WO2021218512A1 - 非ip类型数据的传输处理方法、设备、装置及介质 - Google Patents

非ip类型数据的传输处理方法、设备、装置及介质 Download PDF

Info

Publication number
WO2021218512A1
WO2021218512A1 PCT/CN2021/083213 CN2021083213W WO2021218512A1 WO 2021218512 A1 WO2021218512 A1 WO 2021218512A1 CN 2021083213 W CN2021083213 W CN 2021083213W WO 2021218512 A1 WO2021218512 A1 WO 2021218512A1
Authority
WO
WIPO (PCT)
Prior art keywords
relay
pdu session
qos flow
identifier
data
Prior art date
Application number
PCT/CN2021/083213
Other languages
English (en)
French (fr)
Inventor
邓强
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to US17/918,708 priority Critical patent/US20230354085A1/en
Priority to EP21795508.7A priority patent/EP4145906A4/en
Publication of WO2021218512A1 publication Critical patent/WO2021218512A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/22Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user

Definitions

  • the present disclosure relates to the field of wireless communication technology, and in particular to a method, equipment, device and medium for transmission and processing of non-IP type data.
  • FIG. 1 is a schematic diagram of the ProSe UE-to-Network Relay architecture, and the network architecture is shown in Figure 1.
  • Figure 2 is a schematic diagram of the ProSe UE-to-Network Relay communication process. As shown in the figure, it mainly includes:
  • the network provides the Remote UE and Relay UE with parameters required for ProSe communication (PC5 interface communication), such as the Relay Service Code (relay service code) used to select the Relay UE.
  • PC5 interface communication such as the Relay Service Code (relay service code) used to select the Relay UE.
  • PDU session establishment PDU session establishment; PDU: Protocol Data Unit).
  • the Relay UE establishes a relay PDU session of the Uu interface, and the PDU session is used to relay the data of the Remote UE.
  • the Relay UE obtains the IPv6 prefix from the network through the IPv6 prefix proxy function.
  • the Remote UE performs the discovery process and discovers the Relay UE.
  • Relay UE may establish a new PDU session or modify existing PDU session for relaying (Relay UE may establish a new PDU session or modify an existing PDU session for relaying).
  • the Remote UE selects the Relay UE and establishes one-to-one direct communication.
  • the communication interface between the Remote UE and the Relay UE is the PC5 interface. If a new PDU session needs to be created, the Relay UE initiates a new PDU session establishment process.
  • IP address/prefix allocation IP address/prefix allocation
  • the Relay UE allocates an IP address to the Remote UE.
  • the Remote UE communicates with the network through the PDU session established by the Relay UE.
  • the Relay UE maps the IP packets received from the Remote UE to the corresponding PDU session through a packet filter; for downlink data, the Relay UE will receive IP packets from the PDU session and pass the Remote UE IP The address is mapped to the corresponding PC5 unicast communication link.
  • the communication system needs to support IP, Ethernet (Ethernet) and Unstructured (unstructured) three types of PDU session data transmission.
  • Ethernet Ethernet
  • Unstructured unstructured
  • the present disclosure provides a non-IP type data transmission processing method, equipment, device, and medium to solve the problem that the remote UE in the proximity service does not support the transmission of non-IP type data with the network through the Relay UE in the prior art.
  • the embodiments of the present disclosure provide a non-IP type data transmission processing method, including:
  • the relay UE sends a PDU session request message to the session management function SMF to establish a QoS flow supporting non-IP data transmission on the Uu interface;
  • the relay UE receives the PDU session response message sent by the SMF, where the response message includes the flow identifier of the QoS flow;
  • the relay UE forwards data according to the flow identifier.
  • the non-IP type data is unstructured type data or Ethernet type data.
  • the relay UE sends a PDU session request message to the session management function to establish a QoS flow supporting non-IP data transmission on the Uu interface, including:
  • the relay UE carries a PDU session identifier and relay indication information in a PDU session request message, and the relay indication information is used to indicate to the SMF that the PDU session is data for which the relay UE is a relay remote UE. Established; or,
  • the relay UE carries the PDU session identifier and QoS information in the PDU session request message, and the QoS information is used to instruct the SMF to create a new QoS flow.
  • the method further includes:
  • the relay UE and the remote UE exchange the relay service code and the corresponding PDU session type during the relay discovery process.
  • the method includes:
  • the relay UE includes the relay service code and the corresponding PDU session type in the relay discovery broadcast message, or,
  • the relay UE receives the relay discovery request message sent by the remote UE, and the request message includes the relay service code and the corresponding PDU session type.
  • the method further includes:
  • the relay UE receives the connection establishment request message sent by the remote UE, and the request message includes the PC5 link identifier and the PC5 flow identifier on the PC5 interface.
  • the relay UE forwarding data according to the flow identifier includes:
  • the relay UE determines the mapping relationship between the PC5 link identifier and the PC5 flow identifier, and the PDU session identifier and the QoS flow identifier;
  • the relay UE forwards data according to the mapping relationship.
  • the non-IP type data is unstructured type data
  • the relay UE performing data transmission according to the mapping relationship includes:
  • the relay UE For uplink data, the relay UE sends the data received from the QoS flow of the PC5 interface to the QoS flow of the corresponding Uu interface according to the mapping relationship; and/or,
  • the relay UE For downlink data, the relay UE sends the data received from the QoS flow of the Uu interface to the corresponding QoS flow of the PC5 interface according to the mapping relationship.
  • the method further includes:
  • the relay UE receives the relay service code and the corresponding PDU session type provided by the PCF.
  • the embodiments of the present disclosure provide a non-IP type data transmission processing method, including:
  • the SMF receives a request message sent by the relay UE to establish a QoS flow PDU session supporting non-IP data transmission on the Uu interface;
  • the SMF returns the QoS flow identifier to the relay UE.
  • the SMF receiving the request message sent by the relay UE to establish a QoS flow PDU session supporting non-IP data transmission on the Uu interface includes:
  • the relay UE carries a PDU session identifier and relay indication information in a PDU session request message, and the relay indication information is used to indicate to the SMF that the PDU session is data for which the relay UE is a relay remote UE. Established; or,
  • the relay UE carries the PDU session identifier and QoS information in the PDU session request message, and the QoS information is used to instruct the SMF to create a new QoS flow.
  • the method further includes:
  • SMF allocates an IPv6 prefix and a user datagram protocol UDP port for the QoS flow
  • the SMF sends the association relationship between the QoS flow identifier and the associated IPv6 prefix and UDP port to the UPF.
  • the method further includes:
  • the SMF receives the PDU session identifier sent by the relay UE during the PDU session modification process and the instruction to establish a new QoS flow;
  • the SMF returns the QoS flow identifier to the relay UE.
  • the SMF returns the QoS flow identifier to the relay UE through a session modification response message.
  • the embodiments of the present disclosure provide a relay UE, including:
  • the processor is used to read the program in the memory and execute the following process:
  • Transceiver used to receive and send data under the control of the processor.
  • the non-IP type data is unstructured type data or Ethernet type data.
  • sending a PDU session request message to the session management function to establish a QoS flow supporting non-IP data transmission on the Uu interface includes:
  • the PDU session request message carries a PDU session identifier and relay indication information, where the relay indication information is used to indicate to the SMF that the PDU session is established by the relay UE to relay the data of the remote UE; or ,
  • the PDU session request message carries the PDU session identifier and QoS information, and the QoS information is used to instruct the SMF to create a new QoS flow.
  • the UE further includes:
  • the UE includes:
  • the UE further includes:
  • forwarding data according to the flow identifier includes:
  • Data forwarding is performed according to the mapping relationship.
  • the non-IP type data is unstructured type data
  • performing data transmission according to the mapping relationship includes:
  • For uplink data send the data received from the QoS flow of the PC5 interface to the QoS flow of the corresponding Uu interface according to the mapping relationship; and/or,
  • the data received from the QoS flow of the Uu interface is sent to the corresponding QoS flow of the PC5 interface according to the mapping relationship.
  • the UE further includes:
  • the relay UE receives the relay service code and the corresponding PDU session type provided by the PCF.
  • an SMF including:
  • the processor is used to read the program in the memory and execute the following process:
  • Transceiver used to receive and send data under the control of the processor.
  • receiving a request message sent by the relay UE to establish a QoS flow PDU session supporting non-IP type data transmission on the Uu interface includes:
  • the relay UE carries a PDU session identifier and relay indication information in a PDU session request message, and the relay indication information is used to indicate to the SMF that the PDU session is data for which the relay UE is a relay remote UE. Established; or,
  • the relay UE carries the PDU session identifier and QoS information in the PDU session request message, and the QoS information is used to instruct the SMF to create a new QoS flow.
  • the SMF further includes:
  • SMF allocates an IPv6 prefix and a user datagram protocol UDP port for the QoS flow
  • the SMF sends the association relationship between the QoS flow identifier and the associated IPv6 prefix and UDP port to the UPF.
  • the SMF further includes:
  • the QoS flow identifier is returned to the relay UE through a session modification response message.
  • the embodiment of the present disclosure provides a non-IP type data transmission and processing device, including:
  • the relay UE sending module is used to send a PDU session request message to the session management function SMF to establish a QoS flow supporting non-IP data transmission on the Uu interface;
  • the relay UE receiving module is configured to receive the PDU session response message sent by the SMF, the response message containing the flow identifier of the QoS flow;
  • the relay UE forwarding module is used to forward data according to the flow identifier.
  • the embodiment of the present disclosure provides a non-IP type data transmission and processing device, including:
  • the SMF receiving module is used to receive a request message sent by the relay UE to establish a QoS flow PDU session supporting non-IP data transmission on the Uu interface;
  • the SMF sending module is used to return the QoS flow identifier to the relay UE.
  • the embodiments of the present disclosure provide a computer-readable storage medium that stores a computer program that executes the foregoing non-IP-type data transmission processing method.
  • the Relay UE sends a PDU session request message to the SMF to establish a QoS flow supporting non-IP data transmission on the Uu interface, and receives the flow of the SMF to establish a QoS flow for the non-IP data type PDU session ID, the relay UE can forward data according to the flow ID of the QoS flow;
  • the SMF will send the association relationship between the QFI and the associated IPv6 prefix and UDP port to the UPF, so that the UPF can forward data according to the association relationship.
