WO2021219965A1 - Plaster-based material - Google Patents

Plaster-based material Download PDF

Info

Publication number
WO2021219965A1
WO2021219965A1 PCT/FR2021/050746 FR2021050746W WO2021219965A1 WO 2021219965 A1 WO2021219965 A1 WO 2021219965A1 FR 2021050746 W FR2021050746 W FR 2021050746W WO 2021219965 A1 WO2021219965 A1 WO 2021219965A1
Authority
WO
WIPO (PCT)
Prior art keywords
activated carbon
sorption
equal
plaster
desorption
Prior art date
Application number
PCT/FR2021/050746
Other languages
French (fr)
Inventor
Michel VILLEY
Nathalie Petigny
Mathias Agnely
Original Assignee
Saint-Gobain Placo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint-Gobain Placo filed Critical Saint-Gobain Placo
Priority to CN202180031635.6A priority Critical patent/CN115461315A/en
Publication of WO2021219965A1 publication Critical patent/WO2021219965A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/14Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
    • C04B28/145Calcium sulfate hemi-hydrate with a specific crystal form
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/022Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/14Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
    • C04B28/16Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements containing anhydrite, e.g. Keene's cement
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00025Aspects relating to the protection of the health, e.g. materials containing special additives to afford skin protection
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00612Uses not provided for elsewhere in C04B2111/00 as one or more layers of a layered structure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms

