WO2021220371A1 - Piping inspection system, piping inspection device, and piping inspection method - Google Patents

Piping inspection system, piping inspection device, and piping inspection method Download PDF

Info

Publication number
WO2021220371A1
WO2021220371A1 PCT/JP2020/018028 JP2020018028W WO2021220371A1 WO 2021220371 A1 WO2021220371 A1 WO 2021220371A1 JP 2020018028 W JP2020018028 W JP 2020018028W WO 2021220371 A1 WO2021220371 A1 WO 2021220371A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound wave
piping
pipe
sound
piping inspection
Prior art date
Application number
PCT/JP2020/018028
Other languages
French (fr)
Japanese (ja)
Inventor
稔久 藤原
幸嗣 辻
一貴 原
亮太 椎名
央也 小野
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2020/018028 priority Critical patent/WO2021220371A1/en
Priority to JP2022518465A priority patent/JP7380855B2/en
Publication of WO2021220371A1 publication Critical patent/WO2021220371A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/24Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations

Definitions

  • This disclosure relates to the inspection of the normality of the laid pipe and the measurement of the flow rate in the pipe.
  • Non-Patent Document 1 describes the possibility that the leaking sound can be discriminated by frequency analysis. Further, Non-Patent Document 2 describes the possibility that dark water sound and water leakage sound can be separated by chaos theory.
  • Non-Patent Document 3 a method of determining the water leakage location by reading the change of the pressure waveform in the pipeline due to the water hammer action has been proposed (see, for example, Non-Patent Document 3). ).
  • Non-Patent Documents 1 and 2 may lead to the automation of judgment by human hearing, the hearing itself must be carried out in the vicinity of the leaked part. However, there is a problem that it is difficult to significantly reduce the labor of inspection.
  • Non-Patent Document 3 The method using water hammer proposed in Non-Patent Document 3 generates water hammer by opening and closing a valve downstream from the leaking part, and measures each tributary in order to read the change in water pressure of the water flow system. Is required, and there is a problem that it is difficult to drastically reduce the labor of measurement. Furthermore, the proposal of Non-Patent Document 3 is premised on agricultural water supply, and there is also a problem that it is difficult to install a valve that causes water hammer in individual households and business establishments in ordinary water supply. In addition, the proposal of Non-Patent Document 3 has a problem that it is difficult to implement because the stable water supply itself of the water supply may be hindered by water hammer.
  • An object of the present invention is to provide a piping inspection system, a piping inspection device, and a piping inspection method that can be used in waterworks and can perform intensive automatic measurement in order to solve the above problems.
  • the piping inspection system applied sound waves to the laid pipes and analyzed the sound waves returning from the pipes.
  • the piping inspection system according to the present invention is arranged in a laid pipe, transmits a pulse sound wave to the pipe, receives a return sound wave returning from the pipe by transmitting the pulse sound wave, and receives the return sound wave.
  • a piping inspection device for acquiring the distribution of the level of the return sound wave in the longitudinal direction of the piping is provided.
  • the piping inspection device is a piping inspection device arranged in the laid pipes.
  • a transmitter that transmits pulsed sound waves to the pipe
  • a receiving unit that receives the return sound wave returned from the pipe by transmitting the pulsed sound wave
  • An analysis unit that acquires the distribution of the level of the return sound wave in the longitudinal direction of the pipe, and It is characterized by having.
  • the piping inspection method according to the present invention is a piping inspection method for inspecting laid pipes. Sending pulsed sound waves to the pipe, To receive the return sound wave returning from the pipe by transmitting the pulse sound wave, and to obtain the distribution of the level of the return sound wave in the longitudinal direction of the pipe. It is characterized by performing.
  • a water pipe inspection device is installed between the water pump of the water distribution system and the water pipe, pulse sound waves are transmitted to the downstream side of the water pipe, and reflected sound from the downstream side is received. , Detects the presence or absence of water leakage and the location of water leakage from the time change of the received reflected sound.
  • the present invention can provide a piping inspection system, a piping inspection device, and a piping inspection method that can be used in waterworks and can perform intensive automatic measurement.
  • the piping inspection system further includes a reflecting device arranged in the piping, receiving the pulse sound wave, and transmitting an arbitrary sound wave as the return sound wave in the direction of receiving the pulse sound wave of the piping. It is characterized by.
  • the piping inspection system according to the present invention is characterized in that the piping inspection device has a bandpass filter that selects the arbitrary sound wave transmitted by the reflection device from the return sound wave.
  • the return sound wave can be separated into a naturally reflected sound wave and a sound wave from a reflecting device.
  • the piping inspection system according to the present invention is further provided with a time synchronization function for synchronizing the time between the piping inspection device and the reflection device. It is possible to measure the flow velocity and flow rate between the water pipe inspection device and the reflection device.
  • the piping inspection device of the piping inspection system detects the flow velocity at the location of the piping where the return sound wave is generated from the difference between the frequency of the pulse sound wave and the frequency of the return sound wave other than the arbitrary sound wave. It is characterized by further providing a flow velocity detection function. The flow velocity and flow rate at a desired point can be measured only with a water pipe inspection device.
  • the present invention can provide a piping inspection system, a piping inspection device, and a piping inspection method that can be used in waterworks and can perform intensive automatic measurement.
  • FIG. 1 is a diagram illustrating the piping inspection system 301 of the present embodiment.
  • the pipe inspection system 301 is arranged in the laid pipe 50, transmits a pulse sound wave to the pipe 50, receives a return sound wave returning from the pipe 50 by transmitting the pulse sound wave, and returns the return sound wave in the longitudinal direction of the pipe 50.
  • the piping inspection device 10 for acquiring the distribution of sound wave levels is provided.
  • the water pipe inspection device 10 is installed between the water supply pump 20 and the water pipe 50.
  • the water pipe inspection device 10 includes a transmitting unit 11 that generates a pulsed sound wave and a receiving unit 12 that receives a pulsed sound wave (return sound wave) generated by the water pipe 50.
  • the water pipe inspection device 10 can also be installed in the water pipe 50 away from the water supply pump 20. In addition to the permanent installation, the water pipe inspection device 10 can be installed so as to temporarily contact the water pipe 50 and the plug at the time of measurement.
  • the water pipe inspection device 10 can identify those points by the reception time of the return sound wave reflected at the diversion point, the bend point, or the water leakage point of the water pipe 50.
  • the water pipe inspection device 10 can calibrate the distance of the reflection point of the measurement result based on the reflection point whose distance from itself is known.
  • the water pipe inspection device 10 can suppress dark water noise by numerical processing such as averaging and improve the accuracy of pipe inspection. Further, the water pipe inspection device 10 can improve the accuracy of the pipe inspection by reducing the influence of the dark water sound by frequency-separating the return sound waves.
  • audible sound waves For pulsed sound waves, audible sound waves, ultrasonic waves, or both can be used. Further, by using a plurality of frequencies for the pulsed sound wave, the properties of the reflected portion can be separated.
  • the water pipe inspection device 10 can separate the diversion and the water leakage of the water pipe 50 by transmitting pulse sound waves of a plurality of frequencies.
  • the pipe inspection system 301 is further provided with a reflecting device R arranged in the pipe 50, receiving the pulse sound wave, and transmitting an arbitrary sound wave as the return sound wave in the direction of receiving the pulse sound wave of the pipe 50. And. As shown in FIG. 1, a plurality of reflectors R can be installed in the path of the water pipe.
  • the reflector R can be retrofitted not only inside the water pipe 50 but also outside the water pipe 50.
  • the reflecting device R can not only reflect the pulsed sound wave as it is, but also respond as another sound wave having a different frequency or the like.
  • the pipe inspection device 10 further has a flow velocity detection function for detecting the flow velocity at the location of the pipe 50 where the return sound wave is generated from the difference between the frequency of the pulse sound wave and the frequency of the return sound wave other than the arbitrary sound wave. Be prepared.
  • the pipe inspection device 10 can measure the flow velocity in the vicinity of the reflection point by the Doppler shift of the reflected sound from the water flow itself in the water pipe or the fluid such as air bubbles other than the reflection device R. Further, the piping inspection device 10 can obtain the flow rate based on the time integration of the flow velocity.
  • FIG. 2 is a diagram for explaining a pulse sound wave transmitted by the piping inspection device 10.
  • the pulsed sound wave is composed of a mark sound and silence as shown in FIG.
  • the mark sound transmission time is defined as the mark time Tm
  • the silent space time is defined as Ts.
  • the mark sound can be time-shaped with a humming window, a humming window, etc. Thereby, the high frequency component can be suppressed and the frequency of the transmitted sound wave can be limited.
  • Tm can be a sufficiently short time within the length that the sound wave frequency can be discriminated from. By lengthening Tm, it becomes easier to separate the frequency from the dark water sound. On the other hand, by shortening Tm, the resolution of the distance of the reflection point is improved. On the other hand, Ts is a time during which the reverberation of the reflected sound becomes sufficiently small. The piping inspection device 10 returns to this space time and measures the sound wave.
  • the mark sound can also be multitone.
  • the mark sound of 1 can be set to multitone, but the tone can be changed for each repeated mark sound. It is also possible to change the multitone signal for each mark sound.
  • the mark sound can also be a modulated signal to which information such as the mark transmission time is added.
  • digital modulation such as FSK (Frequency Shift Keying), ASK (Amplitude Shift Keying), and OFDM (Orthogonal Frequency Division Multiplexing) can be used.
  • the piping inspection device 10 acquires a return sound wave after the mark time Tm, and monitors the elapsed time from the end of the mark sound and the sound pressure level thereof.
  • the reflector R can reflect the mark sound as it is, but it can also reflect it as a sound wave having a frequency different from that of the mark sound (hereinafter referred to as the reflector sound).
  • the reflector sound By using the reflector R, the reception level of the reflector sound in the water pipe inspection device 10 can be set to a sufficient level so as not to be buried in the dark water sound.
  • the reflector sound emitted by the reflector R can be a sound wave obtained by converting the mark sound level, frequency, or waveform when the mark sound reaches the reflector R.
  • the reflector R can make the transmission level of the reflector sound proportional to the reception level of the mark sound.
  • the reflector R can make the transmission frequency of the reflector sound proportional to the reception frequency of the mark sound.
  • the reflector R can make the transmission time of the reflector sound proportional to the reception time of the mark sound.
  • the elapsed time of the reflector sound received by the water pipe inspection device 10 increases and the reception level decreases as the reflector R becomes farther away. Further, when the mark sound reflected by other than the reflecting device R can be detected, the water pipe inspection device 10 acquires the reflected sound generated at a place where the water pipe 50 is divided, bent, leaked, or has other changes in the water flow. Can be done. Further, the water pipe inspection device 10 can also determine a decrease in the sound pressure level of the return sound wave reflected far away from the place where the water flow changes. The water pipe inspection device 10 detects water leakage by utilizing the level difference between the reflection device sound and the mark sound (naturally reflected sound) reflected by other than the reflection device R. If the naturally reflected sound has a sufficient sound pressure level, the reflecting device R may not be used.
