WO2021218867A1 - 多模式脉搏血氧检测方法、电子设备、介质和脉搏血氧仪 - Google Patents

多模式脉搏血氧检测方法、电子设备、介质和脉搏血氧仪 Download PDF

Info

Publication number
WO2021218867A1
WO2021218867A1 PCT/CN2021/089678 CN2021089678W WO2021218867A1 WO 2021218867 A1 WO2021218867 A1 WO 2021218867A1 CN 2021089678 W CN2021089678 W CN 2021089678W WO 2021218867 A1 WO2021218867 A1 WO 2021218867A1
Authority
WO
WIPO (PCT)
Prior art keywords
mode
wearing
blood oxygen
signal
fingertip
Prior art date
Application number
PCT/CN2021/089678
Other languages
English (en)
French (fr)
Inventor
王朔
李玥
杨斌
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021218867A1 publication Critical patent/WO2021218867A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14542Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/681Wristwatch-type devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6825Hand
    • A61B5/6826Finger
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/22Indexing; Data structures therefor; Storage structures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/22Indexing; Data structures therefor; Storage structures
    • G06F16/2282Tablespace storage structures; Management thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/24Querying
    • G06F16/245Query processing
    • G06F16/2455Query execution
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques

Definitions

  • This application relates to the field of sports and health, and in particular to a multi-mode pulse oximetry detection method, electronic equipment, media, and pulse oximeter.
  • the blood oxygen detection algorithm has higher requirements on the way of wearing. For example, light leakage due to loose wear and exercise has a greater impact on the blood oxygen test results. Understandably, the back of the wrist is easy to wear, requires high wearing position, and has poor motion robustness. Although the blood oxygen signal at the fingertips is strong, it is less convenient and comfortable to measure blood oxygen by means of connecting accessories. The current blood oxygen test cannot balance convenience and accuracy.
  • the embodiments of the present application provide a multi-mode pulse oximetry detection method, electronic equipment, medium, and pulse oximeter to solve the current problem that the oximetry cannot be both convenient and accurate.
  • an embodiment of the present application provides a multi-mode pulse oximetry detection method, including:
  • the wearing mode includes a fingertip wearing mode or a wrist wearing mode
  • the fingertip wearing mode or the wrist wearing mode If the fingertip wearing mode or the wrist wearing mode is valid, determine the blood oxygen detection mode according to the fingertip wearing mode or the wrist wearing mode;
  • a blood oxygen algorithm is used to perform pulse oximetry detection, where the blood oxygen algorithm and the blood oxygen detection mode have a mapping relationship.
  • an implementation manner is further provided, and the detecting whether the wearing mode is effective includes:
  • the mode result is output by the mode judgment module, and the mode result is verified with the event result, wherein the mode result is the fingertip wearing mode or the wrist wearing mode ,
  • the event result is determined according to the mode selection event;
  • the mode selection event includes the switching of the wearing mode, the detachment of the electronic device and the accessory, or the combination of the electronic device and the accessory ,
  • the accessory shown includes a fingertip accessory or a wrist accessory
  • the fingertip accessory is used for pulse oximetry in the fingertip wearing mode
  • the wrist accessory is used for the wrist wear Pulse oximetry in mode.
  • an implementation is further provided. If the fingertip wearing mode or the wrist wearing mode is valid, according to the fingertip wearing mode or the The wrist wearing mode determines the blood oxygen detection mode, including:
  • fingertip wearing mode or the wrist wearing mode If the fingertip wearing mode or the wrist wearing mode is valid, use the fingertip wearing mode or the wrist wearing mode that is valid as the current wearing mode;
  • Query a first relationship table and determine the blood oxygen detection mode according to the first relationship table and the current wearing mode, wherein the first relationship table stores a mapping of the wearing mode and the blood oxygen detection mode relation.
  • the output of the mode result through the mode judgment module includes:
  • the classification feature is calculated according to the second information, where the classification feature is used to determine the wearing mode;
  • the wearing mode is judged according to the classification feature, and the mode result is determined and output.
  • the classification feature includes a signal perfusion rate
  • the classification feature obtained by calculating according to the second information includes:
  • the judging the wearing mode according to the classification feature, and determining and outputting the mode result includes:
  • the mode result is the wrist wearing mode and output.
  • the wearing detection according to the blood oxygen detection mode includes:
  • the wearing detection algorithm detecting whether the user is qualified for wearing in the blood oxygen detection mode
  • the foregoing aspects and any possible implementation manners further provide an implementation manner.
  • the use of a blood oxygen algorithm to perform pulse oximetry detection includes:
  • the confidence level is greater than a second preset threshold, it is determined that the first blood oxygen value is an effective blood oxygen value.
  • the third signal includes a red light signal and an infrared light signal
  • the first blood oxygen value is calculated according to the third signal, include:
  • the ratio relationship table is determined based on the blood oxygen detection mode, and the first blood oxygen value is obtained according to the ratio relationship table and the third ratio.
  • the ratio relationship table stores the third ratio and the third ratio. The mapping relationship of the first blood oxygen value.
  • an embodiment of the present application provides an electronic device, including a memory, a processor, and a computer program stored in the memory and running on the processor.
  • the processor executes the computer program, To achieve the following steps:
  • the wearing mode includes a fingertip wearing mode or a wrist wearing mode
  • the fingertip wearing mode or the wrist wearing mode If the fingertip wearing mode or the wrist wearing mode is valid, determine the blood oxygen detection mode according to the fingertip wearing mode or the wrist wearing mode;
  • a blood oxygen algorithm is used to perform pulse oximetry detection, where the blood oxygen algorithm and the blood oxygen detection mode have a mapping relationship.
  • an implementation manner is further provided.
  • the processor executes the computer program to realize the detection of whether the wearing mode is valid, the following steps are included:
  • the mode result is output by the mode judgment module, and the mode result is verified with the event result, wherein the mode result is the fingertip wearing mode or the wrist wearing mode ,
  • the event result is determined according to the mode selection event;
  • the mode selection event includes the switching of the wearing mode, the detachment of the electronic device and the accessory, or the combination of the electronic device and the accessory ,
  • the accessory shown includes a fingertip accessory or a wrist accessory
  • the fingertip accessory is used for pulse oximetry in the fingertip wearing mode
  • the wrist accessory is used for the wrist wear Pulse oximetry in mode.
  • an implementation manner is further provided.
  • the processor executes the computer program to realize that if the fingertip wearing mode or the wrist wearing mode is valid, When determining the blood oxygen detection mode according to the fingertip wearing mode or the wrist wearing mode, the following steps are included:
  • fingertip wearing mode or the wrist wearing mode If the fingertip wearing mode or the wrist wearing mode is valid, use the fingertip wearing mode or the wrist wearing mode that is valid as the current wearing mode;
  • Query a first relationship table and determine the blood oxygen detection mode according to the first relationship table and the current wearing mode, wherein the first relationship table stores a mapping between the wearing mode and the blood oxygen detection mode relation.
  • the classification feature is calculated according to the second information, where the classification feature is used to determine the wearing mode;
  • the wearing mode is judged according to the classification feature, and the mode result is determined and output.
  • the classification feature includes a signal perfusion rate
  • the processor executes the computer program to implement the calculation based on the second information.
  • the processor executes the computer program to realize the judgment of the wearing mode according to the classification feature, and when the mode result is determined and output, the following steps are included:
  • the mode result is the wrist wearing mode and output.
  • an implementation manner is further provided.
  • the processor executes the computer program to implement the wearing detection according to the blood oxygen detection mode, the method includes the following steps:
  • the wearing detection algorithm detecting whether the user is qualified for wearing in the blood oxygen detection mode
  • an implementation manner is further provided.
  • the processor executes the computer program to implement the pulse oximetry detection using the blood oxygen algorithm, the method includes the following steps:
  • the confidence level is greater than a second preset threshold, it is determined that the first blood oxygen value is an effective blood oxygen value.
  • the third signal includes a red light signal and an infrared light signal
  • the processor executes the computer program to implement the When the first blood oxygen value is calculated by the third signal, the following steps are included:
  • the ratio relationship table is determined based on the blood oxygen detection mode, and the first blood oxygen value is obtained according to the ratio relationship table and the third ratio, wherein the ratio relationship table stores the third ratio and the third ratio The mapping relationship of the first blood oxygen value.
  • an embodiment of the present application provides a computer-readable storage medium, including: a computer program and a processor, and when the computer program is executed by the processor, the steps of the method described in the first aspect are implemented.
  • an embodiment of the present application provides a multi-mode pulse oximeter, including a main body measuring device and accessories, wherein the accessories include fingertip-type accessories or wrist-type accessories, and the main body measuring device is used to communicate with The fingertip type accessory or the wrist type accessory is combined as a pulse oximeter, wherein the main body measuring device is the electronic device described in the second aspect, and the main body measuring device further includes a light source transmitter and a reflective receiving lens .
  • the wrist-type accessory includes a watchband accessory.
  • the main body measurement device further includes electrode contacts for detecting the wearing mode.
  • the fingertip type accessory includes a finger clip accessory or a finger sleeve accessory.
  • the finger clip accessory includes an accessory upper part and an accessory lower part, and the upper part of the accessory includes a groove for buckling the main body measuring device.
  • the inside of the groove includes electrode contacts, the electrode contacts are used to supply power to the phototransistor in the lower part of the accessory and to detect the wearing mode, the upper edge of the accessory includes light-shielding silica gel, and the lower part of the accessory includes a transmissive receiving device.
  • the transmissive receiving device includes a lens and the photodiode.
  • an implementation manner is further provided, and the finger sleeve fitting adopts a retractable structure.
  • the finger sleeve accessory includes a rubber ring finger sleeve or a silicone finger sleeve.
  • an implementation manner is further provided.
  • the multi-mode pulse oximeter performs blood oxygen detection based on a strap accessory
  • the finger cuff accessory is retracted and hidden in the watch. With accessories.
  • the corresponding blood oxygen detection mode is determined, and the wearing test is performed to ensure that the user wears it correctly.
  • the blood oxygen detection algorithm corresponding to the blood oxygen detection mode will be used for pulse oximetry detection, which can perform flexible changes of different pulse oximetry detections in the fingertip wearing mode or the wrist wearing mode.
  • the detection mode the accuracy of blood oxygen detection is guaranteed.
  • the fingertip wearing mode and the wrist wearing mode can be considered at the same time, and the user can flexibly switch the wearing mode according to the blood oxygen detection requirements, and ensure the accuracy of the blood oxygen detection when switching the wearing mode.
  • FIG. 1a is a schematic diagram of a transmissive photoelectric sensor that realizes blood oxygen detection according to an embodiment of the present application
  • Figure 1b is a schematic diagram of a reflective photoelectric sensor implementing blood oxygen detection according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of a product form of a multi-mode blood oxygen detection provided by an embodiment of the present application
  • FIG. 3 is a flowchart of a multi-mode pulse oximetry detection method provided by an embodiment of the present application.
  • FIG. 4 is a flowchart of a wearing mode validity test provided by an embodiment of the present application.
  • FIG. 5 is a flowchart of outputting a mode result through a mode judgment module according to an embodiment of the present application
  • Fig. 6 is a flow chart of pulse oximetry using a blood oxygen algorithm according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a wrist wearing mode provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a fingertip wearing mode provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of yet another fingertip wearing mode provided by an embodiment of the present application.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present application, unless otherwise specified, “plurality” means two or more.
  • words such as “exemplary” or “for example” are used as examples, illustrations, or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in the embodiments of the present application should not be construed as being more preferable or advantageous than other embodiments or design solutions. To be precise, words such as “exemplary” or “for example” are used to present related concepts in a specific manner.
  • Oxygen saturation (SpO2 for short) describes the blood's ability to carry and transport oxygen.
  • the metabolic process of the human body is a process of biological oxidation.
  • the oxygen needed in the metabolic process enters the human blood through the respiratory system and combines with the deoxyhemoglobin (Hb) in the red blood cells to form oxyhemoglobin (HbO2).
  • Real-time monitoring of blood oxygen has a higher guiding significance for the diagnosis and monitoring of cardiopulmonary diseases and blood diseases; blood oxygen detection is used in actual application scenarios, including blood oxygen such as outdoor climbing. Application scenarios such as real-time monitoring and night sleep pause detection.
  • the principle of blood oxygen measurement is as follows: the absorption rate of hemoglobin to red light and infrared light is different. HbO2 absorbs more infrared light (IR, wavelength around 900nm), while Hb absorbs more red light (Red, wavelength around 600nm). Red light and infrared light are injected into human tissues at the same time.
