WO2021220973A1 - Method for suppressing fires, and chemical ejector for suppressing fires - Google Patents

Method for suppressing fires, and chemical ejector for suppressing fires Download PDF

Info

Publication number
WO2021220973A1
WO2021220973A1 PCT/JP2021/016505 JP2021016505W WO2021220973A1 WO 2021220973 A1 WO2021220973 A1 WO 2021220973A1 JP 2021016505 W JP2021016505 W JP 2021016505W WO 2021220973 A1 WO2021220973 A1 WO 2021220973A1
Authority
WO
WIPO (PCT)
Prior art keywords
fire
drug
radiator
chemical
nozzle
Prior art date
Application number
PCT/JP2021/016505
Other languages
French (fr)
Japanese (ja)
Inventor
宏幸 ▲高▼橋
学 近藤
貴之 津田
榮一 遠山
千秋 遠藤
Original Assignee
日本ドライケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021065508A external-priority patent/JP2021176503A/en
Application filed by 日本ドライケミカル株式会社 filed Critical 日本ドライケミカル株式会社
Publication of WO2021220973A1 publication Critical patent/WO2021220973A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C13/00Portable extinguishers which are permanently pressurised or pressurised immediately before use
    • A62C13/66Portable extinguishers which are permanently pressurised or pressurised immediately before use with extinguishing material and pressure gas being stored in separate containers
    • A62C13/68Portable extinguishers which are permanently pressurised or pressurised immediately before use with extinguishing material and pressure gas being stored in separate containers characterised by means for releasing the extinguishing material
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D1/00Fire-extinguishing compositions; Use of chemical substances in extinguishing fires