  • FIG. 3 is a diagram illustrating a return sound wave received by the water pipe inspection device 10.
  • FIG. 3A is a case where there is no water leakage
  • FIG. 3B is a case where there is water leakage.
  • the naturally reflected sound of the returned sound waves is indicated by a solid line
  • the reflecting device sound is indicated by a dashed line. If there is a leak, the portion reflecting the state changes in the (P L), by comparing the difference between the sound pressure levels before and after, it is possible to detect the water leakage.
  • the reflecting device R When separating the naturally reflected sound and the reflecting device sound as shown in FIG. 3, for example, the reflecting device R outputs the reflecting device sound having a frequency different from the frequency of the pulsed sound wave transmitted by the water pipe inspection device 10. If the naturally reflected sound and the reflecting device sound have different frequencies as shown in FIG. 4, the water pipe inspection device 10 can remove frequencies other than the desired frequency with a band passing filter that extracts only each frequency.
  • the band-passing filter makes it difficult for the reflected sound of the mark sound to be buried in the dark water sound, and the water pipe inspection device 10 can increase the sensitivity of the naturally reflected sound.
  • the frequency band of the band-passing filter is set in consideration of the doppler shift of the frequencies of the mark sound, the naturally reflected sound, and the reflecting device sound due to the water flow.
  • the water pipe inspection device 10 repeatedly measures the natural reflection sound and the reflection device sound and executes arithmetic processing such as averaging processing to make the natural reflection sound and the reflection device sound less likely to be buried in the dark water sound.
  • arithmetic processing such as averaging processing to make the natural reflection sound and the reflection device sound less likely to be buried in the dark water sound.
  • the reception sensitivity can be increased.
  • the piping inspection system 301 can properly use the reflection device R for each branch line and perform piping inspection for each branch line. For example, the piping inspection system 301 can inspect the state of the branch line 50-1 of the water pipe when the reflection device R4 is not used. Further, the piping inspection system 301 can inspect the state of the branch line 50-2 of the water pipe when the reflectors R2 and R3 are not used.
  • the water pipe inspection device 10 can determine the state of the water pipe 50 near the reflection point by comparing the reflection frequency characteristics of the multitones.
  • the piping inspection system 301 is further provided with a time synchronization function for synchronizing the times of the piping inspection device 10 and the reflection device R.
  • the time synchronization function can synchronize the time between the water pipe inspection device 10 and the reflection device R.
  • the time synchronization function is GNSS (Global Navigation Satellite System).
  • GNSS Global Navigation Satellite System
  • the water pipe inspection device 10 measures the Doppler shift of the reflected sound from other than the reflection device R (for example, the water flow itself in the water pipe or a fluid such as air bubbles), and measures the flow velocity in the vicinity of the reflection point. You can also. This is because part of the naturally reflected sound includes reflection by fluid in the water pipe.
  • the water pipe inspection device 10 can obtain the flow rate by integrating the flow velocity over time.
  • the water pipe inspection device 10 can find a leak point from a plurality of flow velocity information, a diversion state, and a water pipe diameter measured by the above method. For example, when the flow velocities of the reflectors R2 and R3 are known and the water pipe diameters of the reflectors R2 and R3 are the same, the flow velocities of the reflectors R2 and R3 are the same because there is no branch between them. However, when water leakage occurs, the flow velocity of the reflecting device R3 becomes slower than the flow velocity of the reflecting device R2 by the amount of the leaked flow rate. Therefore, when the flow velocity of the reflecting device R3 is slower than that of the reflecting device R2, the water pipe inspection device 10 can determine that there is water leakage between the reflecting devices R2 and R3.
  • FIG. 5 is a functional block diagram illustrating the configuration of the reflection device R.
  • the reflection device R includes a transmission unit 21, a reception unit 22, a bandpass filter 23, a level monitor 24, a control unit 25, and a signal generation unit 26.
  • the reflector R of FIG. 5 can transmit a reflector sound having a frequency different from the frequency of the received mark sound wave.
  • the transmitting unit 21 converts the signal of the signal generating unit 26 into sound waves and emits it as a reflector sound in the water in the water pipe 50.
  • the transmitting unit 21 may be composed of a plurality of sound wave transmitting elements.
  • the signal generation unit 26 generates a signal according to an instruction from the control unit 25.
  • the receiving unit 22 receives the mark sound wave in the water in the water pipe 50.
  • the sound waves of the space time may be selectively received according to the instruction from the control unit 25.
  • the band-passing filter 23 can selectively pass the frequency of the mark sound and the frequency in consideration of the Doppler shift thereof. As the bandpass filter 23, in addition to an analog filter, a digital processing filter after digital sampling of audio can also be used.
  • the level / waveform monitor 24 can sweep and monitor the signal from the band pass filter 23 with the elapsed time from the end of the mark sound transmission from the water pipe inspection device 10.
  • the level / waveform monitor 24 can transmit the sound pressure level, frequency, detection time, etc. of the mark sound to the control unit 25.
  • the reflection device R synchronizes the time with the water pipe inspection device 10 and manually or automatically acquires the transmission time of the mark sound of the water pipe inspection device 10 from the water pipe inspection device 10. You can know the end time of the mark sound transmission.
  • the control unit 25 controls the above-described operation, processes necessary for signal generation, gives instructions to other functional units, and collects information from the other functional units.
  • the control unit 25 can also acquire the time from GNSS or the like.
  • FIG. 6 is also a functional block diagram illustrating the configuration of the reflection device R.
  • the reflection device R of FIG. 6 has a transmitting unit 21, a receiving unit 22, a bandpass filter 23, and a gain controller 27.
  • the reflector R of FIG. 6 emits a reflector sound having the same frequency as the received mark sound wave.
  • the gain controller 27 can adjust the gain of the signal from the bandpass filter 23.
  • Other functional parts are the same as the reflector R of FIG.
  • FIG. 7 is a functional block diagram illustrating the configuration of the water pipe inspection device 10.
  • the water pipe inspection device 10 is a pipe inspection device arranged in the laid pipe 50, and is a pipe inspection device.
  • a transmitter 11 that transmits pulsed sound waves to the pipe 50
  • the receiving unit 12 that receives the return sound wave returning from the pipe 50 by transmitting the pulsed sound wave
  • An analysis unit 17 that acquires the distribution of the level of the return sound wave in the longitudinal direction of the pipe 50, It is characterized by having.
  • the water pipe inspection device 10 includes a receiving unit 12, a bandpass filter (13-1, 13-2), a level monitor (14-1, 14-2), a spectrum analysis function unit 17, and a transmitting unit 11. , A signal generation unit 16, and a control unit 15.
  • the transmitting unit 11 converts the signal of the signal generating unit 16 into a sound wave and transmits it as a pulse sound wave into the water in the water pipe 50.
  • the transmitting unit 11 may be composed of a plurality of sound wave transmitting elements.
  • the signal generation unit 16 generates a signal of an arbitrary pulse sound wave having a mark sound and a space time according to an instruction from the control unit 15.
  • the receiving unit 12 receives the sound waves in the water in the water pipe 50. In particular, the sound waves of the space time may be selectively received according to the instruction from the control unit 15.
  • the band-passing filters (13-1 and 13-2) can selectively pass the frequencies of the mark sound and the reflector sound and the frequencies in consideration of the Doppler shift thereof, respectively.
  • a digital processing filter after digital sampling of audio can also be used. It may be adaptively filtered by the instruction from the control unit 15.
  • the level monitors (14-1, 14-2) can sweep and monitor the signals from the band-passing filters (13-1, 13-2) with the elapsed time from the end of the mark sound transmission, respectively.
  • the level monitor (14-1, 14-2) can also monitor the averaging, the maximum value, and the minimum value by repeated measurement. For averaging, power averaging, arithmetic averaging, logarithmic averaging and the like can be used. Further, the sweep timing can be instructed by the control unit 15. Further, the measured value of the sweep result can be transferred to the control unit 15.
  • the spectrum analysis function unit 17 can analyze the spectrum accompanying the time change by a bandpass filter (13-1, 13-2) or a short-time Fourier transform of the signal from the receiving unit 12.
  • the spectrum analysis function unit 17 can estimate the flow velocity from the Doppler shift between the frequency of the mark sound transmitted from the transmitting unit 11 and the frequency of the naturally reflected sound received by the receiving unit 12 by this analysis. Further, the spectrum analysis function unit 17 can estimate the flow velocity according to the distance from the water pipe inspection device 10 by collating the reception time of the return sound wave with the elapsed time after the end of the mark sound transmission. Further, the spectrum analysis function unit 17 can perform the analysis based on an instruction from the control unit 15. Further, the spectrum analysis function unit 17 can also transfer the measured value of the analysis result to the control unit 15.
  • the control unit 15 controls the above-mentioned operation, processes necessary for signal generation, gives an instruction to another functional unit, and collects information from the other functional unit.
  • the control unit 15 can also acquire the time from GNSS or the like.
  • FIG. 8 is a diagram illustrating a transmitting unit and a receiving unit arranged in the water pipe 50.
  • the water pipe inspection device 10 and the reflection device R may also include a plurality of sound wave transmitting elements constituting the transmitting unit (11, 21) and a plurality of sound wave receiving elements constituting the receiving unit (12, 22). Further, as shown in FIG. 8, the transmitting unit and the receiving unit can be installed at a distance in the longitudinal direction of the water pipe 50.
  • the transmitting unit (11, 21) can transmit a sound wave in an arbitrary direction by shifting the transmission phase of the sound wave for each sound wave transmitting element when transmitting the sound wave. For example, when the water pipe inspection device 10 tries to measure the return sound wave from the downstream of the water pipe 50, if the pulse sound wave is also transmitted to the upstream side of the water pipe 50, the return sound wave from the upstream and the return sound wave from the downstream It becomes impossible to distinguish from the return sound wave of. Therefore, the water pipe inspection device 10 adjusts the transmission phase of the sound wave for each sound wave transmission element of the transmission unit 11, and sets the transmission direction of the pulse sound wave only downstream. As a result, the return sound wave from the upstream can be suppressed.
  • the receiving units (12, 22) can selectively receive sound waves in any direction by adding the received signals of each sound wave receiving element with a phase shift when receiving sound waves.
  • the water pipe inspection device 10 intends to measure the return sound wave from the downstream side of the water pipe 50, when it receives the sound wave from the upstream side of the water pipe 50, it receives the sound wave from the upstream side and the return sound wave from the downstream side. It becomes impossible to distinguish. Therefore, the water pipe inspection device 10 shifts the phase of the received signal received by the sound wave receiving element of the receiving unit 12 and adds them so that the sound wave receiving direction is only downstream. As a result, the influence of sound waves from the upstream can be suppressed.

