WO2021220472A1 - 端末、無線通信方法及び基地局 - Google Patents

端末、無線通信方法及び基地局 Download PDF

Info

Publication number
WO2021220472A1
WO2021220472A1 PCT/JP2020/018291 JP2020018291W WO2021220472A1 WO 2021220472 A1 WO2021220472 A1 WO 2021220472A1 JP 2020018291 W JP2020018291 W JP 2020018291W WO 2021220472 A1 WO2021220472 A1 WO 2021220472A1
Authority
WO
WIPO (PCT)
Prior art keywords
qcl
transmission
tci state
tci
information
Prior art date
Application number
PCT/JP2020/018291
Other languages
English (en)
French (fr)
Inventor
祐輝 松村
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2020/018291 priority Critical patent/WO2021220472A1/ja
Priority to JP2022518546A priority patent/JP7464347B2/ja
Priority to US17/995,954 priority patent/US20230189320A1/en
Priority to CN202080100262.9A priority patent/CN115462119A/zh
Publication of WO2021220472A1 publication Critical patent/WO2021220472A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • H04B7/06968Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping using quasi-colocation [QCL] between signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]

Definitions

  • This disclosure relates to terminals, wireless communication methods and base stations in next-generation mobile communication systems.
  • LTE Long Term Evolution
  • 3GPP Rel.10-14 LTE-Advanced (3GPP Rel.10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
  • a successor system to LTE for example, 5th generation mobile communication system (5G), 5G + (plus), New Radio (NR), 3GPP Rel.15 or later, etc.) is also being considered.
  • 5G 5th generation mobile communication system
  • 5G + plus
  • NR New Radio
  • 3GPP Rel.15 or later, etc. is also being considered.
  • transmission points for example, Remote Radio Head (RRH)
  • RRH Remote Radio Head
  • one of the purposes of the present disclosure is to provide a terminal, a wireless communication method, and a base station capable of appropriately controlling wireless communication in a mobile body.
  • the terminal is based on a receiving unit that receives one or more synchronization signal blocks (SSBs) from one or more transmission points arranged in a movement path and the measurement results of the one or more SSBs. It has a transmission setting instruction (TCI) state and a control unit for determining an application period of the TCI state, which is applied to at least one of a receiving channel and a signal.
  • TCI transmission setting instruction
  • wireless communication in a mobile body can be appropriately controlled.
  • FIG. 1A and 1B are diagrams showing an example of communication between a mobile body and a transmission point (for example, RRH).
  • FIG. 2 is a diagram showing an example of a beam sweeping method for SSB transmission by NW.
  • FIG. 3 is a diagram showing an example of a communication method with a transmission point arranged in the movement path of the moving body.
  • FIG. 4 is a diagram showing an example of the application period of the TCI state / QCL assumption / QCL period by SSB measurement.
  • FIG. 5 is a diagram showing another example of the application period of the TCI state / QCL assumption / QCL period by SSB measurement.
  • 6A and 6B are diagrams showing an example of the correspondence relationship according to the third embodiment.
  • FIG. 7 is a diagram showing an example of the application period of the TCI state / QCL assumption / QCL period based on the information regarding the beam transition.
  • 8A and 8B are diagrams showing an example of communication control according to the fourth embodiment.
  • 9A and 9B are diagrams showing another example of communication control according to the fourth embodiment.
  • 10A and 10B are diagrams showing another example of communication control according to the fourth embodiment.
  • 11A and 11B are diagrams showing an example of a table showing the distance between RRHs according to the fourth embodiment.
  • 12A and 12B are diagrams showing an example of the correspondence between the TCI state and the beam period according to the fourth embodiment.
  • FIG. 13 is a diagram showing another example of the correspondence between the TCI state and the beam period according to the fourth embodiment.
  • FIG. 14 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 15 is a diagram showing an example of the configuration of the base station according to the embodiment.
  • FIG. 16 is a diagram showing an example of the configuration of the user terminal according to the embodiment.
  • FIG. 17 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
  • HTS High Speed Train
  • a beam transmitted from a transmission point for example, RRH
  • a mobile body such as a train moving at high speed (hereinafter, also referred to as a UE) included in an HTS (high speed train).
  • a transmission point for example, RRH
  • UE train moving at high speed
  • HTS high speed train
  • an existing system for example, Rel.15
  • it is supported to transmit a beam in one direction from the RRH to communicate with a mobile body (see FIG. 1A).
  • FIG. 1A shows a case where RRHs are installed along a moving path (or moving direction, traveling direction, traveling path) of a moving body, and a beam is formed from each RRH on the traveling direction side of the moving body.
  • the RRH forming a unidirectional beam may be referred to as a uni-directional RRH (uni-directional RRH).
  • the moving body undergoes a negative Doppler shift ( ⁇ f D) from each RRH.
  • the beam may be formed on the traveling direction side of the moving body, and the traveling direction of the moving body is not limited to this. Beams may be formed in any direction regardless of.
  • a plurality of (for example, two or more) beams are transmitted from the RRH.
  • a beam is formed in both the traveling direction of the moving body and the direction opposite to the traveling direction (see FIG. 1B).
  • FIG. 1B shows a case where RRHs are installed along the movement path of the moving body and beams are formed from each RRH on both the traveling direction side and the opposite direction side of the traveling direction of the moving body.
  • An RRH that forms a beam in a plurality of directions may be called a bi-directional RRH (bi-directional RRH).
  • the moving body receives a positive Doppler shift with higher power from a signal that has undergone a negative Doppler shift between two RRHs (here, RRH # 1 and RRH # 2). Switch to a signal.
  • the maximum change width of the Doppler shift that needs to be corrected is the change from ⁇ f D to + f D , which is twice as large as that in the case of unidirectional RRH.
  • beam control of an existing system includes, for example, L1-RSRP report, beam notification (TCI state, spatial relation setting, or activation), and reception beam. It is done in the decision procedure.
  • the series of flows for example, notification of TCI status or QCL assumption
  • the handover control is performed by, for example, the procedure of measurement report (L3-RSRP, L3-SINR report), handover instruction, random access channel transmission, and RRC connection completion, and the series of flows is performed in a short passage period. It will be difficult to do.
  • reception processing for example, reception, demapping, demodulation, etc.
  • transmission configuration indication state TCI state
  • Controlling at least one of decoding and transmission processing eg, at least one of transmission, mapping, precoding, modulation, and coding
  • the TCI state may represent what applies to the downlink signal / channel.
  • the equivalent of the TCI state applied to the uplink signal / channel may be expressed as a spatial relation.
  • the TCI state is information related to signal / channel pseudo collocation (Quasi-Co-Location (QCL)), and may be called spatial reception parameters, spatial relation information, or the like.
  • the TCI state may be set in the UE on a channel-by-channel or signal-by-signal basis.
  • QCL is an index showing the statistical properties of signals / channels. For example, when one signal / channel and another signal / channel have a QCL relationship, Doppler shift, Doppler spread, and average delay are performed between these different signals / channels. ), Delay spread, and spatial parameter (for example, spatial Rx parameter) can be assumed to be the same (QCL for at least one of these). You may.
  • the spatial reception parameter may correspond to the received beam of the UE (for example, the received analog beam), or the beam may be specified based on the spatial QCL.
  • the QCL (or at least one element of the QCL) in the present disclosure may be read as sQCL (spatial QCL).
  • QCL types A plurality of types (QCL types) may be specified for the QCL.
  • QCL types AD QCL types with different parameters (or parameter sets) that can be assumed to be the same may be provided, and the parameters (may be referred to as QCL parameters) are shown below:
  • QCL Type A QCL-A
  • QCL-B Doppler shift and Doppler spread
  • QCL type C QCL-C
  • QCL-D Spatial reception parameter.
  • the UE may assume that a given control resource set (Control Resource Set (CORESET)), channel or reference signal has a specific QCL (eg, QCL type D) relationship with another CORESET, channel or reference signal.
  • QCL assumption QCL assumption
  • the UE may determine at least one of the transmission beam (Tx beam) and the reception beam (Rx beam) of the signal / channel based on the TCI state of the signal / channel or the QCL assumption.
  • the TCI state may be, for example, information about the QCL of the target channel (in other words, the reference signal (Reference Signal (RS)) for the channel) and another signal (for example, another RS). ..
  • the TCI state may be set (instructed) by higher layer signaling, physical layer signaling, or a combination thereof.
  • the upper layer signaling may be, for example, any one of Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, or a combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • MAC CE MAC Control Element
  • PDU MAC Protocol Data Unit
  • the broadcast information includes, for example, a master information block (Master Information Block (MIB)), a system information block (System Information Block (SIB)), a minimum system information (Remaining Minimum System Information (RMSI)), and other system information ( Other System Information (OSI)) may be used.
  • MIB Master Information Block
  • SIB System Information Block
  • RMSI Minimum System Information
  • OSI Other System Information
  • the physical layer signaling may be, for example, downlink control information (DCI).
  • DCI downlink control information
  • the channels for which the TCI state or spatial relationship is set are, for example, a downlink shared channel (Physical Downlink Shared Channel (PDSCH)), a downlink control channel (Physical Downlink Control Channel (PDCCH)), and an uplink shared channel (Physical Uplink Shared). It may be at least one of a Channel (PUSCH)) and an uplink control channel (Physical Uplink Control Channel (PUCCH)).
  • PDSCH Physical Downlink Shared Channel
  • PDCH Downlink Control Channel
  • PUSCH Physical Uplink Control Channel
  • PUCCH Physical Uplink Control Channel
  • the RS having a QCL relationship with the channel is, for example, a synchronization signal block (Synchronization Signal Block (SSB)), a channel state information reference signal (Channel State Information Reference Signal (CSI-RS)), and a measurement reference signal (Sounding). It may be at least one of Reference Signal (SRS)), CSI-RS for tracking (also referred to as Tracking Reference Signal (TRS)), and reference signal for QCL detection (also referred to as QRS).
  • SSB Synchronization Signal Block
  • CSI-RS Channel State Information Reference Signal
  • Sounding Sounding
  • SRS Reference Signal
  • TRS Tracking Reference Signal
  • QRS reference signal for QCL detection
  • the SSB is a signal block including at least one of a primary synchronization signal (Primary Synchronization Signal (PSS)), a secondary synchronization signal (Secondary Synchronization Signal (SSS)), and a broadcast channel (Physical Broadcast Channel (PBCH)).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical Broadcast Channel
  • the SSB may be referred to as an SS / PBCH block.
  • the information element of the TCI state (“TCI-state IE” of RRC) set by the upper layer signaling may include one or more QCL information (“QCL-Info”).
  • the QCL information may include at least one of information related to the RS having a QCL relationship (RS-related information) and information indicating the QCL type (QCL type information).
  • RS-related information includes RS index (for example, SSB index, non-zero power CSI-RS (Non-Zero-Power (NZP) CSI-RS) resource ID (Identifier)), cell index where RS is located, and RS position.
  • Information such as the index of the Bandwidth Part (BWP) to be used may be included.
  • both QCL type A RS and QCL type D RS, or only QCL type A RS can be set for the UE.
  • TRS When TRS is set as the RS of QCL type A, it is assumed that the same TRS is periodically transmitted over a long period of time, unlike the PDCCH or PDSCH demodulation reference signal (DeModulation Reference Signal (DMRS)). Will be done.
  • DMRS DeModulation Reference Signal
  • the UE can measure the TRS and calculate the average delay, delay spread, and so on.
  • a UE in which the TRS is set as the QCL type A RS in the TCI state of the PDCCH or PDSCH DMRS has the same parameters (average delay, delay spread, etc.) of the PDCCH or PDSCH DMRS and the TRS QCL type A. Since it can be assumed that there is, the parameters (average delay, delay spread, etc.) of DMRS of PDCCH or PDSCH can be obtained from the measurement result of TRS.
  • the UE can perform more accurate channel estimation by using the measurement result of the TRS.
  • a UE set with a QCL type D RS can determine a UE reception beam (spatial domain reception filter, UE spatial domain reception filter) using the QCL type D RS.
  • a TCI-state QCL type X RS may mean an RS that has a QCL type X relationship with a channel / signal (DMRS), and this RS is called the TCI-state QCL type X QCL source. You may.
  • DMRS channel / signal
  • TCI state for PDCCH Information about the PDCCH (or DMRS antenna port associated with the PDCCH) and the QCL with a given RS may be referred to as the TCI state for the PDCCH and the like.
  • the UE may determine the TCI state for the UE-specific PDCCH (CORESET) based on the upper layer signaling. For example, for the UE, one or more (K) TCI states may be set by RRC signaling for each CORESET.
  • CORESET UE-specific PDCCH
  • the UE may activate one of the plurality of TCI states set by RRC signaling for each CORESET by MAC CE.
  • the MAC CE may be called a TCI state indicating MAC CE (TCI State Indication for UE-specific PDCCH MAC CE) for UE-specific PDCCH.
  • the UE may monitor the CORESET based on the active TCI state corresponding to the CORESET.
  • TCI state for PDSCH Information about the PDSCH (or DMRS antenna port associated with the PDSCH) and the QCL with a given DL-RS may be referred to as the TCI state for the PDSCH and the like.
  • the UE may notify (set) M (M ⁇ 1) TCI states (QCL information for M PDSCHs) for PDSCH by higher layer signaling.
  • the number M of TCI states set in the UE may be limited by at least one of the UE capability and the QCL type.
  • the DCI used for scheduling the PDSCH may include a predetermined field indicating the TCI state for the PDSCH (for example, it may be called a TCI field, a TCI state field, or the like).
  • the DCI may be used for scheduling the PDSCH of one cell, and may be called, for example, DL DCI, DL assignment, DCI format 1_0, DCI format 1-1-1 and the like.
  • Whether or not the TCI field is included in the DCI may be controlled by the information notified from the base station to the UE.
  • the information may be information indicating whether or not a TCI field exists in DCI (present or present) (for example, TCI existence information, TCI existence information in DCI, upper layer parameter TCI-PresentInDCI).
  • the information may be set in the UE by, for example, higher layer signaling.
  • TCI states When more than 8 types of TCI states are set in the UE, 8 or less types of TCI states may be activated (or specified) using MAC CE.
  • the MAC CE may be referred to as a UE-specific PDSCH TCI state activation / deactivation MAC CE (TCI States Activation / Deactivation for UE-specific PDSCH MAC CE).
  • TCI States Activation / Deactivation for UE-specific PDSCH MAC CE The value of the TCI field in DCI may indicate one of the TCI states activated by MAC CE.
  • the UE sets the TCI existence information set to "enabled” for the CORESET that schedules the PDSCH (CORESET used for the PDCCH transmission that schedules the PDSCH), the UE sets the TCI field. It may be assumed that it exists in the DCI format 1-11 of the PDCCH transmitted on the CORESET.
  • the UE uses the TCI state or QCL assumption for the PDSCH to determine the QCL of the PDSCH antenna port for the PDCCH transmission that schedules the PDSCH. It may be assumed that it is the same as the TCI state or QCL assumption applied to.
  • the TCI presence information is set to "enabled"
  • the TCI field in the DCI in the component carrier (CC) that schedules (PDSCH) will be in the activated TCI state in the scheduled CC or DL BWP.
  • the UE uses a TCI that has a DCI and follows the value of the TCI field in the detected PDCCH to determine the QCL of the PDSCH antenna port. May be good.
  • the UE performs the PDSCH of the serving cell. It may be assumed that the DM-RS ports are RSs and QCLs in the TCI state with respect to the QCL type parameters given by the indicated TCI state.
  • the DL DCI In the RRC connection mode, the DL DCI (PDSCH) is set both when the TCI information in the DCI (upper layer parameter TCI-PresentInDCI) is set to "enabled” and when the TCI information in the DCI is not set. If the time offset between the receipt of the scheduled DCI) and the corresponding PDSCH (the PDSCH scheduled by the DCI) is less than the threshold, the UE will have the PDSCH DM-RS port of the serving cell of the serving cell.
  • One or more CORESETs in the active BWP have the smallest (lowest) CORESET-ID in the latest (latest) slot monitored by the UE and are in the monitored search space.
  • the associated CORESET is an RS and a QCL with respect to the QCL parameters used to indicate the PDCCH's QCL.
  • This RS may be referred to as the PDSCH default TCI state or the PDSCH default QCL assumption.
  • the time offset between the reception of the DL DCI and the reception of the PDSCH corresponding to the DCI may be referred to as a scheduling offset.
  • the above thresholds are QCL time duration, "timeDurationForQCL”, “Threshold”, “Threshold for offset between a DCI indicating a TCI state and a PDSCH scheduled by the DCI", “Threshold-Sched-Offset”. , Schedule offset threshold, scheduling offset threshold, and the like.
  • the QCL time length may be based on the UE capability, for example, the delay required for PDCCH decoding and beam switching.
  • the QCL time length may be the minimum time required for the UE to perform PDCCH reception and application of spatial QCL information received in the DCI for PDSCH processing.
  • the QCL time length may be represented by the number of symbols for each subcarrier interval, or may be represented by the time (for example, ⁇ s).
  • the QCL time length information may be reported from the UE to the base station as UE capability information, or may be set in the UE from the base station using higher layer signaling.
  • the UE may assume that the DMRS port of the PDSCH is a DL-RS and QCL based on the TCI state activated for the CORESET corresponding to the minimum CORESET-ID.
  • the latest slot may be, for example, a slot that receives the DCI that schedules the PDSCH.
  • CORESET-ID may be an ID (ID for identifying CORESET, controlResourceSetId) set by the RRC information element "ControlResourceSet”.
  • the default TCI state may be the activated TCI state that is applicable to the PDSCH in the active DL BWP of the CC and has the lowest ID.
  • SSB In NR, SSB is used for initial access and beam measurements.
  • the UE is a network (NW, eg, a base station (gNB), with a wider bandwidth (eg, 20 resource blocks (RB)) and less time resources (eg, 4 symbols) compared to existing LTE systems.
  • NW eg, a base station (gNB)
  • gNB base station
  • RB resource blocks
  • time resources eg, 4 symbols
  • the SSB is transmitted with a more flexible and longer transmission cycle.
  • the transmission cycle of SSB is set from ⁇ 5, 10, 20, 40, 80, 160 ⁇ ms.
  • the symbol positions of the synchronization signal (PSS / SSS) and PBCH are fixed to a single position, whereas in NR, the symbol position candidates of SSB are located in 5 ms, which is a semi-radio frame. Multiple settings can be made. Specifically, in NR, SSB symbol positions of 4, 8 and 64 are determined for a frequency range of 0 to 3 GHz, 3 to 6 GHz, and 6 to 52.6 GHz, respectively.
