WO2021220395A1 - Temperature measurement device and temperature measurement method - Google Patents

Temperature measurement device and temperature measurement method Download PDF

Info

Publication number
WO2021220395A1
WO2021220395A1 PCT/JP2020/018095 JP2020018095W WO2021220395A1 WO 2021220395 A1 WO2021220395 A1 WO 2021220395A1 JP 2020018095 W JP2020018095 W JP 2020018095W WO 2021220395 A1 WO2021220395 A1 WO 2021220395A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
thermal resistance
time constant
sensor
skin
Prior art date
Application number
PCT/JP2020/018095
Other languages
French (fr)
Japanese (ja)
Inventor
大地 松永
雄次郎 田中
倫子 瀬山
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2020/018095 priority Critical patent/WO2021220395A1/en
Priority to JP2022518482A priority patent/JPWO2021220395A1/ja
Priority to US17/917,587 priority patent/US20230145806A1/en
Publication of WO2021220395A1 publication Critical patent/WO2021220395A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K17/00Measuring quantity of heat
    • G01K17/06Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device
    • G01K17/08Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device based upon measurement of temperature difference or of a temperature
    • G01K17/20Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device based upon measurement of temperature difference or of a temperature across a radiating surface, combined with ascertainment of the heat transmission coefficient
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/20Clinical contact thermometers for use with humans or animals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/16Special arrangements for conducting heat from the object to the sensitive element
    • G01K1/165Special arrangements for conducting heat from the object to the sensitive element for application in zero heat flux sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K15/00Testing or calibrating of thermometers
    • G01K15/005Calibration

