WO2021220913A1 - オーステナイト系耐熱鋼の製造方法 - Google Patents
オーステナイト系耐熱鋼の製造方法 Download PDFInfo
- Publication number
- WO2021220913A1 WO2021220913A1 PCT/JP2021/016189 JP2021016189W WO2021220913A1 WO 2021220913 A1 WO2021220913 A1 WO 2021220913A1 JP 2021016189 W JP2021016189 W JP 2021016189W WO 2021220913 A1 WO2021220913 A1 WO 2021220913A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat treatment
- content
- less
- amount
- steel
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 72
- 239000010959 steel Substances 0.000 title claims abstract description 72
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 33
- 238000000034 method Methods 0.000 title abstract description 12
- 238000010438 heat treatment Methods 0.000 claims abstract description 97
- 238000001816 cooling Methods 0.000 claims abstract description 57
- 238000000465 moulding Methods 0.000 claims abstract description 18
- 239000000126 substance Substances 0.000 claims abstract description 18
- 238000000605 extraction Methods 0.000 claims abstract description 17
- 239000000203 mixture Substances 0.000 claims abstract description 17
- 239000012535 impurity Substances 0.000 claims description 7
- 239000006104 solid solution Substances 0.000 abstract description 44
- 230000000694 effects Effects 0.000 description 32
- 238000012360 testing method Methods 0.000 description 28
- 238000003466 welding Methods 0.000 description 27
- 239000000243 solution Substances 0.000 description 24
- 239000000463 material Substances 0.000 description 20
- 239000002244 precipitate Substances 0.000 description 20
- 150000004767 nitrides Chemical class 0.000 description 19
- 229910001566 austenite Inorganic materials 0.000 description 11
- 229910052761 rare earth metal Inorganic materials 0.000 description 11
- 230000035945 sensitivity Effects 0.000 description 11
- 239000011159 matrix material Substances 0.000 description 9
- 238000012545 processing Methods 0.000 description 8
- 230000007423 decrease Effects 0.000 description 7
- 150000001247 metal acetylides Chemical class 0.000 description 7
- 239000013078 crystal Substances 0.000 description 6
- 238000005336 cracking Methods 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 238000005204 segregation Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 230000003749 cleanliness Effects 0.000 description 4
- 238000005097 cold rolling Methods 0.000 description 4
- 238000005098 hot rolling Methods 0.000 description 4
- 230000001771 impaired effect Effects 0.000 description 4
- 238000009616 inductively coupled plasma Methods 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 238000007711 solidification Methods 0.000 description 4
- 230000008023 solidification Effects 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 238000005868 electrolysis reaction Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000003754 machining Methods 0.000 description 3
- 229910052758 niobium Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 238000010248 power generation Methods 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 229910052720 vanadium Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 238000005242 forging Methods 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- YLRAQZINGDSCCK-UHFFFAOYSA-M methanol;tetramethylazanium;chloride Chemical compound [Cl-].OC.C[N+](C)(C)C YLRAQZINGDSCCK-UHFFFAOYSA-M 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000002436 steel type Substances 0.000 description 2
- 238000009628 steelmaking Methods 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910001122 Mischmetal Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000010622 cold drawing Methods 0.000 description 1
- 238000010273 cold forging Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 238000010137 moulding (plastic) Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- JMANVNJQNLATNU-UHFFFAOYSA-N oxalonitrile Chemical compound N#CC#N JMANVNJQNLATNU-UHFFFAOYSA-N 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 238000007778 shielded metal arc welding Methods 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/004—Heat treatment of ferrous alloys containing Cr and Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/26—Methods of annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/56—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
- C21D1/60—Aqueous agents
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/02—Hardening by precipitation
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/005—Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/021—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
- C21D8/0215—Rapid solidification; Thin strip casting
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0273—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/008—Ferrous alloys, e.g. steel alloys containing tin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/52—Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2261/00—Machining or cutting being involved
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Definitions
- the present invention relates to a method for producing austenitic heat-resistant steel.
- Patent Documents 1 to 6 disclose austenitic steels containing Nb and N in predetermined amounts to improve high-temperature strength.
- Japanese Unexamined Patent Publication No. 62-133048 Japanese Unexamined Patent Publication No. 2000-256803 International Publication No. 2009/044796 International Publication No. 2013/073055 Japanese Unexamined Patent Publication No. 2014-1436 Japanese Unexamined Patent Publication No. 2003-268503
- the austenitic heat-resistant steels disclosed in Patent Documents 1 to 6 have a point that when used at a high temperature, the time until rupture may vary under a certain stress, and stable creep strength is obtained. There is room for improvement. Further, even if a stable creep strength can be obtained, since cracks are likely to occur during welding due to the inclusion of Nb, it is possible to achieve both stable creep strength and welding crack resistance. There is a problem that it is difficult.
- An object of the present invention is to solve the above-mentioned problems and to provide a method for producing an austenitic heat-resistant steel which is stable and has good creep strength and excellent weld cracking resistance when used at a high temperature.
- the present invention has been made to solve the above problems, and the gist of the following method for producing austenitic heat-resistant steel is as follows.
- the chemical composition is mass%, C: 0.04 to 0.12%, Si: 0.01-0.30%, Mn: 0.50 to 1.50%, P: 0.001 to 0.040%, S: 0.0050% or less, Cu: 2.2-3.8%, Ni: 8.0 to 11.0%, Cr: 17.7 to 19.3%, Mo: 0.01-0.55%, Nb: 0.400 to 0.650%, B: 0.0010 to 0.0060%, N: 0.050 to 0.160%, Al: 0.025% or less, O: 0.020% or less, Co: 0 to 1.00%, W: 0 to 1.00%, Ti: 0 to 0.40%, V: 0 to 0.40%, Ta: 0 to 0.40%, Sn: 0 to 0.0300%, Ca: 0-0.0100%, Mg: 0 to 0.0100%,
- a solution heat treatment step in which the heat treatment is performed under the conditions that the heat treatment temperature satisfies the following formula (ii) and the heat treatment time satisfies the following formula (iii).
- a method for producing austenitic heat-resistant steel which comprises a cooling step of cooling after the solution heat treatment step.
- the element symbol in the above formula represents the content (mass%) of the element contained in the steel, and each symbol in the above formula is defined by the following.
- the chemical composition is mass%. Co: 0.01-1.00%, W: 0.01-1.00%, Ti: 0.01-0.40%, V: 0.01-0.40%, Ta: 0.01-0.40%, Sn: 0.0002 to 0.0300%, Ca: 0.0002 to 0.0100%, Mg: 0.0002 to 0.0100%, and REM: 0.0005 to 0.0800%,
- the method for producing an austenitic heat-resistant steel according to any one of (1) to (3) above, which contains one or more selected from the above.
- the chemical composition is mass%.
- P 0.020 to 0.040%, The method for producing an austenitic heat-resistant steel according to any one of (1) to (4) above.
- an austenitic heat-resistant steel which is stable and has good creep strength and excellent weld cracking resistance when used at a high temperature.
- FIG. 1 is a diagram showing a groove shape in an embodiment.
- the present inventors have conducted various studies in order to improve the high temperature strength of the austenitic heat-resistant steel containing Nb and N, specifically, the creep strength and the weld crack resistance, and the following (a) The findings of (c) were obtained.
- solid solution Nb Comparing Nb dissolved in the matrix (hereinafter, simply referred to as "solid solution Nb") with Nb existing as a precipitate, the solid solution Nb has a greater effect on the welding crack sensitivity.
- the reason for this is that the solid solution Nb does not require time to dissolve in the matrix by the welding heat cycle, so that the Nb tends to be concentrated at the grain boundaries. As a result, welding cracks are likely to occur.