  • this solution solves the problem of Remote UE supporting Ethernet and Unstructured type (ie non-IP type) data transmission through Relay UE, and provides support for remote UE in proximity business through Relay UE and network for non-IP type data transmission. Transmission scheme.
  • Figure 1 is a schematic diagram of the ProSe UE-to-Network Relay architecture in the background technology
  • Figure 2 is a schematic diagram of the ProSe UE-to-Network Relay communication process in the background technology
  • FIG. 3 is a schematic diagram of an implementation process of a method for transmitting and processing non-IP data on a relay UE in an embodiment of the disclosure
  • FIG. 4 is a schematic diagram of the implementation process of a method for transmitting and processing non-IP data on SMF in an embodiment of the disclosure
  • FIG. 5 is a schematic diagram of an implementation process of a method for transmitting non-IP data on UPF in an embodiment of the disclosure
  • FIG. 6 is a schematic diagram of an Unstructured type data transmission path in a Relay scenario in an embodiment of the disclosure
  • FIG. 7 is a schematic diagram of an Unstructured type data transmission process in Embodiment 1 of the present disclosure.
  • FIG. 8 is a schematic diagram of an Ethernet type data transmission path in a Relay scenario in an embodiment of the disclosure.
  • FIG. 9 is a schematic diagram of the Ethernet type data transmission process in the second embodiment of the disclosure.
  • FIG. 10 is a schematic diagram of the structure of Relay UE in an embodiment of the disclosure.
  • FIG. 11 is a schematic diagram of the structure of the SMF in an embodiment of the disclosure.
  • ProSe Proximity Service
  • the 5G system supports three PDU session types: IP, Ethernet, and Unstructured. It also shows how Relay UE and Remote UE support IP-type PDU sessions, but how to support Ethernet and Unstructured PDU sessions is an unresolved problem in the standard.
  • the embodiment of the present disclosure provides a non-IP type data transmission processing solution to support the remote UE in the proximity service to transmit non-IP type data to the network through the Relay UE.
  • Fig. 3 is a schematic diagram of the implementation process of a method for transmitting and processing non-IP data on a relay UE. As shown in the figure, it may include:
  • Step 301 The relay UE sends a PDU session request message to the session management function SMF to establish a QoS flow supporting non-IP data transmission on the Uu interface;
  • Step 302 The relay UE receives the PDU session response message sent by the SMF, where the response message includes the flow identifier of the QoS flow.
  • Step 303 The relay UE performs data forwarding according to the flow identifier.
  • Figure 4 is a schematic diagram of the implementation process of the non-IP type data transmission processing method on SMF. As shown in the figure, it can include:
  • Step 401 The SMF receives a request message sent by the relay UE to establish a QoS flow PDU session supporting non-IP data transmission on the Uu interface;
  • Step 402 The SMF returns the QoS flow identifier to the relay UE.
  • SMF can allocate QoS flow identifiers and associated IPv6 prefixes and UDP (User Datagram Protocol) ports;
  • the SMF returns the QoS flow identifier to the relay UE, and the SMF can also send the QoS flow identifier and the association relationship between the associated IPv6 prefix and UDP port to the UPF.
  • Figure 5 is a schematic diagram of the implementation process of the non-IP type data transmission method on UPF. As shown in the figure, it can include:
  • Step 501 UPF receives the association relationship between the QFI allocated by the SMF and the associated IPv6 prefix and UDP port;
  • Step 502 UPF forwards data according to the association relationship.
  • the relay UE sends a PDU session request message to the session management function to establish a QoS flow supporting non-IP data transmission on the Uu interface, including:
  • the relay UE carries a PDU session identifier and relay indication information in a PDU session request message, and the relay indication information is used to indicate to the SMF that the PDU session is data for which the relay UE is a relay remote UE. Established; or,
  • the relay UE carries the PDU session identifier and QoS information in the PDU session request message, and the QoS information is used to instruct the SMF to create a new QoS flow.
  • the SMF receives the request message sent by the relay UE to establish a QoS flow PDU session supporting non-IP data transmission on the Uu interface, including:
  • the relay UE carries a PDU session identifier and relay indication information in a PDU session request message, and the relay indication information is used to indicate to the SMF that the PDU session is data for which the relay UE is a relay remote UE. Established; or,
  • the relay UE carries the PDU session identifier and QoS information in the PDU session request message, and the QoS information is used to instruct the SMF to create a new QoS flow.
  • the SMF receives the PDU session identifier sent by the relay UE during the PDU session modification process and the instruction to establish a new QoS flow;
  • the SMF returns the QoS flow identifier to the relay UE.
  • the method further includes:
  • SMF allocates an IPv6 prefix and a user datagram protocol UDP port for the QoS flow
  • the SMF sends the association relationship between the QoS flow identifier and the associated IPv6 prefix and UDP port to the UPF.
  • the SMF returns the QoS flow identifier to the relay UE through a session modification response message.
  • the SMF returns the QFI to the Relay UE through a session modification response message.
  • the PDU Session ID and QFI are the PDU Session ID and QFI when the QoS Flow of the Uu interface established by the Relay UE can serve the Remote UE; or,
  • the PDU Session ID and QFI are the PDU Session ID and QFI obtained by the Relay UE by initiating the PDU session modification process.
  • the relay UE and the remote UE exchange the relay service code and the corresponding PDU session type during the relay discovery process.
  • the method further includes:
  • the relay UE receives the relay service code and the corresponding PDU session type provided by the PCF.
  • it can include:
  • the relay UE includes the relay service code and the corresponding PDU session type in the relay discovery broadcast message, or,
  • the relay UE receives the relay discovery request message sent by the remote UE, and the request message includes the relay service code and the corresponding PDU session type.
  • the method may further include:
  • the relay UE receives the connection establishment request message sent by the remote UE, and the request message includes the PC5 link identifier and the PC5 flow identifier on the PC5 interface.
  • the relay UE performs data forwarding according to the flow identifier, including:
  • the relay UE determines the mapping relationship between the PC5 link identifier and the PC5 flow identifier, and the PDU session identifier and the QoS flow identifier;
  • the relay UE forwards data according to the mapping relationship.
  • the Relay UE performing data transmission according to the mapping relationship includes:
  • the relay UE For uplink data, the relay UE sends the data received from the QoS flow of the PC5 interface to the QoS flow of the corresponding Uu interface according to the mapping relationship; and/or,
  • the relay UE For downlink data, the relay UE sends the data received from the QoS flow of the Uu interface to the corresponding QoS flow of the PC5 interface according to the mapping relationship.
  • non-IP type data is unstructured type data
  • UPF After receiving the association relationship, UPF performs data forwarding according to the association relationship, including:
  • UPF For upstream data, UPF encapsulates the data received from QoS Flow with IPv6/UDP and sends it to Data Network; and/or,
  • UPF decapsulates the data received from the N6 interface and sends it to the corresponding QoS Flow.
  • the non-IP type data is unstructured type data or Ethernet type data.
  • FIG. 6 is a schematic diagram of an Unstructured type data transmission path in a Relay scenario, as shown in Figure 6. Since there is no UE identifier (such as UE IP address) in the unstructured type data packet, the UE cannot be addressed through the UE identifier. In this example, a solution of establishing a Uu QoS Flow (Uu interface quality of service flow) for each Remote UE will be adopted to implement unstructured data transmission. Each PC5 link QoS Flow (Quality of Service Flow) on the PC5 interface corresponds to a Uu QoS Flow.
  • Uu QoS Flow User interface quality of service flow
  • FIG. 7 is a schematic diagram of the Unstructured type data transmission process in the first embodiment.
  • the Uu QoS Flow and PC5 QoS Flow are established and associated processes to realize the Unstructured type data transmission. As shown in the figure, they mainly include:
  • Step 701 Service authorization and parameter provisioning (PDU Session Type) (service authorization and parameter setting (PDU session type)).
  • the PCF Policy Control Function
  • the PCF Policy Control Function
  • the PCF provides remote UE and Relay UE with parameters for ProSe discovery and communication, for example, the Relay Service Code and the PDU Session Type (PDU session type) corresponding to the Code is unstructured.
  • Step 702 PDU Session Establishment Request (PDU Session ID, PDU Session Type, Relay indication) (PDU Session Establishment Request (PDU Session ID, PDU Session Type, Relay Indication)).
  • the Relay UE establishes a relay PDU session of the Uu interface, and the PDU session is used to relay data of the Remote UE.
  • Relay UE indicates PDU Session ID, PDU Session Type, Relay indication, etc. to SMF in the PDU session establishment message.
  • Relay indication is used to indicate that the PDU session is used to relay remote UE data.
  • Step 703 allocate QoS Flow ID, IPv6 prefix and UDP port (allocate QoS flow ID, IPv6 prefix and UDP port).
  • SMF allocates QoS Flow ID (QFI), and IPv6 prefix and UDP port used for data transmission on the N6 interface (the interface between UPF and Data Network).
  • QFI QoS Flow ID
  • IPv6 prefix and UDP port used for data transmission on the N6 interface (the interface between UPF and Data Network).
  • Step 704a N4 Session Req (QoS Flow ID, IPv6 prefix and UDP port) (N4 session request (QoS flow ID, IPv6 prefix and UDP port)).
  • Step 704b N4 Session Resp (N4 Session Response).
  • SMF provides QFI, IPv6 prefix, and UDP port to UPF.
  • Step 705 store mapping btw QFI and IPv6 prefix&UDP port (store the mapping relationship between QFI and IPv6 prefix & UDP port).
  • UPF saves the mapping relationship between QFI and (IPv6 prefix, UDP port).
  • UPF encapsulates the data received from QoS Flow with IPv6/UDP and sends it to Data Network;
  • UPF decapsulates the data received from the N6 interface and sends it to the corresponding QoS Flow.
  • Step 706 PDU Session Establishment Accept (QoS Flow ID) (PDU Session Establishment Accept (QoS Flow ID)).
  • the SMF returns a session acceptance message to the Relay UE, which includes QFI.
  • Step 707 Discovery procedure (Model A or B) (discovery mode (Type A or Type B)).
  • the Remote UE discovers the Relay UE through the discovery process.
  • the discovery process is divided into two modes: Model A and Model B.
  • the Relay UE includes the Relay Service Code and the corresponding PDU Session Type in the PC5 interface discovery message, and the Remote UE selects the matching Relay UE according to the configuration information in step 701.
  • the Remote UE includes the Relay Service Code and the corresponding PDU Session Type in the PC5 interface discovery request message. If the Relay UE supports the Code and Type, it returns a PC5 interface discovery response message to the Remote UE.
  • Step 708a Direct Comm Req (session type, PLI, PFI) (direct communication request (session type, PLI, PFI)).
  • Step 708b Direct Comm Resp (direct communication response).
  • the PC5 unicast link and the PC5 interface QoS Flow are established between the Remote UE and the Relay UE.
  • the Remote UE provides the Relay UE with PDU Session Type, PLI (PC5 Link Identifier, PC5 Link Identifier), and PFI (PC5 QoS Flow ID).
