WO2021218692A1 - 传输无线局域网分组结构ppdu的方法、相关设备以及系统 - Google Patents

传输无线局域网分组结构ppdu的方法、相关设备以及系统 Download PDF

Info

Publication number
WO2021218692A1
WO2021218692A1 PCT/CN2021/088261 CN2021088261W WO2021218692A1 WO 2021218692 A1 WO2021218692 A1 WO 2021218692A1 CN 2021088261 W CN2021088261 W CN 2021088261W WO 2021218692 A1 WO2021218692 A1 WO 2021218692A1
Authority
WO
WIPO (PCT)
Prior art keywords
subchannel
data information
receiving device
sending device
sub
Prior art date
Application number
PCT/CN2021/088261
Other languages
English (en)
French (fr)
Inventor
赵望生
黄长富
吕捷
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21795367.8A priority Critical patent/EP4135386A4/en
Publication of WO2021218692A1 publication Critical patent/WO2021218692A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0062Avoidance of ingress interference, e.g. ham radio channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • This application relates to the field of wireless network technology, and in particular to a method, related equipment, and system for transmitting a wireless local area network packet structure PPDU.
  • PLCP protocol data unit PPDU
  • a sub-channel usually includes multiple time-frequency resource blocks (RU). If only some RUs of the sub-channel have interference, the solution shown in the prior art will cause the RUs that have not interfered to be used, resulting in Waste of spectrum resources.
  • RU time-frequency resource blocks
  • the present invention provides a method, related equipment and system for transmitting the PPDU of a wireless local area network packet structure, which are used to solve the technical problem of the unusable sub-channels where interference occurs, thereby causing the waste of spectrum resources.
  • the present application provides a method for transmitting a wireless local area network packet structure PPDU.
  • the method includes: a transmitting device determines a plurality of subchannels, the plurality of subchannels including at least one first subchannel and at least one second subchannel; The device sends the first part of the PPDU through the first subchannel, the first part includes preamble information and first data information; the sending device sends the second part of the PPDU through the second subchannel, and the second part only includes the second part.
  • Data information is used to indicate the distribution of the first data information and the second data information.
  • the sending device can transmit preamble information through the first subchannel, and the preamble information is used to indicate that the second data information is in the second subchannel. Distribution in the channel.
  • the receiving device can receive the preamble information according to the first sub-channel where no interference occurs, so as to achieve the purpose of receiving the second data information on the second sub-channel.
  • the sending device sends the second data information to the receiving device through the second subchannel where interference occurs, which effectively improves the utilization efficiency of spectrum resources and avoids the waste of spectrum resources.
  • none of the time-frequency resource block RUs included in the first subchannel has interference; the second subchannel includes at least one first RU and at least one second RU , Where the first RU is an RU that has interference, and the second RU is an RU that has not interfered.
  • the transmitting device distinguishes the first RU that has interference and the second RU that has not interfered in the second subchannel, and transmits the second data information through the second RU. , To avoid the waste of spectrum resources caused by the second RU not being used.
  • the preamble information is used to indicate a situation in which the at least one second RU transmits the second data information.
  • sending the preamble information to the receiving device through the first subchannel without interference effectively ensures that the receiving device can successfully receive the preamble information, and the receiving device can receive the first RU from the second RU according to the instructions of the preamble information. 2. Data information, thereby improving the success rate of data information transmission.
  • the preamble information is used to indicate that the at least one first RU is not to be allocated.
  • the receiving device does not need to acquire the data information allocation status of the first RU, which improves the efficiency of data information transmission.
  • both the first subchannel and the second subchannel are the odd-numbered subchannels among the plurality of subchannels, or the first subchannel and the second subchannel are The channels are all the even-numbered sub-channels among the multiple sub-channels.
  • the receiving device can directly obtain the preamble information from the first sub-channel.
  • the second receiving device can obtain the preamble information from the first subchannel to receive the data information, which ensures the success rate of the data information transmission.
  • the first subchannel and the second subchannel are any two subchannels of the plurality of subchannels.
  • the second receiving device can obtain the preamble information from any of the first subchannels to receive data information, which ensures the transmission of data information. Success rate and efficiency.
  • the method before the sending device sends the second part of the PPDU through the second subchannel, the method further includes: the sending device obtains the second part to be sent to the receiving device Data information; the sending device splits the second data information into a plurality of the second RUs included in the second subchannel.
  • the sending device sending the first part of the PPDU through the first subchannel includes: the sending device acquiring the first data information to be sent to the receiving device; The first data information is split into multiple RUs included in the first subchannel.
  • the method further includes: the transmitting device determines a spectrum resource in the multiple subchannels, the spectrum resource includes multiple subcarriers; if the transmitting device determines to allocate the spectrum resource For the receiving device, if the difference between the SNRs of the two subcarriers is greater than or equal to the preset value, the transmitting device splits the spectrum resource to form multiple sub-spectrum resources, and the modulation mode of at least part of the multiple sub-spectrum resources different.
  • the transmitting device can exchange data information based on the sub-spectrum resources and the receiving device, thereby improving the sub-spectrum resources with higher SNR.
  • the utilization rate of the carrier improves the transmission performance of spectrum resources.
  • the method further includes: the sending device determines multiple spectrum resources in the multiple subchannels, each of the spectrum resources includes multiple subcarriers; and the sending device obtains the multiple A plurality of first differences corresponding to one spectrum resource, where the first difference is the difference between the signal-to-noise ratio SNR when the spectrum resource is allocated to the first receiving device and the SNR when the spectrum resource is allocated to the second receiving device Value; the sending device allocates the spectrum resource corresponding to the larger value of the plurality of first differences to the first receiving device.
  • a spectrum resource with a higher SNR can be allocated to each receiving device, thereby effectively improving the utilization rate of subcarriers with a higher SNR and improving the transmission performance of the spectrum resource.
  • the method further includes: the sending device obtains a plurality of second differences corresponding to the plurality of spectrum resources, where the second difference is allocating the spectrum resource to the The difference between the SNR when the second receiving device and the SNR when the spectrum resource is allocated to the first receiving device; the sending device allocates the spectrum resource corresponding to the larger value of the plurality of second differences to the first receiving device Two receiving equipment.
  • the sending device determines that the first difference of all spectrum resources is relatively high, so that all the spectrum resources are allocated to the first receiving device, so that the second The receiving device cannot exchange data information with the sending device.
  • This implementation method uses the second difference to determine the spectrum resources allocated to the second receiving device, which effectively guarantees the communication between the second receiving device and the sending device. Data information interaction.
  • the method further includes: the sending device sends a trigger frame to the receiving device, where the trigger frame is used to instruct the receiving device to send a third RU to the sending device through the second RU. Data information; the sending device receives the third data information from the receiving device through the second RU.
  • the sending device informs the receiving device of the second RU that does not have interference through the trigger frame, and the receiving device can send the third data information to the sending device through the second RU, effectively ensuring that the receiving device sends the second RU to the sending device.
  • the success rate of data information is the sending device informs the receiving device of the second RU that does not have interference through the trigger frame, and the receiving device can send the third data information to the sending device through the second RU, effectively ensuring that the receiving device sends the second RU to the sending device.
  • the success rate of data information is a configurable period of data information.
  • the present application provides a method for transmitting a wireless local area network packet structure PPDU.
  • the method includes: a receiving device receives preamble information included in a first part of the PPDU through a first subchannel, the first part further including first data information, The preamble information is used to indicate the allocation of the first data information in the first subchannel and the allocation of the second data information in the second subchannel, and the second part of the PPDU only includes the second data information ; The receiving device receives the second data information through the second subchannel according to the preamble information.
  • none of the time-frequency resource block RUs included in the first subchannel has interference; the second subchannel includes at least one first RU and at least one second RU , Where the first RU is an RU that has interference, and the second RU is an RU that has not interfered.
  • the preamble information is used to indicate a situation in which the at least one second RU transmits the first data information.
  • the preamble information is used to indicate that the at least one first RU is not to be allocated.
  • both the first subchannel and the second subchannel are the odd-numbered subchannels of the plurality of subchannels, or the first subchannel and the second subchannel are The channels are all the even-numbered sub-channels among the multiple sub-channels.
  • the first subchannel and the second subchannel are any two subchannels of the plurality of subchannels.
  • the second data information has been split into a plurality of the second RUs included in the second subchannel, and the receiving device passes the preamble information through the Receiving the second data information by the second subchannel includes: the receiving device receives multiple bit streams through multiple second RUs; and the receiving device combines the multiple bit streams to form the second data information.
  • the first data information has been split into multiple RUs included in the first subchannel, and the method further includes: the receiving device passes through the first subchannel. Multiple RUs included in the channel receive multiple bit streams; the receiving device combines the multiple bit streams to form the second data information.
  • the method further includes: the receiving device receives a trigger frame from the sending device, where the trigger frame is used to instruct the receiving device to send to the sending device through the second RU Third data information; the receiving device sends the third data information to the sending device through the second RU according to the trigger frame.
  • the present application provides a transmitting device, including: a processing unit, configured to determine multiple sub-channels, the multiple sub-channels including at least one first sub-channel and at least one second sub-channel;
  • the first sub-channel sends the first part of the PPDU, the first part includes preamble information and the first data information;
  • the transceiver unit is also used to send the second part of the PPDU through the second sub-channel, the second part only includes the first part 2.
  • Data information is used to indicate the distribution of the first data information and the second data information.
  • the second subchannel includes at least one second RU that has no interference
  • the processing unit is further configured to: obtain the second data information to be sent to the receiving device; Split the second data information into multiple second RUs included in the second subchannel.
  • none of the time-frequency resource block RUs included in the first subchannel has interference; the second subchannel includes at least one first RU and at least one second RU , Where the first RU is an RU that has interference, and the second RU is an RU that has not interfered.
  • the preamble information is used to indicate a situation in which the at least one second RU transmits the second data information.
  • the preamble information is used to indicate that the at least one first RU is not to be allocated.
  • both the first subchannel and the second subchannel are the odd-numbered subchannels among the plurality of subchannels, or the first subchannel and the second subchannel are The channels are all the even-numbered sub-channels among the multiple sub-channels.
  • the first subchannel and the second subchannel are any two subchannels of the plurality of subchannels.
  • the processing unit is further configured to: determine a spectrum resource in the multiple subchannels, where the spectrum resource includes multiple subcarriers; if it is determined to allocate the spectrum resource to the receiving device, If the difference between the SNRs of the two subcarriers is greater than or equal to the preset value, the spectrum resource is split to form multiple subspectrum resources, and at least some of the multiple subspectrum resources have different modulation modes.
  • the processing unit is further configured to: determine a plurality of spectrum resources in the plurality of sub-channels, each of the spectrum resources includes a plurality of sub-carriers;
  • the first difference is the difference between the signal-to-noise ratio SNR when the spectrum resource is allocated to the first receiving device and the SNR when the spectrum resource is allocated to the second receiving device;
  • the spectrum resource with the larger value among the plurality of first differences should be allocated to the first receiving device.
  • the processing unit is further configured to: obtain a plurality of second difference values corresponding to the plurality of spectrum resources, where the second difference value is to allocate the spectrum resource to the first difference value; Second, the difference between the SNR when the receiving device and the SNR when the spectrum resource is allocated to the first receiving device; and the spectrum resource corresponding to the larger value of the plurality of second differences is allocated to the second receiving device.
  • the second subchannel includes at least one second RU that has no interference
  • the transceiver unit is further configured to: send a trigger frame to the receiving device, where the trigger frame is used to indicate The receiving device sends third data information to the sending device through the second RU; and receives the third data information from the receiving device through the second RU.
  • the present application provides a receiving device, including: a transceiving unit, configured to receive preamble information included in a first part of a PPDU through a first sub-channel, the first part further including first data information; a processing unit for Determine the allocation situation of the first data information in the first subchannel and the allocation situation of the second data information in the second subchannel according to the preamble information, and the second part of the PPDU only includes the second data information;
  • the transceiver unit is further configured to receive the second data information through the second subchannel according to the preamble information.
  • none of the time-frequency resource block RUs included in the first subchannel has interference; the second subchannel includes at least one first RU and at least one second RU , Where the first RU is an RU that has interference, and the second RU is an RU that has not interfered.
  • the preamble information is used to indicate a situation in which the at least one second RU transmits the first data information.
  • the preamble information is used to indicate that the at least one first RU is not to be allocated.
  • both the first subchannel and the second subchannel are the odd-numbered subchannels of the plurality of subchannels, or the first subchannel and the second subchannel are The channels are all the even-numbered sub-channels among the multiple sub-channels.
  • the first subchannel and the second subchannel are any two subchannels of the plurality of subchannels.
  • the second subchannel includes at least one second RU that does not cause interference, and the second data information has been split into multiple subchannels included in the second subchannel.
  • the transceiver unit is further configured to receive multiple bit streams through multiple second RUs; and the processing unit is further configured to combine the multiple bit streams to form the second data information.
  • the first data information has been split into multiple RUs included in the first subchannel, and the transceiver unit is further configured to: pass the first subchannel The included multiple RUs receive multiple bit streams; the processing unit is further configured to combine the multiple bit streams to form the second data information.
  • the second subchannel includes at least one second RU that has no interference
  • the transceiver unit is further configured to: receive a trigger frame from the sending device, the trigger frame It is used to instruct the receiving device to send third data information to the sending device through the second RU; according to the trigger frame, to send the third data information to the sending device through the second RU.
  • the present application provides a network device, including: a processor, a memory, and a transceiver;
  • the memory and the processor are interconnected by wires, the processor and the transceiver are interconnected by wires, and instructions are stored in the memory.
  • the transceiver is used to perform the steps related to receiving and sending in the first aspect or the second aspect described above.
  • the present application provides a readable storage medium, including instructions, which when run on a device, cause the device to execute the transmission of the wireless local area network packet structure PPDU as described in any one of the first aspect or the second aspect. method.
  • the present application provides a program product containing instructions that, when the instructions run on a device, cause the device to execute the method for transmitting wireless local area network packet structure PPDUs as in any one of the first or second aspects above .
  • the present application provides a communication system, including a sending device and a plurality of receiving devices, and the receiving device communicates with the sending device through a wireless link.
  • FIG. 1 is a schematic structural diagram of an embodiment of a communication system provided by this application.
  • FIG. 2 is a block diagram of the spectrum of an embodiment of sub-channels provided by this application.
  • FIG. 3 is a flowchart of an embodiment of a method for transmitting a wireless local area network packet structure PPDU provided by this application;
  • FIG. 4 is a schematic diagram of an embodiment of the PPDU frame format provided by this application.
  • FIG. 5 is a schematic diagram of another embodiment of the PPDU frame format provided by this application.
  • FIG. 6 is a schematic diagram of another embodiment of the PPDU frame format provided by this application.
  • FIG. 7A is a schematic diagram of an embodiment of spectrum resources provided by this application.
  • FIG. 7B is a schematic diagram of another embodiment of the spectrum resource provided by this application.
  • FIG. 8 is a flowchart of steps in another embodiment of a method for transmitting a wireless local area network packet structure PPDU provided by this application;
  • FIG. 9 is a schematic diagram of the second sub-channel provided by this application.
  • FIG. 10 is a flowchart of steps in another embodiment of a method for transmitting a wireless local area network packet structure PPDU provided by this application;
  • FIG. 11 is a schematic diagram of another embodiment of a spectrum resource provided by this application.
  • FIG. 12 is a flowchart of another embodiment of the method for transmitting a wireless local area network packet structure PPDU provided by this application;
  • FIG. 13 is a schematic structural diagram of an embodiment of a network device provided by this application.
  • FIG. 14 is a schematic structural diagram of another embodiment of a network device provided by this application.
  • FIG. 1 is the method provided by this application
  • FIG. 1 A schematic structural diagram of an embodiment of a communication system.
  • the communication system 100 includes an access point (AP) 101 and a station (STA) 102 that are interconnected.
  • AP access point
  • STA station
  • This embodiment does not limit the specific number of STAs 102 included in the communication system, as long as each STA 102 communicates with the access point 101 through a wireless link.
  • AP101 is the access point for mobile users to enter the wired network. It is mainly deployed in homes, buildings, and parks. The typical coverage radius is tens of meters to hundreds of meters. Of course, it can also be deployed outdoors.
  • AP101 is equivalent to a bridge connecting wired network and wireless network, and its main function is to connect each STA102 together, and then connect the wireless network to the wired network.
  • AP101 may be a terminal device or a network device with a wireless fidelity (WiFi) chip, such as a smart phone that provides AP functions or services.
  • WiFi wireless fidelity
  • the AP101 is a device that supports a wireless LAN (WLAN) standard, and the WLAN standard includes but is not limited to 802.11ax, 802.11ac, 802.11n, 802.11g, 802.11b, or 802.11a.
