WO2024037502A1 - 中继服务方法、中继节点及网络侧、网络设备和存储介质 - Google Patents

中继服务方法、中继节点及网络侧、网络设备和存储介质 Download PDF

Info

Publication number
WO2024037502A1
WO2024037502A1 PCT/CN2023/112915 CN2023112915W WO2024037502A1 WO 2024037502 A1 WO2024037502 A1 WO 2024037502A1 CN 2023112915 W CN2023112915 W CN 2023112915W WO 2024037502 A1 WO2024037502 A1 WO 2024037502A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
remote node
relay
address
remote
Prior art date
Application number
PCT/CN2023/112915
Other languages
English (en)
French (fr)
Inventor
林奕琳
刘洁
陈思柏
毕奇
Original Assignee
中国电信股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电信股份有限公司 filed Critical 中国电信股份有限公司
Publication of WO2024037502A1 publication Critical patent/WO2024037502A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/50Address allocation
    • H04L61/5061Pools of addresses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user

Definitions

  • the present disclosure relates to the field of communication technology, in particular to a relay service method, relay node and network side, network equipment and storage medium.
  • the remote UE (User Equipment), when there is no signal coverage or weak coverage, can use distance communication technology to access the mobile network through the relay terminal to use data services, as shown in Figure 1
  • the remote terminal Remote UE uses the relay function of the Layer-3 UE-to-Network Relay node through the PC5 interface to communicate with NG-RAN (New Generation Radio Access Network).
  • Wireless access network is connected to 5GC (5G Core, 5G core network), and then interacts with the data network (Data Network) through the N6 interface.
  • 5GC 5G Core, 5G core network
  • the remote UE has only a user plane connection with the core network, and the relay UE serves as a router based on the locally set IP address pool.
  • the remote UE provides DHCP (Dynamic Host Configuration Protocol) address allocation and performs NAT (Network Address Translation) for the remote UE to convert the locally allocated address to the core network allocation for the relay UE. relay IP address.
  • DHCP Dynamic Host Configuration Protocol
  • NAT Network Address Translation
  • One purpose of the present disclosure is to reduce the burden on relay nodes and improve the efficiency of relay communication.
  • a relay service method including: the relay node allocates a communication address to the accessed remote node according to the remote node address pool issued by the network side device; The side device sends remote node report information, and the remote node report information includes the identifier and communication address of the remote node.
  • the method further includes: the relay node receives the remote node address pool issued by the network side device, and stores the remote node address pool.
  • the method further includes: the relay node receives the uplink message from the remote node; and forwards the uplink message to the network side device.
  • the method further includes: the relay node receives a downlink message from the network side device; and forwards the message whose destination address is the communication address in the downlink message to the corresponding remote node.
  • the relay node receiving the remote node address pool issued by the network side device includes: the relay node obtains the network side address pool during the process of establishing a PDU (Packet Data Unit) session with the network side device.
  • the remote node address pool issued by the device includes: the relay node obtains the network side address pool during the process of establishing a PDU (Packet Data Unit) session with the network side device.
  • the remote node address pool issued by the device includes: the relay node obtains the network side address pool during the process of establishing a PDU (Packet Data Unit) session with the network side device.
  • PDU Packet Data Unit
  • the relay node receiving the remote node address pool issued by the network side device includes: the relay node receives the remote node address pool from the base station during the process of establishing a PDU session with the network side device, where, The base station obtains the remote node address pool issued by the SMF (Session Management Function) entity through the AMF (Access and Mobility Management Function) entity.
  • SMF Session Management Function
  • AMF Access and Mobility Management Function
  • a relay service method including: a network side device receiving remote node report information from a relay node, wherein the remote node report information includes an identifier of the remote node and the communication address.
  • the communication address is the address assigned by the relay node to the accessed remote node based on the remote node address pool issued by the network side device; the network side device saves the identity of the remote node in the session context of the relay node. Correspondence to correspondence address.
  • the method further includes at least one of the following: determining the node to which the message belongs based on the source address of the message from the relay node and the correspondence between the identifier of the remote node and the communication address; The destination address of the message of the relay node and the corresponding relationship between the identifier of the remote node and the communication address determine the node to which the message belongs. Among them, the message whose destination address is the communication address is sent to the remote node corresponding to the communication address. The connected relay node.
  • the method further includes: separately counting the relay nodes and the services or traffic of each remote node according to the node to which the message belongs, wherein the relay node provides services or traffic for one or more remote nodes. Following service.
  • the method further includes: generating a remote node address pool, and sending the remote node address pool to the relay node.
  • sending the remote node address pool to the relay node includes: sending the remote node address pool to the relay node during the process of establishing a PDU session with the relay node.
  • sending the remote node address pool to the relay node includes: the SMF entity sends the remote node address pool to the AMF entity; the AMF sends the remote node address pool to the relay node via the base station.