Definitions

  • the invention relates to a plaster-based material, in particular a dry or wet mixture, a plasterboard or a plaster tile intended for the interior design of residential buildings, as well as its use for the construction. comfort inside buildings.
  • Comfort inside buildings in particular in terms of air quality, is increasingly at the heart of the concerns of occupants and builders.
  • VOCs Volatile Organic Compounds
  • Directive n ° 2010/75 of the European Union of November 24, 2010 defines them as any organic compound having a vapor pressure of 0.01 kPa or more at a temperature of 293.15 K or having a corresponding volatility under the conditions special uses.
  • alkanes such as alkanes, alkenes such as terpenes, alkynes, alcohols, aldehydes such as formaldehyde, acetaldehyde, propionaldehyde, cronotaldehyde, butyraldehyde, benzaldehyde, valeraldehyde , hexaldehyde or heptanaldehyde, ketones, ethers such as glycol ethers, aromatic hydrocarbons such as benzene and toluene, or halogenated hydrocarbons such as tetrachlorethylene and dichlorobenzene.
  • aldehydes such as formaldehyde, acetaldehyde, propionaldehyde, cronotaldehyde, butyraldehyde, benzaldehyde, valeraldehyde , hexaldehyde or heptanaldehyde
  • ketones
  • VOCs are present in most paints, construction materials, solvents, detergents, fuels, as well as in resins, varnishes or glues used for furniture or electrical appliances, or even in cigarette smoke. These VOCs are found in the ambient air of buildings and, even if their quantity seems small, they can over time inconvenience the people who are there. exposed or even affect their health. In particular, some VOCs can cause allergic reactions, breathing problems, nausea or headaches.
  • VOCs in particular aldehydes such as formaldehyde
  • VOCs in particular aldehydes such as formaldehyde
  • other volatile organic compounds such as xylene, toluene, ethylbenzene, decane, etc.
  • the present invention thus aims to provide a plaster-based material, in particular for interior fittings, and in particular for use as an underlayment plaster or as a finishing plaster, this plaster being intended for example for leveling and / or protect a surface to be coated before applying the paint layer (generally mainly aesthetic in nature), this coating having both ambient air purification properties with regard to the different types of volatile organic compounds (VOCs) which may be present therein and humidity-regulating properties, the purification relating to VOCs not being limited only to that of formaldehyde but also relating to other VOCs, in particular nonpolar (such as xylene, toluene, ethylbenzene, decane ...), and the VOCs captured by the plaster-based material not further undergoing desorption at room temperature, and the humidity-regulating properties not only consisting of moisture-trapping properties but allowing in turn to capture excess humidity and re-release this humidity if, on the other hand, the air becomes too dry and / or when the room is ventilated.
  • the present invention therefore relates to a plaster-based material characterized in that it comprises an activated carbon, exhibiting (initially, before incorporation into the material):
  • the characteristics of the aforementioned activated carbon selected according to the invention are those of the initial activated carbon (that is to say not yet incorporated into the material), as it is added to the material.
  • the activated carbon used in the material according to the invention can be (initially) of the granular type (or in granular or granular form), that is to say formed of particles of irregular shapes in a size range mainly of 1. 'of the order of 0.2 mm to 5 mm, or in powder form, that is to say formed of particles of smaller size, generally less than 400 mpi, as opposed to other existing forms of activated carbon, for example in extruded form (regular shape).
  • the particles of activated carbon are in particular predominantly (at least 90% by weight, in particular at least 95% by weight, or even 100% by weight) in size (largest dimension of each particle) between 0.2 mm and 5 mm (limits included), in particular between 0.2 and 2 mm, or even in particular at least 90% by weight of size between 0.42 mm and 1.7 mm (limits included), the size of the particles being evaluated in particular by sieving (in particular using sieves referenced 12 and 40 in US mesh size).
  • the activated carbon particles are in particular predominantly (at least 90% by weight, in particular at least 95% by weight, or even 100% by weight) in size (largest dimension of each particle) less than 400 ⁇ m (limits included), in particular between 1 and 400 ⁇ m, or even in particular at least 90% by weight of size between 10 and 200 ⁇ m (limits included), the size of the particles being evaluated by particularly using an air jet screen according to ASTM-D-5158-93.
  • the density (also usually called density) of the selected activated carbon is also relatively high, where appropriate participating in a significant activity of said carbon in the present invention, this density (bulk density) being greater than or equal to 400 kg / m 3 , preferably greater than or equal to 440 kg / m 3 , or even greater than or equal to 500 kg / m 3 , or even greater than or equal to 530 or 540 kg / m 3 , the bulk density of the activated carbon used being determined by making the ratio of the mass of a given volume of material to said volume.
  • the activated carbon incorporated in the plaster-based material composition according to the invention is selected so as to exhibit a particular porosity resulting in particular in a specific surface greater than or equal to 875 m 2 / g and less than or equal to 1300 m 2 / g and / or by an iodine number greater than or equal to 900 mg / g and / or by a sorption capacity of at least 7 mg of toluene per g of activated carbon.
  • the specific surface of the selected activated carbon is measured by nitrogen adsorption (theory of multiple adsorption of gases using Brunauer determinations, Emmett and Teller - BET method), in accordance in particular with the ISO 9277: 2010 standard, and is, according to a first advantageous embodiment according to the invention, greater than or equal to 875 m 2 / g, and preferably greater than or equal to 900 m 2 / g, in particular greater than 900 m 2 / g, in particular greater than or equal to 950 m 2 / g, or even greater than or equal to 1000 m 2 / g, and in addition is preferably less than or equal to 1300 m 2 / g, in particular less than or equal to 1200 m 2 / g, or even less than or equal to 1100 m 2 / g.
  • the iodine number represents the mass of iodine (in milligrams) absorbed per gram of carbon, this index being measured in particular according to standard ASTM D4607-14 for a residual iodine concentration in the filtrate of 0 , 02 N.
  • the iodine number is a relative indicator of porosity and can optionally also be considered as an indicator of the specific surface area of the activated carbon. According to an advantageous embodiment of the invention, it is greater than or equal to 900 mg / g, or even greater than or equal to 1000 mg / g.
  • the carbon sorption capacity is determined as follows: the toluene concentration is measured over time by SILT-MS (Selective Ion Llow Tube-Mass Spectrometry) mass spectrometry at the outlet of a U-shaped reactor where is contained the material (pure carbon) to be tested.
  • SILT-MS Selective Ion Llow Tube-Mass Spectrometry
  • the toluene concentration is first measured at the outlet of the empty reactor (without sample) over time until a level is reached which corresponds to the concentration initially generated, in order to determine the mixing curve.
  • the material to be tested is then placed in the reactor and then the same concentration is generated in the same way.
  • the toluene concentration at the reactor outlet is then measured over time.
  • a time delay is observed with respect to the mixing curve in order then to reach the state of equilibrium between the toluene in the gas phase and the toluene adsorbed on the surface of the material. This time difference corresponds to adsorption of toluene by the material tested. Integration then makes it possible to calculate the area between the two curves and to determine the quantity of toluene adsorbed by the material, at the concentration considered.
  • the concentration of toluene (pure) in the supply air is 360 pg / mf
  • the activated charcoal is selected so as to have a sorption capacity of at least 7 mg of toluene per g of activated charcoal, preferably of at least 8 mg of toluene per g of activated charcoal, in particular of at least 9 mg of toluene per g of activated carbon.
  • the above indicators are linked to a certain porosity of the selected activated carbon, which advantageously integrates different types of pores which can participate, each in a different way, in the sorption of VOCs, and in the sorption or desorption of water molecules.
  • the selected activated carbon thus advantageously comprises both micropores (of diameters generally less than 2 nm), and mesopores (of diameters generally between 2 and 50 nm), the diameter (equivalent diameter) qualifying the size of the pores being calculated. from measurements of pore volumes carried out for example using the BET method cited above.
  • the nature or the origin of the activated carbon used influencing, where appropriate, the porosity, the activated carbon used in the composition of plaster-based material according to the invention is in particular chosen, in an advantageous embodiment according to the invention.
  • the activated carbons produced from (or derived from) coal can in fact conventionally be manufactured by pyrolysis of various carbonaceous raw materials such as wood, coconut shells or other organic plant materials, coal, etc., the most commonly used being those obtained from coconut shells.
  • the use of an activated carbon defined according to the invention and obtained from coal in the plaster-based material composition has made it possible to obtain particularly advantageous results in terms of obtaining and fair balance of the various desired properties, as shown later.
  • the activated carbon selected according to the invention also exhibits a variation in mean mass A m (S) in sorption of at least 2%, and in particular of at least 2.5%, or even of at least 3%. , and a variation in mass A m (D4) after 4 sorption / desorption cycles of at most 1.5%, or even at most 1.4%.
  • S mean mass A m
  • D4 variation in mass A m
  • the mass of the sample is measured at the end of each sorption phase (i.e. 5 measurements in sorption) and each desorption phase (i.e.
  • the activated carbon selected also advantageously exhibits isotherms (representing the rate by weight of water captured by the activated carbon with respect to the relative humidity of the ambient air) of sorption and desorption (of water vapor) of the form sigmoid (or S-shape) exhibiting a first sorption zone, respectively desorption, low (with a water content of said activated carbon less than 5% by weight) up to at least 30%, or at least 40% (and at most 60%), relative humidity of the ambient air, and a second sorption zone, respectively of strong desorption (compared to the first zone, with a variation in the water content of the coal ranging from 5%, or less, by weight to at least 30% by weight) falling within the range of 30% to 80%, especially 40 to 80%, relative humidity of the ambient air.
  • the activated carbon has a sorption (respectively desorption) isotherm called "type V" (on the model of the representations given in particular in the UICP nomenclature), integrating (as illustrated in FIG. 3 a) a zone A (respectively A 'for the desorption curve) of low slope, then a zone B (respectively B') of strong slope (compared in particular to zone A, respectively A ') where sorption increases (respectively desorption takes place ) significantly, and a low slope saturation zone C.
  • type V on the model of the representations given in particular in the UICP nomenclature
  • zone A isotherms of the activated carbon according to the invention, located in the relative humidity range from 0 to 30 or 40%, the water content of the selected activated carbon remains below 5% by weight
  • zone B located within the relative humidity range from 30 or 40% to 80%, the water content of the activated carbon varies (upwards or downwards depending on the curve considered - a hysteresis being generally observed between the curves of sorption and desorption) between 5% or less and at least 30% by weight (limits included), preferably between 5% or less and at least 35% by weight (or even more).
  • the isotherms are determined by water vapor adsorption gravimetry (or DVS or Dynamic Vapor Sorption), using in particular a reference Dynamic Vapor Sorption Analyzer DVS Intrinsic from the company Surface Measurement System.
  • the activated carbon used also initially (before incorporation into the plaster-based material) has a relative humidity of less than or equal to 2% by weight, this humidity being evaluated by weighing before then after drying (the drying being carried out until obtain a variation in mass less than 0.1%).
  • the activated carbon used is an activated carbon obtained by grinding, and if necessary re-agglomeration, to obtain the desired particle size, then drying (in particular so that a maximum of 2%, or even a maximum of 1% moisture remains), the charcoal being activated in a known manner, in particular by proceeding by physical activation, in particular in water vapor, the activation taking place in particular at high temperature (in particular between 550 and 1100 ° C.).
  • the activated charcoal used can be activated entirely or only at the surface, and is in particular activated entirely.
  • an example of a particularly satisfactory activated carbon used according to the present invention is in particular the activated carbon sold by the company Chemviron Carbon under the reference “Filtrasorb 400”, this carbon being a granular activated carbon obtained from coal and fully activated by physical activation, and having a particle size of 1.7 x 0.42 mm (i.e. passing through sieve No. 12 which corresponds to a particle size of 1.7 mm, and retained by sieve No.
  • the level of activated carbon defined in the present invention in the plaster-based material is preferably between 0.5 and 10% by weight of said composition (dry), preferably between 0.5 and 7%, or 0, 7 to 2% (limits included), for example of the order of 1.5%.
  • the activated carbon used according to the invention makes it possible to obtain, without the aid of another agent, both the desired properties in terms of purification of the ambient air and of humidity regulation.
  • the composition according to the invention may nevertheless comprise other VOC fixing agents to improve the purification properties with respect to one or more VOCs, in particular aldehydes such as formaldehyde.
  • VOC scavengers include active methylene compounds, such as acetoacetamide, tannins, amino alcohols, amides, and hydrazides.
  • the plaster-based material can advantageously be devoid of other activated charcoals than the selected activated charcoal, or of water-capturing additives of the montmorillonite type, or more generally of any other agent usually used to purify. air or capture water molecules etc.
  • plaster within the meaning of the present invention designates, as defined by standard EN 13279-1: 2008, calcium sulphate in all its forms of hydration, comprising calcium sulfate dihydrate (CaSCL, 2 H2O), i.e. also plaster taken, calcium sulfate hemihydrate (CaSCL, 1 ⁇ 2 H2O), i.e. non-plaster taken or calcined gypsum, or anhydrite (CaSCL).
  • the expression “plaster-based material” denotes a material the binder of which consists mainly of plaster, that is to say comprising in particular at least 40% by weight, preferably at least 50%, more preferably at least 60%.
  • the plaster-based material comprises less than 20%, more preferably less than 10%, or even less than 5%, by weight of inorganic hydraulic binders other than plaster.
  • the plaster-based material does not include any inorganic hydraulic binders other than plaster. This expression excludes in particular mortars and cementitious materials.
  • plaster-based materials include, in particular, plasterboard, plaster tiles, dry (powder) or wet (paste) mixtures, such as plasters in the form of a pre-mix in powder or in the form of ready-to-use paste, as well as the coatings obtained from such coatings.
  • the plaster-based material according to the invention can comprise processability additives making it possible to adapt the properties of the mixes according to the manufacturing conditions as well as other functional agents making it possible to modify the final properties of the material.
  • the processability additives well known to those skilled in the art can in particular be adhesion agents, setting accelerating agents, setting retarding agents, thinning agents, thickening agents, water retention agents, pH modifiers or anti-foaming agents.
  • the functional agents which are also well known to those skilled in the art can be organic binders, foaming agents, biocidal agents, water-repellent agents, fire-retardant agents, lightening agents, lightening agents. reinforcement or pigments.
  • the plaster-based material may in particular comprise up to 50%, preferably up to 30%, more preferably up to 20%, by dry weight of additives.
  • the plaster-based material can typically comprise, for 100 parts by weight of plaster (calcium sulfate hemihydrate, calcium sulfate dihydrate or anhydrite):
  • mineral fillers for example calcium carbonate, kaolin or silica sand
  • At least one lightening agent for example expanded perlite or hollow glass beads
  • polymeric binder for example poly (vinyl acetate) (PVAC), ethylene vinyl acetate (EVA), vinyl acrylate;
  • PVAC poly (vinyl acetate)
  • EVA ethylene vinyl acetate
  • vinyl acrylate for example poly (vinyl acetate) (PVAC), ethylene vinyl acetate (EVA), vinyl acrylate;
  • At least one water retention agent for example cellulose ethers or guar ethers
  • At least one rheology modifying agent for example starch ether, polyacrylamides, acrylics, xanthan gum, hectorite, bentonite or attapulgite;
  • At least one setting retarder for example organic acids, amino acids or phosphates
  • At least one setting accelerator for example potassium sulphate
  • At least one pH modifying agent for example lime, cement, sodium hydroxide or amines
  • At least one biocidal agent for example carbamates, such as 3-iodoprop-2-yn-1-yl butylcarbamate, or pyrithione complexes
  • at least one adhesion agent for example a poly (vinyl acetate), a poly (vinyl alcohol), a starch, in particular previously treated with an acid or pre-gelatinized, a dextrin or a flour vegetable, especially wheat or corn;
  • At least one water repellent for example a siloxane, a polysiloxane or a wax
  • At least one anti-fire agent for example vermiculite, silica, in particular of micrometric size or a clay; and or
  • At least one reinforcing agent for example polymer fibers, mineral fibers, in particular glass, or plant fibers;
  • the plaster-based material may comprise up to 70%, preferably up to 60%, more preferably up to 50%, or even up to 40%, or even up to 30%, by weight of fillers, in particular calcium carbonate, silica sand, kaolin, reinforcing fillers, such as fibers, and lightening fillers, such as expanded perlite or hollow glass beads.
  • fillers in particular calcium carbonate, silica sand, kaolin, reinforcing fillers, such as fibers, and lightening fillers, such as expanded perlite or hollow glass beads.
  • the plaster-based material according to the invention is a dry or wet mixture (ready for use).
  • these mixtures comprise calcium sulfate hemihydrate (calcined gypsum) and possible additives described above. Their composition may vary depending on the application for which they are intended. Examples of such mixtures include in particular the coatings defined by standard EN 13279-1: 2008.
  • the dry mixtures are obtained by adding, sequenced or simultaneously, each of the constituents in a dry mixer. Activated carbon can be added to the mixture in the same way as the other components.
  • the wet mixtures can be obtained by adding, sequenced or simultaneously, each of the constituents in a mixer in the presence of water, or by mixing a dry premix, the activated carbon being able to be introduced during the preparation of the dry premix. or at the time of mixing.
  • a dry mixture typically comprises, per 100 parts by weight of plaster, 0 to 250 parts of mineral fillers, 0 to 100 parts of lightening agent, 0 to 50 parts of an organic binder, 0 to 20 parts of a water retention agent, 0 to 10 parts of a rheology modifying agent, 0 to 10 parts of a setting retarder, 0 to 5 parts of a setting accelerator, 0 to 50 parts of a pH modifying agent, and 0 to 10 parts of a biocidal agent.
  • the dry mixes are mixed with water in a water: dry mix weight ratio of 0.3: 1 to 1: 1 to make a batch.
  • Calcined gypsum undergoes a hydration reaction in the presence of water and turns into calcium sulfate dihydrate (gypsum) causing the plaster to set, or harden after application.
  • a wet mixture typically comprises, per 100 parts by weight of plaster, 0 to 100 parts of mineral fillers, 0 to 50 parts of a lightening agent, 0 to 50 parts of an organic binder, 0 to 20 parts of a water retention agent, 0 to 10 parts of a rheology modifying agent, 0 to 10 parts of a pH modifying agent, 0 to 5 parts of an anti-foaming agent, 0 to 20 parts of a waterproofing agent, 0 to 5 parts of a pigment, 0 to 10 parts of a biocidal agent, and 30 to 150 parts of water.
  • the plaster-based material according to the invention is a plaster coating, obtained in particular from a dry or wet mixture as described above.
  • the plaster coating typically has a composition similar to that of the dry or wet mixtures as described above.
  • the plaster coating generally has a thickness of 1 to 25 mm, preferably 2 to 14 mm.
  • the plaster-based material according to the invention is a plasterboard.
  • Plasterboards are panels comprising a layer of plaster between two facing sheets, generally made of cardboard or based on glass fibers.
  • plasterboard is formed in a continuous process comprising three main stages: shaping, setting and drying.
  • a batch is produced continuously in a mixer from calcined powdered gypsum, water and specific additives to adapt the properties of the batch and / or of the final product as mentioned above. It is in particular known to add foaming agents or foam directly in order to reduce the density of plasterboards.
  • the batch is then continuously discharged onto a first facing sheet driven by a conveyor belt to an extruder to form the plate.
  • a second facing sheet is fed to the extruder.
  • the extruder presses the second facing sheet onto the batch, smooths the surfaces and reduces the thickness of the plasterboard to the desired value.
  • a denser plaster layer is also known to form a denser plaster layer on one face and possibly on the edges of the plasterboard.
  • a first layer of more dense mix called roller coating layer
  • the roller coating layer generally has a low thickness, typically less than 2 mm, for example approximately 1 mm.
  • the plaster strip obtained at the outlet of the extruder is transported continuously by a conveyor over a sufficient distance to allow the latter to be set and to reach a level of hardening sufficient to be able to be cut into plates to the desired dimension.
  • the plates are then dried in an oven to remove excess water.
  • the batch comprises calcium sulfate hemihydrate (calcined gypsum) and any additives described above.
  • the composition of the mix may vary depending on the nature of the plasterboard to be manufactured.
  • the batch typically comprises, for 100 parts by weight of plaster, 40 to 200, preferably 50 to 150 parts of water, 2 to 10 parts of foam obtained from a mixture of water and a foaming agent, for example an alkylsulphate optionally mixed with an alkylethersulphate, and 0.1 to 1 part of setting accelerator, for example hydrated calcium sulphate or potassium sulphate.
  • the plasterboard generally has a thickness of 6 to 25 mm, preferably 10 to 15 mm.
  • the activated carbon according to the invention can be introduced into the plasterboard in various ways.
  • the activated carbon is added to the mixture before the latter is deposited on the first facing sheet.
  • the addition of the activated carbon can be done during the manufacture of the batch, for example by simultaneously or successively introducing the calcined gypsum and the aforementioned compounds into the batch. mixer, or after the mixture has been obtained, for example at the outlet of the mixer or in a secondary mixer.
  • the simultaneous addition of the constituents is advantageous because it is easier to use.
  • This embodiment makes it possible to have a homogeneous distribution of the activated carbon in the plasterboard.
  • the activated carbon is introduced into a roller coating layer.
  • the activated carbon is introduced into a batch used for the formation of the roller coating layer, the main batch intended for the formation of the body of the plate generally being devoid of activated carbon.
  • This embodiment makes it possible to concentrate the activated carbon only on one face of the plasterboard and on only part of its thickness.
  • the plaster-based material according to the invention is a plaster tile.
  • Plaster tiles are usually obtained by molding. For this, a batch is prepared in a mixer. After obtaining a homogeneous batch, it is poured into molds and leveled at the height of the molds to remove the excess batch. After the plaster tiles have set sufficiently for handling, they are removed from the mold by extrusion and then dried in an oven to remove excess water.
  • the mixture comprises calcium sulfate hemihydrate (calcined gypsum) and possible additives described above.
  • the composition of the batch may vary depending on the nature of the plaster tiles to be manufactured.
  • the batch typically comprises, per 100 parts by weight of plaster, 40 to 200, preferably 50 to 150 parts of water, 0.1 to 1 part of setting accelerator, for example hydrated calcium sulfate or sodium sulfate. potassium, 0.1 to 2 parts thinner, 0 to 1 part retardant, and 0 to 10 parts of waterproofing agent.
  • Activated carbon can be introduced into the plaster tiles during the preparation of the batch.
  • Plaster tiles are generally 30-200mm thick, preferably 50-150mm thick.
  • the present invention also relates to the use of a plaster-based material as described above, in particular a plasterboard, a plaster tile, a dry or wet mixture, or a plaster coating to both reduce the amount of VOCs and regulate the humidity in the air inside buildings.
  • the present invention also relates to a method of reducing the amount of VOCs and regulating humidity in the indoor air of buildings comprising contacting a plaster-based material as described above with the indoor air.
  • the plaster-based material according to the invention can be installed on the walls, ceilings and floors inside buildings, in particular to form facings, partitions or false ceilings or to cover or join plaster or cement panels.
  • the plaster-based material according to the invention shows both good sorption of VOCs (and thus ambient air purification properties), in particular non-polar VOCs (such as toluene, xylene, ethylbenzene, decane, para. -dichlorobenzene) in addition to formaldehyde (or other aldehydes), and good humidity regulation properties (and not only water collection, but also release if necessary) meeting the needs of users in terms of comfort, as illustrated later, the composition absorbing moisture, storing it then, when the humidity of the room decreases again and / or in the event of ventilation, rapidly releasing this stored humidity in the ambient air.
  • VOCs such as toluene, xylene, ethylbenzene, decane, para. -dichlorobenzene
  • formaldehyde or other aldehydes
  • good humidity regulation properties and not only water collection, but also release if necessary
  • the plaster-based material according to the invention can absorb large amounts of volatile organic compounds (VOCs) from the ambient air, the VOCs captured by the plaster-based material also not undergoing desorption at room temperature.
  • the plaster-based material according to the invention has thus shown an efficiency (per pollutant) in terms of adsorption of VOCs of the order of at least 40%, preferably at least 50%, or even at least 60%, for at least each of the following pollutants: acetaldehyde, toluene, tetrachlorethylene, xylene, 1,2,4-trimethylbenzene, ethylbenzene, 2-butoxyethanol, styrene and 1, 4-dichlorobenzene, formaldehyde, and in particular at least 50% , preferably at least 60%, or even at least 70%, for at least each of the following pollutants: ethylbenzene, xylene, toluene, dichlorobenzene.
  • VOCs volatile organic compounds
  • the efficiency (in%) is determined by a dynamic CLIMPAQ test according to ISO 16000-23: 2009 and ISO 16000-24: 2009 standards as follows: a sample of 20 cm x 35 cm x 1 cm introduced into a chamber CLIMPAQ of 50.9 L (corresponding to a load factor Lf of 1, 4: wall and ceiling scenario) maintained at a temperature of 23 ° C ⁇ 2 ° C and a relative humidity of 50% ⁇ 5% during the test .
  • the adsorption capacity is measured independently for each VOC.
  • the sample is subjected to an air flow for a period of 24 hours, the air renewal rate being set at 0.5 vol.h 1 .
  • the air injected at the inlet of the chamber comprises an initial concentration Ci of VOCs.
  • the final VOC concentration Cf at the outlet of the chamber is measured by gas chromatography coupled to a mass spectrometer.
  • the adsorption efficiency of a VOC, in percentage, is given by the following formula (Ci-Cf) / Ci.
  • the adsorption capacity can be achieved for a single VOC, for example toluene (in this case the air flow comprises toluene at an initial concentration Ci of 200 pg / m 3 ), or on a mixture of VOCs, for example a mixture of acetaldehyde, toluene, tetrachlorethylene, xylenes (m, p), 1,2,4-trimethylbenzene, ethylbenzene, 2- butoxyethanol, styrene and 1, 4-dichlorobenzene (in this case the air flow includes an initial toluene concentration Ci of 50, 100, 150 or 200 pg / m 3 , and the initial Ci concentrations for the other VOC
  • the plaster-based material according to the invention also advantageously has an average MBV moisture buffer value greater than 2 g per m 2 and per percentage change in relative humidity (% ARH), and in particular greater than or equal to 2.0 g / (m 2. % ARH), or even greater than or equal to 2.5 g / (m 2. % ARH), or even greater than or equal to 3 g / (m 2. % ARH), the value of the buffer of humidity (Moisture Buffer Value:
  • the principle of the associated test protocol is to subject the samples to daily relative humidity cycles in order to be representative of the cycles encountered in buildings, the reference relative humidity pair being 75% / 33% humidity. relative with an exposure duration of 8 hours in absorption and 16 hours in desorption, the mass monitoring of the samples then making it possible to determine the MBV value, the performance being all the better the higher this value is.
  • FIG. 1 represents an example of the profile of variation in mass of a compound during sorption and desorption phases making it possible to evaluate the variations in mean mass A m (S) in sorption and A m (D4) after 4 cycles sorption / desorption according to the measurement protocol described above.
  • Figure 1 shows an example of the variation profile of the mass of a compound (illustrative representation not necessarily corresponding to a particular compound) over time by performing 4 cycles of sorption and desorption and a fifth sorption phase at the end of the 4 cycles according to the protocol for measuring the parameters A m (S) and A m (D4) described above.
  • the mass of the (pure) compound analyzed is measured at the end of each sorption phase and of each desorption phase so as to plot profiles of mass variation over time.
  • the average mass variation A m during the sorption phases corresponds to the arithmetic average of the mass variations Di to D5 measured for each of the sorption phases (average of 5 values) and the mass variation A m (D4) is the value of the last change in desorption mass at the end of the desorption phase of the 4th sorption / desorption cycle.
  • FIG. 2 represents the isotherms of sorption and desorption of water vapor of a particular activated carbon, selected according to the invention, and marketed by the company Chemviron under the reference “Filtrasorb 400”.
  • This charcoal is an activated charcoal granular obtained from coal and fully activated by physical activation, and has a particle size of 1.7 x 0.42 mm, a specific surface area of the order of 950 m 2 / g, an iodine number of the order of 1000 mg / g, a sorption capacity of 9.1 mg (toluene) / g, a bulk density of at least 440 to 540 kg / m 3 , a variation in mean mass A m of 3.55% in sorption and a variation of mass A m (D4) after 4 sorption / desorption cycles of 1.37%, type V sorption / desorption isotherms illustrated in FIG. 2, a porosity with in particular a mixture of micropores and mesopores, and
  • the isotherms are determined using a reference Dynamic Vapor Sorption Analyzer DVS Intrinsic from the company Surface Measurement System.
  • the sorption and desorption isotherms of the activated carbon alone are sigmoid in shape, in particular type V (on the model of the representations given in particular in the IUPAC nomenclature), and have a first sorption zone A, respectively A ' desorption, low, with a shallow slope, the water content of the activated carbon remaining below 5% by weight up to at least 40% relative humidity of the ambient air, and, in the range of 40 to 80% relative humidity of the ambient air, a second zone of sorption B, respectively of desorption B ', strong, of strong slope (compared in particular to the first zone) where the sorption increases (respectively the desorption takes place) significantly, the water content of the activated carbon varying (upwards or downwards depending on the curve considered) between 5% or less and up to 35% by weight, and finally

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

The present invention relates to a plaster-based material comprising an activated carbon having a specific surface area greater than or equal to 875 m2/g and less than or equal to 1300 m2/g and/or an iodine value greater than or equal to 900 mg/g and/or a sorption capacity of at least 7 mg of toluene per g of activated carbon; and an average mass change Δm(S) in sorption of at least 2% and a mass change Δm(D4) after 4 sorption/desorption cycles of at most 1.5%.