  • WLAN wireless LAN
  • the STA101 may be a wireless communication chip, a wireless sensor, or a wireless communication terminal.
  • a wireless communication chip for example: mobile phones that support WiFi communication, tablets that support WiFi communication, set-top boxes that support WiFi communication, smart TVs that support WiFi communication, smart wearable devices that support WiFi communication, and in-vehicle communication that supports WiFi communication Equipment and computers supporting WiFi communication functions, etc.
  • both AP101 and STA102 can support full-duplex transmission, or only AP101 supports full-duplex transmission.
  • AP101 can send downlink PPDUs to STA102 and receive uplink PPDUs sent by STA102.
  • the STA102 can receive the downlink PPDU sent by the AP101, and can also send the uplink PPDU to the AP101.
  • the total spectrum resource between the sending device and the receiving device includes multiple sub-channels, and each sub-channel includes one or more RUs. It should be clarified that, in this embodiment, the total spectrum resource includes multiple sub-channels as an example for exemplification, and the specific number of sub-channels is not limited.
  • the size of each RU has multiple sizes, for example, size 26, size 52, size 106, size 242, etc., where an RU of size 26 is a resource block including 26 subcarriers, and an RU of 52 size includes 52 subcarriers. Resource blocks, a 106-size RU includes 106 sub-carrier size resource blocks, and a 242-size RU includes 242 sub-carrier size resource blocks.
  • FIG. 2 is a spectrum block diagram of an embodiment of the sub-channels provided by this application.
  • the spectrum resource of the sub-channel shown in this example is 20 MHz.
  • the RU size under 20MHz spectrum resources is limited to 26, 52, 106, and 242.
  • the spectrum block diagram of the 20 MHz spectrum resource shown in FIG. 2 includes four layers, with 26 RUs in the middle spanning the DC subcarrier 201.
  • the first layer 202 is the location distribution of 9 RUs of size 26
  • the second layer 203 is the location distribution of 4 RUs of size 52 and one RU of 26 size
  • the third layer 204 is two RUs of size 106 and 1 size of 26.
  • the location distribution of the RU, the fourth layer 205 is the location distribution of a 242-sized RU
  • the 242-sized RU is the entire 20M spectrum resource.
  • the spectrum of the 20MHz sub-channel can be any combination of RUs in the 4 layers to form a spectrum of the size of 242 sub-carriers.
  • An example is that the 20MHz sub-channel is divided into four RUs, namely 106 size, 26 size, and 52 size. And four RUs of size 52.
  • the spectrum resource of the sub-channel may also be 40 MHz or 80 MHz, etc. This application takes the spectrum resource of the sub-channel of 20 MHz as an example for description.
  • Step 301 The sending device determines multiple sub-channels.
  • the transmitting device divides the total spectrum resources supported between the transmitting device and the receiving device (STA102 shown in FIG. 1) into multiple sub-channels.
  • the transmitting device divides the 160 MHz into 8 sub-channels, and the spectrum resource of each sub-channel is 20 MHz. It should be clear that the description of the size of the spectrum resource of each sub-channel in this embodiment is an optional example and is not limited.
  • the multiple sub-channels include at least one first sub-channel and at least one second channel.
  • the first subchannel is a subchannel in which interference does not occur. Specifically, no interference occurs in any RU included in the first subchannel.
  • the second subchannel is a subchannel where interference has occurred.
  • the second subchannel includes a first RU and a second RU, and the specific number of the first RU and the second RU is not limited in this embodiment.
  • the first RU is an RU where interference has occurred
  • the second RU is an RU where interference has not occurred.
  • the sub-channel shown in Figure 2 is the second sub-channel where interference has occurred.
  • the second sub-channel is divided into four RUs, namely, four RUs of size 106, size 26, size 52, and size 52. If it includes If an RU with 26 subcarriers interferes, the RU including 26 subcarriers is the second RU, and the RU including 106 subcarriers, and the two RUs including 52 subcarriers are the first RUs that have no interference.
  • Step 302 The sending device obtains the PPDU.
  • the sending device obtains a PPDU to be sent to one or more receiving devices, and this embodiment uses the sending of the PPDU to multiple receiving devices as an example for exemplification.
  • FIG. 4 is a schematic diagram of an embodiment of the frame format of the PPDU provided by this application.
  • the PPDU includes preamble information 410 and data information 420, and the data information 420 is a data frame for sending to a receiving device.
  • the preamble information 410 specifically includes the legacy short training field (L-STF) 421, the legacy long training field (L-LTF) 422, and the legacy signaling field (L-SIG). ) 423, the repetition of the traditional signaling field (RepeatedL-SIG) 424, the high efficient signaling field A (HE-SIG-A) 425, and the high efficient signaling field B (HE-SIG-A) SIG-B)426.
  • L-STF legacy short training field
  • L-LTF legacy long training field
  • L-SIG legacy signaling field
  • the L-STF421 is used for frame detection, automatic gain control (AGC), diversity detection, and coarse frequency and/or time synchronization.
  • the L-LTF422 is used for fine frequency and/or time synchronization, channel prediction, etc.
  • the L-SIG423 is used to send control information, and the L-SIG423 may include information for indicating data rate and data length.
  • the RepeatedL-SIG424 is used to enhance the robustness of L-SIG.
  • the HE-SIG-A425 is used to carry information that all STAs in the basic service set (basic service set, BSS) will read, such as bandwidth and AP identifier (APID). It should be clear that the description of the preamble information 410 in this embodiment is an optional example and is not limited.
  • the sending device divides the total spectrum resource into multiple sub-channels, and then divides each sub-channel into multiple RUs, and uses the RUs to transmit data to the receiving device.
  • the sending device needs to send information indicating resource scheduling to the receiving device through the HE-SIG-B, so that the receiving device can be based on the HE-SIG-B.
  • B successfully receives the data information.
  • the HE-SIG-B includes a public domain 501 and a site domain 502.
  • the public domain 502 includes resource allocation indication information that needs to be read by different receiving devices, and the resource allocation indication message is used to indicate the allocation status of the RU that transmits data information. For example, the subchannel where the RU used to transmit data information is located, the number of subcarriers included in the RU, and so on.
  • the site domain 502 includes scheduling information sent to different receiving devices. The scheduling information is used to instruct the receiving device to receive the physical layer parameters of the data information.
  • the HE-SIG-B includes N pieces of scheduling information. More specifically, the N pieces of scheduling information include scheduling information 1 for sending to the receiving device 1 and scheduling information 2 for sending to the receiving device 2. ...Is used for the scheduling information N sent to the receiving device N.
  • the specific value of N is not limited in this embodiment.
  • the scheduling information N includes an identifier 511 of the receiving device N, so that the receiving device N having the identifier 511 can receive data information according to the information included in the scheduling information N.
  • the receiving device identifier 511 may be a station identifier (STA identifier, STA ID) or a station partial identifier (STA partial identifier, STA PAID), etc.
  • the scheduling information N also includes modulation and coding scheme (MCS) 512, number of space time streams (NSTS) 513, coding method (Coding) 514, space time block coding (space time block coding, STBC)515 or beamforming (BF)516, etc.
  • MCS modulation and coding scheme
  • NSTS space time streams
  • Coding space time block coding
  • STBC space time block coding
  • BF beamforming
  • the MCS512 is used to indicate the modulation and coding strategy
  • the NSTS513 is used to indicate the number of space-time streams used
  • the Coding514 is used to indicate whether to use a low density parity check code (LDPC) coding method
  • the STBC515 Used to indicate whether to use space time block coding (STBC)
  • STBC space time block coding
  • BF516 is used to indicate whether to use beamforming technology.
  • Step 303 The sending device divides the PPDU into a first part and a second part.
  • the sending device when the sending device obtains the PPDU 600 to be sent to the receiving device, the sending device can divide the PPDU 600 to form a first part 610 and a second part 620.
  • the first part 610 includes The preamble information 611 and the first data information 612.
  • the second part only includes the second data information 621.
  • both the first part 610 and the second part 620 are taken as an example for exemplification, which is not limited. In other examples, the first part 610 and the second part 620 may also be multiple indivual.
  • Step 304 The sending device sends a PPDU.
  • the sending device divides the PPDU into a first part and a second part
  • the sending device sends the first part through the first subchannel, and sends the second part through the second subchannel, and then sends the PPDU to the sending device below.
  • the optional process of PPDU is explained:
  • the preamble information transmitted by the odd-numbered subchannels in the channel are all the same.
  • the preamble information transmitted by the odd-numbered subchannels are all preamble information A.
  • the preamble information transmitted by the even-numbered subchannels among the eight subchannels are all the same.
  • the preamble information transmitted by the even-numbered subchannels are all preamble information B.
  • the L-STF, L-LTF, L-SIG, RepeatedL-SIG, and HE-SIG-A included in the preamble information A and the preamble information B are the same, and the HE-SIG-B and the HE-SIG-A included in the preamble information A
  • the HE-SIG-B included in the preamble B are different from each other.
  • the sub-channel is the odd-numbered sub-channel among all the sub-channels between the sending device and the receiving device.
  • the first subchannel is the first subchannel, the fifth subchannel, and the seventh subchannel where no interference occurs
  • the second subchannel is the third subchannel where interference occurs.
  • the third subchannel no longer transmits preamble information, and the sending device only transmits second data information through the third subchannel (second subchannel).
  • the preamble information transmitted by the sending device through the first subchannel, the fifth subchannel, and the seventh subchannel is used to indicate the distribution of the second data information in the third subchannel.
  • the receiving device can determine the distribution of the second data information transmitted by the third subchannel through the preamble information transmitted by the first subchannel. That is, the preamble information included in the first part of the PPDU is used to indicate the allocation status of the first data information included in the first part of the PPDU and the allocation status of the second data information included in the second part of the PPDU. Specifically, the receiving device can determine the specific position of the second data information included in the second part of the PPDU in the second subchannel according to the preamble information transmitted by the first subchannel, that is, the second data information is specifically located in the second subchannel. Which second RU or several second RUs where no interference occurs in the two subchannels.
  • the first subchannel and the second subchannel shown in this example are the even-numbered subchannels among all the subchannels between the sending device and the receiving device.
  • For the description of the sub-channels between the sending device and the receiving device please refer to the above example 1 for details, and the details will not be repeated.
  • the description of the total spectrum resource 701 shown in FIG. 7B is shown in FIG. 7A for details, and details are not described in detail.
  • the total spectrum resource between the sending device and the receiving device can be referred to as shown in the total spectrum resource 702 shown in FIG. 7B.
  • the first subchannel and the second subchannel are the even-numbered subchannels among all the subchannels between the sending device and the receiving device. That is, the first subchannel is the second subchannel, the fourth subchannel, and the sixth subchannel where no interference occurs, and the second subchannel is the eighth subchannel where interference occurs.
  • the eighth subchannel no longer transmits preamble information, and the sending device only transmits second data information through the eighth subchannel (second subchannel).
  • the preamble information transmitted by the sending device through the second subchannel, the fourth subchannel, and the sixth subchannel indicates the distribution of the second data information in the eighth subchannel.
  • the receiving device can determine the distribution of the second data information transmitted by the eighth subchannel through the preamble information transmitted by the second subchannel. That is, the preamble information included in the first part of the PPDU is used to indicate the allocation status of the first data information included in the first part of the PPDU and the allocation status of the second data information included in the second part of the PPDU. That is, the receiving device can determine the specific position of the second data information included in the second part of the PPDU in the second subchannel according to the preamble information transmitted by the first subchannel, that is, the second data information is specifically located in the second subchannel. Which second RU or several second RUs where no interference occurs in the channel.
  • the L-STF, L-LTF, L-SIG, RepeatedL-SIG, HE-SIG-A, and HE-SIG-B included in the preamble information are all the same in different sub-channels.
  • the first subchannel and the second subchannel shown in this example are any two subchannels among all the subchannels between the transmitting device and the receiving device. That is, as shown in this example, the preamble information used to indicate the allocation of the second data information transmitted by the subchannel with interference is located in any subchannel without interference.
  • the sending device will not transmit the preamble information through the second subchannel, so that the receiving device can successfully receive the second data information transmitted by the second subchannel. Then, the sending device can set the preamble information used to indicate the allocation of the second data information transmitted by the second subchannel in any subchannel where interference does not occur, which effectively guarantees the successful transmission of data.
  • Step 305 The receiving device receives the preamble information through the first subchannel.
  • the sending device transmits the first part of the PPDU to the receiving device through the first subchannel, and the first part includes preamble information. It can be seen that the receiving device can receive the preamble information from the sending device through the first subchannel.
  • the receiving device can receive the preamble information included in the PPDU through the first subchannel.
  • the receiving device reads L-STF, L-LTF, L-SIG, RepeatedL-SIG, HE-SIG-A and HE-SIG-B including the target identifier in the preamble information, and the target identifier is The identifier of the receiving device.
  • the HE-SIG-B with the target identifier is used to indicate the distribution of the second data information
  • the second data information is the data information sent by the sending device to the receiving device with the target identifier.
  • the second data information is only carried in the second RU of the second subchannel, and the second RU is an RU that has no interference.
  • the second subchannel is divided into four RUs, that is, an RU including 106 subcarriers, an RU including 26 subcarriers, and two RUs including 52 subcarriers. If the RU including 26 subcarriers and the two RUs including 52 subcarriers all have interference, but the RU including 106 subcarriers does not have interference, then the RU including 106 subcarriers will be used as the second RU, and the sending device will send the second data The information is allocated to an RU including 106 subcarriers.
  • Step 306 The receiving device receives the second data information through the second sub-channel.
  • the second data information sent by the sending device to the receiving device is located on the second subchannel where interference has occurred as an example for exemplification.
  • the receiving device determines according to the preamble information that the second data information that needs to be received is located on one or more second RUs of the second subchannel, and the receiving device receives the second data information on the second RU.
  • the receiving device can determine according to the preamble information that the second data information is allocated to the second RU including 106 subcarriers, and then the receiving device can receive the second RU on the second RU. 2.
  • Data information is provided.
  • the receiving device is used to receive the second data information as an example for illustrative description.
  • the receiving device may also receive the first data information, and the first data information is located in the first data information where no interference occurs.
  • the receiving device can receive the first data information from the first sub-channel according to the instruction of the preamble information. It can be seen that the preamble information shown in this embodiment is used to indicate the allocation of the second data information in the second subchannel, and is also used to indicate the allocation of the first data information in the first subchannel.
  • the sending device when interference does not occur in the first subchannel and interference occurs in the second subchannel, the sending device can transmit preamble information through the first subchannel, and the preamble information is used for Indicates the allocation of the second data information in the second sub-channel.
  • the receiving device can receive the preamble information according to the first sub-channel where no interference occurs, so as to achieve the purpose of receiving the second data information on the second sub-channel.
  • the sending device in the case of interference in the second subchannel, can also send second data information to the receiving device through the second RU included in the second subchannel without interference, which effectively improves the utilization of spectrum resources. Efficiency, avoiding the waste of spectrum resources.
  • the transmitting device determines that the first RU included in the second subchannel has interference, it will not allocate data information to the first RU.
  • the following is combined with the implementation shown in FIG. 8 The example specifically explains how the sending device allocates multiple second RUs that do not have interference to the receiving device:
  • Step 801 The sending device determines multiple sub-channels.
  • step 801 For the specific execution process of step 801 shown in this embodiment, please refer to step 301 shown in FIG. 3 for details, and details are not described in detail.
  • the sending device shown in this embodiment can perform puncturing for any sub-channel except the main channel. Because the main channel is used to schedule the receiving device, the main channel does not support puncturing.
  • not assigning data information to the sub-channels is referred to as puncturing the sub-channels.
  • the sending device can notify the receiving device of the specific punctured sub-channels through the preamble information.
  • the preamble information please refer to the embodiment shown in Fig. 3 for details. Do repeat.
  • Step 802 The sending device obtains second data information to be sent.
  • the second data information shown in this embodiment is data information used to send to a receiving device with a target identifier through a second subchannel where interference has occurred.
  • Step 803 The sending device splits the second data information into multiple second RUs included in the second subchannel.
  • the sending device can puncture the first RU, and the sending device uses the second RU included in the second subchannel that does not cause interference.
  • the second data information is sent to the receiving device.
  • the first RU that has interference does not allocate data information is referred to as puncturing the first RU.
  • the sending device may allocate the M second RUs to N receiving devices, where N and M are both positive An integer, and N is less than M. It can be seen that the number of receiving devices is less than the number of second RUs, and one receiving device can receive second data information through multiple second RUs, thereby realizing the detection of the second RU included in the second subchannel after puncturing.
  • the sending device splits the second data information 901 into multiple second RUs included in the second subchannel that have no interference.
  • the second subchannel is divided into four RUs (that is, RU910, RU911, RU912, and RU913), where RU910 includes 52 subcarriers, RU911 includes 52 subcarriers, RU912 includes 26 subcarriers, and RU913 includes 106 subcarriers.
  • the RU911 is the first RU where interference occurs, and the RU910, RU912, and RU913 are the second RUs where no interference occurs. It can be seen that when the RU911 is punctured, the second subchannel includes discontinuous spectrum resources.
  • the sending device splits the second data information 901 used to send to the receiving device into multiple second RUs included in the second subchannel, namely RU910, RU912, and RU913 by bits, so that the receiving device can pass through RU910 RU912 and RU913 receive the second data information, so that the same receiving device uses multiple second RUs to receive the second data information, thereby improving the utilization efficiency of spectrum resources.
  • the second data information is split according to the number of bits that can be carried by each second RU, and distributed to multiple second RUs as an example.
  • the sending device The second data information may be first mapped to a media access control layer protocol data unit (MAC protocol data unit, MPDU), and then the MPDU may be split to distribute to multiple second RUs.
  • MPDU media access control layer protocol data unit
  • the sending device transmits one PPDU through the first subchannel and the second subchannel as an example for illustration.