Abstract

The purpose of this invention is to provide a piping inspection system, a piping inspection device, and a piping inspection method that can be used with waterworks and make centralized automatic measurement possible. A piping inspection system according to this invention comprises a piping inspection device 10 that is disposed on laid piping 50, transmits a pulsed sound wave into the piping 50, receives a return sound wave that has returned from the piping 50 as a result of the transmission of the pulsed sound wave, and acquires a distribution of the return sound wave level along the longitudinal direction of the piping 50. The piping inspection system transmits a pulsed sound wave to the downstream side of water piping, receives reflected sound from the downstream side, and detects whether or not there is a leak and the location of the leak from the change over time of the received reflected sound. The piping inspection system makes it possible for piping to be inspected centrally from one location without requiring a worker to visit the site.

Description

配管検査システム、配管検査装置、及び配管検査方法Piping inspection system, piping inspection equipment, and piping inspection method
 本開示は、敷設された配管の正常性の検査および配管内の流量の計測に関する。 This disclosure relates to the inspection of the normality of the laid pipe and the measurement of the flow rate in the pipe.
 上水道サービスを維持するためには、水道管の正常性の確認が不可欠であり、漏水があれば修理等を行う必要がある。漏水は、その水の流失による経済的損失に加え、上水への周辺土壌物質混入の汚染による安全性の低下、更には、水の流失による周辺地盤の陥没や、斜面の崩壊などを引き起こす可能性がある。 In order to maintain the water supply service, it is indispensable to confirm the normality of the water pipe, and if there is a water leak, it is necessary to repair it. Leakage can cause economic loss due to the water runoff, decrease in safety due to contamination of clean water with surrounding soil substances, and cause collapse of the surrounding ground due to water runoff and slope failure. There is sex.
 また、漏水箇所によっては、広域にわたり断水し、修理を実施する必要があるため、漏水箇所が特定されていない場合は、最終的に広域の断水の実施が不要な場合でも、事前に広域の断水に備える対処が必要となり、作業および水道サービス受給者の生活に与える影響が大きい。 In addition, depending on the location of the leak, it is necessary to cut off the water over a wide area and carry out repairs. Therefore, if the location of the leak is not specified, even if it is not necessary to cut off the water over a wide area in advance, the water will be cut off over a wide area in advance. It is necessary to take measures to prepare for the situation, which has a great impact on the work and the lives of water service recipients.
 この水道管の漏水の確認には従来聴音検査が行われてきた。露出部の水道管に対しては、例えば弁栓に検査用マイクを押し当て、漏水音を確認している。埋設配管については、埋設部上部の道路に検査用マイクを押し当て、漏水音を確認している。 Conventionally, a hearing test has been performed to confirm the leakage of water pipes. For the exposed water pipe, for example, an inspection microphone is pressed against the valve plug to check the sound of water leakage. For buried pipes, an inspection microphone is pressed against the road above the buried part to check for water leakage.
 これらの方法は、漏水箇所付近で行う必要があり、膨大なネットワーク長の水道管に対して、定常的かつ短周期の検査は不可能であった。特に日本の水道管は埋設してから数十年を経て漏水が多発しており、また人口分布の変化により過疎部となった地域の財政負担の困難性も発生している。 These methods had to be performed near the leak point, and it was impossible to perform regular and short-period inspections on water pipes with a huge network length. In particular, water pipes in Japan have been leaking frequently several decades after they were buried, and there is also difficulty in financial burden in depopulated areas due to changes in population distribution.
 また、聴音検査は人の聴覚に頼っており、自動化が困難で、高度な技能をもつ調査員の確保、技術伝承およびそのコスト負担が大きな課題である。 In addition, hearing tests rely on human hearing, which is difficult to automate, and securing highly skilled investigators, technology transfer, and cost burden are major issues.
 これらの課題に対して、漏水音の解析の研究が行われている。非特許文献1によれば、周波数解析によって、その漏水音を判別できる可能性について述べている。また、非特許文献2によれば、カオス理論によって暗水音と漏水音を分離できる可能性について述べている。 Research on the analysis of water leakage sound is being conducted for these issues. Non-Patent Document 1 describes the possibility that the leaking sound can be discriminated by frequency analysis. Further, Non-Patent Document 2 describes the possibility that dark water sound and water leakage sound can be separated by chaos theory.
 また、漏水音を直接計測しない方法として、水撃作用による管路内の圧力波形の変化を読み取ることにより、その漏水箇所を判別する方法が提案されている(例えば、非特許文献3を参照。)。 Further, as a method of not directly measuring the water leakage sound, a method of determining the water leakage location by reading the change of the pressure waveform in the pipeline due to the water hammer action has been proposed (see, for example, Non-Patent Document 3). ).
 非特許文献1及び2で提案されているような漏洩音の自動解析手法は、人による聴音による判定の自動化にはつながる可能性はあるものの、聴音自体は、漏水部付近で実施する必要があり、検査の手間を大幅に削減することが困難という課題がある。 Although the automatic analysis method of leaked sound as proposed in Non-Patent Documents 1 and 2 may lead to the automation of judgment by human hearing, the hearing itself must be carried out in the vicinity of the leaked part. However, there is a problem that it is difficult to significantly reduce the labor of inspection.
 非特許文献3で提案されている水撃作用を用いる手法は、水撃を漏水部より下流の弁の開閉を行うことで発生させ、その水流の系統の水圧変化を読み取るため、支流毎に測定が必要となり、測定の手間の抜本的削減が困難という課題がある。更には、非特許文献3の提案は、農業用水道を前提としており、通常の上水道においては、個別家庭や事業所に水撃を発生させる弁の設置が困難という課題もある。また、非特許文献3の提案は、水撃によって上水道の安定給水そのものが妨げられる可能性があるため、実施が困難という課題もある。 The method using water hammer proposed in Non-Patent Document 3 generates water hammer by opening and closing a valve downstream from the leaking part, and measures each tributary in order to read the change in water pressure of the water flow system. Is required, and there is a problem that it is difficult to drastically reduce the labor of measurement. Furthermore, the proposal of Non-Patent Document 3 is premised on agricultural water supply, and there is also a problem that it is difficult to install a valve that causes water hammer in individual households and business establishments in ordinary water supply. In addition, the proposal of Non-Patent Document 3 has a problem that it is difficult to implement because the stable water supply itself of the water supply may be hindered by water hammer.
 本発明は、上記課題を解決するために、上水道で利用可能且つ、集約的自動測定が可能である配管検査システム、配管検査装置、及び配管検査方法を提供することを目的とする。 An object of the present invention is to provide a piping inspection system, a piping inspection device, and a piping inspection method that can be used in waterworks and can perform intensive automatic measurement in order to solve the above problems.
 上記目的を達成するために、本発明に係る配管検査システムは、敷設された配管に対して音波を与え、その配管から戻る音波を解析することとした。 In order to achieve the above object, the piping inspection system according to the present invention applied sound waves to the laid pipes and analyzed the sound waves returning from the pipes.
 具体的には、本発明に係る配管検査システムは、敷設された配管に配置され、前記配管に対してパルス音波を送信し、前記パルス音波の送信により前記配管から戻る戻り音波を受信し、前記配管の長手方向に前記戻り音波のレベルの分布を取得する配管検査装置を備える。 Specifically, the piping inspection system according to the present invention is arranged in a laid pipe, transmits a pulse sound wave to the pipe, receives a return sound wave returning from the pipe by transmitting the pulse sound wave, and receives the return sound wave. A piping inspection device for acquiring the distribution of the level of the return sound wave in the longitudinal direction of the piping is provided.
 また、本発明に係る配管検査装置は、敷設された配管に配置される配管検査装置であって、
 前記配管に対してパルス音波を送信する発信部と、
 前記パルス音波の送信により前記配管から戻る戻り音波を受信する受信部と、
 前記配管の長手方向に前記戻り音波のレベルの分布を取得する解析部と、
を備えることを特徴とする。
Further, the piping inspection device according to the present invention is a piping inspection device arranged in the laid pipes.
A transmitter that transmits pulsed sound waves to the pipe,
A receiving unit that receives the return sound wave returned from the pipe by transmitting the pulsed sound wave, and
An analysis unit that acquires the distribution of the level of the return sound wave in the longitudinal direction of the pipe, and
It is characterized by having.
 さらに、本発明に係る配管検査方法は、敷設された配管を検査する配管検査方法であって、
 前記配管に対してパルス音波を送信すること、
 前記パルス音波の送信により前記配管から戻る戻り音波を受信すること、及び
 前記配管の長手方向に前記戻り音波のレベルの分布を取得すること、
を行うことを特徴とする。
Further, the piping inspection method according to the present invention is a piping inspection method for inspecting laid pipes.
Sending pulsed sound waves to the pipe,
To receive the return sound wave returning from the pipe by transmitting the pulse sound wave, and to obtain the distribution of the level of the return sound wave in the longitudinal direction of the pipe.
It is characterized by performing.
 本配管検査システム等は、例えば、配水システムの送水ポンプと水道管との間に水道管検査装置を設置し、水道管の下流側にパルス音波を送信し、下流側からの反射音を受信し、受信した反射音の時間変化から漏水の有無および漏水箇所を検出する。本配管検査システム等は、作業員が現地に赴く必要なく、1か所で集約的に配管の検査が行える。従って、本発明は、上水道で利用可能且つ、集約的自動測定が可能である配管検査システム、配管検査装置、及び配管検査方法を提供することができる。 In this piping inspection system, for example, a water pipe inspection device is installed between the water pump of the water distribution system and the water pipe, pulse sound waves are transmitted to the downstream side of the water pipe, and reflected sound from the downstream side is received. , Detects the presence or absence of water leakage and the location of water leakage from the time change of the received reflected sound. With this piping inspection system, workers can perform intensive piping inspections in one place without having to go to the site. Therefore, the present invention can provide a piping inspection system, a piping inspection device, and a piping inspection method that can be used in waterworks and can perform intensive automatic measurement.
 本発明に係る配管検査システムは、前記配管に配置され、前記パルス音波を受信し、前記戻り音波として任意の音波を前記配管の、前記パルス音波を受信した方向に送信する反射装置をさらに備えることを特徴とする。反射装置を用いることで、水道管検査装置での受信レベルを暗水音にうもれないよう十分なレベルを確保できる。 The piping inspection system according to the present invention further includes a reflecting device arranged in the piping, receiving the pulse sound wave, and transmitting an arbitrary sound wave as the return sound wave in the direction of receiving the pulse sound wave of the piping. It is characterized by. By using the reflector, it is possible to secure a sufficient level for the reception level of the water pipe inspection device so as not to be overwhelmed by the dark water sound.
 本発明に係る配管検査システムは、前記配管検査装置は、前記戻り音波から前記反射装置が送信した前記任意の音波を選択する帯域通過フィルタを有することを特徴とする。帯域通過フィルタを用いることで、戻り音波を自然反射の音波と反射装置からの音波とに分離できる。 The piping inspection system according to the present invention is characterized in that the piping inspection device has a bandpass filter that selects the arbitrary sound wave transmitted by the reflection device from the return sound wave. By using a bandpass filter, the return sound wave can be separated into a naturally reflected sound wave and a sound wave from a reflecting device.
 本発明に係る配管検査システムは、前記配管検査装置と前記反射装置との時刻を同期させる時刻同期機能をさらに備えることを特徴とする。水道管検査装置と反射装置との間の流速や流量を測定することができる。 The piping inspection system according to the present invention is further provided with a time synchronization function for synchronizing the time between the piping inspection device and the reflection device. It is possible to measure the flow velocity and flow rate between the water pipe inspection device and the reflection device.