Description

DESCRIPTION DESCRIPTION
TITRE : MATERIAU A BASE DE PLATRE TITLE: PLASTER-BASED MATERIAL
L’invention se rapporte à un matériau à base de plâtre, en particulier un mélange sec ou humide, une plaque de plâtre ou un carreau de plâtre destinés à l’aménagement intérieur de bâtiments d’habitation, ainsi qu’à son utilisation pour le confort à l’intérieur des bâtiments. The invention relates to a plaster-based material, in particular a dry or wet mixture, a plasterboard or a plaster tile intended for the interior design of residential buildings, as well as its use for the construction. comfort inside buildings.
Le confort à l'intérieur des bâtiments, en particulier en matière de qualité de l'air, est de plus en plus au cœur des préoccupations des occupants et des constructeurs. Comfort inside buildings, in particular in terms of air quality, is increasingly at the heart of the concerns of occupants and builders.
Les composés organiques volatils (COV) sont des substances chimiques à base de carbone et d'hydrogène présents dans l’air à l’état gazeux. La directive n°2010/75 de l’union européenne du 24 novembre 2010 les définit comme tout composé organique ayant une pression de vapeur de 0,01 kPa ou plus à une température de 293,15 K ou ayant une volatilité correspondante dans les conditions d'utilisation particulières. Ils comprennent des substances chimiques de diverses natures comme des alcanes, des alcènes tels que les terpènes, des alcynes, des alcools, des aldéhydes tels que le formaldéhyde, l’acétaldéhyde, le propionaldéhyde, le cronotaldéhyde, le butyraldéhyde, le benzaldéhyde, le valéraldéhyde, l’héxaldéhyde ou l’heptanaldehyde, des cétones, des éthers tels que les éthers de glycols, des hydrocarbures aromatiques tels que le benzène et le toluène, ou des hydrocarbures halogénés tels que le tétrachloroéthylène et le dichlorobenzène. Des COV sont présents dans la plupart des peintures, matériaux de construction, dissolvants, détergents, combustibles, ainsi que dans les résines, vernis ou colles utilisés pour le mobilier ou les appareils électriques, ou encore dans les fumées de cigarettes. Ces COV se retrouvent dans l’air ambiant des bâtiments et, même si leur quantité paraît faible, ils peuvent à la longue incommoder les personnes qui y sont exposées voire affecter leur santé. En particulier, certains COV peuvent provoquer des réactions allergiques, des problèmes respiratoires, des nausées ou des maux de tête. Volatile Organic Compounds (VOCs) are carbon and hydrogen-based chemicals found in air in the gaseous state. Directive n ° 2010/75 of the European Union of November 24, 2010 defines them as any organic compound having a vapor pressure of 0.01 kPa or more at a temperature of 293.15 K or having a corresponding volatility under the conditions special uses. They include chemicals of various kinds such as alkanes, alkenes such as terpenes, alkynes, alcohols, aldehydes such as formaldehyde, acetaldehyde, propionaldehyde, cronotaldehyde, butyraldehyde, benzaldehyde, valeraldehyde , hexaldehyde or heptanaldehyde, ketones, ethers such as glycol ethers, aromatic hydrocarbons such as benzene and toluene, or halogenated hydrocarbons such as tetrachlorethylene and dichlorobenzene. VOCs are present in most paints, construction materials, solvents, detergents, fuels, as well as in resins, varnishes or glues used for furniture or electrical appliances, or even in cigarette smoke. These VOCs are found in the ambient air of buildings and, even if their quantity seems small, they can over time inconvenience the people who are there. exposed or even affect their health. In particular, some VOCs can cause allergic reactions, breathing problems, nausea or headaches.
Ces dernières années, la proportion de COV émise par les matériaux précités a fortement diminué du fait d’une réglementation plus stricte. Pour autant, les matériaux alternatifs à faible, ou sans, émission de COV présentent souvent un coût plus élevé et des niveaux de performance plus faible. In recent years, the proportion of VOCs emitted by the aforementioned materials has fallen sharply due to stricter regulations. However, alternative materials with low or no VOC emissions often have a higher cost and lower performance levels.
Parallèlement aux efforts réalisés pour maîtriser l’émission de COV, différents moyens permettant de réduire la quantité de COV dans l'air ambiant ont été proposés. Ainsi, certains matériaux de construction à propriétés purificatrices d’air existants font par exemple appel à la technique de l’oxydation photocatalytique avec l’utilisation de particules d’oxyde de titane. L’inconvénient principal de ces matériaux est la nécessité d’avoir une source de lumière appropriée pour que le processus se fasse efficacement. Il a également été proposé d’incorporer des agents fixateurs ou chimisorbant (scavenger) dans les matériaux de construction pour réduire la quantité de COV dans l’air ambiant à l’intérieur des bâtiments. On peut citer comme exemples les composés à méthylènes actifs, tels que l’acétoacétamide, les tannins, les aminoalcools, les amides et les hydrazides. Si ces agents peuvent permettre de piéger efficacement certains COV (en particulier les aldéhydes tels que le formaldéhyde), ils s'avèrent généralement inefficaces pour piéger d'autres composés organiques volatils (tels que xylène, toluène, éthylbenzène, décane, etc). In addition to the efforts made to control the emission of VOCs, various means of reducing the amount of VOCs in the ambient air have been proposed. Thus, some building materials with existing air-purifying properties make use, for example, of the technique of photocatalytic oxidation with the use of titanium oxide particles. The main disadvantage of these materials is the need for an appropriate light source for the process to run efficiently. It has also been proposed to incorporate scavengers or scavengers in building materials to reduce the amount of VOCs in the ambient air inside buildings. Examples that may be mentioned are compounds containing active methylenes, such as acetoacetamide, tannins, amino alcohols, amides and hydrazides. While these agents can effectively trap certain VOCs (in particular aldehydes such as formaldehyde), they are generally ineffective in trapping other volatile organic compounds (such as xylene, toluene, ethylbenzene, decane, etc.).
Un autre type de problématique rencontré dans les bâtiments est lié à l'humidité, laquelle peut être importante dans certaines pièces et entraîner notamment des moisissures ; inversement un air trop sec ou des variations importantes d'humidité peuvent également nuire au confort des occupants. Il est connu pour remédier aux problèmes d'humidité d'utiliser d'autres types de composés captant les molécules d'eau (qui sont polaires), par exemple des minéraux de type montmorillonite composés de silicate d’aluminium et de magnésium, ce genre de composés n’ayant par contre aucun effet sur le piégeage d'une grande partie des composés organiques volatils qui sont pour nombre d'entre eux apolaires (tels que : xylène, éthylbenzène, décane, etc). En outre, il n'est souvent pas suffisant de simplement capter les molécules d'eau, le relargage d'eau pouvant également être recherché dans le cas où l'air est ou devient trop sec. Another type of problem encountered in buildings is linked to humidity, which can be significant in certain rooms and lead in particular to mold; conversely, air that is too dry or significant variations in humidity can also adversely affect occupant comfort. It is known to remedy humidity problems to use other types of compounds which scavenge water molecules (which are polar), for example, montmorillonite-type minerals composed of aluminum and magnesium silicate, such as these. compounds having on the other hand no effect on the trapping of a large part of the volatile organic compounds which are for many of them apolar (such as: xylene, ethylbenzene, decane, etc.). In addition, it is often not sufficient to simply capture the water molecules, the release of water can also be sought in the event that the air is or becomes too dry.
La résolution de ces différentes problématiques oblige donc le cas échéant à combiner différents types de solutions et/ou composés, parfois antinomiques. The resolution of these different problems therefore requires, where appropriate, to combine different types of solutions and / or compounds, sometimes contradictory.
La présente invention vise ainsi à proposer un matériau à base de plâtre, en particulier pour l’aménagement intérieur, et notamment pour l'utilisation comme enduit de sous- couche ou comme enduit de finition, cet enduit étant destiné par exemple à niveler et/ou protéger une surface à revêtir avant l'application de la couche de peinture (à caractère généralement principalement esthétique), cet enduit possédant à la fois des propriétés de purification de l'air ambiant eu égard aux différents types de composés volatils organiques (COV) pouvant s’y trouver et des propriétés de régulation de l’humidité, la purification relative aux COV ne se limitant pas qu'à celle du formaldéhyde mais concernant également d’autres COV en particulier apolaires (tels que le xylène, toluène, éthylbenzène, décane...), et les COV captés par le matériau à base de plâtre ne subissant pas en outre de désorption à température ambiante, et les propriétés de régulation de l’humidité ne consistant pas seulement en des propriétés de captage d’humidité mais permettant tour à tour de capter l'excès d'humidité et de re-libérer cette humidité si en revanche l’air devient trop sec et/ou lorsque l’on ventile la pièce. The present invention thus aims to provide a plaster-based material, in particular for interior fittings, and in particular for use as an underlayment plaster or as a finishing plaster, this plaster being intended for example for leveling and / or protect a surface to be coated before applying the paint layer (generally mainly aesthetic in nature), this coating having both ambient air purification properties with regard to the different types of volatile organic compounds (VOCs) which may be present therein and humidity-regulating properties, the purification relating to VOCs not being limited only to that of formaldehyde but also relating to other VOCs, in particular nonpolar (such as xylene, toluene, ethylbenzene, decane ...), and the VOCs captured by the plaster-based material not further undergoing desorption at room temperature, and the humidity-regulating properties not only consisting of moisture-trapping properties but allowing in turn to capture excess humidity and re-release this humidity if, on the other hand, the air becomes too dry and / or when the room is ventilated.
Ce but est atteint grâce au matériau selon l'invention. La présente invention porte donc sur un matériau à base de plâtre caractérisé en ce qu'il comprend un charbon actif, présentant (initialement, avant incorporation dans le matériau) : This object is achieved thanks to the material according to the invention. The present invention therefore relates to a plaster-based material characterized in that it comprises an activated carbon, exhibiting (initially, before incorporation into the material):
- une surface spécifique supérieure ou égale à 875 m2/g et inférieure ou égale à 1300 m2/g et/ou un indice d’iode supérieur ou égal à 900 mg/g et/ou une capacité de sorption d’au moins 7 mg de toluène par g de charbon actif, et - a specific surface greater than or equal to 875 m 2 / g and less than or equal to 1300 m 2 / g and / or an iodine number greater than or equal to 900 mg / g and / or a sorption capacity of at least 7 mg of toluene per g of activated charcoal, and
- une variation de masse moyenne Am(S) en sorption d'au moins 2% et une variation de masse Am(D4) après 4 cycles de sorption/désorption d’au plus 1.5%. - a variation in mean mass A m (S) in sorption of at least 2% and a variation in mass A m (D4) after 4 cycles of sorption / desorption of at most 1.5%.
Les caractéristiques du charbon actif précité sélectionné selon l’invention sont celles du charbon actif initial (c'est-à-dire non encore incorporé dans le matériau), tel qu'il est ajouté dans le matériau. The characteristics of the aforementioned activated carbon selected according to the invention are those of the initial activated carbon (that is to say not yet incorporated into the material), as it is added to the material.
Le charbon actif utilisé dans le matériau selon l'invention peut être (initialement) de type granulaire (ou sous forme granulaire ou de granulés), c'est-à-dire formé de particules de formes irrégulières dans une gamme de taille principalement de l’ordre de 0,2 mm à 5 mm, ou sous forme de poudre, c’est-à-dire formé de particules de taille inférieure, généralement inférieure à 400 mpi, par opposition à d’autres formes de charbon actif existantes, par exemple sous forme extrudée (de forme régulière). Lorsque du charbon actif granulaire est utilisé, les particules de charbon actif sont en particulier majoritairement (à au moins 90% en poids, en particulier à au moins 95% en poids, voire 100% en poids) de taille (plus grande dimension de chaque particule) comprise entre 0.2 mm et 5 mm (bornes incluses), en particulier comprise entre 0.2 et 2 mm, voire notamment à au moins 90% en poids de taille comprise entre 0.42 mm et 1.7 mm (bornes incluses), la taille des particules étant évaluée en particulier par tamisage (notamment à l'aide de tamis référencés 12 et 40 en taille de Mesh US). Lorsque du charbon actif en poudre est utilisé, les particules de charbon actif sont en particulier majoritairement (à au moins 90% en poids, en particulier à au moins 95% en poids, voire 100% en poids) de taille (plus grande dimension de chaque particule) inférieure à 400 pm (bornes incluses), en particulier comprise entre 1 et 400 pm, voire notamment à au moins 90% en poids de taille comprise entre 10 et 200 pm (bornes incluses), la taille des particules étant évaluée en particulier à l’aide d’un tamis à jet d’air selon la norme ASTM-D-5158-93. The activated carbon used in the material according to the invention can be (initially) of the granular type (or in granular or granular form), that is to say formed of particles of irregular shapes in a size range mainly of 1. 'of the order of 0.2 mm to 5 mm, or in powder form, that is to say formed of particles of smaller size, generally less than 400 mpi, as opposed to other existing forms of activated carbon, for example in extruded form (regular shape). When granular activated carbon is used, the particles of activated carbon are in particular predominantly (at least 90% by weight, in particular at least 95% by weight, or even 100% by weight) in size (largest dimension of each particle) between 0.2 mm and 5 mm (limits included), in particular between 0.2 and 2 mm, or even in particular at least 90% by weight of size between 0.42 mm and 1.7 mm (limits included), the size of the particles being evaluated in particular by sieving (in particular using sieves referenced 12 and 40 in US mesh size). When powdered activated carbon is used, the activated carbon particles are in particular predominantly (at least 90% by weight, in particular at least 95% by weight, or even 100% by weight) in size (largest dimension of each particle) less than 400 μm (limits included), in particular between 1 and 400 μm, or even in particular at least 90% by weight of size between 10 and 200 μm (limits included), the size of the particles being evaluated by particularly using an air jet screen according to ASTM-D-5158-93.
Préférentiellement, la masse volumique (également appelée usuellement densité) du charbon actif sélectionné est en outre relativement élevée, participant le cas échéant à une activité importante dudit charbon dans la présente invention, cette masse volumique (masse volumique apparente) étant supérieure ou égale à 400 kg/m3, de préférence supérieure ou égale à 440 kg/m3, voire supérieure ou égale à 500 kg/m3, voire supérieure ou égale à 530 ou 540 kg/m3, la masse volumique apparente du charbon actif utilisé étant déterminée en faisant le rapport de la masse d'un volume donné du matériau, sur ledit volume. Preferably, the density (also usually called density) of the selected activated carbon is also relatively high, where appropriate participating in a significant activity of said carbon in the present invention, this density (bulk density) being greater than or equal to 400 kg / m 3 , preferably greater than or equal to 440 kg / m 3 , or even greater than or equal to 500 kg / m 3 , or even greater than or equal to 530 or 540 kg / m 3 , the bulk density of the activated carbon used being determined by making the ratio of the mass of a given volume of material to said volume.