  • the blood flow of veins and other body tissues is relatively constant, so the absorption of light can be approximated as a fixed value, and the arteries will periodically expand with the pulse, so the unit volume The total blood volume inside will increase periodically, so the absorption of red light and infrared light by the arteries will periodically change with the pulse.
  • a photoelectric sensor can be used to receive the IR and Red signals, and the IR and Red signals can be decomposed into direct current (DC) and alternating current components (AC) respectively, and then the direct current and alternating current components of the IR and Red signals can be used. The components are calculated to get the blood oxygen saturation.
  • the photoelectric sensor can be divided into two types: transmissive and reflective sensors according to the receiving mode of the photoelectric sensor. It can be seen from Fig. 1a that the red light and infrared light LED light sources emit red light and infrared light respectively, which are emitted to the phototransistor through the red blood cells in the fingertips. It can be seen from Figure 1b that the red light and infrared light LED light sources emit red light and infrared light respectively, and the phototransistor receives the red light and infrared light reflected at the wrist.
  • oximeters for pulse oximetry include wrist pulse oximeters and finger clip probe pulse oximeters.
  • the wrist pulse oximeter adopts the form of a watch or a bracelet and is worn on the wrist.
  • a reflective sensor is used to receive PPG (photoplethysmograph) signals.
  • the PPG signal shown includes red light and infrared light.
  • the finger clip probe pulse oximeter adopts a finger clip shape and is worn with a wrapped fingertip. It is generally connected with a probe and receives PPG signals through a transmissive sensor.
  • the blood oxygen detection implemented in the prior art is more sensitive to the arterial distribution of the detection site.
  • the arteries on the back of the wrist are sparsely distributed and the signal perfusion rate is low.
  • the detection result is greatly affected by signal noise.
  • the accuracy of blood oxygen detection is poor; although the blood oxygen signal at the fingertips is strong, the convenience and comfort of connecting accessories are poor.
  • the embodiments of the present application provide a more flexible multi-mode pulse oximetry detection method, which can provide switchable wrist and fingertip oximetry detection without additional connection of the probe, and ensure that it is worn Accuracy of blood oxygen detection in mode switching.
  • the multi-mode pulse oximetry detection method is implemented based on wearable devices.
  • the wearable devices are divided into main body measuring devices and accessories. Through different wearing modes, different wearing modes can be detected and switched, and blood can be detected on the wrist. Oxygen can also be used to detect blood oxygen at the finger.
  • the product form of the multi-mode blood oxygen detection is shown in Figure 2. It can be seen from Fig. 2 that the flexible switching of detection mode 1 and detection mode 2 can be realized by combining the main measuring device with different accessories. Among them, detection mode 1: The measurement point is on the wrist.
  • the wearing method is the combination of the main measuring device and the strap on the wrist.
  • the use scene is the daily blood oxygen real-time monitoring. The advantage is that it is convenient and comfortable to wear.
  • Detection mode 2 The measurement point is at your fingertips.
  • the wearing method is the combination of the main body and the finger clip or finger sleeve accessories. Wearing on the finger, the use scene is some scenes where exercise interference cannot be avoided (such as night sleep or running exercise). Its advantage is that it can get more accurate blood oxygen level on the one hand. , On the other hand, it is more tolerant to exercise interference.
  • S10 Detect whether the wearing mode is valid, where the wearing mode includes a fingertip wearing mode or a wrist wearing mode.
  • the wearing detection, blood oxygen detection, etc. used in the fingertip wearing mode or the wrist wearing mode are different.
  • the user can use the relevant application program on the main measurement device or terminal Actively select the wearing mode to be adopted, for example, after combining the main measurement device with the fingertip accessory, change the wearing mode to the fingertip wearing mode through the relevant application on the terminal. Therefore, the wearing mode is not necessarily effective. If the user combines the main measurement device with the fingertip accessory, but the wearing mode is the wrist wearing mode, obviously, this wearing mode is not effective and will seriously affect the blood oxygen. Accuracy of detection.
  • the blood oxygen detection mode corresponding to the wearing mode should be adopted.
  • the fingertip wearing mode adopts the fingertip blood oxygen detection mode
  • the wrist wearing mode adopts the wrist type.
  • the blood oxygen detection mode can select the best blood oxygen detection mode according to the actual wearing mode to improve the accuracy of blood oxygen detection.
  • S30 Perform wearing detection according to the blood oxygen detection mode.
  • the wearing detection refers to the detection of whether the user is qualified to wear, such as whether the main body measuring device is close to the skin in the wrist-type wearing mode, and whether the reflective receiving lens is close to the skin side and other wearing requirements.
  • different blood oxygen detection modes correspond to different wearing detections, and the wearing detection can further improve the accuracy of blood oxygen detection.
  • the blood oxygen algorithm is used to perform the pulse oximetry detection, where the blood oxygen algorithm and the blood oxygen detection mode have a mapping relationship.
  • different blood oxygen detection modes should adopt different blood oxygen algorithms.
  • the fingertip wearing mode or the wrist wearing mode there are differences in the filtering and peak-lifting algorithms used.
  • the corresponding blood oxygen algorithm will be adopted for different blood oxygen detection modes.
  • the wearing mode of the oximeter supports arbitrary switching, which can take into account convenience and accuracy at the same time; in addition, when the wearing mode is switched, the processing steps before the blood oxygen detection such as the validity of the wearing mode are also performed. When the wearing mode is switched, the effectiveness of the wearing mode can be ensured, and the accuracy of blood oxygen detection can be further improved.
  • Fig. 3 shows a flowchart of a multi-mode pulse oximetry detection method. It can be seen from Figure 3 that after the wearing mode is confirmed to be valid by the mode test, the corresponding blood oxygen detection mode will be selected according to the actual situation (for example, blood oxygen detection mode 1 is specifically a fingertip blood oxygen detection mode, blood oxygen detection Mode 2 is specifically a wrist-type blood oxygen detection mode), and execute the corresponding wearing detection and blood oxygen algorithm (similarly, divided into mode 1 and mode 2) to complete blood oxygen detection.
  • blood oxygen detection mode 1 is specifically a fingertip blood oxygen detection mode
  • blood oxygen detection Mode 2 is specifically a wrist-type blood oxygen detection mode
  • step S10 detecting whether the wearing mode is valid, specifically includes the following steps:
  • S111 Detect whether there is a mode selection event.
  • a mode selection event refers to an event that may change the actual wearing mode. If a mode selection event occurs, it is considered that the wearing mode may be changed, and the validity of the wearing mode needs to be checked and confirmed.
  • the mode selection event includes the switching of the wearing mode, the detachment of the electronic device and the accessory, or the combination of the electronic device and the accessory.
  • the accessory shown includes a fingertip type accessory or a wrist type accessory, and the fingertip type accessory is used for the fingertip type.
  • Pulse oximetry in wearing mode, wrist accessories are used for pulse oximetry in wrist wearing mode.
  • the switching of the wearing mode may be the switching of the wearing mode actively performed through the operation interface of the main body measurement device, or the switching of the wearing mode actively performed through the related application of the user terminal.
  • the electronic device can specifically refer to the main body measuring device, which can be considered as a core component, and combined with different accessories, such as fingertip accessories or wrist accessories, to obtain oximeters with different wearing modes.
  • S112 If there is a mode selection event, output the mode result through the mode judgment module, and verify the mode result with the event result, where the mode result is the fingertip wearing mode or the wrist wearing mode, and the event result is determined according to the mode selection event .
  • a preset mode judgment module is used to output the mode result, that is, according to the mode judgment module, it is judged whether the current mode is the fingertip wearing mode or the wrist wearing mode.
  • the result of this mode is a preliminary judgment and does not mean that the wearing mode is effective.
  • the model result should be checked with the event result to determine whether the wearing mode is valid, where the event result refers to an objective factual event, which is determined according to the mode selection event.
  • the mode result is fingertip wearing mode
  • the detected mode selection event is that the user actively sets the wearing mode to wrist wearing mode on the app, that is, when the event result is wrist wearing mode
  • the mode result is the same as the event If the result does not match, it can be considered that the user has made an accidental touch operation
  • the mode result is fingertip wearing mode
  • the detected mode selection event is the detachment of the main measurement device from the accessory, that is, when the main measurement device is in an independent state, the mode result is obvious Does not match the event result
  • the mode result is fingertip wearing mode
  • the detected mode selection event is the combination of the main measurement device and the accessory, the event result is the currently set wearing mode.
  • the wearing mode is invalid. Further, in the case that the wearing mode is invalid, a way of sending reminder information to the user, such as a signal light, interface content prompt, etc., can be used to remind the user to set the correct wearing mode.
  • the wearing mode if there is no mode selection event, it can be considered that the wearing mode has not changed, and the wearing mode will continue to be effective.
  • Fig. 4 shows a flow chart of the validity detection of the wearing mode. It can be seen from Figure 4 that the wearing mode detection uses the mode selection event as the division condition. When there is a mode selection event, the mode matching is also performed, that is, the step of verifying the mode result and the event result, and finally the classification result is output. The classification result is the final effective wearing mode, and the wearing mode process can be used to accurately determine whether the wearing mode is effective.
  • step S10 if the fingertip wearing mode or the wrist wearing mode is valid, the blood oxygen detection mode is determined according to the fingertip wearing mode or the wrist wearing mode, which specifically includes the following steps:
  • the fingertip wearing mode or the wrist wearing mode is valid, indicating that the user can currently perform blood oxygen detection in the fingertip wearing mode or the wrist wearing mode. It is understandable that when there is only one main body measuring device (usually one), the blood oxygen detection can be realized in one of a fingertip wearing mode or a wrist wearing mode.
  • S122 Query the first relationship table, and determine the blood oxygen detection mode according to the first relationship table and the current wearing mode, where the first relationship table stores a mapping relationship between the wearing mode and the blood oxygen detection mode.
  • different wearing modes correspond to different blood oxygen detection modes.
  • the first relationship table can be consulted to use the mapping relationship between the wearing mode and the blood oxygen detection mode stored in the first relationship table. Determine the blood oxygen detection mode.
  • step S112 the flow chart of outputting the mode result through the mode judgment module is shown in FIG. 5, which specifically includes the following steps:
  • S1121 Collect a photoplethysmography signal as the first signal.
  • S1122 Perform filtering processing on the first signal by using a preset filter to obtain a second signal, where the second signal includes a red light signal and an infrared light signal.
  • a preset filter is used to filter the interference signal, highlight the red light signal and the infrared light signal in the PPG signal, and obtain the red light signal and the infrared light signal with stronger signals and higher accuracy.
  • S1123 Calculate the classification feature according to the second information, where the classification feature is used to determine the wearing mode.
  • the classification feature is used to determine the wearing mode.
  • the classification feature is calculated based on the second information, that is, the classification realized by using the characteristics of the red light signal and the infrared light signal can accurately determine the wearing mode and improve the accuracy of the effectiveness of the wearing mode. sex.
  • the classification features include signal perfusion rate.
  • the signal perfusion rate can be represented by PI, and the PI calculation formula Among them, i represents the signal index, represents the first, second...nth signal, n represents the total number of signals, R represents red light, IR represents infrared light, DC represents direct current, AC represents alternating current, ⁇ 1 and ⁇ 2 is the preset weight parameter, which is related to the optical path design and hardware structure of the electronic device. Specifically, ⁇ 1 and ⁇ 2 can be set to 0.5 at the same time by default.
  • step S1123 the classification feature is calculated according to the second information, which specifically includes the following steps:
  • the signal perfusion rate is calculated according to the second information.
  • the classification feature when the classification feature is the signal perfusion rate, it can be calculated based on the DC signal and the AC signal of the red light and the infrared light of the second information. Understandably, when the classification feature is the signal perfusion rate, the model result can be accurately obtained according to the difference between the signal perfusion rate of the fingertip and the wrist.
  • step S1124 the wearing mode is judged according to the classification characteristics, and the mode result is determined and output, which specifically includes the following steps:
  • the mode result is a fingertip wearing mode and output.
  • the mode result is a wrist wearing mode and output.
  • the first preset threshold can be set and the threshold comparison can be used to determine whether the mode result is the fingertip wearing mode or the wrist wearing mode.
  • step S10 the wearing detection is performed according to the blood oxygen detection mode, which specifically includes the following steps:
  • S131 Query the second relationship table, and determine the wearing detection algorithm according to the blood oxygen detection mode, where the second relationship table stores the mapping relationship between the blood oxygen detection mode and the wearing detection algorithm.
  • the wearing detection algorithms corresponding to different blood oxygen detection modes are also different.