  • FIG. 2 is a diagram showing an example of a beam sweeping method for SSB transmission by NW.
  • a plurality of SSBs corresponding to the plurality of beams are transmitted from the gNB using the plurality of beams.
  • the same cell ID may be set among the plurality of SSBs.
  • an SSB index may be set for each of the plurality of SSBs.
  • the SSB index may indicate the temporal position of the SSB within 5 ms, which is a semi-radio frame.
  • a maximum of 64 SSBs are set in the range of the first 5 ms of each radio frame (10 ms).
  • the SSB transmission cycle is 20 ms.
  • the gNB transmits two SSBs in each of the slots at a time of 4 symbols each.
  • the SSB transmission method shown in FIG. 2 is merely an example, and is not limited to this.
  • SSB / CSI-RS may be transmitted by the method specified in 15.
  • FIG. 3 shows an example of a case where the moving body communicates with a transmission point (here, RRH # 1) arranged in the moving path.
  • a transmission point here, RRH # 1
  • the transmission point may be at least one of unidirectional RRH and bidirectional RRH.
  • each beam transmitted from the RRH corresponds to one TCI state.
  • Each TCI state may have a TCI state period (TCI # X period).
  • the UE included in the HST may receive one or more SSBs in one period to which the TCI state is applied.
  • the UE when the UE receives one or more SSBs in one period to which the TCI state is applied, the UE applies the TCI state / QCL to communicate with the NW by measuring the SSB / CSI-RS. It is expected to perform blind detection during the assumed / QCL period. In other words, the UE is expected to perform the beam transition blindly based on the information about the beam transition. In this case, the UE determines (updates) the period of the TCI state corresponding to the SSB having high received power / reception quality, and communicates with the NW.
  • the present inventors focused on the determination of the beam (or TCI state, QCL assumption) in the mobile body, examined the communication control between the mobile body (or the UE included in the mobile body) and the RRH, and carried out the present invention.
  • I came up with the form of. Specifically, I came up with a method in which a UE included in a moving body moving at high speed determines a beam to be used for communication with an NW by measuring SSB / CSI-RS.
  • the QCL type D RS, the DL-RS associated with the QCL type D, the DL-RS having the QCL type D, the DL-RS source, the SSB, and the CSI-RS may be read interchangeably.
  • the TCI state is information about a receive beam (spatial domain receive filter) instructed (set) to the UE (for example, DL-RS, QCL type, cell to which DL-RS is transmitted, etc.).
  • a QCL assumption is based on the transmission or reception of an associated signal (eg, PRACH) and is transmitted by an information (eg, DL-RS, QCL type, DL-RS) about a receive beam (spatial domain receive filter) assumed by the UE. It may be a cell to be used, etc.).
  • the moving body may be any one that moves at a predetermined speed or higher, and may be, for example, a train, a car, a motorcycle, a ship, or the like.
  • communication between the UE included in the mobile body and the transmission point may be performed directly between the UE and the transmission point, or the mobile body (for example, an antenna installed on the mobile body). It may be done between the UE and the transmission point via.
  • the UE included in the mobile body may be simply referred to as a UE.
  • a / B may be read as at least one of A and B
  • a / B / C may be read as at least one of A, B and C.
  • the UE included in the HST may be configured with at least one of the CSI-RS resource and the SSB resource for QCL measurement (determination).
  • the CSI-RS resource may be an NZP-CSI-RS resource.
  • the UE may use the SSB resource for QCL measurement when the CSI-RS resource is not set.
  • the UE may also use the CSI-RS resource for QCL measurement if the SSB resource is not set.
  • the UE may also use both the CSI-RS resource and the SSB for QCL measurements.
  • the UE is the received power / reception quality of at least one of CSI-RS and SSB (for example, at least one of Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR)).
  • the TCI state / QCL assumption / QCL period may be specified (determined) based on the above.
  • the UE may also apply the identified TCI state / QCL assumption to at least one reception of the PDCCH, PDSCH, CSI-RS.
  • the UE may also apply the identified TCI state / QCL assumption / QCL period to at least one transmission of PUCCH, PUSCH, SRS.
  • At least one of downlink channel / signal reception and uplink channel / signal transmission by the UE can be appropriately controlled.
  • the UE shall perform the TCI state after a specific time has elapsed after the measurement of one or more SSB / CSI-RS. It may be assumed that the / QCL assumption applies.
  • the specific time may be based on the transmission cycle of SSB / CSI-RS.
  • the UE has the TCI state / QCL assumption / QCL after a specific time has elapsed from the last symbol (slot) in which the SSB / CSI-RS is transmitted in the measurement range set at each specific cycle. You may assume that the period applies.
  • the particular time may be based on, for example, a time resource (eg, at least one of a subframe, slot, subslot, symbol) or may be Tms (T is any value).
  • the specific time is, for example, a certain time (for example, nms, n symbol, n slot (n is)) after a certain time resource (for example, at least one of a subframe, a slot, a subslot, and a symbol) has elapsed. It may be the time until at least one) of (arbitrary value) has elapsed.
  • the UE included in the HST is transmitted with one or more SSB / CSI-RS a specific number of times (for example, N (N is an arbitrary value)), and the SSB / CSI-RS is transmitted at the specific number of times. It may be assumed that the TCI state / QCL assumption / QCL period is applied after a specific time elapses from the last symbol transmitted. The particular time may be based on, for example, a time resource (eg, at least one of a subframe, slot, subslot, symbol) or Tms (T is any value).
  • a time resource eg, at least one of a subframe, slot, subslot, symbol
  • Tms T is any value
  • the specific time is, for example, a certain time (for example, nms, n symbols, n slots) after the lapse of a certain time resource (for example, at least one of a subframe, a slot, a subslot, and a symbol).
  • n may be the time after at least one) of any value) has elapsed.
  • the UE calculates the average value of each measurement result of one or more SSB / CSI-RS a specific number of times, and determines the TCI state / QCL assumption / QCL period based on the calculated value. You may.
  • the specific number of times N may be specified in advance in the specifications, may be set in the UE by higher layer signaling, or may be a value reported to the NW in the UE capability information (UE Capability). good.
  • FIG. 4 is a diagram showing an example of the application period of the TCI state / QCL assumption / QCL period by SSB measurement.
  • the UE measures SSB at SFN # 0.
  • the UE then applies a new TCI state / QCL assumption / QCL period to the channel / signal from the next SFN (SFN # 1) after the SSB measurement to the SSB at SFN # 0 based on the measurement results.
  • the application period of the SSB cycle and TCI state / QCL assumption shown in FIG. 4 is only an example, and is not limited to this.
  • the UE assumes that the TCI state / QCL assumption / QCL period is applied until after a specific time has elapsed. You may.
  • a UE included in an HST has one or more SSB / CSI-RS measurements (first SSB / CSI-RS) and then a TCI state by one or more SSB / CSI-RS measurements.
  • first SSB / CSI-RS SSB / CSI-RS
  • TCI state by one or more SSB / CSI-RS measurements.
  • the / QCL assumption / QCL period it may be assumed that the TCI state / QCL assumption / QCL period measured by the first SSB / CSI-RS is applied.
  • the TCI state / QCL assumption / QCL by the measurement of one or more SSB / CSI-RS of the next specific number of times is also performed. It may be assumed that the TCI state / QCL assumption / QCL period is applied until the period is applied.
  • the specific number of times N may be specified in advance in the specifications, may be set in the UE by higher layer signaling, or may be a value reported to the NW in the UE capability information (UE Capability). good.
  • a timer may be set to indicate the time for applying the TCI state / QCL assumption / QCL period to the UE.
  • the MAC layer of the UE may start a specific timer when it receives information about the TCI status / QCL assumption / QCL period update from the PHY layer of the UE.
  • the MAC layer of the UE may apply the notified TCI state / QCL assumption to the channel / signal until the timer expires.
  • the UE may receive information regarding the time (duration) for applying the TCI state / QCL assumption / QCL period.
  • the UE may determine (update) the application of the TCI state / QCL assumption / QCL period based on the information.
  • the time may be specified in advance in the specifications, may be set in the UE by higher layer signaling, or may be a value reported to the NW in the UE capability information (UE Capability). Further, the time may be based on a certain time resource (for example, at least one of a subframe, a slot, a subslot, and a symbol), or may be Tms (T is an arbitrary value).
  • the UE may receive information from the NW regarding the update (switching) of the application of the TCI state / QCL assumption / QCL period.
  • the UE may determine (update) the application of the TCI state / QCL assumption / QCL period based on the information.
  • FIG. 5 is a diagram showing another example of the application period of the TCI state / QCL assumption / QCL period by SSB measurement.
  • the UE measures SSB at SFN # 0.
  • the UE then performs from the next SFN (start of SFN # 1) after the SSB measurement at SFN # 0 to the application of the TCI state / QCL assumption / QCL period by the next SSB measurement (end of SFN # 2).
  • start of SFN # 1 the next SFN
  • end of SFN # 2 end of SFN # 2
  • a new TCI state / QCL assumption / QCL period is applied to the channel / signal based on the measurement result on the SSB at SFN # 0.
  • the application period of the SSB cycle, TCI state / QCL assumption / QCL period shown in FIG. 5 is only an example, and is not limited to this.
  • the application period of the TCI state / QCL assumption / QCL period by SSB / CSI-RS measurement can be appropriately controlled.
  • ⁇ Third embodiment> the information obtained by measuring the SSB / CSI-RS of the UE included in the HST will be described.
  • the UE may obtain information on the QCL assumption by measuring the SSB / CSI-RS by the UE. At this time, the UE does not have to explicitly obtain the QCL type. In this case, the UE may apply the QCL assumption applied to the SSB (or the RACH transmission) at the most recent initial access to the transmission / reception of the channel / signal.
  • the UE may obtain information on the QCL assumption / TCI state by measuring the SSB / CSI-RS by the UE.
  • the information may explicitly indicate a particular QCL type (eg, QCL type D).
  • the UE has a specific QCL type (for example, QCL type D) in which the measured SSB / CSI-RS has a relationship with at least one of downlink channel / signal reception and uplink channel / signal transmission. You may assume that.
  • the UE may obtain information on the QCL assumption / TCI state by measuring the SSB / CSI-RS by the UE.
  • the information may explicitly indicate a particular QCL type (eg, QCL type A).
  • the UE has a specific QCL type (for example, QCL type A) in which the measured SSB / CSI-RS has a relationship with at least one of downlink channel / signal reception and uplink channel / signal transmission. You may assume that.
  • the UE may derive another information (for example, TCI state) based on the QCL assumption obtained by the measurement of SSB / CSI-RS.
  • another information for example, TCI state
  • the UE may set the association between each of the SSB / CSI-RS (for example, SSB resource index / CSI-RS resource index) to be measured and the TCI state in advance by upper layer signaling. The UE may then derive the TCI state based on the SSB / CSI-RS identified by the measurement.
  • SSB resource index / CSI-RS resource index for example, SSB resource index / CSI-RS resource index
  • FIG. 6A is a diagram showing an example of the correspondence between the QCL assumption obtained by the measurement and the derived TCI state.
  • the UE may preset a correspondence relationship as shown in FIG. 6A and derive a TCI state based on the correspondence relationship.
  • the correspondence shown in FIG. 6A is merely an example, and is not limited to this.
  • the UE does not have to set the relationship between each of the SSB / CSI-RS to be measured and the TCI state in advance by higher layer signaling.
  • the UE may assume that the SSB / CSI-RS identified by measurement is RS of a particular type (eg, type A or type D) of the TCI state.
  • the UE does not have to set the relationship between each of the SSB / CSI-RS to be measured and the TCI state in advance by higher layer signaling.
  • the UE may assume that the RS having a QCL assumption relationship with the SSB / CSI-RS identified by the measurement is an RS whose TCI state is a specific type (for example, type A or type D).
  • the correspondence relationship between each of the SSB / CSI-RS to be measured and the RS whose TCI state is a specific QCL type is set in advance in the UE. You may.
  • FIG. 6B is a diagram showing an example of the correspondence relationship between the QCL assumption obtained by measurement and the QCL assumption and RS which is a specific QCL type.
  • the UE has a correspondence relationship as shown in FIG. 6B preset, and based on the correspondence relationship, the relationship between the QCL assumption specified by the SSB measurement and a certain QCL type (for example, at least one of type A and type D).
  • the RS in the above may be derived (determined).
  • the correspondence shown in FIG. 6B is merely an example, and is not limited to this.
  • the QCL assumption obtained by the measurement, the QCL assumption and the RS (for example, CSI-RS # 0-X (X is an integer)) which is the QCL type A, and the QCL assumption obtained by the measurement and the QCL.
  • the assumption and RS of QCL type D (for example, CSI-RS # 1-X) may be CSI-RS having different CCs from each other.
  • the correspondence relationship between each of the SSB / CSI-RS to be measured and the RS whose TCI state is the first QCL type may be set in advance.
  • the UE may assume that the QCL assumption obtained by the measurement of the SSB / CSI-RS is an RS whose TCI state is the second QCL type (for example, type D).
  • the information regarding the beam transition may be read as the information regarding the SSB transition, the information regarding the CSI-RS transition, and the information regarding the SSB / CSI-RS transition.
  • transition means “change”, “update”, “switch”, “enable”, “disable”, and “activate”. , "Deactivate”, “activate / deactivate”, and so on.
  • the UE may determine the TCI state / QCL assumption / QCL period used for transmission / reception to / from the NW based on the information regarding the beam transition.
  • Information about the beam transition may be communicated to the UE based on at least one of higher layer signaling and physical layer signaling. Information on the beam transition and the method of notifying the information will be described in detail below.
  • the UE may implicitly judge the information regarding the beam transition. For example, the UE is notified of the SSB / CSI-RS resource corresponding to each beam, and the received power / reception quality (at least one of RSRP, RSRQ, SINR) of SSB / CSI-RS and the moving speed of the UE. Information about beam transitions may be implicitly determined (estimated) based on at least one.
  • the movement speed of the UE may be at least one of the information regarding the estimation of the movement speed of the UE estimated by the UE itself and the information regarding the estimation of the movement speed of the UE notified from the NW.
  • the UE may measure SSB / CSI-RS based on the information regarding the beam transition.
  • the UE may update (determine) the TCI state / QCL assumption / QCL period based on the measurement result of the SSB / CSI-RS.
  • the UE uses the updated TCI state / QCL assumption / QCL period to receive a downlink channel / signal (eg, at least one of PDCCH, PDSCH, CSI-RS) and an uplink channel / signal.
  • a downlink channel / signal eg, at least one of PDCCH, PDSCH, CSI-RS
  • the UE may perform the beam transition based on the received power / reception quality of SSB / CSI-RS (at least one of RSRP, RSRQ, and SINR) included in the information regarding the beam transition.
  • SSB / CSI-RS at least one of RSRP, RSRQ, and SINR
  • the UE measures the received power / reception quality (at least one of RSRP, RSRQ, SINR) of SSB / CSI-RS included in the information about the beam transition, and the measured value of the assumed beam before the transition-after the transition.
  • the threshold value for example, XdB (X is an arbitrary value)
  • the beam transition may be performed.
  • the value of X may be specified in the specifications in advance, may be set in the UE by upper layer signaling, or may be a value reported to the NW in the UE capability information (UE Capability).
  • FIG. 7 is a diagram showing an example of the application period of the TCI state / QCL assumption / QCL period based on the information regarding the beam transition.
  • the UE is notified in advance that the transition from SSB # 0 to SSB # 1 is performed as information regarding the beam transition.
  • the UE measures SSB # 0 and SSB # 1 at SFN # 0, SFN # 2, SFN # 4 and SFN # 6.
  • the measured values of SSB # 0 in SFN # 0, SFN # 2, SFN # 4 and SFN # 6 are 10 dBm, 7 dBm, 5 dBm and 3 dBm, respectively, and the measured values of SSB # 1 are 0 dBm, respectively. It is 4 dBm, 5 dBm, and 8 dBm.
  • the threshold X of the measured value of the assumed beam before the transition-the measured value of the beam after the transition is 2
  • the UE determines that the QCL assumption by the SSB measurement at SFN # 0 and SFN # 2 is the QCL assumption of SSB # 0. Is applied, and the QCL assumption by SSB measurement in SFN # 4 and SFN # 6 applies the QCL assumption of SSB # 1.
  • the SSB cycle, TCI state / QCL assumption / QCL period application period, SSB measurement result and threshold value shown in FIG. 7 are merely examples, and are not limited thereto.
  • Beam transition information Information on the beam transition will be described below.
  • the UE may control the reception of DL transmissions transmitted from the transmission point based on the information about the beam transition. Beam transitions may be read interchangeably with TCI state transitions or QCL transitions. Information about the beam transition may be notified from the network (eg, base station, transmission point) to the UE using at least one of RRC signaling and MAC CE, or may be predefined in the specification.
  • a transmission point for example, RRH
  • FIG. 8A shows an example of a case where the moving body communicates with a transmission point (here, RRH # 1 and RRH # 2) arranged in the moving path.
  • a transmission point here, RRH # 1 and RRH # 2 arranged in the moving path.
  • each RRH transmits a DL signal / DL channel using a plurality of beams.
  • Each transmission point may be at least one of a unidirectional RRH and a bidirectional RRH.
  • a signal / channel is transmitted from a network (for example, RRH) to a mobile body (for example, UE) (DL transmission)
  • a network for example, RRH
  • a mobile body for example, UE
  • DL transmission a signal / channel is transmitted from a network (for example, RRH) to a mobile body (for example, UE) (DL transmission)
  • UL transmission can also be applied.
  • the information regarding the beam transition includes at least one of the information regarding the transition of the TCI state, the period corresponding to each beam (also referred to as the beam period or the beam time), and the period corresponding to the RRH (also referred to as the RRH period or the RRH time). You may.
  • the period or time may be specified in at least one unit of a symbol, a slot, a subslot, a subframe, and a frame, or may be specified in units of ms or ⁇ s.
  • the period or time may be read as distance or angle.
  • the information regarding the transition of the TCI state may be the transition / ordering / index of the TCI state.