Definitions

  • the present invention relates to a temperature measuring device and a temperature measuring method for measuring the internal temperature of a subject such as a living body.
  • the temperature of the surface layer of a living body that is susceptible to changes in outside air temperature is called the body surface temperature.
  • the body surface temperature may be conventionally measured by a percutaneous thermometer.
  • the body temperature measured by such a conventional percutaneous thermometer may not reflect the core body temperature. Therefore, it is difficult to directly measure the core body temperature, which is the temperature of the deep region of the living body, like the body surface temperature.
  • the inventor measures the skin surface heat flux H Skin and the skin surface temperature T Skin by a sensor installed on the skin surface, and uses these measured values and the biothermal resistance R Body given by the initial calibration.
  • Non-Patent Document 1 and Non-Patent Document 2 it is necessary to derive the biothermal resistance R Body by inputting the initial value of the core body temperature T Core at the time of initial calibration before the start of measurement, and the core body temperature T Core There was a problem that the burden on the person who measured the temperature was heavy.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a temperature measuring device and a temperature measuring method capable of reducing the burden on a person who measures the internal temperature of a subject such as a living body. do.
  • the temperature measuring device of the present invention calculates the time constant of the time change of the temperature based on the sensor configured to measure the surface temperature of the subject and the heat flux on the surface and the measurement result of the temperature. Based on the time constant calculation unit configured as described above, the thermal resistance derivation unit configured to derive the thermal resistance of the subject based on the time constant, the temperature, the heat flux, and the thermal resistance. It is characterized by including a temperature calculation unit configured to calculate the internal temperature of the subject.
  • the temperature measuring method of the present invention includes a first step of measuring the temperature of the surface of the subject, a second step of calculating the time constant of the time change of the temperature based on the measurement result of the temperature, and a second step.
  • the third step of deriving the thermal resistance of the subject based on the time constant the fourth step of measuring the temperature of the surface of the subject and the heat flux of the surface, and the measurement of the fourth step. It is characterized by including a fifth step of calculating the internal temperature of the subject based on the result and the heat resistance calculated in the third step.
  • the thermal resistance of the subject can be derived at the start of measurement, so that it is necessary to input the initial value of the internal temperature of the subject. It is possible to reduce the burden on the person who measures the internal temperature.
  • FIG. 1 is a block diagram showing a configuration of a temperature measuring device according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a heat equivalent circuit model of a sensor and a living body according to an embodiment of the present invention.
  • FIG. 3 is a diagram showing an example of the relationship between the time constant of the time change of the skin surface temperature immediately after the sensor is attached and the thermal resistance of the living body.
  • FIG. 4 is a flowchart illustrating the operation of the temperature measuring device according to the embodiment of the present invention.
  • FIG. 5 is a block diagram showing a configuration example of a computer that realizes the temperature measuring device according to the embodiment of the present invention.
  • FIG. 1 is a block diagram showing a configuration of a temperature measuring device according to an embodiment of the present invention.
  • the temperature measuring device includes a sensor 1 that measures the temperature T Skin on the skin surface of the living body 10 (subject) and the heat flux H Skin on the skin surface, and the living body 10 corresponding to the time constant ⁇ of the time change of the temperature T Skin.
  • a storage unit 2 for storing in advance the calibration table thermal resistance R Body is registered, the constant calculation unit 3 when calculating the constant ⁇ when the time variation of the temperature T Skin based on the measurement result of the temperature T Skin, time constant
  • the core body temperature T Core (internal temperature) of the living body 10 is determined based on the heat resistance deriving unit 4 that derives the heat resistance R Body of the living body 10 based on ⁇ , and the temperature T Skin , the heat flux H Skin, and the heat resistance R Body. It includes a temperature calculation unit 5 for calculating and a calculation result output unit 6 for outputting a calculation result of the core body temperature T Core.
  • the sensor 1 includes a heat insulating member 100, a temperature sensor 101 arranged on the surface of the heat insulating member 100 in contact with the skin of the living body 10, and a temperature sensor 102 arranged on the surface of the heat insulating member 100 on the side opposite to the surface in contact with the skin. including. It is possible to measure the temperature T Skin of the skin surface of the living body 10 by the temperature sensor 101. Further, it is possible to derive the heat flux H Skin on the skin surface based on the difference between the temperature T Skin on the skin surface and the temperature T Upper measured by the temperature sensor 102.
  • the sensor 1 is attached to the skin surface of the living body 10 by, for example, a heat conductive double-sided tape.
  • the configuration shown in FIG. 1 is an example, and the sensor 1 may have a configuration different from that shown in FIG.
  • FIG. 2 is a diagram showing a heat equivalent circuit model of the sensor 1 and the living body 10.
  • T Upper is the temperature of the upper surface of the sensor 1 on the side opposite to the surface of the living body 10 in contact with the skin
  • T Air is the outside air temperature
  • R Body is the heat resistance of the living body 10
  • R Sensor is the heat resistance of the sensor 1.
  • Air is the heat resistance of the outside air
  • C Body is the heat capacity of the living body 10
  • C Sensor is the heat capacity of the sensor 1.
  • the time change T Skin (t) of the temperature of the skin surface of the living body 10 immediately after the sensor is attached, and the time change T Upper (t) of the temperature of the upper surface of the sensor 1 immediately after the sensor is attached are the outside air temperature T Air and the living body.
  • T Core of 10 the heat resistance R Body of the living body 10
  • R Sensor of the sensor 1 the heat resistance R Air of the outside air
  • C Body of the living body 10 the heat capacity C Sensor of the sensor 1
  • T'Skin (t) indicates the derivative of T Skin (t)
  • T'Upper (t) indicates the derivative of T Upper (t).
  • T Skin (0) of the formula (4) is the skin surface temperature immediately after the sensor is attached.
  • the time constant ⁇ of the time-varying T Skin (t) of the skin surface temperature that best fits the curve of the time-varying T Skin (t) of the skin surface temperature shown in the equation (4) is obtained by curve fitting. 5) is obtained.
  • the thermal resistance R Air of the outside air is a constant value under natural convection and does not change.
  • the thermal resistance R Sensor of the sensor 1 is a value peculiar to the sensor 1 and does not change.
  • the ratio of the thermal resistance R Body of the living body 10 to the heat capacity C Body is a value peculiar to the tissue of the living body 10. Therefore, the heat capacity C Body can be expressed by the following equation using the thermal resistance R Body.
  • C Body ⁇ R Body ... (6)
  • ⁇ in equation (6) is a coefficient. From the above, the thermal resistance R Body of the living body 10 is proportional to the square root of the time constant ⁇ . Therefore, for the living body 10 to be measured by the core body temperature T Core, the relationship between the time constant ⁇ of the skin surface temperature T Skin (t) and the thermal resistance R Body of the living body 10 immediately after the sensor is attached is obtained by an experiment. As shown in FIG. 3, the calibration curve L can be obtained, and the thermal resistance R Body for each time constant ⁇ can be obtained from the calibration curve L. In order to obtain the experimental value of the thermal resistance R Body plotted in FIG. 3 (300 in FIG.
  • the core body temperature T Core of the part around the sensor 1 is, for example, a heat flow compensation method or a tympanic membrane thermometer.
  • the thermal resistance R Body corresponding to the time constant ⁇ can be obtained by the equation (1).
  • FIG. 4 is a flowchart illustrating the operation of the temperature measuring device of this embodiment.
  • a calibration table in which the thermal resistance R Body of the living body 10 corresponding to the time constant ⁇ is registered for each time constant ⁇ is stored in advance.
  • the time constant calculation unit 3 of the temperature measuring device is based on the result of continuous measurement of the skin surface temperature T Skin by the sensor 1 (step S100 in FIG. 4), and the time change T Skin of the skin surface temperature immediately after the sensor is attached.
  • the time constant ⁇ of (t) is calculated (step S101 in FIG. 4).
  • the time constant calculation unit 3 sets the time constant ⁇ from the time when the skin surface temperature T Skin rises until the skin surface temperature T Skin reaches 63.2% of the steady value.
  • the thermal resistance derivation unit 4 of the temperature measuring device acquires the value of the thermal resistance R Body of the living body 10 corresponding to the time constant ⁇ calculated by the time constant calculation unit 3 from the calibration table of the storage unit 2, thereby obtaining the thermal resistance.
  • the R Body is derived (step S102 in FIG. 4).
  • the temperature calculation unit 5 of the temperature measuring device measures the skin surface temperature T Skin and the skin surface heat flux H Skin in a steady state after calculating the time constant ⁇ (FIG. 4, step S103), and derives the thermal resistance. Based on the thermal resistance R Body derived by the part 4, the core body temperature T Core of the living body 10 is calculated by the equation (1) (step S104 in FIG. 4).
  • the calculation result output unit 6 of the temperature measuring device outputs the calculation result of the temperature calculation unit 5 (step S105 in FIG. 4). Examples of the output method include displaying the calculation result and transmitting the calculation result to the outside.
  • the thermal resistance R Body of the living body 10 can be derived only from the calibration table prepared in advance, it is not necessary to input the initial value of the core body temperature T Core, and the core body temperature T It is possible to reduce the burden on the person who measures the core (the person who wears the sensor 1 or a person who measures other than the person).
  • the storage unit 2, the time constant calculation unit 3, the thermal resistance derivation unit 4, the temperature calculation unit 5, and the calculation result output unit 6 described in this embodiment are a computer provided with a CPU (Central Processing Unit), a storage device, and an interface. And it can be realized by a program that controls these hardware resources.
  • a configuration example of this computer is shown in FIG.
  • the computer includes a CPU 200, a storage device 201, and an interface device (hereinafter, abbreviated as I / F) 202.
  • a sensor 1 a display device, a communication device, or the like is connected to the I / F 202.
  • a program for realizing the temperature measuring method of the present invention is stored in the storage device 201.
  • the CPU 200 executes the process described in this embodiment according to the program stored in the storage device 201.
  • the present invention can be applied to a technique for measuring the internal temperature of a subject such as a living body.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