  • the method further includes: after the SMF entity obtains the corresponding relationship between the identifier and the communication address of the remote node based on the remote node report information, the SMF entity sends the corresponding relationship to the UPF (User Plane Function) entity. ; After receiving the downlink message whose destination address is the communication address, the UPF entity sends the downlink message to the corresponding relay node through the corresponding packet data unit PDU session of the relay node.
  • UPF User Plane Function
  • a relay node including: an address allocation unit configured to allocate communication addresses to accessed remote nodes according to a remote node address pool issued by a network side device. ; The sending unit is configured to send remote node report information to the network side device, where the remote node report information includes the identifier and communication address of the remote node.
  • the node further includes: a receiving unit configured to receive the remote node address pool issued by the network side device, and store the remote node address pool.
  • the node further includes: an uplink transmission unit configured to receive uplink messages from the remote node and forward the uplink messages to the network side device.
  • the node further includes: a downlink transmission unit configured to receive downlink messages from the network side device and forward the messages whose destination address is the communication address in the downlink messages to the corresponding remote node.
  • a downlink transmission unit configured to receive downlink messages from the network side device and forward the messages whose destination address is the communication address in the downlink messages to the corresponding remote node.
  • a network side device including: a report receiving unit configured to receive remote node report information from a relay node, wherein the remote node report information includes remote The identification and communication address of the node.
  • the communication address is the address assigned by the relay node to the accessed remote node based on the remote node address pool issued by the network side device; the storage unit is configured to be in the session context of the relay node. Save the correspondence between the identifier of the remote node and the communication address.
  • the device further includes a home node determination unit configured to perform at least one of the following: determine based on the source address of the message from the relay node and the correspondence between the identifier of the remote node and the communication address.
  • the node to which the message belongs; or the node to which the message belongs is determined based on the destination address of the message sent to the relay node and the correspondence between the identifier of the remote node and the communication address.
  • the device further includes: an address pool sending unit configured to generate a remote node address pool and send the remote node address pool to the relay node.
  • a network device including: a memory; and a processor coupled to the memory, the processor being configured to perform any of the above relay services based on instructions stored in the memory method.
  • a non-transitory computer-readable storage medium on which are stored computer program instructions, which when executed by a processor, implement the steps of any of the above methods.
  • a computer program for causing a processor to perform any of the above methods.
  • Figure 1 is a schematic diagram of a scenario where layer 3 relay does not have N3IWF (Non-3GPP InterWorking Function, non-3GPP interworking function).
  • N3IWF Non-3GPP InterWorking Function, non-3GPP interworking function
  • Figure 2 is a flow chart of some embodiments of the relay service method of the present disclosure.
  • Figure 3 is a flow chart of other embodiments of the relay service method of the present disclosure.
  • FIG. 4 is a flowchart of some further embodiments of the relay service method of the present disclosure.
  • Figure 5 is a signaling flow chart of some embodiments of the relay service method of the present disclosure.
  • Figure 6 is a schematic diagram of some embodiments of a relay node of the present disclosure.
  • Figure 7 is a schematic diagram of some embodiments of network side equipment of the present disclosure.
  • Figure 8 is a schematic diagram of some embodiments of network devices of the present disclosure.
  • Figure 9 is a schematic diagram of other embodiments of network equipment of the present disclosure.
  • the relay terminal needs to perform NAT, which has greater requirements on the equipment capability and power consumption of the relay terminal, affecting the communication efficiency, and there may be a gap between the relay UE port and each remote end after NAT. UE port conflict problem.
  • the present disclosure proposes a relay service solution that uniformly allocates an address pool to relay terminals, and the relay terminal does not need to perform NAT.
  • FIG. 2 A flowchart of some embodiments of the relay service method of the present disclosure is shown in Figure 2, including steps 220 and 230.
  • the method in the embodiment shown in Figure 2 is performed by a relay node.
  • the relay node may be a user terminal with a relay function.
  • the relay node allocates a communication address to the accessed remote node according to the remote node address pool issued by the network side device.
  • the relay node may receive the remote node address pool issued by the network side device in advance and store it.
  • the network side device can assign an address to the remote node, and The address assigned by the end node will not be assigned to the relay node for use.
  • the network side device can allocate a remote node address pool to the relay node to ensure that there is no address conflict between remote nodes that access the network through different relay nodes.
  • the remote node address pool may include an address list of remote nodes that can be used, and the relay node may select unused addresses as communication addresses in order or randomly.