  • Step 709 PDU Session Modification Request (PDU Session ID, QoS Flow requested) (PDU session modification request (PDU Session ID, requested QoS flow)).
  • step 712 is directly executed.
  • the Relay UE needs to create a new QoS Flow to ensure that each QoS Flow corresponds to a unique Remote UE.
  • the Relay UE initiates the PDU session modification process, and the Relay UE indicates the PDU Session ID to the SMF and establishes a new QoS Flow.
  • Step 710 same as steps 703-705 (the same as steps 703-705).
  • Step 711 PDU Session Modification Ack (QoS Flow ID) (PDU Session Modification Ack carries QoS Flow ID).
  • the SMF returns a PDU session modification response message to the Relay UE, which includes the QFI corresponding to the newly established QoS Flow.
  • Step 712 store mapping btw PLI&PFI and PDU Session ID&QFI Relayed traffic (store PLI&PFI and PDU session ID&QFI relay transmission mapping relationship).
  • the Relay UE saves the mapping relationship between (PLI, PFI) and (PDU Session ID, QFI).
  • Relay UE For uplink data, Relay UE sends the data received from PC5 QoS Flow to the corresponding Uu QoS Flow;
  • the Relay UE For downlink data, the Relay UE sends the data received from the Uu QoS Flow to the corresponding PC5 QoS Flow.
  • FIG 8 is a schematic diagram of the Ethernet type data transmission path in the Relay scenario, as shown in Figure 8. Since the Ethernet type data packet header has the UE MAC address (MAC address), it can be used to address the UE. Multiple PC5 QoS Flows can be mapped to one Uu QoS Flow.
  • MAC address UE MAC address
  • FIG. 9 is a schematic diagram of the Ethernet type data transmission process in the second embodiment.
  • the establishment and association process of Uu QoS Flow and PC5 QoS Flow to achieve Ethernet type data transmission is shown in the figure, which mainly includes:
  • Step 901 Service authorization and parameter provisioning (PDU Session Type).
  • the PCF provides the Remote UE and Relay UE with parameters for ProSe discovery and communication, for example, the Relay Service Code and the PDU Session Type corresponding to the Code is Ethernet.
  • Step 902 PDU Session Establishment Request (PDU Session ID, PDU Session Type).
  • the Relay UE establishes a relay PDU session of the Uu interface, and the PDU session is used to relay data of the Remote UE.
  • the Relay UE indicates the PDU Session ID and PDU Session Type to the SMF in the PDU session establishment message.
  • Step 903a N4 Session Req.
  • Step 903b N4 Session Resp.
  • an N4 interface session is established between SMF and UPF.
  • Step 904 PDU Session Establishment Accept (QoS Flow ID).
  • the SMF returns a session acceptance message to the Relay UE, which includes QFI.
  • Step 905 Discovery procedure (Model A or B).
  • the Remote UE discovers the Relay UE through the discovery process.
  • the discovery process is divided into two modes: Model A and Model B.
  • the Relay UE includes the Relay Service Code and the corresponding PDU Session Type in the PC5 interface discovery message, and the Remote UE selects the matching Relay UE according to the configuration information in step 901.
  • the Remote UE includes the Relay Service Code and the corresponding PDU Session Type in the PC5 interface discovery request message. If the Relay UE supports the Code and Type, it returns a PC5 interface discovery response message to the Remote UE.
  • Step 906a Direct Comm Req (session type, PLI, PFI).
  • Step 906b Direct Comm Resp.
  • the PC5 unicast link and the PC5 interface QoS Flow are established between the Remote UE and the Relay UE.
  • Remote UE provides PDU Session Type, PLI (PC5 Link Identifier), PFI (PC5 QoS Flow ID) to Relay UE.
  • PLI PC5 Link Identifier
  • PFI PC5 QoS Flow ID
  • Step 907 forward data based on UE MAC address (data forwarding based on the UE-MAC address).
  • the Relay UE forwards data based on the Remote UE MAC address.
  • Relay UE For uplink data, Relay UE sends the data received from PC5 QoS Flow to the corresponding Uu QoS Flow;
  • the Relay UE For downlink data, the Relay UE sends the data received from the Uu QoS Flow to the PC5 QoS Flow on the PC5 link corresponding to the Remote UE’s MAC address.
  • the embodiments of the present disclosure also provide another method. Since these devices have similar principles and methods for solving problems, the implementation of these devices can refer to the implementation of the method, and the repetition will not be repeated.
  • Figure 10 is a schematic diagram of the Relay UE structure. As shown in the figure, the user equipment includes:
  • the processor 1000 is configured to read a program in the memory 1020 and execute the following process:
  • the transceiver 1010 is configured to receive and send data under the control of the processor 1000.
  • the non-IP type data is unstructured type data or Ethernet type data.
  • sending a PDU session request message to the session management function to establish a QoS flow supporting non-IP data transmission on the Uu interface includes:
  • the PDU session request message carries a PDU session identifier and relay indication information, where the relay indication information is used to indicate to the SMF that the PDU session is established by the relay UE to relay the data of the remote UE; or ,
  • the PDU session request message carries the PDU session identifier and QoS information, and the QoS information is used to instruct the SMF to create a new QoS flow.
  • the method further includes:
  • the method includes:
  • the method further includes:
  • forwarding data according to the flow identifier includes:
  • Data forwarding is performed according to the mapping relationship.
  • the non-IP type data is unstructured type data
  • performing data transmission according to the mapping relationship includes:
  • For uplink data send the data received from the QoS flow of the PC5 interface to the QoS flow of the corresponding Uu interface according to the mapping relationship; and/or,
  • the data received from the QoS flow of the Uu interface is sent to the corresponding QoS flow of the PC5 interface according to the mapping relationship.
  • the method further includes:
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 1000 and various circuits of the memory represented by the memory 1020 are linked together.
  • the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, will not be further described herein.
  • the bus interface provides the interface.
  • the transceiver 1010 may be a plurality of elements, including a transmitter and a receiver, and provide a unit for communicating with various other devices on a transmission medium.
  • the user interface 1030 may also be an interface that can externally and internally connect the required equipment.
  • the connected equipment includes but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 1000 is responsible for managing the bus architecture and general processing, and the memory 1020 can store data used by the processor 1000 when performing operations.
  • the embodiment of the present disclosure provides a non-IP type data transmission and processing device, including:
  • the relay UE sending module is used to send a PDU session request message to the session management function SMF to establish a QoS flow supporting non-IP data transmission on the Uu interface;
  • the relay UE receiving module is configured to receive the PDU session response message sent by the SMF, the response message containing the flow identifier of the QoS flow;
  • the relay UE forwarding module is used to forward data according to the flow identifier.
  • each part of the above-mentioned device is divided into various modules or units by function and described separately.
  • the functions of each module or unit can be implemented in the same one or more software or hardware.
  • FIG 11 is a schematic diagram of the SMF structure, as shown in the figure, including:
  • the processor 1100 is configured to read a program in the memory 1120, and execute the following process:
  • the transceiver 1110 is configured to receive and send data under the control of the processor 1100.
  • receiving a request message sent by the relay UE to establish a QoS flow PDU session supporting non-IP type data transmission on the Uu interface includes:
  • the relay UE carries a PDU session identifier and relay indication information in a PDU session request message, and the relay indication information is used to indicate to the SMF that the PDU session is data for which the relay UE is a relay remote UE. Established; or,
  • the relay UE carries the PDU session identifier and QoS information in the PDU session request message, and the QoS information is used to instruct the SMF to create a new QoS flow.
  • the method further includes:
  • SMF allocates an IPv6 prefix and a user datagram protocol UDP port for the QoS flow
  • the SMF sends the association relationship between the QoS flow identifier and the associated IPv6 prefix and UDP port to the UPF.
  • the method further includes:
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 1100 and various circuits of the memory represented by the memory 1120 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, no further description is provided herein.
  • the bus interface provides the interface.
  • the transceiver 1110 may be a plurality of elements, including a transmitter and a receiver, and provide a unit for communicating with various other devices on the transmission medium.
  • the processor 1100 is responsible for managing the bus architecture and general processing, and the memory 1120 may store data used by the processor 1100 when performing operations.
  • the embodiments of the present disclosure provide a non-IP type data transmission processing method, including:
  • the SMF receiving module is used to receive a request message sent by the relay UE to establish a QoS flow PDU session supporting non-IP data transmission on the Uu interface;
  • the SMF sending module is used to return the QoS flow identifier to the relay UE.
  • each part of the above-mentioned device is divided into various modules or units by function and described separately.
  • the functions of each module or unit can be implemented in the same one or more software or hardware.
  • the embodiments of the present disclosure provide a computer-readable storage medium that stores a computer program that executes the foregoing non-IP-type data transmission processing method.
  • the Relay UE establishes a Uu QoS Flow to support unstructured type data transmission, the Relay UE instructs the SMF to establish a QoS Flow for an unstructured PDU Session, and the SMF allocates the QFI and the associated IPv6 prefix and UDP port and sent to UPF for data forwarding according to the association.
  • Relay UE and Remote UE exchange PDU Session Type and link and flow identification information during PC5 discovery and communication establishment.
  • Relay UE forwards data according to the mapping relationship between PFI and QFI and the MAC address of the UE.
  • the embodiments of the present disclosure can be provided as a method, a system, or a computer program product. Therefore, the present disclosure may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, the present disclosure may take the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, optical storage, etc.) containing computer-usable program codes.
  • a computer-usable storage media including but not limited to disk storage, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • each module, unit, sub-unit or sub-module can be implemented in one or more application specific integrated circuits (ASIC), digital signal processor (Digital Signal Processing, DSP), digital signal processing equipment (DSP Device, DSPD), Programmable Logic Device (Programmable Logic Device, PLD), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), general-purpose processors, controllers, microcontrollers, microprocessors, In other electronic units or combinations thereof that perform the functions described in the present disclosure.
  • ASIC application specific integrated circuits
  • DSP digital signal processor
  • DSP Device digital signal processing equipment
  • PLD Programmable Logic Device
  • Field-Programmable Gate Array Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请公开了一种非IP类型数据的传输处理方法、设备、装置及介质。所述方法包括:中继用户设备向会话管理功能发送协议数据单元会话请求消息以建立Uu接口上支持非IP类型数据传输的QoS流;中继用户设备接收会话管理功能发送的协议数据单元会话响应消息,所述响应消息包含所述QoS流的流标识;会话管理功能向中继用户设备返回QoS流标识;中继用户设备根据流标识进行数据转发。