This temperature measurement device comprises: a sensor (1) for measuring the temperature and heat flux of the skin surface of a living body (10), a time constant calculation unit (3) for calculating a time constant for the change over time of the temperature on the basis of measurement results for the temperature, a thermal resistance derivation unit (4) for deriving the thermal resistance of the living body (10) on the basis of the time constant, and a temperature calculation unit (5) for calculating the internal temperature of the living body (10) on the basis of the temperature and heat flux of the skin surface measured by the sensor (1) and the thermal resistance calculated by the thermal resistance derivation unit (4).

Description

温度測定装置および温度測定方法Temperature measuring device and temperature measuring method
 本発明は、生体等の被検体の内部温度を測定する温度測定装置および温度測定方法に関するものである。 The present invention relates to a temperature measuring device and a temperature measuring method for measuring the internal temperature of a subject such as a living body.
 物質、例えば生体において、表皮から深部に向かってある一定の深さを超えると、外気温の変化等に左右されない温度領域が存在し、その部分の温度は、深部体温、あるいは核心部温度と呼ばれる。一方、外気温の変化を受けやすい生体の表層の温度は体表面温度と呼ばれる。体表面温度は、従来から経皮的な体温計により計測されることがある。このような従来の経皮的な体温計により計測された体温は、深部体温を反映していない場合がある。そのため、生体の深部の領域の温度である深部体温は、体表面温度のように直接的に計測することは困難である。 In a substance, for example, in a living body, when a certain depth is exceeded from the epidermis toward the deep part, there is a temperature range that is not affected by changes in the outside air temperature, and the temperature of that part is called the core body temperature or the core temperature. .. On the other hand, the temperature of the surface layer of a living body that is susceptible to changes in outside air temperature is called the body surface temperature. The body surface temperature may be conventionally measured by a percutaneous thermometer. The body temperature measured by such a conventional percutaneous thermometer may not reflect the core body temperature. Therefore, it is difficult to directly measure the core body temperature, which is the temperature of the deep region of the living body, like the body surface temperature.
 そこで、発明者は、皮膚表面に設置したセンサによって皮膚表面熱流束HSkinと皮膚表面温度TSkinとを計測し、これらの計測値と初期校正により与えられる生体熱抵抗RBodyとを用いて、深部体温TCoreを推定する非侵襲深部体温計測技術を提案した(非特許文献1、非特許文献2参照)。深部体温TCoreを推定する式は、次式のようになる。
 TCore=TSkin+RBodySkin              ・・・(1)
Therefore, the inventor measures the skin surface heat flux H Skin and the skin surface temperature T Skin by a sensor installed on the skin surface, and uses these measured values and the biothermal resistance R Body given by the initial calibration. We have proposed a non-invasive deep body temperature measurement technique for estimating core body temperature T Core (see Non-Patent Document 1 and Non-Patent Document 2). The formula for estimating the core body temperature T Core is as follows.
T Core = T Skin + R Body H Skin ... (1)
 ただし、非特許文献1、非特許文献2に開示された技術では、計測開始前の初期校正時に深部体温TCoreの初期値入力によって生体熱抵抗RBodyを導出する必要があり、深部体温TCoreを計測する人の負担が大きいという課題があった。 However, in the techniques disclosed in Non-Patent Document 1 and Non-Patent Document 2, it is necessary to derive the biothermal resistance R Body by inputting the initial value of the core body temperature T Core at the time of initial calibration before the start of measurement, and the core body temperature T Core There was a problem that the burden on the person who measured the temperature was heavy.
 本発明は、上記課題を解決するためになされたもので、生体等の被検体の内部温度を計測する人の負担を軽減することができる温度測定装置および温度測定方法を提供することを目的とする。 The present invention has been made to solve the above problems, and an object of the present invention is to provide a temperature measuring device and a temperature measuring method capable of reducing the burden on a person who measures the internal temperature of a subject such as a living body. do.
 本発明の温度測定装置は、被検体の表面の温度と表面の熱流束とを計測するように構成されたセンサと、前記温度の計測結果に基づいて前記温度の時間変化の時定数を算出するように構成された時定数算出部と、前記時定数に基づいて前記被検体の熱抵抗を導出するように構成された熱抵抗導出部と、前記温度と前記熱流束と前記熱抵抗とに基づいて前記被検体の内部温度を算出するように構成された温度算出部とを備えることを特徴とするものである。 The temperature measuring device of the present invention calculates the time constant of the time change of the temperature based on the sensor configured to measure the surface temperature of the subject and the heat flux on the surface and the measurement result of the temperature. Based on the time constant calculation unit configured as described above, the thermal resistance derivation unit configured to derive the thermal resistance of the subject based on the time constant, the temperature, the heat flux, and the thermal resistance. It is characterized by including a temperature calculation unit configured to calculate the internal temperature of the subject.