  • different PPDUs may be transmitted through different subchannels, or through Different RUs transmit different PPDUs.
  • each second RU included in the second subchannel transmits one PPDU, and the PPDU is used to carry the second data information.
  • Step 804 The sending device sends the PPDU through the first subchannel and the second subchannel.
  • step 804 shown in this embodiment please refer to step 304 shown in FIG. 3 for details, and details are not described in detail in this embodiment.
  • the preamble information of the PPDU specifically includes the corresponding relationship between the target identifier of the receiving device and the multiple second RUs.
  • the example shown in FIG. 9 is continued as an example.
  • the preamble information included in the PPDU specifically includes The corresponding relationship between the target identifier of the receiving device and RU910, RU912, and RU913, so that the receiving device with the target identifier can determine to receive the second data information in RU910, RU912, and RU913 through the corresponding relationship.
  • the sending device transmits the second data information through the second subchannel as an example. If the sending device transmits the first data information to the receiving device through the first subchannel, the preamble information is also It includes the corresponding relationship between the target identifier of the receiving device and the multiple RUs in the first sub-channel that have been mapped to the first data information. The receiving device with the target identifier can determine the corresponding relationship from the first sub-channel The included RU receives the first data information.
  • Step 805 The receiving device receives the preamble information through the first subchannel.
  • Step 806 The receiving device receives the second data information through the second subchannel.
  • step 805 to step 806 For the specific execution process of step 805 to step 806 shown in this embodiment, reference may be made to step 305 to step 306 shown in FIG. 3, and the details are not described in detail.
  • the receiving device determines to receive the bitstream from RU910, RU912, and RU913 corresponding to the target identifier based on the preamble information, and merges the bitstreams from RU910, RU912, and RU913 respectively to The second data information 920 is formed.
  • Step 807 The receiving device receives the trigger frame from the sending device.
  • the sending device sends trigger frames (Trigger Frames) to the receiving device.
  • the trigger frame is used to instruct the receiving device to send the third data information to the sending device.
  • Information such as the sending time, the RU used to carry data information, and the type of cyclic prefix.
  • the sending device may indicate to the receiving device the second RU through a trigger frame. Two RU.
  • Step 808 The receiving device sends the third data information to the sending device through the second RU.
  • the receiving device sends the third data information according to the second RU indicated by the trigger frame.
  • the sending device can receive the third data information sent from the receiving device through the second RU indicated by the trigger frame.
  • the sending device determines to receive the uplink service data from the receiving device through the RU included in the first subchannel, the sending device can indicate the RU included in the first subchannel to the receiving device through a trigger frame, and the receiving device may The third data information is sent through the RU included in the first subchannel indicated by the trigger frame.
  • the sending device can use the second RU included in the second subchannel that has no interference to transmit the second data information to the receiving device, and the number of receiving devices is less than or equal to that of the second RU. Quantity, the purpose of a receiving device using multiple second RUs to receive the second data information is realized, effectively ensuring the full use of the second RU included in the second sub-channel, and improving the efficiency of data information transmission to the receiving device .
  • Step 1001 The sending device determines multiple sub-channels.
  • step 1001 shown in this embodiment is shown in step 301 shown in FIG. 3 for details, and details are not described in detail.
  • Step 1002 The sending device determines spectrum resources in multiple sub-channels.
  • the spectrum resource is allocated to a receiving device, and the sending device can send data information to the receiving device through the spectrum resource.
  • the spectrum resource includes multiple subcarriers, and this embodiment does not limit the size of the spectrum resource.
  • the spectrum resource may be 160M, 80M, or 20M.
  • Step 1003 If the sending device determines that the SNR difference of the two subcarriers included in the spectrum resource is greater than or equal to a preset value, it triggers the execution of step 1004.
  • the sending device when the sending device allocates spectrum resources to the receiving device, the receiving device can receive data information based on the allocated spectrum resources.
  • the signal-noise ratio (SNR) of the multiple sub-carriers included in the spectrum resource is different.
  • the transmitting device uses the modulation method of the sub-carrier with the lowest SNR as all the sub-carriers included in the spectrum resource. It can be seen that the transmission performance of this spectrum resource is restricted by subcarriers with lower SNR.
  • the spectrum resource 1100 shown in FIG. 11 includes multiple subcarriers.
  • the subcarrier 1101 has the lowest SNR, and the transmission performance of the spectrum resource 1100 is restricted by the SNR of the subcarrier 1101.
  • the spectrum resource 1100 includes The sub-carriers with relatively high SNR are not fully utilized, which reduces the transmission performance of spectrum resources.
  • the sending device firstly determines whether the SNR of the spectrum resource is balanced or not when the spectrum resource is allocated to the receiving device. Specifically, if the sending device determines the difference between the SNRs of the two subcarriers included in the spectrum resource If it is greater than or equal to the preset value, it indicates that the SNR of the spectrum resource is unbalanced.
  • the sending device may calculate whether the difference between the highest SNR value and the lowest SNR value among the multiple SNRs of the multiple subcarriers included in the spectrum resource is greater than or equal to the preset value.
  • the sending device may also calculate the difference between the SNRs of any two subcarriers included in the spectrum resource, and as long as the SNR difference of one or more pairs of subcarriers is greater than or equal to the preset value, the sending device It is determined that the SNR of the spectrum resource is unbalanced.
  • Step 1004 The sending device splits the spectrum resource to form multiple sub-spectrum resources.
  • the sending device splits the spectrum resource to form multiple sub-spectrum resources, and the sub-spectrum resources may be the second RU, the first sub-channel, or the first sub-channel
  • the included RUs are not specifically limited in this embodiment.
  • the transmitting device splits the spectrum resource 1100 into two sub-spectrum resources, that is, the second RU1110 and the second RU1111. It can be seen that the modulation mode of the second RU1110 is different from the modulation mode of the second RU1111. It should be clarified that, as shown in this embodiment, in the case of splitting a spectrum resource into multiple sub-spectrum resources, as long as the modulation modes of at least some of the multiple sub-spectrum resources are different.
  • the modulation mode of the second RU1110 is restricted by the SNR of the subcarrier 1102 with the minimum SNR, and the SNR of the subcarrier 1102 is greater than the SNR of the subcarrier 1101 before the spectrum resource is split, which effectively improves the second RU1110 Transmission performance.
  • the modulation mode of the second RU1111 is restricted by the SNR of the subcarrier 1103 with the minimum SNR.
  • the SNR of the subcarrier 1103 after splitting is equal to the SNR of the subcarrier 1101 before splitting, and the second RU1111 includes The difference between the SNRs of the different subcarriers is more balanced than the difference between the SNRs of the different subcarriers before splitting, thereby improving the transmission performance of the second RU1111.
  • Step 1005 The sending device sends data information to the receiving device through multiple sub-spectrum resources.
  • each sub-spectrum resource shown in this embodiment is the second RU
  • the sending device can send data information to the receiving device through the second RU.
  • the specific sending process refer to the implementation shown in FIG. 3 and FIG. 8.
  • it is not specifically limited in this embodiment.
  • the transmitting device divides the spectrum resource to form multiple sub-spectrum resources. At least some of the multiple sub-spectrum resources have different modulation methods.
  • the transmitting device can exchange data information with the receiving device based on the sub-spectrum resources, thereby The utilization rate of sub-carriers with higher SNR is improved, and the transmission performance of spectrum resources is improved.
  • the embodiment shown in FIG. 10 illustrates the process of how to effectively improve the transmission performance of spectrum resources for one receiving device.
  • the following describes how to effectively improve the transmission performance of spectrum resources for multiple receiving devices in conjunction with the embodiment shown in FIG. 12.
  • This embodiment takes the multiple receiving devices including a first receiving device and a second receiving device as an example for illustrative description. It should be clear that this embodiment takes the multiple receiving devices including two receiving devices as an example. It is noted that in other examples, the sending device may also allocate spectrum resources for any number of two or more receiving devices.
  • Step 1201 The sending device determines multiple sub-channels.
  • step 1201 shown in this embodiment is shown in step 301 shown in FIG. 3 for details, and details are not described in detail.
  • Step 1202 The sending device determines multiple spectrum resources in multiple sub-channels.
  • the different spectrum resources shown in this embodiment may include different second RUs, may also include RUs included in different first subchannels, and may also include different first subchannels, etc., specifically in this embodiment There is no limit in it. As long as different spectrum resources include different subcarriers.
  • Step 1203 The sending device obtains multiple first difference values corresponding to multiple spectrum resources.
  • the sending device obtains the first difference value through formula 1 shown below:
  • the first difference the difference between the SNR when the spectrum resource is allocated to the first receiving device and the SNR when the spectrum resource is allocated to the second receiving device.
  • the sending device calculates each of the multiple spectrum resources to obtain multiple first differences.
  • Step 1204 The sending device determines the first spectrum resource.
  • the sending device determines a spectrum resource corresponding to a larger value among the plurality of first differences as the first spectrum resource, and allocates the determined first spectrum resource to the first receiving device.
  • the transmitting device determines that the first difference corresponding to spectrum resource A is 8 decibels (db) based on the above formula 1, and so on, the first difference corresponding to spectrum resource B is 7 db, and The first difference corresponding to the spectrum resource C is 9 db, and the first difference corresponding to the spectrum resource D is 7 db.
  • the sending device can then determine the spectrum resource corresponding to the first difference with a larger value among the four first difference values as the first spectrum resource, and allocate the first spectrum resource to the first receiving device. As shown in Table 1, the transmitting device determines the spectrum resource A and the spectrum resource C as the first spectrum resource.
  • the sending device in order to avoid that the first receiving device is relatively close to the sending device, causing the sending device to determine that the first difference of all spectrum resources is relatively high, so that all spectrum resources are allocated to the first receiving device, In the case where the second receiving device cannot exchange data and information with the sending device, the second receiving device that is far away from the sending device is allocated spectrum resources as shown in the following steps.
  • Step 1205 The sending device obtains multiple second difference values corresponding to multiple spectrum resources.
  • the sending device obtains the second difference value through formula 2 shown below:
  • the second difference the difference between the SNR when the spectrum resource is allocated to the second receiving device and the SNR when the spectrum resource is allocated to the first receiving device.
  • the sending device calculates each of the multiple spectrum resources to obtain multiple second difference values.
  • Step 1206 The sending device determines the second spectrum resource.
  • the sending device determines a spectrum resource corresponding to a larger value among the plurality of second differences as the second spectrum resource, and the sending device allocates the determined second spectrum resource to the second receiving device.
  • the sending device determines that the second difference value corresponding to the spectrum resource A is 18db based on the above formula 2, and so on, the second difference value corresponding to the spectrum resource B is -7db, which is the same as that of the spectrum resource C
  • the corresponding second difference is -9db
  • the second difference corresponding to the spectrum resource D is -7db.
  • the larger second difference is the second difference corresponding to the spectrum resource B and the second difference corresponding to the spectrum resource D, and the transmitting device compares the spectrum resource B with the spectrum resource D. Determined as the second spectrum resource.
  • Step 1207 The sending device sends data information to the first receiving device through the first spectrum resource.
  • Step 1208 The sending device sends data information to the second receiving device through the second spectrum resource.
  • each receiving device can be allocated spectrum resources with higher SNR, thereby effectively improving the utilization of subcarriers with higher SNR and improving the transmission of spectrum resources. performance.
  • the foregoing describes the execution flow of the method for transmitting the wireless local area network packet structure PPDU provided by the present application.
  • the following describes the network equipment provided by the present application in detail based on the foregoing method.
  • 13 is a schematic structural diagram of an embodiment of a network device provided by this application.
  • the network device 1300 includes a processing unit 1301 and a transceiving unit 1302 connected to the processing unit 1301;
  • the processing unit 1301 is configured to determine multiple sub-channels, and the multiple sub-channels include at least one first sub-channel and at least one second sub-channel; the transceiver unit 1302 , Used to send the first part of the PPDU through the first subchannel, the first part including preamble information and first data information; the transceiver unit 1302 is also used to send the second part of the PPDU through the second subchannel, the The second part only includes second data information, and the preamble information is used to indicate the distribution of the first data information and the second data information.
  • the second subchannel includes at least one second RU that has no interference
  • the processing unit 1301 is further configured to: obtain the second data information to be sent to the receiving device; and split the second data information into Among the multiple second RUs included in the second subchannel.
  • the processing unit 1301 is further configured to: determine a spectrum resource in the multiple sub-channels, where the spectrum resource includes multiple sub-carriers; if it is determined to allocate the spectrum resource to the receiving device, the difference in SNR between the two sub-carriers is greater than Or equal to the preset value, the spectrum resource is split to form multiple sub-spectrum resources, and at least some of the multiple sub-spectrum resources have different modulation modes.
  • the processing unit 1301 is further configured to: determine a plurality of spectrum resources in the plurality of subchannels, each of the spectrum resources includes a plurality of subcarriers; obtain a plurality of first differences corresponding to the plurality of spectrum resources, the The first difference is the difference between the signal-to-noise ratio SNR when the spectrum resource is allocated to the first receiving device and the SNR when the spectrum resource is allocated to the second receiving device; it will correspond to a comparison of the multiple first differences.
  • the large value of the spectrum resource is allocated to the first receiving device.
  • the processing unit 1301 is further configured to: obtain a plurality of second difference values corresponding to the plurality of spectrum resources, where the second difference value is the SNR when the spectrum resource is allocated to the second receiving device and the The difference in SNR when the spectrum resource is allocated to the first receiving device; and the spectrum resource corresponding to the larger value of the plurality of second differences is allocated to the second receiving device.
  • the second subchannel includes at least one second RU that has no interference.
  • the transceiver unit 1302 is further configured to: send a trigger frame to the receiving device, where the trigger frame is used to instruct the receiving device to send to the sending device through the second RU Third data information; receiving the third data information from the receiving device through the second RU.
  • the transceiving unit 1302 is configured to receive the preamble information included in the first part of the PPDU through the first subchannel, and the first part further includes first data information;
  • the processing unit 1301 is configured to determine the allocation of the first data information in the first subchannel and the allocation of the second data information in the second subchannel according to the preamble information, and the second part of the PPDU only includes The second data information;
  • the transceiver unit 1302 is also configured to receive the second data information through the second subchannel according to the preamble information.
  • the second subchannel includes at least one second RU that has no interference, and the second data information has been split into a plurality of second RUs included in the second subchannel, and the transceiver unit 1302 It is also used for: receiving multiple bit streams through multiple second RUs; and the processing unit 1301 is also used for: combining the multiple bit streams to form the second data information.
  • the first data information has been split into multiple RUs included in the first subchannel, and the transceiver unit 1302 is further configured to: receive multiple RUs through the multiple RUs included in the first subchannel. Bit stream; the processing unit 1301 is also used to combine the multiple bit streams to form the second data information.
  • the second subchannel includes at least one second RU that has no interference
  • the transceiver unit 1302 is further configured to: receive a trigger frame from the sending device, and the trigger frame is used to instruct the receiving device to pass the first RU.
  • the second RU sends the third data information to the sending device; according to the trigger frame, the second RU sends the third data information to the sending device.
  • FIG. 14 is a schematic structural diagram of a network device provided by this application.
  • the network device includes a processor 1401, a memory 1402, and a transceiver 1403.
  • the processor 1401, the memory 1402, and the transceiver 1403 are interconnected by wires.
  • the memory 1402 stores program instructions and data.
  • the network device shown in this embodiment may be the sending device or the receiving device shown in the foregoing embodiment.
  • the memory 1402 stores program instructions and data corresponding to the steps executed by the network device in the embodiments corresponding to FIGS. 3, 8, 10, and 12 described above.
  • the processor 1401 is configured to execute the processing-related steps performed by the network device shown in any one of the embodiments in FIG. 3, FIG. 8, FIG. 10, and FIG.
  • the transceiver 1403 is used to perform the steps related to receiving and sending performed by the network device shown in any one of the foregoing embodiments in FIG. 3, FIG. 8, FIG. 10, and FIG.
  • a processor 1401 included in a network device as a sending device is used to perform step 301, step 302, and step 303, and the transceiver 1403 is used to perform step 304.
  • the transceiver 1403 included in the network device as the receiving device is used to perform step 305 and step 306.
  • a processor 1401 included in a network device as a sending device is used to perform step 801, step 802, and step 803, and the transceiver 1403 is used to perform step 804.
  • the transceiver 1403 included in the network device as the receiving device is used to perform step 805, step 806, step 807, and step 808.
  • a processor 1401 included in a network device as a sending device is used to perform step 1001, step 1002, step 1003, and step 1004, and the transceiver 1403 is used to perform step 1005.
  • the processor 1401 included in the network device as the sending device is used to perform step 1201, step 1202, step 1203, step 1204, step 1205, and step 1206.
  • the transceiver 1403 is used to perform step 1207 and step 1208. .
  • the embodiment of the present application also provides a digital processing chip.
  • the digital processing chip integrates a circuit for realizing the functions of the processor 1401 and one or more interfaces.
  • the digital processing chip can complete the method steps of any one or more of the foregoing embodiments.
  • no memory is integrated in the digital processing chip, it can be connected to an external memory through an interface.
  • the digital processing chip implements the actions performed by the sending device or the receiving device in the foregoing embodiment according to the program code stored in the external memory.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种传输无线局域网分组结构PPDU的方法、相关设备以及系统,有效地提高频谱资源的利用率,避免了频谱资源的浪费,该方法包括:发送设备确定多个子信道,多个子信道包括至少一个第一子信道以及至少一个第二子信道;发送设备通过第一子信道发送PPDU的第一部分,第一部分包括前导信息和第一数据信息;发送设备通过第二子信道发送PPDU的第二部分,第二部分仅包括第二数据信息,前导信息用于指示第一数据信息和第二数据信息的分配情况。