Definitions

  • the present invention relates to a fire control method and a fire control chemical radiator for preventing an artificial fire such as arson terrorism and for preventing the spread of fire.
  • Patent Document 1 a method has been proposed in which a nozzle that radiates the chemical in a fan shape is used to adhere the chemical to a combustible material (for example, a wall of a cultural property) with a thickness that has an effect of preventing the spread of fire without a gap to prevent the spread of fire.
  • the present invention has been made in view of the above points, and an object of the present invention is to prevent the sprinkled fuel (flammable liquid) from being ignited in order to prevent an artificial fire such as an arson terrorism. Or, even if it is ignited, it gives time to evacuate the spread of fire, it is to suppress the flame, and it is also effective to suppress the fire even if it is not intentional. To provide a drug radiator.
  • an object of the present invention is to prevent the sprinkled fuel (flammable liquid) from being ignited in order to prevent an artificial fire such as an arson terrorism. Or, even if it is ignited, it gives time to evacuate the spread of fire, it is to suppress the flame, and it is also effective to suppress the fire even if it is not intentional. To provide a drug radiator.
  • the feature of the fire suppression method according to the present invention is For criminal acts such as arson terrorism, which sprinkles fuel and ignites, a chemical that has a short-term (for example, less than 10 seconds) and wide-ranging effect of suppressing fuel evaporation and preventing combustible materials (for example).
  • a fire suppressant 99 as a chemical described later is emitted to suppress ignition and explosion (explosion or explosion combustion). Furthermore, it is necessary to control fires against fuel leakage and diffusion due to accidents and carelessness, and general combustibles.
  • the present invention includes the following aspects.
  • [1] In response to criminal acts such as arson terrorism, in which fuel is sprinkled and ignited, by radiating a chemical that suppresses fuel evaporation and has a flameproof effect on combustibles in a short period of time and in a wide range.
  • a fire control method that suppresses ignition and explosion.
  • [2] The method for suppressing a fire according to [1], wherein the drug is radiated in less than 10 seconds from the start of radiation.
  • [3] The method for controlling a fire according to [1] or [2], wherein the drug is radiated to 4 square meters or more per liter.
  • [4] 4 4. The method for controlling a fire according to any one of the items.
  • the chemicals include fluorine-based surfactants, hydrocarbon-based surfactants, silicon-based surfactants, other surfactants, phosphates flameproofing agents, thickeners, flameproofing agents, and freezing point lowering agents.
  • a storage container for storing a drug having an effect of suppressing fuel evaporation and a flameproof effect on combustibles, and a distribution having a cross-sectional area of 25 square millimeters or more for 1 liter of the capacity of the drug in communication with the storage container. It is equipped with a route and an opening that communicates with the distribution channel and discharges the drug while diffusing it, and is used in a short time and in a wide range for criminal acts such as arson terrorism that sprinkles fuel and ignites.
  • a chemical radiator for fire control configured to do so.
  • the sprinkled fuel in order to prevent an artificial fire such as arson terrorism, the sprinkled fuel is not ignited, or even if it is ignited, there is a time margin for evacuating the spread of the fire, and the flame can be suppressed. can. Furthermore, the same effect can be obtained in a normal fire.
  • FIG. 1A is a rear view showing the entire pressurized fire suppression chemical radiator according to the embodiment of the present invention.
  • FIG. 1B is a side view showing the entire pressurized fire suppression chemical radiator according to the embodiment of the present invention.
  • FIG. 1C is a top view showing the entire pressurized fire suppression chemical radiator according to the embodiment of the present invention.
  • FIG. 2 is a diagram showing the entire pressure-accumulation type fire suppression chemical radiator according to another embodiment of the present invention.
  • FIG. 3 is a diagram showing a distribution route of a chemical radiator for fire suppression according to an embodiment of the present invention and a distribution route of a conventional fire extinguisher.
  • FIG. 4 is a diagram showing a nozzle structure of an F-type nozzle.
  • FIG. 5 is a diagram showing a nozzle structure of a foam head nozzle.
  • FIG. 6A is a top view showing the nozzle structure of the diffusion nozzle.
  • FIG. 6B is a side view showing the nozzle structure of the diffusion nozzle.
  • FIG. 6C is a front view showing the nozzle structure of the diffusion nozzle.
  • FIG. 7A is a top view showing a nozzle structure of a foam head arranged with a double angle.
  • FIG. 7B is a side view showing a nozzle structure of a foam head arranged with a double angle.
  • FIG. 8A is a top view showing a circumferential radiation mechanism as a low recoil mechanism.
  • FIG. 8B is a side view showing a circumferential radiation mechanism as a low recoil mechanism.
  • FIG. 8A is a top view showing a circumferential radiation mechanism as a low recoil mechanism.
  • FIG. 8C is a top view showing a circumferential radiation mechanism as a low recoil mechanism.
  • FIG. 9A is a diagram showing a protection range area of a type A nozzle.
  • FIG. 9B is a diagram showing a protection range area of a type B nozzle.
  • FIG. 9C is a diagram showing a protection range area of a type C nozzle.
  • the up or down direction means the up or down in the state where the fire suppression chemical radiator 10 is upright (FIG. 1B).
  • FIG. 1A to 1C are three views showing a pressurized fire suppression chemical radiator that is the subject of an embodiment of the present invention.
  • 1A is a rear view of the fire suppression chemical radiator 10
  • FIG. 1B is a side view of the fire suppression chemical radiator 10
  • FIG. 1C is a top view of the fire suppression chemical radiator 10.
  • the fire suppression chemical radiator 10 (hereinafter referred to as the radiator 10) of the present embodiment is referred to as a pressurized type.
  • the radiator 10 has a pressure resistant container 11.
  • a fire suppressant 99 as a chemical that suppresses the evaporation of artificially sprinkled fuel (flammable liquid) and also suppresses ignition of the fuel and explosive combustion of the fuel, and a third
  • the gas introduction pipe 15 and the first discharge pipe (first flow path) 17 are enclosed.
  • the first discharge pipe 17 is also called a siphon pipe.
  • a nozzle unit 50 is attached to the pressure-resistant container 11 outside the pressure-resistant container 11.
  • the nozzle unit 50 includes a second discharge pipe (second flow path) 18, a third discharge pipe (third flow path) 19, a nozzle 55, a first gas introduction pipe 57, and a second gas.
  • the introduction pipe 58, the handle 60, and the gas cartridge 70 are attached.
  • the second discharge pipe (second distribution path) 18 leads the fire suppressant 99 that has passed from the first discharge pipe 17 toward the third discharge pipe 19 and the opening 20.
  • the third discharge pipe (third distribution path) 19 leads out the fire suppressant 99 that has passed through from the second discharge pipe 18 toward the opening 20.
  • the nozzle 55 discharges the fire suppressant 99 that has passed through the third discharge pipe 19 from the opening 20 and sprays (radiates) the fire suppressant 99 onto the combustible material 200 that is the object of fire.
  • the first gas introduction pipe 57 leads the gas passing through from the gas cartridge 70 toward the second gas introduction pipe 58 and the third gas introduction pipe 15.
  • the second gas introduction pipe 58 leads out the gas passing through from the first gas introduction pipe 57 toward the third gas introduction pipe 15.
  • the gas cartridge 70 is a gas container for pressurization that serves as a pressure source for spraying (radiation), and the gas container is filled with, for example, nitrogen gas, helium gas, carbon dioxide gas, or the like.
  • the gas container may preferably be filled with nitrogen to improve foaming.
  • the nozzle unit 50 is provided with a cap nut 51 so that the nozzle unit 50 can be attached to the pressure-resistant container 11 and the fire suppressant 99 in the pressure-resistant container 11 does not leak to the outside. ing. Further, a hand-held handle 52 is attached to the nozzle unit 50 so that a person (operator) can carry the radiator 10. Furthermore, the nozzle unit 50 may be provided with a gas cartridge cover 72 shown by a broken line so as to cover the gas cartridge 70. The gas cartridge 70 may be configured to be enclosed in the pressure-resistant container 11.
  • the pressure-resistant container 11 is made of a metal such as an aluminum material. As shown in FIGS. 1A and 1C, the pressure-resistant container 11 has a substantially cylindrical cylindrical portion 12 having a substantially constant diameter, and a shoulder portion 13 having a reduced diameter and a substantially bowl-shaped curved shape. The portion 12 and the shoulder portion 13 are seamlessly integrally formed. The cylindrical portion 12 and the shoulder portion 13 do not necessarily have to be seamless and may be joined by welding or the like.
  • the handle 60 includes a fixed handle portion 61 that is fixed and a movable handle portion 62 that is configured to be movable in the vertical direction with respect to the fixed handle portion 61. Further, the handle 60 is provided with a safety lock 63 for restricting the vertical movement of the movable handle portion 62 and a pin safety plug 64 for fixing the safety lock 63 in the locked state.
  • the movable handle portion 62 can rotate with respect to the fixed handle portion 61 around the pin 66 in a state where the pin safety plug 64 is removed from the handle 60 and the safety lock 63 is in the locked state to the unlocked state, and the movable handle portion 62 can rotate. The free end of 62 can move up and down.
  • the punch 65 made of a cutter or the like is operated based on the operation of the handle 60 to burst (break) the sealing plate 71 of the gas cartridge 70.
  • the gas cartridge 70 whose sealing plate 71 is burst by the punch 65 releases gas (for example, nitrogen gas, carbon dioxide gas, helium gas, etc.), and the first gas introduction pipe 57, the second gas introduction pipe 58, and the third Gas is released into the pressure-resistant container 11 through the gas introduction pipe 15 of the above.
  • gas for example, nitrogen gas, carbon dioxide gas, helium gas, etc.
  • the fire suppressant 99 is pressurized by utilizing the pressure of the gas released into the pressure-resistant container 11, passes through the first discharge pipe 17, the second discharge pipe 18, and the third discharge pipe 19, and then passes through the first discharge pipe 17, the second discharge pipe 18, and the third discharge pipe 19. It is sprayed (radiated) from the opening 20 of the nozzle 55 and discharged to a combustible material 200 as an object for which a fire should be suppressed.
  • a sealing plate (not shown) is also provided between the first discharge pipe 17 and the second discharge pipe (second distribution path) 18, so that the sealing plate bursts due to the pressure of the gas. ing.
  • FIG. 2 is a diagram showing a pressure-accumulation type fire suppression chemical radiator 10 which is the subject of another embodiment of the present invention.
  • the pressure-resistant container 11 of the accumulator type radiator 10 the evaporation of the artificially sprinkled fuel (flammable liquid) is suppressed, and the ignition of the fuel and the fire suppression as a chemical that suppresses the explosive combustion of the fuel are suppressed.
  • a gas for example, nitrogen gas + helium gas, etc.
  • a pressure source for spraying (radiation) is sealed (accumulated) at a predetermined pressure (for example, about 0.7 to about 0.9 megapascals).
  • a predetermined pressure for example, about 0.7 to about 0.9 megapascals.
  • a nozzle unit 50 is attached to the pressure-resistant container 11 outside the pressure-resistant container 11.
  • the nozzle unit 50 has a second discharge pipe (second distribution path) 18 and a second discharge pipe (second flow path) 18 for leading out the fire suppressant 99 that has passed from the first discharge pipe 17 toward the third discharge pipe 19 and the opening 20.
  • a third discharge pipe (third distribution path) 19 that leads out the fire suppressant 99 that has passed through the discharge pipe 18 toward the opening 20 and a fire suppressant 99 that has passed through the third discharge pipe 19 are opened.
  • a nozzle 55 that discharges (radiates) the fire suppressant 99 from the 20 to the combustible material 200 that causes a fire, and a handle 60 are attached.
  • the nozzle unit 50 is provided with a cap nut 51 so that the nozzle unit 50 can be attached to the pressure-resistant container 11 and the gas in the pressure-resistant container 11 and the fire suppressant 99 do not leak to the outside. It is configured.
  • the pressure-resistant container 11 is made of a metal such as an aluminum material.
  • the pressure-resistant container 11 has a substantially cylindrical cylindrical portion 12 having a substantially constant diameter and a shoulder portion 13 having a reduced diameter and a substantially bowl-shaped curved shape, and the cylindrical portion 12 and the shoulder portion 13 are seamless. It is integrally formed with.
  • the cylindrical portion 12 and the shoulder portion 13 do not necessarily have to be seamless and may be joined by welding or the like.
  • the handle 60 includes a fixed handle portion 61 that is fixed and a movable handle portion 62 that is configured to be movable in the vertical direction with respect to the fixed handle portion 61. Further, the handle 60 is provided with a safety lock 63 for restricting the vertical movement of the movable handle portion 62 and a pin safety plug 64 for fixing the safety lock 63 in the locked state.
  • the movable handle portion 62 can rotate with respect to the fixed handle portion 61 around the pin 66 in a state where the pin safety plug 64 is removed from the handle 60 and the safety lock 63 is in the locked state to the unlocked state, and the movable handle portion 62 can rotate. The free end of 62 can move up and down.
  • a punch 65 made of a cutter or the like is operated downward based on the operation of the handle 60, and is provided between the first discharge pipe 17 and the second discharge pipe (second distribution path) 18. It is configured to burst (break) the sealing plate 71, which is a member that prevents the gas and the fire suppressant 99 in the pressure-resistant container 11 from leaking to the outside.
  • the sealing plate 71 bursts due to the punch 65, the fire suppressant 99 passes through the first discharge pipe 17, the second discharge pipe 18, and the third discharge pipe 19 due to the pressure of the gas, and passes through the opening 20 of the nozzle 55. It is sprayed (radiated) and released into a combustible material 200 as an object to suppress a fire.
  • a drug containing a fluorine-based surfactant for example, a drug containing a fluorine-based amphoteric surfactant, a fluorine-based anionic surfactant, a fluorine-based nonionic surfactant, or the like, preferably a fluorine-based amphoteric surfactant.
  • Drugs containing (Chemers Co., Ltd., registered trademark, Capstone TM 1157, etc.)
  • hydrocarbon-based surfactants such as hydrocarbon-based nonionic surfactants and hydrocarbon-based anionic surfactants.
  • Drugs containing phosphate ester (methyl acid phosphate) (6)
  • Drugs containing thickeners such as natural gums such as xanthan gum, gwa gum, and Arabic gum, polysaccharides such as carboxymethyl cellulose and methyl cellulose, gelatin, agar, etc.
  • Drugs containing, preferably xanthan gum (7)
  • Drugs containing freezing point lowering agents such as glycols such as ethylene glycol, diethylene glycol, propylene glycol, butylcarbitol, hexylcarbitol, glycerin, sorbitol, etc.
  • Drugs containing alcohols preferably those containing ethylene glycol (8)
  • Drugs containing flameproofing agents for example, drugs containing nitrogen compounds such as urea and ammonium salts, and drugs containing gwanidine salts, etc.
  • the fire suppressant 99 to be enclosed may be any one of the above (1) to (5), or may be a mixture of a plurality of them.
  • the enclosed fire suppressant 99 preferably contains at least two of the above (1) to (8).
  • any chemical can be used as long as it can suppress fire, and instead of the fire suppressant 99, a chemical for extinguishing a fire (fire extinguishing agent, foaming agent for civil engineering / construction, foaming agent for food, etc.
  • Foaming agents for cosmetics, non-foaming flame retardants, flame retardants, flame retardants, water-soluble flame retardant paints, flame retardant resins, etc. may be used.
  • a fire suppressant 99 that is sprayed (radiated) in the form of bubbles. Since the fire suppressant 99 such as (1) forms a water film on the fuel (particularly a flammable liquid) to cover the fuel when returning from the foam state to the aqueous state, the flammable vapor of the fuel It is possible to suppress the evaporation and ignition of the fuel.
  • ordinary additives such as pH adjusters (for example, amines such as monoethanolamine, triethanolamine and diethanolamine, and inorganic acids such as sodium tetraborate, sulfuric acid and nitrate)
  • pH adjusters for example, amines such as monoethanolamine, triethanolamine and diethanolamine, and inorganic acids such as sodium tetraborate, sulfuric acid and nitrate
  • Monoethanolamine is preferable for neutralizing acidity
  • sulfuric acid is preferable for neutralizing alkalinity with organic acids such as acetic acid and citric acid
  • rust preventives aromatic compounds such as benzotriazole
  • the capacity CP (drug amount CP) of the enclosed fire suppressant 99 is about 2 liters in the case of the hand-held type, which is the same type as the conventional fire extinguisher, but the amount is smaller than this (for example). It may be 1 liter) or a large amount (for example, 6 liters). Further, the fire suppressant 99 may be colored or smelled. By coloring or smelling in this way, the sprayed (radiated) fire suppressant 99 adheres to the clothes of the arson terrorist criminal, etc., so that the arson terrorist criminal can be easily identified. Can be done.
  • the effects of the fire suppressant 99 are shown below.
  • the chemical containing a fluorine-based surfactant has an effect of forming a water film on the sprinkled fuel (particularly a flammable liquid) and preventing the fuel from evaporating.
  • the chemical containing a hydrocarbon-based surfactant has the effect of forming bubbles on the sprinkled fuel (particularly a flammable liquid), preventing the fuel from evaporating and emulsifying it.
  • the chemical containing a silicon-based surfactant has the effect of forming bubbles on the sprinkled fuel (particularly a flammable liquid), preventing the fuel from evaporating and emulsifying it.
  • the chemicals containing other surfactants have the effect of forming bubbles on the sprinkled fuel (particularly flammable liquid) to prevent evaporation of the fuel and emulsify it.
  • a chemical containing a flameproofing agent such as phosphates has an effect of suppressing combustion of general combustible materials such as wood, clothing, paper, and resin.
  • the drug containing the thickener can maintain the foamy state for a long time after being sprayed in the foamy state. In addition, the effect of adhering to cloth or board is increased.
  • a chemical containing a freezing point depressant can make the fire suppressant hard to freeze.
  • a chemical containing a flame retardant (flame retardant) has an effect of suppressing the combustion of general combustible materials such as wood, clothing, paper, and resin, like phosphates.
  • the type of the radiator 10 having such a pressure-resistant container 11 is a hand-held type (similar to a conventional fire extinguisher, and the amount of chemicals CP to be sealed is 0.8 to 10 liters (preferably 1 to 6 liters). ) And a portable type (a portable aerosol type), for example, the amount of drug CP enclosed is preferably 1 liter or less (0.2 to 0.5 liter is preferable). ) Is the size of the pressure-resistant container 11). Further, the hand-held type or portable type radiator 10 can be sprayed with the fire suppressant 99 toward a specific place (for example, a building, a vehicle, a passage, an entrance / exit, etc. where an evacuation route is secured).
  • a specific place for example, a building, a vehicle, a passage, an entrance / exit, etc. where an evacuation route is secured.
  • radiator 10 There is also a fixed type that is fixed to a place, such as a wall or ceiling.
  • the size of the radiator 10 is not limited to this, and if the radiator 10 has a size that can be carried like a fire extinguisher, it is a hand-held type, and if the radiator 10 is portable to a person, it is a portable type. And.
  • the dimensions of the hand-held type 2-liter radiator 10 of the present embodiment are, for example, 520 mm in height, 266 mm in width (horizontal length of the nozzle unit), and a pressure-resistant container as shown in FIGS. 1A to 1C.
  • the diameter of 11 is 128 mm. Since this has substantially the same dimensions as a general 2-liter fire extinguisher, it is possible to use the parts of the conventional fire extinguisher as common parts for the radiator 10. By commonly using the parts used in the fire extinguisher for the radiator 10 in this way, the cost of the radiator 10 itself can be suppressed, and the radiator 10 can be made compatible with the recycling system of the fire extinguisher. It has become.
  • the dimensions shown here are examples, and the radiator 10 may have dimensions different from the dimensions shown here, and the dimensions may be determined according to the amount of the drug to be sealed in the pressure-resistant container 11. Just do it.
  • the fire suppressant 99 is sprayed (radiated) from the opening 20 of the nozzle 55 based on the operation of the handle 60, and is discharged to the combustible material 200. .. Further, in the portable type, the fire suppressant 99 is sprayed (radiated) from the opening 20 of the nozzle 55 based on pressing the nozzle 55 downward as in the general aerosol type, and is discharged to the combustible material 200. Including those configured as.
  • the method of spraying (radiating) in the fixed type is the same as that of the hand-held type and the portable type, but the fire suppressant 99 enclosed by using a remote control or the like for remote control is sprayed (radiated) from the opening 20 of the nozzle 55.
  • the fixed type radiator 10 is fixedly attached to a place where the fire suppressant 99 can be sprayed (radiated) in the range around the counter of the bank where the evacuation route can be secured.
  • fuel flammable liquid
  • the person operating the counter operates the spray switch on the remote controller to evacuate the fire suppressant 99 around the counter. It is configured so that it can be sprayed (radiated) within the range where the road can be secured.
  • the fixed type radiator 10 Since such a fixed type radiator 10 does not require a large-scale construction work as compared with a conventional fixed type sprinkler or the like, it is possible to take very inexpensive disaster prevention measures, and it is a space-saving disaster prevention measure. ing. Further, since the fixed type radiator 10 is configured to spray (radiate) the fire suppressant 99 from the opening 20 of the nozzle 55 by remote control, the fire is not noticed and threatened by the criminal of the arson terrorism. It is possible to suppress.
  • the fixed type radiator 10 may have a larger amount of chemicals than the hand-held type, and for example, a fire suppressant 99 in an amount of about 2 to 20 liters (preferably about 2 to 16 liters) is enclosed. The radiator 10 may be used.
  • the radiator 10 of the present embodiment includes a short-time radiation mechanism as a mechanism capable of spraying (radiating) the fire suppressant 99 sealed in the pressure-resistant container 11 in a short time.
  • the short-time radiation mechanism is composed of a pressurizing method (pressurizing means), an opening mechanism, and a distribution channel.
  • a conventional fire extinguisher is configured to take 10 seconds or more to complete spraying (radiation).
  • it takes less than 10 seconds, preferably within 5 seconds, particularly preferably within 2 seconds from the start to the completion of spraying (radiation). It is configured.
  • the pressurization method includes a method in which the sealing plate 71 of the gas cartridge 70 bursts at once to release the pressure in an instant (for example, the above-mentioned pressurization type), and a state in which the pressure is constantly stored in the pressure-resistant container 11 is instantly stored.
  • An example of a method of opening for example, the above-mentioned accumulator method
  • the pressurization method may be any method as long as the pressure of the pressure-resistant container 11 can be increased and the fire suppressant 99 in the pressure-resistant container 11 can be released in an instant.
  • Opening mechanism Examples of the opening mechanism of the radiator 10 include the above-mentioned pressurization type and the above-mentioned accumulator type.
  • the distribution channel is composed of a first distribution channel 17, a second distribution channel 18, and a third distribution channel 19.
  • the cross-sectional area S of the distribution path 16 (first discharge pipe 17 or second discharge pipe 18 or third discharge pipe 19) of the radiator 10 of the present embodiment is the cross-sectional area of the flow path of the conventional fire extinguisher. It is structured larger than the previous one.
  • the cross-sectional area S1 of the first distribution path (first discharge pipe) 17, the cross-sectional area S2 of the second distribution path (second discharge pipe) 18, and the third distribution path (third discharge pipe) 19 The smallest cross-sectional area of the cross-sectional area S3 of the above is taken as the cross-sectional area S of the distribution channel 16 of the present embodiment.
  • the cross section of the nozzle 55 is circular, and the distribution path 16 (for example, the third S3, which is the cross-sectional area S of the discharge pipe 19), has a size of 250 square millimeters.
  • FIG. 3 is a diagram showing a distribution route of the fire suppression chemical radiator 10 of the present embodiment and a distribution route of a conventional fire extinguisher.
  • the cross-sectional area S of the distribution path 16 of the radiator 10 of the embodiment shown in FIG. 3, that is, the smallest cross-sectional area is the cross-sectional area S2 of the second distribution path 18 provided with the sealing plate 71.
  • the cross-sectional area S3 of the third distribution route 19 and the cross-sectional area S1 of the first distribution route have the same area, which is larger than the cross-sectional area S2.
  • S2 has a slightly smaller area than S1 and S3, and S2 / S3 and S2 / S1 have values close to 1.
  • the cross-sectional area S1 may be the smallest cross-sectional area.
  • the cross-sectional area of the distribution path of the conventional fire extinguisher that is, the smallest cross-sectional area is the cross-sectional area S0 of the nozzle.
  • the cross-sectional area S0 of the nozzle has an area smaller than the cross-sectional areas S1, S2, and S3 of the circulation path of the radiator 10, and S0 / S1, S0 / S2, and S0 / S3 are smaller than 1 (for example,). It is about 0.5, about 0.3, and even about 0.1), and it takes 10 seconds or more to finish radiating 2 liters of the drug.
  • the distribution path 16 of the radiator 10 By configuring the distribution path 16 of the radiator 10 so as to have such a relationship, that is, the ratio of the cross-sectional area S0 of the nozzle 10 to the cross-sectional areas S1, S2, S3 of the distribution path of the radiator 10 (S1 / S0, By making S2 / S0, S3 / S0) larger than 1, it becomes possible to radiate the chemical in a shorter time than the conventional fire extinguisher.
  • the length of the distribution path of the radiator 10 of the present embodiment distance from the inlet to the outlet of the distribution path of the radiator 10 in FIG. 3
  • the length of the distribution path of the conventional fire extinguisher fire extinguishing in FIG. 3
  • It may be the same length as the distance from the entrance to the exit of the distribution channel of the vessel.
  • the amount of chemicals CP enclosed in the radiator 10 of the present embodiment and the conventional fire extinguisher is 2 liters, but other chemical amounts may be used.
  • the cross section of the nozzle 55 may be circular.
  • S3 which is the cross-sectional area of one distribution path 16 (third discharge pipe 19) in the case of the radiator 10 having a plurality of nozzles 55, has an area of 125 square meters, which is smaller than that in the case of one nozzle 55. It is composed of millimeters in size.
  • Amount of medicine to be enclosed In a radiator 10 having a CP of 2 liters, the time required to complete spraying (radiation) of 2 liters of medicine is the same when there is one nozzle and when there are multiple nozzles. Is the sum of the cross-sectional area of one flow path 16 (for example, 250 square millimeters) when there is one nozzle and the cross-sectional area of a plurality of flow paths 16 having a plurality of nozzles (for example, 125 square millimeters ⁇ 2 250). Square millimeters) and are configured to be the same. With this configuration, even when a plurality of nozzles 55 are provided, the same performance as when one nozzle 55 is provided can be obtained. When there are a plurality of nozzles 55, the cross-sectional area S3 of the third discharge pipe 19, which is a distribution path connected to the nozzles 55, needs to be the smallest.
  • the size of the cross-sectional area S illustrated in the pressurizing type of this embodiment is in the order of S1> S2> S3.
  • the cross-sectional area S1 of the first discharge pipe 17, which is the distribution path on the side where the fire suppressant 99 starts to flow, is the largest, and the cross-sectional area S3 of the third discharge pipe 19 closest to the nozzle 55 (about 80 of S1). % Cross-sectional area) is configured to be the smallest.
  • the cross-sectional shape of the distribution channel 16 may be an elliptical shape, a rectangular shape, or the like in addition to the circular shape.
  • the ratio of the capacity CP (drug amount CP) of the fire suppressant stored in the pressure-resistant container 11 of the radiator 10 of the present embodiment to the cross-sectional area S of the distribution path 16 has the following relational expression. It is configured.
  • the cross-sectional area S having a capacity CP of 25 square millimeters or more with respect to 1 liter, the fire suppressant 99 in the pressure-resistant container 11 is sealed in the pressure-resistant container 11 in less than 10 seconds regardless of the capacity CP. It is configured so that the fire suppressant 99 that has been used can be sprayed (radiated).
  • the ratio of the capacity CP and the cross-sectional area S is 1 liter: 25 square millimeters or more
  • the cross-sectional area S of the distribution path 16 that enables the drug amount CP enclosed in the pressure-resistant container 11 to be sprayed (radiated) within 10 to 2 seconds is as follows.
  • (Portable type 1) In the case of a drug amount CP of 0.2 liter, a cross-sectional area S of 5 square millimeters or more is required.
  • the cross-sectional area S is preferably 25 square millimeters or more, more preferably 50 square millimeters or more, and the upper limit value may be 300 square millimeters or less.
  • (Portable type 2) In the case of a drug amount CP of 0.5 liter, a cross-sectional area S of 12.5 square millimeter or more is required.
  • the cross-sectional area S is preferably 25 square millimeters or more, more preferably 62.5 square millimeters or more, and the upper limit value may be 300 square millimeters or less.
  • Hand-held type 1 In the case of 1 liter of drug amount CP, a cross-sectional area S of 25 square millimeters or more is required.
  • the cross-sectional area S is preferably 125 square millimeters or more, and the upper limit value may be 300 square millimeters or less.
  • Hand-held type 2 In the case of a drug amount CP of 2 liters, a cross-sectional area S of 50 square millimeters or more is required.
  • the cross-sectional area S is preferably 250 square millimeters or more, and the upper limit value may be 600 square millimeters or less.
  • Hand-held type 3 In the case of a drug amount CP of 3 liters, a cross-sectional area S of 75 square millimeters or more is required.
  • the cross-sectional area S is preferably 375 square millimeters or more, and the upper limit may be 900 square millimeters or less.
  • Hand-held type 4 In the case of a drug amount CP of 4 liters, a cross-sectional area S of 100 square millimeters or more is required.
  • the cross-sectional area S is preferably 500 square millimeters or more, and the upper limit value may be 1200 square millimeters or less.
  • Hand-held type 5 In the case of a drug amount CP of 5 liters, a cross-sectional area S of 125 square millimeters or more is required.
  • the cross-sectional area S is preferably 625 mm2 or more, and the upper limit may be 1500 mm2 or less.
  • Hand-held type 6 In the case of a drug amount CP of 6 liters, a cross-sectional area S of 150 square millimeters or more is required.
  • the cross-sectional area S is preferably 750 mm2 or more, and the upper limit may be 1800 mm2 or less.
  • a cross-sectional area S of 400 square millimeters or more is required.
  • the cross-sectional area S is preferably 2000 square millimeters or more, and the upper limit value may be 4800 square millimeters or less.
  • the upper limit of the cross-sectional area S [square millimeter] 25 ⁇ the chemical amount CP [ It is configured to be [liter].
  • the cross-sectional area S and the drug amount CP are proportional.
  • the flow rate is Q [liters / minute]
  • the diameter of the distribution path is ⁇ D [millimeters]
  • the pressure is P [megapaspal]
  • the flow coefficient is Cp
  • the flow rate Q for (which does not change) can be expressed by the following equation.
  • the radiator 10 of the present embodiment may be provided with a wide-range radiation mechanism as a mechanism capable of spraying (radiating) a water-forming foam agent as a fire suppressant 99 in a foam state over a wide area of protection range.
  • the wide-range radiation mechanism is composed of a nozzle structure, the number of nozzles, and a nozzle arrangement structure.
  • the fire control agent 99 to be sprayed (radiated) can be sprayed (radiated) over an area of 1 square meter or more per liter. It may be configured to be sprayed (radiated) over a wide area of protection (area of 4 square meters or more) (wide area radiation mechanism).
  • the upper limit of the spraying (radiation) area is, for example, about 10 square meters per liter.
  • the fire suppressant 99 when the fire suppressant 99 is sprayed (radiated), it is sprayed (radiated) in the form of bubbles, but the firing magnification at that time is configured to be 2 times or more.
  • the foaming ratio is particularly preferably configured to be sprayed (radiated) at 4 times or more.
  • 1 liter of fire suppressant 99 is sprayed (radiated), and 1 liter of volume (volume) is called 1 times the foaming ratio, and 1 liter of fire control agent 99 is sprayed (radiated).
  • the foaming ratio When the volume (volume) of 2 liters is reached, the foaming ratio is called 2 times, and when 1 liter of the fire suppressant 99 is sprayed (radiated), the volume (volume) of 4 liters is called the foaming ratio of 4. Call it double.
  • the higher the foaming ratio the more it can be sprayed (radiated) over a wide area of protection.
  • the fire suppressant 99 sprayed (radiated) in the foam state is configured to cover the fuel (flammable liquid) in the foam layer state.
  • the thickness of this layer is configured to be 1 mm or more when the expansion ratio is 4 times. When the thickness of the layer is 1 mm or more, the evaporation and ignition of the flammable vapor of the fuel (flammable liquid) can be suppressed more than the layer of 1 mm or less.
  • the nozzle 55 has a structure capable of spraying (radiating) a water-forming foam agent as a fire suppressant 99 in a foam state over a wide area of protection.
  • a water-forming foam agent as a fire suppressant 99 in a foam state over a wide area of protection.
  • an F-type nozzle, a foam head nozzle, a diffusion nozzle, a foam head nozzle arranged with a double angle, and the like will be exemplified.
  • FIG. 4 is a diagram showing a nozzle structure of an F-type nozzle, and in detail, is a side sectional view showing the entire pressurized radiator 10 having an F-type nozzle.
  • the F-type nozzle 55 is configured to have a flat fan-shaped third discharge pipe (third distribution path) 19 when viewed from the upper surface. Then, by spraying (radiating) the fire suppressant 99 from the F-type nozzle 55, the fire suppressant 99 is atomized and is configured to embrace and foam air by the force of radiation.
  • the pressurized radiator 10 of FIG. 4 differs from the pressurized radiator 10 of FIGS. 1A to 1C only in the nozzle 55, and other parts are used in FIGS. 1A to 1C. Since it is the same as a part, the description thereof will be omitted. Needless to say, parts (for example, a hand-held handle 52, etc.) shown in FIGS. 1A to 1C but not shown in FIG. 4 can be added to the radiator 10 of FIG. In FIG. 4, the upper first gas introduction pipe 57 and the lower first gas introduction pipe 57 are connected by a dashed line, but they are actually connected by a hose.
  • FIG. 5 is a diagram showing a nozzle structure of a foam head nozzle.
  • FIG. 5A is a front view showing the foam head 100, and the right half is a view showing a cross section.
  • FIG. 5B is a top view of the frame 101 provided in the foam head 100.
  • FIG. 5C is a side sectional view of the frame 101.
  • the foam head 100 includes a frame 101 that generates a swirling flow, a wire mesh 102, and an air hole 104.
  • the pressurized fire suppressant 99 is configured to flow into the main body of the foam head 100 via the third discharge pipe 19 and the opening 20.
  • the fire suppressant 99 that has flowed into the main body is released in the direction of the wire mesh 102 while being swirled by the coma 101.
  • the frame 101 is fixed to the shaft 106 as shown in FIG. 5 (a). Further, the frame 101 is provided with three through holes 105a, 105b, and 105c as shown in FIG. 5B. As shown in FIG. 5C, the through holes 105a, 105b, and 105c have a shape that is inclined from the center side to the outside, and the main body of the foam head 100 is formed in these through holes 105a, 105b, 105c.
  • the fire suppressant 99 that has flowed into the inside is configured to flow in. Then, the fire suppressant 99 that has flowed into the through holes 105a to 105c becomes a swirling flow while being swirled in a spiral shape and is discharged in the direction of the wire mesh 102.
  • the fire suppressant 99 released from the frame 101 entrains the air from the air hole 104 and the air when passing through the wire mesh 102, and is released to the outside in the form of bubbles.
  • FIG. 6 is a diagram showing a nozzle structure of a diffusion nozzle.
  • FIG. 6A is a top view showing the diffusion nozzle 55.
  • FIG. 6B is a side view of the diffusion nozzle 55.
  • FIG. 6C is a front view of the diffusion nozzle 55.
  • the diffusion nozzle 55 includes a deflector 201 and a wire mesh 202.
  • the deflector 201 is composed of a horizontally long rectangular upper deflector 201a and a horizontally long rectangular lower deflector 201b having a larger area than the upper deflector.
  • the upper deflector 201a has a shape that is opened at a predetermined angle in the upward direction.
  • the lower deflector 201b has a shape that opens at a predetermined angle in the left-right direction.
  • the upper deflector 201a and the lower deflector 201b are formed with a plurality of rectangular slits, specifically, rectangular slits 220a to 220d, as shown in FIG. 6C.
  • a wire mesh 202 is attached to the front side of the deflector 201, and the fire suppressant 99 that has flowed down the third discharge pipe 19 and the opening 20 entrains air when passing through the wire mesh 202, resulting in a bubble state. It is configured to be released to the outside.
  • the fire suppressant 99 that has flowed down the third discharge pipe 19 is discharged from the opening 20 toward the upper deflector 201a and the lower deflector 201b.
  • a part of the fire suppressant 99 released from the opening 20 is sprayed (radiated) by the lower deflector 201b on the rear side of the lower deflector 201b and along the rear surface of the lower deflector 201b as shown by the alternate long and short dash line in FIG. 6A. It is configured as follows. Specifically, a part of the fire suppressant 99 released from the opening 20 is sprayed (radiated) diagonally forward to the left and diagonally forward to the right along the rear surface of the lower deflector 201b. ing.
  • a part of the fire suppressant 99 released toward the lower deflector 201b is sprayed (radiated) on the front side of the lower deflector 201b by passing through the slits 220a, 220b, 220c of the lower deflector 201b. It is configured. Specifically, the fire suppressant 99 that has passed through the slit 220a is separated when passing through the slit 220a, and then is sprayed (radiated) diagonally forward to the right as shown in FIG. 6A. The fire suppressant 99 that has passed through the slit 220b is separated when passing through the slit 220b, and then is sprayed (radiated) in the forward direction as shown in FIG.
  • a part of the fire suppressant 99 released from the opening 20 is configured to be sprayed (radiated) on the rear side of the upper deflector 201a by the upper deflector 201a as shown by the alternate long and short dash line in FIG. 6B. Specifically, a part of the fire suppressant 99 released from the opening 20 is sprayed (radiated) diagonally upward and forward along the rear surface of the upper deflector 201a. Further, a part of the fire suppressant 99 released toward the upper deflector 201a is sprayed (radiated) on the front side of the upper deflector 201a by passing through a plurality of slits 220d provided in the upper deflector 201a. It is configured in. Specifically, the fire suppressant 99 that has passed through the plurality of slits 220d is separated when passing through the slits 220d, and then is sprayed (radiated) in the forward direction as shown in FIG. 6A. There is.
  • FIG. 7 is a diagram showing a nozzle structure of a foam head 100 arranged with a double angle.
  • FIG. 7A is a top view showing a nozzle structure of the foam head 100 arranged with a double angle.
  • FIG. 7B is a side view of the nozzle structure of the foam head 100 arranged at a double angle.
  • the nozzle structure of the foam heads 100 having a double angled arrangement in which two foam heads 100 are attached at a predetermined angle ( ⁇ degree). Is preferable.
  • the foam head 100 the foam head 100 described above is used.
  • the number of nozzles 55 provided in the radiator 10 is plurality on the left and right (for example, 2) when the nozzles 55 (foam head nozzles) are facing the combustible material 200. It is preferable to provide (pieces). As shown in FIGS. 2 and 3, one nozzle 55 may be provided, or a plurality of nozzles 55 (foam head nozzles) may be provided vertically (for example, as shown in FIG. 7B). (2) may be provided, or a plurality of nozzles 55 may be mounted at different positions in the circumferential direction as shown in FIG. 7A.
  • one spray (radiation) holes may be provided.
  • the upper nozzle 55 sprays the fire suppressant 99 at a position (long distance) far from the nozzle 55 (for example, two nozzles 55).
  • the lower nozzle 55 may be configured to spray (radiate) the fire suppressant 99 at a position (short distance) close to the nozzle 55.
  • the upper nozzle 55 may be used for a short distance and the lower nozzle 55 may be used for a long distance.
  • the fire suppressant 99 has a certain level or more (1 mm or more) even at a short distance and a long distance position. Furthermore, by making the cross-sectional area S of the distribution path 16 connected to the upper nozzle 55 and the lower nozzle 55 different, the fire suppressant is used for short distances (when the cross-sectional area is large) and long distances (when the cross-sectional area is small). 99 may be configured to be sprayed (radiated).
  • nozzle arrangement structure When a plurality of nozzles 55 (foam head nozzles) are used, it is preferable to arrange them at an angle of ⁇ degree as shown in FIG. 7A. An example of 15 degrees as ⁇ here is shown, but it is preferable that ⁇ is 5 to 45 degrees. Further, as shown in FIG. 7B, a plurality of nozzles 55 may be provided vertically in a side view instead of a left-right direction when facing the combustible material 200, or a plurality of nozzles 55 may be provided in the left-right direction (for example, two).
  • the fire suppressant 99 has a nozzle structure, a number of nozzles, and a nozzle arrangement structure so that the same amount can be sprayed (radiated) in a predetermined range (for example, about 4 square meters / 1 liter).
  • the nozzle 55 may be tilted upward several degrees and fixed.
  • the radiator 10 of the present embodiment is a mechanism that reduces the emission sound when spraying (radiating) the fire suppressing agent 99 and has a low reaction to the operator when spraying (radiating) the fire suppressing agent 99. It may be provided with a safety radiation mechanism.
  • the safe radiation mechanism of the radiator 10 of the present embodiment includes a silent mechanism and a low recoil mechanism.
  • one nozzle 55 is configured to provide a plurality of spray (radiation) holes.
  • a plurality of spraying (radiating) holes By providing a plurality of spraying (radiating) holes in this way, the emitted sound when the fire suppressant 99 is sprayed (radiated) is dispersed, so that the emitted sound can be reduced.
  • by reducing the emission sound in this way it is possible to prevent the criminal from being threatened in the event of an arson terrorist attack or the like.
  • FIGS. 8A to 8C are diagrams showing a circumferential radiation mechanism as a low recoil mechanism.
  • the fire suppressant 99 sprayed (radiated) from the nozzle 55 as shown in FIG. 8A is sprayed (radiated) from the nozzle 55 in the circumferential direction (fan shape with a central angle of ⁇ 1 degree) in the top view and as shown in FIG. 8B.
  • the circumferential direction (horizontal direction in the normal spraying state) in the top view shown in FIG. 8A is configured to spray (radiate) from the nozzle 55 at an angle of ⁇ 1 degree, and ⁇ 1 degree is 30 degrees. It is in the range of ⁇ 120 degrees.
  • the nozzle 55 is configured to spray (radiate) at an angle of ⁇ degree, and the ⁇ degree is 15 degrees. It is in the range of ⁇ 90 degrees.
  • the fire suppressant 99 sprayed (radiated) from the two nozzles 55 is in the circumferential direction (fan shape with a central angle of ⁇ 2 degrees) in the top view and in FIG. 8B.
  • the fire suppressant 99 sprayed (radiated) from the nozzle 55 is sprayed (radiated) in the circumferential direction (fan shape with a central angle of ⁇ degrees) even when viewed from the side, so that the reaction to the spraying (radiation) is generated. Since the vector is dispersed, it is configured so that the reaction to the operator is small (circumferential radiation mechanism).
  • the circumferential direction in the top view shown in FIG. 8C is configured to be sprayed (radiated) from the nozzle 55 at an angle of ⁇ 2 degrees, and ⁇ 2 degrees is in the range of 90 degrees to 150 degrees. ..
  • a plurality of nozzles 55 are provided at angles of ⁇ degree and ⁇ 2 degree, and the fire suppressant 99 is sprayed (radiated) in different directions in FIGS. 8A and 8B. Since the reaction vector for spraying (radiation) is dispersed as shown, the reaction to the operator is small (multiple nozzle angled radiation mechanism).
  • the nozzle 55 of one of the plurality of nozzles angled radiation mechanisms may use a circumferential radiation mechanism. With such a configuration, it is possible to obtain a low recoil mechanism that has a lower recoil than the nozzle multiple angled radiation mechanism. Further, the low recoil mechanism is preferably composed of a circumferential radiation mechanism and a plurality of nozzle angled radiation mechanisms, but may be composed of only one of them.
  • FIG. 9A to 9C are diagrams showing the protection range area S4.
  • the protection range (protection range area S4) that can suppress a fire by using the type A nozzle 55 is a substantially square range.
  • the protection range area S4 capable of suppressing a fire is a substantially rectangular range as shown in FIG. 9B.
  • the protection range area S4 capable of suppressing a fire rotates a rectangle using the type B nozzle 55 by 90 degrees as shown in FIG. 9C. It is in the range of a substantially rectangular shape.
  • the protection range area S4 indicates an area in which an amount (thickness) of a fire suppressant 99 effective for extinguishing a fire or suppressing ignition is sprayed.
  • the thickness of the sprayed fire suppressant 99, and the effective thickness of the fire suppressant 99, is 1 mm or more in terms of the volume of foaming (for example, the foaming ratio is 4 times).
  • the area of the protection range S4 is smaller than the area actually sprayed (radiated), and the area in which the thickness of the fire suppressant 99 is 1 mm or more in the actually sprayed area. It is an area. Even if the types of the nozzles 55 are different, the protection range area S4 capable of suppressing a fire may be configured to have the same area.
  • the shape of the protection range area is not limited to the above-mentioned substantially square or substantially rectangular shape, and can be appropriately selected from a substantially trapezoidal shape, a substantially circular shape, a substantially elliptical shape, and the like.
  • type A, type B, and type C nozzles may be attached to the radiator 10 of 1 so that types A to C can be selected and used (nozzle selection mechanism).
  • the nozzles 55 of types A to C can be attached in the circumferential direction of the radiator 10 and rotated to select the nozzle 55 of the type to be used.
  • the protection range to which the fire suppressant 99 is sprayed (radiated) can be changed depending on the situation. There is.
  • the nozzle selection mechanism can be applied to any of the portable type, the hand-held type, and the fixed type radiator 10.
  • the thickness of the foam that can be suppressed is 1 mm and the foaming ratio is 4 times.
  • (Portable type 1) In the case of a 0.2 liter drug amount CP, it is possible to suppress a fire with a protection range area S4 of 0.8 square meters.
  • (Portable type 2) In the case of a drug amount CP of 0.5 liter, it is possible to suppress a fire with a protection range area S4 of 2 square meters.
  • (Hand-held type 1) In the case of 1 liter of chemical amount CP, it is possible to suppress a fire with a protection range area S4 of 4 square meters.
  • (Hand-held type 2) In the case of 2 liters of chemical amount CP, it is possible to suppress a fire with a protection range area S4 of 8 square meters.
  • (Hand-held type 3) In the case of a chemical amount CP of 3 liters, it is possible to suppress a fire with a protection range area S4 of 12 square meters.
  • (Hand-held type 4) In the case of a drug amount CP of 4 liters, it is possible to suppress a fire with a protection range area S4 of 16 square meters.
  • (Hand-held type 5) In the case of a chemical amount CP of 5 liters, it is possible to suppress a fire with a protection range area S4 of 20 square meters.
  • the conventional fire extinguisher filled with 2 liters of the drug is configured to be able to spray (radiate) substantially the entire amount of the drug over a period of 10 seconds or more. Therefore, since there is sufficient time from the sprinkling of the fuel (flammable liquid) to the ignition, the fuel can be easily ignited and the chemical is sprayed (evaporated) on the sprinkled fuel. There is a risk that the fuel will evaporate and explode and burn.
  • conventional fire extinguishers cannot spray (radiate) chemicals over a wide area without shaking the nozzle to spray (radiate) the chemicals, so the problem is to spray (radiate) the chemicals over a wide area. It has become.
  • arson fire prevention devices and arson suppression systems use sensors to determine arson behavior and take preventive measures by using light, sound, water spray, water spray, etc., but highly volatile fuels such as gasoline (flammable) There is a problem that it does not suppress arson when sprinkled with (sexual liquid). Further, the automatic device has a problem that not only the cost of the device itself is very high, but also the installation work and the like are costly and time-consuming.
  • a chemical having a flame-retardant effect (for example, a fire suppressant 99) stored in a portable storage container (for example, a pressure-resistant container 11) is charged with respect to 1 liter of the chemical stored in the storage container.
  • a distribution channel for example, distribution channel 16
  • the drug is discharged from the opening (for example, opening 20) while expanding the flow of the drug with the flow of the drug.
  • a drug radiating method for radiating a drug to an object (for example, a combustible material 200). Further, in this drug radiating method, the drug stored in the storage container is radiated within, for example, 2 seconds.
  • a storage container for example, a pressure-resistant container 11 that stores a chemical having a flameproof effect (for example, a fire suppressant 99) and is portable, and a distribution channel through which the chemical flows, and the capacity of the chemical is 1 liter. It has a cross-sectional area of 25 square millimeters or more, and has a distribution channel (for example, distribution channel 16) that widens the flow of the drug in the flow direction, and discharges the drug while diffusing it in communication with the distribution channel.
  • a fire control chemical radiator can be provided that comprises an opening (eg, an opening 20).