 また、本発明の温度測定方法は、被検体の表面の温度を計測する第1のステップと、前記温度の計測結果に基づいて前記温度の時間変化の時定数を算出する第2のステップと、前記時定数に基づいて前記被検体の熱抵抗を導出する第3のステップと、前記被検体の表面の温度と表面の熱流束とを計測する第4のステップと、前記第4のステップの計測結果と前記第3のステップで算出した熱抵抗とに基づいて前記被検体の内部温度を算出する第5のステップとを含むことを特徴とするものである。 Further, the temperature measuring method of the present invention includes a first step of measuring the temperature of the surface of the subject, a second step of calculating the time constant of the time change of the temperature based on the measurement result of the temperature, and a second step. The third step of deriving the thermal resistance of the subject based on the time constant, the fourth step of measuring the temperature of the surface of the subject and the heat flux of the surface, and the measurement of the fourth step. It is characterized by including a fifth step of calculating the internal temperature of the subject based on the result and the heat resistance calculated in the third step.
 本発明によれば、時定数算出部と熱抵抗導出部とを設けることにより、計測開始時に被検体の熱抵抗を導出することができるので、被検体の内部温度の初期値を入力する必要がなく、内部温度を計測する人の負担を軽減することができる。 According to the present invention, by providing the time constant calculation unit and the thermal resistance derivation unit, the thermal resistance of the subject can be derived at the start of measurement, so that it is necessary to input the initial value of the internal temperature of the subject. It is possible to reduce the burden on the person who measures the internal temperature.
図1は、本発明の実施例に係る温度測定装置の構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of a temperature measuring device according to an embodiment of the present invention. 図2は、本発明の実施例に係るセンサと生体の熱等価回路モデルを示す図である。FIG. 2 is a diagram showing a heat equivalent circuit model of a sensor and a living body according to an embodiment of the present invention. 図3は、センサ貼り付け直後からの皮膚表面温度の時間変化の時定数と生体の熱抵抗との関係の1例を示す図である。FIG. 3 is a diagram showing an example of the relationship between the time constant of the time change of the skin surface temperature immediately after the sensor is attached and the thermal resistance of the living body. 図4は、本発明の実施例に係る温度測定装置の動作を説明するフローチャートである。FIG. 4 is a flowchart illustrating the operation of the temperature measuring device according to the embodiment of the present invention. 図5は、本発明の実施例に係る温度測定装置を実現するコンピュータの構成例を示すブロック図である。FIG. 5 is a block diagram showing a configuration example of a computer that realizes the temperature measuring device according to the embodiment of the present invention.
 以下、本発明の実施例について図面を参照して説明する。図1は本発明の実施例に係る温度測定装置の構成を示すブロック図である。温度測定装置は、生体10(被検体)の皮膚表面の温度TSkinと皮膚表面の熱流束HSkinとを計測するセンサ1と、温度TSkinの時間変化の時定数τに対応する生体10の熱抵抗RBodyが登録された校正テーブルを予め記憶する記憶部2と、温度TSkinの計測結果に基づいて温度TSkinの時間変化の時定数τを算出する時定数算出部3と、時定数τに基づいて生体10の熱抵抗RBodyを導出する熱抵抗導出部4と、温度TSkinと熱流束HSkinと熱抵抗RBodyとに基づいて生体10の深部体温TCore(内部温度)を算出する温度算出部5と、深部体温TCoreの算出結果を出力する算出結果出力部6とを備えている。 Hereinafter, examples of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a configuration of a temperature measuring device according to an embodiment of the present invention. The temperature measuring device includes a sensor 1 that measures the temperature T Skin on the skin surface of the living body 10 (subject) and the heat flux H Skin on the skin surface, and the living body 10 corresponding to the time constant τ of the time change of the temperature T Skin. a storage unit 2 for storing in advance the calibration table thermal resistance R Body is registered, the constant calculation unit 3 when calculating the constant τ when the time variation of the temperature T Skin based on the measurement result of the temperature T Skin, time constant The core body temperature T Core (internal temperature) of the living body 10 is determined based on the heat resistance deriving unit 4 that derives the heat resistance R Body of the living body 10 based on τ, and the temperature T Skin , the heat flux H Skin, and the heat resistance R Body. It includes a temperature calculation unit 5 for calculating and a calculation result output unit 6 for outputting a calculation result of the core body temperature T Core.
 センサ1は、断熱部材100と、生体10の皮膚と接する断熱部材100の面に配置された温度センサ101と、皮膚と接する面と反対側の断熱部材100の面に配置された温度センサ102とを含む。温度センサ101によって生体10の皮膚表面の温度TSkinを計測することが可能である。また、皮膚表面の温度TSkinと温度センサ102によって計測された温度TUpperとの差に基づいて皮膚表面の熱流束HSkinを導出することが可能である。センサ1は、例えば熱伝導性両面テープによって生体10の皮膚表面に貼り付けられる。なお、図1に示した構成は1例であって、センサ1は図1と異なる構成であっても構わない。 The sensor 1 includes a heat insulating member 100, a temperature sensor 101 arranged on the surface of the heat insulating member 100 in contact with the skin of the living body 10, and a temperature sensor 102 arranged on the surface of the heat insulating member 100 on the side opposite to the surface in contact with the skin. including. It is possible to measure the temperature T Skin of the skin surface of the living body 10 by the temperature sensor 101. Further, it is possible to derive the heat flux H Skin on the skin surface based on the difference between the temperature T Skin on the skin surface and the temperature T Upper measured by the temperature sensor 102. The sensor 1 is attached to the skin surface of the living body 10 by, for example, a heat conductive double-sided tape. The configuration shown in FIG. 1 is an example, and the sensor 1 may have a configuration different from that shown in FIG.