Description

非IP类型数据的传输处理方法、设备、装置及介质
相关申请的交叉引用
本申请主张在2020年4月28日在中国提交的中国专利申请No.202010350672.0的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及无线通信技术领域,特别涉及一种非IP类型数据的传输处理方法、设备、装置及介质。
背景技术
对于ProSe(邻近业务,Proximity Service),当UE(用户设备,User Equipment)处于网络覆盖范围之外或者Uu接口信号较差时,无法直接连接网络,可通过具有中继功能的UE连接网络,前者称为Remote UE(远端UE),后者称为Relay UE(中继UE),图1为ProSe UE-to-Network Relay架构示意图,网络架构如图1所示。
对于Remote UE如何通过Relay UE与网络进行通信,一种方案如下。
图2为ProSe UE-to-Network Relay通信过程示意图,如图所示,主要包括:
0a、Authorization and Provisioning for ProSe UE-to-NW Relay(邻近业务中UE至网络与中继的授权与设置)。
0b、Authorization and Provisioning for ProSe UE-to-NW Relay。
网络向Remote UE和Relay UE提供进行ProSe通信(PC5接口通信)所需的参数,如用于选择Relay UE的Relay Service Code(中继服务代码)。
1、PDU session establishment(PDU会话建立;PDU:协议数据单元,Protocol Data Unit)。
Relay UE建立Uu接口的中继PDU会话,该PDU会话用于中继Remote UE的数据。Relay UE通过IPv6前缀代理功能从网络获取IPv6 prefix(前缀)。
2、Discovery Procedure(发现过程)。
Remote UE执行发现过程发现Relay UE。
3、Establishment of connection For one-to-one Communication(建立一对一通信的连接);
Relay UE may establish a new PDU session or modify existing PDU session for relaying(中继UE可以建立新的PDU会话或修改现有的PDU会话以进行中继)。
Remote UE选择Relay UE并建立一对一直接通信,Remote UE和Relay UE之间的通信接口为PC5接口。如果需要新建PDU会话,Relay UE发起新的PDU会话建立过程。
4、IP address/prefix allocation(IP地址/前缀分配)。
Relay UE为Remote UE分配IP地址。
Remote UE通过Relay UE建立的PDU会话与网络进行通信。对于上行数据,Relay UE将从Remote UE接收到的IP分组通过packet filter(包过滤器)映射到相应的PDU会话上;对于下行数据,Relay UE将从PDU会话上接收到IP分组通过Remote UE IP地址映射到相应的PC5单播通信链路上。
开始Relayed traffic(中继传输)。
为支持各种类型的应用(包括垂直行业的应用),通信系统需要支持IP、Ethernet(以太)和Unstructured(非结构化)三种PDU会话类型的数据传输。当Remote UE通过Relay UE与网络进行通信时,同样需要支持这三种类型的数据传输。
现有技术的不足在于:现有技术中没有支持Ethernet和Unstructured类型的PDU会话的方案。
发明内容
本公开提供了一种非IP类型数据的传输处理方法、设备、装置及介质,用以解决现有技术中没有支持邻近业务中Remote UE通过Relay UE与网络进行非IP类型数据的传输的问题。
本公开实施例提供了一种非IP类型数据的传输处理方法,包括:
中继UE向会话管理功能SMF发送PDU会话请求消息以建立Uu接口上 支持非IP类型数据传输的QoS流;
中继UE接收SMF发送的PDU会话响应消息,所述响应消息包含所述QoS流的流标识;
中继UE根据所述流标识进行数据转发。
可选地,非IP类型的数据为unstructured类型数据或Ethernet类型数据。
可选地,中继UE向会话管理功能发送PDU会话请求消息以建立Uu接口上支持非IP类型数据传输的QoS流,包括:
所述中继UE在PDU会话请求消息中携带PDU会话标识以及中继指示信息,所述中继指示信息用于向SMF指示所述PDU会话是所述中继UE为中继远端UE的数据所建立的;或者,
所述中继UE在PDU会话请求消息中携带PDU会话标识以及QoS信息,所述QoS信息用于向SMF指示新建QoS流。
可选地,所述方法还包括:
中继UE与远端UE在中继发现过程中交互中继服务码和对应的PDU会话类型。
可选地,所述方法包括:
中继UE在中继发现广播消息中包含中继服务码和对应的PDU会话类型,或者,
中继UE接收远端UE发送的中继发现请求消息,所述请求消息中包含中继服务码和对应的PDU会话类型。
可选地,所述方法还包括:
中继UE接收远端UE发送的连接建立请求消息,所述请求消息中包含PC5接口上的PC5链路标识和PC5流标识。
可选地,中继UE根据所述流标识进行数据转发,包括:
中继UE确定PC5链路标识和PC5流标识以及PDU会话标识和QoS流标识之间的映射关系;
中继UE根据所述映射关系进行数据转发。
可选地,非IP类型的数据为unstructured类型数据时,PC5链路标识和PC5流标识以及PDU会话标识和QoS流标识之间是一一对应的。
可选地,中继UE根据所述映射关系进行数据传输,包括:
对于上行数据,中继UE根据所述映射关系将从PC5接口的QoS流接收到的数据发送到对应的Uu接口的QoS流上;和/或,
对于下行数据,中继UE根据所述映射关系将从Uu接口的QoS流接收到的数据发送到对应的PC5接口的QoS流上。
可选地,所述方法还包括:
所述中继UE接收PCF提供的中继服务码和对应的PDU会话类型。
本公开实施例提供了一种非IP类型数据的传输处理方法,包括:
SMF接收中继UE发送的用以建立Uu接口上支持非IP类型数据传输的QoS流PDU会话的请求消息;
SMF向中继UE返回QoS流标识。
可选地,SMF接收中继UE发送的用以建立Uu接口上支持非IP类型数据传输的QoS流PDU会话的请求消息,包括:
所述中继UE在PDU会话请求消息中携带PDU会话标识以及中继指示信息,所述中继指示信息用于向SMF指示所述PDU会话是所述中继UE为中继远端UE的数据所建立的;或者,
所述中继UE在PDU会话请求消息中携带PDU会话标识以及QoS信息,所述QoS信息用于向SMF指示新建QoS流。
可选地,所述方法还包括:
SMF为所述QoS流分配IPv6前缀和用户数据报协议UDP端口;
SMF将QoS流标识和关联的IPv6前缀和UDP端口的关联关系发送给UPF。
可选地,所述方法还包括:
SMF接收中继UE在PDU会话修改过程发送的PDU会话标识和建立新的QoS流的指示;
SMF向中继UE返回QoS流标识。
可选地,SMF是通过会话修改响应消息向中继UE返回QoS流标识的。
本公开实施例提供了一种中继UE,包括:
处理器,用于读取存储器中的程序,执行下列过程:
向会话管理功能SMF发送PDU会话请求消息以建立Uu接口上支持非IP类型数据传输的QoS流;
接收SMF发送的PDU会话响应消息,所述响应消息包含所述QoS流的流标识;
根据所述流标识进行数据转发;
收发机,用于在处理器的控制下接收和发送数据。
可选地,非IP类型的数据为unstructured类型数据或Ethernet类型数据。
可选地,向会话管理功能发送PDU会话请求消息以建立Uu接口上支持非IP类型数据传输的QoS流,包括:
在PDU会话请求消息中携带PDU会话标识以及中继指示信息,所述中继指示信息用于向SMF指示所述PDU会话是所述中继UE为中继远端UE的数据所建立的;或者,
在PDU会话请求消息中携带PDU会话标识以及QoS信息,所述QoS信息用于向SMF指示新建QoS流。
可选地,所述UE还包括:
与远端UE在中继发现过程中交互中继服务码和对应的PDU会话类型。
可选地,所述UE包括:
在中继发现广播消息中包含中继服务码和对应的PDU会话类型,或者,
接收远端UE发送的中继发现请求消息,所述请求消息中包含中继服务码和对应的PDU会话类型。
可选地,所述UE还包括:
接收远端UE发送的连接建立请求消息,所述请求消息中包含PC5接口上的PC5链路标识和PC5流标识。
可选地,根据所述流标识进行数据转发,包括:
确定PC5链路标识和PC5流标识以及PDU会话标识和QoS流标识之间的映射关系;
根据所述映射关系进行数据转发。
可选地,非IP类型的数据为unstructured类型数据时,PC5链路标识和PC5流标识以及PDU会话标识和QoS流标识之间是一一对应的。
可选地,根据所述映射关系进行数据传输,包括:
对于上行数据,根据所述映射关系将从PC5接口的QoS流接收到的数据发送到对应的Uu接口的QoS流上;和/或,
对于下行数据,根据所述映射关系将从Uu接口的QoS流接收到的数据发送到对应的PC5接口的QoS流上。
可选地,所述UE还包括:
所述中继UE接收PCF提供的中继服务码和对应的PDU会话类型。
本公开实施例提供了一种SMF,包括:
处理器,用于读取存储器中的程序,执行下列过程:
接收中继UE发送的用以建立Uu接口上支持非IP类型数据传输的QoS流PDU会话的请求消息;
向中继UE返回QoS流标识;
收发机,用于在处理器的控制下接收和发送数据。
可选地,接收中继UE发送的用以建立Uu接口上支持非IP类型数据传输的QoS流PDU会话的请求消息,包括:
所述中继UE在PDU会话请求消息中携带PDU会话标识以及中继指示信息,所述中继指示信息用于向SMF指示所述PDU会话是所述中继UE为中继远端UE的数据所建立的;或者,
所述中继UE在PDU会话请求消息中携带PDU会话标识以及QoS信息,所述QoS信息用于向SMF指示新建QoS流。
可选地,所述SMF还包括:
SMF为所述QoS流分配IPv6前缀和用户数据报协议UDP端口;
SMF将QoS流标识和关联的IPv6前缀和UDP端口的关联关系发送给UPF。
可选地,所述SMF还包括:
接收中继UE在PDU会话修改过程发送的PDU会话标识和建立新的QoS流的指示;
向中继UE返回QoS流标识。
可选地,通过会话修改响应消息向中继UE返回QoS流标识的。
本公开实施例提供了一种非IP类型数据的传输处理装置,包括:
中继UE发送模块,用于向会话管理功能SMF发送PDU会话请求消息以建立Uu接口上支持非IP类型数据传输的QoS流;
中继UE接收模块,用于接收SMF发送的PDU会话响应消息,所述响应消息包含所述QoS流的流标识;
中继UE转发模块,用于根据所述流标识进行数据转发。
本公开实施例提供了一种非IP类型数据的传输处理装置,包括:
SMF接收模块,用于接收中继UE发送的用以建立Uu接口上支持非IP类型数据传输的QoS流PDU会话的请求消息;
SMF发送模块,用于向中继UE返回QoS流标识。
本公开实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有执行上述非IP类型数据的传输处理方法的计算机程序。
本公开有益效果如下:
在本公开实施例提供的技术方案中,Relay UE向SMF发送PDU会话请求消息以建立Uu接口上支持非IP类型数据传输的QoS流,并接收SMF为非IP数据类型PDU会话建立QoS流的流标识,中继UE便可以根据所述QoS流的流标识进行数据转发;
而SMF会将QFI和关联的IPv6 prefix和UDP port的关联关系发送给UPF,使得UPF能够根据所述关联关系进行数据转发。
由此,通过本方案解决了Remote UE通过Relay UE支持Ethernet和Unstructured类型(也即non-IP类型)数据的传输问题,提供了支持邻近业务中Remote UE通过Relay UE与网络进行非IP类型数据的传输方案。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本公开的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1为背景技术中ProSe UE-to-Network Relay架构示意图;
图2为背景技术中ProSe UE-to-Network Relay通信过程示意图;