Abstract

In order to prevent deliberate fires such as in arson attacks, provided are a method for suppressing fires and a chemical ejector for suppressing fires, the purpose of which is to suppress fires by disallowing ignition of scattered fuel or, if such fuel is ignited, obtaining temporal leeway until evacuation from spreading flames occurs. This method for suppressing fires involves radiating a wide area with a fire-suppressing agent (99) for fewer than 10 seconds in response to criminal acts such as scattering fuel to set fires and other such arson attacks, thereby suppressing ignition or explosion, the fire-suppressing agent (99) having an effect for suppressing evaporation of fuel or keeping flames away from flammable materials.

Description

火災の抑制方法および火災の抑制用薬剤放射器Fire control method and fire control chemical radiator
 本発明は、放火テロのような作為的な火災を未然に防ぐための、また、火災の延焼防止のための、火災の抑制方法および火災の抑制用薬剤放射器に関する。 The present invention relates to a fire control method and a fire control chemical radiator for preventing an artificial fire such as arson terrorism and for preventing the spread of fire.
 人が意図的に可燃性液体たとえばガソリンや灯油のような燃料を撒いて火を着けることによって発生する放火テロのような作為的な火災は、未然に防ぐことは難しく、特に燃料を撒かれた後であって時間が経過した後に着火されると爆発燃焼するだけでなく、着火後の消火対応は極めて困難である。
 意図的でない可燃物(事故や不注意により漏洩や拡散してしまった可燃物)に対しても、事前に火災の抑制を効果的に行うことが望まれている。
Artificial fires such as arson terrorism caused by a person intentionally sprinkling a flammable liquid such as gasoline or kerosene to ignite a fire are difficult to prevent, especially fueled. If it is ignited later and after a lapse of time, not only will it explode and burn, but it will be extremely difficult to extinguish the fire after ignition.
It is desired to effectively control fires in advance even for unintentional combustibles (combustibles that have leaked or spread due to an accident or carelessness).
 そこで、薬剤を扇状に放射するノズルを用いて、薬剤を可燃物(例えば文化財の壁)に対して延焼防止の効果を生じる厚さで隙間なく付着させ火災の延焼を防止する方法が提案されている(特許文献1)。 Therefore, a method has been proposed in which a nozzle that radiates the chemical in a fan shape is used to adhere the chemical to a combustible material (for example, a wall of a cultural property) with a thickness that has an effect of preventing the spread of fire without a gap to prevent the spread of fire. (Patent Document 1).
日本国特開2017-158971号公報Japanese Patent Application Laid-Open No. 2017-158971
 しかしながら、このような火災の延焼を防止する方法には、可燃性液体のような燃料を用いた放火テロのような作為的な火災を未然に防ぐという課題は認識されていない。また、さらに強力に火災の抑制を行うことが望まれている。 However, in the method of preventing the spread of such a fire, the problem of preventing an artificial fire such as an arson terrorism using a fuel such as a flammable liquid is not recognized. Further, it is desired to suppress the fire more strongly.
 本発明は、上述の点に鑑みてなされたものであり、その目的とするところは、放火テロのような作為的な火災を未然に防ぐため、撒かれた燃料(可燃性液体)に着火させない、または着火させても燃え広がりを避難するまでの時間的余裕を得る、火炎を抑制することであり、さらに、作為的でない火災にも有効に火災を抑制する、火災の抑制方法および火災の抑制用薬剤放射器を提供することにある。 The present invention has been made in view of the above points, and an object of the present invention is to prevent the sprinkled fuel (flammable liquid) from being ignited in order to prevent an artificial fire such as an arson terrorism. Or, even if it is ignited, it gives time to evacuate the spread of fire, it is to suppress the flame, and it is also effective to suppress the fire even if it is not intentional. To provide a drug radiator.
 本発明による火災の抑制方法の特徴は、
 放火テロのような、燃料を撒いて火をつけるような犯罪行為に対し、短時間(例えば、10秒未満)で、広範囲に、燃料の蒸発抑制や可燃物に対する防燃効果を有する薬剤(例えば、後述する薬剤としての火災抑制剤99など)を放射することにより、着火や爆発(爆燃又は爆発燃焼)を抑制することである。さらに、事故や不注意による燃料の漏洩や拡散、一般的な可燃物に対しても火災を抑制することである。
The feature of the fire suppression method according to the present invention is
For criminal acts such as arson terrorism, which sprinkles fuel and ignites, a chemical that has a short-term (for example, less than 10 seconds) and wide-ranging effect of suppressing fuel evaporation and preventing combustible materials (for example). , A fire suppressant 99 as a chemical described later) is emitted to suppress ignition and explosion (explosion or explosion combustion). Furthermore, it is necessary to control fires against fuel leakage and diffusion due to accidents and carelessness, and general combustibles.
 本発明は、以下の態様を含む。
[1] 放火テロのような、燃料を撒いて火をつけるような犯罪行為に対し、短時間で、広範囲に、燃料の蒸発抑制や可燃物に対する防燃効果を有する薬剤を放射することにより、着火や爆発を抑制する火災の抑制方法。
[2] 前記薬剤を、放射開始から10秒未満で放射し終わる、[1]に記載の火災の抑制方法。
[3] 前記薬剤を、1リットル当たり4平方メートル以上に放射することを特徴とする、[1]又は[2]に記載の火災の抑制方法。
[4] 前記薬剤の成分が、界面活性剤、ふっ素系界面活性剤、リン酸塩類防燃剤のうち、1種ないしは2種以上を含有することを特徴とする、[1]~[3]のいずれか一項に記載の火災の抑制方法。
[5] 前記薬剤は、ふっ素系界面活性剤、炭化水素系界面活性剤、シリコン系界面活性剤、その他の界面活性剤、リン酸塩類防燃剤、増粘剤、防炎剤、及び凝固点降下剤からなる群から選択される少なくとも2種を含有する、[1]~[4]のいずれか一項に記載の火災の抑制方法。
[6] 前記薬剤を、火がつく前に放射する、[1]~[5]のいずれか一項に記載の火災の抑制方法。
[7] 燃料の蒸発抑制や可燃物に対する防燃効果を有する薬剤を貯留する貯蔵容器と、前記貯蔵容器と連通し前記薬剤の容量1リットルに対して25平方ミリメートル以上となる断面積を有する流通経路と、前記流通経路と連通し前記薬剤を拡散させつつ吐出する開口部とを備え、放火テロのような、燃料を撒いて火をつけるような犯罪行為に対し、短時間で、広範囲に、燃料の蒸発抑制や可燃物に対する防燃効果を有する薬剤を放射することにより、着火や爆発を抑制する火災の抑制用薬剤放射器。
[8] 前記薬剤を、10秒未満で放射し終わることを特徴とする、[7]に記載の火災の抑制用薬剤放射器。
[9] 前記薬剤を、1リットル当たり4平方メートル以上に放射することを特徴とする、[7]又は[8]に記載の火災の抑制用薬剤放射器。
[10] 前記開口部は金網を備え、前記薬剤が、空気を巻き込み泡の状態となって外部に放出されるように構成されている、[7]~[9]のいずれか一項に記載の火災の抑制用薬剤放射器。
[11] 前記薬剤の放射範囲の中心を水平方向に設定した場合、前記薬剤が水平方向で30度~150度の範囲、垂直方向で15度~90度の範囲に放射される、[7]~[10]のいずれか一項に記載の火災の抑制用薬剤放射器。
[12] [7]~[11]のいずれか一項に記載の火災の抑制用薬剤放射器から前記薬剤を放射する、火災の抑制方法。
[13] 燃料の蒸発抑制や可燃物に対する防燃効果を有する薬剤を、薬剤1リットル当たり1平方メートル以上に放射し、放射開始から10秒未満に放射が完了する、火災の抑制方法。
[14] 可燃性液体の蒸発抑制や可燃物に対する防燃効果を有する薬剤を貯留する貯蔵容器と、前記貯蔵容器と連通し前記薬剤の容量1リットルに対して25平方ミリメートル以上となる断面積を有する流通経路と、前記流通経路と連通し前記薬剤を拡散させつつ吐出する開口部とを備え、前記薬剤を、薬剤1リットル当たり1平方メートル以上に放射し、放射開始から10秒未満に放射が完了するように構成された、火災の抑制用薬剤放射器。
The present invention includes the following aspects.
[1] In response to criminal acts such as arson terrorism, in which fuel is sprinkled and ignited, by radiating a chemical that suppresses fuel evaporation and has a flameproof effect on combustibles in a short period of time and in a wide range. A fire control method that suppresses ignition and explosion.
[2] The method for suppressing a fire according to [1], wherein the drug is radiated in less than 10 seconds from the start of radiation.
[3] The method for controlling a fire according to [1] or [2], wherein the drug is radiated to 4 square meters or more per liter.
[4] 4. The method for controlling a fire according to any one of the items.
[5] The chemicals include fluorine-based surfactants, hydrocarbon-based surfactants, silicon-based surfactants, other surfactants, phosphates flameproofing agents, thickeners, flameproofing agents, and freezing point lowering agents. The method for suppressing a fire according to any one of [1] to [4], which comprises at least two kinds selected from the group consisting of.
[6] The method for suppressing a fire according to any one of [1] to [5], which radiates the chemical before it catches fire.
[7] A storage container for storing a drug having an effect of suppressing fuel evaporation and a flameproof effect on combustibles, and a distribution having a cross-sectional area of 25 square millimeters or more for 1 liter of the capacity of the drug in communication with the storage container. It is equipped with a route and an opening that communicates with the distribution channel and discharges the drug while diffusing it, and is used in a short time and in a wide range for criminal acts such as arson terrorism that sprinkles fuel and ignites. A chemical radiator for controlling fire that suppresses ignition and explosion by radiating chemicals that suppress fuel evaporation and have a flameproof effect on combustibles.
[8] The chemical radiator for fire suppression according to [7], which radiates the chemical in less than 10 seconds.
[9] The fire control chemical radiator according to [7] or [8], which radiates the chemical to 4 square meters or more per liter.
[10] The item according to any one of [7] to [9], wherein the opening is provided with a wire mesh, and the drug is configured to entrain air and be released to the outside in the form of bubbles. Chemical radiator for fire control.
[11] When the center of the radiation range of the drug is set in the horizontal direction, the drug is radiated in the range of 30 to 150 degrees in the horizontal direction and in the range of 15 to 90 degrees in the vertical direction [7]. The chemical radiator for suppressing fire according to any one of [10].
[12] A fire control method for radiating the drug from the fire control drug radiator according to any one of [7] to [11].
[13] A fire control method in which a chemical having a fuel evaporation suppression and a flameproof effect on combustibles is radiated to 1 square meter or more per liter of the chemical, and the radiation is completed within 10 seconds from the start of radiation.
[14] A storage container for storing chemicals having an effect of suppressing evaporation of flammable liquids and having a flameproof effect on combustibles, and a cross-sectional area of 25 square millimeters or more with respect to 1 liter of the capacity of the chemicals communicating with the storage container. It has a distribution channel and an opening that communicates with the distribution channel and discharges the drug while diffusing it, and radiates the drug to 1 square meter or more per liter of the drug, and the radiation is completed in less than 10 seconds from the start of radiation. A chemical radiator for fire control, configured to do so.
 本発明は、放火テロのような作為的な火災を未然に防ぐため、撒かれた燃料に着火させない、または着火させても燃え広がりを避難するまでの時間的余裕を得る、火炎を抑制することができる。さらに、通常の火災においても同様の効果を得ることができる。 In the present invention, in order to prevent an artificial fire such as arson terrorism, the sprinkled fuel is not ignited, or even if it is ignited, there is a time margin for evacuating the spread of the fire, and the flame can be suppressed. can. Furthermore, the same effect can be obtained in a normal fire.
図1Aは、本発明の一実施形態における加圧式の火災の抑制用薬剤放射器の全体を示す背面図である。FIG. 1A is a rear view showing the entire pressurized fire suppression chemical radiator according to the embodiment of the present invention. 図1Bは、本発明の一実施形態における加圧式の火災の抑制用薬剤放射器の全体を示す側面図である。FIG. 1B is a side view showing the entire pressurized fire suppression chemical radiator according to the embodiment of the present invention. 図1Cは、本発明の一実施形態における加圧式の火災の抑制用薬剤放射器の全体を示す上面図である。FIG. 1C is a top view showing the entire pressurized fire suppression chemical radiator according to the embodiment of the present invention. 図2は、本発明の別の実施形態における蓄圧式の火災の抑制用薬剤放射器の全体を示す図である。FIG. 2 is a diagram showing the entire pressure-accumulation type fire suppression chemical radiator according to another embodiment of the present invention. 図3は、本発明の実施形態の火災の抑制用薬剤放射器の流通経路と、従来の消火器の流通経路とを示す図である。FIG. 3 is a diagram showing a distribution route of a chemical radiator for fire suppression according to an embodiment of the present invention and a distribution route of a conventional fire extinguisher. 図4は、F型ノズルのノズル構造を示す図である。FIG. 4 is a diagram showing a nozzle structure of an F-type nozzle. 図5は、フォームヘッドノズルのノズル構造を示す図である。FIG. 5 is a diagram showing a nozzle structure of a foam head nozzle. 図6Aは、拡散ノズルのノズル構造を示す上面図である。FIG. 6A is a top view showing the nozzle structure of the diffusion nozzle. 図6Bは、拡散ノズルのノズル構造を示す側面図である。FIG. 6B is a side view showing the nozzle structure of the diffusion nozzle. 図6Cは、拡散ノズルのノズル構造を示す正面図である。FIG. 6C is a front view showing the nozzle structure of the diffusion nozzle. 図7Aは、2連角度付き配置のフォームヘッドのノズル構造を示す上面図である。FIG. 7A is a top view showing a nozzle structure of a foam head arranged with a double angle. 図7Bは、2連角度付き配置のフォームヘッドのノズル構造を示す側面図である。FIG. 7B is a side view showing a nozzle structure of a foam head arranged with a double angle. 図8Aは、低反動機構としての円周方向放射機構を示す上面図である。FIG. 8A is a top view showing a circumferential radiation mechanism as a low recoil mechanism. 図8Bは、低反動機構としての円周方向放射機構を示す側面図である。FIG. 8B is a side view showing a circumferential radiation mechanism as a low recoil mechanism. 図8Cは、低反動機構としての円周方向放射機構を示す上面図である。FIG. 8C is a top view showing a circumferential radiation mechanism as a low recoil mechanism. 図9Aは、タイプAのノズルの防護範囲面積を示す図である。FIG. 9A is a diagram showing a protection range area of a type A nozzle. 図9Bは、タイプBのノズルの防護範囲面積を示す図である。FIG. 9B is a diagram showing a protection range area of a type B nozzle. 図9Cは、タイプCのノズルの防護範囲面積を示す図である。FIG. 9C is a diagram showing a protection range area of a type C nozzle.
 以下に、実施の形態について図面に基づいて説明する。以下の説明において、上又は下の方向は、火災の抑制用薬剤放射器10を正立させた状態(図1B)における上又は下を意味する。 The embodiment will be described below based on the drawings. In the following description, the up or down direction means the up or down in the state where the fire suppression chemical radiator 10 is upright (FIG. 1B).
(火災の抑制用薬剤放射器10の構成(加圧式))
 図1A~図1Cは、本発明の一実施形態の対象となる加圧式の火災の抑制用薬剤放射器を示す三面図である。図1Aは、火災の抑制用薬剤放射器10の背面図、図1Bは、火災の抑制用薬剤放射器10の側面図、図1Cは、火災の抑制用薬剤放射器10の上面図である。
(Structure of chemical radiator 10 for fire suppression (pressurized type))
1A to 1C are three views showing a pressurized fire suppression chemical radiator that is the subject of an embodiment of the present invention. 1A is a rear view of the fire suppression chemical radiator 10, FIG. 1B is a side view of the fire suppression chemical radiator 10, and FIG. 1C is a top view of the fire suppression chemical radiator 10.
 本実施形態の火災の抑制用薬剤放射器10(以下、放射器10と呼ぶ)は、加圧式と称されるものである。放射器10は、耐圧容器11を有する。耐圧容器11の中には、人為的に撒かれた燃料(可燃性液体)の蒸発を抑制するとともに燃料への着火および燃料の爆発燃焼を抑制する薬剤としての火災抑制剤99と、第三のガス導入管15と、第一の吐出管(第一流通経路)17とが、封入されている。第一の吐出管17はサイホン管とも呼ばれている。 The fire suppression chemical radiator 10 (hereinafter referred to as the radiator 10) of the present embodiment is referred to as a pressurized type. The radiator 10 has a pressure resistant container 11. In the pressure-resistant container 11, a fire suppressant 99 as a chemical that suppresses the evaporation of artificially sprinkled fuel (flammable liquid) and also suppresses ignition of the fuel and explosive combustion of the fuel, and a third The gas introduction pipe 15 and the first discharge pipe (first flow path) 17 are enclosed. The first discharge pipe 17 is also called a siphon pipe.
 耐圧容器11の外には、ノズルユニット50が耐圧容器11に取り付けられている。ノズルユニット50は、第二の吐出管(第二流通経路)18と、第三の吐出管(第三流通経路)19と、ノズル55と、第一のガス導入管57と、第二のガス導入管58と、ハンドル60と、ガスカートリッジ70とが、取り付けられている。第二の吐出管(第二流通経路)18は、第一の吐出管17から経由してきた火災抑制剤99を第三の吐出管19及び開口20に向けて導出する。第三の吐出管(第三流通経路)19は、第二の吐出管18から経由してきた火災抑制剤99を開口20に向けて導出する。ノズル55は、第三の吐出管19を経由してきた火災抑制剤99を開口20から吐出させて火災抑制剤99を火災となる対象物である可燃物200に散布(放射)する。第一のガス導入管57は、ガスカートリッジ70から経由してきたガスを第二のガス導入管58及び第三のガス導入管15に向けて導出する。第二のガス導入管58は、第一のガス導入管57から経由してきたガスを第三のガス導入管15に向けて導出する。ガスカートリッジ70は、散布(放射)のための圧力源となる加圧用のガス容器であり、ガス容器には、例えば、窒素ガスやヘリウムガス、炭酸ガス等が封入されている。ガス容器には、好ましくは発泡をよくするために窒素が封入されてもよい。 A nozzle unit 50 is attached to the pressure-resistant container 11 outside the pressure-resistant container 11. The nozzle unit 50 includes a second discharge pipe (second flow path) 18, a third discharge pipe (third flow path) 19, a nozzle 55, a first gas introduction pipe 57, and a second gas. The introduction pipe 58, the handle 60, and the gas cartridge 70 are attached. The second discharge pipe (second distribution path) 18 leads the fire suppressant 99 that has passed from the first discharge pipe 17 toward the third discharge pipe 19 and the opening 20. The third discharge pipe (third distribution path) 19 leads out the fire suppressant 99 that has passed through from the second discharge pipe 18 toward the opening 20. The nozzle 55 discharges the fire suppressant 99 that has passed through the third discharge pipe 19 from the opening 20 and sprays (radiates) the fire suppressant 99 onto the combustible material 200 that is the object of fire. The first gas introduction pipe 57 leads the gas passing through from the gas cartridge 70 toward the second gas introduction pipe 58 and the third gas introduction pipe 15. The second gas introduction pipe 58 leads out the gas passing through from the first gas introduction pipe 57 toward the third gas introduction pipe 15. The gas cartridge 70 is a gas container for pressurization that serves as a pressure source for spraying (radiation), and the gas container is filled with, for example, nitrogen gas, helium gas, carbon dioxide gas, or the like. The gas container may preferably be filled with nitrogen to improve foaming.
 また、ノズルユニット50には、キャップナット51が設けられており、ノズルユニット50を耐圧容器11に取り付け可能に構成するとともに、耐圧容器11内の火災抑制剤99が外部に漏れないように構成されている。さらに、ノズルユニット50には、手提げハンドル52が取り付けられており、放射器10を人(操作者)が運搬可能に構成されている。さらにまた、ノズルユニット50には、ガスカートリッジ70をカバーするような破線で示すガスカートリッジカバー72が取り付けられていても良い。なお、ガスカートリッジ70は、耐圧容器11内に封入されるように構成されていても良い。 Further, the nozzle unit 50 is provided with a cap nut 51 so that the nozzle unit 50 can be attached to the pressure-resistant container 11 and the fire suppressant 99 in the pressure-resistant container 11 does not leak to the outside. ing. Further, a hand-held handle 52 is attached to the nozzle unit 50 so that a person (operator) can carry the radiator 10. Furthermore, the nozzle unit 50 may be provided with a gas cartridge cover 72 shown by a broken line so as to cover the gas cartridge 70. The gas cartridge 70 may be configured to be enclosed in the pressure-resistant container 11.
 耐圧容器11は、アルミ材などの金属で形成されている。耐圧容器11は、図1A及び図1Cに示すように直径が略一定の略円筒状の円筒部12と、縮径して略椀状に湾曲した形状を有する肩部13とを有し、円筒部12と肩部13とはシームレスに一体に形成されている。なお、円筒部12と肩部13とは、必ずしもシームレスの必要はなく溶接などにより接合がされていても良い。 The pressure-resistant container 11 is made of a metal such as an aluminum material. As shown in FIGS. 1A and 1C, the pressure-resistant container 11 has a substantially cylindrical cylindrical portion 12 having a substantially constant diameter, and a shoulder portion 13 having a reduced diameter and a substantially bowl-shaped curved shape. The portion 12 and the shoulder portion 13 are seamlessly integrally formed. The cylindrical portion 12 and the shoulder portion 13 do not necessarily have to be seamless and may be joined by welding or the like.
 ハンドル60は、固定されている固定ハンドル部61と、固定ハンドル部61に対して上下方向に移動可能に構成されている可動ハンドル部62とからなる。また、ハンドル60には、可動ハンドル部62の上下方向の移動を規制するための安全ロック63と、安全ロック63をロック状態に固定するピン安全栓64とが取り付けられている。可動ハンドル部62は、ピン安全栓64をハンドル60から取り外し、安全ロック63をロック状態からアンロック状態にした状態において、ピン66を中心にして固定ハンドル部61に対して回転でき、可動ハンドル部62の自由端が上下動できる。そして、ハンドル60の操作に基づいてカッター等からなるポンチ65を作動させ、ガスカートリッジ70の封板71を破裂させる(破る)ように構成されている。ポンチ65によって封板71が破裂したガスカートリッジ70は、ガス(例えば、窒素ガスや炭酸ガス、ヘリウムガス等)を放出し、第一のガス導入管57、第二のガス導入管58、第三のガス導入管15を通じて耐圧容器11内にガスを放出させる。 The handle 60 includes a fixed handle portion 61 that is fixed and a movable handle portion 62 that is configured to be movable in the vertical direction with respect to the fixed handle portion 61. Further, the handle 60 is provided with a safety lock 63 for restricting the vertical movement of the movable handle portion 62 and a pin safety plug 64 for fixing the safety lock 63 in the locked state. The movable handle portion 62 can rotate with respect to the fixed handle portion 61 around the pin 66 in a state where the pin safety plug 64 is removed from the handle 60 and the safety lock 63 is in the locked state to the unlocked state, and the movable handle portion 62 can rotate. The free end of 62 can move up and down. Then, the punch 65 made of a cutter or the like is operated based on the operation of the handle 60 to burst (break) the sealing plate 71 of the gas cartridge 70. The gas cartridge 70 whose sealing plate 71 is burst by the punch 65 releases gas (for example, nitrogen gas, carbon dioxide gas, helium gas, etc.), and the first gas introduction pipe 57, the second gas introduction pipe 58, and the third Gas is released into the pressure-resistant container 11 through the gas introduction pipe 15 of the above.
 火災抑制剤99は、耐圧容器11内に放出されたガスの圧力を利用して加圧され、第一の吐出管17、第二の吐出管18、第三の吐出管19を通過して、ノズル55の開口20から散布(放射)され、火災を抑制すべき対象物としての可燃物200に放出される。なお、第一の吐出管17と第二の吐出管(第二流通経路)18との間にも封板(図示しない)が設けられており、ガスの圧力によって封板が破裂するよう構成されている。 The fire suppressant 99 is pressurized by utilizing the pressure of the gas released into the pressure-resistant container 11, passes through the first discharge pipe 17, the second discharge pipe 18, and the third discharge pipe 19, and then passes through the first discharge pipe 17, the second discharge pipe 18, and the third discharge pipe 19. It is sprayed (radiated) from the opening 20 of the nozzle 55 and discharged to a combustible material 200 as an object for which a fire should be suppressed. A sealing plate (not shown) is also provided between the first discharge pipe 17 and the second discharge pipe (second distribution path) 18, so that the sealing plate bursts due to the pressure of the gas. ing.
(放射器10の構成(蓄圧式))
 図1A~図1Cでは加圧式の放射器10を用いて説明をしてきたが、蓄圧式と称される放射器10であっても良い。ここで、図2は、本発明の別の実施形態の対象となる蓄圧式の火災の抑制用薬剤放射器10を示す図である。蓄圧式の放射器10の耐圧容器11の中には、人為的に撒かれた燃料(可燃性液体)の蒸発を抑制するとともに燃料への着火および燃料の爆発燃焼を抑制する薬剤としての火災抑制剤99とともに、散布(放射)のための圧力源となるガス(例えば、窒素ガス+ヘリウムガス等)が、所定の圧力(例えば、約0.7~約0.9メガパスカル)で封入(蓄圧)されている。また、蓄圧式の放射器10の耐圧容器11の中には、第一の吐出管17が封入されている。
(Structure of radiator 10 (accumulation type))
Although the pressurizing type radiator 10 has been described in FIGS. 1A to 1C, the radiator 10 may be a pressure accumulating type. Here, FIG. 2 is a diagram showing a pressure-accumulation type fire suppression chemical radiator 10 which is the subject of another embodiment of the present invention. In the pressure-resistant container 11 of the accumulator type radiator 10, the evaporation of the artificially sprinkled fuel (flammable liquid) is suppressed, and the ignition of the fuel and the fire suppression as a chemical that suppresses the explosive combustion of the fuel are suppressed. Along with the agent 99, a gas (for example, nitrogen gas + helium gas, etc.) that serves as a pressure source for spraying (radiation) is sealed (accumulated) at a predetermined pressure (for example, about 0.7 to about 0.9 megapascals). ) Has been done. Further, the first discharge pipe 17 is enclosed in the pressure-resistant container 11 of the accumulator type radiator 10.
 耐圧容器11の外には、ノズルユニット50が耐圧容器11に取り付けられている。ノズルユニット50は、第一の吐出管17から経由してきた火災抑制剤99を第三の吐出管19及び開口20に向けて導出する第二の吐出管(第二流通経路)18と、第二の吐出管18から経由してきた火災抑制剤99を開口20に向けて導出する第三の吐出管(第三流通経路)19と、第三の吐出管19を経由してきた火災抑制剤99を開口20から吐出させて火災抑制剤99を火災となる対象物である可燃物200に散布(放射)するノズル55と、ハンドル60とが取り付けられている。 A nozzle unit 50 is attached to the pressure-resistant container 11 outside the pressure-resistant container 11. The nozzle unit 50 has a second discharge pipe (second distribution path) 18 and a second discharge pipe (second flow path) 18 for leading out the fire suppressant 99 that has passed from the first discharge pipe 17 toward the third discharge pipe 19 and the opening 20. A third discharge pipe (third distribution path) 19 that leads out the fire suppressant 99 that has passed through the discharge pipe 18 toward the opening 20 and a fire suppressant 99 that has passed through the third discharge pipe 19 are opened. A nozzle 55 that discharges (radiates) the fire suppressant 99 from the 20 to the combustible material 200 that causes a fire, and a handle 60 are attached.
 また、ノズルユニット50には、キャップナット51が設けられており、ノズルユニット50を耐圧容器11に取り付け可能に構成するとともに、耐圧容器11内のガス及び火災抑制剤99が外部に漏れないように構成されている。 Further, the nozzle unit 50 is provided with a cap nut 51 so that the nozzle unit 50 can be attached to the pressure-resistant container 11 and the gas in the pressure-resistant container 11 and the fire suppressant 99 do not leak to the outside. It is configured.
 耐圧容器11は、アルミ材などの金属で形成されている。耐圧容器11は、直径が略一定の略円筒状の円筒部12と、縮径して略椀状に湾曲した形状を有する肩部13とを有し、円筒部12と肩部13とはシームレスに一体に形成されている。なお、円筒部12と肩部13とは、必ずしもシームレスの必要はなく溶接などにより接合がされていても良い。 The pressure-resistant container 11 is made of a metal such as an aluminum material. The pressure-resistant container 11 has a substantially cylindrical cylindrical portion 12 having a substantially constant diameter and a shoulder portion 13 having a reduced diameter and a substantially bowl-shaped curved shape, and the cylindrical portion 12 and the shoulder portion 13 are seamless. It is integrally formed with. The cylindrical portion 12 and the shoulder portion 13 do not necessarily have to be seamless and may be joined by welding or the like.