 本発明に係る配管検査システムの前記配管検査装置は、前記パルス音波の周波数と、前記任意の音波以外の前記戻り音波の周波数との違いから前記戻り音波が発生した前記配管の箇所における流速を検出する流速検出機能をさらに備えることを特徴とする。水道管検査装置のみで所望点の流速や流量を測定することができる。 The piping inspection device of the piping inspection system according to the present invention detects the flow velocity at the location of the piping where the return sound wave is generated from the difference between the frequency of the pulse sound wave and the frequency of the return sound wave other than the arbitrary sound wave. It is characterized by further providing a flow velocity detection function. The flow velocity and flow rate at a desired point can be measured only with a water pipe inspection device.
 なお、上記各発明は、可能な限り組み合わせることができる。 The above inventions can be combined as much as possible.
 本発明は、上水道で利用可能且つ、集約的自動測定が可能である配管検査システム、配管検査装置、及び配管検査方法を提供することができる。 The present invention can provide a piping inspection system, a piping inspection device, and a piping inspection method that can be used in waterworks and can perform intensive automatic measurement.
本発明に係る配管検査システムを説明する図である。It is a figure explaining the piping inspection system which concerns on this invention. 本発明に係る配管検査システムが配管に発信するパルス音波を説明する図である。It is a figure explaining the pulse sound wave transmitted to the pipe by the pipe inspection system which concerns on this invention. 本発明に係る配管検査システムが測定する戻り音波を説明する図である。It is a figure explaining the return sound wave measured by the piping inspection system which concerns on this invention. 本発明に係る配管検査システムが測定する戻り音波を説明する図である。It is a figure explaining the return sound wave measured by the piping inspection system which concerns on this invention. 本発明に係る配管検査システムが備える反射装置を説明する図である。It is a figure explaining the reflection device provided in the piping inspection system which concerns on this invention. 本発明に係る配管検査システムが備える反射装置を説明する図である。It is a figure explaining the reflection device provided in the piping inspection system which concerns on this invention. 本発明に係る配管検査装置を説明する図である。It is a figure explaining the piping inspection apparatus which concerns on this invention. 本発明に係る配管検査システムの発信部と受信部を説明する図である。It is a figure explaining the transmission part and the receiving part of the piping inspection system which concerns on this invention.
 添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。
 なお、以下の説明では、配管が水道管であり、流体が水道水である例を説明するが、本発明は、この例に限定されず、気体や液体を流すシステムに適用することができる。
Embodiments of the present invention will be described with reference to the accompanying drawings. The embodiments described below are examples of the present invention, and the present invention is not limited to the following embodiments. In addition, the components having the same reference numerals in the present specification and the drawings shall indicate the same components.
In the following description, an example in which the pipe is a water pipe and the fluid is tap water will be described, but the present invention is not limited to this example and can be applied to a system in which a gas or liquid flows.
(配管検査システム)
 図1は、本実施形態の配管検査システム301を説明する図である。配管検査システム301は、敷設された配管50に配置され、配管50に対してパルス音波を送信し、前記パルス音波の送信により配管50から戻る戻り音波を受信し、配管50の長手方向に前記戻り音波のレベルの分布を取得する配管検査装置10を備える。
(Piping inspection system)
FIG. 1 is a diagram illustrating the piping inspection system 301 of the present embodiment. The pipe inspection system 301 is arranged in the laid pipe 50, transmits a pulse sound wave to the pipe 50, receives a return sound wave returning from the pipe 50 by transmitting the pulse sound wave, and returns the return sound wave in the longitudinal direction of the pipe 50. The piping inspection device 10 for acquiring the distribution of sound wave levels is provided.
 敷設された配管50である上水道の配水システムにおいて、送水ポンプ20と、水道管50の間に水道管検査装置10を設置する。水道管検査装置10は、パルス音波を発生する発信部11と、水道管50で発生したパルス音波(戻り音波)を受信する受信部12とを備える。なお、水道管検査装置10は、送水ポンプ20から離れた、水道管50に設置することもできる。水道管検査装置10は、恒常的な設置の他、測定時に一時的に水道管50や栓に対して接するよう設置することもできる。 In the water supply distribution system of the water supply which is the laid pipe 50, the water pipe inspection device 10 is installed between the water supply pump 20 and the water pipe 50. The water pipe inspection device 10 includes a transmitting unit 11 that generates a pulsed sound wave and a receiving unit 12 that receives a pulsed sound wave (return sound wave) generated by the water pipe 50. The water pipe inspection device 10 can also be installed in the water pipe 50 away from the water supply pump 20. In addition to the permanent installation, the water pipe inspection device 10 can be installed so as to temporarily contact the water pipe 50 and the plug at the time of measurement.
 水道管検査装置10は、水道管50の分流箇所や、曲がり箇所、あるいは漏水箇所で反射された戻り音波の受信時刻によって、それらの箇所を特定することができる。水道管検査装置10は、自身からの距離が既知である反射点に基づいて測定結果の反射点の距離を校正することができる。 The water pipe inspection device 10 can identify those points by the reception time of the return sound wave reflected at the diversion point, the bend point, or the water leakage point of the water pipe 50. The water pipe inspection device 10 can calibrate the distance of the reflection point of the measurement result based on the reflection point whose distance from itself is known.
 水道管検査装置10は、パルス音波を繰り返し発信及び受信することで、平均化等の数値処理で暗水音を抑圧し、配管検査の精度を向上させることができる。また、水道管検査装置10は、戻り音波を周波数分離することで、暗水音による影響を低減して配管検査の精度を向上させることができる。 By repeatedly transmitting and receiving pulsed sound waves, the water pipe inspection device 10 can suppress dark water noise by numerical processing such as averaging and improve the accuracy of pipe inspection. Further, the water pipe inspection device 10 can improve the accuracy of the pipe inspection by reducing the influence of the dark water sound by frequency-separating the return sound waves.
 パルス音波には、可聴音または超音波またはその両方を利用することができる。また、パルス音波に複数の周波数を用いることで、反射箇所の性質を分離することができる。例えば、水道管検査装置10は、複数の周波数のパルス音波を送出することで、水道管50の分流と漏水とを切り分けることができる。 For pulsed sound waves, audible sound waves, ultrasonic waves, or both can be used. Further, by using a plurality of frequencies for the pulsed sound wave, the properties of the reflected portion can be separated. For example, the water pipe inspection device 10 can separate the diversion and the water leakage of the water pipe 50 by transmitting pulse sound waves of a plurality of frequencies.
 配管検査システム301は、配管50に配置され、前記パルス音波を受信し、前記戻り音波として任意の音波を配管50の、前記パルス音波を受信した方向に送信する反射装置Rをさらに備えることを特徴とする。図1のように、反射装置Rを水道管の経路中に複数設置することができる。 The pipe inspection system 301 is further provided with a reflecting device R arranged in the pipe 50, receiving the pulse sound wave, and transmitting an arbitrary sound wave as the return sound wave in the direction of receiving the pulse sound wave of the pipe 50. And. As shown in FIG. 1, a plurality of reflectors R can be installed in the path of the water pipe.
 反射装置Rは、水道管50内に設置するだけでなく、水道管50の外部に後付け設置することができる。反射装置Rは、パルス音波をそのまま反射するだけでなく、異なる周波数などの別の音波として応答することもできる。 The reflector R can be retrofitted not only inside the water pipe 50 but also outside the water pipe 50. The reflecting device R can not only reflect the pulsed sound wave as it is, but also respond as another sound wave having a different frequency or the like.
 水道管検査装置10と反射装置Rとを一体の装置とし、これを水道管50の複数の箇所に同時に設置することもできる。この場合、水道管検査装置10と反射装置Rとを時刻同期しておくことで、水道管検査装置10と反射装置Rとの間の流速を測定することができる。 It is also possible to integrate the water pipe inspection device 10 and the reflection device R and install them at a plurality of locations of the water pipe 50 at the same time. In this case, by synchronizing the time between the water pipe inspection device 10 and the reflection device R, the flow velocity between the water pipe inspection device 10 and the reflection device R can be measured.
 また、配管検査装置10は、前記パルス音波の周波数と、前記任意の音波以外の前記戻り音波の周波数との違いから前記戻り音波が発生した配管50の箇所における流速を検出する流速検出機能をさらに備える。配管検査装置10は、反射装置R以外の、水道管中の水流そのものや、気泡等の流動物からの反射音のドップラシフトによって、その反射点付近の流速を計測することができる。さらに、配管検査装置10は、流速の時間積分に基づいて流量を求めることができる。 Further, the pipe inspection device 10 further has a flow velocity detection function for detecting the flow velocity at the location of the pipe 50 where the return sound wave is generated from the difference between the frequency of the pulse sound wave and the frequency of the return sound wave other than the arbitrary sound wave. Be prepared. The pipe inspection device 10 can measure the flow velocity in the vicinity of the reflection point by the Doppler shift of the reflected sound from the water flow itself in the water pipe or the fluid such as air bubbles other than the reflection device R. Further, the piping inspection device 10 can obtain the flow rate based on the time integration of the flow velocity.
(パルス音波発信)
 図2は、配管検査装置10が発信するパルス音波を説明する図である。パルス音波は、図2のようにマーク音と無音で構成される。マーク音の発信時間をマーク時間Tmとし、無音のスペース時間をTsとする。マーク音はハミング窓、ハニング窓などで、時間整形することができる。これにより、高周波成分を抑え、発信する音波の周波数を限定することができる。
(Pulse sound wave transmission)
FIG. 2 is a diagram for explaining a pulse sound wave transmitted by the piping inspection device 10. The pulsed sound wave is composed of a mark sound and silence as shown in FIG. The mark sound transmission time is defined as the mark time Tm, and the silent space time is defined as Ts. The mark sound can be time-shaped with a humming window, a humming window, etc. Thereby, the high frequency component can be suppressed and the frequency of the transmitted sound wave can be limited.
 Tmは音波の周波数が弁別可能な長さのうち、十分に短い時間とすることができる。Tmを長くすることで、暗水音との周波数分離が行いやすくなる。一方、Tmを短くすることで、反射箇所の距離の分解能が向上する。一方、Tsは、反射音の残響が十分小さくなる時間とする。配管検査装置10は、このスペース時間に戻り音波を測定する。 Tm can be a sufficiently short time within the length that the sound wave frequency can be discriminated from. By lengthening Tm, it becomes easier to separate the frequency from the dark water sound. On the other hand, by shortening Tm, the resolution of the distance of the reflection point is improved. On the other hand, Ts is a time during which the reverberation of the reflected sound becomes sufficiently small. The piping inspection device 10 returns to this space time and measures the sound wave.
 マーク音をマルチトーンとすることもできる。その場合、1のマーク音をマルチトーンとすることもできるが、繰り返しのマーク音毎にトーンを変更することもできる。また、マーク音毎にマルチトーンの信号を変更することもできる。マーク音は、マーク発信時刻などの情報を付加した、変調信号とすることもできる。変調方式には、FSK(Frequency Shift Keying),ASK(Amplitude Shift Keying),OFDM(Orthogonal Frequency Division Multiplexing)等のデジタル変調を用いることができる。 The mark sound can also be multitone. In that case, the mark sound of 1 can be set to multitone, but the tone can be changed for each repeated mark sound. It is also possible to change the multitone signal for each mark sound. The mark sound can also be a modulated signal to which information such as the mark transmission time is added. As the modulation method, digital modulation such as FSK (Frequency Shift Keying), ASK (Amplitude Shift Keying), and OFDM (Orthogonal Frequency Division Multiplexing) can be used.
(パルス音受信)
 配管検査装置10は、マーク時間Tm後から戻り音波を取得し、マーク音終了からの経過時間とその音圧レベルをモニタする。
(Pulse sound reception)
The piping inspection device 10 acquires a return sound wave after the mark time Tm, and monitors the elapsed time from the end of the mark sound and the sound pressure level thereof.
 反射装置Rは、マーク音をそのまま反射することもできるが、マーク音とは異なる周波数の音波(以下、反射装置音)として反射することもできる。反射装置Rを用いることで、水道管検査装置10における反射装置音の受信レベルを暗水音に埋もれない十分なレベルとすることができる。 The reflector R can reflect the mark sound as it is, but it can also reflect it as a sound wave having a frequency different from that of the mark sound (hereinafter referred to as the reflector sound). By using the reflector R, the reception level of the reflector sound in the water pipe inspection device 10 can be set to a sufficient level so as not to be buried in the dark water sound.