 図2はセンサ1と生体10の熱等価回路モデルを示す図である。図2において、TUpperは生体10の皮膚と接する面と反対側のセンサ1の上面の温度、TAirは外気温度、RBodyは生体10の熱抵抗、RSensorはセンサ1の熱抵抗、RAirは外気の熱抵抗、CBodyは生体10の熱容量、CSensorはセンサ1の熱容量である。 FIG. 2 is a diagram showing a heat equivalent circuit model of the sensor 1 and the living body 10. In FIG. 2, T Upper is the temperature of the upper surface of the sensor 1 on the side opposite to the surface of the living body 10 in contact with the skin, T Air is the outside air temperature, R Body is the heat resistance of the living body 10, and R Sensor is the heat resistance of the sensor 1. Air is the heat resistance of the outside air, C Body is the heat capacity of the living body 10, and C Sensor is the heat capacity of the sensor 1.
 センサ貼り付け直後からの生体10の皮膚表面の温度の時間変化TSkin(t)、センサ貼り付け直後からのセンサ1の上面の温度の時間変化TUpper(t)は、外気温度TAirと生体10の深部体温TCoreと生体10の熱抵抗RBodyとセンサ1の熱抵抗RSensorと外気の熱抵抗RAirと生体10の熱容量CBodyとセンサ1の熱容量CSensorとを用いて、次のように表される。 The time change T Skin (t) of the temperature of the skin surface of the living body 10 immediately after the sensor is attached, and the time change T Upper (t) of the temperature of the upper surface of the sensor 1 immediately after the sensor is attached are the outside air temperature T Air and the living body. Using the core body temperature T Core of 10, the heat resistance R Body of the living body 10, the heat resistance R Sensor of the sensor 1, the heat resistance R Air of the outside air, the heat capacity C Body of the living body 10, and the heat capacity C Sensor of the sensor 1, the following It is expressed as.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 式(2)、式(3)におけるT’Skin(t)はTSkin(t)の微分、T’Upper(t)はTUpper(t)の微分を示す。
 式(2)、式(3)において、CBody≫CSensorとすると、式(4)が得られる。
In equations (2) and (3), T'Skin (t) indicates the derivative of T Skin (t), and T'Upper (t) indicates the derivative of T Upper (t).
In equations (2) and (3), if C Body » C Sensor , then equation (4) is obtained.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 式(4)のTSkin(0)はセンサ貼り付け直後の皮膚表面温度である。式(4)に示す皮膚表面温度の時間変化TSkin(t)の曲線に最もよく当てはまるような皮膚表面温度の時間変化TSkin(t)の時定数τを、カーブフィッティングにより求めると、式(5)が得られる。 T Skin (0) of the formula (4) is the skin surface temperature immediately after the sensor is attached. The time constant τ of the time-varying T Skin (t) of the skin surface temperature that best fits the curve of the time-varying T Skin (t) of the skin surface temperature shown in the equation (4) is obtained by curve fitting. 5) is obtained.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 外気の熱抵抗RAirは、自然対流下では一定値であり、変化しない。センサ1の熱抵抗RSensorは、センサ1に固有の値であり、変化しない。生体10の熱抵抗RBodyと熱容量CBodyとの比は、生体10の組織に固有の値である。したがって、熱容量CBodyを熱抵抗RBodyを用いて次式のように表すことができる。
 CBody=αRBody                    ・・・(6)
The thermal resistance R Air of the outside air is a constant value under natural convection and does not change. The thermal resistance R Sensor of the sensor 1 is a value peculiar to the sensor 1 and does not change. The ratio of the thermal resistance R Body of the living body 10 to the heat capacity C Body is a value peculiar to the tissue of the living body 10. Therefore, the heat capacity C Body can be expressed by the following equation using the thermal resistance R Body.
C Body = αR Body ... (6)
 式(6)のαは係数である。以上により、生体10の熱抵抗RBodyは、時定数τの平方根に比例する。
 したがって、深部体温TCoreの計測対象の生体10について、センサ貼り付け直後からの皮膚表面温度の時間変化TSkin(t)の時定数τと生体10の熱抵抗RBodyとの関係を実験により求めるようにすれば、図3に示すように検量線Lを求めることができ、検量線Lから時定数τ毎の熱抵抗RBodyを求めることができる。図3にプロットされた熱抵抗RBodyの実験値(図3の300)を求めるには、時定数τの算出後にセンサ1の周囲の部位の深部体温TCoreを例えば熱流補償法や鼓膜温度計によって計測すると同時に、皮膚表面温度TSkinと皮膚表面熱流束HSkinとをセンサ1によって計測すれば、式(1)により時定数τに対応する熱抵抗RBodyを求めることができる。
Α in equation (6) is a coefficient. From the above, the thermal resistance R Body of the living body 10 is proportional to the square root of the time constant τ.
Therefore, for the living body 10 to be measured by the core body temperature T Core, the relationship between the time constant τ of the skin surface temperature T Skin (t) and the thermal resistance R Body of the living body 10 immediately after the sensor is attached is obtained by an experiment. As shown in FIG. 3, the calibration curve L can be obtained, and the thermal resistance R Body for each time constant τ can be obtained from the calibration curve L. In order to obtain the experimental value of the thermal resistance R Body plotted in FIG. 3 (300 in FIG. 3), after calculating the time constant τ, the core body temperature T Core of the part around the sensor 1 is, for example, a heat flow compensation method or a tympanic membrane thermometer. At the same time, if the skin surface temperature T Skin and the skin surface heat flux H Skin are measured by the sensor 1, the thermal resistance R Body corresponding to the time constant τ can be obtained by the equation (1).
 図4は本実施例の温度測定装置の動作を説明するフローチャートである。温度測定装置の記憶部2には、時定数τに対応する生体10の熱抵抗RBodyが時定数τ毎に登録された校正テーブルが予め記憶されている。 FIG. 4 is a flowchart illustrating the operation of the temperature measuring device of this embodiment. In the storage unit 2 of the temperature measuring device, a calibration table in which the thermal resistance R Body of the living body 10 corresponding to the time constant τ is registered for each time constant τ is stored in advance.