  • the period corresponding to the beam may be the duration / dwell-time of the beam.
  • the period corresponding to the transmission point (RRH) may be the period of RRH / dwell-time.
  • the period corresponding to RRH may correspond to the total value of the periods corresponding to each beam in RRH.
  • the UE may acquire the period corresponding to RRH from the period corresponding to each beam. In this case, it is not necessary to notify the UE or predefine the period corresponding to RRH.
  • FIG. 8B is a diagram showing an example of a table in which the TCI state and each beam period are associated with each beam period index (for example, t0, t1, t2, t3, t4, t5).
  • Each beam period index (t0, t1, t2, t3, t4, t5) may correspond to a different beam. Further, the beam period index may be transitioned (or switched, changed, changed, updated) in the order of t0, t1, t2, t3, t4, and t5 according to the movement of the moving body (UE).
  • TCI state # 0 (t0), TCI state # 1 (t1), TCI state # 2 (t2), TCI state # 3 (t3), TCI state # 4 (t4), TCI state # 5 (t5).
  • the case of transitioning in the order of is shown.
  • the UE may control the reception of DL transmission by assuming that the TCI state (or QCL) transitions according to the period corresponding to each beam in the communication with the transmission point (RRH # 1, # 2). (See FIGS. 9A and 9B).
  • FIG. 9A corresponds to an image diagram considering the geographic domain in communication with RRH # 1, and the lower figure shows the transition of the TCI state in the time direction.
  • slot units slot boundaries
  • FIG. 9B shows an example of a table (or association between the TCI state and the beam period) showing the set beam transitions.
  • the UE may update the TCI state (or QCL assumption) based on the set transition order of the TCI state. For example, in communication with RRH # 1, the UE assumes TCI state # 0 in the corresponding beam period (here, 4), switches to TCI state # 1 after the beam period expires, and switches to DL signal / channel. You may control the reception of.
  • the UE may determine the first beam period index (eg, t0) or the start point of the period corresponding to the beam based on predetermined conditions or methods. For example, the UE (or mobile body) may make a judgment based on the current position acquired from GPS or the like, or may make a judgment based on a predetermined signal (for example, a reference signal) transmitted from the transmission point. good.
  • a predetermined signal for example, a reference signal
  • the UE can appropriately communicate even when the moving body moves at high speed by controlling the communication with the transmission point based on the information regarding the beam transition.
  • the period corresponding to the beam may be the ratio of the period during which each beam is used at the transmission point (eg, Duration ratio, dwell ratio, dwell time ratio) (see FIGS. 10A, 10B).
  • the UE may control the reception of DL transmissions (eg, determine the assumed TCI state or QCL) based on the percentage of time each beam is used.
  • the beam period does not have to be notified or set to the UE.
  • the UE may blindly change (or switch, change, update) the TCI state based on the transition order of the TCI state (or QCL).
  • the period corresponding to RRH may be information (for example, Distance / duration) regarding the distance or period between RRHs (for example, RRH # 1 and RRH # 2).
  • the UE may be notified of information about the average distance or average duration between adjacent RRHs (eg, RRH # n and RRH # n + 1) (see FIG. 11A).
  • the case where the average distance between each RRH is indicated by 3 is shown.
  • information regarding the distance or period between each RRH may be notified or set to the UE (see FIG. 11B).
  • the UE may control the reception of DL transmission in each RRH based on the information regarding the distance or period between the RRHs.
  • the method described above may be applied to the reception of DL transmission in each RRH.
  • the UE can appropriately perform communication in each RRH by grasping the relationship between the RRHs.
  • Information regarding the twist or period between RRHs may be notified from the base station to the UE using at least one of RRC signaling and MAC CE, or may be defined in advance in the specifications.
  • the UE may be controlled to detect a predetermined TCI state (for example, blind detect) from a plurality of TCI states in a certain beam period. For example, when the TCI state corresponding to the beam period t is #i, the TCI state #i and other TCI states may be detected in the beam period t.
  • the other TCI state may be one or more TCI states that transition before or after the TCI state #i.
  • the TCI state #i and other TCI states may be included in a predetermined window (eg, a blind detection window).
  • FIG. 12A shows a case where the TCI state is blindly detected from the TCI state # 1 corresponding to the t1 and the TCI states # 0 and # 2 transitioned before and after the TCI state # 1 in the beam period t1. There is. That is, it corresponds to the case where the blind detection window includes TCI states # 1, # 2, and # 3.
  • the range or size of the blind detection window eg, the range or size of rows, indexes, TCI states
  • TCI states may correspond for each beam period (see FIG. 12B).
  • the UE may detect a predetermined (eg, one) TCI state (eg, blindly) from a plurality of TCI states during each beam period.
  • the UE determines one TCI state from TCI states # 0 and # 1 in the beam period t0.
  • the determination of the TCI state may be performed based on the reception status (for example, received power, etc.) when each TCI state is used.
  • the UE may detect one or more TCI states depending on the UE capability. For example, when the UE supports the ability to simultaneously receive DL transmissions transmitted from a plurality of transmission points (multi-panel simultaneous reception), the UE may detect two TCI states and perform reception processing.
  • a plurality of TCI state candidates corresponding to each beam period may be set, and the TCI state to be actually applied (or assumed) may be determined based on predetermined conditions (see FIG. 13).
  • a case is shown in which two TCI states corresponding to each beam period are set.
  • a plurality of TCI state transition lists corresponding to each beam period may be set, and a list to be actually used may be selected from the plurality of lists.
  • the TCI status list may be set from the network to the UE using at least one of higher layer signaling and MAC CE, or may be predefined in the specifications.
  • the UE may determine one list out of a plurality of lists based on downlink control information (DCI) or PDCCH.
  • DCI downlink control information
  • the TCI list may be specified using a new bit field or an existing bit field included in DCI.
  • the TCI list may be selected based on the DCI position and resources (eg, CCE / PRB / RE index) detected by the UE.
  • the size (for example, the number of bits) of the new bit field is set to the TCI state (or TCI state list). It may be determined based on the number of.
  • the new bit field is unnecessary (not included in DCI).
  • a new bitfield may be included in the DCI if multiple TCI states correspond to at least one of each beam period.
  • wireless communication system Wireless communication system
  • communication is performed using any one of the wireless communication methods according to each of the above-described embodiments of the present disclosure or a combination thereof.
  • FIG. 14 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • the wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by Third Generation Partnership Project (3GPP). ..
  • the radio communication system 1 may support dual connectivity (Multi-RAT Dual Connectivity (MR-DC)) between a plurality of Radio Access Technologies (RATs).
  • MR-DC is dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and dual connectivity between NR and LTE (NR-E).
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • EN-DC E-UTRA-NR Dual Connectivity
  • NE-DC -UTRA Dual Connectivity
  • the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)).
  • the base station (gNB) of NR is MN
  • the base station (eNB) of LTE (E-UTRA) is SN.
  • the wireless communication system 1 has dual connectivity between a plurality of base stations in the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )) May be supported.
  • a plurality of base stations in the same RAT for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )
  • NR-NR Dual Connectivity NR-DC
  • gNB NR base stations
  • the wireless communication system 1 includes a base station 11 that forms a macro cell C1 having a relatively wide coverage, and a base station 12 (12a-12c) that is arranged in the macro cell C1 and forms a small cell C2 that is narrower than the macro cell C1. You may prepare.
  • the user terminal 20 may be located in at least one cell. The arrangement, number, and the like of each cell and the user terminal 20 are not limited to the mode shown in the figure.
  • the base stations 11 and 12 are not distinguished, they are collectively referred to as the base station 10.
  • the user terminal 20 may be connected to at least one of the plurality of base stations 10.
  • the user terminal 20 may use at least one of carrier aggregation (Carrier Aggregation (CA)) and dual connectivity (DC) using a plurality of component carriers (Component Carrier (CC)).
  • CA Carrier Aggregation
  • DC dual connectivity
  • CC Component Carrier
  • Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)).
  • the macro cell C1 may be included in FR1 and the small cell C2 may be included in FR2.
  • FR1 may be in a frequency band of 6 GHz or less (sub 6 GHz (sub-6 GHz)), and FR2 may be in a frequency band higher than 24 GHz (above-24 GHz).
  • the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a frequency band higher than FR2.
  • the user terminal 20 may perform communication using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • the plurality of base stations (for example, RRH) 10 may be connected by wire (for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication).
  • wire for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.
  • NR communication for example, when NR communication is used as a backhaul between base stations 11 and 12, the base station 11 corresponding to the higher-level station is an Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to a relay station (relay) is IAB. It may be called a node.
  • IAB Integrated Access Backhaul
  • relay station relay station
  • the base station 10 may be connected to the core network 30 via another base station 10 or directly.
  • the core network 30 may include at least one such as Evolved Packet Core (EPC), 5G Core Network (5GCN), and Next Generation Core (NGC).
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the user terminal 20 may be a terminal that supports at least one of communication methods such as LTE, LTE-A, and 5G.
  • a wireless access method based on Orthogonal Frequency Division Multiplexing may be used.
  • OFDM Orthogonal Frequency Division Multiplexing
  • DL Downlink
  • UL Uplink
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple. Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the wireless access method may be called a waveform.
  • another wireless access system for example, another single carrier transmission system, another multi-carrier transmission system
  • the UL and DL wireless access systems may be used as the UL and DL wireless access systems.
  • downlink shared channels Physical Downlink Shared Channel (PDSCH)
  • broadcast channels Physical Broadcast Channel (PBCH)
  • downlink control channels Physical Downlink Control
  • Channel PDCCH
  • the uplink shared channel Physical Uplink Shared Channel (PUSCH)
  • the uplink control channel Physical Uplink Control Channel (PUCCH)
  • the random access channel shared by each user terminal 20 are used.
  • Physical Random Access Channel (PRACH) Physical Random Access Channel or the like may be used.
  • User data, upper layer control information, System Information Block (SIB), etc. are transmitted by PDSCH.
  • User data, upper layer control information, and the like may be transmitted by the PUSCH.
  • the Master Information Block (MIB) may be transmitted by the PBCH.
  • Lower layer control information may be transmitted by PDCCH.
  • the lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information of at least one of PDSCH and PUSCH.
  • DCI Downlink Control Information
  • the DCI that schedules PDSCH may be called DL assignment, DL DCI, etc.
  • the DCI that schedules PUSCH may be called UL grant, UL DCI, etc.
  • the PDSCH may be read as DL data
  • the PUSCH may be read as UL data.
  • a control resource set (COntrol REsource SET (CORESET)) and a search space (search space) may be used for PDCCH detection.
  • CORESET corresponds to a resource that searches for DCI.
  • the search space corresponds to the search area and search method of PDCCH candidates (PDCCH candidates).
  • One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a search space based on the search space settings.
  • One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set.
  • the "search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. of the present disclosure may be read as each other.
  • channel state information (Channel State Information (CSI)
  • delivery confirmation information for example, it may be called Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK / NACK, etc.
  • scheduling request for example.
  • Uplink Control Information (UCI) including at least one of SR) may be transmitted.
  • the PRACH may transmit a random access preamble to establish a connection with the cell.
  • downlinks, uplinks, etc. may be expressed without “links”. Further, it may be expressed without adding "Physical" at the beginning of various channels.
  • a synchronization signal (Synchronization Signal (SS)), a downlink reference signal (Downlink Reference Signal (DL-RS)), and the like may be transmitted.
  • the DL-RS includes a cell-specific reference signal (Cell-specific Reference Signal (CRS)), a channel state information reference signal (Channel State Information Reference Signal (CSI-RS)), and a demodulation reference signal (DeModulation).
  • CRS Cell-specific Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • DeModulation Demodulation reference signal
  • Reference Signal (DMRS)), positioning reference signal (Positioning Reference Signal (PRS)), phase tracking reference signal (Phase Tracking Reference Signal (PTRS)), and the like may be transmitted.
  • PRS Positioning Reference Signal
  • PTRS Phase Tracking Reference Signal
  • the synchronization signal may be, for example, at least one of a primary synchronization signal (Primary Synchronization Signal (PSS)) and a secondary synchronization signal (Secondary Synchronization Signal (SSS)).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be referred to as SS / PBCH block, SS Block (SSB) and the like.
  • SS, SSB and the like may also be called a reference signal.
  • a measurement reference signal Sounding Reference Signal (SRS)
  • a demodulation reference signal DMRS
  • UL-RS Uplink Reference Signal
  • UE-specific Reference Signal UE-specific Reference Signal
  • FIG. 15 is a diagram showing an example of the configuration of the base station according to the embodiment.
  • the base station 10 includes a control unit 110, a transmission / reception unit 120, a transmission / reception antenna 130, and a transmission line interface 140.
  • the control unit 110, the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140 may each be provided with one or more.
  • this example mainly shows the functional blocks of the feature portion in the present embodiment, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
  • the control unit 110 controls the entire base station 10.
  • the control unit 110 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
  • the control unit 110 may control signal generation, scheduling (for example, resource allocation, mapping) and the like.
  • the control unit 110 may control transmission / reception, measurement, and the like using the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
  • the control unit 110 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 120.
  • the control unit 110 may perform call processing (setting, release, etc.) of the communication channel, state management of the base station 10, management of radio resources, and the like.
  • the transmission / reception unit 120 may include a baseband unit 121, a Radio Frequency (RF) unit 122, and a measurement unit 123.
  • the baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212.
  • the transmitter / receiver 120 includes a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter / receiver circuit, and the like, which are described based on common recognition in the technical fields according to the present disclosure. be able to.
  • the transmission / reception unit 120 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 1211 and an RF unit 122.
  • the receiving unit may be composed of a receiving processing unit 1212, an RF unit 122, and a measuring unit 123.
  • the transmitting / receiving antenna 130 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
  • the transmission / reception unit 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmission / reception unit 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmission / reception unit 120 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission / reception unit 120 processes, for example, Packet Data Convergence Protocol (PDCP) layer processing and Radio Link Control (RLC) layer processing (for example, RLC) for data, control information, etc. acquired from control unit 110.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ retransmission control HARQ retransmission control
  • the transmission / reception unit 120 performs channel coding (may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (Discrete Fourier Transform (DFT)) for the bit string to be transmitted.
  • the base band signal may be output by performing processing (if necessary), inverse fast Fourier transform (IFFT) processing, precoding, digital-analog conversion, and other transmission processing.
  • IFFT inverse fast Fourier transform
  • the transmission / reception unit 120 may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 130. ..
  • the transmission / reception unit 120 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 130.
  • the transmission / reception unit 120 (reception processing unit 1212) performs analog-digital conversion, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) on the acquired baseband signal. )) Processing (if necessary), filtering, decoding, demodulation, decoding (may include error correction decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing are applied. User data and the like may be acquired.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • the transmission / reception unit 120 may perform measurement on the received signal.
  • the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, or the like based on the received signal.
  • the measuring unit 123 has received power (for example, Reference Signal Received Power (RSRP)) and reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)).
  • RSRP Reference Signal Received Power
  • RSSQ Reference Signal Received Quality
  • SINR Signal to Noise Ratio
  • Signal strength for example, Received Signal Strength Indicator (RSSI)
  • propagation path information for example, CSI
  • the measurement result may be output to the control unit 110.
  • the transmission line interface 140 transmits / receives signals (backhaul signaling) to / from a device included in the core network 30, another base station 10 and the like, and provides user data (user plane data) and control plane for the user terminal 20. Data or the like may be acquired or transmitted.
  • the transmission unit and the reception unit of the base station 10 in the present disclosure may be composed of at least one of the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
  • the transmission / reception unit 120 may transmit one or more synchronization signal blocks (SSBs) from one or more transmission points arranged in the movement path.
  • the control unit 110 may determine the transmission setting instruction (TCI) state and the application period of the TCI state to be applied to at least one of the transmission channel and the signal based on the measurement result of the one or more SSBs (the control unit 110).
  • TCI transmission setting instruction
  • FIG. 16 is a diagram showing an example of the configuration of the user terminal according to the embodiment.