 反射装置Rの発する反射装置音は、マーク音が反射装置Rに到達した時点でのマーク音レベル、周波数、又は波形を変換した音波とすることができる。例えば、反射装置Rは、反射装置音の発信レベルをマーク音の受信レベルに比例させことができる。例えば、反射装置Rは、反射装置音の発信周波数をマーク音の受信周波数に比例させることができる。例えば、反射装置Rは、反射装置音の発信時間をマーク音の受信時間に比例させることができる。 The reflector sound emitted by the reflector R can be a sound wave obtained by converting the mark sound level, frequency, or waveform when the mark sound reaches the reflector R. For example, the reflector R can make the transmission level of the reflector sound proportional to the reception level of the mark sound. For example, the reflector R can make the transmission frequency of the reflector sound proportional to the reception frequency of the mark sound. For example, the reflector R can make the transmission time of the reflector sound proportional to the reception time of the mark sound.
 水道管検査装置10が受信する反射装置音は、反射装置Rが遠方になるに従い、経過時刻が増加し、受信レベルが低下する。また、反射装置R以外で反射したマーク音を検出できる場合、水道管検査装置10は、水道管50の分流、曲がり、漏水、その他の水流の変化がある箇所で発生した反射音を取得することができる。さらに、水道管検査装置10は、水流の変化がある箇所から遠方で反射した戻り音波の音圧レベルの低下も判別できる。水道管検査装置10は、反射装置音と、反射装置R以外で反射したマーク音(自然反射音)のレベル差を利用して漏水を検出する。なお、自然反射音が十分な音圧レベルの場合は、反射装置Rを用いなくてもよい。 The elapsed time of the reflector sound received by the water pipe inspection device 10 increases and the reception level decreases as the reflector R becomes farther away. Further, when the mark sound reflected by other than the reflecting device R can be detected, the water pipe inspection device 10 acquires the reflected sound generated at a place where the water pipe 50 is divided, bent, leaked, or has other changes in the water flow. Can be done. Further, the water pipe inspection device 10 can also determine a decrease in the sound pressure level of the return sound wave reflected far away from the place where the water flow changes. The water pipe inspection device 10 detects water leakage by utilizing the level difference between the reflection device sound and the mark sound (naturally reflected sound) reflected by other than the reflection device R. If the naturally reflected sound has a sufficient sound pressure level, the reflecting device R may not be used.
 例として、図1に示す水道管ネットワーク(ただしR4を設置しないものとする)を考える。図3は、水道管検査装置10が受信する戻り音波を説明する図である。図3(A)は、漏水がない場合であり、図3(B)は、漏水がある場合である。いずれも、戻り音波のうち自然反射音を実線で、反射装置音を一点鎖線で示している。漏水がある場合、その箇所(P)での反射状態が変化し、前後での音圧レベルの差を比較することで、漏水の検知が可能である。 As an example, consider the water pipe network shown in FIG. 1 (provided that R4 is not installed). FIG. 3 is a diagram illustrating a return sound wave received by the water pipe inspection device 10. FIG. 3A is a case where there is no water leakage, and FIG. 3B is a case where there is water leakage. In each case, the naturally reflected sound of the returned sound waves is indicated by a solid line, and the reflecting device sound is indicated by a dashed line. If there is a leak, the portion reflecting the state changes in the (P L), by comparing the difference between the sound pressure levels before and after, it is possible to detect the water leakage.
 図3のように自然反射音および反射装置音を切り分ける場合、例えば、反射装置Rは、水道管検査装置10が発信したパルス音波の周波数と異なる周波数の反射装置音を出力する。図4のように自然反射音と反射装置音とを異なる周波数とすれば、水道管検査装置10はそれぞれの周波数のみを抽出する帯域通過フィルタで所望の周波数以外を除去することができる。帯域通過フィルタにより、マーク音の反射音を暗水音に埋もれにくくでき、水道管検査装置10は自然反射音の感度を高めることができる。なお、帯域通過フィルタの周波数帯域は、マーク音、自然反射音および反射装置音の周波数が水流でドップラシフトすることを考慮して設定する。 When separating the naturally reflected sound and the reflecting device sound as shown in FIG. 3, for example, the reflecting device R outputs the reflecting device sound having a frequency different from the frequency of the pulsed sound wave transmitted by the water pipe inspection device 10. If the naturally reflected sound and the reflecting device sound have different frequencies as shown in FIG. 4, the water pipe inspection device 10 can remove frequencies other than the desired frequency with a band passing filter that extracts only each frequency. The band-passing filter makes it difficult for the reflected sound of the mark sound to be buried in the dark water sound, and the water pipe inspection device 10 can increase the sensitivity of the naturally reflected sound. The frequency band of the band-passing filter is set in consideration of the doppler shift of the frequencies of the mark sound, the naturally reflected sound, and the reflecting device sound due to the water flow.
 また、水道管検査装置10は、自然反射音および反射装置音を繰り返し測定し、平均化処理等の算術処理を実行することで、自然反射音および反射装置音を暗水音に埋もれにくくし、受信感度を高めることができる。 Further, the water pipe inspection device 10 repeatedly measures the natural reflection sound and the reflection device sound and executes arithmetic processing such as averaging processing to make the natural reflection sound and the reflection device sound less likely to be buried in the dark water sound. The reception sensitivity can be increased.
 配管検査システム301は、反射装置Rを支線毎で使い分け、支線毎の配管検査を行うことができる。例えば、配管検査システム301は、反射装置R4を用いない場合、水道管の支線50-1の状態を検査できる。また、配管検査システム301は、反射装置R2とR3を用いない場合、水道管の支線50-2の状態を検査できる。 The piping inspection system 301 can properly use the reflection device R for each branch line and perform piping inspection for each branch line. For example, the piping inspection system 301 can inspect the state of the branch line 50-1 of the water pipe when the reflection device R4 is not used. Further, the piping inspection system 301 can inspect the state of the branch line 50-2 of the water pipe when the reflectors R2 and R3 are not used.
 マーク音としてマルチトーンを用いる場合、水道管50の分流、曲がり、漏水、または径によって反射時の周波数減衰特性が異なる。そのため、水道管検査装置10は、マルチトーンの反射周波数特性を比べることで、反射点付近の水道管50の状態を判断することができる。 When multitone is used as the mark sound, the frequency attenuation characteristic at the time of reflection differs depending on the diversion, bending, water leakage, or diameter of the water pipe 50. Therefore, the water pipe inspection device 10 can determine the state of the water pipe 50 near the reflection point by comparing the reflection frequency characteristics of the multitones.
 配管検査システム301は、配管検査装置10と反射装置Rとの時刻を同期させる時刻同期機能をさらに備えることを特徴とする。時刻同期機能は、水道管検査装置10と反射装置Rとを時刻同期させることができる。例えば、時刻同期機能は、GNSS(Global Navigation Satellite System)である。水道管検査装置10と反射装置Rとを時刻同期することで、水道管検査装置10と反射装置Rと間での音波の遅延時刻を測定することができ、その結果から水道管検査装置10と反射装置Rと間の平均流速を測定することができる。その際、発信時刻情報をマーク音に乗せても良い。 The piping inspection system 301 is further provided with a time synchronization function for synchronizing the times of the piping inspection device 10 and the reflection device R. The time synchronization function can synchronize the time between the water pipe inspection device 10 and the reflection device R. For example, the time synchronization function is GNSS (Global Navigation Satellite System). By synchronizing the time between the water pipe inspection device 10 and the reflection device R, the delay time of the sound wave between the water pipe inspection device 10 and the reflection device R can be measured, and from the result, the water pipe inspection device 10 and the water pipe inspection device 10 can be measured. The average flow velocity with the reflector R can be measured. At that time, the transmission time information may be put on the mark sound.
 また、水道管検査装置10は、反射装置R以外(例えば、水道管中の水流そのものや気泡等の流動物)からの反射音のドップラシフトを測定し、その反射点付近の流速を計測することもできる。自然反射音の一部は、水道管中の流動物による反射も含まれるためである。 Further, the water pipe inspection device 10 measures the Doppler shift of the reflected sound from other than the reflection device R (for example, the water flow itself in the water pipe or a fluid such as air bubbles), and measures the flow velocity in the vicinity of the reflection point. You can also. This is because part of the naturally reflected sound includes reflection by fluid in the water pipe.
 さらに、水道管検査装置10は、流速を時間積分することで流量を求めることができる。 Further, the water pipe inspection device 10 can obtain the flow rate by integrating the flow velocity over time.
 水道管検査装置10は、上記の手法で測定した複数の流速情報、分流状態、水道管径から、漏水箇所を発見することができる。例えば、反射装置R2とR3の流速が既知であり、反射装置R2とR3で水道管径が同一である場合、反射装置R2とR3における流速はその間に分岐がないことから同一である。しかし、漏水が発生すると、漏れた流量分だけ、反射装置R3の流速が、反射装置R2の流速に比べて遅くなる。したがって、反射装置R3の流速が反射装置R2に比べて遅い場合、水道管検査装置10は、反射装置R2とR3の間に漏水がある、と判断できる。 The water pipe inspection device 10 can find a leak point from a plurality of flow velocity information, a diversion state, and a water pipe diameter measured by the above method. For example, when the flow velocities of the reflectors R2 and R3 are known and the water pipe diameters of the reflectors R2 and R3 are the same, the flow velocities of the reflectors R2 and R3 are the same because there is no branch between them. However, when water leakage occurs, the flow velocity of the reflecting device R3 becomes slower than the flow velocity of the reflecting device R2 by the amount of the leaked flow rate. Therefore, when the flow velocity of the reflecting device R3 is slower than that of the reflecting device R2, the water pipe inspection device 10 can determine that there is water leakage between the reflecting devices R2 and R3.
(反射装置)
 図5は、反射装置Rの構成を説明する機能ブロック図である。反射装置Rは、発信部21、受信部22、帯域通過フィルタ23、レベルモニタ24、制御部25、及び信号生成部26を有する。図5の反射装置Rは、受信したマーク音波の周波数と異なる周波数の反射装置音を発信することができる。
(Reflector)
FIG. 5 is a functional block diagram illustrating the configuration of the reflection device R. The reflection device R includes a transmission unit 21, a reception unit 22, a bandpass filter 23, a level monitor 24, a control unit 25, and a signal generation unit 26. The reflector R of FIG. 5 can transmit a reflector sound having a frequency different from the frequency of the received mark sound wave.
 発信部21は、信号生成部26の信号を音波に変換して水道管50内の水中に反射装置音として発する。発信部21を複数の音波発信素子から構成してもよい。
 信号生成部26は、制御部25からの指示により信号を生成する。
 受信部22は、水道管50内の水中のマーク音波を受信する。特に制御部25からの指示に従い、スペース時間の音波を選択的に受信してもよい。
 帯域通過フィルタ23は、マーク音の周波数およびそのドップラシフトを考慮した周波数を選択的に通過することができる。帯域通過フィルタ23としてアナログフィルタの他、音声のデジタルサンプリング後にデジタル処理のフィルタを用いることもできる。制御部25からの指示で適応的にフィルタしてもよい。
 レベル/波形モニタ24は、帯域通過フィルタ23からの信号を水道管検査装置10からのマーク音発信終了後からの経過時間で掃引してモニタすることができる。レベル/波形モニタ24は、マーク音の音圧レベル、周波数、検出時間等を制御部25に伝達することができる。この時、反射装置Rは、水道管検査装置10と時刻同期し、且つ、水道管検査装置10のマーク音の送信時刻を手動または自動で取得することで、前記の水道管検査装置10からのマーク音発信終了時刻を知ることができる。
 制御部25は、上述した動作の制御、信号生成に必要な処理、他の機能部へ指示、及び他の機能部から情報収集、を行う。また、制御部25は、GNSS等から時刻を取得することもできる。
The transmitting unit 21 converts the signal of the signal generating unit 26 into sound waves and emits it as a reflector sound in the water in the water pipe 50. The transmitting unit 21 may be composed of a plurality of sound wave transmitting elements.
The signal generation unit 26 generates a signal according to an instruction from the control unit 25.
The receiving unit 22 receives the mark sound wave in the water in the water pipe 50. In particular, the sound waves of the space time may be selectively received according to the instruction from the control unit 25.
The band-passing filter 23 can selectively pass the frequency of the mark sound and the frequency in consideration of the Doppler shift thereof. As the bandpass filter 23, in addition to an analog filter, a digital processing filter after digital sampling of audio can also be used. It may be adaptively filtered by an instruction from the control unit 25.
The level / waveform monitor 24 can sweep and monitor the signal from the band pass filter 23 with the elapsed time from the end of the mark sound transmission from the water pipe inspection device 10. The level / waveform monitor 24 can transmit the sound pressure level, frequency, detection time, etc. of the mark sound to the control unit 25. At this time, the reflection device R synchronizes the time with the water pipe inspection device 10 and manually or automatically acquires the transmission time of the mark sound of the water pipe inspection device 10 from the water pipe inspection device 10. You can know the end time of the mark sound transmission.