图3为本公开实施例中中继UE上非IP类型数据的传输处理方法实施流程示意图;
图4为本公开实施例中SMF上非IP类型数据的传输处理方法实施流程示意图;
图5为本公开实施例中UPF上非IP类型数据的传输方法实施流程示意图;
图6为本公开实施例中Relay场景下Unstructured类型数据传输路径示意图;
图7为本公开实施例一中Unstructured类型数据传输过程示意图;
图8为本公开实施例中Relay场景下Ethernet类型数据传输路径示意图;
图9为本公开实施例二中Ethernet类型数据传输过程示意图;
图10为本公开实施例中Relay UE结构示意图;
图11为本公开实施例中SMF结构示意图。
具体实施方式
3GPP的5G ProSe课题对邻近业务(Proximity Service,ProSe)进行研究和标准化。ProSe中一个重要的场景是Remote UE通过Relay UE与网络进行通信。
5G系统中支持IP、Ethernet和Unstructured三种PDU会话类型,也给出了Relay UE和Remote UE如何支持IP类型的PDU会话,但是如何支持Ethernet和Unstructured类型的PDU会话是标准中尚未解决的问题。
基于此,本公开实施例中提供了非IP类型数据的传输处理方案,用以支持邻近业务中Remote UE通过Relay UE与网络进行非IP类型数据的传输。
下面结合附图对本公开的具体实施方式进行说明。
在说明过程中,将分别从Remote UE和Relay UE、SMF、UPF的实施进行说明,然后还将给出它们配合实施的实例以更好地理解本公开实施例中给出的方案的实施。这样的说明方式并不意味着二者必须配合实施、或者必须单独实施,实际上,当Remote UE和Relay UE、SMF、UPF分开实施时,其也各自解决自身一侧问题,而它们结合使用时,会获得更好的技术效果。
图3为中继UE上非IP类型数据的传输处理方法实施流程示意图,如图所示,可以包括:
步骤301、中继UE向会话管理功能SMF发送PDU会话请求消息以建立Uu接口上支持非IP类型数据传输的QoS流;
步骤302、中继UE接收SMF发送的PDU会话响应消息,所述响应消息包含所述QoS流的流标识;
步骤303、中继UE根据所述流标识进行数据转发。
图4为SMF上非IP类型数据的传输处理方法实施流程示意图,如图所示,可以包括:
步骤401、SMF接收中继UE发送的用以建立Uu接口上支持非IP类型数据传输的QoS流PDU会话的请求消息;
步骤402、SMF向中继UE返回QoS流标识。
具体的,SMF可以分配QoS流标识和关联的IPv6前缀和UDP(用户数据报协议,User Datagram Protocol)端口;
SMF向中继UE返回QoS流标识,SMF还可以将QoS流标识和关联的IPv6前缀和UDP端口的关联关系发送给UPF。
图5为UPF上非IP类型数据的传输方法实施流程示意图,如图所示,可以包括:
步骤501、UPF接收SMF分配的QFI和关联的IPv6 prefix和UDP port的关联关系;
步骤502、UPF根据所述关联关系进行数据转发。
1、关于中继UE与SMF之间的交互。
1)中继UE向会话管理功能发送PDU会话请求消息以建立Uu接口上支持非IP类型数据传输的QoS流,包括:
所述中继UE在PDU会话请求消息中携带PDU会话标识以及中继指示信息,所述中继指示信息用于向SMF指示所述PDU会话是所述中继UE为中继远端UE的数据所建立的;或者,
所述中继UE在PDU会话请求消息中携带PDU会话标识以及QoS信息,所述QoS信息用于向SMF指示新建QoS流。
相应的,SMF接收中继UE发送的用以建立Uu接口上支持非IP类型数据传输的QoS流PDU会话的请求消息,包括:
所述中继UE在PDU会话请求消息中携带PDU会话标识以及中继指示信息,所述中继指示信息用于向SMF指示所述PDU会话是所述中继UE为中继远端UE的数据所建立的;或者,
所述中继UE在PDU会话请求消息中携带PDU会话标识以及QoS信息,所述QoS信息用于向SMF指示新建QoS流。
2)针对Relay UE建立的Uu接口的QoS Flow不能为Remote UE服务时的PDU Session ID和QFI,可以按如下方式实施:
SMF接收中继UE在PDU会话修改过程发送的PDU会话标识和建立新的QoS流的指示;
SMF向中继UE返回QoS流标识。
可选地,所述方法还包括:
SMF为所述QoS流分配IPv6前缀和用户数据报协议UDP端口;
SMF将QoS流标识和关联的IPv6前缀和UDP端口的关联关系发送给UPF。
具体实施中,SMF是通过会话修改响应消息向中继UE返回QoS流标识的。
可选地,SMF是通过会话修改响应消息向Relay UE返回QFI的。
对于Relay UE,则有:所述PDU Session ID和QFI是Relay UE建立的Uu接口的QoS Flow能够为Remote UE服务时的PDU Session ID和QFI;或,
所述PDU Session ID和QFI是Relay UE通过发起PDU会话修改过程获取的PDU Session ID和QFI。
2、中继UE与远端UE之间的交互。
可选地,中继UE与远端UE在中继发现过程中交互中继服务码和对应的PDU会话类型。
可选地,所述方法还包括:
所述中继UE接收PCF提供的中继服务码和对应的PDU会话类型。
具体的,可以包括:
中继UE在中继发现广播消息中包含中继服务码和对应的PDU会话类型,或者,
中继UE接收远端UE发送的中继发现请求消息,所述请求消息中包含中继服务码和对应的PDU会话类型。
可选地,所述方法还可以包括:
中继UE接收远端UE发送的连接建立请求消息,所述请求消息中包含PC5接口上的PC5链路标识和PC5流标识。
3、中继UE的数据转发。
具体实施中,中继UE根据所述流标识进行数据转发,包括:
中继UE确定PC5链路标识和PC5流标识以及PDU会话标识和QoS流标识之间的映射关系;
中继UE根据所述映射关系进行数据转发。
具体的,Relay UE根据所述映射关系进行数据传输,包括:
对于上行数据,中继UE根据所述映射关系将从PC5接口的QoS流接收到的数据发送到对应的Uu接口的QoS流上;和/或,
对于下行数据,中继UE根据所述映射关系将从Uu接口的QoS流接收到的数据发送到对应的PC5接口的QoS流上。
可选地,非IP类型的数据为unstructured类型数据时,PLI和PFI以及PDU Session ID和QFI之间是一一对应的。
4、对于UPF,在接收到关联关系后,UPF根据所述关联关系进行数据转发,包括:
对于上行数据,UPF将从QoS Flow接收到的数据进行IPv6/UDP封装并发送给Data Network;和/或,
对于下行数据,UPF将从N6接口上接收到数据进行解封装并发送到相应的QoS Flow上。
可选地,非IP类型的数据为unstructured类型数据或Ethernet类型数据。
下面结合实例分别对这两类数据的实施进行说明。
实施例一:
本例中将说明Unstructured类型数据的传输过程。
图6为Relay场景下Unstructured类型数据传输路径示意图,如图6所示。由于unstructured类型数据包中没有UE标识(如UE IP地址),因此无法通过UE标识来寻址UE。本例中将采用为每个Remote UE建立一个Uu QoS Flow(Uu接口服务质量流)的方案来实现unstructured类型数据传输。PC5接口上的每一个PC5链路QoS Flow(服务质量流)对应一个Uu QoS Flow。
图7为实施例一中Unstructured类型数据传输过程示意图,Uu QoS Flow和PC5 QoS Flow建立以及关联过程,以实现Unstructured类型数据传输如图所示,主要包括:
步骤701、Service authorization and parameter provisioning(PDU Session Type)(服务授权和参数设置(PDU会话类型))。
具体的,PCF(策略控制功能实体,Policy Control Function)向Remote UE和Relay UE提供进行ProSe发现和通信的参数,例如Relay Service Code以及该Code对应的PDU Session Type(PDU会话类型)为unstructured。
步骤702、PDU Session Establishment Request(PDU Session ID,PDU Session Type,Relay indication)(PDU会话建立请求(PDU会话ID、PDU会话类型、中继指示))。
具体的,Relay UE建立Uu接口的中继PDU会话,该PDU会话用于中继Remote UE的数据。Relay UE在PDU会话建立消息中向SMF指示PDU Session ID、PDU Session Type、Relay indication等。其中Relay indication用于指示该PDU会话用于中继Remote UE的数据。
步骤703、allocate QoS Flow ID,IPv6 prefix and UDP port(分配QoS流ID、IPv6前缀和UDP端口)。
具体的,SMF分配QoS Flow ID(QFI),以及用于N6接口(UPF和Data Network之间的接口)上数据传输的IPv6 prefix和UDP port。
步骤704a、N4 Session Req(QoS Flow ID,IPv6 prefix and UDP port)(N4会话请求(QoS流ID、IPv6前缀和UDP端口))。
步骤704b、N4 Session Resp(N4会话响应)。
具体的,SMF向UPF提供QFI、IPv6 prefix和UDP port。
步骤705、store mapping btw QFI and IPv6 prefix&UDP port(存储QFI 和IPv6前缀&UDP端口之间的映射关系)。
具体的,UPF保存QFI和(IPv6 prefix、UDP port)之间的映射关系。对于上行数据,UPF将从QoS Flow接收到的数据进行IPv6/UDP封装并发送给Data Network;对于下行数据,UPF将从N6接口上接收到数据进行解封装并发送到相应的QoS Flow上。
步骤706、PDU Session Establishment Accept(QoS Flow ID)(PDU会话建立接受(QoS流ID))。
具体的,SMF向Relay UE返回会话接受消息,其中包含QFI。
步骤707、Discovery procedure(Model A or B)(发现模式(A型或B型))。
具体的,Remote UE通过发现过程发现Relay UE。发现过程分为Model A和Model B两种模式。
在Model A模式中,Relay UE在PC5接口发现消息中包含Relay Service Code以及对应的PDU Session Type,Remote UE根据步骤701中的配置信息选择匹配的Relay UE。
在Model B模式中,Remote UE在PC5接口发现请求消息中包含Relay Service Code以及对应的PDU Session Type,若Relay UE支持该Code和Type,就向Remote UE返回PC5接口发现响应消息。
步骤708a、Direct Comm Req(session type,PLI,PFI)(直接通信请求(会话类型,PLI,PFI))。
步骤708b、Direct Comm Resp(直接通信响应)。
具体的,Remote UE和Relay UE之间建立PC5单播链路和PC5接口QoS Flow。Remote UE向Relay UE提供PDU Session Type、PLI(PC5接口链路标识,PC5 Link Identifier)、PFI(PC5接口服务质量流,PC5 QoS Flow ID)。
步骤709、PDU Session Modification Request(PDU Session ID,QoS Flow requested)(PDU会话修改请求(PDU会话ID,请求的QoS流))。
具体的,如果Relay UE建立的Uu接口的QoS Flow能够为Remote UE服务,则直接执行步骤712。
如果Relay UE建立的Uu接口的QoS Flow已被其它Remote UE使用,则Relay UE需要建立新的QoS Flow,以保证每一个QoS Flow对应唯一的一 个Remote UE。Relay UE发起PDU会话修改过程,Relay UE向SMF指示PDU Session ID和建立新的QoS Flow。