  • the user terminal 20 includes a control unit 210, a transmission / reception unit 220, and a transmission / reception antenna 230.
  • the control unit 210, the transmission / reception unit 220, and the transmission / reception antenna 230 may each be provided with one or more.
  • this example mainly shows the functional blocks of the feature portion in the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
  • the control unit 210 controls the entire user terminal 20.
  • the control unit 210 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
  • the control unit 210 may control signal generation, mapping, and the like.
  • the control unit 210 may control transmission / reception, measurement, and the like using the transmission / reception unit 220 and the transmission / reception antenna 230.
  • the control unit 210 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 220.
  • the transmission / reception unit 220 may include a baseband unit 221 and an RF unit 222, and a measurement unit 223.
  • the baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212.
  • the transmitter / receiver 220 can be composed of a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter / receiver circuit, and the like, which are described based on the common recognition in the technical field according to the present disclosure.
  • the transmission / reception unit 220 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 2211 and an RF unit 222.
  • the receiving unit may be composed of a receiving processing unit 2212, an RF unit 222, and a measuring unit 223.
  • the transmitting / receiving antenna 230 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
  • the transmission / reception unit 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmission / reception unit 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmission / reception unit 220 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission / reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (for example, RLC retransmission control), and MAC layer processing (for example, for data, control information, etc. acquired from the control unit 210). , HARQ retransmission control), etc., to generate a bit string to be transmitted.
  • RLC layer processing for example, RLC retransmission control
  • MAC layer processing for example, for data, control information, etc. acquired from the control unit 210.
  • HARQ retransmission control HARQ retransmission control
  • the transmission / reception unit 220 (transmission processing unit 2211) performs channel coding (may include error correction coding), modulation, mapping, filtering processing, DFT processing (if necessary), and IFFT processing for the bit string to be transmitted. , Precoding, digital-to-analog conversion, and other transmission processing may be performed to output the baseband signal.
  • Whether or not to apply the DFT process may be based on the transform precoding setting.
  • the transmission / reception unit 220 transmits the channel using the DFT-s-OFDM waveform.
  • the DFT process may be performed as the transmission process, and if not, the DFT process may not be performed as the transmission process.
  • the transmission / reception unit 220 may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 230. ..
  • the transmission / reception unit 220 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 230.
  • the transmission / reception unit 220 (reception processing unit 2212) performs analog-digital conversion, FFT processing, IDFT processing (if necessary), filtering processing, demapping, demodulation, and decoding (error correction) for the acquired baseband signal. Decoding may be included), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
  • the transmission / reception unit 220 may perform measurement on the received signal.
  • the measuring unit 223 may perform RRM measurement, CSI measurement, or the like based on the received signal.
  • the measuring unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like.
  • the measurement result may be output to the control unit 210.
  • the transmitter and receiver of the user terminal 20 in the present disclosure may be composed of at least one of the transmitter / receiver 220 and the transmitter / receiver antenna 230.
  • the transmission / reception unit 220 may receive one or more synchronization signal blocks (SSBs) from one or more transmission points arranged in the movement path.
  • the control unit 210 may determine the transmission setting instruction (TCI) state and the application period of the TCI state to be applied to at least one of the receiving channel and the signal based on the measurement result of the one or more SSBs (the control unit 210).
  • TCI transmission setting instruction
  • the control unit 210 may assume that one or more SSBs and at least one of the transmission / reception channels and signals have a specific pseudo-collocation type relationship (third embodiment).
  • the control unit 210 may derive the TCI state based on the pseudo-collocation assumption obtained from the measurement results of one or more SSBs (third embodiment).
  • the control unit 210 may measure one or more SSBs based on the information regarding the transition of SSBs (fourth embodiment).
  • each functional block is realized by using one physically or logically connected device, or directly or indirectly (for example, two or more physically or logically separated devices). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • the functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block (constituent unit) for functioning transmission may be referred to as a transmitting unit (transmitting unit), a transmitter (transmitter), or the like.
  • the method of realizing each of them is not particularly limited.
  • the base station, user terminal, etc. in one embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure.
  • FIG. 17 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
  • the base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. ..
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
  • processor 1001 may be a plurality of processors. Further, the processing may be executed by one processor, or the processing may be executed simultaneously, sequentially, or by using other methods by two or more processors.
  • the processor 1001 may be mounted by one or more chips.
  • the processor 1001 For each function of the base station 10 and the user terminal 20, for example, by loading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, the processor 1001 performs an operation and communicates via the communication device 1004. It is realized by controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
  • predetermined software program
  • Processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
  • CPU central processing unit
  • control unit 110 210
  • transmission / reception unit 120 220
  • the like may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program code
  • the control unit 110 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized in the same manner for other functional blocks.
  • the memory 1002 is a computer-readable recording medium, for example, at least a Read Only Memory (ROM), an Erasable Programmable ROM (EPROM), an Electrically EPROM (EEPROM), a Random Access Memory (RAM), or any other suitable storage medium. It may be composed of one.
  • the memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, or the like that can be executed to implement the wireless communication method according to the embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, and is, for example, a flexible disk, a floppy (registered trademark) disk, an optical magnetic disk (for example, a compact disc (Compact Disc ROM (CD-ROM)), a digital versatile disk, etc.). At least one of Blu-ray® disks, removable disks, optical disc drives, smart cards, flash memory devices (eg cards, sticks, key drives), magnetic stripes, databases, servers, and other suitable storage media. It may be composed of.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (Frequency Division Duplex (FDD)) and time division duplex (Time Division Duplex (TDD)). May be configured to include.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the transmission / reception unit 120 (220), the transmission / reception antenna 130 (230), and the like described above may be realized by the communication device 1004.
  • the transmission / reception unit 120 (220) may be physically or logically separated from the transmission unit 120a (220a) and the reception unit 120b (220b).
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that receives an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information.
  • the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
  • the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (Digital Signal Processor (DSP)), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), a Field Programmable Gate Array (FPGA), and the like. It may be configured to include hardware, and a part or all of each functional block may be realized by using the hardware. For example, processor 1001 may be implemented using at least one of these hardware.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the terms described in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meanings.
  • channels, symbols and signals may be read interchangeably.
  • the signal may be a message.
  • the reference signal may be abbreviated as RS, and may be referred to as a pilot, a pilot signal, or the like depending on the applied standard.
  • the component carrier Component Carrier (CC)
  • CC Component Carrier
  • the wireless frame may be composed of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting the wireless frame may be referred to as a subframe.
  • the subframe may be composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that is independent of numerology.
  • the numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel.
  • Numerology includes, for example, subcarrier spacing (SubCarrier Spacing (SCS)), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval (TTI)), number of symbols per TTI, and wireless frame configuration.
  • SCS subcarrier Spacing
  • TTI Transmission Time Interval
  • a specific filtering process performed by the transmitter / receiver in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like may be indicated.
  • the slot may be composed of one or more symbols in the time domain (Orthogonal Frequency Division Multiple Access (OFDMA) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.).
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may be a time unit based on numerology.
  • the slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain.
  • the mini-slot may also be referred to as a sub-slot.
  • a minislot may consist of a smaller number of symbols than the slot.
  • a PDSCH (or PUSCH) transmitted in a time unit larger than the minislot may be referred to as a PDSCH (PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (PUSCH) mapping type B.
  • the wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal.
  • the radio frame, subframe, slot, minislot and symbol may have different names corresponding to each.
  • the time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be read as each other.
  • one subframe may be called TTI
  • a plurality of consecutive subframes may be called TTI
  • one slot or one minislot may be called TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. It may be.
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • the base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in 3GPP Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • TTIs shorter than normal TTIs may be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
  • the long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (for example, shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the RB may include one or more symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • One or more RBs are a physical resource block (Physical RB (PRB)), a sub-carrier group (Sub-Carrier Group (SCG)), a resource element group (Resource Element Group (REG)), a PRB pair, and an RB. It may be called a pair or the like.
  • Physical RB Physical RB (PRB)
  • SCG sub-carrier Group
  • REG resource element group
  • the resource block may be composed of one or a plurality of resource elements (Resource Element (RE)).
  • RE Resource Element
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • Bandwidth Part (which may also be called partial bandwidth, etc.) represents a subset of consecutive common resource blocks (RBs) for a numerology in a carrier. May be good.
  • the common RB may be specified by the index of the RB with respect to the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
  • BWP UL BWP
  • BWP for DL DL BWP
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, mini slots, and symbols are merely examples.
  • the number of subframes contained in a wireless frame the number of slots per subframe or wireless frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in the RB.
  • the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented. For example, radio resources may be indicated by a given index.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • information, signals, etc. can be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layers.
  • Information, signals, etc. may be input / output via a plurality of network nodes.
  • Input / output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information, signals, etc. can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to other devices.
  • the notification of information is not limited to the mode / embodiment described in the present disclosure, and may be performed by using other methods.
  • the notification of information in the present disclosure includes physical layer signaling (for example, downlink control information (DCI)), uplink control information (Uplink Control Information (UCI))), and higher layer signaling (for example, Radio Resource Control). (RRC) signaling, broadcast information (master information block (MIB), system information block (SIB), etc.), medium access control (MAC) signaling), other signals or combinations thereof May be carried out by.
  • DCI downlink control information
  • UCI Uplink Control Information
  • RRC Radio Resource Control
  • MIB master information block
  • SIB system information block
  • MAC medium access control
  • the physical layer signaling may be referred to as Layer 1 / Layer 2 (L1 / L2) control information (L1 / L2 control signal), L1 control information (L1 control signal), and the like.
  • the RRC signaling may be called an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
  • MAC signaling may be notified using, for example, a MAC control element (MAC Control Element (CE)).
  • CE MAC Control Element
  • the notification of predetermined information is not limited to the explicit notification, but implicitly (for example, by not notifying the predetermined information or another information). May be done (by notification of).
  • the determination may be made by a value represented by 1 bit (0 or 1), or by a boolean value represented by true or false. , May be done by numerical comparison (eg, comparison with a given value).
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language, or other names, is an instruction, instruction set, code, code segment, program code, program, subprogram, software module.
  • Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, functions, etc. should be broadly interpreted.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • a transmission medium For example, a website where software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.).
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • the terms “system” and “network” used in this disclosure may be used interchangeably.
  • the “network” may mean a device (eg, a base station) included in the network.
  • precoding "precoding weight”
  • QCL Quality of Co-Co-Location
  • TCI state Transmission Configuration Indication state
  • space "Spatial relation”, “spatial domain filter”, “transmission power”, “phase rotation”, "antenna port”, “antenna port group”, “layer”, “number of layers”
  • Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, "antenna”, “antenna element", “panel” are compatible.
  • Base station BS
  • radio base station fixed station
  • NodeB NodeB
  • eNB eNodeB
  • gNB gNodeB
  • Access point "Transmission point (Transmission Point (TP))
  • RP Reception point
  • TRP Transmission / Reception Point
  • Panel , "Cell”, “sector”, “cell group”, “carrier”, “component carrier” and the like
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • the base station can accommodate one or more (for example, three) cells.
  • a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio)).
  • Communication services can also be provided by Head (RRH))).
  • RRH Head
  • the term "cell” or “sector” refers to part or all of the coverage area of at least one of the base stations and base station subsystems that provide communication services in this coverage.
  • MS mobile station
  • UE user equipment
  • terminal terminal
  • Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , Handset, user agent, mobile client, client or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
  • the moving body may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving body (for example, a drone, an autonomous vehicle, etc.), or a robot (manned or unmanned type). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read by the user terminal.
  • the communication between the base station and the user terminal is replaced with the communication between a plurality of user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the user terminal 20 may have the function of the base station 10 described above.
  • words such as "up” and “down” may be read as words corresponding to communication between terminals (for example, "side”).
  • the upstream channel, the downstream channel, and the like may be read as a side channel.
  • the user terminal in the present disclosure may be read as a base station.
  • the base station 10 may have the functions of the user terminal 20 described above.
  • the operation performed by the base station may be performed by its upper node (upper node) in some cases.
  • various operations performed for communication with a terminal are performed by the base station and one or more network nodes other than the base station (for example,).
  • Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. can be considered, but it is not limited to these), or it is clear that it can be performed by a combination thereof.
  • each aspect / embodiment described in the present disclosure may be used alone, in combination, or switched with execution. Further, the order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • Future Radio Access FAA
  • New-Radio Access Technology RAT
  • NR New Radio
  • NX New radio access
  • Future generation radio access FX
  • GSM Global System for Mobile communications
  • CDMA2000 Code Division Multiple Access
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • a plurality of systems may be applied in combination (for example, a combination of LTE or LTE-A and 5G).
  • references to elements using designations such as “first” and “second” as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted or that the first element must somehow precede the second element.
  • determining used in this disclosure may include a wide variety of actions.
  • judgment (decision) means judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry) ( For example, searching in a table, database or another data structure), ascertaining, etc. may be considered to be "judgment”.
  • judgment (decision) includes receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access (for example). It may be regarded as “judgment (decision)" of "accessing” (for example, accessing data in memory).
  • judgment (decision) is regarded as “judgment (decision)” of solving, selecting, selecting, establishing, comparing, and the like. May be good. That is, “judgment (decision)” may be regarded as “judgment (decision)” of some action.
  • connection are any direct or indirect connections or connections between two or more elements. Means, and can include the presence of one or more intermediate elements between two elements that are “connected” or “joined” to each other.
  • the connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection” may be read as "access”.
  • the radio frequency domain microwaves. It can be considered to be “connected” or “coupled” to each other using frequency, electromagnetic energy having wavelengths in the light (both visible and invisible) regions, and the like.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本開示の一態様に係る端末は、移動経路に配置される一以上の送信ポイントから一以上の同期信号ブロック(SSB)を受信する受信部と、前記一以上のSSBの測定結果に基づいて、受信するチャネル及び信号の少なくとも一方に適用する、送信設定指示(TCI)状態及び前記TCI状態の適用期間を決定する制御部と、を有する。本開示の一態様によれば、移動体における無線通信を適切に制御することができる。