The control unit 25 controls the above-described operation, processes necessary for signal generation, gives instructions to other functional units, and collects information from the other functional units. The control unit 25 can also acquire the time from GNSS or the like.
 図6も、反射装置Rの構成を説明する機能ブロック図である。図6の反射装置Rは、発信部21、受信部22、帯域通過フィルタ23、及びゲインコントローラ27を有する。図6の反射装置Rは、受信したマーク音波の周波数と同じ周波数の反射装置音を発信する。このとき、ゲインコントローラ27が帯域通過フィルタ23からの信号のゲインを調整することができる。他の機能部は図5の反射装置Rと同じである。 FIG. 6 is also a functional block diagram illustrating the configuration of the reflection device R. The reflection device R of FIG. 6 has a transmitting unit 21, a receiving unit 22, a bandpass filter 23, and a gain controller 27. The reflector R of FIG. 6 emits a reflector sound having the same frequency as the received mark sound wave. At this time, the gain controller 27 can adjust the gain of the signal from the bandpass filter 23. Other functional parts are the same as the reflector R of FIG.
(水道管検査装置)
 図7は、水道管検査装置10の構成を説明する機能ブロック図である。水道管検査装置10は、敷設された配管50に配置される配管検査装置であって、
 配管50に対してパルス音波を送信する発信部11と、
 前記パルス音波の送信により配管50から戻る戻り音波を受信する受信部12と、
 配管50の長手方向に前記戻り音波のレベルの分布を取得する解析部17と、
を備えることを特徴とする。
(Water pipe inspection device)
FIG. 7 is a functional block diagram illustrating the configuration of the water pipe inspection device 10. The water pipe inspection device 10 is a pipe inspection device arranged in the laid pipe 50, and is a pipe inspection device.
A transmitter 11 that transmits pulsed sound waves to the pipe 50,
The receiving unit 12 that receives the return sound wave returning from the pipe 50 by transmitting the pulsed sound wave, and
An analysis unit 17 that acquires the distribution of the level of the return sound wave in the longitudinal direction of the pipe 50,
It is characterized by having.
 具体的には、水道管検査装置10は、受信部12、帯域通過フィルタ(13-1、13-2)、レベルモニタ(14-1、14-2)、スペクトル解析機能部17、発信部11、信号生成部16、及び制御部15を有する。 Specifically, the water pipe inspection device 10 includes a receiving unit 12, a bandpass filter (13-1, 13-2), a level monitor (14-1, 14-2), a spectrum analysis function unit 17, and a transmitting unit 11. , A signal generation unit 16, and a control unit 15.
 発信部11は、信号生成部16の信号を音波に変換して水道管50内の水中にパルス音波として発信する。発信部11は複数の音波発信素子から構成してもよい。
 信号生成部16は、制御部15からの指示により、マーク音およびスペース時間を持つ任意のパルス音波の信号を生成する。
 受信部12は、水道管50内の水中の音波を受信する。特に制御部15からの指示に従い、スペース時間の音波を選択的に受信してもよい。
 帯域通過フィルタ(13-1、13-2)は、それぞれマーク音と反射装置音の周波数およびそのドップラシフトを考慮した周波数を選択的に通過することができる。帯域通過フィルタ(13-1、13-2)としてアナログフィルタの他、音声のデジタルサンプリング後にデジタル処理のフィルタを用いることもできる。制御部15からの指示で適応的にフィルタしてもよい。
 レベルモニタ(14-1、14-2)は、それぞれ帯域通過フィルタ(13-1、13-2)からの信号をマーク音発信終了後からの経過時間で掃引してモニタすることができる。レベルモニタ(14-1、14-2)は、繰り返し測定によって、平均化、最大値、最小値をモニタすることもできる。平均化は、電力平均、算術平均、対数平均等を用いることができる。また、掃引タイミングは、制御部15からの指示によることができる。また、掃引結果の測定値を制御部15に転送することもできる。
 スペクトル解析機能部17は、帯域通過フィルタ(13-1,13-2)もしくは受信部12からの信号の短時間フーリエ変換などによって、その時間変化に伴うスペクトルを解析することができる。スペクトル解析機能部17は、この解析により発信部11から発信したマーク音の周波数と受信部12が受信した自然反射音の周波数とのドップラシフトから流速を推定することができる。また、スペクトル解析機能部17は、戻り音波の受信時刻とマーク音発信終了後からの経過時間とを突合することで、水道管検査装置10からの距離に応じた流速を推定することができる。また、スペクトル解析機能部17は、当該解析を制御部15からの指示に基づいて行うことができる。また、スペクトル解析機能部17は、解析結果の測定値を制御部15に転送することもできる。
 制御部15は、上述した動作の制御、信号生成に必要な処理、他の機能部へ指示、及び他の機能部から情報収集、を行う。また、制御部15は、GNSS等から時刻を取得することもできる。
The transmitting unit 11 converts the signal of the signal generating unit 16 into a sound wave and transmits it as a pulse sound wave into the water in the water pipe 50. The transmitting unit 11 may be composed of a plurality of sound wave transmitting elements.
The signal generation unit 16 generates a signal of an arbitrary pulse sound wave having a mark sound and a space time according to an instruction from the control unit 15.
The receiving unit 12 receives the sound waves in the water in the water pipe 50. In particular, the sound waves of the space time may be selectively received according to the instruction from the control unit 15.
The band-passing filters (13-1 and 13-2) can selectively pass the frequencies of the mark sound and the reflector sound and the frequencies in consideration of the Doppler shift thereof, respectively. In addition to the analog filter as the bandpass filter (13-1, 13-2), a digital processing filter after digital sampling of audio can also be used. It may be adaptively filtered by the instruction from the control unit 15.
The level monitors (14-1, 14-2) can sweep and monitor the signals from the band-passing filters (13-1, 13-2) with the elapsed time from the end of the mark sound transmission, respectively. The level monitor (14-1, 14-2) can also monitor the averaging, the maximum value, and the minimum value by repeated measurement. For averaging, power averaging, arithmetic averaging, logarithmic averaging and the like can be used. Further, the sweep timing can be instructed by the control unit 15. Further, the measured value of the sweep result can be transferred to the control unit 15.
The spectrum analysis function unit 17 can analyze the spectrum accompanying the time change by a bandpass filter (13-1, 13-2) or a short-time Fourier transform of the signal from the receiving unit 12. The spectrum analysis function unit 17 can estimate the flow velocity from the Doppler shift between the frequency of the mark sound transmitted from the transmitting unit 11 and the frequency of the naturally reflected sound received by the receiving unit 12 by this analysis. Further, the spectrum analysis function unit 17 can estimate the flow velocity according to the distance from the water pipe inspection device 10 by collating the reception time of the return sound wave with the elapsed time after the end of the mark sound transmission. Further, the spectrum analysis function unit 17 can perform the analysis based on an instruction from the control unit 15. Further, the spectrum analysis function unit 17 can also transfer the measured value of the analysis result to the control unit 15.
The control unit 15 controls the above-mentioned operation, processes necessary for signal generation, gives an instruction to another functional unit, and collects information from the other functional unit. The control unit 15 can also acquire the time from GNSS or the like.
(発信部/受信部)
 図8は、水道管50に配置された発信部と受信部を説明する図である。水道管検査装置10および反射装置Rは、発信部(11、21)を構成する音波発信素子および受信部(12、22)を構成する音波受信素子を複数で構成することもできる。また、発信部と受信部を図8に示すように水道管50の長手方向に距離を離して設置することもできる。
(Sender / receiver)
FIG. 8 is a diagram illustrating a transmitting unit and a receiving unit arranged in the water pipe 50. The water pipe inspection device 10 and the reflection device R may also include a plurality of sound wave transmitting elements constituting the transmitting unit (11, 21) and a plurality of sound wave receiving elements constituting the receiving unit (12, 22). Further, as shown in FIG. 8, the transmitting unit and the receiving unit can be installed at a distance in the longitudinal direction of the water pipe 50.
 発信部(11、21)は、音波を発信するときに音波発信素子毎に音波の発信位相をずらすことで、任意の方向に音波を発信することができる。例えば、水道管検査装置10は、水道管50の下流からの戻り音波を測定しようとする場合、水道管50の上流側へもパルス音波を発信してしまうと、上流からの戻り音波と下流からの戻り音波とを判別できなくなる。そこで、水道管検査装置10は、発信部11の音波発信素子毎に音波の発信位相を調整し、パルス音波の発信方向を下流のみにする。これにより、上流からの戻り音波を抑止することができる。 The transmitting unit (11, 21) can transmit a sound wave in an arbitrary direction by shifting the transmission phase of the sound wave for each sound wave transmitting element when transmitting the sound wave. For example, when the water pipe inspection device 10 tries to measure the return sound wave from the downstream of the water pipe 50, if the pulse sound wave is also transmitted to the upstream side of the water pipe 50, the return sound wave from the upstream and the return sound wave from the downstream It becomes impossible to distinguish from the return sound wave of. Therefore, the water pipe inspection device 10 adjusts the transmission phase of the sound wave for each sound wave transmission element of the transmission unit 11, and sets the transmission direction of the pulse sound wave only downstream. As a result, the return sound wave from the upstream can be suppressed.
 受信部(12、22)は、音波を受信するときに各音波受信素子の受信信号を位相をずらして加算することにより、任意の方向の音波を選択的に受信することができる。例えば、水道管検査装置10は、水道管50の下流からの戻り音波を測定しようとする場合、水道管50の上流側からの音波を受信すると、上流側からの音波と下流からの戻り音波を判別できなくなる。そこで、水道管検査装置10は、受信部12の音波受信素子が受信した受信信号の位相をずらして加算し、音波の受信方向を下流のみにする。これにより、上流からの音波の影響を抑止することができる。 The receiving units (12, 22) can selectively receive sound waves in any direction by adding the received signals of each sound wave receiving element with a phase shift when receiving sound waves. For example, when the water pipe inspection device 10 intends to measure the return sound wave from the downstream side of the water pipe 50, when it receives the sound wave from the upstream side of the water pipe 50, it receives the sound wave from the upstream side and the return sound wave from the downstream side. It becomes impossible to distinguish. Therefore, the water pipe inspection device 10 shifts the phase of the received signal received by the sound wave receiving element of the receiving unit 12 and adds them so that the sound wave receiving direction is only downstream. As a result, the influence of sound waves from the upstream can be suppressed.
(効果)
 漏水の有無、漏水箇所などの水道管検査において、水道管ネットワークに対して、集約的にその検査を実施することができる。これにより、これまでの定期的検査ではなく、定常的な検査を実施することができ、迅速な漏水などの水道管の異常を検出できる。水道管検査の他、水道の送出元側で、分流した支流の流量を取得することができる。これにより、リアルタイムのより個別の使用量が分かり、水道設備や水の供給量の計画が容易となる。
(effect)
In the inspection of water pipes such as the presence or absence of water leaks and the location of water leaks, the inspection can be intensively carried out for the water pipe network. As a result, it is possible to carry out regular inspections instead of the conventional periodic inspections, and it is possible to detect abnormalities in water pipes such as rapid water leakage. In addition to water pipe inspection, the flow rate of the tributaries that have been split can be obtained on the water sending source side. This makes it easier to plan real-time, more individual usage and water supply and water supply.
 本発明は、集約的な場所に設置することで、設置個所より支流に対しても漏水検査や、流量を計測することができる。これにより、検査の手間やコストを削減し、さらに、これまでと異なり定常的な監視をも実現することができる。 By installing the present invention in a centralized location, it is possible to inspect water leaks and measure the flow rate even for tributaries from the installation location. As a result, it is possible to reduce the labor and cost of inspection, and to realize regular monitoring unlike the conventional one.
10:水道管検査装置(配管検査装置)
11:発信部
12:受信部
13-1、13-2:帯域通過フィルタ
14-1、14-2:レベルモニタ
15:制御部
16:信号生成部
17:スペクトル解析機能部(解析部)
21:発信部
22:受信部
23:帯域通過フィルタ
24:レベルモニタ
25:制御部
26:信号生成部
50、50-1、50-2:水道管(配管)
301:配管検査システム
R、R1~R4:反射装置
10: Water pipe inspection device (piping inspection device)
11: Transmitting unit 12: Receiving unit 13-1, 13-2: Bandpass filter 14-1, 14-2: Level monitor 15: Control unit 16: Signal generation unit 17: Spectrum analysis function unit (analysis unit)
21: Transmitter 22: Receiver 23: Bandpass filter 24: Level monitor 25: Control 26: Signal generator 50, 50-1, 50-2: Water pipe (piping)
301: Piping inspection system R, R1 to R4: Reflector