  • the two wearing modes of the fingertip wearing mode and the wrist wearing mode have different wearing requirements.
  • the wear detection algorithm needs to be determined, and the determined wear detection algorithm can more accurately guide the user to wear, so that more accurate results can be obtained during blood oxygen detection.
  • S132 According to the wearing detection algorithm, detect whether the user is qualified for wearing in the blood oxygen detection mode.
  • the wearing detection algorithm can be preset according to the characteristics of the wearing mode. After the blood oxygen detection mode is determined, the user can be tested whether the user is qualified according to the wearing detection algorithm, and remind and guide the user during the detection process Wear it correctly.
  • step S10 the flow chart of pulse oximetry detection using the blood oxygen algorithm is shown in Fig. 6, and the steps specifically include:
  • S141 Select a filter, filter parameter, and peak-lifting algorithm based on the blood oxygen detection mode.
  • filters, filtering parameters and peak-lifting algorithms can be pre-determined according to the blood oxygen detection mode (fingertip blood oxygen detection mode or wrist blood oxygen detection mode). .
  • the filter, filter parameters, and peak-lifting algorithm can be selected accordingly.
  • S142 Perform signal processing on the collected photoplethysmography signal using filters, filter parameters, and peak-lifting algorithms to obtain a third signal.
  • S143 Select an exercise state level judgment algorithm based on the blood oxygen detection mode.
  • Motion detection includes, but is not limited to, wrist turning, finger shaking, etc.
  • the exercise state level can be calculated according to the actions detected within the preset time period and the exercise state level judgment algorithm corresponding to the blood oxygen detection mode. Understandably, there is a mature technology for determining the level of the motion state based on motion detection in the prior art.
  • the motion state level can be obtained by detecting the user's actions such as turning the wrist, shaking the finger, and the like.
  • the third signal may be calculated and analyzed to obtain the signal quality level of the third signal.
  • the signal quality level is also a commonly used method for judging and grading signal quality in the prior art.
  • the signal quality level calculated in this embodiment can be used to improve the accuracy of confidence calculation in the subsequent confidence calculation.
  • the ratio of the concentration of deoxyhemoglobin to oxygen and hemoglobin in the blood is calculated through the direct current part and the alternating part of the red light signal, and the direct current part and the alternating part of the infrared light signal, and this ratio can be recorded as the R value.
  • the R value there is a mapping relationship between the R value and the blood oxygen saturation, and the blood oxygen saturation can be determined according to the mapping relationship to complete the blood oxygen detection.
  • the R value obtained by using the third signal in this embodiment can be recorded as the first blood oxygen value.
  • the logistic regression model may be used to predict the probability of a positive sample based on the confidence features including signal quality level, exercise state level, difference between the first blood oxygen value and the previous blood oxygen value, etc.
  • the confidence features including signal quality level, exercise state level, difference between the first blood oxygen value and the previous blood oxygen value, etc.
  • the signal quality level, the level of exercise status, the difference between the first blood oxygen value and the previous blood oxygen value can be used as the confidence feature to calculate the confidence, and the confidence calculated based on these features can be more accurate To judge whether the first blood oxygen value is credible.
  • the first blood oxygen value can be considered reliable and credible.
  • the third signal includes a red light signal and an infrared light signal
  • the first blood oxygen value is calculated according to the third signal, which specifically includes the following steps:
  • S1462 Decompose the infrared light signal into a second DC component signal and a second AC component signal.
  • S1466 Determine the ratio relationship table based on the blood oxygen detection mode, and obtain the first blood oxygen value according to the ratio relationship table and the third ratio, where the ratio relationship table stores a mapping relationship between the third ratio and the first blood oxygen value.
  • the third ratio is the R value mentioned above.
  • the ratio relationship table can be determined according to the blood oxygen detection mode, and the first blood oxygen value can be obtained by using the ratio relationship table and the third ratio. It should be noted that the ratio relation table corresponding to different blood oxygen detection modes is different, and the corresponding ratio relation table needs to be selected according to the blood oxygen detection mode.
  • the corresponding blood oxygen detection mode is determined, and the wearing test is performed to ensure that the user wears it correctly.
  • the blood oxygen detection algorithm corresponding to the blood oxygen detection mode will be used for pulse oximetry detection, which can perform flexible changes of different pulse oximetry detections in the fingertip wearing mode or the wrist wearing mode.
  • the detection mode the accuracy of blood oxygen detection is guaranteed.
  • the fingertip wearing mode and the wrist wearing mode can be considered at the same time, and the user can flexibly switch the wearing mode according to the blood oxygen detection requirements, and ensure the accuracy of the blood oxygen detection when switching the wearing mode.
  • An embodiment of the present application also provides an electronic device, including a memory, a processor, and a computer program stored in the memory and capable of running on the processor, wherein the processor implements the following steps when the processor executes the computer program:
  • the wearing mode includes a fingertip wearing mode or a wrist wearing mode.
  • the blood oxygen detection mode is determined according to the fingertip wearing mode or the wrist wearing mode.
  • the blood oxygen algorithm is used to perform pulse oximetry detection, where the blood oxygen algorithm and the blood oxygen detection mode have a mapping relationship.
  • the mode result is output by the mode judgment module, and the mode result is verified with the event result, where the mode result is the fingertip wearing mode or the wrist wearing mode, and the event result is determined according to the mode selection event.
  • the mode selection event includes the switching of the wearing mode, the detachment of the electronic device and the accessory, or the combination of the electronic device and the accessory.
  • the accessory shown includes a fingertip type accessory or a wrist type accessory, and the fingertip type accessory is used for the fingertip type.
  • Pulse oximetry in wearing mode, wrist accessories are used for pulse oximetry in wrist wearing mode.
  • the processor executes the computer program to realize that if the fingertip wearing mode or the wrist wearing mode is valid, when the blood oxygen detection mode is determined according to the fingertip wearing mode or the wrist wearing mode, the following steps are included:
  • the valid fingertip wearing mode or wrist wearing mode is taken as the current wearing mode.
  • the first relationship table is queried, and the blood oxygen detection mode is determined according to the first relationship table and the current wearing mode, where the first relationship table stores a mapping relationship between the wearing mode and the blood oxygen detection mode.
  • the processor executes the computer program to realize the output of the mode result through the mode judgment module, it includes the following steps:
  • the first signal is filtered by using a preset filter to obtain a second signal, where the second signal includes a red light signal and an infrared light signal.
  • the classification feature is calculated according to the second information, where the classification feature is used to determine the wearing mode.
  • the wear mode is judged according to the classification characteristics, and the mode result is determined and output.
  • the classification feature includes the signal perfusion rate
  • the processor executes the computer program to realize the calculation of the classification feature based on the second information, including the following steps:
  • the signal perfusion rate is calculated according to the second information.
  • the processor executes the computer program to realize the judgment of the wearing mode according to the classification characteristics, and when the mode result is determined and output, the following steps are included:
  • the mode result is determined to be the fingertip wearing mode and output
  • the mode result is a wrist wearing mode and output.
  • the second relationship table is queried, and the wearing detection algorithm is determined according to the blood oxygen detection mode, where the second relationship table stores the mapping relationship between the blood oxygen detection mode and the wearing detection algorithm.
  • the wearing detection algorithm in the blood oxygen detection mode, it is detected whether the user is qualified to wear.
  • a reminder message will be sent to the user.
  • Signal processing is performed on the collected photoplethysmography signal using filters, filtering parameters and peak-lifting algorithms to obtain the third signal.
  • the signal quality level is calculated based on the third signal.
  • the first blood oxygen value is calculated based on the third signal.
  • the confidence level is calculated based on the signal quality level, the exercise state level, and the first blood oxygen value.
  • the confidence level is greater than the second preset threshold, it is determined that the first blood oxygen value is a valid blood oxygen value.
  • the third signal includes a red light signal and an infrared light signal
  • the processor executes the computer program to realize the calculation of the first blood oxygen value according to the third signal, including the following steps:
  • the red light signal is decomposed into a first direct current component signal and a first alternating current component signal.
  • the infrared light signal is decomposed into a second direct current component signal and a second alternating current component signal.
  • the ratio relationship table is determined based on the blood oxygen detection mode, and the first blood oxygen value is obtained according to the ratio relationship table and the third ratio, where the ratio relationship table stores a mapping relationship between the third ratio and the first blood oxygen value.
  • the embodiment of the present application also provides a readable storage medium, including: a computer program and a processor.
  • a computer program When the computer program is executed by the processor, the steps of the above-mentioned multi-mode pulse oximetry detection method are implemented.
  • the embodiment of the application also provides a multi-mode pulse oximeter, including a main body measuring device and accessories, wherein the accessories include a fingertip type accessory or a wrist type accessory, and the main body measuring device is used for combining with a fingertip type accessory or a wrist type accessory
  • the main body measuring device is the electronic device mentioned in the above embodiment, and the main body measuring device further includes a light source transmitter and a reflective receiving lens.
  • wrist-type accessories include watchband accessories.
  • the main body measuring device also includes electrode contacts for detecting the wearing mode.
  • the fingertip type accessory includes a finger clip accessory or a finger sleeve accessory.
  • the finger clip accessory includes an upper part of the accessory and a lower part of the accessory.
  • the upper part of the accessory includes a groove for buckling the main body measuring device.
  • the inside of the groove includes electrode contacts.
  • the upper edge of the accessory includes light-shielding silica gel
  • the lower part of the accessory includes a transmissive receiving device
  • the transmissive receiving device includes a lens and a photodiode.
  • connection between the upper part of the accessory and the lower part of the accessory is connected by a flat cable and a spring structure.
  • the finger sleeve fitting adopts a retractable structure, and includes a rubber ring finger sleeve or a silicone finger sleeve.
  • the multi-mode pulse oximeter performs blood oxygen detection based on the strap accessory, the finger sleeve accessory is shrunk and hidden on the strap accessory.
  • FIG. 7 shows a schematic structural diagram of the wrist wearing mode, in which 1 is the strap accessory; 2 is the main measurement device; 3 is the LED light source transmitter; 4 is the reflective receiving lens; 5 is the electrode contact (for wearing Pattern detection).
  • This wrist-type wearing mode combines a detachable main body measuring device with a strap accessory and wears it on the wrist.
  • the LED light source emitter behind the main body measuring device sends a specific spectrum of red light, infrared light and other light sources. The light source is reflected by the skin and received by the reflective receiving lens on the back of the main measuring device.
  • Figure 8 shows a schematic structural diagram of the fingertip wearing mode, where 1 is the upper part of the fingertip accessory; 2 is the main measurement device; 3 is the LED light source transmitter; 4 is the accessory electrode contact; 5 is the lower part of the fingertip accessory; 6 is a transmissive receiving lens; 7 is a light-shielding silica gel.
  • the fingertip accessory is a finger clip device composed of upper and lower parts; the upper part has a groove for buckling the main measuring device, and the inside of the groove has electrode contacts for power supply of the bottom phototransistor and detection of wearing mode, and the upper edge is Shading silica gel; the connection between the upper part and the lower part of the accessory is a cable and spring structure; the lower part of the accessory includes a transmissive receiving device, including a lens and a phototransistor.
  • This fingertip wearing mode combines a detachable main body measuring device with a fingertip (finger clip) accessory (clamped on the top of the fingertip accessory), worn on the finger, and sent specific information through the LED light source transmitter on the back of the main body measuring device.
  • the light source penetrates the fingertip tissue, and the transmissive receiving device at the lower part of the accessory receives it through the lens, and uses a phototransistor to convert the light signal into an electrical signal, which is transmitted to the main measurement equipment.
  • Figure 9 shows a schematic structural diagram of another fingertip wearing mode, in which 1 is a silicone finger cot; 2 is a main measuring device; 3 is an LED light source transmitter; 4 is a reflective receiving lens.
  • the silicone finger sleeve is added with conductive fillers and provided with electrode contacts, which can realize wearing mode detection.
  • the finger sleeve structure is sleeved on the main measuring device and is a retractable structure (such as a thin rubber ring or silicone finger sleeve); specifically, when using the fingertip wearing mode, the main measuring device can be removed from the strap accessory, Stretch the finger cots and wear them on your fingertips.
  • the LED light source transmitter behind the main measuring device sends a specific spectrum of red light, infrared and other light sources. The light source is reflected by the skin and received by the reflective receiving lens behind the main measuring device.