 温度測定装置の時定数算出部3は、センサ1による皮膚表面温度TSkinの継続的な計測(図4ステップS100)の結果に基づいて、センサ貼り付け直後からの皮膚表面温度の時間変化TSkin(t)の時定数τを算出する(図4ステップS101)。生体10の皮膚表面をセンサ1で覆うと、その部分では皮膚からの熱放散が少なくなるので、外気に露出している部分よりも皮膚表面温度TSkinが上昇した後に定常値に達する。時定数算出部3は、皮膚表面温度TSkinの立ち上がり時点から皮膚表面温度TSkinが定常値の63.2%に達するまでの時間を時定数τとする。 The time constant calculation unit 3 of the temperature measuring device is based on the result of continuous measurement of the skin surface temperature T Skin by the sensor 1 (step S100 in FIG. 4), and the time change T Skin of the skin surface temperature immediately after the sensor is attached. The time constant τ of (t) is calculated (step S101 in FIG. 4). When the skin surface of the living body 10 is covered with the sensor 1, heat is less dissipated from the skin in that portion, so that the steady value is reached after the skin surface temperature T Skin rises more than in the portion exposed to the outside air. The time constant calculation unit 3 sets the time constant τ from the time when the skin surface temperature T Skin rises until the skin surface temperature T Skin reaches 63.2% of the steady value.
 温度測定装置の熱抵抗導出部4は、時定数算出部3によって算出された時定数τに対応する生体10の熱抵抗RBodyの値を記憶部2の校正テーブルから取得することにより、熱抵抗RBodyを導出する(図4ステップS102)。 The thermal resistance derivation unit 4 of the temperature measuring device acquires the value of the thermal resistance R Body of the living body 10 corresponding to the time constant τ calculated by the time constant calculation unit 3 from the calibration table of the storage unit 2, thereby obtaining the thermal resistance. The R Body is derived (step S102 in FIG. 4).
 次に、温度測定装置の温度算出部5は、時定数τの算出後の定常状態の皮膚表面温度TSkinと皮膚表面熱流束HSkinの計測(図4ステップS103)の結果と、熱抵抗導出部4によって導出された熱抵抗RBodyとに基づいて、生体10の深部体温TCoreを式(1)により算出する(図4ステップS104)。 Next, the temperature calculation unit 5 of the temperature measuring device measures the skin surface temperature T Skin and the skin surface heat flux H Skin in a steady state after calculating the time constant τ (FIG. 4, step S103), and derives the thermal resistance. Based on the thermal resistance R Body derived by the part 4, the core body temperature T Core of the living body 10 is calculated by the equation (1) (step S104 in FIG. 4).
 温度測定装置の算出結果出力部6は、温度算出部5の算出結果を出力する(図4ステップS105)。出力方法の例としては、例えば算出結果の表示、外部への算出結果の送信などがある。 The calculation result output unit 6 of the temperature measuring device outputs the calculation result of the temperature calculation unit 5 (step S105 in FIG. 4). Examples of the output method include displaying the calculation result and transmitting the calculation result to the outside.
 以上のように、本実施例では、事前に作成した校正テーブルのみで生体10の熱抵抗RBodyを導出することができるので、深部体温TCoreの初期値を入力する必要がなく、深部体温TCoreを計測する人(センサ1を身に付けた本人あるいは本人以外の計測者)の負担を軽減することができる。 As described above, in this embodiment, since the thermal resistance R Body of the living body 10 can be derived only from the calibration table prepared in advance, it is not necessary to input the initial value of the core body temperature T Core, and the core body temperature T It is possible to reduce the burden on the person who measures the core (the person who wears the sensor 1 or a person who measures other than the person).
 本実施例で説明した記憶部2と時定数算出部3と熱抵抗導出部4と温度算出部5と算出結果出力部6とは、CPU(Central Processing Unit)、記憶装置及びインターフェースを備えたコンピュータと、これらのハードウェア資源を制御するプログラムによって実現することができる。このコンピュータの構成例を図5に示す。 The storage unit 2, the time constant calculation unit 3, the thermal resistance derivation unit 4, the temperature calculation unit 5, and the calculation result output unit 6 described in this embodiment are a computer provided with a CPU (Central Processing Unit), a storage device, and an interface. And it can be realized by a program that controls these hardware resources. A configuration example of this computer is shown in FIG.
 コンピュータは、CPU200と、記憶装置201と、インターフェース装置(以下、I/Fと略する)202とを備えている。I/F202には、センサ1や表示装置、通信装置などが接続される。このようなコンピュータにおいて、本発明の温度測定方法を実現させるためのプログラムは記憶装置201に格納される。CPU200は、記憶装置201に格納されたプログラムに従って本実施例で説明した処理を実行する。 The computer includes a CPU 200, a storage device 201, and an interface device (hereinafter, abbreviated as I / F) 202. A sensor 1, a display device, a communication device, or the like is connected to the I / F 202. In such a computer, a program for realizing the temperature measuring method of the present invention is stored in the storage device 201. The CPU 200 executes the process described in this embodiment according to the program stored in the storage device 201.
 本発明は、生体等の被検体の内部温度を測定する技術に適用することができる。 The present invention can be applied to a technique for measuring the internal temperature of a subject such as a living body.
 1…センサ、2…記憶部、3…時定数算出部、4…熱抵抗導出部、5…温度算出部、6…算出結果出力部、10…生体、100…断熱部材、101,102…温度センサ。 1 ... Sensor, 2 ... Storage unit, 3 ... Time constant calculation unit, 4 ... Thermal resistance derivation unit, 5 ... Temperature calculation unit, 6 ... Calculation result output unit, 10 ... Living body, 100 ... Insulation member, 101, 102 ... Temperature Sensor.