- the amount of solid solution Nb has a great influence on both the creep strength and the weld crack resistance. Therefore, in order to achieve both stable high creep strength and good weld crackability, it is necessary to appropriately control the amount of solid solution Nb and the solution heat treatment conditions that affect the amount of solid solution Nb. Since the amount of solid solution Nb is also affected by the B content, it is preferable to appropriately control these ranges. Then, in controlling the amount of solid solution Nb, it goes without saying that the Nb content is adjusted to an appropriate range, and the heat treatment temperature and heat treatment time in the solid solution heat treatment are appropriately controlled according to the Nb content. Is desirable.
- the present invention has been made based on the above findings, and as will be described later, an austenitic stainless steel system in which the difference between the Nb content and the amount of Nb analyzed as the electrolytic extraction residue satisfies the formula (i) described later.
- This is a method for producing heat-resistant steel. Each requirement will be described below.
- Molding process 1-1 Molding method
- steel having the following chemical composition is processed and molded into the final shape, that is, the product shape.
- the method for processing and molding is not particularly limited, and may be casting using a mold or plastic working.
- plastic working for example, hot rolling, hot forging, cold rolling, cold forging, cold drawing, etc. can be considered as an example, and the working temperature can be any of hot, cold, and warm. It may be in the temperature range.
- heat treatment and pickling may be performed as necessary.
- the shape of the product to be processed and molded is not particularly limited.
- the product shape for example, a plate shape, a tubular shape, a rod shape, a linear shape, an H shape, an I shape, or the like, or a special shape using a mold or the like can be considered as a shape.
- Chemical Composition of Steel In the production method according to the present invention, it is also important to control the chemical composition of the steel to be processed and molded.
- the chemical composition of steel which is the material for plastic molding described above, is controlled by, for example, melting and refining the material having a predetermined chemical component. Then, it is common to manufacture ingots or blooms by casting. After that, plastic working such as hot rolling or cold rolling described above is performed.
- C 0.04 to 0.12% C stabilizes the austenite structure and forms fine carbides to improve creep strength during high temperature use. Therefore, the C content is set to 0.04% or more.
- the C content is preferably 0.06% or more, and more preferably 0.07% or more.
- the C content is set to 0.12% or less.
- the C content is preferably 0.10% or less, and more preferably 0.09% or less.
- Si 0.01-0.30% Si has a deoxidizing effect at the time of manufacture. Further, Si is an element effective for improving corrosion resistance and oxidation resistance at high temperatures. Therefore, the Si content is set to 0.01% or more.
- the Si content is preferably 0.03% or more, and more preferably 0.05% or more.
- excessive Si content reduces the stability of the austenite structure, leading to a decrease in toughness and creep strength. Therefore, the Si content is set to 0.30% or less.
- the Si content is preferably 0.28% or less, more preferably 0.25% or less.
- Mn 0.50 to 1.50% Mn has a deoxidizing effect like Si.
- Mn stabilizes the austenite structure and contributes to the improvement of creep strength. Therefore, the Mn content is set to 0.50% or more.
- the Mn content is preferably 0.60% or more, and more preferably 0.70% or more.
- excessive Mn content causes embrittlement and further reduces creep ductility. Therefore, the Mn content is set to 1.50% or less.
- the Mn content is preferably 1.30% or less, and more preferably 1.00% or less.
- P 0.001 to 0.040%
- P is an element contained in steel as an impurity, but if it is excessively reduced, the manufacturing cost will increase, so the P content is set to 0.001% or more.
- the P content is preferably 0.005% or more, and more preferably 0.010% or more. Further, P has an effect of increasing creep strength. In order to obtain this effect, the P content is preferably 0.020% or more.
- the P content is set to 0.040% or less.
- the P content is preferably 0.038% or less, and more preferably 0.035% or less.
- S 0.0050% or less S is contained in steel as an impurity like P, and enhances the crack sensitivity of the weld heat affected zone during welding. Therefore, the S content is set to 0.0050% or less.
- the S content is preferably 0.0040% or less, and more preferably 0.0020% or less. It is preferable to reduce the S content as much as possible, but the extreme reduction causes an increase in steelmaking cost. Therefore, the S content is preferably 0.0001% or more, and preferably 0.0002% or more.
- Cu 2.2-3.8% Cu enhances the stability of the austenite structure and finely precipitates during use, which contributes to the improvement of creep strength. Therefore, the Cu content is set to 2.2% or more.
- the Cu content is preferably 2.5% or more, and more preferably 2.7% or more. However, if Cu is contained in an excessive amount, the hot workability is lowered. Therefore, the Cu content is set to 3.8% or less.
- the Cu content is preferably 3.5% or less, and more preferably 3.3% or less.
- Ni 8.0 to 11.0% Ni stabilizes the austenite structure and contributes to the improvement of creep strength. Therefore, the Ni content is set to 8.0% or more.
- the Ni content is preferably 8.2% or more, and more preferably 8.5% or more.
- Ni is an expensive element, and a large amount of Ni causes an increase in cost. Therefore, the Ni content is set to 11.0% or less.
- the Ni content is preferably 10.8% or less, more preferably 10.5% or less, and even more preferably 10.3% or less.
- Cr 17.7 to 19.3% Cr contributes to the improvement of oxidation resistance and corrosion resistance at high temperatures. It also contributes to ensuring creep strength by forming fine carbides. Therefore, the Cr content is set to 17.7% or more.
- the Cr content is preferably 18.0% or more, and more preferably 18.2% or more. However, if Cr is contained in an excessive amount, the stability of the austenite structure is impaired and the creep strength is lowered. Therefore, the Cr content is set to 19.3% or less.
- the Cr content is preferably 19.0% or less, more preferably 18.8% or less.
- Mo 0.01-0.55% Mo dissolves in the matrix and contributes to the improvement of creep strength and tensile strength at high temperature. Therefore, the Mo content is set to 0.01% or more.
- the Mo content is preferably 0.03% or more, and more preferably 0.05% or more.
- Mo is contained in excess, the above effect is saturated.
- the stability of the austenite structure is impaired, and the creep strength is rather reduced.
- the Mo content is set to 0.55% or less.
- the Mo content is preferably 0.53% or less, more preferably 0.50% or less, and even more preferably 0.40% or less.
- Nb 0.400 to 0.650% Nb is precipitated as fine carbonitrides and nitrides, which contributes to the improvement of creep strength. Therefore, the Nb content is set to 0.400% or more.
- the Nb content is preferably 0.420% or more, and more preferably 0.450% or more.
- the Nb content is set to 0.650% or less.
- the Nb content is preferably 0.630% or less, and more preferably 0.600% or less.
- the above-mentioned Nb content means the total amount of Nb contained in the austenitic heat-resistant steel. That is, it means the sum of the amount of solid solution Nb and the amount of Nb existing as a precipitate.
- the difference between the solid solution Nb amount, that is, the Nb content and the Nb amount analyzed as the electrolytic extraction residue is predetermined. The range.
- B 0.0010 to 0.0060% B has the effect of improving the creep strength by finely dispersing the intergranular carbides. Therefore, the B content is set to 0.0010% or more.
- the B content is preferably 0.0020% or more, and more preferably 0.0030% or more.
- the B content is set to 0.0060% or less.
- the B content is preferably 0.0055% or less, and more preferably 0.0050% or less.
- N 0.050 to 0.160% N stabilizes the austenite structure and precipitates as a solid solution or nitride, which contributes to the improvement of creep strength. Therefore, the N content is set to 0.050% or more.
- the N content is more preferably 0.070% or more, and more preferably 0.090% or more.
- the N content is set to 0.160% or less.
- the N content is preferably 0.140% or less, more preferably 0.120% or less.
- Al 0.025% or less
- Al has a deoxidizing effect. However, if Al is excessively contained, the cleanliness of the steel is deteriorated and the hot workability is lowered. Therefore, the Al content is set to 0.025% or less.
- the Al content is preferably 0.023% or less, more preferably 0.020% or less, and even more preferably 0.0017% or less.
- the Al content is preferably 0.001% or more, and more preferably 0.002% or more.