Claims (7)

  1.  敷設された配管に配置され、前記配管に対してパルス音波を送信し、前記パルス音波の送信により前記配管から戻る戻り音波を受信し、前記配管の長手方向に前記戻り音波のレベルの分布を取得する配管検査装置を備える配管検査システム。 Arranged in the laid pipe, a pulse sound wave is transmitted to the pipe, a return sound wave returning from the pipe is received by the transmission of the pulse sound wave, and the distribution of the level of the return sound wave is acquired in the longitudinal direction of the pipe. Piping inspection system equipped with piping inspection equipment.
  2.  前記配管に配置され、前記パルス音波を受信し、前記戻り音波として任意の音波を前記配管の、前記パルス音波を受信した方向に送信する反射装置をさらに備えることを特徴とする請求項1に記載の配管検査システム。 The first aspect of claim 1, further comprising a reflecting device arranged in the pipe, receiving the pulsed sound wave, and transmitting an arbitrary sound wave as the return sound wave in the direction of receiving the pulsed sound wave of the pipe. Plumbing inspection system.
  3.  前記配管検査装置は、前記戻り音波から前記反射装置が送信した前記任意の音波を選択する帯域通過フィルタを有することを特徴とする請求項2に記載の配管検査システム。 The piping inspection system according to claim 2, wherein the piping inspection device includes a bandpass filter that selects the arbitrary sound wave transmitted by the reflection device from the return sound wave.
  4.  前記配管検査装置と前記反射装置との時刻を同期させる時刻同期機能をさらに備えることを特徴とする請求項2又は3に記載の配管検査システム。 The piping inspection system according to claim 2 or 3, further comprising a time synchronization function for synchronizing the time between the piping inspection device and the reflection device.
  5.  前記配管検査装置は、前記パルス音波の周波数と、前記任意の音波以外の前記戻り音波の周波数との違いから前記戻り音波が発生した前記配管の箇所における流速を検出する流速検出機能をさらに備えることを特徴とする請求項2、3又は4に記載の配管検査システム。 The pipe inspection device further includes a flow velocity detection function that detects a flow velocity at a location of the pipe where the return sound wave is generated from the difference between the frequency of the pulse sound wave and the frequency of the return sound wave other than the arbitrary sound wave. 2. The piping inspection system according to claim 2, 3 or 4.
  6.  敷設された配管に配置される配管検査装置であって、
     前記配管に対してパルス音波を送信する発信部と、
     前記パルス音波の送信により前記配管から戻る戻り音波を受信する受信部と、
     前記配管の長手方向に前記戻り音波のレベルの分布を取得する解析部と、
    を備えることを特徴とする配管検査装置。
    It is a piping inspection device that is placed on the laid piping.
    A transmitter that transmits pulsed sound waves to the pipe,
    A receiving unit that receives the return sound wave returned from the pipe by transmitting the pulsed sound wave, and
    An analysis unit that acquires the distribution of the level of the return sound wave in the longitudinal direction of the pipe, and
    A piping inspection device characterized by being equipped with.
  7.  敷設された配管を検査する配管検査方法であって、
     前記配管に対してパルス音波を送信すること、
     前記パルス音波の送信により前記配管から戻る戻り音波を受信すること、及び
     前記配管の長手方向に前記戻り音波のレベルの分布を取得すること、
    を行うことを特徴とする配管検査方法。
    It is a piping inspection method that inspects the laid pipes.
    Sending pulsed sound waves to the pipe,
    To receive the return sound wave returning from the pipe by transmitting the pulse sound wave, and to obtain the distribution of the level of the return sound wave in the longitudinal direction of the pipe.
    A piping inspection method characterized by performing.
PCT/JP2020/018028 2020-04-27 2020-04-27 Piping inspection system, piping inspection device, and piping inspection method WO2021220371A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/018028 WO2021220371A1 (en) 2020-04-27 2020-04-27 Piping inspection system, piping inspection device, and piping inspection method
JP2022518465A JP7380855B2 (en) 2020-04-27 2020-04-27 Piping inspection system, piping inspection device, and piping inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/018028 WO2021220371A1 (en) 2020-04-27 2020-04-27 Piping inspection system, piping inspection device, and piping inspection method