Le charbon actif incorporé dans la composition de matériau à base de plâtre selon l'invention est sélectionné de façon à présenter une porosité particulière se traduisant notamment par une surface spécifique supérieure ou égale à 875 m2/g et inférieure ou égale à 1300 m2/g et/ou par un indice d’iode supérieur ou égal à 900 mg/g et/ou par une capacité de sorption d’au moins 7 mg de toluène par g de charbon actif. The activated carbon incorporated in the plaster-based material composition according to the invention is selected so as to exhibit a particular porosity resulting in particular in a specific surface greater than or equal to 875 m 2 / g and less than or equal to 1300 m 2 / g and / or by an iodine number greater than or equal to 900 mg / g and / or by a sorption capacity of at least 7 mg of toluene per g of activated carbon.
La surface spécifique du charbon actif sélectionné est mesurée par adsorption d’azote (théorie de l’ adsorption multiple des gaz à l’aide de déterminations de Brunauer, Emmett et Teller- méthode BET), conformément notamment à la norme ISO 9277 : 2010, et est, selon un premier mode avantageux selon l'invention, supérieure ou égale à 875 m2/g, et de préférence supérieure ou égale à 900 m2/g, en particulier supérieure à 900 m2/g, notamment supérieure ou égale à 950 m2/g, voire supérieure ou égale à 1000 m2/g, et en outre est de préférence inférieure à ou égale 1300 m2/g, en particulier inférieure ou égale à 1200 m2/g, voire inférieure ou égale à 1100 m2/g. The specific surface of the selected activated carbon is measured by nitrogen adsorption (theory of multiple adsorption of gases using Brunauer determinations, Emmett and Teller - BET method), in accordance in particular with the ISO 9277: 2010 standard, and is, according to a first advantageous embodiment according to the invention, greater than or equal to 875 m 2 / g, and preferably greater than or equal to 900 m 2 / g, in particular greater than 900 m 2 / g, in particular greater than or equal to 950 m 2 / g, or even greater than or equal to 1000 m 2 / g, and in addition is preferably less than or equal to 1300 m 2 / g, in particular less than or equal to 1200 m 2 / g, or even less than or equal to 1100 m 2 / g.
L’indice d’iode (iodine number) représente la masse d’iode (en milligrammes) absorbée par gramme de charbon, cet indice étant mesuré en particulier selon la norme ASTM D4607-14 pour une concentration en iode résiduel dans le filtrat de 0,02 N. L’indice d'iode est un indicateur relatif de porosité et peut le cas échéant aussi être considéré comme un indicateur de la surface spécifique du charbon actif. Selon un mode de réalisation avantageux de l'invention, il est supérieur ou égal à 900 mg/g, voire supérieur ou égal à 1000 mg/g. The iodine number (iodine number) represents the mass of iodine (in milligrams) absorbed per gram of carbon, this index being measured in particular according to standard ASTM D4607-14 for a residual iodine concentration in the filtrate of 0 , 02 N. The iodine number is a relative indicator of porosity and can optionally also be considered as an indicator of the specific surface area of the activated carbon. According to an advantageous embodiment of the invention, it is greater than or equal to 900 mg / g, or even greater than or equal to 1000 mg / g.
La capacité de sorption du charbon est déterminée de la façon suivante : la concentration en toluène est mesurée au cours du temps par spectrométrie de masse SILT-MS (Sélective Ion Llow Tube-Mass Spectrometry) à la sortie d’un réacteur en U où est contenu le matériau (le charbon pur) à tester. La concentration en toluène est d'abord mesurée en sortie de réacteur vide (sans échantillon) au cours du temps jusqu’à atteindre un palier qui correspond à la concentration initialement générée, afin de déterminer la courbe de mélange. Le matériau à tester est ensuite placé dans le réacteur puis la même concentration est générée de la même manière. La concentration en toluène en sortie de réacteur est ensuite mesurée au cours du temps. Un retard temporel est observé par rapport à la courbe de mélange pour ensuite atteindre l’état d’équilibre entre le toluène en phase gazeuse et le toluène adsorbé à la surface du matériau. Cet écart temporel correspond à une adsorption de toluène par le matériau testé. Une intégration permet alors de calculer l’aire entre les deux courbes et de déterminer la quantité de toluène adsorbée par le matériau, à la concentration considérée. Dans les mesures effectuées pour déterminer la capacité de sorption du charbon actif dans la présente invention, la concentration en toluène (pur) de l'air d’alimentation est de 360 pg/mf Selon un mode de réalisation avantageux de l'invention, le charbon actif est sélectionné de façon à présenter une capacité de sorption d’au moins 7 mg de toluène par g de charbon actif, de préférence d’au moins 8 mg de toluène par g de charbon actif, en particulier d'au moins 9 mg de toluène par g de charbon actif. The carbon sorption capacity is determined as follows: the toluene concentration is measured over time by SILT-MS (Selective Ion Llow Tube-Mass Spectrometry) mass spectrometry at the outlet of a U-shaped reactor where is contained the material (pure carbon) to be tested. The toluene concentration is first measured at the outlet of the empty reactor (without sample) over time until a level is reached which corresponds to the concentration initially generated, in order to determine the mixing curve. The material to be tested is then placed in the reactor and then the same concentration is generated in the same way. The toluene concentration at the reactor outlet is then measured over time. A time delay is observed with respect to the mixing curve in order then to reach the state of equilibrium between the toluene in the gas phase and the toluene adsorbed on the surface of the material. This time difference corresponds to adsorption of toluene by the material tested. Integration then makes it possible to calculate the area between the two curves and to determine the quantity of toluene adsorbed by the material, at the concentration considered. In the measurements carried out to determine the sorption capacity of activated carbon in the present invention, the concentration of toluene (pure) in the supply air is 360 pg / mf According to an advantageous embodiment of the invention, the activated charcoal is selected so as to have a sorption capacity of at least 7 mg of toluene per g of activated charcoal, preferably of at least 8 mg of toluene per g of activated charcoal, in particular of at least 9 mg of toluene per g of activated carbon.
Les indicateurs précédents sont liés à une certaine porosité du charbon actif sélectionné, lequel intègre avantageusement différents types de pores pouvant participer, chacun de façon différente, à la sorption des COV, et à la sorption ou la désorption des molécules d'eau. Le charbon actif sélectionné comprend ainsi avantageusement à la fois des micropores (de diamètres généralement inférieurs à 2 nm), et des mésopores (de diamètres généralement compris entre 2 et 50 nm), le diamètre (diamètre équivalent) qualifiant la taille des pores étant calculé à partir des mesures de volumes poreux effectuées par exemple en utilisant la méthode BET citée précédemment. The above indicators are linked to a certain porosity of the selected activated carbon, which advantageously integrates different types of pores which can participate, each in a different way, in the sorption of VOCs, and in the sorption or desorption of water molecules. The selected activated carbon thus advantageously comprises both micropores (of diameters generally less than 2 nm), and mesopores (of diameters generally between 2 and 50 nm), the diameter (equivalent diameter) qualifying the size of the pores being calculated. from measurements of pore volumes carried out for example using the BET method cited above.
La nature ou l'origine du charbon actif utilisé influant le cas échéant sur la porosité, le charbon actif utilisé dans la composition de matériau à base de plâtre selon l'invention est en particulier choisi, dans un mode de réalisation avantageux selon l'invention, parmi les charbons actifs produits à partir (ou issus) de la houille (bituminous coal). Les charbons actifs peuvent en effet classiquement être fabriqués par pyrolyse de différentes matières premières carbonées telles que le bois, les coques de noix de coco ou d’autres matières organiques végétales, la houille, etc, les plus couramment utilisés étant ceux obtenus à partir de coques de noix de coco. L'utilisation d'un charbon actif défini selon l’invention et issu de la houille dans la composition de matériau à base de plâtre a permis d’obtenir des résultats particulièrement avantageux en terme d’obtention et de juste équilibre des diverses propriétés recherchées, comme illustré ultérieurement. The nature or the origin of the activated carbon used influencing, where appropriate, the porosity, the activated carbon used in the composition of plaster-based material according to the invention is in particular chosen, in an advantageous embodiment according to the invention. , among the activated carbons produced from (or derived from) coal (bituminous coal). Activated carbons can in fact conventionally be manufactured by pyrolysis of various carbonaceous raw materials such as wood, coconut shells or other organic plant materials, coal, etc., the most commonly used being those obtained from coconut shells. The use of an activated carbon defined according to the invention and obtained from coal in the plaster-based material composition has made it possible to obtain particularly advantageous results in terms of obtaining and fair balance of the various desired properties, as shown later.
Comme défini précédemment, le charbon actif sélectionné selon l’invention présente également une variation de masse moyenne Am(S) en sorption d'au moins 2%, et en particulier d'au moins 2.5%, voire d'au moins 3%, et une variation de masse Am(D4) après 4 cycles de sorption/désorption d'au plus 1.5%, voire d'au plus 1.4%. Ces valeurs sont déterminées dans la présente invention en plaçant l’échantillon de charbon à tester dans un bêcher de 7.4 cm de diamètre jusqu'à l'obtention d'une épaisseur d'échantillon de 2 cm, l’ensemble étant placé dans une enceinte climatique Terchy et maintenu pendant 2 jours à une température de 23°C à une humidité relative de 33%, avant d'être soumis à 4 cycles de sorption/désorption (présentant chacun une phase de sorption suivie par une phase de désorption) et à une cinquième phase de sorption intervenant à la fin des 4 cycles, avec une durée d’exposition de 8 heures en (ad)sorption à 75% d'humidité relative et de 16 heures en désorption à 33% d'humidité relative. La masse de l'échantillon est mesurée à la fin de chaque phase de sorption (soit 5 mesures en sorption) et de chaque phase de désorption (soit 4 mesures en désorption) de façon à tracer des profils de variation de masse (en % par rapport à la masse de départ de l'échantillon (masse au début du premier cycle)) au cours du temps, la variation de masse moyenne Am(S) (en %) en sorption (ou au cours des phases de sorption) correspondant à la moyenne arithmétique des variations de masses pour chacune des phases de sorption (moyenne de 5 valeurs) et la variation de masse Am(D4) (en %) étant évaluée à la fin de la phase de désorption du 4ème cycle (dernière variation de masse en désorption) après les 4 cycles de sorption/désorption, comme illustré ultérieurement en figure 1, cette dernière valeur permettant notamment d'évaluer la symétrie/dissymétrie de la sorption/désorption d’eau. As defined above, the activated carbon selected according to the invention also exhibits a variation in mean mass A m (S) in sorption of at least 2%, and in particular of at least 2.5%, or even of at least 3%. , and a variation in mass A m (D4) after 4 sorption / desorption cycles of at most 1.5%, or even at most 1.4%. These values are determined in the present invention by placing the sample of charcoal to be tested in a beaker 7.4 cm in diameter until a sample thickness of 2 cm is obtained, the assembly being placed in an enclosure. climate Terchy and maintained for 2 days at a temperature of 23 ° C at a relative humidity of 33%, before being subjected to 4 cycles of sorption / desorption (each presenting a sorption phase followed by a desorption phase) and to a fifth sorption phase occurring at the end of the 4 cycles, with an exposure time of 8 hours in (ad) sorption at 75% relative humidity and 16 hours in desorption at 33% relative humidity. The mass of the sample is measured at the end of each sorption phase (i.e. 5 measurements in sorption) and each desorption phase (i.e. 4 measurements in desorption) so as to plot profiles of the variation in mass (in% per compared to the starting mass of the sample (mass at the start of the first cycle)) over time, the change in mean mass A m (S) (in%) in sorption (or during the sorption phases) corresponding to the arithmetic mean of the variations in masses for each of the sorption phases (average of 5 values) and the variation in mass A m (D4) (in%) being evaluated at the end of the desorption phase of the 4th cycle (last variation mass in desorption) after the 4 cycles of sorption / desorption, as illustrated later in FIG. 1, this last value making it possible in particular to evaluate the symmetry / dissymmetry of the sorption / desorption of water.
Le charbon actif sélectionné présente également avantageusement des isothermes (représentant le taux en poids d'eau capté par le charbon actif par rapport à l'humidité relative de l’air ambiant) de sorption et de désorption (de vapeur d’eau) de forme sigmoïde (ou forme en S) présentant une première zone de sorption, respectivement de désorption, faible (avec une teneur en eau dudit charbon actif inférieure à 5% en poids) jusqu'à au moins 30 %, ou au moins 40% (et au plus 60%), d'humidité relative de l'air ambiant, et une deuxième zone de sorption, respectivement de désorption, forte (comparativement à la première zone, avec une variation de la teneur en eau du charbon allant de 5%, ou moins, en poids à au moins 30% en poids) se situant à l'intérieur de la plage allant de 30% à 80%, en particulier de 40 à 80%, d'humidité relative de l'air ambiant. Plus précisément, le charbon actif présente un isotherme de sorption (respectivement de désorption) dit "de type V” (sur le modèle des représentations données notamment dans la nomenclature de l'UICP), intégrant (comme illustré en figure 3 a) une zone A (respectivement A' pour la courbe de désorption) de faible pente, puis une zone B (respectivement B’) de forte pente (comparativement notamment à la zone A, respectivement A’) où la sorption augmente (respectivement la désorption s'opère) de façon importante, et une zone C (respectivement C) de saturation de faible pente. Dans la zone A, respectivement A’, des isothermes du charbon actif selon l’invention, située dans la plage d’humidité relative allant de 0 à 30 ou 40%, la teneur en eau du charbon actif sélectionné reste inférieure à 5% en poids, et dans la zone B, respectivement B’, située à l’intérieur de la plage d’humidité relative allant de 30 ou 40% à 80%, la teneur en eau du charbon actif varie (à la hausse ou à la baisse selon la courbe considérée - une hystérésis étant généralement observée entre les courbes de sorption et de désorption) entre 5% ou moins et au moins 30% en poids (bornes incluses), de préférence entre 5% ou moins et au moins 35% en poids (voire plus). Les isothermes sont déterminés par gravimétrie d'adsorption de vapeur d'eau (ou DVS ou Dynamic Vapour Sorption), en utilisant notamment un Analyseur de Sorption de Vapeur Dynamique de référence DVS Intrinsic de la société Surface Measurement System. The activated carbon selected also advantageously exhibits isotherms (representing the rate by weight of water captured by the activated carbon with respect to the relative humidity of the ambient air) of sorption and desorption (of water vapor) of the form sigmoid (or S-shape) exhibiting a first sorption zone, respectively desorption, low (with a water content of said activated carbon less than 5% by weight) up to at least 30%, or at least 40% (and at most 60%), relative humidity of the ambient air, and a second sorption zone, respectively of strong desorption (compared to the first zone, with a variation in the water content of the coal ranging from 5%, or less, by weight to at least 30% by weight) falling within the range of 30% to 80%, especially 40 to 80%, relative humidity of the ambient air. More precisely, the activated carbon has a sorption (respectively desorption) isotherm called "type V" (on the model of the representations given in particular in the UICP nomenclature), integrating (as illustrated in FIG. 3 a) a zone A (respectively A 'for the desorption curve) of low slope, then a zone B (respectively B') of strong slope (compared in particular to zone A, respectively A ') where sorption increases (respectively desorption takes place ) significantly, and a low slope saturation zone C. In zone A, respectively A ', isotherms of the activated carbon according to the invention, located in the relative humidity range from 0 to 30 or 40%, the water content of the selected activated carbon remains below 5% by weight, and in zone B, respectively B ', located within the relative humidity range from 30 or 40% to 80%, the water content of the activated carbon varies (upwards or downwards depending on the curve considered - a hysteresis being generally observed between the curves of sorption and desorption) between 5% or less and at least 30% by weight (limits included), preferably between 5% or less and at least 35% by weight (or even more). The isotherms are determined by water vapor adsorption gravimetry (or DVS or Dynamic Vapor Sorption), using in particular a reference Dynamic Vapor Sorption Analyzer DVS Intrinsic from the company Surface Measurement System.