- O 0.020% or less O is contained in steel as an impurity, and if it is excessively contained, the hot workability is lowered. In addition, it impairs toughness and ductility. Therefore, the O content is set to 0.020% or less.
- the O content is preferably 0.018% or less, more preferably 0.015% or less. Although no lower limit is set for the O content, an extreme reduction in the content increases the manufacturing cost. Therefore, the O content is preferably 0.001% or more, and more preferably 0.002% or more.
- one or more selected from Co, W, Ti, V, Ta, Sn, Ca, Mg, and REM may be further contained in the range shown below. The reason for limiting each element will be described.
- Co 0 to 1.00% Like Ni, Co has the effect of stabilizing the austenite structure and improving the creep strength. Therefore, it may be contained as needed. However, Co is a very expensive element, and if it is contained in an excessive amount, the cost increases. Therefore, the Co content is set to 1.00% or less.
- the Co content is preferably 0.90% or less, more preferably 0.80% or less.
- the Co content is preferably 0.01% or more, and more preferably 0.03% or more.
- W 0 to 1.00% W has the effect of improving creep strength at high temperatures by dissolving in the matrix or forming a fine intermetallic compound phase. Therefore, it may be contained as needed. However, even if W is contained in an excessive amount, the above effect is saturated, the stability of the austenite structure is impaired, and the creep strength is rather lowered. Moreover, since it is an expensive element, the manufacturing cost increases. Therefore, the W content is set to 1.00% or less. The W content is preferably 0.90% or less, and more preferably 0.80% or less. On the other hand, in order to obtain the above effect, the W content is preferably 0.01% or more, and more preferably 0.03% or more.
- Ti 0 to 0.40%
- Ti has the effect of combining with carbon and nitrogen to form fine carbides and carbonitrides to improve creep strength at high temperatures. Therefore, it may be contained as needed. However, if Ti is contained in an excessive amount, a large amount of precipitates are precipitated, resulting in a decrease in creep ductility and toughness. Therefore, the Ti content is set to 0.40% or less.
- the Ti content is preferably 0.35% or less, more preferably 0.30% or less.
- the Ti content is preferably 0.01% or more, and more preferably 0.02% or more.
- V 0 to 0.40%
- V has the effect of forming fine carbides and carbonitrides to improve creep strength at high temperatures. Therefore, it may be contained as needed. However, if V is contained in an excessive amount, a large amount of precipitates are precipitated, resulting in a decrease in creep ductility and toughness. Therefore, the V content is set to 0.40% or less.
- the V content is preferably 0.35% or less, and more preferably 0.30% or less.
- the V content is preferably 0.01% or more, and more preferably 0.02% or more.
- Ta 0 to 0.40%
- Ta has the effect of forming fine carbides and carbonitrides to improve creep strength at high temperatures. Therefore, it may be contained as needed. However, if Ta is contained in an excessive amount, a large amount of precipitates are precipitated, resulting in a decrease in creep ductility and toughness. Therefore, the Ta content is set to 0.40% or less.
- the Ta content is preferably 0.35% or less, and more preferably 0.30% or less.
- the Ta content is preferably 0.01% or more, and more preferably 0.02% or more.
- Sn 0 to 0.0300% Sn has the effect of improving the weldability to a considerable extent. Therefore, it may be contained as needed. However, if Sn is contained in an excessive amount, the crack sensitivity of the weld heat-affected zone is increased during welding, and the hot workability during manufacturing is impaired. Therefore, the Sn content is set to 0.0300% or less.
- the Sn content is preferably 0.0250% or less, and more preferably 0.0200% or less.
- the Sn content is preferably 0.0002% or more, and more preferably 0.0005% or more.
- Ca 0-0.0100% Ca has the effect of improving hot workability. Therefore, it may be contained as needed. However, if Ca is contained in an excessive amount, it binds to oxygen and significantly reduces the cleanliness, which in turn impairs the hot workability. Therefore, the Ca content is set to 0.0100% or less.
- the Ca content is preferably 0.0080% or less, and more preferably 0.0060% or less.
- the Ca content is preferably 0.0002% or more, and more preferably 0.0005% or more.
- Mg 0 to 0.0100% Like Ca, Mg has the effect of improving hot workability. Therefore, it may be contained as needed. However, if Mg is contained in an excessive amount, it will be combined with oxygen and the cleanliness will be significantly reduced. As a result, the hot workability is rather lowered. Therefore, the Mg content is set to 0.0100% or less.
- the Mg content is preferably 0.0080% or less, more preferably 0.0060% or less.
- the Mg content is preferably 0.0002% or more, more preferably 0.0005% or more.
- REM 0-0.0800% Like Ca and Mg, REM has the effect of improving hot workability during production. Therefore, it may be contained as needed. However, if REM is contained in excess, it will combine with oxygen and significantly reduce cleanliness. As a result, the hot workability is rather lowered. Therefore, the REM content is 0.0800% or less.
- the REM content is preferably 0.0600% or less, more preferably 0.0500% or less.
- the REM content is preferably 0.0005% or more, and more preferably 0.0010% or more.
- REM refers to a total of 17 elements of Sc, Y and lanthanoid, and the above REM content means the total content of these elements. REM is often added industrially in the form of misch metal.
- the balance is Fe and impurities.
- impurity is a component mixed with raw materials such as ore and scrap, and various factors in the manufacturing process when steel is industrially manufactured, and is allowed as long as it does not adversely affect the present invention. Means something.
- Nb that exists as a precipitate before use contributes to creep strength, but its effect is small.
- the solid solution Nb is finely and densely precipitated in the grains as a carbonitride or a nitride during use at a high temperature, and greatly contributes to the creep strength and its stabilization.
- Nb segregates at the grain boundaries of the weld heat-affected zone due to the welding heat cycle. Since Nb lowers the solidus temperature of the steel, the grain boundaries segregated by Nb are locally melted and weld cracks occur. Among the Nbs contained in the steel, the solid solution Nb does not require a time to be solid solution into the matrix due to the welding heat cycle, and therefore has a large influence on the welding crack sensitivity.
- the heat treatment temperature in the solidification heat treatment is too high or the heat treatment temperature is too long, the crystal grains become coarse during the heat treatment and the grain boundary area per unit volume decreases, so that the grain boundary segregation of Nb during welding As the amount increases, the thermal stress acting on a specific grain boundary increases, and the weld crack sensitivity increases.
- the heat treatment is performed under the conditions that the heat treatment temperature satisfies the following formula (ii) and the heat treatment time satisfies the following formula (iii). That is, the heat treatment temperature is maintained at a heat treatment temperature that satisfies the following formula (ii), and the heat treatment is maintained at a heat treatment time that satisfies the following formula (iii).
- the heat treatment temperature is set to be equal to or higher than the rvalue of Eq. (Ii).
- the heat treatment temperature is set to be equal to or less than the rvalue of Eq. (Ii).
- the heat treatment time is set to be equal to or greater than the lvalue of Eq. (iii).
- the heat treatment temperature is set to be equal to or less than the rvalue of Eq. (Iii).
- the atmosphere in the solution heat treatment may be in accordance with a conventional method, and for example, an atmospheric atmosphere or a brilliant atmosphere commonly used in the heat treatment of steel products can be considered.
- Cooling step cooling is performed after the solidification heat treatment, that is, after maintaining the soaking heat at the above heat treatment temperature and heat treatment time.
- the cooling rate in the temperature range of 1000 to 600 ° C. is preferably 0.4 ° C./s or higher, and more preferably 1.0 ° C./s or higher.
- the cooling method in the cooling step is not particularly limited, but water cooling or forced air cooling is preferable. Then, cooling may be performed to a temperature range of at least 300 ° C. or lower.
- a cooling method it is preferable to perform forced cooling by spraying a refrigerant such as water or air onto the steel to forcibly promote the cooling.
- forced cooling include water cooling and forced air cooling.
- the heat treatment temperature means the temperature of the steel at the time of the heat treatment
- the temperature of the steel means the surface temperature of the steel.