Description

端末、無線通信方法及び基地局
 本開示は、次世代移動通信システムにおける端末、無線通信方法及び基地局に関する。
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。
 将来の無線通信システム(例えば、NR)では、高速に移動する移動体(例えば、電車など)における無線通信を実現するために移動体の経路に配置された送信ポイント(例えば、Remote Radio Head(RRH))から送信されるビームを利用することが想定される。
 しかし、各送信ポイントから送信されるビームを利用して移動体における無線通信をどのように制御するかについて十分検討されていない。
 そこで、本開示は、移動体における無線通信を適切に制御することができる端末、無線通信方法及び基地局を提供することを目的の1つとする。
 本開示の一態様に係る端末は、移動経路に配置される一以上の送信ポイントから一以上の同期信号ブロック(SSB)を受信する受信部と、前記一以上のSSBの測定結果に基づいて、受信するチャネル及び信号の少なくとも一方に適用する、送信設定指示(TCI)状態及び前記TCI状態の適用期間を決定する制御部と、を有する。
 本開示の一態様によれば、移動体における無線通信を適切に制御することができる。
図1A及び図1Bは、移動体と送信ポイント(例えば、RRH)との通信の一例を示す図である。 図2は、NWによるSSB送信のためのビームスイーピング方法の一例を示す図である。 図3は、移動体の移動経路に配置される送信ポイントとの通信方法の一例を示す図である。 図4は、SSB測定による、TCI状態/QCL想定/QCL期間の適用期間の一例を示す図である。 図5は、SSB測定による、TCI状態/QCL想定/QCL期間の適用期間の他の例を示す図である。 図6A及び図6Bは、第3の実施形態に係る対応関係の一例を示す図である。 図7は、ビーム遷移に関する情報に基づくTCI状態/QCL想定/QCL期間の適用期間の一例を示す図である。 図8A及び図8Bは、第4の実施形態に係る通信制御の一例を示す図である。 図9A及び図9Bは、第4の実施形態に係る通信制御の他の例を示す図である。 図10A及び図10Bは、第4の実施形態に係る通信制御の他の例を示す図である。 図11A及び図11Bは、第4の実施形態に係るRRH間の距離を示すテーブルの一例を示す図である。 図12A及び図12Bは、第4の実施形態に係るTCI状態とビーム期間との対応関係の一例を示す図である。 図13は、第4の実施形態に係るTCI状態とビーム期間との対応関係の他の例を示す図である。 図14は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。 図15は、一実施形態に係る基地局の構成の一例を示す図である。 図16は、一実施形態に係るユーザ端末の構成の一例を示す図である。 図17は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。
(HTS)
 NRでは、高速に移動する電車等の移動体(HTS(high speed train)に含まれる端末(以下、UEとも記す)との通信を行うために、送信ポイント(例えば、RRH)から送信されるビームを利用することが想定される。既存システム(例えば、Rel.15)では、RRHから一方向のビームを送信して移動体との通信を行うことがサポートされている(図1A参照)。
 図1Aでは、移動体の移動経路(又は、移動方向、進行方向、走行経路)に沿ってRRHが設置され、各RRHから移動体の進行方向側にビームが形成される場合を示している。一方向のビームを形成するRRHは、ユニディレクショナルRRH(uni-directional RRH)と呼ばれてもよい。図1Aに示す例では、移動体は各RRHからマイナスのドップラーシフト(-f)を受ける。
 なお、ここでは、移動体の進行方向側にビームが形成される場合を示しているが、これに限られず進行方向と逆方向側にビームが形成されてもよいし、移動体の進行方向とは無関係にあらゆる方向にビームが形成されてもよい。
 Rel.16以降では、RRHから複数(例えば、2以上)のビームが送信されることも想定される。例えば、移動体の進行方向と当該進行方向と逆方向の両方に対してビームを形成することが想定される(図1B参照)。
 図1Bでは、移動体の移動経路に沿ってRRHが設置され、各RRHから移動体の進行方向側と進行方向の逆方向側の両方にビームが形成される場合を示している。複数方向(例えば、2方向)のビームを形成するRRHは、バイディレクショナルRRH(bi-directional RRH)と呼ばれてもよい。
 図1Bに示す例では、移動体が2つのRRH(ここでは、RRH#1とRRH#2)の中間において、マイナスのドップラーシフトを受けた信号から、電力が高くなるプラスのドップラーシフトを受けた信号に切り替わる。この場合、補正が必要となる最大のドップラーシフトの変化幅は、-fから+fへの変化となり、ユニディレクショナルRRHの場合と比較して2倍となる。
 将来的には、移動経路に配置される複数のRRHを利用して(マクロセルのアシストなしで)、500km/h以上の速度で移動する移動体における通信をサポートすることが望まれる。
 一方で、移動体が高速に移動する場合、ビーム制御及びハンドオーバー等の制御を適切に行うことが困難となることが想定される。
 例えば、既存システム(例えば、Rel.15以前)のビーム制御は、例えば、L1-RSRP報告、ビーム通知(TCI状態(TCI state)、空間関係(spatial relation)設定、又はアクティベーション)、受信ビームの決定の手順で行われる。しかし、既存システムの方法を利用して当該一連の流れ(例えば、TCI状態の通知又はQCL想定等)を短い通過期間で行うことは困難となる。
 また、ハンドオーバー制御は、例えば、メジャメントレポート(L3-RSRP、L3-SINR報告)、ハンドオーバー指示、ランダムアクセスチャネル送信、RRC接続完了の手順で行われるが、当該一連の流れを短い通過期間で行うことは困難となる。
(TCI、空間関係、QCL)
 NRでは、送信設定指示状態(Transmission Configuration Indication state(TCI状態))に基づいて、信号及びチャネルの少なくとも一方(信号/チャネルと表現する)のUEにおける受信処理(例えば、受信、デマッピング、復調、復号の少なくとも1つ)、送信処理(例えば、送信、マッピング、プリコーディング、変調、符号化の少なくとも1つ)を制御することが検討されている。
 TCI状態は下りリンクの信号/チャネルに適用されるものを表してもよい。上りリンクの信号/チャネルに適用されるTCI状態に相当するものは、空間関係(spatial relation)と表現されてもよい。
 TCI状態とは、信号/チャネルの疑似コロケーション(Quasi-Co-Location(QCL))に関する情報であり、空間受信パラメータ、空間関係情報(Spatial Relation Information)などと呼ばれてもよい。TCI状態は、チャネルごと又は信号ごとにUEに設定されてもよい。
 QCLとは、信号/チャネルの統計的性質を示す指標である。例えば、ある信号/チャネルと他の信号/チャネルがQCLの関係である場合、これらの異なる複数の信号/チャネル間において、ドップラーシフト(Doppler shift)、ドップラースプレッド(Doppler spread)、平均遅延(average delay)、遅延スプレッド(delay spread)、空間パラメータ(spatial parameter)(例えば、空間受信パラメータ(spatial Rx parameter))の少なくとも1つが同一である(これらの少なくとも1つに関してQCLである)と仮定できることを意味してもよい。
 なお、空間受信パラメータは、UEの受信ビーム(例えば、受信アナログビーム)に対応してもよく、空間的QCLに基づいてビームが特定されてもよい。本開示におけるQCL(又はQCLの少なくとも1つの要素)は、sQCL(spatial QCL)で読み替えられてもよい。
 QCLは、複数のタイプ(QCLタイプ)が規定されてもよい。例えば、同一であると仮定できるパラメータ(又はパラメータセット)が異なる4つのQCLタイプA-Dが設けられてもよく、以下に当該パラメータ(QCLパラメータと呼ばれてもよい)について示す:
 ・QCLタイプA(QCL-A):ドップラーシフト、ドップラースプレッド、平均遅延及び遅延スプレッド、
 ・QCLタイプB(QCL-B):ドップラーシフト及びドップラースプレッド、
 ・QCLタイプC(QCL-C):ドップラーシフト及び平均遅延、
 ・QCLタイプD(QCL-D):空間受信パラメータ。
 所定の制御リソースセット(Control Resource Set(CORESET))、チャネル又は参照信号が、別のCORESET、チャネル又は参照信号と特定のQCL(例えば、QCLタイプD)の関係にあるとUEが想定することは、QCL想定(QCL assumption)と呼ばれてもよい。
 UEは、信号/チャネルのTCI状態又はQCL想定に基づいて、当該信号/チャネルの送信ビーム(Txビーム)及び受信ビーム(Rxビーム)の少なくとも1つを決定してもよい。
 TCI状態は、例えば、対象となるチャネル(言い換えると、当該チャネル用の参照信号(Reference Signal(RS)))と、別の信号(例えば、別のRS)とのQCLに関する情報であってもよい。TCI状態は、上位レイヤシグナリング、物理レイヤシグナリング又はこれらの組み合わせによって設定(指示)されてもよい。
 本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。
 MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))、最低限のシステム情報(Remaining Minimum System Information(RMSI))、その他のシステム情報(Other System Information(OSI))などであってもよい。
 物理レイヤシグナリングは、例えば、下り制御情報(Downlink Control Information(DCI))であってもよい。
 TCI状態又は空間関係が設定(指定)されるチャネルは、例えば、下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))、上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))の少なくとも1つであってもよい。
 また、当該チャネルとQCL関係となるRSは、例えば、同期信号ブロック(Synchronization Signal Block(SSB))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、測定用参照信号(Sounding Reference Signal(SRS))、トラッキング用CSI-RS(Tracking Reference Signal(TRS)とも呼ぶ)、QCL検出用参照信号(QRSとも呼ぶ)の少なくとも1つであってもよい。
 SSBは、プライマリ同期信号(Primary Synchronization Signal(PSS))、セカンダリ同期信号(Secondary Synchronization Signal(SSS))及びブロードキャストチャネル(Physical Broadcast Channel(PBCH))の少なくとも1つを含む信号ブロックである。SSBは、SS/PBCHブロックと呼ばれてもよい。
 上位レイヤシグナリングによって設定されるTCI状態の情報要素(RRCの「TCI-state IE」)は、1つ又は複数のQCL情報(「QCL-Info」)を含んでもよい。QCL情報は、QCL関係となるRSに関する情報(RS関係情報)及びQCLタイプを示す情報(QCLタイプ情報)の少なくとも1つを含んでもよい。RS関係情報は、RSのインデックス(例えば、SSBインデックス、ノンゼロパワーCSI-RS(Non-Zero-Power(NZP) CSI-RS)リソースID(Identifier))、RSが位置するセルのインデックス、RSが位置するBandwidth Part(BWP)のインデックスなどの情報を含んでもよい。
 Rel.15 NRにおいては、PDCCH及びPDSCHの少なくとも1つのTCI状態として、QCLタイプAのRSとQCLタイプDのRSの両方、又はQCLタイプAのRSのみがUEに対して設定され得る。
 QCLタイプAのRSとしてTRSが設定される場合、TRSは、PDCCH又はPDSCHの復調用参照信号(DeModulation Reference Signal(DMRS))と異なり、長時間にわたって周期的に同じTRSが送信されることが想定される。UEは、TRSを測定し、平均遅延、遅延スプレッドなどを計算することができる。
 PDCCH又はPDSCHのDMRSのTCI状態に、QCLタイプAのRSとして前記TRSを設定されたUEは、PDCCH又はPDSCHのDMRSと前記TRSのQCLタイプAのパラメータ(平均遅延、遅延スプレッドなど)が同じであると想定できるので、前記TRSの測定結果から、PDCCH又はPDSCHのDMRSのタイプAのパラメータ(平均遅延、遅延スプレッドなど)を求めることができる。UEは、PDCCH及びPDSCHの少なくとも1つのチャネル推定を行う際に、前記TRSの測定結果を用いて、より精度の高いチャネル推定を行うことができる。
 QCLタイプDのRSを設定されたUEは、QCLタイプDのRSを用いて、UE受信ビーム(空間ドメイン受信フィルタ、UE空間ドメイン受信フィルタ)を決定できる。
 TCI状態のQCLタイプXのRSは、あるチャネル/信号(のDMRS)とQCLタイプXの関係にあるRSを意味してもよく、このRSは当該TCI状態のQCLタイプXのQCLソースと呼ばれてもよい。
<PDCCHのためのTCI状態>
 PDCCH(又はPDCCHに関連するDMRSアンテナポート)及び所定のRSとのQCLに関する情報は、PDCCHのためのTCI状態などと呼ばれてもよい。
 UEは、UE固有のPDCCH(CORESET)のためのTCI状態を、上位レイヤシグナリングに基づいて判断してもよい。例えば、UEに対して、CORESETごとに、1つ又は複数(K個)のTCI状態がRRCシグナリングによって設定されてもよい。
 UEは、各CORESETに対し、RRCシグナリングによって設定された複数のTCI状態の1つを、MAC CEによってアクティベートされてもよい。当該MAC CEは、UE固有PDCCH用TCI状態指示MAC CE(TCI State Indication for UE-specific PDCCH MAC CE)と呼ばれてもよい。UEは、CORESETのモニタを、当該CORESETに対応するアクティブなTCI状態に基づいて実施してもよい。
<PDSCHのためのTCI状態>
 PDSCH(又はPDSCHに関連するDMRSアンテナポート)及び所定のDL-RSとのQCLに関する情報は、PDSCHのためのTCI状態などと呼ばれてもよい。
 UEは、PDSCH用のM(M≧1)個のTCI状態(M個のPDSCH用のQCL情報)を、上位レイヤシグナリングによって通知(設定)されてもよい。なお、UEに設定されるTCI状態の数Mは、UE能力(UE capability)及びQCLタイプの少なくとも1つによって制限されてもよい。
 PDSCHのスケジューリングに用いられるDCIは、当該PDSCH用のTCI状態を示す所定のフィールド(例えば、TCIフィールド、TCI状態フィールドなどと呼ばれてもよい)を含んでもよい。当該DCIは、1つのセルのPDSCHのスケジューリングに用いられてもよく、例えば、DL DCI、DLアサインメント、DCIフォーマット1_0、DCIフォーマット1_1などと呼ばれてもよい。
 TCIフィールドがDCIに含まれるか否かは、基地局からUEに通知される情報によって制御されてもよい。当該情報は、DCI内にTCIフィールドが存在するか否か(present or absent)を示す情報(例えば、TCI存在情報、DCI内TCI存在情報、上位レイヤパラメータTCI-PresentInDCI)であってもよい。当該情報は、例えば、上位レイヤシグナリングによってUEに設定されてもよい。
 8種類を超えるTCI状態がUEに設定される場合、MAC CEを用いて、8種類以下のTCI状態がアクティベート(又は指定)されてもよい。当該MAC CEは、UE固有PDSCH用TCI状態アクティベーション/ディアクティベーションMAC CE(TCI States Activation/Deactivation for UE-specific PDSCH MAC CE)と呼ばれてもよい。DCI内のTCIフィールドの値は、MAC CEによりアクティベートされたTCI状態の一つを示してもよい。
 UEが、PDSCHをスケジュールするCORESET(PDSCHをスケジュールするPDCCH送信に用いられるCORESET)に対して、「有効(enabled)」とセットされたTCI存在情報を設定される場合、UEは、TCIフィールドが、当該CORESET上で送信されるPDCCHのDCIフォーマット1_1内に存在すると想定してもよい。
 PDSCHをスケジュールするCORESETに対して、TCI存在情報が設定されない、又は、当該PDSCHがDCIフォーマット1_0によってスケジュールされる場合において、DL DCI(当該PDSCHをスケジュールするDCI)の受信と当該DCIに対応するPDSCHの受信との間の時間オフセットが閾値以上である場合、UEは、PDSCHアンテナポートのQCLを決定するために、当該PDSCHに対するTCI状態又はQCL想定が、当該PDSCHをスケジュールするPDCCH送信に用いられるCORESETに対して適用されるTCI状態又はQCL想定と同一であると想定してもよい。
 TCI存在情報が「有効(enabled)」とセットされた場合、(PDSCHを)スケジュールするコンポーネントキャリア(CC)内のDCI内のTCIフィールドが、スケジュールされるCC又はDL BWP内のアクティベートされたTCI状態を示し、且つ当該PDSCHがDCIフォーマット1_1によってスケジュールされる場合、UEは、当該PDSCHアンテナポートのQCLを決定するために、DCIを有し検出されたPDCCH内のTCIフィールドの値に従うTCIを用いてもよい。(当該PDSCHをスケジュールする)DL DCIの受信と、当該DCIに対応するPDSCH(当該DCIによってスケジュールされるPDSCH)と、の間の時間オフセットが、閾値以上である場合、UEは、サービングセルのPDSCHのDM-RSポートが、指示されたTCI状態によって与えられるQCLタイプパラメータに関するTCI状態内のRSとQCLである、と想定してもよい。
 RRC接続モードにおいて、DCI内TCI情報(上位レイヤパラメータTCI-PresentInDCI)が「有効(enabled)」とセットされる場合と、DCI内TCI情報が設定されない場合と、の両方において、DL DCI(PDSCHをスケジュールするDCI)の受信と、対応するPDSCH(当該DCIによってスケジュールされるPDSCH)と、の間の時間オフセットが、閾値未満である場合、UEは、サービングセルのPDSCHのDM-RSポートが、サービングセルのアクティブBWP内の1つ以上のCORESETが当該UEによってモニタされる最新(直近、latest)のスロットにおける最小(最低、lowest)のCORESET-IDを有し、モニタされるサーチスペース(monitored search space)に関連付けられたCORESETの、PDCCHのQCL指示に用いられるQCLパラメータに関するRSとQCLである、と想定してもよい。このRSは、PDSCHのデフォルトTCI状態又はPDSCHのデフォルトQCL想定と呼ばれてもよい。