Abstract

一种多模式脉搏血氧检测方法、电子设备、介质和脉搏血氧仪。其中,多模式脉搏血氧检测方法包括:检测佩戴模式是否有效,其中,佩戴模式包括指尖式佩戴模式或手腕式佩戴模式;若存在指尖式佩戴模式或手腕式佩戴模式有效,根据指尖式佩戴模式或手腕式佩戴模式确定血氧检测模式;根据血氧检测模式进行佩戴检测;若通过佩戴检测,采用血氧算法进行脉搏血氧检测,其中,血氧算法与血氧检测模式具有映射关系。采用多模式脉搏血氧检测方法能够同时兼顾指尖式佩戴模式和手腕式佩戴模式,用户可根据血氧检测需求灵活切换佩戴模式,并且在切换佩戴模式的情况下保证血氧检测的精确性。

Description

多模式脉搏血氧检测方法、电子设备、介质和脉搏血氧仪 【技术领域】
本申请涉及运动健康领域,尤其涉及一种多模式脉搏血氧检测方法、电子设备、介质和脉搏血氧仪。
【背景技术】
血氧检测算法对佩戴方式有较高要求。例如,因佩戴过松以及运动导致的漏光,对血氧检测结果影响较大。可以理解地,手腕背部佩戴方便,对佩戴位置要求高,运动鲁棒性差;指尖处血氧信号虽强,但是采用如连线配件的方式测量血氧,其便利性与舒适性较差。目前的血氧检测无法兼顾便利性与精确性。
【发明内容】
有鉴于此,本申请实施例提供了一种多模式脉搏血氧检测方法、电子设备、介质和脉搏血氧仪,用以解决目前血氧检测无法兼顾便利性与精确性的问题。
第一方面,本申请实施例提供了一种多模式脉搏血氧检测方法,包括:
检测佩戴模式是否有效,其中,所述佩戴模式包括指尖式佩戴模式或手腕式佩戴模式;
若存在所述指尖式佩戴模式或所述手腕式佩戴模式有效,根据所述指尖式佩戴模式或所述手腕式佩戴模式确定血氧检测模式;
根据所述血氧检测模式进行佩戴检测;
若通过所述佩戴检测,采用血氧算法进行脉搏血氧检测,其中,所述血氧算法与所述血氧检测模式具有映射关系。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述检测佩戴模式是否有效,包括:
检测是否存在模式选择事件;
若存在所述模式选择事件,通过模式判断模块输出模式结果,并将所述模式结果与事件结果进行校验,其中,所述模式结果为所述指尖式佩戴模式或所述手腕式佩戴模式,所述事件结果根据所述模式选择事件确定;
若校验通过,则确定存在所述佩戴模式有效;
若校验不通过,返回执行所述检测是否存在模式选择事件的步骤;
若不存在所述模式选择事件,则确定存在所述佩戴模式有效。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述模式选择事件包 括所述佩戴模式的切换、电子设备与配件拆离,或所述电子设备与所述配件结合,其中,所示配件包括指尖式配件或手腕式配件,所述指尖式配件用于所述指尖式佩戴模式下的脉搏血氧检测,所述手腕式配件用于所述手腕式佩戴模式下的脉搏血氧检测。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述若存在所述指尖式佩戴模式或所述手腕式佩戴模式有效,根据所述指尖式佩戴模式或所述手腕式佩戴模式确定血氧检测模式,包括:
若存在所述指尖式佩戴模式或所述手腕式佩戴模式有效,将有效存在的所述指尖式佩戴模式或所述手腕式佩戴模式作为当前佩戴模式;
查询第一关系表,根据所述第一关系表和所述当前佩戴模式确定所述血氧检测模式,其中,所述第一关系表存储有所述佩戴模式和所述血氧检测模式的映射关系。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述通过模式判断模块输出模式结果,包括:
采集光电容积描记信号,作为第一信号;
采用预设置的滤波对所述第一信号进行滤波处理,得到第二信号,其中,所述第二信号包括红光信号和红外光信号;
根据所述第二信息计算得到分类特征,其中,所述分类特征用于判断所述佩戴模式;
根据所述分类特征进行所述佩戴模式的判断,确定所述模式结果并输出。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述分类特征包括信号灌注率,所述根据所述第二信息计算得到分类特征,包括:
根据所述第二信息计算得到所述信号灌注率;
所述根据所述分类特征进行所述佩戴模式的判断,确定所述模式结果并输出,包括:
若所述信号灌注率大于第一预设阈值,则确定所述模式结果为所述指尖式佩戴模式并输出;
否则,确定所述模式结果为所述手腕式佩戴模式并输出。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述根据所述血氧检测模式进行佩戴检测,包括:
查询第二关系表,根据所述血氧检测模式确定佩戴检测算法,其中,所述第二关系表存储有所述血氧检测模式与所述佩戴检测算法的映射关系;
根据所述佩戴检测算法,在所述血氧检测模式下检测用户佩戴是否合格;
若检测到所述用户佩戴不合格,则向所述用户发出提醒信息。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述采用血氧算法进行脉搏血氧检测,包括:
基于所述血氧检测模式选择滤波器、滤波参数和提峰算法;
采用所述滤波器、所述滤波参数和所述提峰算法对采集的光电容积描记信号进行信号处理,得到第三信号;
基于所述血氧检测模式选择运动状态等级判断算法;
检测动作,根据所述动作和所述运动状态等级判断算法计算得到运动状态等级;
基于所述第三信号计算得到信号质量等级;
基于所述第三信号计算得到第一血氧值;
基于所述信号质量等级、所述运动状态等级和所述第一血氧值计算得到置信度;
若所述置信度大于第二预设阈值,则确定所述第一血氧值为有效的血氧值。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述第三信号包括红光信号和红外光信号,所述根据所述第三信号计算得到第一血氧值,包括:
将所述红光信号分解为第一直流成分信号和第一交流成分信号;
将所述红外光信号分解为第二直流成分信号和第二交流成分信号;
采用所述第一交流成分信号除以所述第一直流成分信号,得到第一比值;
采用所述第二交流成分信号除以所述第二直流成分信号,得到第二比值;
采用所述第一比值除以所述第二比值,得到第三比值;
基于所述血氧检测模式确定比值关系表,根据所述比值关系表和所述第三比值得到所述第一血氧值,其中,所述比值关系表存储有所述第三比值与所述第一血氧值的映射关系。
第二方面,本申请实施例提供了一种电子设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如下步骤:
检测佩戴模式是否有效,其中,所述佩戴模式包括指尖式佩戴模式或手腕式佩戴模式;
若存在所述指尖式佩戴模式或所述手腕式佩戴模式有效,根据所述指尖式佩戴模式或所述手腕式佩戴模式确定血氧检测模式;
根据所述血氧检测模式进行佩戴检测;
若通过所述佩戴检测,采用血氧算法进行脉搏血氧检测,其中,所述血氧算法与所述血氧检测模式具有映射关系。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述处理器执行所述计算机程序,实现所述检测佩戴模式是否有效时,包括如下步骤:
检测是否存在模式选择事件;
若存在所述模式选择事件,通过模式判断模块输出模式结果,并将所述模式结果与事件结果进行校验,其中,所述模式结果为所述指尖式佩戴模式或所述手腕式佩戴模式,所述事件结果根据所述模式选择事件确定;
若校验通过,则确定存在所述佩戴模式有效;
若校验不通过,返回执行所述检测是否存在模式选择事件的步骤;
若不存在所述模式选择事件,则确定存在所述佩戴模式有效。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述模式选择事件包括所述佩戴模式的切换、电子设备与配件拆离,或所述电子设备与所述配件结合,其中,所示配件包括指尖式配件或手腕式配件,所述指尖式配件用于所述指尖式佩戴模式下的脉搏血氧检测,所述手腕式配件用于所述手腕式佩戴模式下的脉搏血氧检测。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述处理器执行所述计算机程序,实现所述若存在所述指尖式佩戴模式或所述手腕式佩戴模式有效,根据所述指尖式佩戴模式或所述手腕式佩戴模式确定血氧检测模式时,包括如下步骤:
若存在所述指尖式佩戴模式或所述手腕式佩戴模式有效,将有效存在的所述指尖式佩戴模式或所述手腕式佩戴模式作为当前佩戴模式;
查询第一关系表,根据所述第一关系表和所述当前佩戴模式确定所述血氧检测模式, 其中,所述第一关系表存储有所述佩戴模式和所述血氧检测模式的映射关系。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述处理器执行所述计算机程序,实现所述通过模式判断模块输出模式结果时,包括如下步骤:
采集光电容积描记信号,作为第一信号;
采用预设置的滤波对所述第一信号进行滤波处理,得到第二信号,其中,所述第二信号包括红光信号和红外光信号;
根据所述第二信息计算得到分类特征,其中,所述分类特征用于判断所述佩戴模式;
根据所述分类特征进行所述佩戴模式的判断,确定所述模式结果并输出。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述分类特征包括信号灌注率,所述处理器执行所述计算机程序,实现所述根据所述第二信息计算得到分类特征时,包括如下步骤:
根据所述第二信息计算得到所述信号灌注率;
所述处理器执行所述计算机程序,实现所述根据所述分类特征进行所述佩戴模式的判断,确定所述模式结果并输出时,包括如下步骤:
若所述信号灌注率大于第一预设阈值,则确定所述模式结果为所述指尖式佩戴模式并输出;
否则,确定所述模式结果为所述手腕式佩戴模式并输出。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述处理器执行所述计算机程序,实现所述根据所述血氧检测模式进行佩戴检测时,包括如下步骤:
查询第二关系表,根据所述血氧检测模式确定佩戴检测算法,其中,所述第二关系表存储有所述血氧检测模式与所述佩戴检测算法的映射关系;
根据所述佩戴检测算法,在所述血氧检测模式下检测用户佩戴是否合格;
若检测到所述用户佩戴不合格,则向所述用户发出提醒信息。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述处理器执行所述计算机程序,实现所述采用血氧算法进行脉搏血氧检测时,包括如下步骤:
基于所述血氧检测模式选择滤波器、滤波参数和提峰算法;
采用所述滤波器、所述滤波参数和所述提峰算法对采集的光电容积描记信号进行信号处理,得到第三信号;
基于所述血氧检测模式选择运动状态等级判断算法;
检测动作,根据所述动作和所述运动状态等级判断算法计算得到运动状态等级;
基于所述第三信号计算得到信号质量等级;
基于所述第三信号计算得到第一血氧值;
基于所述信号质量等级、所述运动状态等级和所述第一血氧值计算得到置信度;
若所述置信度大于第二预设阈值,则确定所述第一血氧值为有效的血氧值。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述第三信号包括红光信号和红外光信号,所述处理器执行所述计算机程序,实现所述根据所述第三信号计算得到第一血氧值时,包括如下步骤:
将所述红光信号分解为第一直流成分信号和第一交流成分信号;
将所述红外光信号分解为第二直流成分信号和第二交流成分信号;
采用所述第一交流成分信号除以所述第一直流成分信号,得到第一比值;
采用所述第二交流成分信号除以所述第二直流成分信号,得到第二比值;
采用所述第一比值除以所述第二比值,得到第三比值;
基于所述血氧检测模式确定比值关系表,根据所述比值关系表和所述第三比值得到所述第一血氧值,其中,所述比值关系表存储有所述第三比值与所述第一血氧值的映射关系。
第三方面,本申请实施例提供了一种计算机可读存储介质,包括:计算机程序和处理器,所述计算机程序被所述处理器执行时实现上述第一方面所述方法的步骤。
第四方面,本申请实施例提供了一种多模式脉搏血氧仪,包括主体测量设备和配件,其中,所述配件包括指尖式配件或手腕式配件,所述主体测量设备用于与所述指尖式配件或所述手腕式配件结合作为脉搏血氧仪,其中,所述主体测量设备如第二方面所述的电子设备,所述主体测量设备还包括光源发射器和反射式接收透镜。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述手腕式配件包括表带配件。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述主体测量设备还包括电极触点,用于检测佩戴模式。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述指尖式配件包括指夹配件或指套配件。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述指夹配件包括配件上部和配件下部,所述配件上部包括卡扣所述主体测量设备的凹槽,所述凹槽内部包括电极触点,所述电极触点用于所述配件下部的光电晶体管供电以及用于检测佩戴模式,所述配件上部边缘包括遮光硅胶,所述配件下部包括透射式接收装置,所述透射式接收装置包括透镜和所述光电二级管。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述指套配件采用可伸缩结构。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述指套配件包括橡胶圈指套或硅胶指套。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,在所述多模式脉搏血氧仪基于表带配件进行血氧检测时,所述指套配件收缩藏于所述表带配件上。