- ⁇ T (° C.): Difference between the heat treatment temperature of the solution heat treatment and the temperature of the steel at the start of forced cooling.
- the temperature difference between the heat treatment temperature of the solution heat treatment and the temperature of the steel at the start of forced cooling (hereinafter, simply referred to as "cooling start temperature difference”) is preferably 0 ° C.
- the cooling start temperature difference is more preferably 1 ° C. or higher, and further preferably 2 ° C. or higher.
- the cooling start temperature difference exceeds the rvalue of Eq. (Iv)
- the precipitate containing Nb is coarsely reprecipitated before the start of forced cooling, the amount of solid solution Nb is reduced, and stable creep strength is obtained. It becomes difficult to obtain. Therefore, the cooling start temperature difference is preferably equal to or less than the rvalue of Eq. (Iv).
- Amount of solid solution Nb In the production method according to the present invention, the amount of solid solution Nb, which is the amount of Nb that is solid solution in the matrix, is controlled by the solid solution heat treatment and the subsequent cooling step. Specifically, the difference between the Nb content corresponding to the solid solution Nb amount and the Nb amount analyzed as the electrolytic extraction residue needs to satisfy the following formula (i).
- Nb ER (% by mass): Amount of Nb analyzed as electrolytic extraction residue
- the amount of solid solution Nb which is the middle value of the formula (i)
- the carbonitride and the nitride containing Nb are precipitated before being exposed to the usage environment. Therefore, when used at a high temperature, the carbonitride containing Nb and the nitride do not finely precipitate in the crystal grains. In addition, these precipitates are coarsened at an early stage. As a result, the creep strength cannot be improved. Therefore, the amount of solid solution Nb is 0.170% or more.
- the amount of solid solution Nb is preferably 0.180% or more.
- the amount of solid solution Nb exceeds 0.480%, the welding crack sensitivity of the weld heat affected zone is further increased during welding. Therefore, the amount of solid solution Nb is set to 0.480% or less.
- the amount of solid solution Nb is preferably 0.460% or less.
- the amount of solid solution Nb in combination with the effect of B which dissolves in the carbide and finely precipitates at the grain boundaries to increase the creep strength.
- the amount of solid solution Nb satisfies the following formula (v). -2B + 0.185 ⁇ Nb-Nb ER ⁇ -4B + 0.480 ... (v)
- each element symbol in the above formula means the content (mass%) of each element contained in the steel
- Nb ER means the amount of Nb (mass%) analyzed as the electrolytic extraction residue.
- the amount of Nb analyzed as the electrolytic extraction residue in the above formula can be measured by the following procedure.
- a test piece of a predetermined size is collected from the steel. This test piece was anodic-dissolved at a current density of 20 mA / cm 2 by a constant current electrolysis method using a 10% by volume acetylacetone-1 mass% tetramethylammonium chloride methanol solution as an electrolytic solution, and carbon nitride and carbonitoxide and The nitride is extracted as a residue.
- ICP radio frequency inductively coupled plasma
- emission analysis is performed to measure the mass of Nb in the residue.
- the mass of Nb in the residue is divided by the amount of the test material dissolved to determine the amount of carbonitride and Nb present as the nitride.
- the determined amount of Nb is the amount of Nb analyzed as the electrolytic extraction residue.
- the thickness is 25 mm by hot forging and 18 mm by hot rolling, and then the thickness is increased by cold rolling. It was molded to a size of 12 mm.
- a plate material having a thickness of 12 mm, a width of 100 mm, and a length of 100 mm was produced by machining from the material after cold rolling. Further, for steel types A, C and E, a plate material having a thickness of 15 mm, a width of 100 mm and a length of 100 mm was also produced by machining from the material after hot rolling. Then, as shown in Tables 2 to 4, these plate materials were subjected to solution heat treatment for keeping the heat uniform by changing the heat treatment temperature and the heat treatment time in each example.
- the cooling start temperature difference shown in Tables 2 to 4 was obtained from the heat treatment temperature.
- Water cooling or forced air cooling was carried out until the temperature of the steel reached at least 300 ° C. or lower to obtain a steel having an austenite structure, which was used as a test material.
- An example in which the cooling start temperature difference is 0 ° C. indicates that the cooling was performed immediately after the solution heat treatment.
- the cooling rate was 0.4 ° C./s or more in the temperature range of 1000 to 600 ° C.
- the amount of Nb analyzed as an electrolytic extraction residue of the obtained test material was measured by a constant current electrolysis method. Specifically, a test piece of 8 mm square and 40 mm in length was collected from the test material, and a current density of 20 mA was obtained by a constant current electrolysis method using a 10% by volume acetylacetone-1 mass% tetramethylammonium chloride methanol solution as an electrolytic solution. / cm 2 in the test piece was anodic dissolution was extracted carbonitrides and nitrides as a residue.
- a round bar creep test piece was collected from the obtained test material and a creep rupture test was conducted.
- a creep rupture test was conducted under the condition that the target rupture time of the base metal was 1000 hours at 650 ° C. ⁇ 216 MPa, and the rupture time exceeded the target rupture time or satisfied 95% or more of the target rupture time. Those with "excellent”, 90% or more and less than 95% were evaluated as “acceptable” and “passed”, and those with less than 90% were evaluated as "failed”.
- the obtained test material was reduced to a thickness of 8 mm by machining, and then the groove processing shown in FIG. 1 was applied to the end face in the longitudinal direction.
- the groove surfaces of the test materials are butted, and on a commercially available steel plate (thickness 20 mm, width 150 mm, length 150 mm) equivalent to SM400B specified in JIS G 3106: 2008, specified in A5.11-2005 ENICrFe-3. After restraint welding the four circumferences using a shielded metal arc welding rod, laminated welding was performed in the groove by automatic gas tungsten arc welding.
- AWS A5.14-2009 ERNiCr-3 with an outer diameter of 1.2 mm was used as a filler material, and the heat input was about 9 to 12 kJ / cm.
- Ar was used as the shield gas and the back shield gas, and the flow rate was set to 10 L / min.
- the amount of solid solution Nb which is the middle value of equation (i), is the present by performing appropriate solution heat treatment using steel types A to F satisfying the chemical composition specified in the present invention. It can be seen that the test piece satisfying the provisions of the present invention can obtain good creep strength and also has sufficient weld crack resistance. Further, in order to stably obtain these performances, it can be seen that it is preferable that the amount of solid solution Nb satisfies the relationship with the amount of B in the formula (v).
- the cooling start temperature difference preferably satisfies a predetermined range.
- the creep strength is improved when the cooling start temperature difference satisfies the equation (iv).
- the heat treatment time was shorter than the specified range, so that the processing strain introduced in the molding process was not sufficiently eliminated, and the target creep strength could not be obtained.
- the heat treatment temperature was lower than the specified range or the heat treatment time was shorter than the specified range, and the amount of solid solution Nb was smaller than the specified range in superposition on the heat treatment temperature. The amount of precipitation was not sufficient, and the target creep strength could not be obtained.
- the target welding crack resistance could not be obtained because the heat treatment temperature was higher than the specified range or the heat treatment time was longer than the specified range and the crystal grains were coarsened. .. Further, in the test specimens C18 and C20, the amount of solid solution Nb exceeded the specified range in superposition with the test specimens C18 and C20. I could't get it.
- the Nb content of the test piece I1 using the symbol I was below the range specified in the present invention, the amount of precipitates containing Nb was insufficient, and the target creep strength could not be obtained. Since the Nb content of the test piece J1 using the symbol J exceeds the range specified in the present invention, cracks occur in the weld heat-affected zone due to the segregation of Nb, and the target weld crack resistance can be obtained. I could't.
