原子を有する、請求項1~3のいずれか1項に記載の組成物。
    The photo-oriented polymer has a repeating unit A containing a cleaving group that decomposes to produce a polar group by the action of at least one selected from the group consisting of light, heat, acid and base.
    The item according to any one of claims 1 to 3, wherein the repeating unit A has the cleaving group in the side chain and has a fluorine atom or a silicon atom on the terminal side of the cleaving group in the side chain. Composition.
  5.  前記光配向性基が、光の作用により二量化および異性化の少なくとも一方が生じる光配向性基である、請求項1~4のいずれか1項に記載の組成物。 The composition according to any one of claims 1 to 4, wherein the photo-oriented group is a photo-oriented group in which at least one of dimerization and isomerization is generated by the action of light.
  6.  前記光配向性基が、シンナモイル基、アゾベンゼン基、カルコニル基、および、クマリン基からなる群から選択される、請求項1~5のいずれか1項に記載の組成物。 The composition according to any one of claims 1 to 5, wherein the photooriented group is selected from the group consisting of a cinnamoyl group, an azobenzene group, a chalconyl group, and a coumarin group.
  7.  前記界面活性剤が、パーフルオロポリエーテル構造を有する、請求項1~6のいずれか1項に記載の組成物。 The composition according to any one of claims 1 to 6, wherein the surfactant has a perfluoropolyether structure.
  8.  前記界面活性剤中のパーフルオロポリエーテル構造が、下記式(II)で表される構造である、請求項7に記載の組成物。
     -(OCF(OCFCF(OCFCFCF(OCFCFCFCF(OCF(CF)CF- ・・・(II)
     ここで、前記式(II)中、m、n、p、qおよびrは、それぞれ独立に、0~60の整数を表し、m、n、p、qおよびrの少なくとも1つは、2~60の整数を表す。
    The composition according to claim 7, wherein the perfluoropolyether structure in the surfactant is a structure represented by the following formula (II).
    -(OCF 2 ) m (OCF 2 CF 2 ) n (OCF 2 CF 2 CF 2 ) p (OCF 2 CF 2 CF 2 CF 2 ) q (OCF (CF 3 ) CF 2 ) r -... (II)
    Here, in the above formula (II), m, n, p, q and r each independently represent an integer of 0 to 60, and at least one of m, n, p, q and r is 2 to 2. Represents an integer of 60.
  9.  前記界面活性剤の含有量が、前記光配向性ポリマーの質量に対して0.1~100質量%である、請求項1~8のいずれか1項に記載の組成物。 The composition according to any one of claims 1 to 8, wherein the content of the surfactant is 0.1 to 100% by mass with respect to the mass of the photooriented polymer.
  10.  更に、バインダーを含有する、請求項1~9のいずれか1項に記載の組成物。 The composition according to any one of claims 1 to 9, further containing a binder.
  11.  請求項1~10のいずれか1項に記載の組成物を用いて形成され、その表面が配向制御能を有する組成物層。 A composition layer formed by using the composition according to any one of claims 1 to 10, and whose surface has an orientation control ability.
  12.  請求項11に記載の組成物層と、前記組成物層上に設けられる光学異方性層とを有する光学積層体であって、
     前記光学異方性層が、液晶化合物の重合体を含有し、
     前記組成物層と前記光学異方性層とが互いに隣接して積層されている、光学積層体。
    An optical laminate having the composition layer according to claim 11 and an optically anisotropic layer provided on the composition layer.
    The optically anisotropic layer contains a polymer of a liquid crystal compound, and the optically anisotropic layer contains a polymer of a liquid crystal compound.
    An optical laminate in which the composition layer and the optically anisotropic layer are laminated adjacent to each other.
  13.  請求項11に記載の組成物層または請求項12に記載の光学積層体を有する、画像表示装置。 An image display device having the composition layer according to claim 11 or the optical laminate according to claim 12.
PCT/JP2021/016952 2020-04-30 2021-04-28 Composition, composition layer, optical multilayer body and image display device WO2021221100A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022518114A JP7355928B2 (en) 2020-04-30 2021-04-28 Composition, composition layer, optical laminate, and image display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-080600 2020-04-30
JP2020080600 2020-04-30

Publications (1)

Publication Number Publication Date
WO2021221100A1 true WO2021221100A1 (en) 2021-11-04

Family

ID=78331988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/016952 WO2021221100A1 (en) 2020-04-30 2021-04-28 Composition, composition layer, optical multilayer body and image display device

Country Status (2)