Claims (4)

  1.  被検体の表面の温度と表面の熱流束とを計測するように構成されたセンサと、
     前記温度の計測結果に基づいて前記温度の時間変化の時定数を算出するように構成された時定数算出部と、
     前記時定数に基づいて前記被検体の熱抵抗を導出するように構成された熱抵抗導出部と、
     前記温度と前記熱流束と前記熱抵抗とに基づいて前記被検体の内部温度を算出するように構成された温度算出部とを備えることを特徴とする温度測定装置。
    A sensor configured to measure the surface temperature of the subject and the surface heat flux,
    A time constant calculation unit configured to calculate the time constant of the time change of the temperature based on the measurement result of the temperature, and
    A thermal resistance derivation unit configured to derive the thermal resistance of the subject based on the time constant,
    A temperature measuring device including a temperature calculating unit configured to calculate the internal temperature of the subject based on the temperature, the heat flux, and the thermal resistance.
  2.  請求項1記載の温度測定装置において、
     前記時定数に対応する前記熱抵抗が時定数毎に登録された校正テーブルを予め記憶するように構成された記憶部をさらに備え、
     前記熱抵抗導出部は、前記時定数算出部によって算出された時定数に対応する熱抵抗の値を前記校正テーブルから取得することにより、前記熱抵抗を導出することを特徴とする温度測定装置。
    In the temperature measuring device according to claim 1,
    Further, a storage unit configured to store in advance a calibration table in which the thermal resistance corresponding to the time constant is registered for each time constant is provided.
    The thermal resistance derivation unit is a temperature measuring device, characterized in that the thermal resistance is derived by acquiring a value of the thermal resistance corresponding to the time constant calculated by the time constant calculation unit from the calibration table.
  3.  被検体の表面の温度を計測する第1のステップと、
     前記温度の計測結果に基づいて前記温度の時間変化の時定数を算出する第2のステップと、
     前記時定数に基づいて前記被検体の熱抵抗を導出する第3のステップと、
     前記被検体の表面の温度と表面の熱流束とを計測する第4のステップと、
     前記第4のステップの計測結果と前記第3のステップで算出した熱抵抗とに基づいて前記被検体の内部温度を算出する第5のステップとを含むことを特徴とする温度測定方法。
    The first step of measuring the temperature of the surface of the subject,
    The second step of calculating the time constant of the time change of the temperature based on the measurement result of the temperature, and
    The third step of deriving the thermal resistance of the subject based on the time constant, and
    The fourth step of measuring the temperature of the surface of the subject and the heat flux of the surface, and
    A temperature measuring method comprising a fifth step of calculating the internal temperature of the subject based on the measurement result of the fourth step and the thermal resistance calculated in the third step.
  4.  請求項3記載の温度測定方法において、
     前記第3のステップは、前記第2のステップで算出した時定数に対応する熱抵抗の値を予め記憶された校正テーブルから取得することにより、前記熱抵抗を導出するステップを含むことを特徴とする温度測定方法。
    In the temperature measuring method according to claim 3,
    The third step is characterized by including a step of deriving the thermal resistance by acquiring a value of the thermal resistance corresponding to the time constant calculated in the second step from a calibration table stored in advance. Temperature measurement method.
PCT/JP2020/018095 2020-04-28 2020-04-28 Temperature measurement device and temperature measurement method WO2021220395A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2020/018095 WO2021220395A1 (en) 2020-04-28 2020-04-28 Temperature measurement device and temperature measurement method
JP2022518482A JPWO2021220395A1 (en) 2020-04-28 2020-04-28
US17/917,587 US20230145806A1 (en) 2020-04-28 2020-04-28 Temperature Measurement Device and Temperature Measurement Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/018095 WO2021220395A1 (en) 2020-04-28 2020-04-28 Temperature measurement device and temperature measurement method