 DL DCIの受信と当該DCIに対応するPDSCHの受信との間の時間オフセットは、スケジューリングオフセットと呼ばれてもよい。
 また、上記閾値は、QCL用時間長(time duration)、「timeDurationForQCL」、「Threshold」、「Threshold for offset between a DCI indicating a TCI state and a PDSCH scheduled by the DCI」、「Threshold-Sched-Offset」、スケジュールオフセット閾値、スケジューリングオフセット閾値、などと呼ばれてもよい。
 QCL用時間長は、UE能力に基づいてもよく、例えばPDCCHの復号及びビーム切り替えに掛かる遅延に基づいてもよい。QCL用時間長は、PDCCH受信と、PDSCH処理用のDCI内で受信される空間QCL情報の適用と、を行うためにUEに必要とされる最小時間であってもよい。QCL用時間長は、サブキャリア間隔毎にシンボル数で表されてもよいし、時間(例えば、μs)で表されてもよい。当該QCL用時間長の情報は、UEからUE能力情報として基地局に報告されてもよいし、基地局から上位レイヤシグナリングを用いてUEに設定されてもよい。
 例えば、UEは、上記PDSCHのDMRSポートが、上記最小のCORESET-IDに対応するCORESETについてアクティベートされたTCI状態に基づくDL-RSとQCLであると想定してもよい。最新のスロットは、例えば、上記PDSCHをスケジュールするDCIを受信するスロットであってもよい。
 なお、CORESET-IDは、RRC情報要素「ControlResourceSet」によって設定されるID(CORESETの識別のためのID、controlResourceSetId)であってもよい。
 CCに対してCORESETが設定されない場合、デフォルトTCI状態は、当該CCのアクティブDL BWP内のPDSCHに適用可能であって最低IDを有するアクティベートされたTCI状態であってもよい。
(SSB)
 NRでは、SSBは初期アクセス及びビーム測定において利用されている。UEは、既存のLTEシステムと比較し、より広域な帯域幅(例えば、20リソースブロック(RB))及びより少ない時間リソース(例えば、4シンボル)でネットワーク(NW、例えば、基地局(gNB)、RRH)から送信されるSSBを受信する。
 また、より柔軟かつ長い送信周期によって、SSBは送信される。具体的には、SSBの送信周期は、{5、10、20、40、80、160}msから設定される。
 さらに、LTEでは、同期信号(PSS/SSS)及びPBCHのシンボル位置は単一の位置に固定されるのに対し、NRにおいては、半無線フレームである5msの中に、SSBのシンボル位置候補が複数設定されうる。具体的には、NRでは、0から3GHz、3から6GHz、6から52.6GHzの周波数レンジに対して、それぞれ4、8、64のSSBのシンボル位置が決定される。
 図2は、NWによるSSB送信のためのビームスイーピング方法の一例を示す図である。図2に示す例において、gNBから複数のビームを用いて、当該複数のビームに対応する複数のSSBが送信される。当該複数のSSB間において、同一のセルIDが設定されてもよい。また、複数のSSBのそれぞれは、SSBインデックスが設定されてもよい。当該SSBインデックスは、半無線フレームである5msの中の、SSBの時間的位置を示してもよい。
 図2に示す例において、各無線フレーム(10ms)のはじめの5msの範囲に、最大64のSSBが設定される。また、SSBの送信周期は20msである。例えば、サブキャリア間隔が120kHzである場合、1スロットは0.125msである。図2に示す例では、gNBは、当該各スロットにおいて、2つのSSBをそれぞれ4シンボルの時間で送信する。なお、図2に示すSSBの送信方法はあくまで一例であり、これに限られない。
 NRにおいては、NWによって、1つのTCI状態又はTCI状態期間(例えば、TCI-state/QCL duration)において、一以上のSSB/CSI-RSを送信することが検討されている。このとき、NWは、Rel.15で規定された方法によってSSB/CSI-RSを送信してもよい。
 図3は、移動体が移動経路に配置される送信ポイント(ここでは、RRH#1)と通信を行う場合の一例を示している。ここでは、RRHが複数のビームを利用してDL信号/DLチャネルを送信する場合を示している。送信ポイントは、ユニディレクショナルRRH及びバイディレクショナルRRHの少なくとも一方であってもよい。
 図3の例において、RRHから送信される各ビームが、1つのTCI状態に対応している。各TCI状態は、TCI状態期間(TCI#X期間)を有してもよい。図3の例において、HSTに含まれるUEは、TCI状態が適用される1つの期間において、一以上のSSBを受信してもよい。
 このように、UEが、TCI状態が適用される1つの期間において、一以上のSSBを受信する場合、UEが、SSB/CSI-RSの測定によって、NWとの通信に適用するTCI状態/QCL想定/QCL期間のブラインド検出を行うことが期待される。言い換えれば、UEは、ビーム遷移に関する情報に基づいて、ビーム遷移をブラインドで行うことが期待される。この場合、UEは、受信電力/受信品質の高いSSBに対応するTCI状態の期間を決定(更新)し、NWとの通信を行う。
 しかしながら、移動体に含まれるUEによる、SSB/CSI-RSの測定に基づくTCI状態/QCL想定の決定方法について、検討が十分でない。当該方法の検討が不十分である場合、通信スループットの向上が抑制されるおそれがある。
 そこで、本発明者らは、移動体においてビーム(又は、TCI状態、QCL想定)の決定に着目し、移動体(又は、移動体に含まれるUE)とRRHの通信制御について検討し、本実施の形態を着想した。具体的には、高速で移動する移動体に含まれるUEが、SSB/CSI-RSの測定によって、NWとの通信に用いるビームを決定する方法について着想した。
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施の態様で説明する構成は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
 TCI状態、TCI状態又はQCL想定、TCI状態期間(duration)、QCL想定、QCL期間(duration)、QCLパラメータ、空間ドメイン受信フィルタ、UE空間ドメイン受信フィルタ、空間ドメインフィルタ、UE受信ビーム、DL受信ビーム、DLプリコーディング、DLプリコーダ、DL-RS、DMRSポートが従うQCLパラメータ、TCI状態又はQCL想定のQCLタイプDのRS、TCI状態又はQCL想定のQCLタイプAのRS、は互いに読み替えられてもよい。QCLタイプDのRS、QCLタイプDに関連付けられたDL-RS、QCLタイプDを有するDL-RS、DL-RSのソース、SSB、CSI-RS、は互いに読み替えられてもよい。
 本開示において、TCI状態は、UEに対して指示(設定)された受信ビーム(空間ドメイン受信フィルタ)に関する情報(例えば、DL-RS、QCLタイプ、DL-RSが送信されるセルなど)であってもよい。QCL想定は、関連付けられた信号(例えば、PRACH)の送信又は受信に基づき、UEによって想定された受信ビーム(空間ドメイン受信フィルタ)に関する情報(例えば、DL-RS、QCLタイプ、DL-RSが送信されるセルなど)であってもよい。
 本開示において、移動体は、所定速度以上で移動するものであればよく、例えば、電車、車、バイク、船舶等であってもよい。また、移動体に含まれるUEと送信ポイント(例えば、RRH)との通信は、当該UEと送信ポイント間で直接行われてもよいし、移動体(例えば、移動体に設置されたアンテナ等)を介してUEと送信ポイント間で行われてもよい。
 また、本開示において、移動体(HST)に含まれるUEは、単にUEと呼ばれてもよい。
 また、本開示において、「A/B」は、A及びBの少なくとも一つ、「A/B/C」は、A、B及びCの少なくとも一つと読み替えられてもよい。
(無線通信方法)
<第1の実施形態>
 HSTに含まれるUEは、QCL測定(決定)のために、CSI-RSリソース及びSSBリソースの少なくとも一方が設定されてもよい。本開示において、CSI-RSリソースは、NZP-CSI-RSリソースであってもよい。
 UEは、CSI-RSリソースが設定されない場合、QCL測定のためにSSBリソースを用いてもよい。また、UEは、SSBリソースが設定されない場合、QCL測定のためにCSI-RSリソースを用いてもよい。
 また、UEは、QCL測定のために、CSI-RSリソース及びSSBの両方を使用してもよい。
 UEは、CSI-RS及びSSBの少なくとも一方の受信電力/受信品質(例えば、Reference Signal Received Power(RSRP)、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)の少なくとも1つ)に基づいて、TCI状態/QCL想定/QCL期間を特定(判断)してもよい。また、UEは、当該特定したTCI状態/QCL想定を、PDCCH、PDSCH、CSI-RSの少なくとも1つの受信に適用してもよい。また、UEは、当該特定したTCI状態/QCL想定/QCL期間を、PUCCH、PUSCH、SRSの少なくとも1つの送信に適用してもよい。
 第1の実施形態によれば、UEによる下りリンクチャネル/信号の受信、上りリンクチャネル/信号の送信の少なくとも一方を適切に制御できる。
<第2の実施形態>
 第2の実施形態においては、CSI-RSリソース及びSSBの少なくとも一方の測定に基づいて決定されたTCI状態/QCL想定/QCL期間の、チャネル/信号に対する適用時間(applicable timeline)について説明する。
 HSTに含まれるUEが特定する(更新する(update))TCI状態/QCL想定/QCL期間について、UEは、一以上のSSB/CSI-RSの測定後、特定の時間経過後から、当該TCI状態/QCL想定が適用されると想定してもよい。当該特定の時間は、SSB/CSI-RSの送信周期に基づいてもよい。
 具体的には、UEは、特定周期毎に設定される測定範囲においてSSB/CSI-RSが送信される最後のシンボル(スロット)より、特定の時間経過後から、当該TCI状態/QCL想定/QCL期間が適用されると想定してもよい。当該特定の時間は、例えば、ある時間リソース(例えば、サブフレーム、スロット、サブスロット、シンボル、の少なくとも1つ)に基づいてもよいし、Tms(Tは任意の値)であってもよい。また、当該特定の時間は、例えば、ある時間リソース(例えば、サブフレーム、スロット、サブスロット、シンボル、の少なくとも1つ)経過後からさらにある時間(例えば、nms、nシンボル、nスロット(nは任意の値)の少なくとも1つ)が経過した後までの時間であってもよい。
 また、HSTに含まれるUEは、特定の回数(例えば、N(Nは任意の値))の、一以上のSSB/CSI-RSが送信され、当該特定の回数目の、SSB/CSI-RSが送信される最後のシンボルより、特定の時間経過後から、当該TCI状態/QCL想定/QCL期間が適用されると想定してもよい。当該特定の時間は、例えば、ある時間リソース(例えば、サブフレーム、スロット、サブスロット、シンボル、の少なくとも1つ)基づいてもよいし、Tms(Tは任意の値)であってもよい。また、当該特定の時間は、例えば、ある時間リソース(例えば、サブフレーム、スロット、サブスロット、シンボル、の少なくとも1つ)の時間経過後からさらにある時間(例えば、nms、nシンボル、nスロット(nは任意の値)の少なくとも1つ)が経過した後までの時間であってもよい。
 なお、この場合、UEは、特定の回数の一以上のSSB/CSI-RSの、それぞれの測定結果の平均値を算出し、当該算出した値に基づいてTCI状態/QCL想定/QCL期間を決定してもよい。
 なお、当該特定の回数Nは、予め仕様で規定されてもよいし、上位レイヤシグナリングによってUEに設定されてもよいし、UE能力情報(UE Capability)でNWに報告される値であってもよい。
 図4は、SSB測定による、TCI状態/QCL想定/QCL期間の適用期間の一例を示す図である。UEは、SFN#0においてSSBの測定を行う。次いで、UEは、SSBの測定後の次のSFN(SFN#1)から、SFN#0におけるSSBに測定結果に基づいて、新しいTCI状態/QCL想定/QCL期間を、チャネル/信号に適用し、NWとの通信を行う。
 なお、図4に示すSSB周期、TCI状態/QCL想定の適用期間はあくまで一例であり、これに限られない。
 HSTに含まれるUEが特定する(更新する(update))TCI状態/QCL想定/QCL期間について、UEは、特定の時間経過後まで、当該TCI状態/QCL想定/QCL期間が適用されると想定してもよい。
 例えば、HSTに含まれるUEは、一以上のSSB/CSI-RS(第1のSSB/CSI-RS)の測定を行った後、その次の一以上のSSB/CSI-RSの測定によるTCI状態/QCL想定/QCL期間を適用するまで、当該第1のSSB/CSI-RSの測定によるTCI状態/QCL想定/QCL期間が適用されると想定してもよい。
 また、例えば、特定の回数(例えば、N)の一以上のSSB/CSI-RSの測定後、その次の特定の回数の一以上のSSB/CSI-RSの測定によるTCI状態/QCL想定/QCL期間を適用するまで、TCI状態/QCL想定/QCL期間が適用されると想定してもよい。
 なお、当該特定の回数Nは、予め仕様で規定されてもよいし、上位レイヤシグナリングによってUEに設定されてもよいし、UE能力情報(UE Capability)でNWに報告される値であってもよい。
 また、例えば、UEに対して、TCI状態/QCL想定/QCL期間を適用する時間を示すタイマが設定されてもよい。UEのMACレイヤは、UEのPHYレイヤからTCI状態/QCL想定/QCL期間の更新に関する情報を受信した場合に、特定のタイマを開始してもよい。UEのMACレイヤは、当該タイマが満了するまで当該通知されたTCI状態/QCL想定を、チャネル/信号に適用してもよい。
 また、例えば、UEは、TCI状態/QCL想定/QCL期間を適用する時間(期間(duration))に関する情報を受信してもよい。UEは、当該情報に基づいて、TCI状態/QCL想定/QCL期間の適用を決定(更新)してもよい。
 当該時間は、予め仕様で規定されてもよいし、上位レイヤシグナリングによってUEに設定されてもよいし、UE能力情報(UE Capability)でNWに報告される値であってもよい。また、当該時間は、ある時間リソース(例えば、サブフレーム、スロット、サブスロット、シンボル、の少なくとも1つ)基づいてもよいし、Tms(Tは任意の値)であってもよい。
 また、例えば、UEは、NWからTCI状態/QCL想定/QCL期間の適用の更新(切り替え)に関する情報を受信してもよい。UEは、当該情報に基づいて、TCI状態/QCL想定/QCL期間の適用を決定(更新)してもよい。
 図5は、SSB測定による、TCI状態/QCL想定/QCL期間の適用期間の他の例を示す図である。UEは、SFN#0においてSSBの測定を行う。次いで、UEは、SFN#0におけるSSBの測定後の次のSFN(SFN#1の開始)から、次のSSBの測定によるTCI状態/QCL想定/QCL期間の適用まで(SFN#2の終了)、SFN#0におけるSSBに測定結果に基づいて、新しいTCI状態/QCL想定/QCL期間を、チャネル/信号に適用する。さらに、SFN#2におけるSSBの測定後の次のSFN(SFN#3の開始)から次のSSBの測定によるTCI状態/QCL想定/QCL期間の適用まで(SFN#4の終了)、SFN#0におけるSSBに測定結果に基づいて、新しいTCI状態/QCL想定/QCL期間を、チャネル/信号に適用する。
 なお、図5に示すSSB周期、TCI状態/QCL想定/QCL期間の適用期間はあくまで一例であり、これに限られない。
 以上第2の実施形態によれば、SSB/CSI-RS測定によるTCI状態/QCL想定/QCL期間の適用期間を適切に制御することができる。
<第3の実施形態>
 第3の実施形態においては、HSTに含まれるUEのSSB/CSI-RSの測定によって得られる情報について説明する。
 UEによるSSB/CSI-RSの測定によって、UEは、QCL想定に関する情報を得てもよい。このとき、UEは、QCLタイプを明示的に得なくてもよい。この場合、UEは、最も直近の初期アクセス時において(又は、RACH送信を行った)SSBに適用されるQCL想定を、チャネル/信号の送受信に適用してもよい。
 また、UEによるSSB/CSI-RSの測定によって、UEは、QCL想定/TCI状態に関する情報を得てもよい。当該情報は、特定のQCLタイプ(例えば、QCLタイプD)を明示的に示してもよい。このとき、UEは、測定したSSB/CSI-RSと、下りリンクチャネル/信号の受信及び上りリンクチャネル/信号の送信の少なくとも1つと、の関係が、特定のQCLタイプ(例えば、QCLタイプD)であると想定してもよい。
 また、UEによるSSB/CSI-RSの測定によって、UEは、QCL想定/TCI状態に関する情報を得てもよい。当該情報は、特定のQCLタイプ(例えば、QCLタイプA)を明示的に示してもよい。このとき、UEは、測定したSSB/CSI-RSと、下りリンクチャネル/信号の受信及び上りリンクチャネル/信号の送信の少なくとも1つと、の関係が、特定のQCLタイプ(例えば、QCLタイプA)であると想定してもよい。
 また、UEは、SSB/CSI-RSの測定によって得られるQCL想定に基づいて、別の情報(例えば、TCI状態)を導出してもよい。
 例えば、UEは、予め測定対象となるSSB/CSI-RS(例えば、SSBリソースインデックス/CSI-RSリソースインデックス)のそれぞれとTCI状態との関連付けを上位レイヤシグナリングによって設定されてもよい。次いで、UEは、測定によって特定したSSB/CSI-RSに基づいて、TCI状態を導出してもよい。
 図6Aは、測定で得られるQCL想定と導出されるTCI状態との対応関係の一例を示す図である。UEは、図6Aに示すような対応関係を予め設定され、当該対応関係に基づいてTCI状態を導出してもよい。なお、図6Aに示す対応関係はあくまで一例であり、これに限られない。
 また、例えば、UEは、予め測定対象となるSSB/CSI-RSのそれぞれとTCI状態との関係を上位レイヤシグナリングによって設定されなくてもよい。この場合、UEは、測定によって特定したSSB/CSI-RSを、TCI状態の特定のタイプ(例えば、タイプA又はタイプD)のRSと想定してもよい。
 また、例えば、UEは、予め測定対象となるSSB/CSI-RSのそれぞれとTCI状態との関係を上位レイヤシグナリングによって設定されなくてもよい。この場合、UEは、測定によって特定したSSB/CSI-RSとQCL想定の関係にあるRSを、TCI状態が特定のタイプ(例えば、タイプA又はタイプD)であるRSと想定してもよい。