步骤710、same as steps 703-705(与步骤703-705相同)。
步骤711、PDU Session Modification Ack(QoS Flow ID)(PDU会话修改Ack携带QoS Flow ID)。
具体的,SMF向Relay UE返回PDU会话修改响应消息,其中包括新建立的QoS Flow对应的QFI。
步骤712、store mapping btw PLI&PFI and PDU Session ID&QFI Relayed traffic(存储PLI&PFI和PDU会话ID&QFI中继传输映射关系)。
具体的,Relay UE保存(PLI,PFI)和(PDU Session ID,QFI)之间的映射关系。
对于上行数据,Relay UE将从PC5 QoS Flow接收到的数据发送到对应的Uu QoS Flow上;
对于下行数据,Relay UE将从Uu QoS Flow接收到的数据发送到对应的PC5 QoS Flow上。
实施例二:
本例中将说明Ethernet类型数据传输过程。
图8为Relay场景下Ethernet类型数据传输路径示意图,如图8所示。由于Ethernet类型数据包头中有UE MAC address(MAC地址),因此可用来寻址UE。多个PC5 QoS Flow可映射到一个Uu QoS Flow。
图9为实施例二中Ethernet类型数据传输过程示意图,Uu QoS Flow和PC5 QoS Flow建立以及关联过程,以实现Ethernet类型数据传输如图所示,主要包括:
步骤901、Service authorization and parameter provisioning(PDU Session Type)。
具体的,PCF向Remote UE和Relay UE提供进行ProSe发现和通信的参数,例如Relay Service Code以及该Code对应的PDU Session Type为Ethernet。
步骤902、PDU Session Establishment Request(PDU Session ID,PDU Session Type)。
具体的,Relay UE建立Uu接口的中继PDU会话,该PDU会话用于中继Remote UE的数据。Relay UE在PDU会话建立消息中向SMF指示PDU Session ID、PDU Session Type。
步骤903a、N4 Session Req。
步骤903b、N4 Session Resp。
具体的,SMF与UPF之间建立N4接口会话。
步骤904、PDU Session Establishment Accept(QoS Flow ID)。
具体的,SMF向Relay UE返回会话接受消息,其中包含QFI。
步骤905、Discovery procedure(Model A or B)。
具体的,Remote UE通过发现过程发现Relay UE。发现过程分为Model A和Model B两种模式。
在Model A模式中,Relay UE在PC5接口发现消息中包含Relay Service Code以及对应的PDU Session Type,Remote UE根据步骤901中的配置信息选择匹配的Relay UE。
在Model B模式中,Remote UE在PC5接口发现请求消息中包含Relay Service Code以及对应的PDU Session Type,若Relay UE支持该Code和Type,就向Remote UE返回PC5接口发现响应消息。
步骤906a、Direct Comm Req(session type,PLI,PFI)。
步骤906b、Direct Comm Resp。
具体的,Remote UE和Relay UE之间建立PC5单播链路和PC5接口QoS Flow。Remote UE向Relay UE提供PDU Session Type、PLI(PC5 Link Identifier)、PFI(PC5 QoS Flow ID)。
步骤907、forward data based on UE MAC address(基于UE-MAC地址的数据转发)。
具体的,Relay UE基于Remote UE MAC address进行数据转发。
对于上行数据,Relay UE将从PC5 QoS Flow接收到的数据发送到对应的Uu QoS Flow上;
对于下行数据,Relay UE将从Uu QoS Flow接收到的数据发送到Remote UE MAC address对应的PC5 link上的PC5 QoS Flow上。
基于同一发明构思,本公开实施例中还提供了一种,由于这些设备解决问题的原理与方法相似,因此这些设备的实施可以参见方法的实施,重复之处不再赘述。
在实施本公开实施例提供的技术方案时,可以按如下方式实施。
图10为Relay UE结构示意图,如图所示,用户设备包括:
处理器1000,用于读取存储器1020中的程序,执行下列过程:
向会话管理功能SMF发送PDU会话请求消息以建立Uu接口上支持非IP类型数据传输的QoS流;
接收SMF发送的PDU会话响应消息,所述响应消息包含所述QoS流的流标识;
根据所述流标识进行数据转发;
收发机1010,用于在处理器1000的控制下接收和发送数据。
可选地,非IP类型的数据为unstructured类型数据或Ethernet类型数据。
可选地,向会话管理功能发送PDU会话请求消息以建立Uu接口上支持非IP类型数据传输的QoS流,包括:
在PDU会话请求消息中携带PDU会话标识以及中继指示信息,所述中继指示信息用于向SMF指示所述PDU会话是所述中继UE为中继远端UE的数据所建立的;或者,
在PDU会话请求消息中携带PDU会话标识以及QoS信息,所述QoS信息用于向SMF指示新建QoS流。
可选地,所述方法还包括:
与远端UE在中继发现过程中交互中继服务码和对应的PDU会话类型。
可选地,所述方法包括:
在中继发现广播消息中包含中继服务码和对应的PDU会话类型,或者,
接收远端UE发送的中继发现请求消息,所述请求消息中包含中继服务码和对应的PDU会话类型。
可选地,所述方法还包括:
接收远端UE发送的连接建立请求消息,所述请求消息中包含PC5接口上的PC5链路标识和PC5流标识。
可选地,根据所述流标识进行数据转发,包括:
确定PC5链路标识和PC5流标识以及PDU会话标识和QoS流标识之间的映射关系;
根据所述映射关系进行数据转发。
可选地,非IP类型的数据为unstructured类型数据时,PC5链路标识和PC5流标识以及PDU会话标识和QoS流标识之间是一一对应的。
可选地,根据所述映射关系进行数据传输,包括:
对于上行数据,根据所述映射关系将从PC5接口的QoS流接收到的数据发送到对应的Uu接口的QoS流上;和/或,
对于下行数据,根据所述映射关系将从Uu接口的QoS流接收到的数据发送到对应的PC5接口的QoS流上。
可选地,所述方法还包括:
接收PCF提供的中继服务码和对应的PDU会话类型。
其中,在图10中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1000代表的一个或多个处理器和存储器1020代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1010可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口1030还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器1000负责管理总线架构和通常的处理,存储器1020可以存储处理器1000在执行操作时所使用的数据。
本公开实施例提供了一种非IP类型数据的传输处理装置,包括:
中继UE发送模块,用于向会话管理功能SMF发送PDU会话请求消息以建立Uu接口上支持非IP类型数据传输的QoS流;
中继UE接收模块,用于接收SMF发送的PDU会话响应消息,所述响应消息包含所述QoS流的流标识;
中继UE转发模块,用于根据所述流标识进行数据转发。
具体实施中可以参见中继UE侧的非IP类型数据的传输处理方法的实施。
为了描述的方便,以上所述装置的各部分以功能分为各种模块或单元分别描述。当然,在实施本公开时可以把各模块或单元的功能在同一个或多个软件或硬件中实现。
图11为SMF结构示意图,如图所示,包括:
处理器1100,用于读取存储器1120中的程序,执行下列过程:
接收中继UE发送的用以建立Uu接口上支持非IP类型数据传输的QoS流PDU会话的请求消息;
向中继UE返回QoS流标识;
收发机1110,用于在处理器1100的控制下接收和发送数据。
可选地,接收中继UE发送的用以建立Uu接口上支持非IP类型数据传输的QoS流PDU会话的请求消息,包括:
所述中继UE在PDU会话请求消息中携带PDU会话标识以及中继指示信息,所述中继指示信息用于向SMF指示所述PDU会话是所述中继UE为中继远端UE的数据所建立的;或者,
所述中继UE在PDU会话请求消息中携带PDU会话标识以及QoS信息,所述QoS信息用于向SMF指示新建QoS流。
可选地,所述方法还包括:
SMF为所述QoS流分配IPv6前缀和用户数据报协议UDP端口;
SMF将QoS流标识和关联的IPv6前缀和UDP端口的关联关系发送给UPF。
可选地,所述方法还包括:
接收中继UE在PDU会话修改过程发送的PDU会话标识和建立新的QoS流的指示;
向中继UE返回QoS流标识。
其中,在图11中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1100代表的一个或多个处理器和存储器1120代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文 不再对其进行进一步描述。总线接口提供接口。收发机1110可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。处理器1100负责管理总线架构和通常的处理,存储器1120可以存储处理器1100在执行操作时所使用的数据。
本公开实施例提供了一种非IP类型数据的传输处理方法,包括:
SMF接收模块,用于接收中继UE发送的用以建立Uu接口上支持非IP类型数据传输的QoS流PDU会话的请求消息;
SMF发送模块,用于向中继UE返回QoS流标识。
具体实施中可以参见SMF侧的非IP类型数据的传输处理方法的实施。
为了描述的方便,以上所述装置的各部分以功能分为各种模块或单元分别描述。当然,在实施本公开时可以把各模块或单元的功能在同一个或多个软件或硬件中实现。
本公开实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有执行上述非IP类型数据的传输处理方法的计算机程序。
具体实施中可以参见中继UE侧和/或SMF侧的非IP类型数据的传输处理方法的实施。
综上所述,本公开实施例提供的技术方案中,Relay UE建立Uu QoS Flow以支持unstructured类型数据传输,Relay UE向SMF指示为unstructured PDU Session建立QoS Flow,SMF分配QFI和关联的IPv6 prefix和UDP port,并发送给UPF根据关联进行数据转发。
Relay UE和Remote UE在PC5发现和通信建立过程中交互PDU Session Type,以及链路和流标识信息。
Relay UE根据PFI和QFI的映射关系,以及UE MAC address进行数据转发。
本方案解决了Remote UE通过Relay UE支持Ethernet和Unstructured类型(也即non-IP类型)数据的传输。
本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个 其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
可以理解的是,本公开实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,各个模块、单元、子单元或子模块等可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本公开所述功能的其它电子单元或其组合中。
本申请的说明书以及权利要求中使用“和/或”表示所连接对象的至少其中之一。例如,“A和/或B”,表示“单独A,单独B,以及A和B都存在”三种情况。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (29)