在本申请实施例中,通过检测是否存在有效的佩戴模式,确定是否进行血氧检测。在存在如有效的指尖式佩戴模式或手腕式佩戴模式时,确定对应的血氧检测模式,并进行佩戴检测,确保用户佩戴正确。在通过佩戴检测后,将采用与血氧检测模式对应的血氧检测算法进行脉搏血氧检测,能够在指尖式佩戴模式或手腕式佩戴模式下进行不同脉搏血氧检测的灵活转变,在不同的检测模式下保证血氧检测的精确性。在本申请实施例中,能够同时兼顾指尖式佩戴模式和手腕式佩戴模式,用户可根据血氧检测需求灵活切换佩戴模式,并且在切换佩戴模式的情况下保证血氧检测的精确性。
【附图说明】
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单 地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。
图1a是本申请一实施例提供的一种透射式光电传感器实现血氧检测的示意图;
图1b是本申请一实施例提供的一种反射式光电传感器实现血氧检测的示意图;
图2是本申请一实施例提供的一种多模式血氧检测的产品形态的示意图;
图3是本申请一实施例提供的一种多模式脉搏血氧检测方法的流程图;
图4是本申请一实施例提供的一种佩戴模式有效性检测的流程图;
图5是本申请一实施例提供的一种通过模式判断模块输出模式结果的流程图;
图6是本申请一实施例提供的一种采用血氧算法进行脉搏血氧检测的流程图;
图7是本申请一实施例提供的一种手腕式佩戴模式的结构示意图;
图8是本申请一实施例提供的一种指尖式佩戴模式的结构示意图;
图9是本申请一实施例提供的又一种指尖式佩戴模式的一结构示意图。
【具体实施方式】
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请实施例的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
血氧饱和度(oxygen saturation,简称SpO2)描述了血液携带输送氧气的能力。人体的新陈代谢过程为生物氧化的过程,在新陈代谢过程中所需要的氧,是通过呼吸系统进入人体血液,并与血液红细胞中的去氧血红蛋白(Hb),结合成氧合血红蛋白(HbO2),再输送到人体各部分组织细胞中去。SpO2是血液中HbO2占全部血红蛋白容量的百分比,即SpO2=HbO2/(HbO2+Hb)*100%。可以理解地,SpO2是基础生命指标之一,血氧实时监测对心肺疾病以及血液病诊断和愈后监测有较高指导意义;血氧检测在实际的应用场景中,包括如户外登山的血氧实时监测、夜间睡眠暂停检测等应用场景。
现有技术中,血氧测量的原理如下所示:血红蛋白对红光与红外光的吸收率不同。HbO2吸收红外光(IR,波长在900nm左右)较多,而Hb吸收红光(Red,波长600nm左右)较多。将红光与红外光同时射入人体组织中,静脉与其他身体组织的血流量相对恒定,所以对光的吸收可以近似看做定值,而动脉会随着脉搏周期性的扩张,因此单位体积内的总血量会周期性地增加,故动脉对红光和红外光的吸收会随着脉搏而周期性变化。现有技术中,可采用光电传感 器接收IR与Red的信号,并将IR与Red的信号分别分解为直流成分(DC)与交流成分(AC),再利用IR与Red的信号的直流成分与交流成分计算得到血氧饱和度。
现有技术中,如图1a和1b所示,根据光电传感器的接收方式可分为透射式和反射式两类传感器。从图1a中可以看到,红光与红外光的LED光源分别发射红光与红外光,透过指尖中的红血球发射到光电晶体管。从图1b中可以看到,红光与红外光的LED光源分别发射红光与红外光,光电晶体管接收在手腕处反射的红光与红外光。
现有技术中进行脉搏血氧测量的血氧仪包括手腕式脉搏血氧仪和指夹式探头脉搏血氧仪。其中,手腕式脉搏血氧仪采用手表、手环形态,在手腕处佩戴,一般采用反射式传感器接收PPG(photoplethysmograph,光电容积描记)信号,其中,所示PPG信号中包括红光与红外光的信号。指夹式探头脉搏血氧仪采用指夹形态,采用包裹式指尖佩戴,一般连接有探头,通过透射式传感器接收PPG信号。
可以理解地,对于手腕式脉搏血氧仪,其存在如下问题:1.手腕处灌注低,在如夜间体温下降、侧睡压手臂的场景下影响检测结果;2.检测结果对皮肤与传感器之间的贴合度与相对运动比较敏感,对夜间睡眠睡姿转换、翻腕等体动鲁棒性差。可以理解地,睡姿转换、翻腕动作等动作对PPG信号具有一定的干扰,将影响血氧检测的精确性。对于指夹式探头脉搏血氧仪,其存在如下问题:指尖处日常佩戴妨碍手指活动。
可以理解地,现有技术中实现的血氧检测对探测部位的动脉分布较敏感,例如手腕背部动脉分布稀疏,信号灌注率低,其检测结果受信号噪声影响大,在佩戴过松或运动导致的漏光等场景下,血氧检测的精确性较差;指尖处血氧信号虽强,但是通过连线配件的便利性与舒适性较差。
鉴于此,本申请实施例提供了一种更加灵活的多模式脉搏血氧检测方法,能够在不额外连接探头的前提下,提供可切换的腕部和指尖血氧检测,并且,保证在佩戴模式切换下血氧检测的准确性。
具体地,该多模式脉搏血氧检测方法基于可穿戴设备实现,可穿戴设备分为主体测量设备和配件,通过不同的佩戴模式,可以检测并切换不同的佩戴模式,既可以在腕部检测血氧,又可以在手指处检测血氧。该多模式血氧检测的产品形态示意如图2所示。从图2中可以看到,可通过拆卸主体测量设备与不同配件组合的方式实现检测模式1和检测模式2的灵活切换。其中,检测模式1:测量点在腕部。佩戴方式为主体测量设备和表带结合佩戴在手腕,使用场景为日常血氧实时监测,优势为佩戴便捷舒适。检测模式2:测量点在指尖。佩戴方式为主体与指夹或指套配件相结合佩戴在手指处,使用场景为一些运动干扰无法避免的场景(如夜晚睡眠或跑步运动),其优势为一方面可以得到更加准确的血氧值,另一方面更加耐受运动干扰。
本申请实施例多模式脉搏血氧检测方法包括如下步骤:
S10:检测佩戴模式是否有效,其中,佩戴模式包括指尖式佩戴模式或手腕式佩戴模式。
可以理解地,在指尖式佩戴模式或手腕式佩戴模式下所采用的佩戴检测、血氧检测等是不同的,用户可在切换佩戴模式后,在主体测量设备或终端上相关的应用程序上主动选择采用的佩戴模式,例如在将主体测量设备与指尖式配件结合后,通过终端上相关的应用 程序将佩戴模式更改为指尖式佩戴模式。因此,佩戴模式并不是一定有效的,如果用户将主体测量设备与指尖式配件结合,但佩戴模式采用的是手腕式佩戴模式时,显然,这种佩戴模式不是有效的,会严重影响血氧检测的精确性。
在一实施例中,在对可穿戴设备的用户进行血氧检测时,首先需要对佩戴模式是否有效进行检测,以保证血氧检测的精确性。
S20:若存在指尖式佩戴模式或手腕式佩戴模式有效,根据指尖式佩戴模式或手腕式佩戴模式确定血氧检测模式。
在一实施例中,如果佩戴模式确认是有效的,则应采取与佩戴模式对应的血氧检测模式,如指尖式佩戴模式采用指尖式的血氧检测模式,手腕式佩戴模式采用手腕式的血氧检测模式,以根据实际的佩戴模式选择最佳的血氧检测模式,提高血氧检测的精确性。
S30:根据血氧检测模式进行佩戴检测。
其中,该佩戴检测是指对用户佩戴是否合格的检测,如手腕式佩戴模式中主体测量设备是否贴近皮肤,反射式接收透镜是否靠近皮肤侧等佩戴要求。在一实施例中,不同血氧检测模式对应不同的佩戴检测,佩戴检测能够进一步提高血氧检测的精确性。
S40:若通过佩戴检测,采用血氧算法进行脉搏血氧检测,其中,血氧算法与血氧检测模式具有映射关系。
可以理解地,不同血氧检测模式应采用不同的血氧算法。在指尖式佩戴模式或手腕式佩戴模式下,采用的滤波、提峰算法等处理均存在差异,为了提高血氧检测的精确性,将针对不同血氧检测模式采用对应的血氧算法。
在步骤S10-S40中,血氧仪的佩戴模式支持随意切换,能够同时兼顾便利性与精确性;此外,在佩戴模式进行切换时,还进行佩戴模式有效性等血氧检测前的处理步骤,能够在佩戴模式切换的情况下,确保佩戴模式的有效性,以及进一步提高血氧检测的精确性。
图3示出多模式脉搏血氧检测方法的一流程图。从图3中可以看到,在经模式检测确认佩戴模式有效后,将根据实际情况选择相应的血氧检测模式(例如血氧检测模式1具体为指尖式的血氧检测模式,血氧检测模式2具体为手腕式的血氧检测模式),并执行对应的佩戴检测、血氧算法(同样地,分为模式1、模式2),完成血氧检测。
进一步地,在步骤S10中,检测佩戴模式是否有效,具体包括如下步骤:
S111:检测是否存在模式选择事件。
可以理解地,模式选择事件是指可能更改实际情况下的佩戴模式的事件,如果出现了模式选择事件,认为佩戴模式有发生改变的可能,需要检测确认佩戴模式的有效性。
进一步地,模式选择事件包括佩戴模式的切换、电子设备与配件拆离,或电子设备与配件结合,其中,所示配件包括指尖式配件或手腕式配件,指尖式配件用于指尖式佩戴模式下的脉搏血氧检测,手腕式配件用于手腕式佩戴模式下的脉搏血氧检测。其中,佩戴模式的切换可以是通过主体测量设备的操作界面主动进行的佩戴模式切换,或者通过用户终端相关应用程序主动进行的佩戴模式切换。电子设备具体可以是指主体测量设备,该主体测量设备可认为是一个核心部件,与不同的配件,如指尖式配件或手腕式配件结合得到不同佩戴模式的血氧仪。
S112:若存在模式选择事件,通过模式判断模块输出模式结果,并将模式结果与事件结果进行校验,其中,模式结果为指尖式佩戴模式或手腕式佩戴模式,事件结果根据模式 选择事件确定。
在一实施例中,采用一预设的模式判断模块输出模式结果,即根据模式判断模块判断当前的模式是指尖式佩戴模式还是手腕式佩戴模式。该模式结果是一个初步判断,并不能说明佩戴模式有效。模式结果应与事件结果进行校验来确定佩戴模式是否有效,其中,该事件结果是指客观存在的事实事件,根据模式选择事件确定。例如当模式结果为指尖式佩戴模式,而检测到的模式选择事件为用户主动在应用程序上设置佩戴模式为手腕式佩戴模式,即事件结果为手腕式佩戴模式时,显然,模式结果与事件结果不符,可认为是用户存在误触操作;当模式结果为指尖式佩戴模式,而检测到的模式选择事件为主体测量设备与配件拆离,即主体测量设备处于独立状态时,显然模式结果与事件结果不符;当模式结果为指尖式佩戴模式,而检测到的模式选择事件为主体测量设备与配件结合,则事件结果为当前设置的佩戴模式,若当前设置的佩戴模式与模式结果不符,则佩戴模式无效。进一步地,在出现佩戴模式无效的情况下,可采用向用户发送提醒信息的方式,如信号灯、界面内容提示等的方式提醒用户设置正确的佩戴模式。
S113:若校验通过,则确定存在佩戴模式有效。
S114:若校验不通过,返回执行检测是否存在模式选择事件的步骤。
校验不通过表示佩戴模式无效,需要重新对佩戴模式进行检测。
S115:若不存在模式选择事件,则确定存在佩戴模式有效。
在一实施例中,若不存在模式选择事件,可认为佩戴模式没有发生改变,那么佩戴模式也将继续有效。
图4示出了佩戴模式有效性检测的一流程图。从图4中可以看到,佩戴模式检测以模式选择事件作为划分条件,在存在模式选择事件时,还进行了模式匹配,也即模式结果与事件结果进行校验的步骤,最后输出分类结果。该分类结果为最终确定的有效的佩戴模式,采用该佩戴模式流程能够准确地确定佩戴模式是否有效。
进一步地,在步骤S10中,若存在指尖式佩戴模式或手腕式佩戴模式有效,根据指尖式佩戴模式或手腕式佩戴模式确定血氧检测模式,具体包括如下步骤:
S121:若存在指尖式佩戴模式或手腕式佩戴模式有效,将有效存在的指尖式佩戴模式或手腕式佩戴模式作为当前佩戴模式。
在一实施例中,指尖式佩戴模式或手腕式佩戴模式有效,表明用户当前可进行指尖式佩戴模式或手腕式佩戴模式下的血氧检测。可以理解地,在主体测量设备个数只有一个时(通常为一个),血氧检测采用指尖式佩戴模式或手腕式佩戴模式中的一种实现。
S122:查询第一关系表,根据第一关系表和当前佩戴模式确定血氧检测模式,其中,第一关系表存储有佩戴模式和血氧检测模式的映射关系。
在一实施例中,不同佩戴模式对应不同的血氧检测模式,在确定当前佩戴模式后,可通过查询第一关系表,利用第一关系表中存储的佩戴模式和血氧检测模式的映射关系确定血氧检测模式。
进一步地,在步骤S112中,通过模式判断模块输出模式结果的流程图如图5所示,其具体包括如下步骤:
S1121:采集光电容积描记信号,作为第一信号。
将采集的PPG信号作为第一信号。
S1122:采用预设置的滤波对第一信号进行滤波处理,得到第二信号,其中,第二信号包括红光信号和红外光信号。
在一实施例中,采用预设置的滤波过滤干扰信号,突出PPG信号中的红光信号和红外光信号,得到信号更强、准确性更高的红光信号和红外光信号。
S1123:根据第二信息计算得到分类特征,其中,分类特征用于判断佩戴模式。
可以理解地,该分类特征用于判断佩戴模式。在一实施例中,该分类特征是基于第二信息计算得到的,也即利用了红光信号和红外光信号的特征实现的分类,能够准确地判断佩戴模式,提高佩戴模式有效性判断的准确性。
进一步地,分类特征包括信号灌注率,具体地,信号灌注率可采用PI表示,该PI计算公式
Figure PCTCN2021089678-appb-000001
其中,i表示信号索引,表示第一、第二……第n个信号,n表示信号的总个数,R表示红光,IR表示红外光,DC表示直流,AC表示交流,ε 1和ε 2为预设的权值参数,与电子设备光路设计与硬件结构有关,具体地,默认情况下ε 1和ε 2可同时设为0.5。