Description

传输无线局域网分组结构PPDU的方法、相关设备以及系统
本申请要求于2020年4月30日提交中国国家知识产权局、申请号为202010366107.3、发明名称为“传输无线局域网分组结构PPDU的方法、相关设备以及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线网络技术领域,尤其涉及一种传输无线局域网分组结构PPDU的方法、相关设备以及系统。
背景技术
发送设备和接收设备之间具有多个子信道,发送设备通过多个子信道将无线局域网分组结构(PLCP protocol data unit,PPDU)发送给接收设备。
但是,若子信道出现干扰,发送设备不会使用该出现干扰的子信道进行PPDU的发送。一个子信道通常包括多个时频资源块(RU),若该子信道仅有部分RU出现了干扰,采用现有技术所示的方案,会导致未出现干扰的RU不会被使用,造成了频谱资源的浪费。
发明内容
本发明提供了一种传输无线局域网分组结构PPDU的方法、相关设备以及系统,其用于解决出现干扰的子信道无法使用,从而造成频谱资源浪费的技术问题。
第一方面,本申请提供一种传输无线局域网分组结构PPDU的方法,该方法包括:发送设备确定多个子信道,该多个子信道包括至少一个第一子信道以及至少一个第二子信道;该发送设备通过该第一子信道发送PPDU的第一部分,该第一部分包括前导信息和第一数据信息;该发送设备通过该第二子信道发送该PPDU的第二部分,该第二部分仅包括第二数据信息,该前导信息用于指示该第一数据信息和该第二数据信息的分配情况。
可见,在第一子信道未出现干扰,且在第二子信道出现干扰的情况下,发送设备可通过该第一子信道传输前导信息,该前导信息用于指示第二数据信息在第二子信道中的分配情况。接收设备即可根据未出现干扰的第一子信道接收该前导信息,进而实现在第二子信道上接收第二数据信息的目的。发送设备通过出现干扰的第二子信道向接收设备发送第二数据信息,有效地提高了频谱资源的利用效率,避免了频谱资源的浪费。
基于第一方面,一种可选地实现方式中,该第一子信道所包括的各时频资源块RU均未出现干扰;该第二子信道包括至少一个第一RU以及至少一个第二RU,其中,该第一RU为已出现干扰的RU,该第二RU为未出现干扰的RU。
可见,在第二子信道出现干扰的情况下,发送设备区分第二子信道中,已出现干扰的第一RU以及未出现干扰的第二RU,通过该第二RU进行第二数据信息的发送,避免了第二RU不被使用所带来的频谱资源的浪费。
基于第一方面,一种可选地实现方式中,该前导信息用于指示该至少一个第二RU传输该第二数据信息的情况。
可见,通过未出现干扰的第一子信道向接收设备发送该前导信息,有效地保证了接收设备能够成功地接收前导信息,接收设备即可根据该前导信息的指示,从第二RU中接收第 二数据信息,从而提高了数据信息传输的成功率。
基于第一方面,一种可选地实现方式中,该前导信息用于指示不对该至少一个第一RU进行分配。
可见,通过该前导信息指示接收设备出现干扰的第一RU,则接收设备无需对第一RU的数据信息分配情况进行获取,提高了数据信息传输的效率。
基于第一方面,一种可选地实现方式中,该第一子信道和该第二子信道均为该多个子信道中的第奇数个子信道,或,该第一子信道和该第二子信道均为该多个子信道中的第偶数个子信道。
可见,在第一子信道和第二子信道均为第奇数个子信道或第偶数个信道的情况下,接收设备能够直接从第一子信道中获取前导信息,在出现干扰的第二子信道不进行前导信息的发送的情况下,第二接收设备能够从第一子信道中获取前导信息,以进行数据信息的接收,保证了数据信息传输的成功率。
基于第一方面,一种可选地实现方式中,该第一子信道和该第二子信道为该多个子信道中任意两个子信道。
可见,在出现干扰的第二子信道不进行前导信息的发送的情况下,第二接收设备能够从任一第一子信道中获取前导信息,以进行数据信息的接收,保证了数据信息传输的成功率和效率。
基于第一方面,一种可选地实现方式中,该发送设备通过该第二子信道发送该PPDU的第二部分之前,该方法还包括:该发送设备获取待向接收设备发送的该第二数据信息;该发送设备将该第二数据信息拆分至该第二子信道所包括的多个该第二RU中。
可见,在将第二数据信息拆分至多个第二RU中的情况下,可实现单一接收设备使用多个第二RU的目的,有效地提高了频谱资源的利用效率。
基于第一方面,一种可选地实现方式中,该发送设备通过该第一子信道发送PPDU的第一部分包括:该发送设备获取待向接收设备发送的该第一数据信息;该发送设备将该第一数据信息拆分至该第一子信道所包括的多个RU中。
可见,在将第二数据信息拆分至第一子信道所包括的多个RU中的情况下,可实现单一接收设备使用多个RU的目的,有效地提高了频谱资源的利用效率。
基于第一方面,一种可选地实现方式中,该方法还包括:该发送设备在该多个子信道中确定频谱资源,该频谱资源包括多个子载波;若该发送设备确定将该频谱资源分配给接收设备,则两个子载波的SNR的差大于或等于预设值,则发送设备对该频谱资源进行拆分以形成多个子频谱资源,该多个子频谱资源中至少部分子频谱资源的调制方式不同。
可见,针对单一的接收设备,若确定分配给该接收设备的频谱资源的SNR不均衡,则导致该频谱资源所包括的SNR较高的子载波没有被充分使用,该发送设备将该频谱资源进行划分以形成多个子频谱资源,多个子频谱资源中至少部分子频谱资源的调制方式不同,发送设备即可基于子频谱资源与接收设备之间进行数据信息的交互,从而提高了SNR较高的子载波的利用率,提高了频谱资源的传输性能。
基于第一方面,一种可选地实现方式中,该方法还包括:该发送设备在该多个子信道 中确定多个频谱资源,每个该频谱资源包括多个子载波;该发送设备获取该多个频谱资源对应的多个第一差值,该第一差值为将该频谱资源分配给第一接收设备时的信噪比SNR和将该频谱资源分配给第二接收设备时的SNR的差值;该发送设备将对应该多个第一差值中较大值的该频谱资源分配给该第一接收设备。
可见,针对多个接收设备,可向每个接收设备分配SNR较高的频谱资源,从而有效地提高了SNR较高的子载波的利用率,提高了频谱资源的传输性能。
基于第一方面,一种可选地实现方式中,该方法还包括:该发送设备获取该多个频谱资源对应的多个第二差值,该第二差值为将该频谱资源分配给该第二接收设备时的SNR和将该频谱资源分配给该第一接收设备时的SNR的差值;该发送设备将对应该多个第二差值中较大值的该频谱资源分配给该第二接收设备。
可见,为避免在第一接收设备距离发送设备比较近,从而导致发送设备确定出所有频谱资源的第一差值均比较高,从而将所有频谱资源都分配给第一接收设备,而使得第二接收设备无法与发送设备之间进行数据信息交互的弊端,本实现方式通过第二差值的方式确定向第二接收设备分配的频谱资源,有效地保证了第二接收设备与发送设备之间的数据信息交互。
基于第一方面,一种可选地实现方式中,该方法还包括:该发送设备向接收设备发送触发帧,该触发帧用于指示该接收设备通过该第二RU向该发送设备发送第三数据信息;该发送设备通过该第二RU接收来自该接收设备的该第三数据信息。
可见,发送设备通过触发帧向接收设备通知未出现干扰的第二RU,接收设备即可通过该第二RU向发送设备发送第三数据信息,有效地保证了接收设备向发送设备发送该第二数据信息的成功率。
第一方面,本申请提供一种传输无线局域网分组结构PPDU的方法,该方法包括:接收设备通过第一子信道接收PPDU的第一部分所包括的前导信息,该第一部分还包括第一数据信息,该前导信息用于指示该第一数据信息在该第一子信道内的分配情况以及第二数据信息在第二子信道内的分配情况,该PPDU的第二部分仅包括的该第二数据信息;该接收设备根据该前导信息,通过该第二子信道接收该第二数据信息。
本方面所示的有益效果的说明,请详见第一方面所示,不做赘述。
基于第二方面,一种可选地实现方式中,该第一子信道所包括的各时频资源块RU均未出现干扰;该第二子信道包括至少一个第一RU以及至少一个第二RU,其中,该第一RU为已出现干扰的RU,该第二RU为未出现干扰的RU。
基于第二方面,一种可选地实现方式中,该前导信息用于指示该至少一个第二RU传输该第一数据信息的情况。
基于第二方面,一种可选地实现方式中,该前导信息用于指示不对该至少一个第一RU进行分配。
基于第二方面,一种可选地实现方式中,该第一子信道和该第二子信道均为该多个子信道中的第奇数个子信道,或,该第一子信道和该第二子信道均为该多个子信道中的第偶数个子信道。
基于第二方面,一种可选地实现方式中,该第一子信道和该第二子信道为该多个子信道中任意两个子信道。
基于第二方面,一种可选地实现方式中,该第二数据信息已被拆分至该第二子信道所包括的多个该第二RU中,该接收设备根据该前导信息,通过该第二子信道接收该第二数据信息包括:该接收设备通过多个该第二RU接收多个比特流;该接收设备将该多个比特流进行合并以形成该第二数据信息。
基于第二方面,一种可选地实现方式中,该第一数据信息已被拆分至该第一子信道所包括的多个RU中,该方法还包括:该接收设备通过该第一子信道所包括的多个RU接收多个比特流;该接收设备将该多个比特流进行合并以形成该第二数据信息。
基于第二方面,一种可选地实现方式中,该方法还包括:该接收设备接收来自该发送设备的触发帧,该触发帧用于指示该接收设备通过该第二RU向该发送设备发送第三数据信息;该接收设备根据该触发帧,通过该第二RU向该发送设备发送该第三数据信息。
第三方面,本申请提供一种发送设备,包括:处理单元,用于确定多个子信道,该多个子信道包括至少一个第一子信道以及至少一个第二子信道;收发单元,用于通过该第一子信道发送PPDU的第一部分,该第一部分包括前导信息和第一数据信息;该收发单元还用于,通过该第二子信道发送该PPDU的第二部分,该第二部分仅包括第二数据信息,该前导信息用于指示该第一数据信息和该第二数据信息的分配情况。
本方面所示的有益效果的说明,请详见第一方面所示,不做赘述。
基于第三方面,一种可选地实现方式中,该第二子信道包括至少一个未出现干扰的第二RU,该处理单元还用于:获取待向接收设备发送的该第二数据信息;将该第二数据信息拆分至该第二子信道所包括的多个第二RU中。
基于第三方面,一种可选地实现方式中,该第一子信道所包括的各时频资源块RU均未出现干扰;该第二子信道包括至少一个第一RU以及至少一个第二RU,其中,该第一RU为已出现干扰的RU,该第二RU为未出现干扰的RU。
基于第三方面,一种可选地实现方式中,该前导信息用于指示该至少一个第二RU传输该第二数据信息的情况。
基于第三方面,一种可选地实现方式中,该前导信息用于指示不对该至少一个第一RU进行分配。
基于第三方面,一种可选地实现方式中,该第一子信道和该第二子信道均为该多个子信道中的第奇数个子信道,或,该第一子信道和该第二子信道均为该多个子信道中的第偶数个子信道。
基于第三方面,一种可选地实现方式中,该第一子信道和该第二子信道为该多个子信道中任意两个子信道。
基于第三方面,一种可选地实现方式中,该处理单元还用于:在该多个子信道中确定频谱资源,该频谱资源包括多个子载波;若确定将该频谱资源分配给接收设备,则两个子载波的SNR的差大于或等于预设值,则对该频谱资源进行拆分以形成多个子频谱资源,该多个子频谱资源中至少部分子频谱资源的调制方式不同。
基于第三方面,一种可选地实现方式中,该处理单元还用于:在该多个子信道中确定多个频谱资源,每个该频谱资源包括多个子载波;获取该多个频谱资源对应的多个第一差值,该第一差值为将该频谱资源分配给第一接收设备时的信噪比SNR和将该频谱资源分配给第二接收设备时的SNR的差值;将对应该多个第一差值中较大值的该频谱资源分配给该第一接收设备。
基于第三方面,一种可选地实现方式中,该处理单元还用于:获取该多个频谱资源对应的多个第二差值,该第二差值为将该频谱资源分配给该第二接收设备时的SNR和将该频谱资源分配给该第一接收设备时的SNR的差值;将对应该多个第二差值中较大值的该频谱资源分配给该第二接收设备。
基于第三方面,一种可选地实现方式中,该第二子信道包括至少一个未出现干扰的第二RU,该收发单元还用于:向接收设备发送触发帧,该触发帧用于指示该接收设备通过该第二RU向该发送设备发送第三数据信息;通过该第二RU接收来自该接收设备的该第三数据信息。
第四方面,本申请提供一种接收设备,包括:收发单元,用于通过第一子信道接收PPDU的第一部分所包括的前导信息,该第一部分还包括第一数据信息;处理单元,用于根据该前导信息确定该第一数据信息在该第一子信道内的分配情况以及第二数据信息在第二子信道内的分配情况,该PPDU的第二部分仅包括的该第二数据信息;该收发单元还用于,根据该前导信息,通过该第二子信道接收该第二数据信息。
本方面所示的有益效果的说明,请详见第一方面所示,不做赘述。
基于第四方面,一种可选地实现方式中,该第一子信道所包括的各时频资源块RU均未出现干扰;该第二子信道包括至少一个第一RU以及至少一个第二RU,其中,该第一RU为已出现干扰的RU,该第二RU为未出现干扰的RU。
基于第四方面,一种可选地实现方式中,该前导信息用于指示该至少一个第二RU传输该第一数据信息的情况。
基于第四方面,一种可选地实现方式中,该前导信息用于指示不对该至少一个第一RU进行分配。
基于第四方面,一种可选地实现方式中,该第一子信道和该第二子信道均为该多个子信道中的第奇数个子信道,或,该第一子信道和该第二子信道均为该多个子信道中的第偶数个子信道。
基于第四方面,一种可选地实现方式中,该第一子信道和该第二子信道为该多个子信道中任意两个子信道。
基于第四方面,一种可选地实现方式中,该第二子信道包括至少一个未出现干扰的第二RU,该第二数据信息已被拆分至该第二子信道所包括的多个该第二RU中,该收发单元还用于:通过多个该第二RU接收多个比特流;该处理单元还用于:将该多个比特流进行合并以形成该第二数据信息。
基于第四方面,一种可选地实现方式中,该第一数据信息已被拆分至该第一子信道所包括的多个RU中,该收发单元还用于:通过该第一子信道所包括的多个RU接收多个比特 流;该处理单元还用于:将该多个比特流进行合并以形成该第二数据信息。
基于第四方面,一种可选地实现方式中,该第二子信道包括至少一个未出现干扰的第二RU,则该收发单元还用于:接收来自该发送设备的触发帧,该触发帧用于指示该接收设备通过该第二RU向该发送设备发送第三数据信息;根据该触发帧,通过该第二RU向该发送设备发送该第三数据信息。
第五方面,本申请提供一种网络设备,包括:处理器、存储器以及收发器;
该存储器和该处理器通过线路互联,该处理器与该收发器通过线路互联,该存储器中存储有指令,该处理器用于执行如上述第一方面或第二方面任一项中,与处理相关的步骤,该收发器用于执行如上述第一方面或第二方面中,与收发相关的步骤。
第六方面,本申请提供一种可读存储介质,包括指令,当该指令在装置上运行时,使得装置执行如上述第一方面或第二方面任一项该的传输无线局域网分组结构PPDU的方法。
第七方面,本申请提供一种包含指令的程序产品,当该指令在装置上运行时,使得该装置执行如上述第一方面或第二方面任一项该的传输无线局域网分组结构PPDU的方法。
第八方面,本申请提供了一种通信系统,包括发送设备和多个接收设备,该接收设备通过无线链路与该发送设备通信。
附图说明
图1为本申请所提供的通信系统的一种实施例结构示意图;
图2为本申请所提供的子信道的一种实施例频谱分块图;
图3为本申请所提供的传输无线局域网分组结构PPDU的方法的一种实施例步骤流程图;
图4为本申请所提供的PPDU的帧格式的一种实施例示意图;
图5为本申请所提供的PPDU的帧格式的另一种实施例示意图;
图6为本申请所提供的PPDU的帧格式的另一种实施例示意图;
图7A为本申请所提供的频谱资源的一种实施例示意图;
图7B为本申请所提供的频谱资源的另一种实施例示意图;
图8为本申请所提供的传输无线局域网分组结构PPDU的方法的另一种实施例步骤流程图;
图9为本申请所提供的第二子信道的一种示意图;
图10为本申请所提供的传输无线局域网分组结构PPDU的方法的另一种实施例步骤流程图;
图11为本申请所提供的频谱资源的另一种实施例示意图;
图12为本申请所提供的传输无线局域网分组结构PPDU的方法的另一种实施例步骤流程图;
图13为本申请所提供的网络设备的一种实施例结构示意图;
图14为本申请所提供的网络设备的另一种实施例结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为更好的理解本申请所提供的传输无线局域网分组结构PPDU的方法,以下首先结合图1所示对本申请所示的方法所应用的通信系统进行说明,其中,图1为本申请所提供的通信系统的一种实施例结构示意图。
如图1所示,该通信系统100包括互联的接入点(access point,AP)101和站点(station,STA)102。本实施例对通信系统所包括的STA102的具体数量不做限定,只要各STA102通过无线链路与接入点101通信即可。
其中,AP101是移动用户进入有线网络的接入点,主要部署于家庭、大楼内部以及园区内部,典型覆盖半径为几十米至上百米,当然,也可以部署于户外。AP101相当于一个连接有线网和无线网的桥梁,其主要作用是将各个STA102连接到一起,然后将无线网络接入有线网。具体地,AP101可以是带有无线保真(wirelessfidelity,WiFi)芯片的终端设备或者网络设备,例如提供AP功能或者服务的智能手机。该AP101为支持无线局域网(wireless LAN,WLAN)制式的设备,该WLAN制式包括但不限于802.11ax、802.11ac、802.11n、802.11g、802.11b或802.11a等。
该STA101可以是无线通信芯片、无线传感器或无线通信终端。例如:支持WiFi通信功能的移动电话、支持WiFi通信功能的平板电脑、支持WiFi通信功能的机顶盒、支持WiFi通信功能的智能电视、支持WiFi通信功能的智能可穿戴设备、支持WiFi通信功能的车载通信设备和支持WiFi通信功能的计算机等。