Publications (1)

Publication Number Publication Date
WO2021220371A1 true WO2021220371A1 (en) 2021-11-04

Family

ID=78373410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/018028 WO2021220371A1 (en) 2020-04-27 2020-04-27 Piping inspection system, piping inspection device, and piping inspection method

Country Status (2)

Country Link
JP (1) JP7380855B2 (en)
WO (1) WO2021220371A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07198528A (en) * 1993-12-28 1995-08-01 Tokyo Gas Co Ltd Gas leakage detection device
JPH10132541A (en) * 1996-10-25 1998-05-22 Tokyo Gas Co Ltd Acoustic wave pipeline examining method
JPH11132896A (en) * 1997-10-31 1999-05-21 Osaka Gas Co Ltd Inundation state inspecting method and inspecting apparatus
JP2001343266A (en) * 2000-04-24 2001-12-14 Chang Min Tech Co Ltd Ultrasonic flow velocity measuring device
WO2002021120A1 (en) * 2000-09-04 2002-03-14 The Nippon Signal Co., Ltd. Flaw detection system
JP2009198388A (en) * 2008-02-22 2009-09-03 Tokyo Electric Power Co Inc:The Ultrasonic flowmeter
JP2016136103A (en) * 2015-01-23 2016-07-28 横河電機株式会社 Ultrasonic flowmeter

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07198528A (en) * 1993-12-28 1995-08-01 Tokyo Gas Co Ltd Gas leakage detection device
JPH10132541A (en) * 1996-10-25 1998-05-22 Tokyo Gas Co Ltd Acoustic wave pipeline examining method
JPH11132896A (en) * 1997-10-31 1999-05-21 Osaka Gas Co Ltd Inundation state inspecting method and inspecting apparatus
JP2001343266A (en) * 2000-04-24 2001-12-14 Chang Min Tech Co Ltd Ultrasonic flow velocity measuring device
WO2002021120A1 (en) * 2000-09-04 2002-03-14 The Nippon Signal Co., Ltd. Flaw detection system
JP2009198388A (en) * 2008-02-22 2009-09-03 Tokyo Electric Power Co Inc:The Ultrasonic flowmeter
JP2016136103A (en) * 2015-01-23 2016-07-28 横河電機株式会社 Ultrasonic flowmeter

Also Published As

Publication number Publication date
JPWO2021220371A1 (en) 2021-11-04
JP7380855B2 (en) 2023-11-15

Similar Documents

Publication Publication Date Title
KR101876730B1 (en) Monitoring System for Leak Detection of Waterworks
KR101107085B1 (en) Leak Detection Apparatus And Method Thereof
RU2511228C2 (en) Channel monitoring
CA2158669C (en) Underground conduit defect localization
Martini et al. Automatic leak detection in buried plastic pipes of water supply networks by means of vibration measurements
CN105351756B (en) A kind of pipe leakage identification and alignment system and method based on acoustic imaging
CA2949040C (en) An apparatus and method for measuring the pressure inside a pipe or container
US9897243B2 (en) Method and system for the remote detection of the position of a pig device inside a pressurized pipeline
KR101454288B1 (en) System for detecting leakage of service water tube
KR101694700B1 (en) Diagnostic systems using vibration measurement devices for water distribution
CN104747912A (en) Fluid conveying pipe leakage acoustic emission time-frequency positioning method
EP2538192B1 (en) Apparatus and method for detection and localization of leaks in underground pipes
EA028210B1 (en) Method and system for the continuous remote monitoring of the position and advance speed of a pig device inside a pipeline
MX2010014443A (en) Apparatus and method to locate an object in a pipeline.
CN108369118B (en) Monitoring fluid flow in open channels using fiber optic sensors
NO322353B1 (en) Method for painting multi-phase fluid drums in pipes and ducts, as well as applications thereof
US4435974A (en) Method and apparatus for locating leakages in pipes and similar conduits
CN109915738B (en) Pipeline ultrasonic attenuation detection system and method
KR20210020516A (en) An apparatus for detecting leakage and a system thereof
JPWO2019240231A1 (en) Leakage investigation equipment, leakage investigation methods, and programs
WO2021220371A1 (en) Piping inspection system, piping inspection device, and piping inspection method
KR101944690B1 (en) A monitoring system of water supply pipeline equipped with judgement function of cause of problem
KR101965690B1 (en) A monitoring system of water supply pipeline
Travers Acoustic monitoring of prestressed concrete pipe
Kadri et al. Empirical evaluation of acoustical signals for leakage detection in underground plastic pipes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20932917

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022518465

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20932917

Country of ref document: EP

Kind code of ref document: A1