Avantageusement, le charbon actif utilisé présente également initialement (avant incorporation dans le matériau à base de plâtre) une humidité relative inférieure ou égale à 2% en poids, cette humidité étant évaluée par pesées avant puis après séchage (le séchage étant effectué jusqu'à obtenir une variation de la masse inférieure à 0.1 %). Advantageously, the activated carbon used also initially (before incorporation into the plaster-based material) has a relative humidity of less than or equal to 2% by weight, this humidity being evaluated by weighing before then after drying (the drying being carried out until obtain a variation in mass less than 0.1%).
Le charbon actif utilisé est un charbon actif obtenu par broyage, et le cas échéant ré agglomération, pour obtenir la granulométrie souhaitée, puis séchage (notamment de sorte qu'il reste au maximum 2%, voire au maximum 1% d'humidité), le charbon étant activé de façon connue, en particulier en procédant par activation physique, notamment dans de la vapeur d'eau, l'activation s'opérant notamment à température élevée (en particulier entre 550 et 1100°C). Le charbon activé utilisé peut être activé en totalité ou seulement en surface, et est en particulier activé en totalité. The activated carbon used is an activated carbon obtained by grinding, and if necessary re-agglomeration, to obtain the desired particle size, then drying (in particular so that a maximum of 2%, or even a maximum of 1% moisture remains), the charcoal being activated in a known manner, in particular by proceeding by physical activation, in particular in water vapor, the activation taking place in particular at high temperature (in particular between 550 and 1100 ° C.). The activated charcoal used can be activated entirely or only at the surface, and is in particular activated entirely.
Un exemple de charbon actif particulièrement satisfaisant utilisé selon la présente invention est notamment le charbon actif vendu par la société Chemviron Carbon sous la référence "Filtrasorb 400", ce charbon étant un charbon actif granulaire issu de la houille et activé en totalité par activation physique, et présentant une granulométrie de 1,7 x 0,42 mm (c'est-à-dire passant au tamis n°12 qui correspond à une taille de particules de 1.7 mm, et retenues par le tamis n° 40 qui correspond à une taille des particules de 0.42 mm), une surface spécifique d'au moins 900-950 m2/g, un indice d'iode de l'ordre de 1000 mg/g, une capacité de sorption de 9.1 mg (toluène)/g, une masse volumique apparente d’au moins 440 à 540 kg/m3, une variation de masse moyenne Am(S) en sorption de 3.55% et une variation de masse Am(D4) après 4 cycles de sorption/désorption de 1.37%, des isothermes de sorption/désorption de type V illustrés en figure 3 a, une porosité résultant d'un mélange de micropores et de mésopores et une humidité relative inférieure à 1%. Il peut évidemment être broyé pour être utilisé sous forme de poudre de granulométrie souhaitée. An example of a particularly satisfactory activated carbon used according to the present invention is in particular the activated carbon sold by the company Chemviron Carbon under the reference “Filtrasorb 400”, this carbon being a granular activated carbon obtained from coal and fully activated by physical activation, and having a particle size of 1.7 x 0.42 mm (i.e. passing through sieve No. 12 which corresponds to a particle size of 1.7 mm, and retained by sieve No. 40 which corresponds to a particle size 0.42 mm), a specific surface area of at least 900-950 m 2 / g, an index of iodine of the order of 1000 mg / g, a sorption capacity of 9.1 mg (toluene) / g, an apparent density of at least 440 to 540 kg / m 3 , a variation in mean mass A m ( S) in sorption of 3.55% and a variation in mass A m (D4) after 4 sorption / desorption cycles of 1.37%, type V sorption / desorption isotherms illustrated in figure 3a, a porosity resulting from a mixture micropores and mesopores and a relative humidity of less than 1%. It can obviously be ground to be used in the form of powder of the desired particle size.
Le taux du charbon actif défini dans la présente invention dans le matériau à base de plâtre est de préférence compris entre 0,5 et 10% en poids de ladite composition (sèche), de préférence entre 0,5 et 7%, ou 0,7 à 2% (bornes comprises), par exemple de l'ordre de 1,5%. The level of activated carbon defined in the present invention in the plaster-based material is preferably between 0.5 and 10% by weight of said composition (dry), preferably between 0.5 and 7%, or 0, 7 to 2% (limits included), for example of the order of 1.5%.
Le charbon actif utilisé selon l’invention permet d’obtenir sans l’aide d’un autre agent, à la fois les propriétés recherchées en terme de purification de l’air ambiant et de régulation de l’humidité. La composition selon l’invention peut néanmoins comprendre d’autres agents fixateurs de COV pour améliorer les propriétés de purification vis-à-vis d’un ou plusieurs COV, en particulier des aldéhydes tels que le formaldéhyde. Des exemples d’agents fixateurs de COV comprennent les composés à méthylènes actifs, tels que l’acétoacétamide, les tannins, les aminoalcools, les amides et les hydrazides. Dans certains modes de réalisation, le matériau à base de plâtre peut être avantageusement dénué d'autres charbons actifs que le charbon actif sélectionné, ou d'additifs capteurs d'eau de type montmorillonite, ou plus généralement de tout autre agent habituellement utilisé pour purifier l’air ou capter les molécules d’eau etc. The activated carbon used according to the invention makes it possible to obtain, without the aid of another agent, both the desired properties in terms of purification of the ambient air and of humidity regulation. The composition according to the invention may nevertheless comprise other VOC fixing agents to improve the purification properties with respect to one or more VOCs, in particular aldehydes such as formaldehyde. Examples of VOC scavengers include active methylene compounds, such as acetoacetamide, tannins, amino alcohols, amides, and hydrazides. In certain embodiments, the plaster-based material can advantageously be devoid of other activated charcoals than the selected activated charcoal, or of water-capturing additives of the montmorillonite type, or more generally of any other agent usually used to purify. air or capture water molecules etc.
Le terme « plâtre » au sens de la présente invention désigne, comme défini par la norme EN 13279-1:2008, le sulfate de calcium dans toutes ses formes d’hydratation, comprenant le dihydrate de sulfate de calcium (CaSCL, 2 H2O), c’est-à-dire aussi le plâtre pris, l’hémihydrate de sulfate de calcium (CaSCL, ½ H2O), c’est-à-dire le plâtre non pris ou gypse calciné, ou l’anhydrite (CaSCL). L’expression « matériau à base de plâtre » désigne un matériau dont le liant est majoritairement constitué de plâtre, c’est- à-dire comprenant notamment au moins 40% en poids de préférence au moins 50%, plus préférentiellement au moins 60%, voire plus préférentiellement au moins 70%, en poids sec de plâtre. De préférence, le matériau à base de plâtre comprend moins de 20%, plus préférentiellement moins de 10%, voire moins de 5%, en poids de liants hydrauliques inorganiques autre que le plâtre. Dans un mode de réalisation particulier, le matériau à base de plâtre ne comprend d’autres liants hydrauliques inorganiques que le plâtre. Cette expression exclut notamment les mortiers et les matériaux cimentaires. Des exemples de matériaux à base de plâtre comprennent notamment les plaques de plâtre, les carreaux de plâtre, les mélanges secs (en poudre) ou humides (en pâte), tels que les enduits sous forme de pré-mélange en poudre ou sous forme de pâte prête à l’emploi, ainsi que les revêtements obtenus à partis de tels enduits. The term “plaster” within the meaning of the present invention designates, as defined by standard EN 13279-1: 2008, calcium sulphate in all its forms of hydration, comprising calcium sulfate dihydrate (CaSCL, 2 H2O), i.e. also plaster taken, calcium sulfate hemihydrate (CaSCL, ½ H2O), i.e. non-plaster taken or calcined gypsum, or anhydrite (CaSCL). The expression “plaster-based material” denotes a material the binder of which consists mainly of plaster, that is to say comprising in particular at least 40% by weight, preferably at least 50%, more preferably at least 60%. , or even more preferably at least 70%, by dry weight of plaster. Preferably, the plaster-based material comprises less than 20%, more preferably less than 10%, or even less than 5%, by weight of inorganic hydraulic binders other than plaster. In a particular embodiment, the plaster-based material does not include any inorganic hydraulic binders other than plaster. This expression excludes in particular mortars and cementitious materials. Examples of plaster-based materials include, in particular, plasterboard, plaster tiles, dry (powder) or wet (paste) mixtures, such as plasters in the form of a pre-mix in powder or in the form of ready-to-use paste, as well as the coatings obtained from such coatings.
Le matériau à base de plâtre selon l’invention peut comprendre des additifs de processabilité permettant d’adapter les propriétés des gâchées en fonction des conditions de fabrication ainsi que d’autres agents fonctionnels permettant de modifier les propriétés finales du matériau. Les additifs de processabilité bien connus de l’homme du métier peuvent être notamment des agents d’adhésion, des agents accélérateurs de prise, des agents retardateurs de prise, des agents fluidifiants, des agents épaississant, des agents de rétention d’eau, des agents modificateurs de pH ou des agents anti-moussants. Les agents fonctionnels également bien connus de l’homme du métier peuvent être des liants organiques, des agents moussants, des agents biocides, des agents hydrofugeants, des agents anti-feu, des agents d’allégement, des agents de renforcement ou des pigments. Le matériau à base de plâtre peut comprendre notamment jusqu’à 50%, de préférence jusqu’à 30%, plus préférentiellement jusqu’à 20%, en poids sec d’additifs. A titre d’exemple, le matériau à base de plâtre peut comprendre typiquement, pour 100 parts en poids de plâtre (hémihydrate de sulfate de calcium, dihydrate de sulfate de calcium ou anhydrite) : The plaster-based material according to the invention can comprise processability additives making it possible to adapt the properties of the mixes according to the manufacturing conditions as well as other functional agents making it possible to modify the final properties of the material. The processability additives well known to those skilled in the art can in particular be adhesion agents, setting accelerating agents, setting retarding agents, thinning agents, thickening agents, water retention agents, pH modifiers or anti-foaming agents. The functional agents which are also well known to those skilled in the art can be organic binders, foaming agents, biocidal agents, water-repellent agents, fire-retardant agents, lightening agents, lightening agents. reinforcement or pigments. The plaster-based material may in particular comprise up to 50%, preferably up to 30%, more preferably up to 20%, by dry weight of additives. By way of example, the plaster-based material can typically comprise, for 100 parts by weight of plaster (calcium sulfate hemihydrate, calcium sulfate dihydrate or anhydrite):
0 à 250 parts de charges minérales, par exemple carbonate de calcium, kaolin ou sable de silice ; 0 to 250 parts of mineral fillers, for example calcium carbonate, kaolin or silica sand;
0 à 100 parts d’au moins un agent d’allègement, par exemple la perlite expansée ou des billes de verre creuse ; 0 to 100 parts of at least one lightening agent, for example expanded perlite or hollow glass beads;
0 à 50 parts d’au moins un liant polymère, par exemple les poly(acétate de vinyle) (PVAC), les éthylène-acétate de vinyle (EVA), les vinyle-acrylate ; 0 to 50 parts of at least one polymeric binder, for example poly (vinyl acetate) (PVAC), ethylene vinyl acetate (EVA), vinyl acrylate;
0 à 20 parts d’au moins un agent de rétention d’eau, par exemple les éthers de cellulose ou les éthers de guar ; 0 to 20 parts of at least one water retention agent, for example cellulose ethers or guar ethers;
0 à 10 parts d’au moins un agent modificateur de rhéologie, par exemple les éther d’amidon, les polyacrylamides, les acryliques, la gomme xanthane, l’hectorite, la bentonite ou l’attapulgite ; 0 to 10 parts of at least one rheology modifying agent, for example starch ether, polyacrylamides, acrylics, xanthan gum, hectorite, bentonite or attapulgite;
0 à 10 parts d’au moins un agent retardateur de prise, par exemple les acides organique, les aminoacides ou les phosphates ; 0 to 10 parts of at least one setting retarder, for example organic acids, amino acids or phosphates;
0 à 5 parts d’au moins un agent accélérateur de prise, par exemple le sulfate de potassium ; 0 to 5 parts of at least one setting accelerator, for example potassium sulphate;
0 à 50 parts d’au moins un agent modificateur de pH, par exemple la chaux, le ciment, l’ hydroxyde de soude ou les amines ; 0 to 50 parts of at least one pH modifying agent, for example lime, cement, sodium hydroxide or amines;
0 à 5 parts d’au moins un agent anti-mousse, par exemple 0 to 5 parts of at least one anti-foaming agent, for example
0 à 10 parts d’au moins un agent biocide, par exemple les carbamates, tel que le 3-iodoprop-2-yn-l-yl butylcarbamate, ou les complexes de pyrithione ; 0 à 15 parts d’au moins un agent d’adhésion, par exemple un poly(acétate de vinyl), un poly(alcool vinylique), un amidon, notamment préalablement traité avec un acide ou pré-gélatinisé, une dextrine ou une farine végétale, notamment de blé ou de maïs ; 0 to 10 parts of at least one biocidal agent, for example carbamates, such as 3-iodoprop-2-yn-1-yl butylcarbamate, or pyrithione complexes; 0 to 15 parts of at least one adhesion agent, for example a poly (vinyl acetate), a poly (vinyl alcohol), a starch, in particular previously treated with an acid or pre-gelatinized, a dextrin or a flour vegetable, especially wheat or corn;
0 à 20 parts d’au moins un agent hydrofugeant, par exemple un siloxane, un polysiloxane ou une cire ; 0 to 20 parts of at least one water repellent, for example a siloxane, a polysiloxane or a wax;
0 à 20 parts d’au moins un agent anti-feu, par exemple la vermiculite, la silice, notamment de dimension micrométrique ou une argile ; et/ou 0 to 20 parts of at least one anti-fire agent, for example vermiculite, silica, in particular of micrometric size or a clay; and or
0 à 20 parts d’au moins un agent de renforcement, par exemple des fibres de polymère, des fibres minérales, notamment en verre, ou végétales ; 0 to 20 parts of at least one reinforcing agent, for example polymer fibers, mineral fibers, in particular glass, or plant fibers;
0 à 5 parts de pigments. 0 to 5 parts of pigments.
Le matériau à base de plâtre peut comprendre jusqu’à 70%, de préférence jusqu’à 60%, plus préférentiellement jusqu’à 50%, voire jusqu’à 40%, ou même jusqu’à 30%, en poids de charges, notamment du carbonate de calcium, du sable de silice, du kaolin, des charges de renforcement, telles que des fibres, et des charges d’allégement, telles que la perlite expansée ou des billes de verre creuse. The plaster-based material may comprise up to 70%, preferably up to 60%, more preferably up to 50%, or even up to 40%, or even up to 30%, by weight of fillers, in particular calcium carbonate, silica sand, kaolin, reinforcing fillers, such as fibers, and lightening fillers, such as expanded perlite or hollow glass beads.