其中,AP101与STA102都可以支持全双工传输,或只有AP101支持全双工传输。当AP101支持全双工传输时,AP101可以在向STA102发送下行PPDU,并接收该STA102发送的上行PPDU。当STA102支持全双工传输时,STA102可以在接收AP101发送的下行PPDU,还能够向该AP101发送上行PPDU。
为更好的理解本申请所示的方法,以下首先对发送设备和接收设备之间的频谱资源进行说明:
发送设备和接收设备之间的总频谱资源包括多个子信道,各子信道包括一个或多个RU。需明确的是,本实施例以总频谱资源包括多个子信道为例进行示例性说明,具体对子信道的数量不做限定。各RU的大小有多种尺寸,例如,26大小、52大小、106大小、242大小等,其中,26大小的RU为包括26个子载波大小的资源块,52大小的RU包括52个子载波大小的资源块,106大小的RU包括106个子载波大小的资源块,242大小的RU包括242个子载波大小的资源块。以下结合图2所示进行说明,其中,图2为本申请所提供的子信道的一种实施例频谱分块图。
本示例所示的子信道的频谱资源为20MHz。在20MHz频谱资源下的RU大小限定为26,52,106,242。图2所示的20MHz频谱资源的频谱分块图包括四层,中间26大小的RU跨越直流子载波201。第一层202为9个26大小的RU的位置分布,第二层203为4个52大 小和1个26大小的RU的位置分布,第三层204为2个106大小和1个26大小的RU的位置分布,第四层205为1个242大小的RU的位置分布,242大小的RU即为整个20M频谱资源。20MHz的子信道的频谱可以为这4层中任意RU组合而成242个子载波大小的频谱,其中一个例子如该20MHz大小的子信道被分成了四个RU,即106大小、26大小、52大小以及52大小的四个RU。
该子信道的频谱资源还可为40MHz或80MHz等,本申请以子信道的频谱资源为20MHz为例进行说明。
基于图1和图2所示,以下结合图3所示对本申请所提供的传输无线局域网分组结构PPDU的方法的执行流程进行说明:
步骤301、发送设备确定多个子信道。
本实施例中,发送设备(如图1所示的AP101)将发送设备和接收设备(如图1所示的STA102)之间所支持的总频谱资源划分成多个子信道。本实施例以该总频谱资源为160MHz为例,发送设备将该160MHz划分成8个子信道,各子信道的频谱资源为20MHz。需明确的是,本实施例对各子信道的频谱资源大小的说明为可选地示例,不做限定。
该多个子信道中,包括至少一个第一子信道和至少一个第二信道。其中,该第一子信道为未出现干扰的子信道,具体地,该第一子信道所包括的任一RU均未出现干扰。
该第二子信道为已出现干扰的子信道。具体地,该第二子信道包括第一RU以及第二RU,本实施例对第一RU以及第二RU的具体数量不做限定。其中,该第一RU为已出现干扰的RU,该第二RU为未出现干扰的RU。以下继续图2所示进行示例性说明:
例如,图2所示的子信道为已出现干扰的第二子信道,该第二子信道被分成了四个RU,即106大小、26大小、52大小以及52大小的四个RU,若包括26个子载波的RU出现干扰,则该包括26个子载波的RU为第二RU,而包括106个子载波的RU,两个包括52个子载波的RU均为未出现干扰的第一RU。
步骤302、发送设备获取PPDU。
本实施例中,发送设备获取待发送至一个或多个接收设备的PPDU,本实施例以该PPDU向多个接收设备发送为例进行示例性说明。
为更好的理解,以下结合图4所示对PPDU的帧格式进行说明,其中,图4为本申请所提供的PPDU的帧格式的一种实施例示意图。
该PPDU包括前导信息410和数据信息420,该数据信息420为用于向接收设备发送的数据帧。该前导信息410具体包括传统短训练字段(legacy short training field,L-STF)421、传统长训练字段(legacy long training field,L-LTF)422、传统信令字段(legacy signal field,L-SIG)423、传统信令字段的重复(RepeatedL-SIG)424、高效信令字段A(high efficient signal field A,HE-SIG-A)425以及高效信令字段B(high efficient signal field B,HE-SIG-B)426。
其中,该L-STF421用于帧检测、自动增益控制(automatic gain control,AGC)、分集检测、以及粗频率和/或时间同步等。该L-LTF422用于精细的频率和/或时间同步、信道预测等。该L-SIG423用于发送控制信息,该L-SIG423可包括用于指示数据速率和数据长 度的信息。该RepeatedL-SIG424用于L-SIG鲁棒性的增强。该HE-SIG-A425用于承载带宽、AP标识符(APID)等本基本服务集(basic serviceSet,BSS)内的STA都会读取的信息。需明确的是,本实施例对前导信息410的说明为可选地示例,不做限定。
具体地,发送设备将总频谱资源划分成多个子信道,再将各子信道划分成多个RU,利用RU对接收设备进行数据传输。为使得接收设备能够成功地接收到来自发送设备的数据信息,则发送设备需要通过该HE-SIG-B向接收设备发送用于指示资源调度的信息,从而使得接收设备能够基于该HE-SIG-B成功进行数据信息的接收。以下结合图5所示对HE-SIG-B的结构进行说明:
如图5所示,该HE-SIG-B包括公共域501和站点域502。其中,公共域502包括不同的接收设备均需要读取的资源分配指示信息,该资源分配指示消息用于指示传输数据信息的RU的分配情况。例如,用于传输数据信息的RU所位于的子信道以及该RU所包括的子载波的数量等。该站点域502包括发送至不同的接收设备的调度信息。该调度信息用于指示接收设备接收该数据信息的物理层参数。具体地,该HE-SIG-B包括N个调度信息,更具体地,该N个调度信息中包括用于向接收设备1发送的调度信息1,用于向用接收设备2发送的调度信息2……用于向接收设备N发送的调度信息N,本实施例对N的具体取值不做限定。
以调度信息N为例,该调度信息N包括接收设备N的标识511,以使具有该标识511的接收设备N能够根据调度信息N所包括的信息进行数据信息的接收。例如,该接收设备标识511可为站点标识(STA identifier,STA ID)或站点部分标识(STA partial identifier,STA PAID)等。该调度信息N还包括调制与编码策略(modulationand coding scheme,MCS)512、空时流数(numberof space time stream,NSTS)513、编码方式(Coding)514、空时分组编码(space time block coding,STBC)515或波束成形(beam forming,BF)516等。
该MCS512用于指示调制与编码策略,该NSTS513用于指示使用的空时流个数,该Coding514用于指示是否使用低密度奇偶校验码(low density parity check code,LDPC)编码方式,该STBC515用于指示是否采用空时分组编码(space time block coding,STBC),BF516用于指示是否采用了波束成形技术。需明确的是,本实施例对调度信息N所包括的内容的说明为可选地示例,具体不做限定,在其他示例中,该调度信息N还可包括循环冗余码(cyclic redundancy code,CRC)等。
步骤303、发送设备将PPDU划分为第一部分和第二部分。
参见图6所示,在发送设备获取到待发送至接收设备的PPDU600的情况下,发送设备即可对该PPDU600进行划分以形成第一部分610和第二部分620,具体地,该第一部分610包括前导信息611和第一数据信息612,该第二部分仅包括第二数据信息621,对前导信息611的具体说明,请参见图4以及5所示,具体不做赘述。需明确的是,本实施例以第一部分610和第二部分620均为一个为例进行示例性说明,不做限定,在其他示例中,该第一部分610和该第二部分620也可为多个。
步骤304、发送设备发送PPDU。
在发送设备将该PPDU划分成第一部分和第二部分的情况下,发送设备通过该第一子信 道发送该第一部分,并通过该第二子信道发送该第二部分,以下对发送设备发送该PPDU的可选过程进行说明:
示例1
如图7A所示的总频谱资源700所示,在发送设备和接收设备之间具有8个子信道,即第1个子信道,第2个子信道,依次类推,第8个子信道的情况下,8个子信道中的第奇数个子信道所传输的前导信息均相同,例如,第奇数个子信道所传输的前导信息均为前导信息A。而8个子信道中的第偶数个子信道所传输的前导信息均相同,例如,偶数个子信道所传输的前导信息均为前导信息B。
具体地,前导信息A和前导信息B所包括的L-STF、L-LTF、L-SIG、RepeatedL-SIG以及HE-SIG-A均相同,而前导信息A所包括的HE-SIG-B和前导信息B所包括的HE-SIG-B互不相同。
若发送设备和接收设备之间出现干扰,则发送设备和接收设备之间的总频谱资源可参见图7A所示的总频谱资源701所示,本实施例所示的第一子信道和第二子信道为发送设备和接收设备之间的所有子信道中的第奇数个子信道。例如,该第一子信道为未出现干扰的第1个子信道、第5个子信道以及第7个子信道,而第二子信道为出现干扰的第3个子信道。该第3个子信道不再传输前导信息,发送设备通过该第3个子信道(第二子信道)仅传输第二数据信息。发送设备通过第1个子信道、第5个子信道以及第7个子信道所传输的前导信息,用于指示该第二数据信息在第3个子信道中的分配情况。
可见,接收设备可通过该第1个子信道所传输的前导信息,确定该第3个子信道所传输的第二数据信息的分配情况。即PPDU的第一部分所包括的前导信息用于指示PPDU的第一部分所包括的第一数据信息的分配情况以及该PPDU的第二部分所包括的第二数据信息的分配情况。具体地,接收设备能够根据第一子信道所传输的前导信息,确定PPDU的第二部分所包括的第二数据信息在第二子信道中的具体位置,即该第二数据信息具体位于该第二子信道中未出现干扰的哪个或哪几个第二RU上。
示例2
本示例所示的第一子信道和第二子信道为发送设备和接收设备之间的所有子信道中的第偶数个子信道。对发送设备和接收设备之间的子信道的说明,请详见上述示例1所示,具体不做赘述。
参见图7B所示,图7B所示的总频谱资源701的说明,请详见图7A所示,具体不做赘述。若发送设备和接收设备之间出现干扰,则发送设备和接收设备之间的总频谱资源可参见图7B所示的总频谱资源702所示。第一子信道和第二子信道为发送设备和接收设备之间的所有子信道中的第偶数个子信道。即该第一子信道为未出现干扰的第2个子信道、第4个子信道以及第6个子信道,而第二子信道为出现干扰的第8个子信道。该第8个子信道不再传输前导信息,发送设备通过该第8个子信道(第二子信道)仅传输第二数据信息。发送设备通过第2个子信道、第4个子信道以及第6个子信道所传输的前导信息,指示第二数据信息在第8个子信道中的分配情况。
可见,接收设备可通过该第2个子信道所传输的前导信息,确定该第8个子信道所传 输的第二数据信息的分配情况。即PPDU的第一部分所包括的前导信息用于指示PPDU的第一部分所包括的第一数据信息的分配情况以及该PPDU的第二部分所包括的第二数据信息的分配情况。即接收设备能够根据第一子信道所传输的前导信息,确定PPDU的第二部分所包括的第二数据信息在第二子信道中的具体位置,即该第二数据信息具体位于该第二子信道中未出现干扰的哪个或哪几个第二RU上。
示例3
本示例中,前导信息所包括的L-STF、L-LTF、L-SIG、RepeatedL-SIG、HE-SIG-A以及HE-SIG-B在不同的子信道中所传输的均相同。本示例所示的第一子信道和第二子信道为发送设备和接收之间的所有子信道中的任意两个子信道。即本示例所示,用于指示出现干扰的子信道所传输的第二数据信息的分配情况的前导信息,位于未出现干扰的任一子信道中。
可见,在第二子信道出现干扰的情况下,发送设备通过该第二子信道不会进行前导信息的传输,为使得接收设备能够成功地接收到第二子信道所传输的第二数据信息,则发送设备可将用于指示第二子信道所传输的第二数据信息的分配情况的前导信息,设置在任一未出现干扰的子信道中,有效地保证了数据的成功传输。
步骤305、接收设备通过第一子信道接收前导信息。
由上述所示可知,发送设备通过第一子信道向接收设备传输PPDU的第一部分,该第一部分包括前导信息,可见,接收设备即可通过第一子信道接收来自发送设备的前导信息。
本实施例中,因第一信道未出现干扰,则接收设备能够通过该第一子信道接收到该PPDU所包括的前导信息。
本实施例中,接收设备读取该前导信息中的L-STF、L-LTF、L-SIG、RepeatedL-SIG、HE-SIG-A以及包括目标标识的HE-SIG-B,该目标标识为接收设备所具有的标识。具有目标标识的HE-SIG-B用于指示第二数据信息的分配情况,该第二数据信息为发送设备发送给具有该目标标识的接收设备的数据信息。且该第二数据信息仅承载于第二子信道的第二RU中,该第二RU为未出现干扰的RU。例如,第二子信道划分成四个RU,即包括106个子载波的RU、包括26个子载波的RU、两个包括52个子载波的RU。若包括26个子载波的RU、两个包括52个子载波的RU均出现干扰,而包括106个子载波的RU未出现干扰,则该包括106个子载波的RU作为第二RU,发送设备将第二数据信息分配至包括106个子载波的RU中。
步骤306、接收设备通过第二子信道接收第二数据信息。
本实施例以发送设备发送给接收设备的第二数据信息位于已出现干扰的第二子信道上为例进行示例性说明。接收设备根据前导信息确定,需要接收的第二数据信息位于第二子信道的一个或多个第二RU上,则接收设备在该第二RU上接收第二数据信息。继续以步骤305所示的示例为例,接收设备即可根据该前导信息确定第二数据信息分配在包括106个子载波的第二RU中,则接收设备即可在该第二RU上接收该第二数据信息。
本实施例以该接收设备用于接收该第二数据信息为例进行示例性说明,在其他示例中,该接收设备也可接收第一数据信息,该第一数据信息位于未出现干扰的第一子信道中,则接收设备即可根据前导信息的指示,从该第一子信道接收该第一数据信息。可见,本实施例所示的前导信息即用于指示第二数据信息在第二子信道中的分配情况,还用于指示该第 一数据信息在第一子信道中的分配情况。
可见,采用本实施例所示的方法,在第一子信道未出现干扰,且在第二子信道出现干扰的情况下,发送设备可通过该第一子信道传输前导信息,该前导信息用于指示第二数据信息在第二子信道中的分配情况。接收设备即可根据未出现干扰的第一子信道接收该前导信息,进而实现在第二子信道上接收第二数据信息的目的。可见,在第二子信道出现干扰的情况下,发送设备还可通过该第二子信道所包括的未出现干扰的第二RU向接收设备发送第二数据信息,有效地提高了频谱资源的利用效率,避免了频谱资源的浪费。
经由图3所示的实施例可知,发送设备若确定第二子信道所包括的第一RU已出现干扰,则不会对该第一RU进行数据信息的分配,以下结合图8所示的实施例具体说明发送设备是如何将未出现干扰的多个第二RU向接收设备进行分配的过程进行说明:
步骤801、发送设备确定多个子信道。
本实施例所示的步骤801的具体执行过程,请详见图3所示的步骤301所示,具体不做赘述。
具体地,本实施例所示的发送设备可针对除主信道之外的任意子信道进行打孔。因主信道用于对接收设备进行调度,则主信道不支持打孔。本实施例继续以发送设备和接收设备之间包括8个子信道,且第1个子信道为主信道,第2个至第8个子信道为从信道为例进行示例性说明。可见,本实施例所示的第1个子信道不支持打孔,而第2个至第8个子信道均支持打孔,则本实施例所示针对子信道的打孔具有2 7=128种情况。本实施例将不对子信道进行数据信息的分配称之为对子信道的打孔。
在支持对子信道的任意打孔的方式后,发送设备可通过前导信息向接收设备通知具体被打孔的子信道,对前导信息的说明,请详见图3所示的实施例,具体不做赘述。
步骤802、发送设备获取待发送的第二数据信息。
本实施例所示的该第二数据信为用于通过已出现干扰的第二子信道,向具有目标标识的接收设备发送的数据信息。
步骤803、发送设备将第二数据信息拆分至第二子信道所包括的多个第二RU中。
本实施例所示若第二子信道所包括的第一RU出现干扰,发送设备即可针对该第一RU进行打孔,发送设备使用该第二子信道所包括的未出现干扰的第二RU向接收设备进行第二数据信息的发送。其中,本实施例将出现干扰的第一RU不进行数据信息的分配称之为对第一RU的打孔。
可选地,在第二子信道包括有M个未出现干扰的第二RU的情况下,该发送设备可将该M个第二RU分配给N个接收设备,其中,N、M均为正整数,且N小于M。可见,接收设备的数量小于第二RU的数量,一个接收设备可通过多个第二RU进行第二数据信息的接收,从而实现了对打孔后的第二子信道所包括的第二RU的充分使用,为更好的理解,以下以图9所示为例进行示例性说明:
在图9所示的示例中,发送设备将第二数据信息901拆分至第二子信道所包括的未出现干扰的多个第二RU中。
具体地,该第二子信道被划分成四个RU(即RU910、RU911、RU912以及RU913),其中, RU910包括52个子载波、RU911包括52个子载波、RU912包括26个子载波、RU913包括106个子载波。该RU911为出现干扰的第一RU,RU910、RU912以及RU913为未出现干扰的第二RU。可见,在RU911被打孔的情况下,该第二子信道包括不连续的频谱资源。
发送设备将用于向接收设备发送的第二数据信息901按比特拆分至第二子信道所包括的多个第二RU中,即RU910、RU912以及RU913中,从而使得该接收设备能够通过RU910、RU912以及RU913进行第二数据信息的接收,实现了同一个接收设备使用多个第二RU进行第二数据信息接收的目的,进而提高了频谱资源的利用效率。