 ハンドル60は、固定されている固定ハンドル部61と、固定ハンドル部61に対して上下方向に移動可能に構成されている可動ハンドル部62とからなる。また、ハンドル60には、可動ハンドル部62の上下方向の移動を規制するための安全ロック63と、安全ロック63をロック状態に固定するピン安全栓64とが取り付けられている。可動ハンドル部62は、ピン安全栓64をハンドル60から取り外し、安全ロック63をロック状態からアンロック状態にした状態において、ピン66を中心にして固定ハンドル部61に対して回転でき、可動ハンドル部62の自由端が上下動できる。そして、ハンドル60の操作に基づいてカッター等からなるポンチ65を下側に向かって作動させ、第一の吐出管17と第二の吐出管(第二流通経路)18との間に設けられた部材であって耐圧容器11内のガス及び火災抑制剤99が外部に漏れないようにする部材である封板71を破裂させる(破る)ように構成されている。ポンチ65によって封板71が破裂すると、ガスの圧力によって火災抑制剤99が第一の吐出管17、第二の吐出管18、第三の吐出管19を通過して、ノズル55の開口20から散布(放射)され、火災を抑制すべき対象物としての可燃物200に放出される。 The handle 60 includes a fixed handle portion 61 that is fixed and a movable handle portion 62 that is configured to be movable in the vertical direction with respect to the fixed handle portion 61. Further, the handle 60 is provided with a safety lock 63 for restricting the vertical movement of the movable handle portion 62 and a pin safety plug 64 for fixing the safety lock 63 in the locked state. The movable handle portion 62 can rotate with respect to the fixed handle portion 61 around the pin 66 in a state where the pin safety plug 64 is removed from the handle 60 and the safety lock 63 is in the locked state to the unlocked state, and the movable handle portion 62 can rotate. The free end of 62 can move up and down. Then, a punch 65 made of a cutter or the like is operated downward based on the operation of the handle 60, and is provided between the first discharge pipe 17 and the second discharge pipe (second distribution path) 18. It is configured to burst (break) the sealing plate 71, which is a member that prevents the gas and the fire suppressant 99 in the pressure-resistant container 11 from leaking to the outside. When the sealing plate 71 bursts due to the punch 65, the fire suppressant 99 passes through the first discharge pipe 17, the second discharge pipe 18, and the third discharge pipe 19 due to the pressure of the gas, and passes through the opening 20 of the nozzle 55. It is sprayed (radiated) and released into a combustible material 200 as an object to suppress a fire.
(火災抑制剤の種類)
 ここで、放射器10の耐圧容器11に封入される火災抑制剤99(薬剤)の種類としては、以下のような薬剤を使用している。
(1)ふっ素系界面活性剤を含有した薬剤、例えばふっ素系両性界面活性剤、ふっ素系アニオン界面活性剤、ふっ素系ノ二オン界面活性剤などを含有した薬剤、好ましくはふっ素系両性界面活性剤(ケマーズ(株)製、登録商標、CapstoneTM1157等)を含有した薬剤
(2)炭化水素系界面活性剤を含有した薬剤、例えば炭化水素系ノ二オン界面活性剤、炭化水素系アニオン界面活性剤、炭化水素系両性界面活性剤などを含有した薬剤、好ましくは炭化水素系ノニオン界面活性剤(花王(株)製、登録商標、マイドール10等)を含有した薬剤
(3)シリコン系界面活性剤を含有した薬剤、好ましくはポリエーテル型シリコン系界面活性剤を含有した薬剤
(4)その他の界面活性剤を含有した薬剤、例えば動物性蛋白質、植物性蛋白質、サポニンなどを含有した薬剤、好ましくは動物性蛋白質を含有した薬剤
(5)リン酸塩類防燃剤を含有した薬剤、例えば酸性リン酸エステル、正リン酸エステル、縮合リン酸エステル、亜リン酸エステルなどを含有した薬剤、好ましくは酸性リン酸エステル(メチルアシッドフォスフェート)を含有した薬剤
(6)増粘剤を含有した薬剤、例えばキサンタンガムやグワーガム、アラビアガムなどの天然ガムや、カルボキシメチルセルロースやメチルセルロースなどの多糖類、ゼラチン、寒天などを含有した薬剤、好ましくはキサンタンガムを含有した薬剤
(7)凝固点降下剤を含有した薬剤、例えばエチレングリコール、ジエチレングリコール、プロピレングリコール、ブチルカルビトール、へキシルカルビトールなどのグリコール類、グリセリン、ソルビトールなどのアルコール類などを含有した薬剤、好ましくはエチレングリコールを含有した薬剤
(8)防炎剤(難燃剤)を含有した薬剤、例えば尿素、アンモニウム塩などの窒素化合物や、グワニジン塩類などを含有した薬剤、好ましくは尿素を含有した薬剤
(Type of fire suppressant)
Here, as the type of the fire suppressant 99 (drug) sealed in the pressure-resistant container 11 of the radiator 10, the following chemicals are used.
(1) A drug containing a fluorine-based surfactant, for example, a drug containing a fluorine-based amphoteric surfactant, a fluorine-based anionic surfactant, a fluorine-based nonionic surfactant, or the like, preferably a fluorine-based amphoteric surfactant. Drugs containing (Chemers Co., Ltd., registered trademark, Capstone TM 1157, etc.) (2) Drugs containing hydrocarbon-based surfactants, such as hydrocarbon-based nonionic surfactants and hydrocarbon-based anionic surfactants. Drugs containing agents, hydrocarbon-based amphoteric surfactants, etc., preferably phosphoric acid-based nonionic surfactants (manufactured by Kao Co., Ltd., registered trademark, Mydor 10, etc.) (3) Silicon-based surface activity Agent-containing agent, preferably agent containing polyether-type silicon-based surfactant (4) Other agent-containing agent, for example, agent containing animal protein, vegetable protein, saponin, etc., preferably Is a drug containing animal protein (5) Phosphates A drug containing a flame retardant, for example, a drug containing an acidic phosphoric acid ester, a normal phosphoric acid ester, a condensed phosphoric acid ester, a phosphite ester, etc., preferably acidic. Drugs containing phosphate ester (methyl acid phosphate) (6) Drugs containing thickeners, such as natural gums such as xanthan gum, gwa gum, and Arabic gum, polysaccharides such as carboxymethyl cellulose and methyl cellulose, gelatin, agar, etc. Drugs containing, preferably xanthan gum (7) Drugs containing freezing point lowering agents, such as glycols such as ethylene glycol, diethylene glycol, propylene glycol, butylcarbitol, hexylcarbitol, glycerin, sorbitol, etc. Drugs containing alcohols, preferably those containing ethylene glycol (8) Drugs containing flameproofing agents (flame retardants), for example, drugs containing nitrogen compounds such as urea and ammonium salts, and drugs containing gwanidine salts, etc. Agents preferably containing urea
 封入される火災抑制剤99としては、上記(1)~(5)の何れか一つであっても良いし、複数を混合させたものであっても良い。封入される火災抑制剤99は、特に、上記(1)~(8)のうち少なくとも2種を含むことが好ましい。また、火災を抑制できる薬剤であればどのような薬剤であっても良く、火災抑制剤99の代わりに消火のための薬剤(消火薬剤、土木・建築用起泡剤、食品用起泡剤、化粧品用起泡剤、泡にならない防燃剤・防炎剤・難燃剤・水溶性の難燃塗料・難燃樹脂など)を用いても良い。また、泡の状態で散布(放射)される火災抑制剤99を使用することが好適である。(1)のような火災抑制剤99は、泡の状態から水溶液の状態に戻る際に燃料(特に可燃性液体)の上に水成膜を生成して燃料を覆うため、燃料の可燃性蒸気の蒸発や着火を抑制することができるようになっている。また、本発明の効果を損なわない範囲で、通常の添加剤、例えばpH調整剤(例えばモノエタノールアミン、トリエタノールアミン、ジエタノールアミンなどのアミン類や、四ホウ酸ナトリウム、硫酸や硝酸などの無機酸や、酢酸、クエン酸などの有機酸などで、酸性を中和する場合はモノエタノールアミン、アルカリ性を中和する場合は硫酸が好ましい)や防錆剤(ベンゾトリアゾールなどの芳香族化合物など)がさらに含まれていてもよい。なお、封入される火災抑制剤99の容量CP(薬剤量CP)は、従来の消火器と同様のタイプである手提げタイプの場合、2リットル前後となっているが、これよりも少ない量(例えば、1リットル)であっても良いし、多い量(例えば、6リットル)であっても良い。また、火災抑制剤99に色を付けたり、臭いを付けたりしても良い。このように色を付けたり、臭いを付けたりすることにより、散布(放射)された火災抑制剤99が放火テロの犯人の衣服等に付着することで、容易に放火テロの犯人を特定することができるようになっている。 The fire suppressant 99 to be enclosed may be any one of the above (1) to (5), or may be a mixture of a plurality of them. The enclosed fire suppressant 99 preferably contains at least two of the above (1) to (8). In addition, any chemical can be used as long as it can suppress fire, and instead of the fire suppressant 99, a chemical for extinguishing a fire (fire extinguishing agent, foaming agent for civil engineering / construction, foaming agent for food, etc. Foaming agents for cosmetics, non-foaming flame retardants, flame retardants, flame retardants, water-soluble flame retardant paints, flame retardant resins, etc.) may be used. Further, it is preferable to use a fire suppressant 99 that is sprayed (radiated) in the form of bubbles. Since the fire suppressant 99 such as (1) forms a water film on the fuel (particularly a flammable liquid) to cover the fuel when returning from the foam state to the aqueous state, the flammable vapor of the fuel It is possible to suppress the evaporation and ignition of the fuel. Further, as long as the effects of the present invention are not impaired, ordinary additives such as pH adjusters (for example, amines such as monoethanolamine, triethanolamine and diethanolamine, and inorganic acids such as sodium tetraborate, sulfuric acid and nitrate) , Monoethanolamine is preferable for neutralizing acidity, and sulfuric acid is preferable for neutralizing alkalinity with organic acids such as acetic acid and citric acid) and rust preventives (aromatic compounds such as benzotriazole). It may be further included. The capacity CP (drug amount CP) of the enclosed fire suppressant 99 is about 2 liters in the case of the hand-held type, which is the same type as the conventional fire extinguisher, but the amount is smaller than this (for example). It may be 1 liter) or a large amount (for example, 6 liters). Further, the fire suppressant 99 may be colored or smelled. By coloring or smelling in this way, the sprayed (radiated) fire suppressant 99 adheres to the clothes of the arson terrorist criminal, etc., so that the arson terrorist criminal can be easily identified. Can be done.
(火災抑制剤の効果)
 火災抑制剤99の効果を、以下に示す。
(1)ふっ素系界面活性剤を含有した薬剤は、撒かれた燃料(特に可燃性液体)の上に水成膜を形成し、燃料の蒸発を防止する効果を有する。
(2)炭化水素系界面活性剤を含有した薬剤は、撒かれた燃料(特に可燃性液体)の上に泡を形成し、燃料の蒸発を防止すると共に乳化させる効果を有する。
(3)シリコン系界面活性剤を含有した薬剤は、撒かれた燃料(特に可燃性液体)の上に泡を形成し、燃料の蒸発を防止すると共に乳化させる効果を有する。
(4)その他の界面活性剤を含有した薬剤は、撒かれた燃料(特に可燃性液体)の上に泡を形成し、燃料の蒸発を防止すると共に乳化させる効果を有する。
(5)リン酸塩類等の防燃剤を含有した薬剤は、木材、衣類、紙、樹脂等の一般的な可燃物の燃焼を抑制する効果を有する。
(6)増粘剤を含有した薬剤は、泡の状態で散布された後、泡の状態を長時間保持できる。また、布やボードなどへの付着効果が増大する。
(7)凝固点降下剤を含有した薬剤は、火災抑制剤を凍りにくくすることができる。
(8)防炎剤(難燃剤)を含有した薬剤は、リン酸塩類と同様、木材、衣類、紙、樹脂等の一般的な可燃物の燃焼を抑制する効果を有する。
(Effect of fire suppressant)
The effects of the fire suppressant 99 are shown below.
(1) The chemical containing a fluorine-based surfactant has an effect of forming a water film on the sprinkled fuel (particularly a flammable liquid) and preventing the fuel from evaporating.
(2) The chemical containing a hydrocarbon-based surfactant has the effect of forming bubbles on the sprinkled fuel (particularly a flammable liquid), preventing the fuel from evaporating and emulsifying it.
(3) The chemical containing a silicon-based surfactant has the effect of forming bubbles on the sprinkled fuel (particularly a flammable liquid), preventing the fuel from evaporating and emulsifying it.
(4) The chemicals containing other surfactants have the effect of forming bubbles on the sprinkled fuel (particularly flammable liquid) to prevent evaporation of the fuel and emulsify it.
(5) A chemical containing a flameproofing agent such as phosphates has an effect of suppressing combustion of general combustible materials such as wood, clothing, paper, and resin.
(6) The drug containing the thickener can maintain the foamy state for a long time after being sprayed in the foamy state. In addition, the effect of adhering to cloth or board is increased.
(7) A chemical containing a freezing point depressant can make the fire suppressant hard to freeze.
(8) A chemical containing a flame retardant (flame retardant) has an effect of suppressing the combustion of general combustible materials such as wood, clothing, paper, and resin, like phosphates.
(放射器10のタイプ)
 このような耐圧容器11を有する放射器10のタイプは、手提げタイプ(従来の消火器と同様のタイプであって、封入される薬剤量CPが0.8~10リットル(好ましくは1~6リットル)の耐圧容器11の大きさのタイプ)と、携帯タイプ(持ち運びが可能なエアゾールのタイプであって、例えば、封入される薬剤量CPが1リットル以下(0.2~0.5リットルが好ましい)の耐圧容器11の大きさのタイプ)とがある。また、手提げタイプや携帯タイプの放射器10を、特定の場所(例えば、建物、乗り物、通路、出入り口等であって避難路を確保する場所に向けて火災抑制剤99を散布させることが可能な場所、例えば壁や天井等)に固定して取り付けておく固定タイプもある。なお、放射器10の大きさについてはこれに限られるものではなく、消火器同様に持ち運び可能な大きさの放射器10であれば手提げタイプ、人が携帯可能な放射器10であれば携帯タイプとする。
(Type of radiator 10)
The type of the radiator 10 having such a pressure-resistant container 11 is a hand-held type (similar to a conventional fire extinguisher, and the amount of chemicals CP to be sealed is 0.8 to 10 liters (preferably 1 to 6 liters). ) And a portable type (a portable aerosol type), for example, the amount of drug CP enclosed is preferably 1 liter or less (0.2 to 0.5 liter is preferable). ) Is the size of the pressure-resistant container 11). Further, the hand-held type or portable type radiator 10 can be sprayed with the fire suppressant 99 toward a specific place (for example, a building, a vehicle, a passage, an entrance / exit, etc. where an evacuation route is secured). There is also a fixed type that is fixed to a place, such as a wall or ceiling. The size of the radiator 10 is not limited to this, and if the radiator 10 has a size that can be carried like a fire extinguisher, it is a hand-held type, and if the radiator 10 is portable to a person, it is a portable type. And.
 本実施形態の手提げタイプの2リットルの放射器10の寸法は、例えば図1A~図1Cに示すように高さが520ミリメートル、横幅(ノズルユニットの横方向の長さ)が266ミリメートル、耐圧容器11の直径が128ミリメートルとなっている。これは一般的な2リットルの消火器と略同じ寸法となっているため、従来の消火器の部品を共通部品として放射器10に使用することができるようになっている。このように放射器10に消火器で使用する部品を共通使用することによって、放射器10自体のコストを抑えることができ、また、放射器10を消火器のリサイクルシステムに対応させることができるようになっている。ここで示した寸法に関しては一例であり、ここで示した寸法と異なる寸法の放射器10であっても良く、耐圧容器11に封入する薬剤量に応じて寸法が決定されるようになっていれば良い。 The dimensions of the hand-held type 2-liter radiator 10 of the present embodiment are, for example, 520 mm in height, 266 mm in width (horizontal length of the nozzle unit), and a pressure-resistant container as shown in FIGS. 1A to 1C. The diameter of 11 is 128 mm. Since this has substantially the same dimensions as a general 2-liter fire extinguisher, it is possible to use the parts of the conventional fire extinguisher as common parts for the radiator 10. By commonly using the parts used in the fire extinguisher for the radiator 10 in this way, the cost of the radiator 10 itself can be suppressed, and the radiator 10 can be made compatible with the recycling system of the fire extinguisher. It has become. The dimensions shown here are examples, and the radiator 10 may have dimensions different from the dimensions shown here, and the dimensions may be determined according to the amount of the drug to be sealed in the pressure-resistant container 11. Just do it.
 手提げタイプ、携帯タイプにおいては、上述したように、ハンドル60の操作に基づいて火災抑制剤99をノズル55の開口20から散布(放射)し、可燃物200に放出されるように構成されている。また、携帯タイプにおいては、一般的なエアゾールのタイプのようにノズル55を下に押下させることに基づき火災抑制剤99をノズル55の開口20から散布(放射)し、可燃物200に放出されるように構成されているものを含む。 In the hand-held type and the portable type, as described above, the fire suppressant 99 is sprayed (radiated) from the opening 20 of the nozzle 55 based on the operation of the handle 60, and is discharged to the combustible material 200. .. Further, in the portable type, the fire suppressant 99 is sprayed (radiated) from the opening 20 of the nozzle 55 based on pressing the nozzle 55 downward as in the general aerosol type, and is discharged to the combustible material 200. Including those configured as.
 固定タイプにおける散布(放射)の方法は、手提げタイプ、携帯タイプと同様であるが、遠隔操作を行うリモコン等を使用して封入されている火災抑制剤99をノズル55の開口20から散布(放射)するように構成されていてもよい。例えば、銀行のカウンタ周辺の範囲であって避難路が確保可能な範囲に対して火災抑制剤99を散布(放射)可能な場所に固定タイプの放射器10を固定して取り付けておく。そして、カウンタ周辺に意図的に燃料(可燃性液体)が撒かれた場合、カウンタの業務を行っている人がリモコンの散布スイッチを操作することによって、火災抑制剤99をカウンタ周辺であって避難路が確保可能な範囲に散布(放射)できるように構成されている。このように固定式タイプの放射器10の火災抑制剤99を短時間で広範囲に散布(放射)することによって、避難路を確保することが可能なように構成されている。 The method of spraying (radiating) in the fixed type is the same as that of the hand-held type and the portable type, but the fire suppressant 99 enclosed by using a remote control or the like for remote control is sprayed (radiated) from the opening 20 of the nozzle 55. ) May be configured. For example, the fixed type radiator 10 is fixedly attached to a place where the fire suppressant 99 can be sprayed (radiated) in the range around the counter of the bank where the evacuation route can be secured. When fuel (flammable liquid) is intentionally sprinkled around the counter, the person operating the counter operates the spray switch on the remote controller to evacuate the fire suppressant 99 around the counter. It is configured so that it can be sprayed (radiated) within the range where the road can be secured. By spraying (radiating) the fire suppressant 99 of the fixed type radiator 10 over a wide area in a short time in this way, it is possible to secure an evacuation route.
 このような固定タイプの放射器10は、従来の固定式のスプリンクラー等に対して大規模な工事が不要なため非常に安価な防災対策が可能となっており、さらに省スペースな防災対策となっている。また、固定タイプの放射器10は、遠隔操作によって火災抑制剤99をノズル55の開口20から散布(放射)するように構成されているため、放火テロの犯人に気づかれず且つ威嚇せずに火災を抑制することが可能となっている。なお、固定タイプの放射器10は、手提げタイプよりも薬剤量が多いものであっても良く、例えば2~20リットル程度(好ましくは2~16リットル程度)の量の火災抑制剤99が封入される放射器10であっても良い。 Since such a fixed type radiator 10 does not require a large-scale construction work as compared with a conventional fixed type sprinkler or the like, it is possible to take very inexpensive disaster prevention measures, and it is a space-saving disaster prevention measure. ing. Further, since the fixed type radiator 10 is configured to spray (radiate) the fire suppressant 99 from the opening 20 of the nozzle 55 by remote control, the fire is not noticed and threatened by the criminal of the arson terrorism. It is possible to suppress. The fixed type radiator 10 may have a larger amount of chemicals than the hand-held type, and for example, a fire suppressant 99 in an amount of about 2 to 20 liters (preferably about 2 to 16 liters) is enclosed. The radiator 10 may be used.
(短時間放射機構の構成)
 本実施形態の放射器10は、短時間で耐圧容器11に封入されている火災抑制剤99を散布(放射)可能な機構として短時間放射機構を備えている。短時間放射機構は、加圧方式(加圧手段)と、開放機構と、流通経路とから構成されている。耐圧容器11に封入されている薬剤が2リットルの場合、従来の消火器であると、散布(放射)が完了するまでに10秒以上の時間を要するように構成されている。一方、本実施形態の放射器10の短時間放射機構であれば、散布(放射)の開始から完了までに10秒未満、好ましくは5秒以内、特に好ましくは2秒以内の時間を要するように構成されている。
(Structure of short-time radiation mechanism)
The radiator 10 of the present embodiment includes a short-time radiation mechanism as a mechanism capable of spraying (radiating) the fire suppressant 99 sealed in the pressure-resistant container 11 in a short time. The short-time radiation mechanism is composed of a pressurizing method (pressurizing means), an opening mechanism, and a distribution channel. When the amount of chemicals sealed in the pressure-resistant container 11 is 2 liters, a conventional fire extinguisher is configured to take 10 seconds or more to complete spraying (radiation). On the other hand, in the short-time radiation mechanism of the radiator 10 of the present embodiment, it takes less than 10 seconds, preferably within 5 seconds, particularly preferably within 2 seconds from the start to the completion of spraying (radiation). It is configured.
(加圧方式(加圧手段))
 加圧方式としては、ガスカートリッジ70の封板71を一気に破裂させて圧力を一瞬にして開放する方式(例えば、上述した加圧式)、耐圧容器11に圧力を常時貯めている状態から一瞬にして開放する方式(例えば、上述した蓄圧式)等が例示できる。なお、加圧方式は、耐圧容器11の圧力を高めて一瞬にして耐圧容器11内の火災抑制剤99を放出できる方式であればどのような方式であっても良い。
(Pressurization method (pressurization means))
The pressurization method includes a method in which the sealing plate 71 of the gas cartridge 70 bursts at once to release the pressure in an instant (for example, the above-mentioned pressurization type), and a state in which the pressure is constantly stored in the pressure-resistant container 11 is instantly stored. An example of a method of opening (for example, the above-mentioned accumulator method) and the like can be exemplified. The pressurization method may be any method as long as the pressure of the pressure-resistant container 11 can be increased and the fire suppressant 99 in the pressure-resistant container 11 can be released in an instant.
(開放機構)
 放射器10の開放機構は、上述した加圧式と、上述した蓄圧式と、が例示できる。
(Opening mechanism)
Examples of the opening mechanism of the radiator 10 include the above-mentioned pressurization type and the above-mentioned accumulator type.
(流通経路)
 流通経路は、第一流通経路17と、第二流通経路18と、第三流通経路19とから構成されている。本実施形態の放射器10の流通経路16(第一の吐出管17又は第二の吐出管18又は第三の吐出管19)の断面積Sは、従来の消火器の流通経路の断面積に比べて大きく構成されている。なお、第一流通経路(第一の吐出管)17の断面積S1と、第二流通経路(第二の吐出管)18の断面積S2と、第三流通経路(第三の吐出管)19の断面積S3とのうち一番小さい断面積を本実施形態の流通経路16の断面積Sとする。本実施形態における封入される薬剤量CPが2リットルであって、ノズル55が1つの放射器10の場合、例えばノズル55の断面は円状となっており、流通経路16(例えば、第三の吐出管19)の断面積SであるS3は、250平方ミリメートルの大きさで構成されている。
(Distribution channel)
The distribution channel is composed of a first distribution channel 17, a second distribution channel 18, and a third distribution channel 19. The cross-sectional area S of the distribution path 16 (first discharge pipe 17 or second discharge pipe 18 or third discharge pipe 19) of the radiator 10 of the present embodiment is the cross-sectional area of the flow path of the conventional fire extinguisher. It is structured larger than the previous one. The cross-sectional area S1 of the first distribution path (first discharge pipe) 17, the cross-sectional area S2 of the second distribution path (second discharge pipe) 18, and the third distribution path (third discharge pipe) 19 The smallest cross-sectional area of the cross-sectional area S3 of the above is taken as the cross-sectional area S of the distribution channel 16 of the present embodiment. When the amount of drug CP enclosed in the present embodiment is 2 liters and the nozzle 55 is one radiator 10, for example, the cross section of the nozzle 55 is circular, and the distribution path 16 (for example, the third S3, which is the cross-sectional area S of the discharge pipe 19), has a size of 250 square millimeters.
 次に、図3を用いて、短時間で薬剤を放射することが可能な流通経路の構造を説明する。図3は、本実施形態の火災の抑制用薬剤放射器10の流通経路と、従来の消火器の流通経路とを示す図である。図3に示す実施形態の放射器10の流通経路16の断面積S、つまり、一番小さい断面積は、封板71が設けられている第二流通経路18の断面積S2となっている。そして、第三流通経路19の断面積S3と、第1流通経路の断面積S1とは同じ面積となっており、断面積S2よりも大きい面積となっている。なお、S2はS1やS3よりも若干小さい面積となっており、S2/S3やS2/S1が1に近い値となるようになっている。なお、封板71を第一流通経路17に設ける場合は、断面積S1が一番小さい断面積となっていてもよい。 Next, using FIG. 3, the structure of the distribution channel capable of radiating the drug in a short time will be described. FIG. 3 is a diagram showing a distribution route of the fire suppression chemical radiator 10 of the present embodiment and a distribution route of a conventional fire extinguisher. The cross-sectional area S of the distribution path 16 of the radiator 10 of the embodiment shown in FIG. 3, that is, the smallest cross-sectional area is the cross-sectional area S2 of the second distribution path 18 provided with the sealing plate 71. The cross-sectional area S3 of the third distribution route 19 and the cross-sectional area S1 of the first distribution route have the same area, which is larger than the cross-sectional area S2. Note that S2 has a slightly smaller area than S1 and S3, and S2 / S3 and S2 / S1 have values close to 1. When the sealing plate 71 is provided in the first distribution channel 17, the cross-sectional area S1 may be the smallest cross-sectional area.
 従来の消火器の流通経路の断面積、つまり、一番小さい断面積は、ノズルの断面積S0となっている。そして、ノズルの断面積S0は放射器10の流通経路の断面積S1、S2、S3よりも小さい面積となっており、S0/S1、S0/S2、S0/S3が1より小さい値(例えば、約0.5、約0.3、さらには約0.1)となるようになっており2リットルの薬剤を放射し終わるのに10秒以上の放射時間がいる。このような関係となるように放射器10の流通経路16を構成することによって、すなわちノズルの断面積S0に対する放射器10の流通経路の断面積S1、S2、S3との比(S1/S0、S2/S0、S3/S0)を1より大きくすることによって、従来の消火器より短時間で薬剤を放射することが可能となる。なお、本実施形態の放射器10の流通経路の長さ(図3の放射器10の流通経路の入口から出口までの距離)と、従来の消火器の流通経路の長さ(図3の消火器の流通経路の入口から出口までの距離)とは同じ長さであってもよい。また、本実施形態の放射器10と、従来の消火器とに封入される薬剤量CPは2リットルとなっているが、その他の薬剤量であっても良い。 The cross-sectional area of the distribution path of the conventional fire extinguisher, that is, the smallest cross-sectional area is the cross-sectional area S0 of the nozzle. The cross-sectional area S0 of the nozzle has an area smaller than the cross-sectional areas S1, S2, and S3 of the circulation path of the radiator 10, and S0 / S1, S0 / S2, and S0 / S3 are smaller than 1 (for example,). It is about 0.5, about 0.3, and even about 0.1), and it takes 10 seconds or more to finish radiating 2 liters of the drug. By configuring the distribution path 16 of the radiator 10 so as to have such a relationship, that is, the ratio of the cross-sectional area S0 of the nozzle 10 to the cross-sectional areas S1, S2, S3 of the distribution path of the radiator 10 (S1 / S0, By making S2 / S0, S3 / S0) larger than 1, it becomes possible to radiate the chemical in a shorter time than the conventional fire extinguisher. The length of the distribution path of the radiator 10 of the present embodiment (distance from the inlet to the outlet of the distribution path of the radiator 10 in FIG. 3) and the length of the distribution path of the conventional fire extinguisher (fire extinguishing in FIG. 3). It may be the same length as the distance from the entrance to the exit of the distribution channel of the vessel. Further, the amount of chemicals CP enclosed in the radiator 10 of the present embodiment and the conventional fire extinguisher is 2 liters, but other chemical amounts may be used.
 また、図1C、図7A、図7Bで示すようにノズル55が2個の場合のように、例えば封入される薬剤量CPが2リットルの放射器10であって、ノズル55が複数ある放射器10の場合もノズル55の断面は円状でもよい。この場合、ノズル55が複数ある放射器10の場合の一の流通経路16(第三の吐出管19)の断面積であるS3は、ノズル55が1個の場合よりも小さい面積である125平方ミリメートルの大きさで構成されている。封入される薬剤量CPが2リットルの放射器10において、2リットルの薬剤が散布(放射)完了までに要する時間が、ノズルが1個の場合とノズルが複数個の場合とで同じになる場合は、ノズルが1個の場合の1の流通経路16の断面積(例えば250平方ミリメートル)と、ノズルが複数個の複数の流通経路16の断面積の合計(例えば125平方ミリメートル×2個=250平方ミリメートル)と、が同じになるように構成されている。このように構成することによって、ノズル55を複数個設けた場合であってもノズル55が1個の場合と同じ性能を有することができるようになっている。なお、ノズル55が複数個の場合は、ノズル55に繋がる流通経路である第三の吐出管19の断面積S3が一番小さくなっている必要がある。 Further, as shown in FIGS. 1C, 7A, and 7B, for example, a radiator 10 having a chemical amount CP of 2 liters and having a plurality of nozzles 55, as in the case of two nozzles 55. In the case of 10, the cross section of the nozzle 55 may be circular. In this case, S3, which is the cross-sectional area of one distribution path 16 (third discharge pipe 19) in the case of the radiator 10 having a plurality of nozzles 55, has an area of 125 square meters, which is smaller than that in the case of one nozzle 55. It is composed of millimeters in size. Amount of medicine to be enclosed In a radiator 10 having a CP of 2 liters, the time required to complete spraying (radiation) of 2 liters of medicine is the same when there is one nozzle and when there are multiple nozzles. Is the sum of the cross-sectional area of one flow path 16 (for example, 250 square millimeters) when there is one nozzle and the cross-sectional area of a plurality of flow paths 16 having a plurality of nozzles (for example, 125 square millimeters × 2 = 250). Square millimeters) and are configured to be the same. With this configuration, even when a plurality of nozzles 55 are provided, the same performance as when one nozzle 55 is provided can be obtained. When there are a plurality of nozzles 55, the cross-sectional area S3 of the third discharge pipe 19, which is a distribution path connected to the nozzles 55, needs to be the smallest.