  1. 一种非IP类型数据的传输处理方法,包括:
    中继用户设备UE向会话管理功能SMF发送协议数据单元PDU会话请求消息以建立Uu接口上支持非IP类型数据传输的服务质量QoS流;
    中继UE接收SMF发送的PDU会话响应消息,所述响应消息包含所述QoS流的流标识;
    中继UE根据所述流标识进行数据转发。
  2. 如权利要求1所述的方法,其中,非IP类型的数据为非结构化unstructured类型数据或以太Ethernet类型数据。
  3. 如权利要求1所述的方法,其中,中继UE向会话管理功能发送PDU会话请求消息以建立Uu接口上支持非IP类型数据传输的QoS流,包括:
    所述中继UE在PDU会话请求消息中携带PDU会话标识以及中继指示信息,所述中继指示信息用于向SMF指示所述PDU会话是所述中继UE为中继远端UE的数据所建立的;或者,
    所述中继UE在PDU会话请求消息中携带PDU会话标识以及QoS信息,所述QoS信息用于向SMF指示新建QoS流。
  4. 如权利要求1至3任一所述的方法,还包括:
    中继UE与远端UE在中继发现过程中交互中继服务码和对应的PDU会话类型。
  5. 如权利要求4所述的方法,包括:
    中继UE在中继发现广播消息中包含中继服务码和对应的PDU会话类型,或者,
    中继UE接收远端UE发送的中继发现请求消息,所述请求消息中包含中继服务码和对应的PDU会话类型。
  6. 根据权利要求1所述的方法,还包括:
    中继UE接收远端UE发送的连接建立请求消息,所述请求消息中包含PC5接口上的PC5链路标识和PC5流标识。
  7. 如权利要求1或6所述的方法,其中,中继UE根据所述流标识进行 数据转发,包括:
    中继UE确定PC5链路标识和PC5流标识以及PDU会话标识和QoS流标识之间的映射关系;
    中继UE根据所述映射关系进行数据转发。
  8. 如权利要求7所述的方法,其中,非IP类型的数据为unstructured类型数据时,PC5链路标识和PC5流标识以及PDU会话标识和QoS流标识之间是一一对应的。
  9. 如权利要求7所述的方法,其中,中继UE根据所述映射关系进行数据传输,包括:
    对于上行数据,中继UE根据所述映射关系将从PC5接口的QoS流接收到的数据发送到对应的Uu接口的QoS流上;和/或,
    对于下行数据,中继UE根据所述映射关系将从Uu接口的QoS流接收到的数据发送到对应的PC5接口的QoS流上。
  10. 如权利要求1所述的方法,还包括:
    所述中继UE接收策略控制功能PCF提供的中继服务码和对应的PDU会话类型。
  11. 一种非IP类型数据的传输处理方法,包括:
    SMF接收中继UE发送的用以建立Uu接口上支持非IP类型数据传输的QoS流PDU会话的请求消息;
    SMF向中继UE返回QoS流标识。
  12. 如权利要求11所述的方法,其中,SMF接收中继UE发送的用以建立Uu接口上支持非IP类型数据传输的QoS流PDU会话的请求消息,包括:
    所述中继UE在PDU会话请求消息中携带PDU会话标识以及中继指示信息,所述中继指示信息用于向SMF指示所述PDU会话是所述中继UE为中继远端UE的数据所建立的;或者,
    所述中继UE在PDU会话请求消息中携带PDU会话标识以及QoS信息,所述QoS信息用于向SMF指示新建QoS流。
  13. 如权利要求11所述的方法,还包括:
    SMF为所述QoS流分配IPv6前缀和用户数据报协议UDP端口;
    SMF将QoS流标识和关联的IPv6前缀和UDP端口的关联关系发送给UPF。
  14. 一种中继UE,包括:
    处理器,用于读取存储器中的程序,执行下列过程:
    向会话管理功能SMF发送PDU会话请求消息以建立Uu接口上支持非IP类型数据传输的QoS流;
    接收SMF发送的PDU会话响应消息,所述响应消息包含所述QoS流的流标识;
    根据所述流标识进行数据转发;
    收发机,用于在处理器的控制下接收和发送数据。
  15. 如权利要求14所述的UE,其中,非IP类型的数据为unstructured类型数据或Ethernet类型数据。
  16. 如权利要求14所述的UE,其中,向会话管理功能发送PDU会话请求消息以建立Uu接口上支持非IP类型数据传输的QoS流,包括:
    在PDU会话请求消息中携带PDU会话标识以及中继指示信息,所述中继指示信息用于向SMF指示所述PDU会话是所述中继UE为中继远端UE的数据所建立的;或者,
    在PDU会话请求消息中携带PDU会话标识以及QoS信息,所述QoS信息用于向SMF指示新建QoS流。
  17. 如权利要求14至16任一所述的UE,还包括:
    与远端UE在中继发现过程中交互中继服务码和对应的PDU会话类型。
  18. 如权利要求17所述的UE,包括:
    在中继发现广播消息中包含中继服务码和对应的PDU会话类型,或者,
    接收远端UE发送的中继发现请求消息,所述请求消息中包含中继服务码和对应的PDU会话类型。
  19. 根据权利要求14所述的UE,还包括:
    接收远端UE发送的连接建立请求消息,所述请求消息中包含PC5接口上的PC5链路标识和PC5流标识。
  20. 如权利要求14或19所述的UE,其中,根据所述流标识进行数据转 发,包括:
    确定PC5链路标识和PC5流标识以及PDU会话标识和QoS流标识之间的映射关系;
    根据所述映射关系进行数据转发。
  21. 如权利要求20所述的UE,其中,非IP类型的数据为unstructured类型数据时,PC5链路标识和PC5流标识以及PDU会话标识和QoS流标识之间是一一对应的。
  22. 如权利要求20所述的UE,其中,根据所述映射关系进行数据传输,包括:
    对于上行数据,根据所述映射关系将从PC5接口的QoS流接收到的数据发送到对应的Uu接口的QoS流上;和/或,
    对于下行数据,根据所述映射关系将从Uu接口的QoS流接收到的数据发送到对应的PC5接口的QoS流上。
  23. 如权利要求14所述的UE,还包括:
    接收PCF提供的中继服务码和对应的PDU会话类型。
  24. 一种SMF,包括:
    处理器,用于读取存储器中的程序,执行下列过程:
    接收中继UE发送的用以建立Uu接口上支持非IP类型数据传输的QoS流PDU会话的请求消息;
    向中继UE返回QoS流标识;
    收发机,用于在处理器的控制下接收和发送数据。
  25. 如权利要求24所述的SMF,其中,接收中继UE发送的用以建立Uu接口上支持非IP类型数据传输的QoS流PDU会话的请求消息,包括:
    所述中继UE在PDU会话请求消息中携带PDU会话标识以及中继指示信息,所述中继指示信息用于向SMF指示所述PDU会话是所述中继UE为中继远端UE的数据所建立的;或者,
    所述中继UE在PDU会话请求消息中携带PDU会话标识以及QoS信息,所述QoS信息用于向SMF指示新建QoS流。
  26. 如权利要求24至25任一所述的SMF,还包括:
    为所述QoS流分配IPv6前缀和用户数据报协议UDP端口;
    将QoS流标识和关联的IPv6前缀和UDP端口的关联关系发送给UPF。
  27. 一种非IP类型数据的传输处理装置,包括:
    中继UE发送模块,用于向会话管理功能SMF发送PDU会话请求消息以建立Uu接口上支持非IP类型数据传输的QoS流;
    中继UE接收模块,用于接收SMF发送的PDU会话响应消息,所述响应消息包含所述QoS流的流标识;
    中继UE转发模块,用于根据所述流标识进行数据转发。
  28. 一种非IP类型数据的传输处理装置,包括:
    SMF接收模块,用于接收中继UE发送的用以建立Uu接口上支持非IP类型数据传输的QoS流PDU会话的请求消息;
    SMF发送模块,用于向中继UE返回QoS流标识。
  29. 一种计算机可读存储介质,其中,所述计算机可读存储介质存储有执行权利要求1至13任一所述方法的计算机程序。
PCT/CN2021/083213 2020-04-28 2021-03-26 非ip类型数据的传输处理方法、设备、装置及介质 WO2021218512A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/918,708 US20230354085A1 (en) 2020-04-28 2021-03-26 Non-ip type data transmission processing method, device and apparatus, and medium
EP21795508.7A EP4145906A4 (en) 2020-04-28 2021-03-26 METHOD, APPARATUS AND APPARATUS FOR NON-IP DATA TRANSMISSION AND MEDIUM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010350672.0 2020-04-28
CN202010350672.0A CN113573381B (zh) 2020-04-28 2020-04-28 非ip类型数据的传输处理方法、设备、装置及介质