 このとき、UEは、測定対象のSSB/CSI-RSのそれぞれと、TCI状態が特定のQCLタイプ(例えば、タイプA及びタイプDの少なくとも一方)であるRSと、の対応関係が、予め設定されてもよい。
 図6Bは、測定で得られるQCL想定と当該QCL想定と特定のQCLタイプであるRSとの対応関係の一例を示す図である。UEは、図6Bに示すような対応関係を予め設定され、当該対応関係に基づいて、SSBの測定によって特定したQCL想定と、あるQCLタイプ(例えば、タイプA及びタイプDの少なくとも一方)の関係にあるRSを導出(決定)してもよい。なお、図6Bに示す対応関係はあくまで一例であり、これに限られない。
 なお、図6Bにおける、測定で得られるQCL想定と当該QCL想定とQCLタイプAであるRS(例えば、CSI-RS#0-X(Xは整数))と、測定で得られるQCL想定と当該QCL想定とQCLタイプDであるRS(例えば、CSI-RS#1-X)とは、互いにCCが異なるCSI-RSであってもよい。
 また、UEは、測定対象のSSB/CSI-RSのそれぞれと、TCI状態が第1のQCLタイプ(例えば、タイプA)であるRSと、の対応関係が、予め設定されてもよい。このとき、UEは、SSB/CSI-RSの測定によって得られるQCL想定を、TCI状態が第2のQCLタイプ(例えば、タイプD)であるRSであると想定してもよい。
 以上第3の実施形態によれば、SSB/CSI-RS測定によるTCI状態/QCL想定の決定を柔軟に制御することができる。
<第4の実施形態>
 第4の実施形態において、HSTに含まれるUEが、ビーム遷移(beam transition)に関する情報に基づいて、NWとの送受信に用いるTCI状態/QCL想定/QCL期間を決定する方法について説明する。
 本開示において、ビーム遷移に関する情報は、SSBの遷移に関する情報、CSI-RSの遷移に関する情報、SSB/CSI-RSの遷移に関する情報と読み替えられてもよい。また、本開示において、「遷移」は、「変更」、「更新(アップデート)」、「切り替え(スイッチ)」、「有効(enable)」、「無効(disable)」、「アクティブ化(activate)」、「非アクティブ化(deactivate)」、「アクティブ化/ディアクティブ化」、などと互いに読み替えられてもよい。
 UEは、ビーム遷移に関する情報に基づいて、NWとの送受信に用いるTCI状態/QCL想定/QCL期間を決定してもよい。当該ビーム遷移に関する情報は、上位レイヤシグナリング及び物理レイヤシグナリングの少なくとも一方に基づいて、UEに通知されてもよい。ビーム遷移に関する情報及び当該情報の通知方法に関しては、以下で詳述する。
 また、UEは、当該ビーム遷移に関する情報について暗黙的に判断してもよい。例えば、UEは、各ビームに対応するSSB/CSI-RSリソースを通知され、SSB/CSI-RSの受信電力/受信品質(RSRP、RSRQ、SINRの少なくとも1つ)、および、UEの移動速度の少なくとも1つに基づいて、ビーム遷移に関する情報を暗黙的に判断(推定)してもよい。
 なお、UEの移動速度は、UE自身が推定したUEの移動速度の推定に関する情報、NWから通知されるUEの移動速度の推定に関する情報の少なくとも1つであってもよい。
 UEは、ビーム遷移に関する情報に基づいて、SSB/CSI-RSの測定を行ってもよい。UEは、当該SSB/CSI-RSの測定結果に基づいて、TCI状態/QCL想定/QCL期間を更新(決定)してもよい。次いで、UEは、当該更新したTCI状態/QCL想定/QCL期間を用いて、下りリンクチャネル/信号(例えば、PDCCH、PDSCH、CSI-RSの少なくとも1つ)の受信、および、上りリンクチャネル/信号(例えば、PUCCH、PUSCH、SRSの少なくとも1つ)の送信の少なくとも1つを行ってもよい。
 このとき、UEは、ビーム遷移に関する情報に含まれるSSB/CSI-RSの受信電力/受信品質(RSRP、RSRQ、SINRの少なくとも1つ)に基づいて、ビーム遷移を行ってもよい。
 例えば、UEは、ビーム遷移に関する情報に含まれるSSB/CSI-RSの受信電力/受信品質(RSRP、RSRQ、SINRの少なくとも1つ)を測定し、遷移前の想定ビームの測定値-遷移後のビームの測定値が、閾値(例えば、XdB(Xは任意の値))以下(未満)である場合、ビーム遷移を行ってもよい。
 当該Xの値は、予め仕様で規定されてもよいし、上位レイヤシグナリングによってUEに設定されてもよいし、UE能力情報(UE Capability)でNWに報告される値であってもよい。
 図7は、ビーム遷移に関する情報に基づくTCI状態/QCL想定/QCL期間の適用期間の一例を示す図である。図7においては、UEに対して、予め、ビーム遷移に関する情報として、SSB#0からSSB#1に遷移することが通知されている。UEは、SFN#0、SFN#2、SFN#4及びSFN#6において、SSB#0及びSSB#1の測定を行う。
 図7において、SFN#0、SFN#2、SFN#4及びSFN#6におけるSSB#0の測定値は、それぞれ10dBm、7dBm、5dBm、3dBmであり、SSB#1の測定値は、それぞれ0dBm、4dBm、5dBm、8dBmである。遷移前の想定ビームの測定値-遷移後のビームの測定値の閾値Xが2である場合、UEは、SFN#0及びSFN#2におけるSSBの測定によるQCL想定は、SSB#0のQCL想定を適用し、SFN#4及びSFN#6におけるSSBの測定によるQCL想定は、SSB#1のQCL想定を適用する。
 なお、図7に示すSSB周期、TCI状態/QCL想定/QCL期間の適用期間、SSB測定結果及び閾値はあくまで一例であり、これに限られない。
《ビーム遷移情報》
 以下では、上記ビーム遷移に関する情報について説明する。UEは、ビーム遷移に関する情報に基づいて送信ポイントから送信されるDL送信の受信を制御してもよい。ビーム遷移は、TCI状態遷移又はQCL遷移と互いに読み替えられてもよい。ビーム遷移に関する情報は、ネットワーク(例えば、基地局、送信ポイント)からUEにRRCシグナリング及びMAC CEの少なくとも一つを利用して通知されてもよいし、仕様であらかじめ定義されてもよい。
 以下において、UEが、ビーム遷移(beam transition)に関する情報に基づいて送信ポイント(例えば、RRH)との通信を制御する場合について説明する。
 図8Aは、移動体が移動経路に配置される送信ポイント(ここでは、RRH#1、RRH#2)と通信を行う場合の一例を示している。ここでは、各RRHが複数のビームを利用してDL信号/DLチャネルを送信する場合を示している。各送信ポイントは、ユニディレクショナルRRH及びバイディレクショナルRRHの少なくとも一方であってもよい。
 以下の説明では、ネットワーク(例えば、RRH)から移動体(例えば、UE)へ信号/チャネルを送信する場合(DL送信)を例に挙げて説明するが、UL送信についても適用することができる。
 ビーム遷移に関する情報は、TCI状態の遷移に関する情報、各ビームに対応する期間(ビーム期間又はビーム時間とも呼ぶ)、RRHに対応する期間(RRH期間又はRRH時間とも呼ぶ)の少なくとも一つが含まれていてもよい。なお、期間又は時間は、シンボル、スロット、サブスロット、サブフレーム、及びフレームの少なくとも一つの単位で規定されてもよいし、ms又はμsの単位で規定されてもよい。期間又は時間は、距離(distance)又はアングル(angle)と読み替えられてもよい。
 TCI状態の遷移に関する情報(例えば、TCI#n→TCI#n+1)は、TCI状態の遷移(Transition)/順序(ordering)/インデックスであってもよい。ビームに対応する期間は、ビームの期間(duration)/滞在時間(dwell-time)であってもよい。送信ポイント(RRH)対応する期間は、RRHの期間(duration)/滞在時間(dwell-time)であってもよい。
 RRHに対応する期間は、RRHにおいて各ビームに対応する期間の合計値に相当してもよい。例えば、UEは、各ビームに対応する期間からRRHに対応する期間を取得してもよい。この場合、RRHに対応する期間をUEに通知又はあらかじめ定義することが不要とできる。
 TCI状態と各ビーム期間とは互いに関連付けられてもよい(図8B参照)。図8Bは、各ビーム期間のインデックス(例えば、t0、t1、t2、t3、t4、t5)に対して、TCI状態と各ビーム期間が関連付けられたテーブルの一例を示す図である。
 各ビーム期間インデックス(t0、t1、t2、t3、t4、t5)は、それぞれ別々のビームに対応してもよい。また、移動体(UE)の移動に応じて、ビーム期間インデックスは、t0、t1、t2、t3、t4、t5の順に遷移(又は、切り替え、チェンジ、変更、アップデート)されてもよい。
 ここでは、TCI状態#0(t0)、TCI状態#1(t1)、TCI状態#2(t2)、TCI状態#3(t3)、TCI状態#4(t4)、TCI状態#5(t5)の順に遷移する場合を示している。UEは、送信ポイント(RRH#1、#2)との通信において、各ビームに対応する期間に応じてTCI状態(又は、QCL)が遷移すると想定してDL送信の受信を制御してもよい(図9A、B参照)。
 図9Aの上図は、RRH#1との通信において地理的ドメイン(Geographic domain)を考慮したイメージ図に相当し、下図は、時間方向におけるTCI状態の遷移を示している。ここでは、時間方向においてスロット単位(スロット境界)が記載されているが、他の時間単位(例えば、シンボル、サブスロット、サブフレーム、フレーム、ms及びμmの少なくとも一つ)であってもよい。図9Bは、設定されるビーム遷移を示すテーブル(又は、TCI状態とビーム期間との関連づけ)の一例を示している。
 UEは、各ビーム期間が満了した場合、設定されたTCI状態の遷移順序に基づいて、TCI状態(又は、QCL想定)をアップデートしてもよい。例えば、UEは、RRH#1との通信において、TCI状態#0を対応するビーム期間(ここでは、4)において想定し、当該ビーム期間が満了した後にTCI状態#1に切り替えてDL信号/チャネルの受信を制御してもよい。
 送信ポイント(RRH#1)との通信において、UEは、所定条件又は方法に基づいて最初のビーム期間インデックス(例えば、t0)又はビームに対応する期間の開始点を判断してもよい。例えば、UE(又は、移動体)は、GPS等から取得した現在位置に基づいて判断してもよいし、送信ポイントから送信される所定の信号(例えば、参照信号)に基づいて判断してもよい。
 このように、UEは、ビーム遷移に関する情報に基づいて送信ポイントとの通信を制御することにより、移動体が高速に移動する場合であっても適切に通信を行うことができる。
[バリエーション1]
 ビームに対応する期間は、送信ポイントにおいて各ビームが利用される期間の割合(例えば、Duration ratio、dwell ratio、dwell time ratio)であってもよい(図10A、B参照)。UEは、各送信ポイントにおいて、各ビームが利用される期間の割合に基づいて、DL送信の受信を制御(例えば、想定するTCI状態又はQCLの決定)してもよい。
 ビーム期間は、UEに通知又は設定されなくてもよい。この場合、UEは、TCI状態(又は、QCL)の遷移順序に基づいて、TCI状態をブラインドで変更(又は、切り替え、チェンジ、アップデート)してもよい。
[バリエーション2]
 RRHに対応する期間は、RRH間(例えば、RRH#1とRRH#2)の距離又は期間に関する情報(例えば、Distance/duration)であってもよい。例えば、隣接するRRH(例えば、RRH#nとRRH#n+1)の間の平均距離又は平均期間に関する情報がUEに通知されてもよい(図11A参照)。ここでは、各RRH間の平均距離が3で示される場合を示している。
 あるいは、各RRH間(例えば、隣接するRRH毎)の距離又は期間に関する情報がUEに通知又は設定されてもよい(図11B参照)。移動経路においてRRH#1~RRH#6が配置される場合、UEは、各RRH間の距離又は期間に関する情報に基づいて、各RRHにおけるDL送信の受信を制御してもよい。各RRHにおけるDL送信の受信は、上述した方法を適用してもよい。
 UEは、RRH間の関係を把握することにより、各RRHにおける通信を適切に行うことができる。なお、RRH間のより又は期間に関する情報は、基地局からUEにRRCシグナリング及びMAC CEの少なくとも一つを利用して通知されてもよいし、仕様であらかじめ定義されてもよい。
[バリエーション3]
 UEは、あるビーム期間において、複数のTCI状態から所定のTCI状態を検出(例えば、blind detect)するように制御してもよい。例えば、ビーム期間tに対応するTCI状態が#iである場合、当該ビーム期間tにおいて、TCI状態#iと、他のTCI状態について検出してもよい。他のTCI状態は、当該TCI状態#iの前又は後に遷移する1以上のTCI状態であってもよい。当該TCI状態#iと他のTCI状態は、所定ウィンドウ(例えば、ブラインド検出ウィンドウ)に含まれていてもよい。
 図12Aは、ビーム期間t1において、当該t1に対応するTCI状態#1と、当該TCI状態#1の前後に遷移されるTCI状態#0と#2からブラインドでTCI状態を検出する場合を示している。つまり、ブラインド検出ウィンドウにTCI状態#1、#2、#3が含まれる場合に相当する。ブラインド検出ウィンドウの範囲又はサイズ(例えば、行、インデックス、TCI状態の範囲又はサイズ)は、ネットワークから設定されてもよいし、あらかじめ定義されてもよい。
 これにより、UEが想定するビーム期間(又は、TCI状態)と実際の位置にズレがある場合であっても適切なTCI状態又はQCL想定に基づいて送信ポイントと通信を行うことができる。
[バリエーション4]
 各ビーム期間に対して複数のTCI状態が対応していてもよい(図12B参照)。ここでは、各ビーム期間に対してそれぞれ2個以上のTCI状態が対応する場合を示している。UEは、各ビーム期間において、複数のTCI状態から所定(例えば、1つの)TCI状態を検出(例えば、ブラインドで検出)してもよい。
 例えば、UEは、ビーム期間t0において、TCI状態#0と#1から1つのTCI状態を決定する。TCI状態の決定は、各TCI状態を利用した場合の受信状況(例えば、受信電力等)に基づいて行われてもよい。
[バリエーション5]
 各ビーム期間に対して複数のTCI状態が対応する場合(図12B参照)、UEは、端末能力(UE capability)に応じて1以上のTCI状態を検出してもよい。例えば、UEは、複数の送信ポイントから送信されるDL送信を同時に受信する能力(マルチパネル同時受信)をサポートする場合、2つのTCI状態を検出して受信処理を行なってもよい。
 このように、ビーム期間に対して複数のTCI状態を対応させることにより、複数の送信ポイントから送信されるDL送信を同時に受信することができる。
[バリエーション6]
 各ビーム期間に対応するTCI状態の候補を複数設定し、実際に適用(又は、想定)するTCI状態が所定条件に基づいて決定されてもよい(図13参照)。ここでは、各ビーム期間にそれぞれ対応するTCI状態をそれぞれ2個ずつ設定する場合を示している。例えば、各ビーム期間に対応するTCI状態の遷移リストを複数設定し、複数のリストの中から実際に利用するリストが選択されてもよい。
 TCI状態リストは、ネットワークからUEに上位レイヤシグナリング及びMAC CEの少なくとも一つを利用して設定されてもよいし、仕様にあらかじめ定義されてもよい。UEは、下り制御情報(DCI)又はPDCCHに基づいて複数のリストの中から1つのリストを決定してもよい。例えば、DCIに含まれる新規ビットフィールド又は既存ビットフィールドを利用してTCIリストが指定されてもよい。あるいは、UEが検出したDCIの位置、リソース(例えば、CCE/PRB/REインデックス)に基づいてTCIリストが選択されてもよい。
 DCIの新規ビットフィードを利用してTCI状態(又は、TCI状態リスト)が指定される場合、当該新規ビットフィールドのサイズ(例えば、ビット数)は、設定されるTCI状態(又は、TCI状態リスト)の数に基づいて決定されてもよい。
 各ビーム期間に対してそれぞれ1つのTCI状態が対応する場合、新規ビットフィールドは不要となる(DCIに含まれない)。各ビーム期間の少なくとも一つに対して複数のTCI状態が対応する場合、新規ビットフィールドがDCIに含まれてもよい。
 このように、複数のTCI状態リストから1つのTCIリストを選択して利用することにより、各RRHとの通信に利用するビーム(又は、TCI状態)を柔軟に設定することができる。
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
 図14は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。
 複数の基地局(例えば、RRH)10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。
(基地局)
 図15は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。
 伝送路インターフェース140は、コアネットワーク30に含まれる装置、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。
 送受信部120は、移動経路に配置される一以上の送信ポイントから一以上の同期信号ブロック(SSB)を送信してもよい。制御部110は、前記一以上のSSBの測定結果に基づいて、送信するチャネル及び信号の少なくとも一方に適用する、送信設定指示(TCI)状態及び前記TCI状態の適用期間を決定してもよい(第1、第2の実施形態)。
(ユーザ端末)
 図16は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220及び送受信アンテナ230の少なくとも1つによって構成されてもよい。
 送受信部220は、移動経路に配置される一以上の送信ポイントから一以上の同期信号ブロック(SSB)を受信してもよい。制御部210は、前記一以上のSSBの測定結果に基づいて、受信するチャネル及び信号の少なくとも一方に適用する、送信設定指示(TCI)状態及び前記TCI状態の適用期間を決定してもよい(第1、第2の実施形態)。
 制御部210は、前記一以上のSSBと前記送受信を行うチャネル及び信号の少なくとも一方とが、特定の疑似コロケーションタイプの関係であることを想定してもよい(第3の実施形態)。
 制御部210は、前記一以上のSSBの測定結果によって得られる疑似コロケーション想定に基づいて、前記TCI状態を導出してもよい(第3の実施形態)。
 制御部210は、SSBの遷移に関する情報に基づいて前記一以上のSSBの測定を行ってもよい(第4の実施形態)。
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図17は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」、「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。