需明确的是,本实施例将第二数据信息,按照各第二RU所能够承载的比特数进行拆分以分配至多个第二RU中为例进行示例性说明,在其他示例中,发送设备可首先将第二数据信息映射至介质访问控制层协议数据单元(MAC protocol data unit,MPDU)中,再将MPDU进行拆分,以分配至多个第二RU中。
可选地,本实施例以发送设备通过第一子信道和第二子信道传输一个PPDU为例进行示例性说明,在其他示例中,也可通过不同的子信道传输不同的PPDU,也可通过不同的RU传输不同的PPDU。例如,第二子信道所包括的每个第二RU均传输一个PPDU,该PPDU用于承载该第二数据信息。
需明确的是,本实施例第二子信道出现干扰的情况下,如何向一个接收设备分配多个未出现干扰的RU为例进行示例性说明。在其他示例中,发送设备也可向一个接收设备分配未出现干扰的第一子信道所包括的多个RU,具体分配过程请详见步骤802所示,具体不做赘述。
步骤804、发送设备通过第一子信道和第二子信道发送PPDU。
本实施例所示的步骤804所示的过程,请详见图3所示的步骤304所示,具体在本实施例中不做赘述。
在本实施例中,该PPDU的前导信息具体包括该接收设备的目标标识和多个该第二RU的对应关系,继续以图9所示的示例为例,该PPDU所包括的前导信息具体包括接收设备的目标标识和RU910、RU912以及RU913的对应关系,以便于具有该目标标识的接收设备通过该对应关系,确定接收RU910、RU912以及RU913中的第二数据信息。
需明确的是,本实施例以发送设备通过第二子信道传输第二数据信息为例进行示例性,若发送设备通过该第一子信道向接收设备传输第一数据信息,则该前导信息还包括接收设备的目标标识和该第一子信道中已映射第一数据信息的多个RU之间的对应关系,具有该目标标识的接收设备即可通过该对应关系,确定从第一子信道所包括的RU上接收第一数据信息。
步骤805、接收设备通过第一子信道接收前导信息。
步骤806、接收设备通过第二子信道接收第二数据信息。
本实施例所示的步骤805至步骤806的具体执行过程,可参见图3所示的步骤305至步骤306所示,具体不做赘述。
继续以图9所示的示例,接收设备基于前导信息,确定从与该目标标识对应的RU910、RU912以及RU913中接收比特流,并将分别来自于RU910、RU912以及RU913中的比特流进 行合并以形成第二数据信息920。
步骤807、接收设备接收来自发送设备的触发帧。
本实施例中,发送设备为指示接收设备进行第三数据信息的传输,则向该接收设备发送触发帧(Trigger Frames),该触发帧用于指示接收设备向发送设备发送该第三数据信息的发送时间、用于承载数据信息的RU、循环前缀类型等信息。
具体地,本实施例所示若发送设备确定通过第二子信道所包括的未出现干扰的第二RU接收来自接收设备的第三数据信息,则发送设备可通过触发帧向接收设备指示该第二RU。
步骤808、接收设备通过第二RU向发送设备发送第三数据信息。
接收设备根据该触发帧所指示的第二RU进行第三数据信息的发送。发送设备即可通过触发帧所指示的第二RU,接收来自接收设备发送的第三数据信息。
可选地,若发送设备确定通过第一子信道所包括的RU接收来自接收设备的上行业务数据,则发送设备可通过触发帧向接收设备指示第一子信道所包括的RU,接收设备即可通过触发帧所指示的第一子信道所包括的RU进行第三数据信息的发送。
采用本实施例所示的方法,发送设备能够使用第二子信道所包括的未出现干扰的第二RU向接收设备进行第二数据信息的传输,而且接收设备的数量小于或等于第二RU的数量,实现了一个接收设备使用多个第二RU接收第二数据信息的目的,有效地保证了第二子信道所包括的第二RU的充分使用,提高了对接收设备进行数据信息传输的效率。
以下结合图10所示对本实施例所示的方法,说明如何针对一个接收设备有效地提高频谱资源的传输性能的过程:
步骤1001、发送设备确定多个子信道。
本实施例所示的步骤1001的具体执行过程请详见图3所示的步骤301所示,具体不做赘述。
步骤1002、发送设备在多个子信道中确定频谱资源。
本实施例中,该频谱资源分配给一个接收设备,发送设备即可通过该频谱资源向该接收设备发送数据信息。该频谱资源包括多个子载波,本实施例对频谱资源的大小不做限定,例如,该频谱资源可为160M、80M或20M等。
步骤1003、若发送设备确定该频谱资源所包括的两个子载波的SNR的差大于或等于预设值,则触发执行步骤1004。
本实施例中,发送设备在将频谱资源分配给接收设备的情况下,接收设备即可基于已分配的频谱资源进行数据信息的接收。但是,该频谱资源所包括的多个子载波的信噪比(signal noise ratio,SNR)不同,发送设备在频谱资源中,通过SNR最低的子载波的调制方式作为该频谱资源所包括的所有子载波的调制方式,可见,该频谱资源的传输性能受制于SNR较低的子载波。
例如,图11所示的频谱资源1100包括多个子载波,多个子载波中的子载波1101的SNR最低,则该频谱资源1100的传输性能受制于该子载波1101的SNR,该频谱资源1100所包括的SNR比较高的子载波没有被充分的利用,降低了频谱资源的传输性能。
为提高频谱资源的传输性能,则发送设备首先判断将该频谱资源分配给接收设备,该 频谱资源的SNR是否均衡,具体地,若发送设备确定该频谱资源所包括的两个子载波的SNR的差大于或等于预设值,则说明该频谱资源的SNR不均衡。
可选地,该发送设备可计算该频谱资源所包括的多个子载波的多个SNR中,SNR最高值和SNR最低值之间的差是否大于或等于该预设值。还可选地,发送设备也可计算该频谱资源所包括的任意两个子载波的SNR之间的差,只要有一对或多对子载波的SNR的差大于或等于该预设值,则发送设备确定该频谱资源的SNR不均衡。
步骤1004、发送设备对频谱资源进行拆分以形成多个子频谱资源。
在发送设备确定该频谱资源的SNR不均衡的情况下,发送设备对该频谱资源进行拆分以形成多个子频谱资源,该子频谱资源可为第二RU、第一子信道或第一子信道所包括的RU,具体在本实施例中不做限定,继续参见图11所示为例,发送设备将该频谱资源1100拆分为两个子频谱资源,即第二RU1110和第二RU1111。可见,该第二RU1110的调制方式和第二RU1111的调制方式不同。需明确的是,本实施例所示,在将频谱资源拆分成多个子频谱资源的情况下,只要该多个子频谱资源中至少部分子频谱资源的调制方式不同即可。
可见,该第二RU1110的调制方式受制于具有SNR最小值的子载波1102的SNR,而子载波1102的SNR大于对频谱资源进行切分前的子载波1101的SNR,有效地提高了第二RU1110的传输性能。第二RU1111的调制方式受制于具有SNR最小值的子载波1103的SNR,拆分后的子载波1103所具有的SNR与拆分前的子载波1101所具有的SNR相等,而第二RU1111所包括的不同的子载波的SNR之间的差,相对于拆分前的不同的子载波的SNR之间的差更均衡,从而提高了第二RU1111的传输性能。
步骤1005、发送设备通过多个子频谱资源向接收设备发送数据信息。
在本实施例所示的各子频谱资源为第二RU的情况下,该发送设备可通过该第二RU向接收设备发送数据信息,具体发送过程,可参见图3以及图8所示的实施例,具体在本实施例中不做限定。
采用本实施例所示的方法,针对单一的接收设备,若确定分配给该接收设备的频谱资源的SNR不均衡,则导致该频谱资源所包括的SNR较高的子载波没有被充分使用,该发送设备将该频谱资源进行划分以形成多个子频谱资源,多个子频谱资源中至少部分子频谱资源的调制方式不同,发送设备即可基于子频谱资源与接收设备之间进行数据信息的交互,从而提高了SNR较高的子载波的利用率,提高了频谱资源的传输性能。
图10所示的实施例说明了针对一个接收设备如何有效地提高频谱资源的传输性能的过程,以下结合图12所示的实施例说明针对多个接收设备如何有效地提高频谱资源的传输性能,本实施例以该多个接收设备包括第一接收设备和第二接收设备为例进行示例性说明,需明确的是,本实施例以该多个接收设备包括两个接收设备为例进行示例性说明,在其他示例中,发送设备也可针对两个以上的任意数量的接收设备进行频谱资源的分配。
步骤1201、发送设备确定多个子信道。
本实施例所示的步骤1201的具体执行过程请详见图3所示的步骤301所示,具体不做赘述。
步骤1202、发送设备在多个子信道中确定多个频谱资源。
对频谱资源的说明可参见图10所示的步骤1002所示,具体不做赘述。可见,本实施例所示的不同的频谱资源可包括不同的第二RU,也可包括不同的第一子信道所包括的RU,还可包括不同的第一子信道等,具体在本实施例中不做限定。只要不同的频谱资源包括不同的子载波即可。
步骤1203、发送设备获取多个频谱资源对应的多个第一差值。
本实施例中,发送设备通过如下所示的公式1获取第一差值:
公式1:第一差值=将频谱资源分配给第一接收设备时的SNR和将该频谱资源分配给第二接收设备时的SNR的差值。
发送设备基于该公式1,对多个频谱资源中的每个频谱资源进行计算以获取多个第一差值。
步骤1204、发送设备确定第一频谱资源。
本实施例中,发送设备将对应多个第一差值中较大值的频谱资源确定为第一频谱资源,并将已确定的该第一频谱资源分配给第一接收设备。
为更好的理解,以下结合表1所示进行说明:
表1
Figure PCTCN2021088261-appb-000001
由表1所示可知,发送设备和接收设备之间具有四个频谱资源,即频谱资源A、B、C以及D。以频谱资源A为例,发送设备基于上述公式1确定出将该频谱资源A对应的第一差值为8分贝(db),依次类推,与频谱资源B对应的第一差值为7db,与频谱资源C对应的第一差值为9db,与频谱资源D对应的第一差值为7db。
发送设备即可将四个第一差值中,与具有较大值的第一差值对应的频谱资源确定为第一频谱资源,并将该第一频谱资源分配给第一接收设备。如表1所示,发送设备将频谱资源A与频谱资源C确定为第一频谱资源。
本实施例所示,为避免在第一接收设备距离发送设备比较近,从而导致发送设备确定出所有频谱资源的第一差值均比较高,从而将所有频谱资源都分配给第一接收设备,而使得第二接收设备无法与发送设备之间进行数据信息交互的情况,则通过如下步骤所示对距离发送设备比较远的第二接收设备进行频谱资源的分配。
步骤1205、发送设备获取多个频谱资源对应的多个第二差值。
本实施例中,发送设备通过如下所示的公式2获取第二差值:
公式1:第二差值=将频谱资源分配给第二接收设备时的SNR和将该频谱资源分配给第一接收设备时的SNR的差值。
发送设备基于该公式2,对多个频谱资源中的每个频谱资源进行计算以获取多个第二 差值。
步骤1206、发送设备确定第二频谱资源。
具体地,发送设备将对应多个第二差值中较大值的频谱资源确定为第二频谱资源,发送设备将已确定的该第二频谱资源分配给第二接收设备。
为更好的理解,以下结合表2所示进行说明:
表2
Figure PCTCN2021088261-appb-000002
由表2所示可知,发送设备和接收设备之间具有四个频谱资源,即频谱资源A、B、C以及D。以频谱资源A为例,发送设备基于上述公式2确定出将该频谱资源A对应的第二差值为18db,依次类推,与频谱资源B对应的第二差值为-7db,与频谱资源C对应的第二差值为-9db,与频谱资源D对应的第二差值为-7db。
可见,在四个第二差值中,较大的第二差值为频谱资源B对应的第二差值以及频谱资源D对应的第二差值,则发送设备将频谱资源B与频谱资源D确定为第二频谱资源。
步骤1207、发送设备通过第一频谱资源向第一接收设备发送数据信息。
步骤1208、发送设备通过第二频谱资源向第二接收设备发送数据信息。
发送设备通过已分配完成的第一频谱资源以及第二频谱资源,向第一接收设备和第二接收设备发送数据信息的具体过程,请详见图3以及图8所示的实施例,具体在本实施例中不做赘述。
采用本实施例所示的方法,针对多个接收设备,可向每个接收设备分配SNR较高的频谱资源,从而有效地提高了SNR较高的子载波的利用率,提高了频谱资源的传输性能。
前述对本申请提供的传输无线局域网分组结构PPDU的方法的执行流程进行了说明,下面基于前述的方法,对本申请提供的网络设备进行详细说明。其中,图13为本申请提供的网络设备的一种实施例结构示意图,该网络设备1300包括:处理单元1301和与该处理单元1301连接的收发单元1302;
若该网络设备1300为执行上述方法实施例中的发送设备,则该处理单元1301用于确定多个子信道,该多个子信道包括至少一个第一子信道以及至少一个第二子信道;收发单元1302,用于通过该第一子信道发送PPDU的第一部分,该第一部分包括前导信息和第一数据信息;该收发单元1302还用于,通过该第二子信道发送该PPDU的第二部分,该第二部分仅包括第二数据信息,该前导信息用于指示该第一数据信息和该第二数据信息的分配情况。
可选地,该第二子信道包括至少一个未出现干扰的第二RU,该处理单元1301还用于:获取待向接收设备发送的该第二数据信息;将该第二数据信息拆分至该第二子信道所包括 的多个第二RU中。
可选地,该处理单元1301还用于:在该多个子信道中确定频谱资源,该频谱资源包括多个子载波;若确定将该频谱资源分配给接收设备,则两个子载波的SNR的差大于或等于预设值,则对该频谱资源进行拆分以形成多个子频谱资源,该多个子频谱资源中至少部分子频谱资源的调制方式不同。
可选地,该处理单元1301还用于:在该多个子信道中确定多个频谱资源,每个该频谱资源包括多个子载波;获取该多个频谱资源对应的多个第一差值,该第一差值为将该频谱资源分配给第一接收设备时的信噪比SNR和将该频谱资源分配给第二接收设备时的SNR的差值;将对应该多个第一差值中较大值的该频谱资源分配给该第一接收设备。
可选地,该处理单元1301还用于:获取该多个频谱资源对应的多个第二差值,该第二差值为将该频谱资源分配给该第二接收设备时的SNR和将该频谱资源分配给该第一接收设备时的SNR的差值;将对应该多个第二差值中较大值的该频谱资源分配给该第二接收设备。
该第二子信道包括至少一个未出现干扰的第二RU,该收发单元1302还用于:向接收设备发送触发帧,该触发帧用于指示该接收设备通过该第二RU向该发送设备发送第三数据信息;通过该第二RU接收来自该接收设备的该第三数据信息。
若该网络设备1300为执行上述方法实施例中的接收设备,则该收发单元1302,用于通过第一子信道接收PPDU的第一部分所包括的前导信息,该第一部分还包括第一数据信息;该处理单元1301,用于根据该前导信息确定该第一数据信息在该第一子信道内的分配情况以及第二数据信息在第二子信道内的分配情况,该PPDU的第二部分仅包括的该第二数据信息;该收发单元1302还用于,根据该前导信息,通过该第二子信道接收该第二数据信息。
可选地,该第二子信道包括至少一个未出现干扰的第二RU,该第二数据信息已被拆分至该第二子信道所包括的多个该第二RU中,该收发单元1302还用于:通过多个该第二RU接收多个比特流;该处理单元1301还用于:将该多个比特流进行合并以形成该第二数据信息。
可选地,该第一数据信息已被拆分至该第一子信道所包括的多个RU中,该收发单元1302还用于:通过该第一子信道所包括的多个RU接收多个比特流;该处理单元1301还用于:将该多个比特流进行合并以形成该第二数据信息。
可选地,该第二子信道包括至少一个未出现干扰的第二RU,则该收发单元1302还用于:接收来自该发送设备的触发帧,该触发帧用于指示该接收设备通过该第二RU向该发送设备发送第三数据信息;根据该触发帧,通过该第二RU向该发送设备发送该第三数据信息。
图14为本申请提供的一种网络设备的结构示意图。该网络设备包括处理器1401、存储器1402和收发器1403。该处理器1401、存储器1402和收发器1403通过线路互联。其中,存储器1402中存储有程序指令和数据。本实施例所示的网络设备可为前述实施例所示的发送设备或接收设备。
存储器1402中存储了前述图3、图8、图10以及图12对应的实施方式中,由网络设备执行的步骤对应的程序指令以及数据。处理器1401用于执行前述图3、图8、图10以及图12中任一实施例所示的由网络设备执行的与处理相关的步骤。收发器1403用于执行前 述图3、图8、图10以及图12中任一实施例所示的由网络设备执行的与收发相关的步骤。
在图3中,作为发送设备的网络设备所包括的处理器1401用于执行步骤301、步骤302、步骤303,该收发器1403用于执行步骤304。作为接收设备的网络设备所包括的收发器1403用于执行步骤305以及步骤306。
在图8中,作为发送设备的网络设备所包括的处理器1401用于执行步骤801、步骤802、步骤803,该收发器1403用于执行步骤804。作为接收设备的网络设备所包括的收发器1403用于执行步骤805、步骤806、步骤807以及步骤808。
在图10中,作为发送设备的网络设备所包括的处理器1401用于执行步骤1001、步骤1002、步骤1003以及步骤1004,该收发器1403用于执行步骤1005。
在图12中,作为发送设备的网络设备所包括的处理器1401用于执行步骤1201、步骤1202、步骤1203、步骤1204、步骤1205以及步骤1206,该收发器1403用于执行步骤1207以及步骤1208。
本申请实施例还提供一种数字处理芯片。该数字处理芯片中集成了用于实现上述处理器1401的功能的电路和一个或者多个接口。当该数字处理芯片中集成了存储器时,该数字处理芯片可以完成前述实施例中的任一个或多个实施例的方法步骤。当该数字处理芯片中未集成存储器时,可以通过接口与外置的存储器连接。该数字处理芯片根据外置的存储器中存储的程序代码来实现上述实施例中发送设备或接收设备执行的动作。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (25)