 本実施形態の加圧式で例示した断面積Sの大きさは、S1>S2>S3の順となっている。火災抑制剤99が流れ始める側の流通経路である第一の吐出管17の断面積S1が最も大きくなっており、ノズル55に最も近い第三の吐出管19の断面積S3(S1の約80%の断面積)が最も小さくなるように構成されている。また、本実施形態の蓄圧式で例示した断面積Sの大きさは、S1=S2=S3となっており、全ての流通経路の断面積が同じとなっている。一般的な蓄圧式の場合、第一の吐出管17と第二の吐出管18との間にバルブを設け、ハンドル60の操作に基づいてバルブが開くように構成されている構造のため、S2がS1よりも小さくなるように構成されているが、本実施形態の蓄圧式では、図2に示すように第一の吐出管17と第二の吐出管18との間に封板71を設けることで、S1とS2とを同じ断面積とすることができるため、火災抑制剤99の流速を減少(変化)させることなく、下流側の流通経路に火災抑制剤99を流下させることができるようになっている。なお、図1A~図1Cで示した加圧式の断面積Sについても、S1=S2=S3となるように構成しても良く、そのように構成することによって、火災抑制剤99の流速を減少(変化)させることなく、下流側の流通経路に火災抑制剤99を流下させることができるようになるという効果を奏する。なお、流通経路16の断面の形状は、円形状の他に楕円形状、矩形状等の形状であっても良い。 The size of the cross-sectional area S illustrated in the pressurizing type of this embodiment is in the order of S1> S2> S3. The cross-sectional area S1 of the first discharge pipe 17, which is the distribution path on the side where the fire suppressant 99 starts to flow, is the largest, and the cross-sectional area S3 of the third discharge pipe 19 closest to the nozzle 55 (about 80 of S1). % Cross-sectional area) is configured to be the smallest. Further, the size of the cross-sectional area S illustrated in the accumulator formula of the present embodiment is S1 = S2 = S3, and the cross-sectional areas of all distribution channels are the same. In the case of a general accumulator type, a valve is provided between the first discharge pipe 17 and the second discharge pipe 18, and the valve is opened based on the operation of the handle 60. Therefore, S2 Is smaller than S1, but in the accumulator type of the present embodiment, as shown in FIG. 2, a sealing plate 71 is provided between the first discharge pipe 17 and the second discharge pipe 18. As a result, since S1 and S2 can have the same cross-sectional area, the fire suppressant 99 can flow down the flow path on the downstream side without reducing (changing) the flow velocity of the fire suppressant 99. It has become. The pressurized cross-sectional area S shown in FIGS. 1A to 1C may also be configured such that S1 = S2 = S3, and by configuring so, the flow velocity of the fire suppressant 99 is reduced. The effect is that the fire suppressant 99 can flow down the distribution channel on the downstream side without (changing). The cross-sectional shape of the distribution channel 16 may be an elliptical shape, a rectangular shape, or the like in addition to the circular shape.
 また、本実施形態の放射器10の耐圧容器11に貯蔵された火災抑制剤の容量CP(薬剤量CP)と、流通経路16の断面積Sとの比は、以下の関係式となるように構成されている。
(関係式)(耐圧容器11に貯蔵された薬剤量CP):(流通経路16の断面積S)=(2リットル):(50平方ミリメートル以上、好ましくは80平方ミリメートル以上、より好ましくは100平方ミリメートル以上、上限値は、例えば600平方ミリメートル以下、好ましくは500平方ミリメートル以下、より好ましくは400平方ミリメートル以下)
Further, the ratio of the capacity CP (drug amount CP) of the fire suppressant stored in the pressure-resistant container 11 of the radiator 10 of the present embodiment to the cross-sectional area S of the distribution path 16 has the following relational expression. It is configured.
(Relational formula) (Chemical amount CP stored in pressure-resistant container 11): (Cross-sectional area S of distribution channel 16) = (2 liters): (50 square millimeters or more, preferably 80 square millimeters or more, more preferably 100 square millimeters) Millimeters or more, upper limit is, for example, 600 square millimeters or less, preferably 500 square millimeters or less, more preferably 400 square millimeters or less)
 1リットルの場合は、薬剤量CP:断面積S=1リットル:(25平方ミリメートル以上、好ましくは40平方ミリメートル以上、より好ましくは50平方ミリメートル以上、上限値は、例えば300平方ミリメートル以下、好ましくは250平方ミリメートル以下、より好ましくは200平方ミリメートル以下)となる。このように、容量CPが1リットルに対して25平方ミリメートル以上となる断面積Sを用いることによって、耐圧容器11内の火災抑制剤99の容量CPに関わらず10秒未満で耐圧容器11に封入されている火災抑制剤99を散布(放射)可能に構成されている。なお、容量CPと断面積Sとの比が1リットル:25平方ミリメートル以上となる例を示したが、好適な例は、容量CP:断面積S=1リットル:125平方ミリメートル以上である。なお、一瞬にして耐圧容器11内の火災抑制剤99が放出できるように、低抵抗の流通経路16を用いることが好適である。 In the case of 1 liter, the amount of drug CP: cross-sectional area S = 1 liter: (25 square millimeters or more, preferably 40 square millimeters or more, more preferably 50 square millimeters or more, the upper limit is, for example, 300 square millimeters or less, preferably 250 square millimeters or less, more preferably 200 square millimeters or less). In this way, by using the cross-sectional area S having a capacity CP of 25 square millimeters or more with respect to 1 liter, the fire suppressant 99 in the pressure-resistant container 11 is sealed in the pressure-resistant container 11 in less than 10 seconds regardless of the capacity CP. It is configured so that the fire suppressant 99 that has been used can be sprayed (radiated). Although an example in which the ratio of the capacity CP and the cross-sectional area S is 1 liter: 25 square millimeters or more is shown, a preferable example is a capacity CP: cross-sectional area S = 1 liter: 125 square millimeters or more. It is preferable to use the low resistance distribution path 16 so that the fire suppressant 99 in the pressure resistant container 11 can be released in an instant.
 耐圧容器11に封入されている薬剤量CPを10秒から2秒以内で散布(放射)可能にする流通経路16の断面積Sは以下の通りである。
(携帯タイプ1)0.2リットルの薬剤量CPの場合、5平方ミリメートル以上の断面積Sが必要である。断面積Sは、好ましくは25平方ミリメートル以上、より好ましくは50平方ミリメートル以上であり、上限値は300平方ミリメートル以下でよい。
(携帯タイプ2)0.5リットルの薬剤量CPの場合、12.5平方ミリメートル以上の断面積Sが必要である。断面積Sは、好ましくは25平方ミリメートル以上、より好ましくは62.5平方ミリメートル以上であり、上限値は300平方ミリメートル以下でよい。
(手提げタイプ1)1リットルの薬剤量CPの場合、25平方ミリメートル以上の断面積Sが必要である。断面積Sは、好ましくは125平方ミリメートル以上であり、上限値は300平方ミリメートル以下でよい。
(手提げタイプ2)2リットルの薬剤量CPの場合、50平方ミリメートル以上の断面積Sが必要である。断面積Sは、好ましくは250平方ミリメートル以上であり、上限値は600平方ミリメートル以下でよい。
(手提げタイプ3)3リットルの薬剤量CPの場合、75平方ミリメートル以上の断面積Sが必要である。断面積Sは、好ましくは375平方ミリメートル以上であり、上限値は900平方ミリメートル以下でよい。
(手提げタイプ4)4リットルの薬剤量CPの場合、100平方ミリメートル以上の断面積Sが必要である。断面積Sは、好ましくは500平方ミリメートル以上であり、上限値は1200平方ミリメートル以下でよい。
(手提げタイプ5)5リットルの薬剤量CPの場合、125平方ミリメートル以上の断面積Sが必要である。断面積Sは、好ましくは625平方ミリメートル以上であり、上限値は1500平方ミリメートル以下でよい。
(手提げタイプ6)6リットルの薬剤量CPの場合、150平方ミリメートル以上の断面積Sが必要である。断面積Sは、好ましくは750平方ミリメートル以上であり、上限値は1800平方ミリメートル以下でよい。
(固定式タイプ1)16リットルの薬剤量CPの場合、400平方ミリメートル以上の断面積Sが必要である。断面積Sは、好ましくは2000平方ミリメートル以上であり、上限値は4800平方ミリメートル以下でよい。
The cross-sectional area S of the distribution path 16 that enables the drug amount CP enclosed in the pressure-resistant container 11 to be sprayed (radiated) within 10 to 2 seconds is as follows.
(Portable type 1) In the case of a drug amount CP of 0.2 liter, a cross-sectional area S of 5 square millimeters or more is required. The cross-sectional area S is preferably 25 square millimeters or more, more preferably 50 square millimeters or more, and the upper limit value may be 300 square millimeters or less.
(Portable type 2) In the case of a drug amount CP of 0.5 liter, a cross-sectional area S of 12.5 square millimeter or more is required. The cross-sectional area S is preferably 25 square millimeters or more, more preferably 62.5 square millimeters or more, and the upper limit value may be 300 square millimeters or less.
(Hand-held type 1) In the case of 1 liter of drug amount CP, a cross-sectional area S of 25 square millimeters or more is required. The cross-sectional area S is preferably 125 square millimeters or more, and the upper limit value may be 300 square millimeters or less.
(Hand-held type 2) In the case of a drug amount CP of 2 liters, a cross-sectional area S of 50 square millimeters or more is required. The cross-sectional area S is preferably 250 square millimeters or more, and the upper limit value may be 600 square millimeters or less.
(Hand-held type 3) In the case of a drug amount CP of 3 liters, a cross-sectional area S of 75 square millimeters or more is required. The cross-sectional area S is preferably 375 square millimeters or more, and the upper limit may be 900 square millimeters or less.
(Hand-held type 4) In the case of a drug amount CP of 4 liters, a cross-sectional area S of 100 square millimeters or more is required. The cross-sectional area S is preferably 500 square millimeters or more, and the upper limit value may be 1200 square millimeters or less.
(Hand-held type 5) In the case of a drug amount CP of 5 liters, a cross-sectional area S of 125 square millimeters or more is required. The cross-sectional area S is preferably 625 mm2 or more, and the upper limit may be 1500 mm2 or less.
(Hand-held type 6) In the case of a drug amount CP of 6 liters, a cross-sectional area S of 150 square millimeters or more is required. The cross-sectional area S is preferably 750 mm2 or more, and the upper limit may be 1800 mm2 or less.
(Fixed type 1) In the case of a drug amount CP of 16 liters, a cross-sectional area S of 400 square millimeters or more is required. The cross-sectional area S is preferably 2000 square millimeters or more, and the upper limit value may be 4800 square millimeters or less.
 例えば、耐圧容器11に封入されている薬剤量CPを2秒以内に散布(放射)する場合、断面積S[平方ミリメートル]の下限値=125×薬剤量CP[リットル]となるように構成されている。また、耐圧容器11に封入されている薬剤量CPを5秒以内に散布(放射)する場合、断面積S[平方ミリメートル]の下限値=50×薬剤量CP[リットル]となるように構成されている。また、耐圧容器11に封入されている薬剤量CPを10秒以上で散布(放射)する場合(従来の消火器の場合)、断面積S[平方ミリメートル]の上限値=25×薬剤量CP[リットル]となるように構成されている。 For example, when the drug amount CP enclosed in the pressure-resistant container 11 is sprayed (radiated) within 2 seconds, the lower limit of the cross-sectional area S [square millimeter] = 125 × the drug amount CP [liter]. ing. Further, when the drug amount CP enclosed in the pressure-resistant container 11 is sprayed (radiated) within 5 seconds, the lower limit of the cross-sectional area S [square millimeter] = 50 × the drug amount CP [liter]. ing. Further, when the chemical amount CP enclosed in the pressure-resistant container 11 is sprayed (radiated) in 10 seconds or more (in the case of a conventional fire extinguisher), the upper limit of the cross-sectional area S [square millimeter] = 25 × the chemical amount CP [ It is configured to be [liter].
 流通経路16の長さが同じで、その流通経路16の断面積Sを一定とした場合、断面積Sと薬剤量CPは比例する。ここで、流量をQ[リットル/分]、流通経路の直径をΦD[ミリメートル]、圧力をP[メガパスパル]、流量係数をCpとすると、最も小さい断面積S(流通経路16の長さはほぼ変わらないとする)に対する流量Qは、以下のような式で表すことができる。
 Q=Cp×ΦD^2×(√P)×(√0.098)
 ただし、流量係数Cpは、流通経路の直径φDや長さだけでなく、その断面形状や粗さ、素材によっても変化し、薬剤の物性やノズル構造によっても変化することは言うまでもない。
When the length of the distribution channel 16 is the same and the cross-sectional area S of the distribution channel 16 is constant, the cross-sectional area S and the drug amount CP are proportional. Here, assuming that the flow rate is Q [liters / minute], the diameter of the distribution path is ΦD [millimeters], the pressure is P [megapaspal], and the flow coefficient is Cp, the smallest cross-sectional area S (the length of the distribution path 16 is almost the same). The flow rate Q for (which does not change) can be expressed by the following equation.
Q = Cp × ΦD ^ 2 × (√P) × (√0.098)
However, it goes without saying that the flow coefficient Cp changes not only with the diameter φD and length of the distribution channel, but also with its cross-sectional shape, roughness, and material, and also with the physical characteristics of the drug and the nozzle structure.
(広範囲放射機構の構成)
 本実施形態の放射器10は、火災抑制剤99として水成膜泡薬剤を泡の状態で広範囲の防護範囲面積に散布(放射)可能な機構として広範囲放射機構を備えていてもよい。広範囲放射機構は、ノズル構造と、ノズル数と、ノズル配置構造とから構成されている。本実施形態の放射器10の広範囲放射機構であれば、散布(放射)される火災抑制剤99は、1リットルあたり1平方メートル以上の面積に散布(放射)可能となっているが、これよりも広範囲の防護範囲面積(4平方メートル以上の面積)に散布(放射)されるように構成(広範囲放射機構)されていても良い。なお、火災の抑制効果を十分に確保するためには、散布(放射)面積の上限値は、例えば1リットルあたり10平方メートル程度である。
(Structure of wide-range radiation mechanism)
The radiator 10 of the present embodiment may be provided with a wide-range radiation mechanism as a mechanism capable of spraying (radiating) a water-forming foam agent as a fire suppressant 99 in a foam state over a wide area of protection range. The wide-range radiation mechanism is composed of a nozzle structure, the number of nozzles, and a nozzle arrangement structure. In the wide range radiation mechanism of the radiator 10 of the present embodiment, the fire control agent 99 to be sprayed (radiated) can be sprayed (radiated) over an area of 1 square meter or more per liter. It may be configured to be sprayed (radiated) over a wide area of protection (area of 4 square meters or more) (wide area radiation mechanism). In order to sufficiently secure the fire suppression effect, the upper limit of the spraying (radiation) area is, for example, about 10 square meters per liter.
 また、火災抑制剤99が散布(放射)される際、泡の状態で散布(放射)されるが、その際の発砲倍率は2倍以上となるように構成されている。なお、発泡倍率は、特に4倍以上で散布(放射)されるように構成されることが好適である。発泡倍率については、1リットルの火災抑制剤99を散布(放射)し、1リットルの容積(体積)となることを発泡倍率が1倍と呼び、1リットルの火災抑制剤99を散布(放射)し、2リットルの容積(体積)となることを発泡倍率が2倍と呼び、1リットルの火災抑制剤99を散布(放射)し、4リットルの容積(体積)となることを発泡倍率が4倍と呼ぶ。なお、発泡倍率が高いほど、広範囲の防護範囲面積に散布(放射)可能に構成されている。 Also, when the fire suppressant 99 is sprayed (radiated), it is sprayed (radiated) in the form of bubbles, but the firing magnification at that time is configured to be 2 times or more. The foaming ratio is particularly preferably configured to be sprayed (radiated) at 4 times or more. Regarding the foaming ratio, 1 liter of fire suppressant 99 is sprayed (radiated), and 1 liter of volume (volume) is called 1 times the foaming ratio, and 1 liter of fire control agent 99 is sprayed (radiated). When the volume (volume) of 2 liters is reached, the foaming ratio is called 2 times, and when 1 liter of the fire suppressant 99 is sprayed (radiated), the volume (volume) of 4 liters is called the foaming ratio of 4. Call it double. The higher the foaming ratio, the more it can be sprayed (radiated) over a wide area of protection.
 泡の状態で散布(放射)された火災抑制剤99は、泡の層の状態で燃料(可燃性液体)を覆うように構成されている。この層の厚みは、発泡倍率が4倍の場合、1ミリメートル以上となるように構成されている。層の厚みが1ミリメートル以上となることによって、1ミリメートル以下の層と比べ、より燃料(可燃性液体)の可燃性蒸気の蒸発や着火を抑制することができるようになっている。 The fire suppressant 99 sprayed (radiated) in the foam state is configured to cover the fuel (flammable liquid) in the foam layer state. The thickness of this layer is configured to be 1 mm or more when the expansion ratio is 4 times. When the thickness of the layer is 1 mm or more, the evaporation and ignition of the flammable vapor of the fuel (flammable liquid) can be suppressed more than the layer of 1 mm or less.
(ノズル構造)
 ノズル55は、火災抑制剤99として水成膜泡薬剤を泡の状態で広範囲の防護範囲面積に散布(放射)可能な構造となっている。以降、ノズル55として、F型ノズル、フォームヘッドノズル、拡散ノズル、2連角度付き配置のフォームヘッドノズル等を例示する。
(Nozzle structure)
The nozzle 55 has a structure capable of spraying (radiating) a water-forming foam agent as a fire suppressant 99 in a foam state over a wide area of protection. Hereinafter, as the nozzle 55, an F-type nozzle, a foam head nozzle, a diffusion nozzle, a foam head nozzle arranged with a double angle, and the like will be exemplified.
 先ず、ノズル構造としてのF型ノズルを有した放射器10について説明する。図4は、F型ノズルのノズル構造を示す図であり、詳細には、F型ノズルを有した加圧式の放射器10の全体を示す側断面図である。F型ノズル55は、図8Aに示すように上面から見て平たく扇状の第三の吐出管(第三流通経路)19を有して構成されている。そして、F型ノズル55から火災抑制剤99を散布(放射)することにより、火災抑制剤99が霧状になり放射の勢いによって空気を抱き込み発泡するように構成されている。また、図示していないがF型ノズル55の先端に網状の金網を取り付けることにより、火災抑制剤99を高い発泡倍率の泡の状態にすることが可能となっている。なお、図4の加圧式の放射器10は、図1A~図1Cの加圧式の放射器10と比較してノズル55のみが異なっており、その他の部品は図1A~図1Cで用いている部品と同じであるため、説明は省略する。図1A~図1Cに記載されていて図4に記載されていない部品(例えば、手提げハンドル52等)は、図4の放射器10にも付加可能であることは言うまでもない。図4では、上側の第一のガス導入管57と、下側の第一のガス導入管57とが一点鎖線で接続された図となっているが、実際にはホースによって接続されている。 First, the radiator 10 having an F-shaped nozzle as a nozzle structure will be described. FIG. 4 is a diagram showing a nozzle structure of an F-type nozzle, and in detail, is a side sectional view showing the entire pressurized radiator 10 having an F-type nozzle. As shown in FIG. 8A, the F-type nozzle 55 is configured to have a flat fan-shaped third discharge pipe (third distribution path) 19 when viewed from the upper surface. Then, by spraying (radiating) the fire suppressant 99 from the F-type nozzle 55, the fire suppressant 99 is atomized and is configured to embrace and foam air by the force of radiation. Further, although not shown, by attaching a net-like wire mesh to the tip of the F-shaped nozzle 55, it is possible to bring the fire suppressant 99 into a foam state having a high foaming ratio. The pressurized radiator 10 of FIG. 4 differs from the pressurized radiator 10 of FIGS. 1A to 1C only in the nozzle 55, and other parts are used in FIGS. 1A to 1C. Since it is the same as a part, the description thereof will be omitted. Needless to say, parts (for example, a hand-held handle 52, etc.) shown in FIGS. 1A to 1C but not shown in FIG. 4 can be added to the radiator 10 of FIG. In FIG. 4, the upper first gas introduction pipe 57 and the lower first gas introduction pipe 57 are connected by a dashed line, but they are actually connected by a hose.
 次に、ノズル構造としてのフォームヘッドノズルを有した放射器10について説明する。図5は、フォームヘッドノズルのノズル構造を示す図である。図5の(a)は、フォームヘッド100を示す正面図であり、右側の半分は断面を示す図である。図5の(b)は、フォームヘッド100内に設けられるコマ101の上面図である。図5の(c)は、コマ101の側断面図である。図1Bや図1C、図5の(a)に示すようにノズル55から放出された火災抑制剤99を発泡させて外部に散布(放射)する場合、フォームヘッド100をノズル55の先端に設けることが可能となっている。なお、ノズル55とフォームヘッド100とが一体となった構造を、フォームヘッドノズル55として取り扱う。 Next, the radiator 10 having a foam head nozzle as a nozzle structure will be described. FIG. 5 is a diagram showing a nozzle structure of a foam head nozzle. FIG. 5A is a front view showing the foam head 100, and the right half is a view showing a cross section. FIG. 5B is a top view of the frame 101 provided in the foam head 100. FIG. 5C is a side sectional view of the frame 101. When the fire suppressant 99 emitted from the nozzle 55 is foamed and sprayed (radiated) to the outside as shown in FIGS. 1B, 1C, and 5 (a), the foam head 100 is provided at the tip of the nozzle 55. Is possible. The structure in which the nozzle 55 and the foam head 100 are integrated is treated as the foam head nozzle 55.
 図5の(a)に示すように、フォームヘッド100は、旋回流を生成するコマ101と、金網102と、空気穴104とを備えている。加圧された火災抑制剤99は、第三の吐出管19、開口20を経由しフォームヘッド100の本体内に流入するように構成されている。本体内に流入した火災抑制剤99は、コマ101によって旋回されながら金網102の方向に放出される。 As shown in FIG. 5A, the foam head 100 includes a frame 101 that generates a swirling flow, a wire mesh 102, and an air hole 104. The pressurized fire suppressant 99 is configured to flow into the main body of the foam head 100 via the third discharge pipe 19 and the opening 20. The fire suppressant 99 that has flowed into the main body is released in the direction of the wire mesh 102 while being swirled by the coma 101.
 コマ101は、図5の(a)に示すように軸106に固定されている。また、コマ101には、図5の(b)に示すように3つの貫通孔105a、105b、105cが設けられている。貫通孔105a、105b、105cは、図5の(c)に示すように、中心側から外側に向けて傾斜する形状となっており、これらの貫通孔105a、105b、105cにフォームヘッド100の本体内に流入した火災抑制剤99が流入するように構成されている。そして、貫通孔105a~105cに流入した火災抑制剤99は、螺旋状に旋回されながら旋回流となって金網102の方向に放出される。コマ101から放出された火災抑制剤99は、空気穴104からの空気と金網102を通過する際の空気を巻き込み、泡の状態となって外部に放出されるようになっている。 The frame 101 is fixed to the shaft 106 as shown in FIG. 5 (a). Further, the frame 101 is provided with three through holes 105a, 105b, and 105c as shown in FIG. 5B. As shown in FIG. 5C, the through holes 105a, 105b, and 105c have a shape that is inclined from the center side to the outside, and the main body of the foam head 100 is formed in these through holes 105a, 105b, 105c. The fire suppressant 99 that has flowed into the inside is configured to flow in. Then, the fire suppressant 99 that has flowed into the through holes 105a to 105c becomes a swirling flow while being swirled in a spiral shape and is discharged in the direction of the wire mesh 102. The fire suppressant 99 released from the frame 101 entrains the air from the air hole 104 and the air when passing through the wire mesh 102, and is released to the outside in the form of bubbles.
 次に、ノズル構造としての拡散ノズルを有した放射器10について説明する。図6は、拡散ノズルのノズル構造を示す図である。図6Aは、拡散ノズル55を示す上面図である。図6Bは、拡散ノズル55の側面図である。図6Cは、拡散ノズル55の正面図である。 Next, the radiator 10 having a diffusion nozzle as a nozzle structure will be described. FIG. 6 is a diagram showing a nozzle structure of a diffusion nozzle. FIG. 6A is a top view showing the diffusion nozzle 55. FIG. 6B is a side view of the diffusion nozzle 55. FIG. 6C is a front view of the diffusion nozzle 55.
 拡散ノズル55は、デフレクタ201と、金網202とを備えている。デフレクタ201は、図6Cに示すように横長の長方形状の上デフレクタ201aと、横長の長方形状であって上デフレクタより面積の大きい下デフレクタ201bとで構成されている。上デフレクタ201aは、図6Bに示すように、上方向に向けて所定角度で開いた形状となっている。一方、下デフレクタ201bは、図6Aに示すように、左右方向に向けて所定角度で開いた形状となっている。また、上デフレクタ201a、下デフレクタ201bには、図6Cに示すように複数の矩形状のスリット、詳細には長方形状のスリット220a~dが形成されている。そして、デフレクタ201の前側には金網202が取り付けられており、第三の吐出管19、開口20を流下してきた火災抑制剤99が、金網202を通過する際に空気を巻き込み、泡の状態となって外部に放出されるように構成されている。 The diffusion nozzle 55 includes a deflector 201 and a wire mesh 202. As shown in FIG. 6C, the deflector 201 is composed of a horizontally long rectangular upper deflector 201a and a horizontally long rectangular lower deflector 201b having a larger area than the upper deflector. As shown in FIG. 6B, the upper deflector 201a has a shape that is opened at a predetermined angle in the upward direction. On the other hand, as shown in FIG. 6A, the lower deflector 201b has a shape that opens at a predetermined angle in the left-right direction. Further, the upper deflector 201a and the lower deflector 201b are formed with a plurality of rectangular slits, specifically, rectangular slits 220a to 220d, as shown in FIG. 6C. A wire mesh 202 is attached to the front side of the deflector 201, and the fire suppressant 99 that has flowed down the third discharge pipe 19 and the opening 20 entrains air when passing through the wire mesh 202, resulting in a bubble state. It is configured to be released to the outside.
 第三の吐出管19を流下してきた火災抑制剤99は、開口20から上デフレクタ201a、下デフレクタ201bに向けて放出される。開口20から放出された火災抑制剤99の一部は、図6Aの一点鎖線で示すように下デフレクタ201bによって下デフレクタ201bの後側で、下デフレクタ201bの後面に沿って散布(放射)されるように構成されている。詳細には、開口20から放出された火災抑制剤99の一部は、下デフレクタ201bの後面に沿うようにして左斜め前方向、右斜め前方向に向けて散布(放射)されるようになっている。また、下デフレクタ201bに向けて放出された火災抑制剤99の一部は、下デフレクタ201bのスリット220a、220b、220cを通過することによって、下デフレクタ201bの前側で散布(放射)されるように構成されている。詳細には、スリット220aを通過した火災抑制剤99は、スリット220aを通過する際に分離され、その後、図6Aに示すように右斜め前方向に向かって散布(放射)されるようになっており、スリット220bを通過した火災抑制剤99は、スリット220bを通過する際に分離され、その後、図6Aに示すように前方向に向かって散布(放射)されるようになっており、スリット220cを通過した火災抑制剤99は、スリット220cを通過する際に分離され、その後、図6Aに示すように左斜め前方向に向かって散布(放射)されるようになっている。 The fire suppressant 99 that has flowed down the third discharge pipe 19 is discharged from the opening 20 toward the upper deflector 201a and the lower deflector 201b. A part of the fire suppressant 99 released from the opening 20 is sprayed (radiated) by the lower deflector 201b on the rear side of the lower deflector 201b and along the rear surface of the lower deflector 201b as shown by the alternate long and short dash line in FIG. 6A. It is configured as follows. Specifically, a part of the fire suppressant 99 released from the opening 20 is sprayed (radiated) diagonally forward to the left and diagonally forward to the right along the rear surface of the lower deflector 201b. ing. Further, a part of the fire suppressant 99 released toward the lower deflector 201b is sprayed (radiated) on the front side of the lower deflector 201b by passing through the slits 220a, 220b, 220c of the lower deflector 201b. It is configured. Specifically, the fire suppressant 99 that has passed through the slit 220a is separated when passing through the slit 220a, and then is sprayed (radiated) diagonally forward to the right as shown in FIG. 6A. The fire suppressant 99 that has passed through the slit 220b is separated when passing through the slit 220b, and then is sprayed (radiated) in the forward direction as shown in FIG. 6A, so that the slit 220c The fire suppressant 99 that has passed through the slit 220c is separated when passing through the slit 220c, and then is sprayed (radiated) diagonally to the left and forward as shown in FIG. 6A.
 また、開口20から放出された火災抑制剤99の一部は、図6Bの一点鎖線で示すように上デフレクタ201aによって上デフレクタ201aの後側で散布(放射)されるように構成されている。詳細には、開口20から放出された火災抑制剤99の一部は、上デフレクタ201aの後面に沿うようにして上斜め前方向に向けて散布(放射)されるようになっている。さらに、上デフレクタ201aに向けて放出された火災抑制剤99の一部は、上デフレクタ201aに設けられた複数のスリット220dを通過することによって、上デフレクタ201aの前側で散布(放射)されるように構成されている。詳細には、複数のスリット220dを通過した火災抑制剤99は、スリット220dを通過する際に分離され、その後、図6Aに示すように前方向に向かって散布(放射)されるようになっている。 Further, a part of the fire suppressant 99 released from the opening 20 is configured to be sprayed (radiated) on the rear side of the upper deflector 201a by the upper deflector 201a as shown by the alternate long and short dash line in FIG. 6B. Specifically, a part of the fire suppressant 99 released from the opening 20 is sprayed (radiated) diagonally upward and forward along the rear surface of the upper deflector 201a. Further, a part of the fire suppressant 99 released toward the upper deflector 201a is sprayed (radiated) on the front side of the upper deflector 201a by passing through a plurality of slits 220d provided in the upper deflector 201a. It is configured in. Specifically, the fire suppressant 99 that has passed through the plurality of slits 220d is separated when passing through the slits 220d, and then is sprayed (radiated) in the forward direction as shown in FIG. 6A. There is.
 次に、ノズル構造としての2連角度付き配置のフォームヘッドノズルを有した放射器10について説明する。図7は、2連角度付き配置のフォームヘッド100のノズル構造を示す図である。図7Aは、2連角度付き配置のフォームヘッド100のノズル構造を示す上面図である。図7Bは、2連角度付き配置のフォームヘッド100のノズル構造の側面図である。ノズル55から放出された火災抑制剤99を発泡させて外部に散布(放射)する場合、複数のフォームヘッド100をノズル55の先端に設けることが可能となっている。なお、ノズル55と複数のフォームヘッド100とが一体となった構造を、フォームヘッドノズル55として取り扱う。左右方向へ広範囲に散布(放射)可能なノズル構造としては、図7Aに示すように2個のフォームヘッド100を所定の角度(α度)で取り付ける2連角度付き配置のフォームヘッド100のノズル構造とするのが好適である。なお、フォームヘッド100については上述したフォームヘッド100を用いている。 Next, a radiator 10 having a foam head nozzle arranged with a double angle as a nozzle structure will be described. FIG. 7 is a diagram showing a nozzle structure of a foam head 100 arranged with a double angle. FIG. 7A is a top view showing a nozzle structure of the foam head 100 arranged with a double angle. FIG. 7B is a side view of the nozzle structure of the foam head 100 arranged at a double angle. When the fire suppressant 99 discharged from the nozzle 55 is foamed and sprayed (radiated) to the outside, a plurality of foam heads 100 can be provided at the tip of the nozzle 55. The structure in which the nozzle 55 and the plurality of foam heads 100 are integrated is treated as the foam head nozzle 55. As a nozzle structure capable of spraying (radiating) over a wide range in the left-right direction, as shown in FIG. 7A, the nozzle structure of the foam heads 100 having a double angled arrangement in which two foam heads 100 are attached at a predetermined angle (α degree). Is preferable. As the foam head 100, the foam head 100 described above is used.