Claims (6)

  1.  移動経路に配置される一以上の送信ポイントから一以上の同期信号ブロック(SSB)を受信する受信部と、
     前記一以上のSSBの測定結果に基づいて、受信するチャネル及び信号の少なくとも一方に適用する、送信設定指示(TCI)状態及び前記TCI状態の適用期間を決定する制御部と、を有する端末。
  2.  前記制御部は、前記一以上のSSBと前記送受信を行うチャネル及び信号の少なくとも一方とが、特定の疑似コロケーションタイプの関係であることを想定する請求項1に記載の端末。
  3.  前記制御部は、前記一以上のSSBの測定結果によって得られる疑似コロケーション想定に基づいて、前記TCI状態を導出する請求項1に記載の端末。
  4.  前記制御部は、SSBの遷移に関する情報に基づいて前記一以上のSSBの測定を行う請求項1に記載の端末。
  5.  移動経路に配置される一以上の送信ポイントから一以上の同期信号ブロック(SSB)を受信するステップと、
     前記一以上のSSBの測定結果に基づいて、受信するチャネル及び信号の少なくとも一方に適用する、送信設定指示(TCI)状態及び前記TCI状態の適用期間を決定するステップと、を有する端末の無線通信方法。
  6.  移動経路に配置される一以上の送信ポイントから一以上の同期信号ブロック(SSB)を送信する送信部と、
     前記一以上のSSBの測定結果に基づいて、送信するチャネル及び信号の少なくとも一方に適用する送信設定指示(TCI)状態及び前記TCI状態の適用期間を決定する制御部と、を有する基地局。
     
PCT/JP2020/018291 2020-04-30 2020-04-30 端末、無線通信方法及び基地局 WO2021220472A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2020/018291 WO2021220472A1 (ja) 2020-04-30 2020-04-30 端末、無線通信方法及び基地局
JP2022518546A JP7464347B2 (ja) 2020-04-30 2020-04-30 端末、無線通信方法、基地局及びシステム
US17/995,954 US20230189320A1 (en) 2020-04-30 2020-04-30 Terminal, radio communication method, and base station
CN202080100262.9A CN115462119A (zh) 2020-04-30 2020-04-30 终端、无线通信方法以及基站

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/018291 WO2021220472A1 (ja) 2020-04-30 2020-04-30 端末、無線通信方法及び基地局

Publications (1)

Publication Number Publication Date
WO2021220472A1 true WO2021220472A1 (ja) 2021-11-04

Family

ID=78331873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/018291 WO2021220472A1 (ja) 2020-04-30 2020-04-30 端末、無線通信方法及び基地局

Country Status (4)

Country Link
US (1) US20230189320A1 (ja)
JP (1) JP7464347B2 (ja)
CN (1) CN115462119A (ja)
WO (1) WO2021220472A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023159434A1 (en) * 2022-02-24 2023-08-31 Nec Corporation Methods, devices, and computer readable medium for communication

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4104590A1 (en) 2020-02-13 2022-12-21 IDAC Holdings, Inc. Methods and apparatuses for multi-trp transmission in hst scenarios
US11700600B2 (en) 2020-04-08 2023-07-11 Qualcomm Incorporated Indication of synchronization signal block properties of single frequency networks

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ETRI: "Discussion on beam management in high speed train scenario", 3GPP DRAFT; R1-1802146 DISCUSSION ON BEAM MANAGEMENT IN HIGH SPEED TRAIN SCENARIO, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Athens, Greece; 20180226 - 20180302, 17 February 2018 (2018-02-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051397813 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023159434A1 (en) * 2022-02-24 2023-08-31 Nec Corporation Methods, devices, and computer readable medium for communication

Also Published As

Publication number Publication date
JPWO2021220472A1 (ja) 2021-11-04
US20230189320A1 (en) 2023-06-15
CN115462119A (zh) 2022-12-09
JP7464347B2 (ja) 2024-04-09

Similar Documents

Publication Publication Date Title
WO2021095181A1 (ja) 端末及び無線通信方法
JP7407726B2 (ja) 端末、無線通信方法及びシステム
WO2021090369A1 (ja) 端末及び無線通信方法
CA3130732A1 (en) User terminal and radio communication method
WO2021065010A1 (ja) 端末及び無線通信方法
WO2021070391A1 (ja) 端末及び無線通信方法
WO2021157035A1 (ja) 端末、無線通信方法及び基地局
WO2021186700A1 (ja) 端末、無線通信方法及び基地局
WO2021152796A1 (ja) 端末、無線通信方法及び基地局
WO2020240863A1 (ja) ユーザ端末及び無線通信方法
WO2021210109A1 (ja) 端末、無線通信方法及び基地局
WO2021161472A1 (ja) 端末、無線通信方法及び基地局
WO2021192298A1 (ja) 端末、無線通信方法及び基地局
WO2021166245A1 (ja) 端末、無線通信方法及び基地局
WO2021149263A1 (ja) 端末、無線通信方法及び基地局
WO2021111532A1 (ja) 端末及び無線通信方法
WO2021220472A1 (ja) 端末、無線通信方法及び基地局
WO2021224968A1 (ja) 端末、無線通信方法及び基地局
WO2021229819A1 (ja) 端末、無線通信方法及び基地局
WO2021186725A1 (ja) 端末、無線通信方法及び基地局
WO2021186724A1 (ja) 端末、無線通信方法及び基地局
WO2021149264A1 (ja) 端末、無線通信方法及び基地局
WO2021161544A1 (ja) 端末、無線通信方法及び基地局
WO2021038659A1 (ja) 端末及び無線通信方法
WO2021106167A1 (ja) 端末及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20933733

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022518546

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20933733

Country of ref document: EP

Kind code of ref document: A1