  1. 一种传输无线局域网分组结构PPDU的方法,其特征在于,所述方法包括:
    发送设备确定多个子信道,所述多个子信道包括至少一个第一子信道以及至少一个第二子信道;
    所述发送设备通过所述第一子信道发送PPDU的第一部分,所述第一部分包括前导信息和第一数据信息;
    所述发送设备通过所述第二子信道发送所述PPDU的第二部分,所述第二部分仅包括第二数据信息,所述前导信息用于指示所述第一数据信息和所述第二数据信息的分配情况。
  2. 根据权利要求1所述的方法,其特征在于,所述第一子信道所包括的各时频资源块RU均未出现干扰;所述第二子信道包括至少一个第一RU以及至少一个第二RU,其中,所述第一RU为已出现干扰的RU,所述第二RU为未出现干扰的RU。
  3. 根据权利要求2所述的方法,其特征在于,所述前导信息用于指示所述至少一个第二RU传输所述第二数据信息的情况。
  4. 根据权利要求2或3所述的方法,其特征在于,所述前导信息用于指示不对所述至少一个第一RU进行分配。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,所述第一子信道和所述第二子信道均为所述多个子信道中的第奇数个子信道,或,所述第一子信道和所述第二子信道均为所述多个子信道中的第偶数个子信道。
  6. 根据权利要求1至4任一项所述的方法,其特征在于,所述第一子信道和所述第二子信道为所述多个子信道中任意两个子信道。
  7. 根据权利要求2至4任一项所述的方法,其特征在于,所述发送设备通过所述第二子信道发送所述PPDU的第二部分之前,所述方法还包括:
    所述发送设备获取待向接收设备发送的所述第二数据信息;
    所述发送设备将所述第二数据信息拆分至所述第二子信道所包括的多个所述第二RU中。
  8. 根据权利要求2、3、4或7任一项所述的方法,其特征在于,所述方法还包括:
    所述发送设备向接收设备发送触发帧,所述触发帧用于指示所述接收设备通过所述第二RU向所述发送设备发送第三数据信息;
    所述发送设备通过所述第二RU接收来自所述接收设备的所述第三数据信息。
  9. 一种传输无线局域网分组结构PPDU的方法,其特征在于,所述方法包括:
    接收设备通过第一子信道接收PPDU的第一部分所包括的前导信息,所述第一部分还包括第一数据信息,所述前导信息用于指示所述第一数据信息在所述第一子信道内的分配情况以及第二数据信息在第二子信道内的分配情况,所述PPDU的第二部分仅包括的所述第二数据信息;
    所述接收设备根据所述前导信息,通过所述第二子信道接收所述第二数据信息。
  10. 根据权利要求9所述的方法,其特征在于,所述第一子信道所包括的各时频资源块RU均未出现干扰;所述第二子信道包括至少一个第一RU以及至少一个第二RU,其中,所 述第一RU为已出现干扰的RU,所述第二RU为未出现干扰的RU。
  11. 根据权利要求10所述的方法,其特征在于,所述前导信息用于指示所述至少一个第二RU传输所述第一数据信息的情况。
  12. 根据权利要求10或11所述的方法,其特征在于,所述前导信息用于指示不对所述至少一个第一RU进行分配。
  13. 根据权利要求9至12任一项所述的方法,其特征在于,所述第一子信道和所述第二子信道均为所述多个子信道中的第奇数个子信道,或,所述第一子信道和所述第二子信道均为所述多个子信道中的第偶数个子信道。
  14. 根据权利要求9至12任一项所述的方法,其特征在于,所述第一子信道和所述第二子信道为所述多个子信道中任意两个子信道。
  15. 根据权利要求10至12任一项所述的方法,其特征在于,所述第二数据信息已被拆分至所述第二子信道所包括的多个所述第二RU中,所述接收设备根据所述前导信息,通过所述第二子信道接收所述第二数据信息包括:
    所述接收设备通过多个所述第二RU接收多个比特流;
    所述接收设备将所述多个比特流进行合并以形成所述第二数据信息。
  16. 根据权利要求10、11、12或15任一项所述的方法,其特征在于,所述方法还包括:
    所述接收设备接收来自所述发送设备的触发帧,所述触发帧用于指示所述接收设备通过所述第二RU向所述发送设备发送第三数据信息;
    所述接收设备根据所述触发帧,通过所述第二RU向所述发送设备发送所述第三数据信息。
  17. 一种发送设备,其特征在于,包括:
    处理单元,用于确定多个子信道,所述多个子信道包括至少一个第一子信道以及至少一个第二子信道;
    收发单元,用于通过所述第一子信道发送PPDU的第一部分,所述第一部分包括前导信息和第一数据信息;
    所述收发单元还用于,通过所述第二子信道发送所述PPDU的第二部分,所述第二部分仅包括第二数据信息,所述前导信息用于指示所述第一数据信息和所述第二数据信息的分配情况。
  18. 根据权利要求17所述的发送设备,其特征在于,所述第二子信道包括至少一个未出现干扰的第二RU,所述处理单元还用于:
    获取待向接收设备发送的所述第二数据信息;
    将所述第二数据信息拆分至所述第二子信道所包括的多个第二RU中。
  19. 根据权利要求17或18所述的发送设备,其特征在于,所述第二子信道包括至少一个未出现干扰的第二RU,所述收发单元还用于:
    向接收设备发送触发帧,所述触发帧用于指示所述接收设备通过所述第二RU向所述发送设备发送第三数据信息;
    通过所述第二RU接收来自所述接收设备的所述第三数据信息。
  20. 一种接收设备,其特征在于,包括:
    收发单元,用于通过第一子信道接收PPDU的第一部分所包括的前导信息,所述第一部分还包括第一数据信息;
    处理单元,用于根据所述前导信息确定所述第一数据信息在所述第一子信道内的分配情况以及第二数据信息在第二子信道内的分配情况,所述PPDU的第二部分仅包括的所述第二数据信息;
    所述收发单元还用于,根据所述前导信息,通过所述第二子信道接收所述第二数据信息。
  21. 根据权利要求20所述的接收设备,其特征在于,所述第二子信道包括至少一个未出现干扰的第二RU,所述第二数据信息已被拆分至所述第二子信道所包括的多个所述第二RU中,所述收发单元还用于:
    通过多个所述第二RU接收多个比特流;
    所述处理单元还用于:
    将所述多个比特流进行合并以形成所述第二数据信息。
  22. 根据权利要求20或21所述的接收设备,其特征在于,所述第二子信道包括至少一个未出现干扰的第二RU,则所述收发单元还用于:
    接收来自所述发送设备的触发帧,所述触发帧用于指示所述接收设备通过所述第二RU向所述发送设备发送第三数据信息;
    根据所述触发帧,通过所述第二RU向所述发送设备发送所述第三数据信息。
  23. 一种通信系统,包括发送设备和接收设备,所述发送设备如权利要求17至19任一项所示,所述接收设备如权利要求20至权利要求22任一项所示。
  24. 一种网络设备,包括:处理器、存储器以及收发器;
    该存储器和该处理器通过线路互联,该处理器与该收发器通过线路互联,该存储器中存储有指令,该指令用于所述网络设备作为发送设备执行权利要求1-8所述的步骤。
  25. 一种网络设备,包括:处理器、存储器以及收发器;
    该存储器和该处理器通过线路互联,该处理器与该收发器通过线路互联,该存储器中存储有指令,该指令用于所述网络设备作为接收设备执行权利要求9-16所述的步骤。
PCT/CN2021/088261 2020-04-30 2021-04-20 传输无线局域网分组结构ppdu的方法、相关设备以及系统 WO2021218692A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21795367.8A EP4135386A4 (en) 2020-04-30 2021-04-20 METHOD OF TRANSMITTING A PLCP PROTOCOL DATA UNIT (PPDU), ASSOCIATED DEVICE AND SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010366107.3A CN113597000A (zh) 2020-04-30 2020-04-30 传输无线局域网分组结构ppdu的方法、相关设备以及系统
CN202010366107.3 2020-04-30