(ノズル数)
 放射器10に設けられるノズル55の数は、図1A~図1Cや図7Aに示すようにノズル55(フォームヘッドノズル)が可燃物200に向いた状態における上面視で左右に複数個(例えば2個)設けることが好適である。なお、図2、3に示すように、ノズル55を1個設けるように構成しても良いし、図7Bに示すようにノズル55(フォームヘッドノズル)を側面視で上下に複数個(例えば、2個)設けるように構成しても良く、複数のノズル55を図7Aに示すように周方向の異なる位置に取り付けても良い。また、1個のノズル55において、散布(放射)の孔を複数(複数の開口20)設けることも好適であるが、1つの散布(放射)の孔(1つの開口20)としても良い。なお、図7Bに示すようにノズル55を上下に複数個(例えば、2個)設けるように構成した場合、上のノズル55はノズル55から遠い位置(遠距離)に火災抑制剤99を散布(放射)するように構成する一方、下のノズル55はノズル55から近い位置(近距離)に火災抑制剤99を散布(放射)するように構成しても良い。また、上のノズル55が近距離用、下のノズル55が遠距離用としても良い。このように構成することによって、近距離、遠距離の位置においても一定以上(1ミリメートル以上)の火災抑制剤99の層を生成することができる。さらにまた、上のノズル55と下のノズル55に繋がる流通経路16の断面積Sを異ならせることにより、近距離(断面積大の場合)、遠距離(断面積小の場合)に火災抑制剤99を散布(放射)するように構成しても良い。
(Number of nozzles)
As shown in FIGS. 1A to 1C and 7A, the number of nozzles 55 provided in the radiator 10 is plurality on the left and right (for example, 2) when the nozzles 55 (foam head nozzles) are facing the combustible material 200. It is preferable to provide (pieces). As shown in FIGS. 2 and 3, one nozzle 55 may be provided, or a plurality of nozzles 55 (foam head nozzles) may be provided vertically (for example, as shown in FIG. 7B). (2) may be provided, or a plurality of nozzles 55 may be mounted at different positions in the circumferential direction as shown in FIG. 7A. Further, although it is preferable to provide a plurality of spray (radiation) holes (plural openings 20) in one nozzle 55, one spray (radiation) holes (one opening 20) may be provided. When a plurality (for example, two) nozzles 55 are provided vertically as shown in FIG. 7B, the upper nozzle 55 sprays the fire suppressant 99 at a position (long distance) far from the nozzle 55 (for example, two nozzles 55). On the other hand, the lower nozzle 55 may be configured to spray (radiate) the fire suppressant 99 at a position (short distance) close to the nozzle 55. Further, the upper nozzle 55 may be used for a short distance and the lower nozzle 55 may be used for a long distance. With this configuration, it is possible to generate a layer of the fire suppressant 99 having a certain level or more (1 mm or more) even at a short distance and a long distance position. Furthermore, by making the cross-sectional area S of the distribution path 16 connected to the upper nozzle 55 and the lower nozzle 55 different, the fire suppressant is used for short distances (when the cross-sectional area is large) and long distances (when the cross-sectional area is small). 99 may be configured to be sprayed (radiated).
(ノズル配置構造)
 複数のノズル55(フォームヘッドノズル)を使用する場合、図7Aに示すようにα度の角度を付けて配置するように構成することが好ましい。ここでのαとして15度の例を示すが、αは5~45度となっていることが好適である。また、図7Bに示すように、ノズル55が可燃物200に向いた状態における上面視で左右方向ではなく側面視で上下方向に複数設けても良いし、左右方向に複数(例えば、2個)設け且つ上下方向に複数(例えば、2個)設けるように構成して、複数個(例えば、4個)のノズル55を配置するように構成しても良い。なお、火災抑制剤99を所定の範囲(例えば、約4平方メートル/1リットル)に同じ量を散布(放射)できるようなノズル構造、ノズル数、ノズル配置構造であることが好ましい。なお、ノズル55を上方向に数度傾けて固定しても良い。
(Nozzle arrangement structure)
When a plurality of nozzles 55 (foam head nozzles) are used, it is preferable to arrange them at an angle of α degree as shown in FIG. 7A. An example of 15 degrees as α here is shown, but it is preferable that α is 5 to 45 degrees. Further, as shown in FIG. 7B, a plurality of nozzles 55 may be provided vertically in a side view instead of a left-right direction when facing the combustible material 200, or a plurality of nozzles 55 may be provided in the left-right direction (for example, two). It may be configured to be provided and a plurality (for example, two) are provided in the vertical direction, and a plurality (for example, four) nozzles 55 may be arranged. It is preferable that the fire suppressant 99 has a nozzle structure, a number of nozzles, and a nozzle arrangement structure so that the same amount can be sprayed (radiated) in a predetermined range (for example, about 4 square meters / 1 liter). The nozzle 55 may be tilted upward several degrees and fixed.
(安全放射機構の構成)
 本実施形態の放射器10は、火災抑制剤99を散布(放射)する際の放出音を小さくし、火災抑制剤99を散布(放射)する際の操作者に対して低反動となる機構として安全放射機構を備えていてもよい。本実施形態の放射器10の安全放射機構は、サイレント機構と、低反動機構とから構成されている。
(Structure of safety radiation mechanism)
The radiator 10 of the present embodiment is a mechanism that reduces the emission sound when spraying (radiating) the fire suppressing agent 99 and has a low reaction to the operator when spraying (radiating) the fire suppressing agent 99. It may be provided with a safety radiation mechanism. The safe radiation mechanism of the radiator 10 of the present embodiment includes a silent mechanism and a low recoil mechanism.
(サイレント機構)
 例えば、上述のノズル数で記載したように、1個のノズル55において、複数の散布(放射)の孔を設けるように構成している。このように複数の散布(放射)の孔を設けることにより、火災抑制剤99を散布(放射)する際の放出音が分散されることにより、放出音を小さくすることが可能となっている。また、このように放出音を小さくすることによって、放火テロの際等に犯人を威嚇しないようにすることができる。
(Silent mechanism)
For example, as described in the above-mentioned number of nozzles, one nozzle 55 is configured to provide a plurality of spray (radiation) holes. By providing a plurality of spraying (radiating) holes in this way, the emitted sound when the fire suppressant 99 is sprayed (radiated) is dispersed, so that the emitted sound can be reduced. In addition, by reducing the emission sound in this way, it is possible to prevent the criminal from being threatened in the event of an arson terrorist attack or the like.
(低反動機構)
 次に、図8A~図8Cを用いて、低反動機構について説明する。図8A~図8Cは、低反動機構としての円周方向放射機構を示す図である。図8Aに示すようにノズル55から散布(放射)する火災抑制剤99を上面視において円周方向(中心角度がβ1度の扇形状)、且つ、図8Bに示すようにノズル55から散布(放射)する火災抑制剤99を側面視においても円周方向(中心角度がγ度の扇形状)に散布(放射)することにより、散布(放射)に対する反動のベクトルが図中の一点鎖線の矢印のように分散されるため、操作者に対する反動が小さくなるように構成(円周方向放射機構)されている。なお、図8Aで示す上面視における円周方向(通常の散布状態で水平方向)については、ノズル55からβ1度の角度で散布(放射)するように構成されており、β1度は、30度~120度の範囲となっている。
(Low recoil mechanism)
Next, the low recoil mechanism will be described with reference to FIGS. 8A to 8C. 8A to 8C are diagrams showing a circumferential radiation mechanism as a low recoil mechanism. The fire suppressant 99 sprayed (radiated) from the nozzle 55 as shown in FIG. 8A is sprayed (radiated) from the nozzle 55 in the circumferential direction (fan shape with a central angle of β1 degree) in the top view and as shown in FIG. 8B. By spraying (radiating) the fire suppressant 99 in the circumferential direction (fan shape with a central angle of γ degrees) even when viewed from the side, the vector of the reaction to the spraying (radiation) is indicated by the one-point chain line arrow in the figure. Therefore, it is configured so that the reaction to the operator is small (circumferential radiation mechanism). The circumferential direction (horizontal direction in the normal spraying state) in the top view shown in FIG. 8A is configured to spray (radiate) from the nozzle 55 at an angle of β1 degree, and β1 degree is 30 degrees. It is in the range of ~ 120 degrees.
 また、図8Bで示す側面視における円周方向(通常の散布状態で垂直方向)については、ノズル55からγ度の角度で散布(放射)するように構成されており、γ度は、15度~90度の範囲となっている。 Further, in the circumferential direction (vertical direction in the normal spraying state) in the side view shown in FIG. 8B, the nozzle 55 is configured to spray (radiate) at an angle of γ degree, and the γ degree is 15 degrees. It is in the range of ~ 90 degrees.
 また、図8Cに示すように2個のノズル55(フォームヘッドノズル)から散布(放射)する火災抑制剤99を上面視において円周方向(中心角度がβ2度の扇形状)、且つ、図8Bに示すようにノズル55から散布(放射)する火災抑制剤99を側面視においても円周方向(中心角度がγ度の扇形状)に散布(放射)することにより、散布(放射)に対する反動のベクトルが分散されるため、操作者に対する反動が小さくなるように構成(円周方向放射機構)されている。なお、図8Cで示す上面視における円周方向については、ノズル55からβ2度の角度で散布(放射)するように構成されており、β2度は、90度~150度の範囲となっている。 Further, as shown in FIG. 8C, the fire suppressant 99 sprayed (radiated) from the two nozzles 55 (foam head nozzles) is in the circumferential direction (fan shape with a central angle of β2 degrees) in the top view and in FIG. 8B. As shown in the above, the fire suppressant 99 sprayed (radiated) from the nozzle 55 is sprayed (radiated) in the circumferential direction (fan shape with a central angle of γ degrees) even when viewed from the side, so that the reaction to the spraying (radiation) is generated. Since the vector is dispersed, it is configured so that the reaction to the operator is small (circumferential radiation mechanism). The circumferential direction in the top view shown in FIG. 8C is configured to be sprayed (radiated) from the nozzle 55 at an angle of β2 degrees, and β2 degrees is in the range of 90 degrees to 150 degrees. ..
 また、図7A、図8Cに示すようにα度、β2度の角度を付けて複数のノズル55を設け、火災抑制剤99を異なる方向に散布(放射)することにより、図8Aや図8Bで示したことと同様に散布(放射)に対する反動のベクトルが分散されるため、操作者に対する反動が小さくなるように構成(ノズル複数個角度付け放射機構)されている。なお、ノズル複数個角度付け放射機構の一のノズル55は、円周方向放射機構を用いてもよい。そのように構成することによって、ノズル複数個角度付け放射機構よりも低反動となる低反動機構とすることができる。さらに、この低反動機構は、円周方向放射機構とノズル複数個角度付け放射機構とによって構成されることが好適であるが、いずれか一方のみで構成されても良い。 Further, as shown in FIGS. 7A and 8C, a plurality of nozzles 55 are provided at angles of α degree and β2 degree, and the fire suppressant 99 is sprayed (radiated) in different directions in FIGS. 8A and 8B. Since the reaction vector for spraying (radiation) is dispersed as shown, the reaction to the operator is small (multiple nozzle angled radiation mechanism). The nozzle 55 of one of the plurality of nozzles angled radiation mechanisms may use a circumferential radiation mechanism. With such a configuration, it is possible to obtain a low recoil mechanism that has a lower recoil than the nozzle multiple angled radiation mechanism. Further, the low recoil mechanism is preferably composed of a circumferential radiation mechanism and a plurality of nozzle angled radiation mechanisms, but may be composed of only one of them.
 次に、火災を抑制するため、撒かれた燃料(可燃性液体)と抑制に必要な薬剤の量の好適な関係を説明する。
(1)ガソリン:水成膜泡=1:0.3以上
 ガソリン1リットルに対し、0.3リットル以上の水成膜泡が必要である。
(2)ガソリン:合成界面活性剤泡=1:1以上
 ガソリン1リットルに対し、1リットル以上の合成界面活性剤泡が必要である。合成界面活性剤泡は、水成膜泡よりも多くの量(水成膜泡の3倍以上の量)が必要となっている。
(3)灯油:水成膜=1:0.1以上
 灯油1リットルに対し、0.1リットル以上の水成膜が必要である。灯油の方がガソリンよりも引火点が高いため、薬剤量を少なくできるようになっている。
Next, in order to suppress a fire, a preferable relationship between the sprinkled fuel (flammable liquid) and the amount of the chemical required for the control will be described.
(1) Gasoline: Water film formation foam = 1: 0.3 or more Water film formation foam of 0.3 liter or more is required for 1 liter of gasoline.
(2) Gasoline: Synthetic surfactant foam = 1: 1 or more 1 liter or more of synthetic surfactant foam is required for 1 liter of gasoline. The amount of the synthetic surfactant foam is required to be larger than that of the water-formed foam (three times or more the amount of the water-formed foam).
(3) Kerosene: Water film formation = 1: 0.1 or more Water film formation of 0.1 liter or more is required for 1 liter of kerosene. Since kerosene has a higher flash point than gasoline, the amount of chemicals can be reduced.
 次に、防護範囲面積S4について説明する。図9A~図9Cは、防護範囲面積S4を示す図である。図9Aに示すように、タイプAのノズル55を用いて火災を抑制できる防護範囲(防護範囲面積S4)は、略正方形の範囲となっている。また、タイプAのノズルとは異なるタイプBのノズル55を用いる場合、火災を抑制できる防護範囲面積S4は、図9Bに示すように、略長方形の範囲となっている。さらに、タイプA、タイプBのノズルとは異なるタイプCのノズル55を用いる場合、火災を抑制できる防護範囲面積S4は、図9Cに示すように、タイプBのノズル55用いた長方形を90度回転させた形状の略長方形の範囲となっている。ここで、防護範囲面積S4とは、消火や着火抑制に有効な量(厚さ)の火災抑制剤99が散布されている面積を示している。散布された火災抑制剤99の厚みであって、有効な火災抑制剤99の厚みは、発泡(例えば、発泡倍率は4倍)した体積で考えて、1ミリメートル以上となっている。防護範囲面積S4は、実際に散布(放射)された面積よりも、面積が小さくなっており、実際に散布された面積のうち、火災抑制剤99の厚みが1ミリメートル以上となっている範囲の面積となっている。なお、ノズル55のタイプが異なっていても火災を抑制できる防護範囲面積S4は全て同じ面積となるように構成されていてよい。なお、防護範囲面積の形状は、上記略正方形や略長方形に限られず、略台形、略円形、略楕円形など適宜選択できる。 Next, the protection range area S4 will be described. 9A to 9C are diagrams showing the protection range area S4. As shown in FIG. 9A, the protection range (protection range area S4) that can suppress a fire by using the type A nozzle 55 is a substantially square range. Further, when a type B nozzle 55 different from the type A nozzle is used, the protection range area S4 capable of suppressing a fire is a substantially rectangular range as shown in FIG. 9B. Further, when a type C nozzle 55 different from the type A and type B nozzles is used, the protection range area S4 capable of suppressing a fire rotates a rectangle using the type B nozzle 55 by 90 degrees as shown in FIG. 9C. It is in the range of a substantially rectangular shape. Here, the protection range area S4 indicates an area in which an amount (thickness) of a fire suppressant 99 effective for extinguishing a fire or suppressing ignition is sprayed. The thickness of the sprayed fire suppressant 99, and the effective thickness of the fire suppressant 99, is 1 mm or more in terms of the volume of foaming (for example, the foaming ratio is 4 times). The area of the protection range S4 is smaller than the area actually sprayed (radiated), and the area in which the thickness of the fire suppressant 99 is 1 mm or more in the actually sprayed area. It is an area. Even if the types of the nozzles 55 are different, the protection range area S4 capable of suppressing a fire may be configured to have the same area. The shape of the protection range area is not limited to the above-mentioned substantially square or substantially rectangular shape, and can be appropriately selected from a substantially trapezoidal shape, a substantially circular shape, a substantially elliptical shape, and the like.
 また、タイプA、タイプB、タイプCのノズルを1の放射器10に取り付けて、タイプA~Cを選択して使用できるように構成(ノズル選択機構)しても良い。例えば、放射器10の周方向にタイプA~Cのノズル55を夫々取り付け、回転させることにより使用するタイプのノズル55を選択するよう構成することができ、幅の広い通路等であればタイプBのノズルを使用し、幅の狭い通路等であればタイプCのノズルを使用することで、状況に応じて火災抑制剤99の散布(放射)する防護範囲を異ならせることができるようになっている。このようにノズル55のタイプを選択して使用することによって、最適な防護範囲に対して火災抑制剤99を散布(放射)することができるという効果を奏する。なお、ノズル選択機構は、携帯タイプ、手提げタイプ、固定式タイプの放射器10のいずれにおいても適用可能となっている。 Alternatively, type A, type B, and type C nozzles may be attached to the radiator 10 of 1 so that types A to C can be selected and used (nozzle selection mechanism). For example, the nozzles 55 of types A to C can be attached in the circumferential direction of the radiator 10 and rotated to select the nozzle 55 of the type to be used. By using the Nozzle of Type C and using the Nozzle of Type C for narrow passages, etc., the protection range to which the fire suppressant 99 is sprayed (radiated) can be changed depending on the situation. There is. By selecting and using the type of the nozzle 55 in this way, it is possible to spray (radiate) the fire suppressant 99 over the optimum protection range. The nozzle selection mechanism can be applied to any of the portable type, the hand-held type, and the fixed type radiator 10.
 次に、薬剤量CPと火災を抑制できる防護範囲面積S4の関係を説明する。ここでは、抑制できる泡の厚さを1ミリメートルとし、発泡倍率が4倍である場合の例を示す。
(携帯タイプ1)0.2リットルの薬剤量CPの場合、0.8平方メートルの防護範囲面積S4の火災を抑制可能である。
(携帯タイプ2)0.5リットルの薬剤量CPの場合、2平方メートルの防護範囲面積S4の火災を抑制可能である。
(手提げタイプ1)1リットルの薬剤量CPの場合、4平方メートルの防護範囲面積S4の火災を抑制可能である。
(手提げタイプ2)2リットルの薬剤量CPの場合、8平方メートルの防護範囲面積S4の火災を抑制可能である。
(手提げタイプ3)3リットルの薬剤量CPの場合、12平方メートルの防護範囲面積S4の火災を抑制可能である。
(手提げタイプ4)4リットルの薬剤量CPの場合、16平方メートルの防護範囲面積S4の火災を抑制可能である。
(手提げタイプ5)5リットルの薬剤量CPの場合、20平方メートルの防護範囲面積S4の火災を抑制可能である。
(手提げタイプ6)6リットルの薬剤量CPの場合、24平方メートルの防護範囲面積S4の火災を抑制可能である。
(固定式タイプ1)16リットルの薬剤量CPの場合、64平方メートルの防護範囲面積S4の火災を抑制可能である。
 つまり、S4[平方メートル]=4×薬剤量CP[リットル]となっている。
Next, the relationship between the drug amount CP and the protection range area S4 capable of suppressing a fire will be described. Here, an example is shown in which the thickness of the foam that can be suppressed is 1 mm and the foaming ratio is 4 times.
(Portable type 1) In the case of a 0.2 liter drug amount CP, it is possible to suppress a fire with a protection range area S4 of 0.8 square meters.
(Portable type 2) In the case of a drug amount CP of 0.5 liter, it is possible to suppress a fire with a protection range area S4 of 2 square meters.
(Hand-held type 1) In the case of 1 liter of chemical amount CP, it is possible to suppress a fire with a protection range area S4 of 4 square meters.
(Hand-held type 2) In the case of 2 liters of chemical amount CP, it is possible to suppress a fire with a protection range area S4 of 8 square meters.
(Hand-held type 3) In the case of a chemical amount CP of 3 liters, it is possible to suppress a fire with a protection range area S4 of 12 square meters.
(Hand-held type 4) In the case of a drug amount CP of 4 liters, it is possible to suppress a fire with a protection range area S4 of 16 square meters.
(Hand-held type 5) In the case of a chemical amount CP of 5 liters, it is possible to suppress a fire with a protection range area S4 of 20 square meters.
(Hand-held type 6) In the case of a 6-liter drug amount CP, it is possible to suppress a fire with a protection range area S4 of 24 square meters.
(Fixed type 1) In the case of a drug amount CP of 16 liters, it is possible to suppress a fire with a protection range area S4 of 64 square meters.
That is, S4 [square meter] = 4 × drug amount CP [liter].
 なお、上述したように2リットルの薬剤を封入した従来の消火器は、10秒以上の時間をかけて薬剤の略全量を散布(放射)可能に構成されている。そのため、燃料(可燃性液体)を撒かれてから着火するまでに十分な時間があるため、容易に燃料に着火できてしまうとともに、撒かれている燃料に対して薬剤を散布(放射)するまでに燃料が蒸発して爆発燃焼してしまう虞が生じる。また、従来の消火器は、ノズルを振って薬剤を散布(放射)したりしなければ広範囲に薬剤を散布(放射)することができないため、薬剤を広範囲に散布(放射)することが課題となっている。 As described above, the conventional fire extinguisher filled with 2 liters of the drug is configured to be able to spray (radiate) substantially the entire amount of the drug over a period of 10 seconds or more. Therefore, since there is sufficient time from the sprinkling of the fuel (flammable liquid) to the ignition, the fuel can be easily ignited and the chemical is sprayed (evaporated) on the sprinkled fuel. There is a risk that the fuel will evaporate and explode and burn. In addition, conventional fire extinguishers cannot spray (radiate) chemicals over a wide area without shaking the nozzle to spray (radiate) the chemicals, so the problem is to spray (radiate) the chemicals over a wide area. It has become.
 また、従来の放火火災予防装置や放火抑制システムは、センサーで放火行為を判断し、光や音、水噴霧や水の散布等によって予防処置を行うが、ガソリン等の揮発性の高い燃料(可燃性液体)を撒かれた場合の放火の抑制にはならないという問題がある。さらに、自動式の装置は、装置自体のコストが非常にかかるだけではなく、設置工事等にもコストや時間がかかるという問題もある。 In addition, conventional arson fire prevention devices and arson suppression systems use sensors to determine arson behavior and take preventive measures by using light, sound, water spray, water spray, etc., but highly volatile fuels such as gasoline (flammable) There is a problem that it does not suppress arson when sprinkled with (sexual liquid). Further, the automatic device has a problem that not only the cost of the device itself is very high, but also the installation work and the like are costly and time-consuming.
 上述した第1の実施の形態において示した構成に基づき、以下のような概念を抽出することができる。但し、以下に記載する概念はあくまで一例であり、これらの概念の結合や分離(上位概念化)は勿論のこと、第1の実施の形態において示した更なる構成に基づく概念を、これら概念に付加してもよい。 The following concepts can be extracted based on the configuration shown in the first embodiment described above. However, the concepts described below are merely examples, and not only the combination and separation (superimposition) of these concepts, but also the concepts based on the further configuration shown in the first embodiment are added to these concepts. You may.
 人が意図的に燃料(可燃性液体)を撒いて火を着けることによって発生する放火テロのような作為的な火災は、未然に防ぐことは難しく、特に燃料を撒かれた後であって時間が経過した後に着火されると爆発燃焼するだけでなく、着火後の消火対応は極めて困難である。そこで、持ち運びが可能な抑制用薬剤放射器を用いて、短時間で主に床面の広範囲に、薬剤を放射することによって、人が意図的に燃料を撒いた後の燃料の蒸発を抑制するとともに燃料への着火および爆発燃焼を抑制し、避難路を確保することが可能な薬剤放射方法および抑制用薬剤放射器を以下に示す。 Artificial fires such as arson terrorism caused by a person intentionally sprinkling fuel (flammable liquid) and igniting it are difficult to prevent, especially after the fuel has been sprinkled. If it is ignited after the lapse of time, not only will it explode and burn, but it will be extremely difficult to extinguish the fire after ignition. Therefore, by using a portable suppressive drug radiator to radiate the drug mainly over a wide area of the floor surface in a short time, the evaporation of the fuel after the person intentionally sprinkles the fuel is suppressed. In addition, the chemical radiation method and the chemical radiator for suppression that can suppress the ignition and explosive combustion of the fuel and secure the evacuation route are shown below.
(薬剤放射方法)
 持ち運び可能な貯蔵容器(例えば、耐圧容器11)に貯留された防燃効果を有した薬剤(例えば、火災抑制剤99)を、貯蔵容器に貯留された状態の薬剤の容量が1リットルに対して25平方ミリメートル以上となる断面積を有する流通経路(例えば、流通経路16)に流動させた後、薬剤の流動に伴って薬剤の流れを広げつつ、薬剤を開口部(例えば、開口20)から吐出させて薬剤を対象物(例えば、可燃物200)に放射する薬剤放射方法を提供することができる。また、この薬剤放射方法においては、貯蔵容器に貯留された薬剤を、例えば2秒以内で放射するよう構成されている。
(Drug radiation method)
A chemical having a flame-retardant effect (for example, a fire suppressant 99) stored in a portable storage container (for example, a pressure-resistant container 11) is charged with respect to 1 liter of the chemical stored in the storage container. After flowing into a distribution channel (for example, distribution channel 16) having a cross-sectional area of 25 square millimeters or more, the drug is discharged from the opening (for example, opening 20) while expanding the flow of the drug with the flow of the drug. It is possible to provide a drug radiating method for radiating a drug to an object (for example, a combustible material 200). Further, in this drug radiating method, the drug stored in the storage container is radiated within, for example, 2 seconds.
(火災の抑制用薬剤放射器)
 また、防燃効果を有する薬剤(例えば、火災抑制剤99)を貯留し、持ち運び可能な貯蔵容器(例えば、耐圧容器11)と、薬剤が流動する流通経路であって、薬剤の容量が1リットルに対して25平方ミリメートル以上となる断面積を有し、かつ、流動方向に対して薬剤の流れを広げる流通経路(例えば、流通経路16)と、流通経路と連通し薬剤を拡散させつつ吐出する開口部(例えば、開口20)と、を備える火災の抑制用薬剤放射器を提供することができる。
(Chemical radiator for fire control)
Further, a storage container (for example, a pressure-resistant container 11) that stores a chemical having a flameproof effect (for example, a fire suppressant 99) and is portable, and a distribution channel through which the chemical flows, and the capacity of the chemical is 1 liter. It has a cross-sectional area of 25 square millimeters or more, and has a distribution channel (for example, distribution channel 16) that widens the flow of the drug in the flow direction, and discharges the drug while diffusing it in communication with the distribution channel. A fire control chemical radiator can be provided that comprises an opening (eg, an opening 20).
 上述したように、本発明を実施の形態によって記載したが、この開示の一部をなす記載及び図面はこの発明を限定するものであると理解すべきでない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。このように、本発明は、ここでは記載していない様々な実施の形態等を含むことはもちろんである。 As described above, the present invention has been described according to embodiments, but the descriptions and drawings that form part of this disclosure should not be understood to limit the invention. It is clear that a person skilled in the art can come up with various modifications or modifications within the scope of the claims, which naturally belong to the technical scope of the present invention. Understood. Further, each component in the above-described embodiment may be arbitrarily combined as long as the gist of the invention is not deviated. As described above, it goes without saying that the present invention includes various embodiments not described here.
 本出願は2020年4月30日出願の日本特許出願2020-080214、及び2021年4月7日出願の日本特許出願2021-065508に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on the Japanese patent application 2020-080214 filed on April 30, 2020 and the Japanese patent application 2021-065508 filed on April 7, 2021, the contents of which are incorporated herein by reference.
 10 放射器(火災の抑制用薬剤放射器)
 11 耐圧容器
 12 円筒部
 13 肩部
 15 第三のガス導入管
 16 流通経路
 17 第一の吐出管(第一流通経路)
 18 第二の吐出管(第二流通経路)
 19 第三の吐出管(第三流通経路)
 20 開口
 50 ノズルユニット
 51 キャップナット
 52 手提げハンドル
 55 ノズル
 57 第一のガス導入管
 58 第二のガス導入管
 60 ハンドル
 61 固定ハンドル部
 62 可動ハンドル部
 63 安全ロック
 64 ピン安全栓
 65 ポンチ
 66 ピン
 70 ガスカートリッジ(ガス容器)
 71 封板
 72 ガスカートリッジカバー
 99 火災抑制剤
 100 フォームヘッド
 101 コマ
 102 金網
 104 空気穴
 105a、105b、105c 貫通孔
 200 可燃物
 201 デフレクタ
 202 金網
 220a、220b、220c、220d スリット
10 Radiator (Chemical radiator for fire control)
11 Pressure-resistant container 12 Cylindrical part 13 Shoulder part 15 Third gas introduction pipe 16 Distribution route 17 First discharge pipe (first distribution route)
18 Second discharge pipe (second distribution channel)
19 Third discharge pipe (third distribution channel)
20 Opening 50 Nozzle unit 51 Cap nut 52 Hand-held handle 55 Nozzle 57 First gas introduction pipe 58 Second gas introduction pipe 60 Handle 61 Fixed handle part 62 Movable handle part 63 Safety lock 64 pin Safety plug 65 Punch 66 pin 70 Gas Cartridge (gas container)
71 Seal plate 72 Gas cartridge cover 99 Fire suppressant 100 Foam head 101 frame 102 Wire mesh 104 Air holes 105a, 105b, 105c Through holes 200 Combustibles 201 Deflector 202 Wire mesh 220a, 220b, 220c, 220d Slit