Country Link
JP (1) JP7355928B2 (en)
WO (1) WO2021221100A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014185410A1 (en) * 2013-05-13 2014-11-20 日産化学工業株式会社 Method for producing substrate having liquid crystal orientation membrane for use in in-plane-switching liquid crystal display element
WO2015030000A1 (en) * 2013-08-27 2015-03-05 日産化学工業株式会社 Cured film-forming composition, alignment material, and phase difference material
WO2017010560A1 (en) * 2015-07-16 2017-01-19 富士フイルム株式会社 Liquid crystal composition, film, half mirror for projected image display, and method for producing film
WO2017183682A1 (en) * 2016-04-22 2017-10-26 Dic株式会社 Polymerizable composition and film in which same is used
WO2018216812A1 (en) * 2017-05-26 2018-11-29 富士フイルム株式会社 Photo-alignment polymer, binder composition, binder layer, optical laminate, method for producing optical laminate, and image display device
WO2019069911A1 (en) * 2017-10-02 2019-04-11 富士フイルム株式会社 Liquid crystal composition, reflective layer, reflective layer manufacturing method, and copolymer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014185410A1 (en) * 2013-05-13 2014-11-20 日産化学工業株式会社 Method for producing substrate having liquid crystal orientation membrane for use in in-plane-switching liquid crystal display element
WO2015030000A1 (en) * 2013-08-27 2015-03-05 日産化学工業株式会社 Cured film-forming composition, alignment material, and phase difference material
WO2017010560A1 (en) * 2015-07-16 2017-01-19 富士フイルム株式会社 Liquid crystal composition, film, half mirror for projected image display, and method for producing film
WO2017183682A1 (en) * 2016-04-22 2017-10-26 Dic株式会社 Polymerizable composition and film in which same is used
WO2018216812A1 (en) * 2017-05-26 2018-11-29 富士フイルム株式会社 Photo-alignment polymer, binder composition, binder layer, optical laminate, method for producing optical laminate, and image display device
WO2019069911A1 (en) * 2017-10-02 2019-04-11 富士フイルム株式会社 Liquid crystal composition, reflective layer, reflective layer manufacturing method, and copolymer

Also Published As

Publication number Publication date
JP7355928B2 (en) 2023-10-03
JPWO2021221100A1 (en) 2021-11-04

Similar Documents

Publication Publication Date Title
JP7232754B2 (en) Photo-alignable polymer, binder composition, binder layer, optical laminate, method for producing optical laminate, and image display device
KR20200090870A (en) Manufacturing method of optical laminated body, optical laminated body and image display device
WO2015182704A1 (en) Laminate body and production method for same, polarizing plate, liquid crystal display device, organic el display device
KR102467728B1 (en) Photo-alignment copolymer, photo-alignment film, and optical laminate
JP2019120949A (en) Optical laminate and image display device
JP7228049B2 (en) Photo-alignable polymer, binder composition, binder layer, optical laminate, method for producing optical laminate, image display device
KR20190077028A (en) Polymerizable liquid crystal composition, optically anisotropic film, optical film, polarizing plate, image display device and organic electroluminescence display device
JP4297436B2 (en) Liquid crystalline di (meth) acrylate compound and retardation film, optical film, polarizing plate, liquid crystal panel and liquid crystal display device using the same
WO2021167075A1 (en) Optical multilayer body, polarizing plate, and image display device
WO2019035468A1 (en) Liquid crystal composition, light-absorbing anisotropic film, layered body, and image display device
JP7181376B2 (en) Copolymer, composition for photo-alignment film, photo-alignment film, optically anisotropic element and polarizing element
WO2020175620A1 (en) Photoalignment film composition, photoalignment film, and laminate
JP6945052B2 (en) Binder composition, binder layer, optical laminate and image display device
JP7355928B2 (en) Composition, composition layer, optical laminate, and image display device
WO2019022121A1 (en) Layered body, method for manufacturing layered body, and image display device
JP7189232B2 (en) Photo-alignable copolymer, binder composition, binder layer, optical laminate, and image display device
US11827727B2 (en) Photo-alignment polymer, binder composition, binder layer, optical laminate, optical laminate manufacturing method, and image display device
JP7303334B2 (en) Photo-alignable polymer, binder composition, binder layer, optical laminate, method for producing optical laminate, image display device
JP7385729B2 (en) Optical laminates, polarizing plates and image display devices
WO2021241450A1 (en) Photo-alignment polymer, binder composition, binder layer, optical laminate, method for manufacturing optical laminate, and image display device
JP7335986B2 (en) compound, liquid crystal composition, liquid crystal film
WO2022024683A1 (en) Binder composition, compound, binder layer, optical laminate, manufacturing method for optical laminate, and image display device
JP2023080006A (en) Photoalignable polymer, binder composition, binder layer, optical laminate, method of manufacturing optical laminate, and image display device
JP2023104473A (en) Photoaligning polymer, binder composition, binder layer, optical laminate, method for producing optical laminate, and image display device
WO2020110817A1 (en) Method for manufacturing optical laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21797906

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022518114

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21797906

Country of ref document: EP

Kind code of ref document: A1