S1124:根据分类特征进行佩戴模式的判断,确定模式结果并输出。
在步骤S1123中,根据第二信息计算得到分类特征,具体包括如下步骤:
根据第二信息计算得到信号灌注率。在一实施例中,当分类特征为信号灌注率时,可根据第二信息的红光、红外光的直流信号和交流信号计算得到。可以理解地,当分类特征为信号灌注率时,可根据指尖与手腕的信号灌注率的区别,准确地得到模式结果。
在步骤S1124中,根据分类特征进行佩戴模式的判断,确定模式结果并输出,具体包括如下步骤:
若信号灌注率大于第一预设阈值,则确定模式结果为指尖式佩戴模式并输出。
否则,确定模式结果为手腕式佩戴模式并输出。
可以理解地,指尖的血氧信号强,手腕的血氧信号较弱,可通过设置第一预设阈值,通过阈值比较确定模式结果为指尖式佩戴模式亦或是手腕式佩戴模式。
进一步地,在步骤S10中,根据血氧检测模式进行佩戴检测,具体包括如下步骤:
S131:查询第二关系表,根据血氧检测模式确定佩戴检测算法,其中,第二关系表存储有血氧检测模式与佩戴检测算法的映射关系。
在一实施例中,不同血氧检测模式对应的佩戴检测算法也是不同的,如指尖式佩戴模式和手腕式佩戴模式两种佩戴模式对于佩戴要求不同。佩戴检测算法需要确定,确定后的佩戴检测算法能够更准确地指导用户进行佩戴,从而在血氧检测时能够得到更加精确的结果。
S132:根据佩戴检测算法,在血氧检测模式下检测用户佩戴是否合格。
S133:若检测到用户佩戴不合格,则向用户发出提醒信息。
在步骤S132-S133中,可根据佩戴模式的特点预先设定佩戴检测算法,在确定血氧检测模式后,可按照佩戴检测算法对用户佩戴是否合格进行检测,并在检测过程中提醒、指导用户正确地佩戴。
进一步地,在步骤S10中,采用血氧算法进行脉搏血氧检测的流程图如图6所示,其步骤具体包括:
S141:基于血氧检测模式选择滤波器、滤波参数和提峰算法。
可以理解地,滤波器、滤波参数和提峰算法可根据血氧检测模式(指尖式的血氧检测模式或者手腕式的血氧检测模式)预先确定相应的滤波器、滤波参数和提峰算法。在一实施例中,在确定血氧检测模式后,可相应地选择滤波器、滤波参数和提峰算法。
S142:采用滤波器、滤波参数和提峰算法对采集的光电容积描记信号进行信号处理,得到第三信号。
S143:基于血氧检测模式选择运动状态等级判断算法。
可以理解地,基于手腕与手指处的不同运动状态以及对不同动作的敏感程度,选择对应的运动状态等级判断算法。动作检测包括但不限于翻腕、手指抖动等动作。
S144:检测动作,根据动作和运动状态等级判断算法计算得到运动状态等级。
在一实施例中,可根据预设时间段内检测的动作,以及与血氧检测模式对应的运动状态等级判断算法计算得到运动状态等级。可以理解地,现有技术中已有成熟的基于动作检测进行运动状态等级判断的技术,在本实施例中可通过检测用户如翻腕、手指抖动等动作得到运动状态等级。
S145:基于第三信号计算得到信号质量等级。
在一实施例中,可对第三信号进行计算分析,得到第三信号的信号质量等级。其中信号质量等级也是现有技术中常用的对信号质量进行判断、分级的方法,本实施例计算得到的信号质量等级可用于后续在置信度计算时提高置信度计算的准确度。
S146:基于第三信号计算得到第一血氧值。
在一实施例中,通过红光信号的直流部分、交流部分,以及红外光信号直流部分、交流部分计算得到血液中去氧血红蛋白与氧和血红蛋白浓度的比例,该比例可记为R值。其中,R值与血氧饱和度存在映射关系,可根据该映射关系确定血氧饱和度,完成血氧检测。具体地,本实施例中采用第三信号得到的R值可记为第一血氧值。
S147:基于信号质量等级、运动状态等级和第一血氧值计算得到置信度。
在一实施例中,可基于置信度特征包含信号质量等级、运动状态等级、第一血氧值与前血氧值的差等特征,采用对应的逻辑回归模型,将逻辑回归模型预测正样本概率视为置信度。可以理解地,可根据信号质量等级、运动状态等级、第一血氧值与前血氧值的差等特征作为置信度特征,以进行置信度计算,根据这些特征计算得到的置信度能够更准确地判断第一血氧值是否可信。
S148:若置信度大于第二预设阈值,则确定第一血氧值为有效的血氧值。
可以理解地,当置信度大于第二预设阈值时,可认为该第一血氧值是可靠的、可信的。
进一步地,在步骤S146中,第三信号包括红光信号和红外光信号,根据第三信号计算得到第一血氧值,具体包括如下步骤:
S1461:将红光信号分解为第一直流成分信号和第一交流成分信号。
S1462:将红外光信号分解为第二直流成分信号和第二交流成分信号。
S1463:采用第一交流成分信号除以第一直流成分信号,得到第一比值。
S1464:采用第二交流成分信号除以第二直流成分信号,得到第二比值。
S1465:采用第一比值除以第二比值,得到第三比值。
S1466:基于血氧检测模式确定比值关系表,根据比值关系表和第三比值得到第一血氧值,其中,比值关系表存储有第三比值与第一血氧值的映射关系。
在步骤S1461-S1466中,第三比值即上述提及的R值。其中,R值与血氧饱和度存在映射关系,可根据血氧检测模式确定比值关系表,利用比值关系表和第三比值得到第一血氧值。需要说明的是,不同血氧检测模式对应的比值关系表是不同的,需要按照血氧检测模式选择对应的比值关系表。
在本申请实施例中,通过检测是否存在有效的佩戴模式,确定是否进行血氧检测。在存在如有效的指尖式佩戴模式或手腕式佩戴模式时,确定对应的血氧检测模式,并进行佩戴检测,确保用户佩戴正确。在通过佩戴检测后,将采用与血氧检测模式对应的血氧检测算法进行脉搏血氧检测,能够在指尖式佩戴模式或手腕式佩戴模式下进行不同脉搏血氧检测的灵活转变,在不同的检测模式下保证血氧检测的精确性。在本申请实施例中,能够同时兼顾指尖式佩戴模式和手腕式佩戴模式,用户可根据血氧检测需求灵活切换佩戴模式,并且在切换佩戴模式的情况下保证血氧检测的精确性。
应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本申请实施例还提供一种电子设备,包括存储器、处理器以及存储在存储器中并可在处理器上运行的计算机程序,其中,处理器执行计算机程序时实现如下步骤:
检测佩戴模式是否有效,其中,佩戴模式包括指尖式佩戴模式或手腕式佩戴模式。
若存在指尖式佩戴模式或手腕式佩戴模式有效,根据指尖式佩戴模式或手腕式佩戴模式确定血氧检测模式。
根据血氧检测模式进行佩戴检测。
若通过佩戴检测,采用血氧算法进行脉搏血氧检测,其中,血氧算法与血氧检测模式具有映射关系。
进一步地,处理器执行计算机程序,实现检测佩戴模式是否有效时,包括如下步骤:
检测是否存在模式选择事件。
若存在模式选择事件,通过模式判断模块输出模式结果,并将模式结果与事件结果进行校验,其中,模式结果为指尖式佩戴模式或手腕式佩戴模式,事件结果根据模式选择事件确定。
若校验通过,则确定存在佩戴模式有效。
若校验不通过,返回执行检测是否存在模式选择事件的步骤。
若不存在模式选择事件,则确定存在佩戴模式有效。
进一步地,模式选择事件包括佩戴模式的切换、电子设备与配件拆离,或电子设备与配件结合,其中,所示配件包括指尖式配件或手腕式配件,指尖式配件用于指尖式佩戴模式下的脉搏血氧检测,手腕式配件用于手腕式佩戴模式下的脉搏血氧检测。
进一步地,处理器执行计算机程序,实现若存在指尖式佩戴模式或手腕式佩戴模式有效,根据指尖式佩戴模式或手腕式佩戴模式确定血氧检测模式时,包括如下步骤:
若存在指尖式佩戴模式或手腕式佩戴模式有效,将有效存在的指尖式佩戴模式或手腕式佩 戴模式作为当前佩戴模式。
查询第一关系表,根据第一关系表和当前佩戴模式确定血氧检测模式,其中,第一关系表存储有佩戴模式和血氧检测模式的映射关系。
进一步地,处理器执行计算机程序,实现通过模式判断模块输出模式结果时,包括如下步骤:
采集光电容积描记信号,作为第一信号。
采用预设置的滤波对第一信号进行滤波处理,得到第二信号,其中,第二信号包括红光信号和红外光信号。
根据第二信息计算得到分类特征,其中,分类特征用于判断佩戴模式。
根据分类特征进行佩戴模式的判断,确定模式结果并输出。
进一步地,分类特征包括信号灌注率,处理器执行计算机程序,实现根据第二信息计算得到分类特征时,包括如下步骤:
根据第二信息计算得到信号灌注率。
处理器执行计算机程序,实现根据分类特征进行佩戴模式的判断,确定模式结果并输出时,包括如下步骤:
若信号灌注率大于第一预设阈值,则确定模式结果为指尖式佩戴模式并输出;
否则,确定模式结果为手腕式佩戴模式并输出。
进一步地,处理器执行计算机程序,实现根据血氧检测模式进行佩戴检测时,包括如下步骤:
查询第二关系表,根据血氧检测模式确定佩戴检测算法,其中,第二关系表存储有血氧检测模式与佩戴检测算法的映射关系。
根据佩戴检测算法,在血氧检测模式下检测用户佩戴是否合格。
若检测到用户佩戴不合格,则向用户发出提醒信息。
进一步地,处理器执行计算机程序,实现采用血氧算法进行脉搏血氧检测时,包括如下步骤:
基于血氧检测模式选择滤波器、滤波参数和提峰算法。
采用滤波器、滤波参数和提峰算法对采集的光电容积描记信号进行信号处理,得到第三信号。
基于血氧检测模式选择运动状态等级判断算法。
检测动作,根据动作和运动状态等级判断算法计算得到运动状态等级。
基于第三信号计算得到信号质量等级。
基于第三信号计算得到第一血氧值。
基于信号质量等级、运动状态等级和第一血氧值计算得到置信度。
若置信度大于第二预设阈值,则确定第一血氧值为有效的血氧值。
进一步地,第三信号包括红光信号和红外光信号,处理器执行计算机程序,实现根据第三信号计算得到第一血氧值时,包括如下步骤:
将红光信号分解为第一直流成分信号和第一交流成分信号。
将红外光信号分解为第二直流成分信号和第二交流成分信号。
采用第一交流成分信号除以第一直流成分信号,得到第一比值。
采用第二交流成分信号除以第二直流成分信号,得到第二比值。
采用第一比值除以第二比值,得到第三比值。
基于血氧检测模式确定比值关系表,根据比值关系表和第三比值得到第一血氧值,其中,比值关系表存储有第三比值与第一血氧值的映射关系。
本申请实施例还提供一种可读存储介质,包括:计算机程序和处理器,计算机程序被处理器执行时实现如上述多模式脉搏血氧检测方法的步骤,为避免赘述,在此不再一一叙述。
本申请实施例还提供一种多模式脉搏血氧仪,包括主体测量设备和配件,其中,配件包括指尖式配件或手腕式配件,主体测量设备用于与指尖式配件或手腕式配件结合作为脉搏血氧仪,其中,主体测量设备如上述实施例提及的电子设备,主体测量设备还包括光源发射器和反射式接收透镜。
进一步地,手腕式配件包括表带配件。
进一步地,主体测量设备还包括电极触点,用于检测佩戴模式。
进一步地,指尖式配件包括指夹配件或指套配件。
进一步地,指夹配件包括配件上部和配件下部,配件上部包括卡扣主体测量设备的凹槽,凹槽内部包括电极触点,电极触点用于配件下部的光电晶体管供电以及用于检测佩戴模式,配件上部边缘包括遮光硅胶,配件下部包括透射式接收装置,透射式接收装置包括透镜和光电二级管。
进一步地,配件上部和配件下部衔接处采用排线和弹簧结构衔接。
进一步地,指套配件采用可伸缩结构,包括橡胶圈指套或硅胶指套。
进一步地,在多模式脉搏血氧仪基于表带配件进行血氧检测时,指套配件收缩藏于表带配件上。
图7示出手腕式佩戴模式的一结构示意图,其中,1为表带配件;2为主体测量设备;3为LED光源发射器;4为反射式接收透镜;5为电极触点(用于佩戴模式检测)。该手腕式佩戴模式通过将可拆卸的主体测量设备与表带配件结合,佩戴在手腕部,通过主体测量设备背后的LED光源发射器发送特定频谱的红光、红外光等光源。光源通过皮肤反射,通过主体测量设备背后的反射式接收透镜接收。
图8示出指尖式佩戴模式的一结构示意图,其中,1为指尖配件上部;2为主体测量设备;3为LED光源发射器;4为配件电极触点;5为指尖配件下部;6为透射式接收透镜;7为遮光硅胶。进一步地,指尖配件为上下两部分组成的指夹式装置;上部有卡扣主体测量设备的凹槽,凹槽内部有电极触点,用于底部光电晶体管供电以及佩戴模式检测,上部边缘为遮光硅胶;配件上部与下部衔接处为排线和弹簧结构;配件下部包括透射式接收装置,包括透镜和光电晶体管。该指尖式佩戴模式通过将可拆卸的主体测量设备与指尖(指夹)配件结合(卡扣在指尖配件上部),佩戴在手指处,通过主体测量设备背后的LED光源发射器发送特定频谱的红光、红外光等光源。光源透过指尖组织,配件下部的透射式接收装置透过透镜接收,并利用光电晶体管将光信号转换为电信号,传输到主体测量设备。
图9示出又一种指尖式佩戴模式的一结构示意图,其中,1为硅胶指套;2为主体测 量设备;3为LED光源发射器;4为反射式接收透镜。进一步地,该硅胶指套加有导电填料,设有电极触点,能够实现佩戴模式检测。指套结构套于主体测量设备上,为可伸缩结构(如细橡胶圈,或硅胶指套);具体地,在使用指尖式佩戴模式时,可从表带配件上取下主体测量设备,伸展指套,佩戴在指尖处。在进行脉搏血氧检测时,主体测量设备背后的LED光源发射器发送特定频谱的红光、红外等光源,光源通过皮肤反射,通过主体测量设备背后的反射式接收透镜接收。
应当明确,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。
以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所存储的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (28)