- an austenitic heat-resistant steel which is stable and has good creep strength and excellent weld cracking resistance when used at a high temperature.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
化学組成が、質量%で、
C:0.04~0.12%、
Si:0.01~0.30%、
Mn:0.50~1.50%、
P:0.001~0.040%、
S:0.0050%以下、
Cu:2.2~3.8%、
Ni:8.0~11.0%、
Cr:17.7~19.3%、
Mo:0.01~0.55%、
Nb:0.400~0.650%、
B:0.0010~0.0060%、
N:0.050~0.160%、
Al:0.025%以下、
O:0.020%以下、
Co:0~1.00%、
W:0~1.00%、
Ti:0~0.40%、
V:0~0.40%、
Ta:0~0.40%、
Sn:0~0.0300%、
Ca:0~0.0100%、
Mg:0~0.0100%、
REM:0~0.0800%、
残部:Feおよび不純物である鋼を、製品形状に加工成形する、成形工程と、
前記成形工程の後、熱処理温度が下記(ii)式を満足し、熱処理時間が下記(iii)式を満足するような条件で熱処理を行う、固溶化熱処理工程と、
前記固溶化熱処理工程の後、冷却を行う冷却工程とを、有するオーステナイト系耐熱鋼の製造方法。
0.170≦Nb-NbER≦0.480 ・・・(i)
-250Nb+1200≦T≦-100Nb+1290 ・・・(ii)
405-0.3T≦t≦2475-1.5T ・・・(iii)
但し、上記式中の元素記号は、鋼中に含まれる元素の含有量(質量%)を表し、上記式中の各記号は、以下により定義される。
NbER(質量%):電解抽出残渣として分析されるNb量
T(℃):熱処理温度
t(秒):熱処理時間
前記熱処理温度と前記強制冷却を開始する際の鋼の温度との差が、下記(iv)式を満足する、上記(1)に記載のオーステナイト系耐熱鋼の製造方法。
0≦△T≦100Nb-5 ・・・(iv)
但し、上記式中の元素記号は、鋼中に含まれる元素の含有量(質量%)を表し、上記式中の記号は、以下により定義される。
△T(℃):固溶化熱処理の熱処理温度と強制冷却を開始する際の鋼の温度との差
-2B+0.185≦Nb-NbER≦-4B+0.480 ・・・(v)
但し、上記式中の各元素記号は、鋼中に含まれる各元素の含有量(質量%)を、NbERは電解抽出残渣として分析されるNb量(質量%)をそれぞれ意味する。
Co:0.01~1.00%、
W:0.01~1.00%、
Ti:0.01~0.40%、
V:0.01~0.40%、
Ta:0.01~0.40%、
Sn:0.0002~0.0300%、
Ca:0.0002~0.0100%、
Mg:0.0002~0.0100%、および
REM:0.0005~0.0800%、
から選択される一種以上を含有する、上記(1)~(3)のいずれかに記載のオーステナイト系耐熱鋼の製造方法。
P:0.020~0.040%、
を含有する、上記(1)~(4)のいずれかに記載のオーステナイト系耐熱鋼の製造方法。
1-1.成形方法
本発明に係る製造方法では、成形工程において、下記記載の化学組成を有する鋼を最終的な形状、すなわち製品形状に加工成形する。加工成形する際の方法は、特に、限定されず、鋳型を用いて成形する鋳造であっても、塑性加工であってもよい。塑性加工により成形する場合、例えば、熱間圧延、熱間鍛造、冷間圧延、冷間鍛造、冷間引き抜きなどが一例として考えられ、加工温度は、熱間、冷間、温間、いずれの温度域であってもよい。なお、成形工程のなかで、必要に応じて、熱処理、酸洗を行ってもよい。
本発明に係る製造方法では、加工成形する鋼の化学組成を制御することも重要である。上述した塑性成形を行う素材である鋼の化学組成は、例えば、所定の化学成分の素材を溶解、精錬して制御する。そして、鋳造によりインゴット、またはブルームを製造するのが、一般的である。その後、上述した、熱間圧延、または冷間圧延等の塑性加工を行われる。
Cは、オーステナイト組織を安定にするとともに微細な炭化物を形成し、高温使用中のクリープ強度を向上させる。このため、C含有量は、0.04%以上とする。C含有量は、0.06%以上とするのが好ましく、0.07%以上とするのがより好ましい。しかしながら、Cを、過剰に含有させると、その効果が飽和するとともに、炭化物が多量に析出し、クリープ延性が低下する。このため、C含有量は、0.12%以下とする。C含有量は、0.10%以下とするのが好ましく、0.09%以下とするのがより好ましい。
Siは、製造時において、脱酸効果を有する。また、Siは、高温での耐食性および耐酸化性の向上に有効な元素である。このため、Si含有量は、0.01%以上とする。Si含有量は、0.03%以上とするのが好ましく、0.05%以上とするのがより好ましい。しかしながら、Siを過剰に含有させると、オーステナイト組織の安定性が低下して、靱性およびクリープ強度の低下を招く。このため、Si含有量は、0.30%以下とする。Si含有量は、0.28%以下とするのが好ましく、0.25%以下とするのがより好ましい。
Mnは、Siと同様、脱酸効果を有する。また、Mnは、オーステナイト組織を安定にし、クリープ強度の向上に寄与する。このため、Mn含有量は、0.50%以上とする。Mn含有量は、0.60%以上とするのが好ましく、0.70%以上とするのがより好ましい。しかしながら、Mnを過剰に含有させると、脆化を招き、さらに、クリープ延性の低下も生じる。このため、Mn含有量は、1.50%以下とする。Mn含有量は、1.30%以下とするのが好ましく、1.00%以下とするのがより好ましい。
Pは、不純物として鋼に含まれる元素であるが、過剰に低減すると、製造コストを増加させるため、P含有量は、0.001%以上とする。P含有量は、0.005%以上とするのが好ましく、0.010%以上とするのがより好ましい。また、Pは、クリープ強度を高める効果を有する。この効果を得るために、P含有量は、0.020%以上とするのが好ましい。
Sは、Pと同様に不純物として鋼中に含まれ、溶接中に溶接熱影響部の割れ感受性を高める。このため、S含有量は、0.0050%以下とする。S含有量は、0.0040%以下とするのが好ましく、0.0020%以下とするのがより好ましい。なお、S含有量は可能な限り低減することが好ましいが、極度の低減は製鋼コストの増大を招く。このため、S含有量は、0.0001%以上とするのが好ましく、0.0002%以上とするのが好ましい。
Cuは、オーステナイト組織の安定性を高めるとともに、使用中に微細に析出して、クリープ強度の向上に寄与する。このため、Cu含有量は、2.2%以上とする。Cu含有量は、2.5%以上とするのが好ましく、2.7%以上とするのがより好ましい。しかしながら、Cuを、過剰に含有させると、熱間加工性が低下する。このため、Cu含有量は、3.8%以下とする。Cu含有量は、3.5%以下とするのが好ましく、3.3%以下とするのがより好ましい。
Niは、オーステナイト組織を安定にし、クリープ強度の向上に寄与する。このため、Ni含有量は、8.0%以上とする。Ni含有量は、8.2%以上とするのが好ましく、8.5%以上とするのがより好ましい。しかしながら、Niは、高価な元素であり、多量の含有はコストの増大を招く。このため、Ni含有量は、11.0%以下とする。Ni含有量は、10.8%以下とするのが好ましく、10.5%以下とするのがより好ましく、10.3%以下とするのがさらに好ましい。
Crは、高温での耐酸化性および耐食性を向上に寄与する。また、微細な炭化物を形成してクリープ強度の確保にも寄与する。このため、Cr含有量は、17.7%以上とする。Cr含有量は、18.0%以上とするのが好ましく、18.2%以上とするのがより好ましい。しかしながら、Crを、過剰に含有させると、オーステナイト組織の安定性を損ない、クリープ強度が低下する。このため、Cr含有量は、19.3%以下とする。Cr含有量は、19.0%以下とするのが好ましく、18.8%以下とするのがより好ましい。
Moは、マトリックスに固溶して高温でのクリープ強度および引張強さの向上に寄与する。このため、Mo含有量は、0.01%以上とする。Mo含有量は、0.03%以上とするのが好ましく、0.05%以上とするのがより好ましい。しかしながら、Moを過剰に含有させると、上記効果は飽和する。さらに、オーステナイト組織の安定性を損ない、却ってクリープ強度が低下する。さらには、高価な元素であるため、コストの増大を招く。このため、Mo含有量は、0.55%以下とする。Mo含有量は、0.53%以下とするのが好ましく、0.50%以下とするのがより好ましく、0.40%以下とするのがさらに好ましい。
Nbは、微細な炭窒化物、窒化物として析出し、クリープ強度の向上に寄与する。このため、Nb含有量は、0.400%以上とする。Nb含有量は、0.420%以上とするのが好ましく、0.450%以上とするのがより好ましい。しかしながら、Nbを過剰に含有させると、溶接中に溶接熱影響部の溶接割れを招く。加えて、炭窒化物および窒化物が多量に析出して、材料の延性が低下する。このため、Nb含有量は、0.650%以下とする。Nb含有量は、0.630%以下とするのが好ましく、0.600%以下とするのがより好ましい。