Claims (12)

  1.  燃料の蒸発抑制や可燃物に対する防燃効果を有する薬剤を、薬剤1リットル当たり1平方メートル以上に放射し、放射開始から10秒未満に放射が完了する、火災の抑制方法。 A fire control method in which a chemical that suppresses fuel evaporation and has a flameproof effect on combustibles is radiated to 1 square meter or more per liter of chemical, and the radiation is completed within 10 seconds from the start of radiation.
  2.  前記薬剤を、5秒以内で放射し終わることを特徴とする、請求項1に記載の火災の抑制方法。 The fire suppression method according to claim 1, wherein the drug is completely emitted within 5 seconds.
  3.  前記薬剤を、1リットル当たり4平方メートル以上に放射することを特徴とする、請求項1又は2に記載の火災の抑制方法。 The fire control method according to claim 1 or 2, wherein the drug is radiated to 4 square meters or more per liter.
  4.  前記薬剤が、界面活性剤及びリン酸塩類防燃剤からなる群から選ばれる少なくとも1種を含有することを特徴とする、請求項1~3のいずれか一項に記載の火災の抑制方法。 The method for suppressing a fire according to any one of claims 1 to 3, wherein the agent contains at least one selected from the group consisting of a surfactant and a phosphate flameproofing agent.
  5.  前記薬剤は、ふっ素系界面活性剤、炭化水素系界面活性剤、シリコン系界面活性剤、その他の界面活性剤、リン酸塩類防燃剤、増粘剤、防炎剤、及び凝固点降下剤からなる群から選択される少なくとも2種を含有する、請求項1~4のいずれか一項に記載の火災の抑制方法。 The agent is a group consisting of a fluorine-based surfactant, a hydrocarbon-based surfactant, a silicon-based surfactant, other surfactants, a phosphate flame-retardant, a thickener, a flame-retardant, and a freezing point lowering agent. The method for suppressing a fire according to any one of claims 1 to 4, which comprises at least two kinds selected from.
  6.  前記薬剤を、火がつく前に放射する、請求項1~5のいずれか一項に記載の火災の抑制方法。 The method for suppressing a fire according to any one of claims 1 to 5, which radiates the drug before it catches fire.
  7.  可燃性液体の蒸発抑制や可燃物に対する防燃効果を有する薬剤を貯留する貯蔵容器と、前記貯蔵容器と連通し前記薬剤の容量1リットルに対して25平方ミリメートル以上となる断面積を有する流通経路と、前記流通経路と連通し前記薬剤を拡散させつつ吐出する開口部とを備え、前記薬剤を、薬剤1リットル当たり1平方メートル以上に放射し、放射開始から10秒未満に放射が完了するように構成された、火災の抑制用薬剤放射器。 A storage container for storing chemicals that suppress the evaporation of flammable liquids and have a flameproof effect on combustibles, and a distribution channel that communicates with the storage container and has a cross-sectional area of 25 square millimeters or more for 1 liter of the capacity of the chemicals. And an opening that communicates with the distribution channel and discharges the drug while diffusing it, so that the drug is radiated to 1 square meter or more per liter of the drug, and the radiation is completed within 10 seconds from the start of radiation. A configured chemical radiator for fire control.
  8.  前記薬剤を、5秒以内で放射し終わることを特徴とする、請求項7に記載の火災の抑制用薬剤放射器。 The fire control chemical radiator according to claim 7, wherein the chemical is emitted within 5 seconds.
  9.  前記薬剤を、1リットル当たり4平方メートル以上に放射することを特徴とする、請求項7又は8に記載の火災の抑制用薬剤放射器。 The fire control chemical radiator according to claim 7 or 8, wherein the chemical is emitted to 4 square meters or more per liter.
  10.  前記開口部は金網を備え、前記薬剤が、空気を巻き込み泡の状態となって外部に放出されるように構成されている、請求項7~9のいずれか一項に記載の火災の抑制用薬剤放射器。 The fire suppression according to any one of claims 7 to 9, wherein the opening is provided with a wire mesh, and the drug is configured to entrain air and be discharged to the outside in the form of bubbles. Drug radiator.
  11.  前記薬剤の放射範囲の中心を水平方向に設定した場合、前記薬剤が水平方向で30度~150度の範囲、垂直方向で15度~90度の範囲に放射される、請求項7~10のいずれか一項に記載の火災の抑制用薬剤放射器。 According to claims 7 to 10, when the center of the radiation range of the drug is set in the horizontal direction, the drug is radiated in the range of 30 to 150 degrees in the horizontal direction and 15 to 90 degrees in the vertical direction. The chemical radiator for controlling fire according to any one of the items.
  12.  請求項7~11のいずれか一項に記載の火災の抑制用薬剤放射器から前記薬剤を放射する、火災の抑制方法。 A fire control method for radiating the drug from the fire control drug radiator according to any one of claims 7 to 11.
PCT/JP2021/016505 2020-04-30 2021-04-23 Method for suppressing fires, and chemical ejector for suppressing fires WO2021220973A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-080214 2020-04-30
JP2020080214 2020-04-30
JP2021065508A JP2021176503A (en) 2020-04-30 2021-04-07 Method for suppressing fires, and chemical ejector for suppressing fires
JP2021-065508 2021-04-07