  1. 一种多模式脉搏血氧检测方法,其特征在于,包括:
    检测佩戴模式是否有效,其中,所述佩戴模式包括指尖式佩戴模式或手腕式佩戴模式;
    若存在所述指尖式佩戴模式或所述手腕式佩戴模式有效,根据所述指尖式佩戴模式或所述手腕式佩戴模式确定血氧检测模式;
    根据所述血氧检测模式进行佩戴检测;
    若通过所述佩戴检测,采用血氧算法进行脉搏血氧检测,其中,所述血氧算法与所述血氧检测模式具有映射关系。
  2. 根据权利要求1所述的方法,其特征在于,所述检测佩戴模式是否有效,包括:
    检测是否存在模式选择事件;
    若存在所述模式选择事件,通过模式判断模块输出模式结果,并将所述模式结果与事件结果进行校验,其中,所述模式结果为所述指尖式佩戴模式或所述手腕式佩戴模式,所述事件结果根据所述模式选择事件确定;
    若校验通过,则确定存在所述佩戴模式有效;
    若校验不通过,返回执行所述检测是否存在模式选择事件的步骤;
    若不存在所述模式选择事件,则确定存在所述佩戴模式有效。
  3. 根据权利要求2所述的方法,其特征在于,所述模式选择事件包括所述佩戴模式的切换、电子设备与配件拆离,或所述电子设备与所述配件结合,其中,所示配件包括指尖式配件或手腕式配件,所述指尖式配件用于所述指尖式佩戴模式下的脉搏血氧检测,所述手腕式配件用于所述手腕式佩戴模式下的脉搏血氧检测。
  4. 根据权利要求1所述的方法,其特征在于,所述若存在所述指尖式佩戴模式或所述手腕式佩戴模式有效,根据所述指尖式佩戴模式或所述手腕式佩戴模式确定血氧检测模式,包括:
    若存在所述指尖式佩戴模式或所述手腕式佩戴模式有效,将有效存在的所述指尖式佩戴模式或所述手腕式佩戴模式作为当前佩戴模式;
    查询第一关系表,根据所述第一关系表和所述当前佩戴模式确定所述血氧检测模式,其中,所述第一关系表存储有所述佩戴模式和所述血氧检测模式的映射关系。
  5. 根据权利要求2所述的方法,其特征在于,所述通过模式判断模块输出模式结果,包括:
    采集光电容积描记信号,作为第一信号;
    采用预设置的滤波对所述第一信号进行滤波处理,得到第二信号,其中,所述第二信号包括红光信号和红外光信号;
    根据所述第二信息计算得到分类特征,其中,所述分类特征用于判断所述佩戴模式;
    根据所述分类特征进行所述佩戴模式的判断,确定所述模式结果并输出。
  6. 根据权利要求5所述的方法,其特征在于,所述分类特征包括信号灌注率,所述根据所述第二信息计算得到分类特征,包括:
    根据所述第二信息计算得到所述信号灌注率;
    所述根据所述分类特征进行所述佩戴模式的判断,确定所述模式结果并输出,包括:
    若所述信号灌注率大于第一预设阈值,则确定所述模式结果为所述指尖式佩戴模式并输出;
    否则,确定所述模式结果为所述手腕式佩戴模式并输出。
  7. 根据权利要求1-6任意一项所述的方法,其特征在于,所述根据所述血氧检测模式进行佩戴检测,包括:
    查询第二关系表,根据所述血氧检测模式确定佩戴检测算法,其中,所述第二关系表存储有所述血氧检测模式与所述佩戴检测算法的映射关系;
    根据所述佩戴检测算法,在所述血氧检测模式下检测用户佩戴是否合格;
    若检测到所述用户佩戴不合格,则向所述用户发出提醒信息。
  8. 根据权利要求1-6任意一项所述的方法,其特征在于,所述采用血氧算法进行脉搏血氧检测,包括:
    基于所述血氧检测模式选择滤波器、滤波参数和提峰算法;
    采用所述滤波器、所述滤波参数和所述提峰算法对采集的光电容积描记信号进行信号处理,得到第三信号;
    基于所述血氧检测模式选择运动状态等级判断算法;
    检测动作,根据所述动作和所述运动状态等级判断算法计算得到运动状态等级;
    基于所述第三信号计算得到信号质量等级;
    基于所述第三信号计算得到第一血氧值;
    基于所述信号质量等级、所述运动状态等级和所述第一血氧值计算得到置信度;
    若所述置信度大于第二预设阈值,则确定所述第一血氧值为有效的血氧值。
  9. 根据权利要求8所述的方法,其特征在于,所述第三信号包括红光信号和红外光信号,所述根据所述第三信号计算得到第一血氧值,包括:
    将所述红光信号分解为第一直流成分信号和第一交流成分信号;
    将所述红外光信号分解为第二直流成分信号和第二交流成分信号;
    采用所述第一交流成分信号除以所述第一直流成分信号,得到第一比值;
    采用所述第二交流成分信号除以所述第二直流成分信号,得到第二比值;
    采用所述第一比值除以所述第二比值,得到第三比值;
    基于所述血氧检测模式确定比值关系表,根据所述比值关系表和所述第三比值得到所述第一血氧值,其中,所述比值关系表存储有所述第三比值与所述第一血氧值的映射关系。
  10. 一种电子设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如下步骤:
    检测佩戴模式是否有效,其中,所述佩戴模式包括指尖式佩戴模式或手腕式佩戴模式;
    若存在所述指尖式佩戴模式或所述手腕式佩戴模式有效,根据所述指尖式佩戴模式或所述手腕式佩戴模式确定血氧检测模式;
    根据所述血氧检测模式进行佩戴检测;
    若通过所述佩戴检测,采用血氧算法进行脉搏血氧检测,其中,所述血氧算法与所述血氧检测模式具有映射关系。
  11. 根据权利要求10所述的电子设备,其特征在于,所述处理器执行所述计算机程序,实现所述检测佩戴模式是否有效时,包括如下步骤:
    检测是否存在模式选择事件;
    若存在所述模式选择事件,通过模式判断模块输出模式结果,并将所述模式结果与事件结 果进行校验,其中,所述模式结果为所述指尖式佩戴模式或所述手腕式佩戴模式,所述事件结果根据所述模式选择事件确定;
    若校验通过,则确定存在所述佩戴模式有效;
    若校验不通过,返回执行所述检测是否存在模式选择事件的步骤;
    若不存在所述模式选择事件,则确定存在所述佩戴模式有效。
  12. 根据权利要求11所述的电子设备,其特征在于,所述模式选择事件包括所述佩戴模式的切换、电子设备与配件拆离,或所述电子设备与所述配件结合,其中,所示配件包括指尖式配件或手腕式配件,所述指尖式配件用于所述指尖式佩戴模式下的脉搏血氧检测,所述手腕式配件用于所述手腕式佩戴模式下的脉搏血氧检测。
  13. 根据权利要求10所述的电子设备,其特征在于,所述处理器执行所述计算机程序,实现所述若存在所述指尖式佩戴模式或所述手腕式佩戴模式有效,根据所述指尖式佩戴模式或所述手腕式佩戴模式确定血氧检测模式时,包括如下步骤:
    若存在所述指尖式佩戴模式或所述手腕式佩戴模式有效,将有效存在的所述指尖式佩戴模式或所述手腕式佩戴模式作为当前佩戴模式;
    查询第一关系表,根据所述第一关系表和所述当前佩戴模式确定所述血氧检测模式,其中,所述第一关系表存储有所述佩戴模式和所述血氧检测模式的映射关系。
  14. 根据权利要求11所述的电子设备,其特征在于,所述处理器执行所述计算机程序,实现所述通过模式判断模块输出模式结果时,包括如下步骤:
    采集光电容积描记信号,作为第一信号;
    采用预设置的滤波对所述第一信号进行滤波处理,得到第二信号,其中,所述第二信号包括红光信号和红外光信号;
    根据所述第二信息计算得到分类特征,其中,所述分类特征用于判断所述佩戴模式;
    根据所述分类特征进行所述佩戴模式的判断,确定所述模式结果并输出。
  15. 根据权利要求14所述的电子设备,其特征在于,所述分类特征包括信号灌注率,所述处理器执行所述计算机程序,实现所述根据所述第二信息计算得到分类特征时,包括如下步骤:
    根据所述第二信息计算得到所述信号灌注率;
    所述处理器执行所述计算机程序,实现所述根据所述分类特征进行所述佩戴模式的判断,确定所述模式结果并输出时,包括如下步骤:
    若所述信号灌注率大于第一预设阈值,则确定所述模式结果为所述指尖式佩戴模式并输出;
    否则,确定所述模式结果为所述手腕式佩戴模式并输出。
  16. 根据权利要求10-15任意一项所述的电子设备,其特征在于,所述处理器执行所述计算机程序,实现所述根据所述血氧检测模式进行佩戴检测时,包括如下步骤:
    查询第二关系表,根据所述血氧检测模式确定佩戴检测算法,其中,所述第二关系表存储有所述血氧检测模式与所述佩戴检测算法的映射关系;
    根据所述佩戴检测算法,在所述血氧检测模式下检测用户佩戴是否合格;
    若检测到所述用户佩戴不合格,则向所述用户发出提醒信息。
  17. 根据权利要求10-15任意一项所述的电子设备,其特征在于,所述处理器执行所述计算机程序,实现所述采用血氧算法进行脉搏血氧检测时,包括如下步骤:
    基于所述血氧检测模式选择滤波器、滤波参数和提峰算法;
    采用所述滤波器、所述滤波参数和所述提峰算法对采集的光电容积描记信号进行信号处理,得到第三信号;
    基于所述血氧检测模式选择运动状态等级判断算法;
    检测动作,根据所述动作和所述运动状态等级判断算法计算得到运动状态等级;
    基于所述第三信号计算得到信号质量等级;
    基于所述第三信号计算得到第一血氧值;
    基于所述信号质量等级、所述运动状态等级和所述第一血氧值计算得到置信度;
    若所述置信度大于第二预设阈值,则确定所述第一血氧值为有效的血氧值。
  18. 根据权利要求17所述的电子设备,其特征在于,所述第三信号包括红光信号和红外光信号,所述处理器执行所述计算机程序,实现所述根据所述第三信号计算得到第一血氧值时,包括如下步骤:
    将所述红光信号分解为第一直流成分信号和第一交流成分信号;
    将所述红外光信号分解为第二直流成分信号和第二交流成分信号;
    采用所述第一交流成分信号除以所述第一直流成分信号,得到第一比值;
    采用所述第二交流成分信号除以所述第二直流成分信号,得到第二比值;
    采用所述第一比值除以所述第二比值,得到第三比值;
    基于所述血氧检测模式确定比值关系表,根据所述比值关系表和所述第三比值得到所述第一血氧值,其中,所述比值关系表存储有所述第三比值与所述第一血氧值的映射关系。
  19. 一种计算机可读存储介质,其特征在于,包括:计算机程序和处理器,所述计算机程序被所述处理器执行时实现如权利要求1-9任意一项所述的方法。
  20. 一种多模式脉搏血氧仪,其特征在于,包括主体测量设备和配件,其中,所述配件包括指尖式配件或手腕式配件,所述主体测量设备用于与所述指尖式配件或所述手腕式配件结合作为脉搏血氧仪,其中,所述主体测量设备如权利要求10-18任意一项所述的电子设备,所述主体测量设备还包括光源发射器和反射式接收透镜。
  21. 根据权利要求20所述的多模式脉搏血氧仪,其特征在于,所述手腕式配件包括表带配件。
  22. 根据权利要求21所述的多模式脉搏血氧仪,其特征在于,所述主体测量设备还包括电极触点,用于检测佩戴模式。
  23. 根据权利要求20所述的多模式脉搏血氧仪,其特征在于,所述指尖式配件包括指夹配件或指套配件。
  24. 根据权利要求23所述的多模式脉搏血氧仪,其特征在于,所述指夹配件包括配件上部和配件下部,所述配件上部包括卡扣所述主体测量设备的凹槽,所述凹槽内部包括电极触点,所述电极触点用于所述配件下部的光电晶体管供电以及用于检测佩戴模式,所述配件上部边缘包括遮光硅胶,所述配件下部包括透射式接收装置,所述透射式接收装置包括透镜和所述光电二级管。
  25. 根据权利要求24所述的多模式脉搏血氧仪,其特征在于,所述配件上部和所述配件下部衔接处采用排线和弹簧结构衔接。
  26. 根据权利要求23所述的多模式脉搏血氧仪,其特征在于,所述指套配件采用可伸缩结构。
  27. 根据权利要求26所述的多模式脉搏血氧仪,其特征在于,所述指套配件包括橡胶圈指套或硅胶指套。
  28. 根据权利要求23所述的多模式脉搏血氧仪,其特征在于,在所述多模式脉搏血氧仪基于表带配件进行血氧检测时,所述指套配件收缩藏于所述表带配件上。
PCT/CN2021/089678 2020-04-30 2021-04-25 多模式脉搏血氧检测方法、电子设备、介质和脉搏血氧仪 WO2021218867A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010361942.8 2020-04-30
CN202010361942.8A CN113576473B (zh) 2020-04-30 2020-04-30 多模式脉搏血氧检测方法、电子设备、介质和脉搏血氧仪