Bは、粒界炭化物を微細に分散させることにより、クリープ強度を向上させる効果を有する。このため、B含有量は、0.0010%以上とする。B含有量は、0.0020%以上とするのが好ましく、0.0030%以上とするのがより好ましい。しかしながら、Bを、過剰に含有させると、溶接中に溶接熱影響部の割れ感受性が高まる。このため、B含有量は、0.0060%以下とする。B含有量は、0.0055%以下とするのが好ましく、0.0050%以下とするのがより好ましい。
Nは、オーステナイト組織を安定にするとともに、固溶または窒化物として析出し、クリープ強度の向上に寄与する。このため、N含有量は、0.050%以上とする。N含有量は、0.070%以上とするのがより好ましく、0.090%以上とするのがより好ましい。しかしながら、Nを、過剰に含有させると、多量の微細窒化物が析出し、クリープ延性および靱性の低下を招く。このため、N含有量は、0.160%以下とする。N含有量は、0.140%以下とするのが好ましく、0.120%以下とするのがより好ましい。
Alは、脱酸効果を有する。しかしながら、Alを過剰に含有させると、鋼の清浄性が劣化し、熱間加工性が低下する。このため、Al含有量は、0.025%以下とする。Al含有量は、0.023%以下とするのが好ましく、0.020%以下とするのがより好ましく、0.0017%以下とするのがさらに好ましい。一方、極端なAlの低減は、製鋼コストの増大を招く上、上記効果を得ることができない。このため、Al含有量は、0.001%以上とするのが好ましく、0.002%以上とするのがより好ましい。
Oは、不純物として鋼中に含まれ、過剰に含有された場合、熱間加工性が低下する。加えて、靱性および延性を損なう。このため、O含有量は、0.020%以下とする。O含有量は、0.018%以下とするのが好ましく、0.015%以下とするのがより好ましい。なお、O含有量について、特に下限を設けないが、極端な含有量の低減は、製造コストを増加させる。このため、O含有量は、0.001%以上とするのが好ましく、0.002%以上とするのがより好ましい。
Coは、Niと同様、オーステナイト組織を安定にし、クリープ強度を向上させる効果を有する。このため、必要に応じて含有させてもよい。しかしながら、Coは、非常に高価な元素であり、過剰に含有させると、コストが増加する。そのため、Co含有量は、1.00%以下とする。Co含有量は、0.90%以下とするのが好ましく、0.80%以下とするのがより好ましい。一方、上記効果を得るためには、Co含有量は、0.01%以上とするのが好ましく、0.03%以上とするのがより好ましい。
Wは、マトリックスに固溶する、または微細な金属間化合物相を形成しすることで、高温においてクリープ強度を向上させる効果を有する。このため、必要に応じて含有させてもよい。しかしながら、Wを、過剰に含有させても、上記効果は飽和するとともに、オーステナイト組織の安定性を損ない、却ってクリープ強度が低下する。さらに、高価な元素であるため、製造コストが増加する。そのため、W含有量は、1.00%以下とする。W含有量は、0.90%以下とするのが好ましく、0.80%以下とするのがより好ましい。一方、上記効果を得るためには、W含有量は、0.01%以上とするのが好ましく、0.03%以上とするのがより好ましい。
Tiは、炭素および窒素と結合して、微細な炭化物および炭窒化物を形成して、高温でのクリープ強度を向上させる効果を有する。このため、必要に応じて含有させてもよい。しかしながら、Tiを、過剰に含有させると、析出物が多量に析出して、クリープ延性および靱性の低下を招く。そのため、Ti含有量は、0.40%以下とする。Ti含有量は、0.35%以下とするのが好ましく、0.30%以下とするのがより好ましい。一方、上記効果を得るためには、Ti含有量は、0.01%以上とするのが好ましく、0.02%以上とするのがより好ましい。
Vは、Tiと同様、微細な炭化物および炭窒化物を形成して、高温においてクリープ強度を向上させる効果を有する。このため、必要に応じて含有させてもよい。しかしながら、Vを、過剰に含有させると、析出物が多量に析出して、クリープ延性および靱性の低下を招く。そのため、V含有量は、0.40%以下とする。V含有量は、0.35%以下とするのが好ましく、0.30%以下とするのがより好ましい。一方、上記効果を得るためには、V含有量は、0.01%以上とするのが好ましく、0.02%以上とするのがより好ましい。
Taは、TiおよびVと同様、微細な炭化物および炭窒化物を形成して、高温においてクリープ強度を向上させる効果を有する。このため、必要に応じて含有させてもよい。しかしながら、Taを、過剰に含有させると、析出物が多量に析出して、クリープ延性および靱性の低下を招く。そのため、Ta含有量は、0.40%以下とする。Ta含有量は、0.35%以下とするのが好ましく、0.30%以下とするのがより好ましい。一方、上記効果を得るためには、Ta含有量は、0.01%以上とするのが好ましく、0.02%以上とするのがより好ましい。
Snは、溶接施工性を少なからず高める効果を有する。このため、必要に応じて含有させてもよい。しかしながら、Snを、過剰に含有させると、溶接中に溶接熱影響部の割れ感受性を高めるとともに、製造時の熱間加工性を損なう。そのため、Sn含有量は、0.0300%以下とする。Sn含有量は、0.0250%以下とするのが好ましく、0.0200%以下とするのがより好ましい。一方、上記効果を得るためには、Sn含有量は、0.0002%以上とするのが好ましく、0.0005%以上とするのがより好ましい。
Caは、熱間加工性を改善する効果を有する。このため、必要に応じて含有させてもよい。しかしながら、Caを、過剰に含有させると、酸素と結合し、清浄性を著しく低下させて、却って熱間加工性を損なう。そのため、Ca含有量は、0.0100%以下とする。Ca含有量は、0.0080%以下とするのが好ましく、0.0060%以下とするのがより好ましい。一方、上記効果を得るためには、Ca含有量は、0.0002%以上とするのが好ましく、0.0005%以上とするのがより好ましい。
Mgは、Caと同様、熱間加工性を改善する効果を有する。このため、必要に応じて含有させてもよい。しかしながら、Mgを、過剰に含有させると、酸素と結合し、清浄性を著しく低下させる。この結果、却って熱間加工性が低下する。そのため、Mg含有量は、0.0100%以下とする。Mg含有量は、0.0080%以下とするのが好ましく、0.0060%以下とするのがより好ましい。一方、上記効果を得るためには、Mg含有量は、0.0002%以上とするのが好ましく、0.0005%以上とするのがより好ましい。
REMは、CaおよびMgと同様、製造時の熱間加工性を改善する効果を有する。このため、必要に応じて含有させてもよい。しかしながら、REMを、過剰に含有させると、酸素と結合し、清浄性を著しく低下させる。この結果、却って熱間加工性が低下する。そのため、REM含有量は、0.0800%以下とする。REM含有量は、0.0600%以下とするのが好ましく、0.0500%以下とするのがより好ましい。一方、上記効果を得るためには、REM含有量は、0.0005%以上とするのが好ましく、0.0010%以上とするのがより好ましい。
鋼に含有されるNbのうち、使用前に析出物として存在するNbはクリープ強度に寄与するものの、その効果が小さい。それに対し、固溶Nbは、高温での使用中に炭窒化物または窒化物として、長時間にわたり、微細かつ密に粒内に析出し、クリープ強度および、その安定化に大きく寄与する。
405-0.3T≦t≦2475-1.5T ・・・(iii)
但し、上記式中の元素記号は、鋼中に含まれる元素の含有量(質量%)を表し、上記式中の各記号は、以下により定義される。
T(℃):熱処理温度
t(秒):熱処理時間
冷却工程では、固溶化熱処理後、すなわち、上記熱処理温度および熱処理時間で、均熱保持した後、冷却を行う。なお、冷却に際し、1000~600℃の温度域の冷却速度を、0.4℃/s以上とすることが好ましく、1.0℃/s以上とすることがさらに好ましい。冷却工程における冷却方法は、特に限定されないが、水冷または強制空冷とするのが好ましい。そして、少なくとも300℃以下の温度域まで冷却を行えばよい。
但し、上記式中の元素記号は、鋼中に含まれる元素の含有量(質量%)を表し、上記式中の記号は、以下により定義される。
△T(℃):固溶化熱処理の熱処理温度と強制冷却を開始する際の鋼の温度との差
本発明に係る製造方法では、固溶化熱処理およびその後の冷却工程後により、マトリックス中に固溶するNb量である固溶Nb量を制御する。具体的には、固溶Nb量に相当する、Nb含有量と電解抽出残渣として分析されるNb量との差が、下記(i)式を満足する必要がある。
但し、上記式中の元素記号は、鋼中に含まれる元素の含有量(質量%)を表し、上記式中の記号は、以下により定義される。
NbER(質量%):電解抽出残渣として分析されるNb量
-2B+0.185≦Nb-NbER≦-4B+0.480 ・・・(v)
但し、上記式中の各元素記号は、鋼中に含まれる各元素の含有量(質量%)を、NbERは電解抽出残渣として分析されるNb量(質量%)をそれぞれ意味する。
Claims (5)