Publications (1)

Publication Number Publication Date
WO2021220973A1 true WO2021220973A1 (en) 2021-11-04

Family

ID=78332089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/016505 WO2021220973A1 (en) 2020-04-30 2021-04-23 Method for suppressing fires, and chemical ejector for suppressing fires

Country Status (2)

Country Link
TW (1) TW202204012A (en)
WO (1) WO2021220973A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61206468A (en) * 1985-03-11 1986-09-12 横浜市 Aerosol type fire extinguishing device
JP2003183635A (en) * 2001-08-24 2003-07-03 Gate:Kk Method for treating leaked oil
JP2004130057A (en) * 2002-08-14 2004-04-30 Toshiba Corp Fire extinguishing chemical and fire extinguisher
JP2005058994A (en) * 2003-08-19 2005-03-10 Wen Chun Chang Multifunction and moveable fog-generator apparatus
JP2006075388A (en) * 2004-09-10 2006-03-23 Morita Corp Hand throw type firing suppression foam bullet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61206468A (en) * 1985-03-11 1986-09-12 横浜市 Aerosol type fire extinguishing device
JP2003183635A (en) * 2001-08-24 2003-07-03 Gate:Kk Method for treating leaked oil
JP2004130057A (en) * 2002-08-14 2004-04-30 Toshiba Corp Fire extinguishing chemical and fire extinguisher
JP2005058994A (en) * 2003-08-19 2005-03-10 Wen Chun Chang Multifunction and moveable fog-generator apparatus
JP2006075388A (en) * 2004-09-10 2006-03-23 Morita Corp Hand throw type firing suppression foam bullet

Also Published As

Publication number Publication date
TW202204012A (en) 2022-02-01

Similar Documents

Publication Publication Date Title
US6637518B1 (en) Fire extinguishing apparatus
EP2079530B1 (en) Dual extinguishment fire suppression system using high velocity low pressure emitters
RU2124376C1 (en) Fire-extinguishing system for limited-volume rooms, nozzle for low-pressure fire-extinguishing system, method of fire extinguishing by means of automatic system
US4390069A (en) Trifluorobromomethane foam fire fighting system
KR101975762B1 (en) Dual mode agent discharge system with multiple agent discharge capability
JP2010131334A (en) Fire extinguishing equipment
WO2021220973A1 (en) Method for suppressing fires, and chemical ejector for suppressing fires
JP2021176503A (en) Method for suppressing fires, and chemical ejector for suppressing fires
JP4182102B2 (en) Fire extinguishing equipment
JP3918967B2 (en) Fire extinguishing equipment
JP6844843B2 (en) Water discharge type foam fire extinguishing device and water discharge type foam fire extinguishing method
JP2007252637A (en) Fire extinguishing system
WO1997043046A1 (en) Nozzle
Grant et al. The suppression and extinction of class A fires using water sprays
KR100907495B1 (en) Fire-extinguish mixture and fire-engine with mixing apparatus
JP2007252636A (en) Fire extinguishing system
RU2532812C1 (en) Method of fire-fighting and device for its implementation
CA2144540C (en) Fire extinguishing apparatus and method
JP2023156752A (en) Fire extinguishing system and method for fire suppression
AU689118B2 (en) Fire extinguishing apparatus & method
RU2153908C2 (en) Apparatus for fire extinguishing in low-pressure chamber
BG107245A (en) Method for fire extinguishing and device for its application

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21796820

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21796820

Country of ref document: EP

Kind code of ref document: A1