Publications (1)

Publication Number Publication Date
WO2021218512A1 true WO2021218512A1 (zh) 2021-11-04

Family

ID=78158135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/083213 WO2021218512A1 (zh) 2020-04-28 2021-03-26 非ip类型数据的传输处理方法、设备、装置及介质

Country Status (4)

Country Link
US (1) US20230354085A1 (zh)
EP (1) EP4145906A4 (zh)
CN (1) CN113573381B (zh)
WO (1) WO2021218512A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230082718A1 (en) * 2021-09-16 2023-03-16 Qualcomm Incorporated Protocol data unit session management

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116530198A (zh) * 2021-01-28 2023-08-01 Oppo广东移动通信有限公司 一种数据传输方法、终端设备和网络设备
CN115412993A (zh) * 2022-09-02 2022-11-29 中国电信股份有限公司 中继发现方法、系统、设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108307516A (zh) * 2016-09-30 2018-07-20 华为技术有限公司 数据传输方法及相关设备
CN110769412A (zh) * 2018-07-26 2020-02-07 中国移动通信有限公司研究院 会话绑定方法、网络发现功能、应用功能及网络单元
CN110771251A (zh) * 2017-06-16 2020-02-07 康维达无线有限责任公司 作为通信网络中的服务的小数据传送、数据缓冲及数据管理
WO2020035051A1 (en) * 2018-08-17 2020-02-20 Huawei Technologies Co., Ltd. Systems and methods for enabling private communication within a user equipment group
CN110831108A (zh) * 2018-08-10 2020-02-21 维沃移动通信有限公司 一种业务控制方法及通信设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018129543A1 (en) * 2017-01-09 2018-07-12 Idac Holdings, Inc. Relay for wireless communication system
US20190132251A1 (en) * 2017-10-31 2019-05-02 Huawei Technologies Co., Ltd. Method and system for supporting multiple qos flows for unstructured pdu sessions
CN109818917B (zh) * 2017-11-21 2021-10-26 华为技术有限公司 一种通信方法及其装置
WO2019194954A1 (en) * 2018-04-06 2019-10-10 Convida Wireless, Llc Methods of managing connections to a local area data network (ladn) in a 5g network

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108307516A (zh) * 2016-09-30 2018-07-20 华为技术有限公司 数据传输方法及相关设备
CN110771251A (zh) * 2017-06-16 2020-02-07 康维达无线有限责任公司 作为通信网络中的服务的小数据传送、数据缓冲及数据管理
CN110769412A (zh) * 2018-07-26 2020-02-07 中国移动通信有限公司研究院 会话绑定方法、网络发现功能、应用功能及网络单元
CN110831108A (zh) * 2018-08-10 2020-02-21 维沃移动通信有限公司 一种业务控制方法及通信设备
WO2020035051A1 (en) * 2018-08-17 2020-02-20 Huawei Technologies Co., Ltd. Systems and methods for enabling private communication within a user equipment group

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4145906A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230082718A1 (en) * 2021-09-16 2023-03-16 Qualcomm Incorporated Protocol data unit session management

Also Published As

Publication number Publication date
CN113573381B (zh) 2024-07-23
EP4145906A1 (en) 2023-03-08
US20230354085A1 (en) 2023-11-02
EP4145906A4 (en) 2023-10-04
CN113573381A (zh) 2021-10-29

Similar Documents

Publication Publication Date Title
WO2021218512A1 (zh) 非ip类型数据的传输处理方法、设备、装置及介质
EP3965440A1 (en) Sidelink communication method and apparatus, and storage medium
CN107801249B (zh) 无线通信系统的资源分配方法及其设备和系统
US8656029B2 (en) Multicast session setup in networks by determining a multicast session parameter based on a pre-existing unicast session parameter
KR101731095B1 (ko) 네트워크에 액세스하는 시스템 및 방법
KR20190120345A (ko) 서비스 품질 제어 방법 및 그 장치, smf, upf, ue, pcf 및 an
TW201824940A (zh) 處理尋呼的方法和裝置
US11153207B2 (en) Data link layer-based communication method, device, and system
US11134009B2 (en) Packet processing method and apparatus
US9826505B2 (en) IPV4 and IPV6 support in an MBMS network
WO2015085788A1 (zh) 一种动态主机配置协议报文处理方法及装置
WO2016058185A1 (zh) 一种通信方法、装置、控制器和转发面设备
WO2021047564A1 (zh) 一种数据发送和接收方法、装置和存储介质
WO2011091696A1 (zh) 相邻基站连接的建立方法、建立设备和建立系统
WO2022067818A1 (zh) 一种数据传输方法及装置
WO2014067251A1 (zh) 生成无线虚拟网络的方法及无线网络控制设备
WO2022206490A1 (zh) 蓝牙消息的传输方法、装置及蓝牙网络
WO2021115429A1 (zh) 一种通信方法及装置
KR101481337B1 (ko) 소프트웨어 정의 네트워크 기반 이동통신 시스템 및 이의 단말 접속 처리 방법
CN105188052B (zh) 一种接入网络的方法、系统及无线接入点
WO2015058413A1 (zh) 一种数据配置方法及网络管理服务器
WO2024037502A1 (zh) 中继服务方法、中继节点及网络侧、网络设备和存储介质
CN101340347B (zh) 一种传输语音数据流的方法和设备
US20240188104A1 (en) Communication method and apparatus
WO2021114132A1 (zh) 通信方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21795508

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021795508

Country of ref document: EP

Effective date: 20221128