Dans un mode de réalisation particulier, le matériau à base de plâtre selon l’invention est un mélange sec ou humide (prêt à l’emploi). Classiquement, ces mélanges comprennent de l’hémihydrate de sulfate de calcium (gypse calciné) et d’éventuels additifs décrits plus haut. Leur composition peut varier en fonction de l’application à laquelle ils sont destinés. Des exemples de tels mélanges comprennent notamment les enduits définis par la norme EN 13279-1 :2008. Les mélanges secs sont obtenus par ajout, séquencé ou simultané, de chacun des constituants dans un mélangeur à sec. Le charbon actif peut être ajouté au mélange de la même façon que les autres constituants. In a particular embodiment, the plaster-based material according to the invention is a dry or wet mixture (ready for use). Conventionally, these mixtures comprise calcium sulfate hemihydrate (calcined gypsum) and possible additives described above. Their composition may vary depending on the application for which they are intended. Examples of such mixtures include in particular the coatings defined by standard EN 13279-1: 2008. The dry mixtures are obtained by adding, sequenced or simultaneously, each of the constituents in a dry mixer. Activated carbon can be added to the mixture in the same way as the other components.
Les mélanges humides peuvent être obtenus par ajout, séquencé ou simultané, de chacun des constituants dans un mélangeur en présence d’eau, ou par gâchage d’un pré mélange sec, le charbon actif pouvant être introduit lors de la préparation du pré mélange sec ou au moment du gâchage. The wet mixtures can be obtained by adding, sequenced or simultaneously, each of the constituents in a mixer in the presence of water, or by mixing a dry premix, the activated carbon being able to be introduced during the preparation of the dry premix. or at the time of mixing.
Un mélange sec comprend typiquement, pour 100 parts en poids de plâtre, 0 à 250 parts de charges minérales, 0 à 100 parts d’agent d’allègement, 0 à 50 parts d’un liant organique, 0 à 20 parts d’un agent de rétention d’eau, 0 à 10 part d’un agent modificateur de rhéologie, 0 à 10 parts d’un agent de retardateur de prise, 0 à 5 parts d’un agent d’accélérateur de prise, 0 à 50 part d’un agent modificateur de pH, et 0 à 10 parts d’un agent biocide. A dry mixture typically comprises, per 100 parts by weight of plaster, 0 to 250 parts of mineral fillers, 0 to 100 parts of lightening agent, 0 to 50 parts of an organic binder, 0 to 20 parts of a water retention agent, 0 to 10 parts of a rheology modifying agent, 0 to 10 parts of a setting retarder, 0 to 5 parts of a setting accelerator, 0 to 50 parts of a pH modifying agent, and 0 to 10 parts of a biocidal agent.
Avant utilisation, les mélanges secs sont mélangés à de l’eau dans un ratio massique eau:mélange sec de 0,3 : 1 à 1:1 afin d’obtenir une gâchée. Le gypse calciné subit une réaction d’hydratation en présence d’eau et se transforme en dihydrate de sulfate de calcium (gypse) provocant la prise, ou durcissement du plâtre après application. Before use, the dry mixes are mixed with water in a water: dry mix weight ratio of 0.3: 1 to 1: 1 to make a batch. Calcined gypsum undergoes a hydration reaction in the presence of water and turns into calcium sulfate dihydrate (gypsum) causing the plaster to set, or harden after application.
Un mélange humide comprend typiquement, pour 100 parts en poids de plâtre, 0 à 100 parts de charges minérales, 0 à 50 parts d’un agent d’allègement, 0 à 50 parts d’un liant organique, 0 à 20 parts d’un agent de rétention d’eau, 0 à 10 parts d’un agent de modification de rhéologie, 0 à 10 parts d’un agent modificateur de pH, 0 à 5 parts d’un agent anti moussant, 0 à 20 parts d’un agent hydrofugeant, 0 à 5 parts d’un pigment, 0 à 10 parts d’un agent biocide, et 30 à 150 parts d’eau. Dans un autre mode de réalisation particulier, le matériau à base de plâtre selon l’invention est un revêtement de plâtre, obtenu notamment à partir d’un mélange sec ou humide tel que décrit ci-dessus. Le revêtement de plâtre a typiquement une composition similaire à celle des mélanges secs ou humides tels décrits ci-dessus. Le revêtement de plâtre a généralement une épaisseur de 1 à 25 mm, de préférence 2 à 14 mm. A wet mixture typically comprises, per 100 parts by weight of plaster, 0 to 100 parts of mineral fillers, 0 to 50 parts of a lightening agent, 0 to 50 parts of an organic binder, 0 to 20 parts of a water retention agent, 0 to 10 parts of a rheology modifying agent, 0 to 10 parts of a pH modifying agent, 0 to 5 parts of an anti-foaming agent, 0 to 20 parts of a waterproofing agent, 0 to 5 parts of a pigment, 0 to 10 parts of a biocidal agent, and 30 to 150 parts of water. In another particular embodiment, the plaster-based material according to the invention is a plaster coating, obtained in particular from a dry or wet mixture as described above. The plaster coating typically has a composition similar to that of the dry or wet mixtures as described above. The plaster coating generally has a thickness of 1 to 25 mm, preferably 2 to 14 mm.
Dans un autre mode de réalisation particulier, le matériau à base de plâtre selon l’invention est une plaque de plâtre. Les plaques de plâtre sont des panneaux comprenant une couche de plâtre entre deux feuilles de parement généralement en carton ou à base de fibres de verre. Industriellement, la plaque de plâtre est formée selon un procédé en continu comprenant trois étapes principales : la mise en forme, la prise et le séchage. Lors de l’étape de mise en forme de la plaque de plâtre, une gâchée est réalisée en continu dans un mélangeur à partir de gypse calciné en poudre, d’eau et d’additifs spécifiques pour adapter les propriétés de la gâchée et/ou du produit final tels que mentionnés ci-dessus. Il est notamment connu d’ajouter des agents moussants ou de la mousse directement afin de réduire la densité des plaques de plâtre. La gâchée est ensuite déversée en continu sur une première feuille de parement entraînée par une courroie de transport vers une extrudeuse pour former la plaque. Après le repliement des bords de la première feuille de parement, une seconde feuille de parement est amenée au niveau de l’extrudeuse. L’extrudeuse plaque la seconde feuille de parement sur la gâchée, lisse les surfaces et réduit l’épaisseur de la plaque de plâtre à la valeur souhaitée. Pour améliorer les propriétés mécaniques des plaques de plâtre, il est également connu de former une couche de plâtre plus dense sur une face et éventuellement sur les bords de la plaque de plâtre. Pour cela, une première couche de gâchée plus dense, appelée couche de roller coating, est déversée et formée sur la première feuille de parement, en amont du déversement de la gâchée principale qui forme alors une deuxième couche appelée corps de la plaque de plâtre. La couche de roller coating a généralement une faible épaisseur, typiquement inférieure à 2 mm, par exemple environ 1 mm. La bande de plâtre obtenue à la sortie de l’extrudeuse est transportée en continu par un convoyeur sur une distance suffisante pour permettre la prise de celle-ci et atteindre un niveau de durcissement suffisant pour pouvoir être découpée en plaques à la dimension souhaitée. Les plaques sont ensuite séchées dans un four afin d’éliminer l’excès d’eau. In another particular embodiment, the plaster-based material according to the invention is a plasterboard. Plasterboards are panels comprising a layer of plaster between two facing sheets, generally made of cardboard or based on glass fibers. Industrially, plasterboard is formed in a continuous process comprising three main stages: shaping, setting and drying. During the plasterboard shaping step, a batch is produced continuously in a mixer from calcined powdered gypsum, water and specific additives to adapt the properties of the batch and / or of the final product as mentioned above. It is in particular known to add foaming agents or foam directly in order to reduce the density of plasterboards. The batch is then continuously discharged onto a first facing sheet driven by a conveyor belt to an extruder to form the plate. After the edges of the first facing sheet have been folded back, a second facing sheet is fed to the extruder. The extruder presses the second facing sheet onto the batch, smooths the surfaces and reduces the thickness of the plasterboard to the desired value. To improve the mechanical properties of plasterboard, it is also known to form a denser plaster layer on one face and possibly on the edges of the plasterboard. For this, a first layer of more dense mix, called roller coating layer, is poured and formed on the first facing sheet, upstream of the pouring of the main mix which then forms a second layer called the body of the plasterboard. The roller coating layer generally has a low thickness, typically less than 2 mm, for example approximately 1 mm. The plaster strip obtained at the outlet of the extruder is transported continuously by a conveyor over a sufficient distance to allow the latter to be set and to reach a level of hardening sufficient to be able to be cut into plates to the desired dimension. The plates are then dried in an oven to remove excess water.
Classiquement, la gâchée comprend de l’hémihydrate de sulfate de calcium (gypse calciné) et d’éventuels additifs décrits plus haut. La composition de la gâchée peut varier selon la nature de la plaque de plâtre à fabriquer. La gâchée comprend typiquement, pour 100 parts en poids de plâtre, 40 à 200, de préférence 50 à 150 parts d’eau, 2 à 10 parts de mousse obtenue à partir d’un mélange d’eau et d’un agent moussant, par exemple un alkylsulfate éventuellement en mélange avec un alkyléthersulfate, et 0,1 à 1 part d’accélérateur de prise, par exemple le sulfate de calcium hydraté ou le sulfate de potassium. Conventionally, the batch comprises calcium sulfate hemihydrate (calcined gypsum) and any additives described above. The composition of the mix may vary depending on the nature of the plasterboard to be manufactured. The batch typically comprises, for 100 parts by weight of plaster, 40 to 200, preferably 50 to 150 parts of water, 2 to 10 parts of foam obtained from a mixture of water and a foaming agent, for example an alkylsulphate optionally mixed with an alkylethersulphate, and 0.1 to 1 part of setting accelerator, for example hydrated calcium sulphate or potassium sulphate.
La plaque de plâtre a généralement une épaisseur de 6 à 25 mm, de préférence 10 à 15 mm. The plasterboard generally has a thickness of 6 to 25 mm, preferably 10 to 15 mm.
Le charbon actif selon l’invention peut être introduit dans la plaque de plâtre de différentes manières. The activated carbon according to the invention can be introduced into the plasterboard in various ways.
Selon un premier mode de réalisation préféré, on ajoute le charbon actif dans la gâchée avant que celle-ci soit déposée sur la première feuille de parement. L’ajout du charbon actif peut se faire pendant la fabrication de la gâchée, par exemple en introduisant simultanément ou successivement le gypse calciné et les composés précités dans le malaxeur, ou après que la gâchée ait été obtenue, par exemple en sortie du malaxeur ou dans un malaxeur secondaire. L’ajout simultané des constituants est avantageux car plus facile à mettre en œuvre. Ce mode de réalisation permet d’avoir une répartition homogène du charbon actif dans la plaque de plâtre. According to a first preferred embodiment, the activated carbon is added to the mixture before the latter is deposited on the first facing sheet. The addition of the activated carbon can be done during the manufacture of the batch, for example by simultaneously or successively introducing the calcined gypsum and the aforementioned compounds into the batch. mixer, or after the mixture has been obtained, for example at the outlet of the mixer or in a secondary mixer. The simultaneous addition of the constituents is advantageous because it is easier to use. This embodiment makes it possible to have a homogeneous distribution of the activated carbon in the plasterboard.
Selon un deuxième mode de réalisation, le charbon actif est introduit dans la une couche de roller coating. Pour cela, on introduit le charbon actif dans une gâchée utilisée pour la formation de la couche de roller coating, la gâchée principale destinée à la formation du corps de la plaque étant généralement dépourvue de charbon actif. Ce mode de réalisation permet de concentrer le charbon actif uniquement sur une face de la plaque de plâtre et sur une partie seulement de son épaisseur. According to a second embodiment, the activated carbon is introduced into a roller coating layer. For this, the activated carbon is introduced into a batch used for the formation of the roller coating layer, the main batch intended for the formation of the body of the plate generally being devoid of activated carbon. This embodiment makes it possible to concentrate the activated carbon only on one face of the plasterboard and on only part of its thickness.
Dans un autre mode de réalisation particulier, le matériau à base de plâtre selon l’invention est un carreau de plâtre. Les carreaux de plâtre sont généralement obtenus par moulage. Pour cela, une gâchée est préparée dans un malaxeur. Après obtention d’une gâchée homogène, celle-ci est versée dans des moules et arasée à hauteur des moules pour éliminer le surplus de gâchée. Après une prise suffisante des carreaux de plâtre permettant leur manutention, ceux-ci sont démoulés par extrusion puis séchés dans un four pour éliminer l’excès d’eau. In another particular embodiment, the plaster-based material according to the invention is a plaster tile. Plaster tiles are usually obtained by molding. For this, a batch is prepared in a mixer. After obtaining a homogeneous batch, it is poured into molds and leveled at the height of the molds to remove the excess batch. After the plaster tiles have set sufficiently for handling, they are removed from the mold by extrusion and then dried in an oven to remove excess water.
Classiquement, la gâchée comprend de l’hémihydrate de sulfate de calcium (gypse calciné) et d’éventuels additifs décrits plus haut. La composition de la gâchée peut varier selon la nature des carreaux de plâtre à fabriquer. La gâchée comprend typiquement, pour 100 parts en poids de plâtre, 40 à 200, de préférence 50 à 150 parts d’eau, 0,1 à 1 part d’accélérateur de prise, par exemple le sulfate de calcium hydraté ou le sulfate de potassium, 0,1 à 2 parts de fluidifiant, 0 à 1 part de retardant, et 0 à 10 parts d’agent hydrofugeant. Le charbon actif peut être introduit dans les carreaux de plâtre lors de la préparation de la gâchée. Conventionally, the mixture comprises calcium sulfate hemihydrate (calcined gypsum) and possible additives described above. The composition of the batch may vary depending on the nature of the plaster tiles to be manufactured. The batch typically comprises, per 100 parts by weight of plaster, 40 to 200, preferably 50 to 150 parts of water, 0.1 to 1 part of setting accelerator, for example hydrated calcium sulfate or sodium sulfate. potassium, 0.1 to 2 parts thinner, 0 to 1 part retardant, and 0 to 10 parts of waterproofing agent. Activated carbon can be introduced into the plaster tiles during the preparation of the batch.
Les carreaux de plâtre ont généralement une épaisseur de 30 à 200 mm, de préférence 50 à 150 mm. Plaster tiles are generally 30-200mm thick, preferably 50-150mm thick.
La présente invention concerne également l’utilisation d’un matériau à base de plâtre tel que décrit ci-dessus, notamment une plaque de plâtre, un carreau de plâtre, un mélange sec ou humide, ou un revêtement de plâtre pour à la fois réduire la quantité de COV et réguler l’humidité dans l’air à l’intérieur des bâtiments. La présente invention concerne également une méthode de réduction de la quantité de COV et de régulation de l’humidité dans l’air intérieur des bâtiments comprenant la mise en contact d’un matériau à base de plâtre tel que décrit ci-dessus avec l’air intérieur. A cet effet, le matériau à base de plâtre conforme à l’invention peut être installé sur les murs, les plafonds et les sols à l’intérieur des bâtiments, notamment pour former des parements, des cloisons ou des faux-plafonds ou pour revêtir ou jointer des panneaux de plâtre ou de ciment. The present invention also relates to the use of a plaster-based material as described above, in particular a plasterboard, a plaster tile, a dry or wet mixture, or a plaster coating to both reduce the amount of VOCs and regulate the humidity in the air inside buildings. The present invention also relates to a method of reducing the amount of VOCs and regulating humidity in the indoor air of buildings comprising contacting a plaster-based material as described above with the indoor air. For this purpose, the plaster-based material according to the invention can be installed on the walls, ceilings and floors inside buildings, in particular to form facings, partitions or false ceilings or to cover or join plaster or cement panels.