- Nb含有量と電解抽出残渣として分析されるNb量との差が、下記(i)式を満足する、オーステナイト系耐熱鋼を製造する方法であって、
化学組成が、質量%で、
C:0.04~0.12%、
Si:0.01~0.30%、
Mn:0.50~1.50%、
P:0.001~0.040%、
S:0.0050%以下、
Cu:2.2~3.8%、
Ni:8.0~11.0%、
Cr:17.7~19.3%、
Mo:0.01~0.55%、
Nb:0.400~0.650%、
B:0.0010~0.0060%、
N:0.050~0.160%、
Al:0.025%以下、
O:0.020%以下、
Co:0~1.00%、
W:0~1.00%、
Ti:0~0.40%、
V:0~0.40%、
Ta:0~0.40%、
Sn:0~0.0300%、
Ca:0~0.0100%、
Mg:0~0.0100%、
REM:0~0.0800%、
残部:Feおよび不純物である鋼を、製品形状に加工成形する、成形工程と、
前記成形工程の後、熱処理温度が下記(ii)式を満足し、熱処理時間が下記(iii)式を満足するような条件で熱処理を行う、固溶化熱処理工程と、
前記固溶化熱処理工程の後、冷却を行う冷却工程とを、有するオーステナイト系耐熱鋼の製造方法。
0.170≦Nb-NbER≦0.480 ・・・(i)
-250Nb+1200≦T≦-100Nb+1290 ・・・(ii)
405-0.3T≦t≦2475-1.5T ・・・(iii)
但し、上記式中の元素記号は、鋼中に含まれる元素の含有量(質量%)を表し、上記式中の各記号は、以下により定義される。
NbER(質量%):電解抽出残渣として分析されるNb量
T(℃):熱処理温度
t(秒):熱処理時間 - 前記冷却工程において、強制冷却で冷却を行い、
前記熱処理温度と前記強制冷却を開始する際の鋼の温度との差が、下記(iv)式を満足する、請求項1に記載のオーステナイト系耐熱鋼の製造方法。
0≦△T≦100Nb-5 ・・・(iv)
但し、上記式中の元素記号は、鋼中に含まれる元素の含有量(質量%)を表し、上記式中の記号は、以下により定義される。
△T(℃):固溶化熱処理の熱処理温度と強制冷却を開始する際の鋼の温度との差 - Nb含有量と電解抽出残渣として分析されるNb量との差が、下記(v)式を満足する、請求項1または2に記載のオーステナイト系耐熱鋼の製造方法。
-2B+0.185≦Nb-NbER≦-4B+0.480 ・・・(v)
但し、上記式中の各元素記号は、鋼中に含まれる各元素の含有量(質量%)を、NbERは電解抽出残渣として分析されるNb量(質量%)をそれぞれ意味する。 - 前記化学組成が、質量%で、
Co:0.01~1.00%、
W:0.01~1.00%、
Ti:0.01~0.40%、
V:0.01~0.40%、
Ta:0.01~0.40%、
Sn:0.0002~0.0300%、
Ca:0.0002~0.0100%、
Mg:0.0002~0.0100%、および
REM:0.0005~0.0800%、
から選択される一種以上を含有する、請求項1~3のいずれかに記載のオーステナイト系耐熱鋼の製造方法。 - 前記化学組成が、質量%で、
P:0.020~0.040%、
を含有する、請求項1~4のいずれかに記載のオーステナイト系耐熱鋼の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/996,700 US20230220508A1 (en) | 2020-04-30 | 2021-04-21 | Method for producing austenitic heat resistant steel |
EP21797152.2A EP4144872A4 (en) | 2020-04-30 | 2021-04-21 | METHOD FOR PRODUCING AN AUSTENITIC HEAT-RESISTANT STEEL |
JP2022517671A JP7381967B2 (ja) | 2020-04-30 | 2021-04-21 | オーステナイト系耐熱鋼の製造方法 |
CN202180031266.0A CN115461477B (zh) | 2020-04-30 | 2021-04-21 | 奥氏体系耐热钢的制造方法 |
KR1020227041018A KR20230002997A (ko) | 2020-04-30 | 2021-04-21 | 오스테나이트계 내열강의 제조 방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020080196 | 2020-04-30 | ||
JP2020-080196 | 2020-04-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021220913A1 true WO2021220913A1 (ja) | 2021-11-04 |
Family
ID=78373579
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/016189 WO2021220913A1 (ja) | 2020-04-30 | 2021-04-21 | オーステナイト系耐熱鋼の製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20230220508A1 (ja) |
EP (1) | EP4144872A4 (ja) |
JP (1) | JP7381967B2 (ja) |
KR (1) | KR20230002997A (ja) |
CN (1) | CN115461477B (ja) |
WO (1) | WO2021220913A1 (ja) |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62133048A (ja) | 1985-12-04 | 1987-06-16 | Sumitomo Metal Ind Ltd | 高温強度の優れたオーステナイト鋼 |
JPH1121624A (ja) * | 1997-05-08 | 1999-01-26 | Nippon Steel Corp | 溶接性に優れた高強度オーステナイト系耐熱鋼およびその製造方法 |
JP2000256803A (ja) | 1999-03-04 | 2000-09-19 | Sumitomo Metal Ind Ltd | 高温強度と延性に優れたオーステナイト系ステンレス鋼 |
JP2001049400A (ja) * | 1999-08-06 | 2001-02-20 | Sumitomo Metal Ind Ltd | 熱間加工性に優れるオーステナイト系耐熱鋼 |
JP2003166039A (ja) * | 2001-04-25 | 2003-06-13 | Nippon Steel Corp | 鋭敏化特性、高温強度および耐食性に優れたオーステナイト系耐熱鋼とその製造方法 |
JP2003268503A (ja) | 2002-03-08 | 2003-09-25 | Sumitomo Metal Ind Ltd | 耐水蒸気酸化性に優れたオーステナイト系ステンレス鋼管およびその製造方法 |
WO2009044796A1 (ja) | 2007-10-03 | 2009-04-09 | Sumitomo Metal Industries, Ltd. | オーステナイト系ステンレス鋼 |
CN101633999A (zh) * | 2009-05-26 | 2010-01-27 | 山西太钢不锈钢股份有限公司 | 一种奥氏体不锈钢及其钢管和钢管的制造方法 |
WO2013073055A1 (ja) | 2011-11-18 | 2013-05-23 | 住友金属工業株式会社 | オーステナイト系ステンレス鋼 |
JP2014001436A (ja) | 2012-06-20 | 2014-01-09 | Nippon Steel & Sumitomo Metal | オーステナイト系耐熱鋼管 |
JP2017014575A (ja) * | 2015-07-01 | 2017-01-19 | 新日鐵住金株式会社 | オーステナイト系耐熱合金及び溶接構造物 |
JP2021049572A (ja) * | 2019-09-26 | 2021-04-01 | 日本製鉄株式会社 | オーステナイト系ステンレス鋼溶接継手 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3543366B2 (ja) * | 1994-06-28 | 2004-07-14 | 住友金属工業株式会社 | 高温強度の良好なオーステナイト系耐熱鋼 |
JP2006075853A (ja) * | 2004-09-08 | 2006-03-23 | Sumitomo Metal Ind Ltd | オーステナイト系合金鋼のレーザ溶接継手およびその製造方法 |
JP6289941B2 (ja) * | 2014-03-05 | 2018-03-07 | 株式会社神戸製鋼所 | オーステナイト系耐熱鋼 |
US20180179619A1 (en) * | 2015-07-01 | 2018-06-28 | Nippon Steel & Sumitomo Metal Corporation | Austenitic Heat-Resistant Alloy and Welded Structure |