Publications (1)

Publication Number Publication Date
WO2021218867A1 true WO2021218867A1 (zh) 2021-11-04

Family

ID=78237072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/089678 WO2021218867A1 (zh) 2020-04-30 2021-04-25 多模式脉搏血氧检测方法、电子设备、介质和脉搏血氧仪

Country Status (2)

Country Link
CN (1) CN113576473B (zh)
WO (1) WO2021218867A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1119517A (zh) * 1994-09-14 1996-04-03 精工爱普生株式会社 活体信息测量装置和腕带式脉波测量装置
US20090182239A1 (en) * 2007-12-27 2009-07-16 Kabushiki Kaisha Toshiba Pulse wave measuring device
CN205493819U (zh) * 2015-01-26 2016-08-24 周常安 穿戴式心电检测装置
CN106066765A (zh) * 2016-07-18 2016-11-02 广东乐源数字技术有限公司 一种手环佩戴判断的系统
CN209391946U (zh) * 2018-01-30 2019-09-17 深圳源动创新科技有限公司 手腕式血氧检测装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6431697B2 (ja) * 2014-06-16 2018-11-28 ジーニアルライト株式会社 手首装着型パルスオキシメータ
CN209899402U (zh) * 2019-03-14 2020-01-07 浙江荷清柔性电子技术有限公司 反射式血氧仪
CN110604584B (zh) * 2019-09-24 2022-05-27 深圳大学 用于血氧测量系统的信号检测方法
GB2589553B (en) * 2019-10-09 2024-03-13 Life Meter Srl Pulse oximetry methods, devices and systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1119517A (zh) * 1994-09-14 1996-04-03 精工爱普生株式会社 活体信息测量装置和腕带式脉波测量装置
US20090182239A1 (en) * 2007-12-27 2009-07-16 Kabushiki Kaisha Toshiba Pulse wave measuring device
CN205493819U (zh) * 2015-01-26 2016-08-24 周常安 穿戴式心电检测装置
CN106066765A (zh) * 2016-07-18 2016-11-02 广东乐源数字技术有限公司 一种手环佩戴判断的系统
CN209391946U (zh) * 2018-01-30 2019-09-17 深圳源动创新科技有限公司 手腕式血氧检测装置

Also Published As

Publication number Publication date
CN113576473A (zh) 2021-11-02
CN113576473B (zh) 2022-10-04

Similar Documents

Publication Publication Date Title
CA3195495C (en) Methods, systems, and devices for optimal positioning of sensors
CN107920786B (zh) 脉搏血氧测定
JP4424781B2 (ja) 一致度認識ユニット
US10918289B1 (en) Ring for optically measuring biometric data
CN107106051A (zh) 无创脱水监测
JP5760351B2 (ja) 睡眠評価装置、睡眠評価システムおよびプログラム
US20200383628A1 (en) Optical response measurement from skin and tissue using spectroscopy
Lu et al. A prototype of reflection pulse oximeter designed for mobile healthcare
CN105796077A (zh) 检测手套
JP2021090833A (ja) 測定装置、測定方法及びプログラム
CN111743516A (zh) 一种家用睡眠呼吸暂停监测系统
CN104207788A (zh) 便携式血氧检测监护系统及其使用方法
US20230371893A1 (en) Hydration measurement using optical sensors
CN112739255A (zh) 血压测量设备
WO2021218867A1 (zh) 多模式脉搏血氧检测方法、电子设备、介质和脉搏血氧仪
Budidha et al. Devepopment of an optical probe to investigate the suitability of measuring photoplethysmographs and blood oxygen saturation from the human auditory canal
US20230078228A1 (en) Blood Oxygen Saturation Measurement Method And Apparatus
Arulvallal et al. Design and development of wearable device for continuous monitoring of sleep apnea disorder
Wagner et al. Pulse oximetry: basic principles and applications in aerospace medicine
CN107049285A (zh) 具有设备连接结构的脉搏血氧传感器
Preejith et al. High altitude study on finger reflectance SpO 2
US20220192529A1 (en) Pulse recognition and blood oxygen saturation systems and methods
WO2023236658A1 (zh) 一种血压测量设备和系统
CN218724745U (zh) 一种具备测血氧功能的红外体温计
US20240081656A1 (en) Wearable physiological monitoring system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21796461

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21796461

Country of ref document: EP

Kind code of ref document: A1