Le matériau à base de plâtre selon l'invention montre à la fois une bonne sorption des COV (et ainsi des propriétés de purification de l’air ambiant), en particulier des COV apolaires (tels que toluène, xylène, éthylbenzène, décane, para-dichlorobenzène) en plus du formaldéhyde (ou d’autres aldéhydes), et des bonnes propriétés de régulation de l’humidité (et pas seulement de captage d’eau, mais aussi de relargage au besoin) répondant aux besoins des usagers en terme de confort, comme illustré ultérieurement, la composition absorbant l’humidité, la stockant puis, lorsque l’humidité de la pièce diminue de nouveau et/ou en cas de ventilation, re-libérant rapidement cette humidité stockée dans l'air ambiant. Le matériau à base de plâtre selon l'invention peut absorber de grandes quantités de composés organiques volatils (COV) de l'air ambiant, les COV captés par le matériau à base de plâtre ne subissant pas en outre de désorption à température ambiante. Le matériau à base de plâtre selon l’invention a ainsi montré une efficacité (par polluant) en termes d'adsorption des COV de l'ordre d'au moins 40%, de préférence au moins 50%, voire au moins 60%, pour au moins chacun des polluants suivants : acétaldéhyde, toluène, tétrachloroéthylène, xylène, 1,2,4-triméthylbenzène, éthylbenzène, 2- butoxyéthanol, styrène et de 1 ,4-dichlorobenzène, formaldéhyde, et en particulier d'au moins 50%, de préférence au moins 60%, voire au moins 70%, pour au moins chacun des polluants suivants : éthylbenzène, xylène, toluène, dichlorobenzène. L'efficacité (en %) est déterminée par un test CLIMPAQ dynamique selon les normes ISO 16000- 23:2009 et ISO 16000-24:2009 de la façon suivante : un échantillon de 20 cm x 35 cm x 1 cm introduit dans un chambre CLIMPAQ de 50,9 L (correspondant à un facteur de charge Lf de 1 ,4 : scénario mur et plafond) maintenue à une température de 23°C ± 2°C et une humidité relative de 50 % ± 5% pendant l’essai. La capacité d’adsorption est mesurée indépendamment pour chaque COV. L’échantillon est soumis à un flux d’air pendant une durée de 24h, le taux de renouvellement de l’air étant fixé à 0,5 vol.h 1. L’air injecté à l’entrée de la chambre comprend une concentration initiale Ci de COV. La concentration finale Cf en COV à la sortie de la chambre est mesurée par chromatographie de gaz couplée à un spectromètre de masse. L’efficacité de d’adsorption d’un COV, en pourcentage, est donnée par la formule suivante (Ci-Cf)/Ci. La capacité d’adsorption peut être réalisée pour un seul COV, par exemple le toluène (dans ce cas le flux d’air comprend du toluène à une concentration initiale Ci de 200 pg/m3), ou sur un mélange de COV, par exemple un mélange acétaldéhyde, toluène, tétrachloroéthylène, xylènes (m,p), 1,2,4-triméthylbenzène, éthylbenzène, 2- butoxyéthanol, styrène et de 1 ,4-dichlorobenzène (dans ce cas le flux d’air comprend une concentration initiale Ci en toluène de 50, 100, 150 ou 200 pg/m3, et les concentrations initiales Ci pour les autres COV sont fixés selon les ratios suivants :The plaster-based material according to the invention shows both good sorption of VOCs (and thus ambient air purification properties), in particular non-polar VOCs (such as toluene, xylene, ethylbenzene, decane, para. -dichlorobenzene) in addition to formaldehyde (or other aldehydes), and good humidity regulation properties (and not only water collection, but also release if necessary) meeting the needs of users in terms of comfort, as illustrated later, the composition absorbing moisture, storing it then, when the humidity of the room decreases again and / or in the event of ventilation, rapidly releasing this stored humidity in the ambient air. The plaster-based material according to the invention can absorb large amounts of volatile organic compounds (VOCs) from the ambient air, the VOCs captured by the plaster-based material also not undergoing desorption at room temperature. The plaster-based material according to the invention has thus shown an efficiency (per pollutant) in terms of adsorption of VOCs of the order of at least 40%, preferably at least 50%, or even at least 60%, for at least each of the following pollutants: acetaldehyde, toluene, tetrachlorethylene, xylene, 1,2,4-trimethylbenzene, ethylbenzene, 2-butoxyethanol, styrene and 1, 4-dichlorobenzene, formaldehyde, and in particular at least 50% , preferably at least 60%, or even at least 70%, for at least each of the following pollutants: ethylbenzene, xylene, toluene, dichlorobenzene. The efficiency (in%) is determined by a dynamic CLIMPAQ test according to ISO 16000-23: 2009 and ISO 16000-24: 2009 standards as follows: a sample of 20 cm x 35 cm x 1 cm introduced into a chamber CLIMPAQ of 50.9 L (corresponding to a load factor Lf of 1, 4: wall and ceiling scenario) maintained at a temperature of 23 ° C ± 2 ° C and a relative humidity of 50% ± 5% during the test . The adsorption capacity is measured independently for each VOC. The sample is subjected to an air flow for a period of 24 hours, the air renewal rate being set at 0.5 vol.h 1 . The air injected at the inlet of the chamber comprises an initial concentration Ci of VOCs. The final VOC concentration Cf at the outlet of the chamber is measured by gas chromatography coupled to a mass spectrometer. The adsorption efficiency of a VOC, in percentage, is given by the following formula (Ci-Cf) / Ci. The adsorption capacity can be achieved for a single VOC, for example toluene (in this case the air flow comprises toluene at an initial concentration Ci of 200 pg / m 3 ), or on a mixture of VOCs, for example a mixture of acetaldehyde, toluene, tetrachlorethylene, xylenes (m, p), 1,2,4-trimethylbenzene, ethylbenzene, 2- butoxyethanol, styrene and 1, 4-dichlorobenzene (in this case the air flow includes an initial toluene concentration Ci of 50, 100, 150 or 200 pg / m 3 , and the initial Ci concentrations for the other VOCs are set according to the following ratios:
Cacétaldehyde ! Ctoluène 6 ! 1 , Ctétrachloroéthylène ! Ctoluène 3 ! 1 , Cxylènes (m,p) ! Ctoluène 3 ! 1 , Cl, 2, 4- triméthylbenzène ! Ctoluène 2 ! 1 , Céthylbenzène ! Ctoluène L l , C 2 - b u to x y é t h a n o I ! C t o I u έ n c L l , Cstyrène ! CtoluèneCacetaldehyde! Ctoluene 6! 1, Tetrachlorethylene! Ctoluene 3! 1, Cxylenes (m, p)! Ctoluene 3! 1, Cl, 2, 4-trimethylbenzene! Ctoluene 2! 1, Cethylbenzene! Ctoluene L l, C 2 - b u to x y é t h a n o I! C t o I u έ n c L l, Cstyrene! Ctoluene
0,5 il et Cl,4-dichlorobenzène! Ctoluène 211 ) . 0.5 il and Cl, 4-dichlorobenzene! Ctoluene 211).
Le matériau à base de plâtre selon l'invention présente également avantageusement une valeur du tampon d'humidité MBV moyenne supérieure à 2 g par m2 et par pourcentage de variation d’humidité relative (% ARH), et en particulier supérieure ou égale à 2.0 g/(m2.%ARH), voire supérieure ou égale à 2.5 g/(m2.%ARH), ou même supérieure ou égale à 3 g/(m2.%ARH), la valeur du tampon d’humidité (Moisture Buffer Value : The plaster-based material according to the invention also advantageously has an average MBV moisture buffer value greater than 2 g per m 2 and per percentage change in relative humidity (% ARH), and in particular greater than or equal to 2.0 g / (m 2. % ARH), or even greater than or equal to 2.5 g / (m 2. % ARH), or even greater than or equal to 3 g / (m 2. % ARH), the value of the buffer of humidity (Moisture Buffer Value:
MBV) traduisant la capacité à modérer les variations d’humidité relative de l’air avoisinant. La définition de cette valeur, ainsi qu’un protocole d’essai associé, ont été donnés à l’issue du NORDTEST project [Rode, C. (ed.), Moisture Buffering of Building Materials, Department of Civil Engineering, Technical University of Denmark, Report R-126, 2005- ISSN 1601-2917 ISBN 87-7877-195-1], cette valeur étant définie par le rapport de 1) la variation de masse au cours d'un cycle d’absorption / désorption (en g) sur 2) le produit de la valeur de la surface d’échange (en m2) et de la différence entre les valeurs d’humidités relatives (de l’air) haute et basse au cours du cycle (en %), l’humidité relative de l’air, ou degré hygrométrique, correspondant à la quantité de vapeur d'eau contenue dans un volume d'air donné par rapport au maximum qu’il pourrait contenir à une température et une pression données. Le principe du protocole d’essai associé est de soumettre les échantillons à des cycles d’humidités relatives journaliers afin d’être représentatifs des cycles rencontrés dans les bâtiments, le couple d’humidités relatives de référence étant 75 %/33 % d’humidités relatives avec une durée d’exposition de 8 heures en absorption et de 16 heures en désorption, le suivi massique des échantillons permettant alors de déterminer la valeur MBV, les performances étant d'autant meilleures que cette valeur est haute. MBV) reflecting the ability to moderate variations in the relative humidity of the surrounding air. The definition of this value, as well as an associated test protocol, were given at the end of the NORDTEST project [Rode, C. (ed.), Moisture Buffering of Building Materials, Department of Civil Engineering, Technical University of Denmark, Report R-126, 2005- ISSN 1601-2917 ISBN 87-7877-195-1], this value being defined by the ratio of 1) the variation in mass during an absorption / desorption cycle (in g) on 2) the product of the value of the heat exchange surface (in m 2 ) and the difference between the high and low relative humidity values (of the air) during the cycle (in%), the relative humidity of the air, or hygrometric degree, corresponding to the quantity of water vapor contained in a given volume of air compared to the maximum it could contain at a given temperature and pressure. The principle of the associated test protocol is to subject the samples to daily relative humidity cycles in order to be representative of the cycles encountered in buildings, the reference relative humidity pair being 75% / 33% humidity. relative with an exposure duration of 8 hours in absorption and 16 hours in desorption, the mass monitoring of the samples then making it possible to determine the MBV value, the performance being all the better the higher this value is.
L’invention est illustrée à l’aide d’exemples non limitatifs suivants. The invention is illustrated with the aid of the following non-limiting examples.
La figure 1 représente un exemple de profil de variation de masse d’un composé au cours de phases de sorption et de désorption permettant d’évaluer les variations de masse moyenne Am(S) en sorption et Am(D4) après 4 cycles de sorption/désorption selon le protocole de mesure décrit plus avant. FIG. 1 represents an example of the profile of variation in mass of a compound during sorption and desorption phases making it possible to evaluate the variations in mean mass A m (S) in sorption and A m (D4) after 4 cycles sorption / desorption according to the measurement protocol described above.
La figure 1 montre un exemple de profil de variation de la masse d'un composé (représentation à titre illustratif ne correspondant pas nécessairement à un composé particulier) au cours du temps en effectuant 4 cycles de sorption et de désorption et une cinquième phase de sorption à la fin des 4 cycles selon le protocole de mesure des paramètres Am(S) et Am(D4) décrit plus avant. La masse du composé (pur) analysé est mesurée à la fin de chaque phase de sorption et de chaque phase de désorption de façon à tracer des profils de variation de masse au cours du temps. La variation de masse moyenne Am au cours des phases de sorption correspond à la moyenne arithmétique des variations de masses Di à D5 mesurées pour chacune des phases de sorption (moyenne de 5 valeurs) et la variation de masse Am(D4) est la valeur de la dernière variation de masse en désorption à la fin de la phase de désorption du 4ème cycle de sorption/ désorption. Figure 1 shows an example of the variation profile of the mass of a compound (illustrative representation not necessarily corresponding to a particular compound) over time by performing 4 cycles of sorption and desorption and a fifth sorption phase at the end of the 4 cycles according to the protocol for measuring the parameters A m (S) and A m (D4) described above. The mass of the (pure) compound analyzed is measured at the end of each sorption phase and of each desorption phase so as to plot profiles of mass variation over time. The average mass variation A m during the sorption phases corresponds to the arithmetic average of the mass variations Di to D5 measured for each of the sorption phases (average of 5 values) and the mass variation A m (D4) is the value of the last change in desorption mass at the end of the desorption phase of the 4th sorption / desorption cycle.
La figure 2 représente les isothermes de sorption et de désorption de vapeur d’eau d’un charbon actif particulier, sélectionné selon l'invention, et commercialisé par la société Chemviron sous la référence "Filtrasorb 400". Ce charbon est un charbon actif granulaire issu de la houille et activé en totalité par activation physique, et présente une granulométrie de 1,7 x 0,42 mm, une surface spécifique de l'ordre de 950 m2/g, un indice d'iode de l'ordre de 1000 mg/g, une capacité de sorption de 9.1 mg (toluène)/g, une masse volumique apparente d’au moins 440 à 540 kg/m3, une variation de masse moyenne Am de 3.55% en sorption et une variation de masse Am(D4) après 4 cycles de sorption/désorption de 1.37%, des isothermes de sorption/désorption de type V illustrés en figure 2, une porosité avec notamment un mélange de micropores et de mésopores, et une humidité relative inférieure à 1%. FIG. 2 represents the isotherms of sorption and desorption of water vapor of a particular activated carbon, selected according to the invention, and marketed by the company Chemviron under the reference “Filtrasorb 400”. This charcoal is an activated charcoal granular obtained from coal and fully activated by physical activation, and has a particle size of 1.7 x 0.42 mm, a specific surface area of the order of 950 m 2 / g, an iodine number of the order of 1000 mg / g, a sorption capacity of 9.1 mg (toluene) / g, a bulk density of at least 440 to 540 kg / m 3 , a variation in mean mass A m of 3.55% in sorption and a variation of mass A m (D4) after 4 sorption / desorption cycles of 1.37%, type V sorption / desorption isotherms illustrated in FIG. 2, a porosity with in particular a mixture of micropores and mesopores, and a relative humidity less than 1%.
Les isothermes sont déterminées en utilisant un Analyseur de Sorption de Vapeur Dynamique de référence DVS Intrinsic de la société Surface Measurement System. The isotherms are determined using a reference Dynamic Vapor Sorption Analyzer DVS Intrinsic from the company Surface Measurement System.
On observe sur les isothermes de sorption et de désorption de vapeur d’eau du charbon actif Filtrasorb 400 une forte régulation dans une zone à l’intérieur de la zone d’humidité relative allant de 40 à 80% (figure 2). Les isothermes de sorption et de désorption du charbon actif seul sont de forme sigmoïde, en particulier de type V (sur le modèle des représentations données notamment dans la nomenclature de l’UICPA), et présentent une première zone A de sorption, respectivement A' de désorption, faible, avec une faible pente, la teneur en eau du charbon actif restant inférieure à 5% en poids jusqu'à au moins 40% d’humidité relative de l’air ambiant, et, dans la plage allant de 40 à 80% d’humidité relative de l’air ambiant, une deuxième zone de sorption B, respectivement de désorption B’, forte, de forte pente (comparativement notamment à la première zone) où la sorption augmente (respectivement la désorption s'opère) de façon importante, la teneur en eau du charbon actif variant (à la hausse ou à la baisse selon la courbe considérée) entre 5% ou moins et jusqu'à 35% en poids, et enfin une dernière zone C, respectivement C', de saturation de faible pente. On the water vapor sorption and desorption isotherms of the activated carbon Filtrasorb 400, a strong regulation is observed in a zone within the zone of relative humidity ranging from 40 to 80% (Figure 2). The sorption and desorption isotherms of the activated carbon alone are sigmoid in shape, in particular type V (on the model of the representations given in particular in the IUPAC nomenclature), and have a first sorption zone A, respectively A ' desorption, low, with a shallow slope, the water content of the activated carbon remaining below 5% by weight up to at least 40% relative humidity of the ambient air, and, in the range of 40 to 80% relative humidity of the ambient air, a second zone of sorption B, respectively of desorption B ', strong, of strong slope (compared in particular to the first zone) where the sorption increases (respectively the desorption takes place) significantly, the water content of the activated carbon varying (upwards or downwards depending on the curve considered) between 5% or less and up to 35% by weight, and finally a last zone C, respectively C ', low slope saturation.