Publications (1)

Publication Number Publication Date
WO2021220395A1 true WO2021220395A1 (en) 2021-11-04

Family

ID=78373455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/018095 WO2021220395A1 (en) 2020-04-28 2020-04-28 Temperature measurement device and temperature measurement method

Country Status (3)

Country Link
US (1) US20230145806A1 (en)
JP (1) JPWO2021220395A1 (en)
WO (1) WO2021220395A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11672428B2 (en) * 2017-11-30 2023-06-13 Techno-Commons Inc. Biological data measurement device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001330575A (en) * 2000-03-23 2001-11-30 Ta Instruments Waters Llc Differential scanning calorimeter
JP2017097592A (en) * 2015-11-24 2017-06-01 富士通株式会社 Electronic apparatus, surface temperature calculation method, and surface temperature calculation program
WO2019129469A1 (en) * 2017-12-29 2019-07-04 Medectis Ip Ltd. Non-invasive technique for body core temperature determination
JP2019207124A (en) * 2018-05-28 2019-12-05 日本電信電話株式会社 In-vivo temperature measurement instrument and in-vivo temperature measurement method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001330575A (en) * 2000-03-23 2001-11-30 Ta Instruments Waters Llc Differential scanning calorimeter
JP2017097592A (en) * 2015-11-24 2017-06-01 富士通株式会社 Electronic apparatus, surface temperature calculation method, and surface temperature calculation program
WO2019129469A1 (en) * 2017-12-29 2019-07-04 Medectis Ip Ltd. Non-invasive technique for body core temperature determination
JP2019207124A (en) * 2018-05-28 2019-12-05 日本電信電話株式会社 In-vivo temperature measurement instrument and in-vivo temperature measurement method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MATSUNAGA, DAICHI; TANAKA, YUJIRO; SEYAMA, MICHIKO: "B-19-15 Examination method of core body temperature against ambient convection change", PROCEEDINGS OF THE 2019 IEICE COMMUNICATIONS SOCIETY CONFERENCE; TOYONAKA; SEPTEMBER 10-13, 2019, 27 August 2019 (2019-08-27), pages 379, XP009531972 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11672428B2 (en) * 2017-11-30 2023-06-13 Techno-Commons Inc. Biological data measurement device

Also Published As

Publication number Publication date
JPWO2021220395A1 (en) 2021-11-04
US20230145806A1 (en) 2023-05-11

Similar Documents

Publication Publication Date Title
Zhang et al. Theoretical and experimental studies of epidermal heat flux sensors for measurements of core body temperature
JP7151607B2 (en) Temperature measuring device and temperature measuring method
US7289927B2 (en) Method and apparatus for the monitoring of body temperature and/or blood flow
JP4751386B2 (en) Temperature measuring device
EP2120681B1 (en) Methods and devices for measuring core body temperature
US20180008149A1 (en) Systems and Methods of Body Temperature Measurement
JP7073919B2 (en) In-vivo temperature measuring device and in-vivo temperature measuring method
US20220000370A1 (en) Core body temperature sensor system based on flux measurement
RU2007140372A (en) DEVICE AND METHOD FOR FORECASTING HUMAN TEMPERATURE
JP6973296B2 (en) In-vivo temperature measuring device and in-vivo temperature measuring method
WO2021220395A1 (en) Temperature measurement device and temperature measurement method
JP7364005B2 (en) Intraoral measurement device and intraoral measurement system
SE541080C2 (en) Calibrating a heat flux sensor for measuring body temperature of an individual
CN111141420A (en) Object deep temperature measuring method and device based on heat flow method
CN111741710B (en) Core temperature detection system and method
WO2021220396A1 (en) Temperature measurement device and temperature measurement method
JP6648720B2 (en) Heat output control device
JP7351416B2 (en) Installation status determination method and installation status determination system
JP7435825B2 (en) Temperature estimation method, temperature estimation program and temperature estimation device
WO2022064553A1 (en) Temperature estimation method, temperature estimation program, and temperature estimation device
WO2022264271A1 (en) Temperature estimation system and temperature estimation method
US9939334B2 (en) Fast responsive personalized thermometer
CN111565625B (en) System and method for detecting thickness of layer
WO2023161998A1 (en) Temperature measurement device
US20230141767A1 (en) Comfort determination device, air conditioner, and comfort determination method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20932878

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022518482

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20932878

Country of ref document: EP

Kind code of ref document: A1