Publications (1)

Publication Number Publication Date
WO2021218692A1 true WO2021218692A1 (zh) 2021-11-04

Family

ID=78237456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/088261 WO2021218692A1 (zh) 2020-04-30 2021-04-20 传输无线局域网分组结构ppdu的方法、相关设备以及系统

Country Status (3)

Country Link
EP (1) EP4135386A4 (zh)
CN (1) CN113597000A (zh)
WO (1) WO2021218692A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024002080A1 (zh) * 2022-06-27 2024-01-04 华为技术有限公司 数据传输的方法和通信装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107046460A (zh) * 2016-02-06 2017-08-15 华为技术有限公司 一种无线局域网中信道指示的方法和装置
US20170273112A1 (en) * 2014-05-09 2017-09-21 Interdigital Patent Holdings, Inc. Method and system for sounding and channel selection
CN109120306A (zh) * 2017-06-26 2019-01-01 华为技术有限公司 Wup发送方法、wup接收方法、装置、ap、wur sta及存储介质

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10327226B2 (en) * 2014-12-12 2019-06-18 Newracom, Inc. Method and apparatus for resource allocation for multiple user transmission in a High Efficiency wireless LAN
US10111270B2 (en) * 2015-05-26 2018-10-23 Lg Electronics Inc. Method and apparatus for receiving signal by using resource units in a wireless local area system
US10154520B1 (en) * 2015-09-14 2018-12-11 Newracom, Inc. Methods for random access in a wireless network
US10251199B2 (en) * 2016-03-29 2019-04-02 Lg Electronics Inc. Method for transmitting frame in wireless local area network and wireless device using the same
CN107509252B (zh) * 2016-06-14 2021-06-15 华为技术有限公司 一种数据传输方法及装置
JP7175998B2 (ja) * 2018-06-13 2022-11-21 インテル コーポレイション 既存のシステムにより部分的に占有される無線周波数チャネルの利用向上
US11245501B2 (en) * 2018-09-04 2022-02-08 Qualcomm Incorporated Multi-access point scheduling in wireless local area networks

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170273112A1 (en) * 2014-05-09 2017-09-21 Interdigital Patent Holdings, Inc. Method and system for sounding and channel selection
CN107046460A (zh) * 2016-02-06 2017-08-15 华为技术有限公司 一种无线局域网中信道指示的方法和装置
CN109120306A (zh) * 2017-06-26 2019-01-01 华为技术有限公司 Wup发送方法、wup接收方法、装置、ap、wur sta及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4135386A4

Also Published As

Publication number Publication date
EP4135386A1 (en) 2023-02-15
EP4135386A4 (en) 2023-07-05
CN113597000A (zh) 2021-11-02

Similar Documents

Publication Publication Date Title
US11470595B2 (en) Wireless communication method and wireless communication terminal, which use discontinuous channel
US9867189B2 (en) Resource allocation indication for multi-user multiple-input-multiple-output (MU-MIMO) orthogonal frequency division multiple access (OFDMA) communication
US11457097B2 (en) Doppler mode in a wireless network
US10057806B2 (en) Multi-user communication in wireless networks
TWI602414B (zh) 在wlan系統中多使用者並行頻道存取
US11765773B2 (en) Method and device for transmitting and receiving PPDU on basis of FDD in wireless LAN system
CN112787791B (zh) 使用触发信息的无线通信方法、和无线通信终端
US20210328741A1 (en) Method and device for transceiving frame in wireless lan system
KR102117635B1 (ko) 무선 통신 방법 및 무선 통신 단말
WO2021218692A1 (zh) 传输无线局域网分组结构ppdu的方法、相关设备以及系统
WO2022148234A1 (zh) 组播反馈方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21795367

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021795367

Country of ref document: EP

Effective date: 20221111

NENP Non-entry into the national phase

Ref country code: DE