Claims

REVENDICATIONS
1. Matériau à base de plâtre, caractérisé en ce qu’il comprend un charbon actif présentant : 1. Plaster-based material, characterized in that it comprises an activated carbon having:
- une surface spécifique supérieure ou égale à 875 m2/g et inférieure ou égale à 1300 m2/g et/ou un indice d'iode supérieur ou égal à 900 mg/g et/ou une capacité de sorption d'au moins 7 mg de toluène par g de charbon actif , et - a specific surface greater than or equal to 875 m 2 / g and less than or equal to 1300 m 2 / g and / or an iodine number greater than or equal to 900 mg / g and / or a sorption capacity of at least 7 mg of toluene per g of activated charcoal, and
- une variation de masse moyenne Am(S) en sorption d’au moins 2% et une variation de masse Am(D4) après 4 cycles de sorption/désorption d'au plus 1.5%. - a variation in mean mass A m (S) in sorption of at least 2% and a variation in mass A m (D4) after 4 cycles of sorption / desorption of at most 1.5%.
2. Matériau selon la revendication 1, caractérisé en ce que ledit charbon actif est formé de granules ou de poudre. 2. Material according to claim 1, characterized in that said activated carbon is formed of granules or powder.
3. Matériau selon la revendication 1 ou 2, caractérisé en ce que la masse volumique dudit charbon actif est supérieure ou égale à 400 kg/m3, de préférence supérieure ou égale à 440 kg/m3, voire supérieure ou égale à 500 kg/m3. 3. Material according to claim 1 or 2, characterized in that the density of said activated carbon is greater than or equal to 400 kg / m 3 , preferably greater than or equal to 440 kg / m 3 , or even greater than or equal to 500 kg / m 3 .
4. Matériau selon l’une quelconque des revendications 1 à 3, caractérisé en ce que ledit charbon actif présente une surface spécifique supérieure ou égale à 900 m2/g, en particulier supérieure à 900 m2/g, notamment supérieure ou égale à 950 m2/g, et est de préférence inférieure à 1300 m2/g, en particulier inférieure ou égale à 1200 m2/g, voire inférieure ou égale à 1100 m2/g, ou caractérisée en ce que ledit charbon actif présente un indice d'iode supérieur ou égal à 1000 mg/g, ou caractérisée en ce que ledit charbon actif présente une capacité de sorption d'au moins 8 mg de toluène par g de charbon actif, en particulier d’au moins 9 mg de toluène par g de charbon actif 4. Material according to any one of claims 1 to 3, characterized in that said activated carbon has a specific surface area greater than or equal to 900 m 2 / g, in particular greater than 900 m 2 / g, in particular greater than or equal to 950 m 2 / g, and is preferably less than 1300 m 2 / g, in particular less than or equal to 1200 m 2 / g, or even less than or equal to 1100 m 2 / g, or characterized in that said activated carbon has an iodine number greater than or equal to 1000 mg / g, or characterized in that said activated carbon has a sorption capacity of at least 8 mg of toluene per g of activated carbon, in particular of at least 9 mg of toluene per g of activated carbon
5. Matériau selon l’une quelconque des revendications 1 à 4, caractérisé en ce ledit charbon actif comprend à la fois des micropores et des mésopores. 5. Material according to any one of claims 1 to 4, characterized in that said activated carbon comprises both micropores and mesopores.
6. Matériau selon l’une quelconque des revendications 1 à 5, caractérisé en ce que ledit charbon actif est un charbon actif issu de la houille. 6. Material according to any one of claims 1 to 5, characterized in that said activated carbon is an activated carbon obtained from coal.
7. Matériau selon l’une quelconque des revendications 1 à 6, caractérisé en ce que ledit charbon actif présente une variation de masse moyenne Am(S) en sorption d'au moins 2.5%, voire d’au moins 3%, et une variation de masse Am(D4) après 4 cycles de sorption/désorption d’au plus 1.4%. 7. Material according to any one of claims 1 to 6, characterized in that said activated carbon has a variation in mean mass A m (S) in sorption of at least 2.5%, or even at least 3%, and a variation in mass A m (D4) after 4 sorption / desorption cycles of at most 1.4%.
8. Matériau selon l’une quelconque des revendications 1 à 7, caractérisé en ce que ledit charbon actif présente des isothermes de sorption et de désorption de forme sigmoïde présentant une première zone de sorption, respectivement de désorption, avec une teneur en eau dudit charbon actif inférieure à 5% en poids jusqu'à au moins 30 ou au moins 40% d’humidité relative de l’air ambiant, et une deuxième zone de sorption, respectivement de désorption, forte comparativement à la première zone, avec une variation de la teneur en eau du charbon allant de 5%, ou moins, en poids à au moins 30% en poids, se situant à l’intérieur de la plage allant de 30 ou 40% à 80% d'humidité relative de l’air ambiant. 8. Material according to any one of claims 1 to 7, characterized in that said activated carbon has sigmoid-shaped sorption and desorption isotherms having a first sorption zone, respectively desorption, with a water content of said carbon. active less than 5% by weight up to at least 30 or at least 40% relative humidity of the ambient air, and a second sorption zone, respectively of desorption, strong compared to the first zone, with a variation of the water content of the coal ranging from 5% or less by weight to at least 30% by weight, being within the range of 30 or 40% to 80% relative humidity of the air ambient.
9. Matériau selon l’une quelconque des revendications 1 à 8, caractérisé en ce que ledit charbon actif présente un isotherme de sorption, respectivement de désorption, préférentiellement de type V, intégrant une première zone située dans la plage d’humidité relative allant de 0 à au moins 30 % ou au moins 40% et dans laquelle la teneur en eau dudit charbon actif reste inférieure à 5% en poids, puis une deuxième zone située à l’intérieur de la plage d’humidité relative allant de 30 ou 40 à 80% et dans laquelle la teneur en eau dudit charbon actif varie entre 5% ou moins et au moins 30% en poids, de préférence entre 5 ou moins et au moins 35% en poids. 9. Material according to any one of claims 1 to 8, characterized in that said activated carbon has a sorption isotherm, respectively desorption, preferably of type V, integrating a first zone located in the relative humidity range from 0 to at least 30% or at least 40% and in which the water content of said activated carbon remains less than 5% by weight, then a second zone located within the relative humidity range of 30 or 40 at 80% and in wherein the water content of said activated carbon varies between 5% or less and at least 30% by weight, preferably between 5 or less and at least 35% by weight.
10. Matériau selon l’une quelconque des revendications 1 à 9, caractérisé en ce que ledit matériau comprend de 0,5 à 10%, de préférence entre 0,5 et 7%, en poids dudit charbon actif par rapport au poids sec de plâtre. 10. Material according to any one of claims 1 to 9, characterized in that said material comprises from 0.5 to 10%, preferably between 0.5 and 7%, by weight of said activated carbon relative to the dry weight of plaster.
PCT/FR2021/050746 2020-04-30 2021-04-29 Plaster-based material WO2021219965A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180031635.6A CN115461315A (en) 2020-04-30 2021-04-29 Gypsum-based materials

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2004341A FR3109777A1 (en) 2020-04-30 2020-04-30 PLASTER-BASED MATERIAL
FRFR2004341 2020-04-30

Publications (1)

Publication Number Publication Date
WO2021219965A1 true WO2021219965A1 (en) 2021-11-04

Family

ID=71784232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2021/050746 WO2021219965A1 (en) 2020-04-30 2021-04-29 Plaster-based material

Country Status (3)

Country Link
CN (1) CN115461315A (en)
FR (1) FR3109777A1 (en)
WO (1) WO2021219965A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1847318A2 (en) * 2006-04-18 2007-10-24 Blücher GmbH Board materials provided with adsorbents for dry construction
WO2015101743A1 (en) * 2014-01-03 2015-07-09 Saint-Gobain Placo Gypsum plaster-based material containing casein and activated carbon
WO2016146934A1 (en) * 2015-03-17 2016-09-22 Saint-Gobain Placo Plaster-based acoustic panel
FR3048696A1 (en) * 2016-03-14 2017-09-15 Saint-Gobain Placo PROCESS FOR PRODUCING PLASTER PLATES

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6114280A (en) * 1996-05-06 2000-09-05 Agritec, Inc. Highly activated carbon from caustic digestion of rice hull ash and method
CN101670614A (en) * 2009-09-29 2010-03-17 周杨 Manufacturing method of active carbon gypsum board
CN106277946A (en) * 2015-05-15 2017-01-04 上海墙特节能材料有限公司 A kind of inorganic dry powder painting
CN106517189B (en) * 2016-11-28 2019-03-26 武汉科技大学 A kind of uniform ultra micro mesoporous activated carbon and preparation method thereof for gas separation
CN110877909A (en) * 2019-12-23 2020-03-13 太原市银溪源科技有限公司 Coal columnar activated carbon and preparation method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1847318A2 (en) * 2006-04-18 2007-10-24 Blücher GmbH Board materials provided with adsorbents for dry construction
WO2015101743A1 (en) * 2014-01-03 2015-07-09 Saint-Gobain Placo Gypsum plaster-based material containing casein and activated carbon
WO2016146934A1 (en) * 2015-03-17 2016-09-22 Saint-Gobain Placo Plaster-based acoustic panel
FR3048696A1 (en) * 2016-03-14 2017-09-15 Saint-Gobain Placo PROCESS FOR PRODUCING PLASTER PLATES

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Report R-126", 2005, DEPARTMENT OF CIVIL ENGINEERING, TECHNICAL UNIVERSITY OF DENMARK, article "Moisture Buffering of Building Materials"
A. LAMPLUGH ET AL: "Optimization of VOC removal using novel, low-cost sorbent sinks and active flows", BUILDING AND ENVIRONMENT, vol. 176, 106784, 4 March 2020 (2020-03-04), GB, pages 1 - 12, XP055763610, ISSN: 0360-1323, DOI: 10.1016/j.buildenv.2020.106784 *
CALGONCARBON: "Data Sheet FILTRASORB® 400", 2012, XP055622061, Retrieved from the Internet <URL:https://www.calgoncarbon.com/app/uploads/DS-FILTRA40017-EIN-E1.pdf> [retrieved on 20190913] *
CHEMVIRON CARBON: "ENVIROCARB TM 207C 4X8 AND 6X12 Coconut Based Granular Activated Carbons", 22 July 2009 (2009-07-22), XP055763753, Retrieved from the Internet <URL:https://www.kennetwater.co.uk/uploads/3/8/7/9/38790081/envirocarb_207c_4x8_6x12_-rev_1_-__22_07_09.pdf> [retrieved on 20210112] *
LAMPLUGH A ET AL: "VOC emissions from nail salon products and their effective removal using affordable adsorbents and synthetic jets", 24 October 2019, BUILDING AND ENVIRONMENT, PERGAMON PRESS, OXFORD, GB, ISSN: 0360-1323, XP086144483 *

Also Published As

Publication number Publication date
FR3109777A1 (en) 2021-11-05
CN115461315A (en) 2022-12-09

Similar Documents

Publication Publication Date Title
EP3274315B1 (en) Composition for metakaolin construction material, related method for manufacturing said composition, and use for producing construction elements
CA2854994C (en) Structural lightweight concrete or mortar, method for manufacturing same and use thereof as self-placing concrete
EP3172177B1 (en) Mortar composition for an interior coating or lining
CA3015035C (en) Method for manufacturing plasterboards
EP3089950B1 (en) Gypsum plaster-based material containing casein and activated carbon
WO2015101742A1 (en) Gypsum plaster-based material containing an edta metal complex
EP3778526B1 (en) Plaster plate
JP2006291509A (en) Wall material and construction method for painted wall
WO2021219965A1 (en) Plaster-based material
EP2855998B1 (en) High performance thermal insulation products
EP4048644A1 (en) Composite materials comprising concrete aggregates and porous carbon, and use thereof for eliminating pollutant gases
JP4634696B2 (en) Environmentally-improving functional coating material and its manufacturing method
EP3877082B1 (en) Mortar or coating for an inner covering
JP2006001795A (en) Building material and method for producing the same
WO2016146934A1 (en) Plaster-based acoustic panel
RU2776843C1 (en) Building mixture or coating for interior works
WO2017125674A1 (en) Gypsum plaster-based material
CA2950081C (en) Composition for joints
BE1020340A3 (en) BINDER FOR INTERIOR WALL COATING.
FR2933688A1 (en) PROCESS FOR THE INDUSTRIAL MANUFACTURE OF ANHYDROUS CALCIUM SULFATE COMPOSITIONS IN THE FORM BETA ANHYDRITE III &#39;COMPOSITIONS AND CORRESPONDING BINDERS
KR20090038511A (en) Functional loess tile having improved adsorption rate
FR2991316A1 (en) HIGH PERFORMANCE THERMAL INSULATION PRODUCTS

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21732406

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21732406

Country of ref document: EP

Kind code of ref document: A1