ES2833355T3 (es) * | 2015-09-30 | 2021-06-15 | Nippon Steel Corp | Acero inoxidable austenítico y método de producción de acero inoxidable austenítico |
EP3581669A4 (en) * | 2017-02-09 | 2020-08-19 | Nippon Steel Corporation | AUSTENITE-BASED HEAT RESISTANT ALLOY, AND METHOD FOR MANUFACTURING THE SAME |
CA3078343A1 (en) * | 2017-10-03 | 2019-04-11 | Nippon Steel Corporation | Welding material for austenitic heat resistant steel, weld metal and welded structure, and method for producing weld metal and welded structure |
-
2021
- 2021-04-21 US US17/996,700 patent/US20230220508A1/en active Pending
- 2021-04-21 WO PCT/JP2021/016189 patent/WO2021220913A1/ja active Application Filing
- 2021-04-21 KR KR1020227041018A patent/KR20230002997A/ko not_active Application Discontinuation
- 2021-04-21 EP EP21797152.2A patent/EP4144872A4/en active Pending
- 2021-04-21 CN CN202180031266.0A patent/CN115461477B/zh active Active
- 2021-04-21 JP JP2022517671A patent/JP7381967B2/ja active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62133048A (ja) | 1985-12-04 | 1987-06-16 | Sumitomo Metal Ind Ltd | 高温強度の優れたオーステナイト鋼 |
JPH1121624A (ja) * | 1997-05-08 | 1999-01-26 | Nippon Steel Corp | 溶接性に優れた高強度オーステナイト系耐熱鋼およびその製造方法 |
JP2000256803A (ja) | 1999-03-04 | 2000-09-19 | Sumitomo Metal Ind Ltd | 高温強度と延性に優れたオーステナイト系ステンレス鋼 |
JP2001049400A (ja) * | 1999-08-06 | 2001-02-20 | Sumitomo Metal Ind Ltd | 熱間加工性に優れるオーステナイト系耐熱鋼 |
JP2003166039A (ja) * | 2001-04-25 | 2003-06-13 | Nippon Steel Corp | 鋭敏化特性、高温強度および耐食性に優れたオーステナイト系耐熱鋼とその製造方法 |
JP2003268503A (ja) | 2002-03-08 | 2003-09-25 | Sumitomo Metal Ind Ltd | 耐水蒸気酸化性に優れたオーステナイト系ステンレス鋼管およびその製造方法 |
WO2009044796A1 (ja) | 2007-10-03 | 2009-04-09 | Sumitomo Metal Industries, Ltd. | オーステナイト系ステンレス鋼 |
CN101633999A (zh) * | 2009-05-26 | 2010-01-27 | 山西太钢不锈钢股份有限公司 | 一种奥氏体不锈钢及其钢管和钢管的制造方法 |
WO2013073055A1 (ja) | 2011-11-18 | 2013-05-23 | 住友金属工業株式会社 | オーステナイト系ステンレス鋼 |
JP2014001436A (ja) | 2012-06-20 | 2014-01-09 | Nippon Steel & Sumitomo Metal | オーステナイト系耐熱鋼管 |
JP2017014575A (ja) * | 2015-07-01 | 2017-01-19 | 新日鐵住金株式会社 | オーステナイト系耐熱合金及び溶接構造物 |
JP2021049572A (ja) * | 2019-09-26 | 2021-04-01 | 日本製鉄株式会社 | オーステナイト系ステンレス鋼溶接継手 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4144872A4 |
Also Published As
Publication number | Publication date |
---|---|
CN115461477B (zh) | 2024-10-01 |
EP4144872A4 (en) | 2024-05-22 |
CN115461477A (zh) | 2022-12-09 |
KR20230002997A (ko) | 2023-01-05 |
EP4144872A1 (en) | 2023-03-08 |
JP7381967B2 (ja) | 2023-11-16 |
US20230220508A1 (en) | 2023-07-13 |
JPWO2021220913A1 (ja) | 2021-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8444778B2 (en) | Low-thermal-expansion Ni-based super-heat-resistant alloy for boiler and having excellent high-temperature strength, and boiler component and boiler component production method using the same | |
EP3100818B1 (en) | Welding material for ni-based heat-resistant alloy, and welded metal and welded joint each using same | |
CN111344427B (zh) | 奥氏体系耐热钢焊接金属、焊接接头、奥氏体系耐热钢用焊接材料以及焊接接头的制造方法 | |
WO2017002524A1 (ja) | オーステナイト系耐熱合金及び溶接構造物 | |
JPWO2019070000A1 (ja) | オーステナイト系ステンレス鋼溶接金属および溶接構造物 | |
JP6965938B2 (ja) | オーステナイト系ステンレス鋼溶接金属および溶接構造物 | |
WO2021141107A1 (ja) | オーステナイト系ステンレス鋼材 | |
KR102506230B1 (ko) | 오스테나이트계 스테인리스강 | |
WO2023199902A1 (ja) | 合金材 | |
WO2021220913A1 (ja) | オーステナイト系耐熱鋼の製造方法 | |
JP6795038B2 (ja) | オーステナイト系耐熱合金およびそれを用いた溶接継手 | |
JP6638552B2 (ja) | オーステナイト系耐熱鋼用溶接材料 | |
WO2021220912A1 (ja) | オーステナイト系耐熱鋼 | |
US20230257861A1 (en) | Austenitic stainless steel and hydrogen resistant member | |
WO2024204622A1 (ja) | 合金材 | |
KR20240034213A (ko) | 페라이트계 내열강 | |
CN116590607A (zh) | 奥氏体不锈钢和耐氢部件 | |
CN118974299A (zh) | 合金材 | |
JP2021080510A (ja) | オーステナイト系耐熱鋼溶接継手 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21797152 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022517671 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202217066281 Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 20227041018 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021797152 Country of ref document: EP Effective date: 20221130 |