  • the relay node sends remote node report information to the network side device.
  • the remote node report information includes the identifier and communication address of the remote node for the network side device to store the association between the remote node and the communication address. relationship for subsequent communication with remote nodes.
  • the relay node may obtain the identity of the remote node when the remote node attempts to connect to the relay node.
  • the relay node may send the communication address to the remote node for configuring the communication address of the remote node.
  • the relay node can use the address assigned to the remote node by the network side device to determine the communication address for the remote node, so that there is no need to perform NAT in the subsequent communication process of the remote node, reducing the cost of the remote node. It also improves the efficiency of relay communication; avoids the problem of conflicts between relay node ports and remote node ports, and improves the reliability of communication.
  • the relay service method of the present disclosure may further include step 210.
  • the relay node receives the remote node address pool issued by the network side device and stores the remote node address pool.
  • the remote node address pool may be an address list or an address collection.
  • the remote node address pool may include one or more addresses for allocation to remote nodes, which may be obtained through one or more messages, and then aggregated and stored.
  • the remote node address pool may be issued by the network side device to the relay node during the initial establishment of a PDU session between the relay node and the network side device for storage and use by the relay node.
  • the remote node address pool can be issued by the network side device to the central node when the remote node attempts to accept the relay service through the relay node and then the relay node establishes a new PDU session to the network side.
  • Relay node for storage and use by relay nodes.
  • the network side device may include a base station, an AMF entity, and an SMF entity.
  • the SMF entity sends the remote node address pool to the AMF entity.
  • the AMF entity passes the remote node address pool to the base station.
  • the base station sends the remote node address pool to the next node.
  • the relay node can obtain the remote node address pool in advance, so that it does not need to request the address pool from the network side device when allocating addresses to the remote node, which improves the address allocation efficiency and the establishment of relay sessions. efficiency.
  • the relay service method of the present disclosure may also include steps 241 and 242, which are used to relay uplink communications for the remote node after the remote node is configured.
  • step 241 the relay node receives the uplink message from the remote node, and the source address of the uplink message is the communication address assigned to the remote node.
  • step 242 the relay node forwards the uplink packet to the network side device without performing source address translation.
  • the relay node does not need to perform message address translation, which reduces the burden on the remote node and improves the efficiency of relay communication.
  • the relay service method of the present disclosure may also include steps 251 and 252, which are used to relay downlink communications for the remote node after the remote node is configured.
  • step 251 the relay node receives the downlink message from the network side device. If the destination address of the downlink message is the communication address assigned to the remote node, the downlink message is the corresponding remote node.
  • step 252 the relay node forwards the message whose destination address is the communication address in the downlink message to the corresponding remote node without converting the destination address.
  • the relay node does not need to perform message address translation, which reduces the burden on the remote node and improves the efficiency of relay communication.
  • the flow chart of other embodiments of the relay service method of the present disclosure is shown in Figure 3, including steps 320 and 330.
  • the method in the embodiment shown in Figure 3 is executed by a network side device.
  • the network side device receives the remote node report information from the relay node, where the remote node report information includes the identifier and communication address of the remote node, and the communication address is the relay node according to the network side device.
  • the remote node address pool is the communication address allocated to the accessed remote node.
  • step 330 the network side device saves the corresponding relationship between the identifier of the remote node and the communication address in the session context of the relay node.
  • the communication address of the remote node stored by the network side device belongs to the address pre-allocated by the network side device. Therefore, in the subsequent communication process of the remote node, there is no need for the relay node to perform NAT, which reduces the burden on the remote node. It also improves the efficiency of relay communication; it also avoids the problem of conflict between the relay node port and the remote node port, improving the reliability of communication.
  • the relay service method of the present disclosure may further include step 310.
  • the network side device In step 310, the network side device generates a remote node address pool and sends the remote node address pool to the relay node. In some embodiments, the network side device may send the remote node address pool to the relay node during the process of establishing a PDU session with the relay node.
  • the addresses in the remote node address pool need to avoid the addresses of the relay nodes, thereby avoiding address conflicts and improving communication reliability and security.
  • the remote node address pool can be sent by the SMF entity to the AMF entity, and then the AMF entity sends the remote node address pool to the relay node via the base station.
  • the network side device can update the remote node address pool at predetermined time intervals, thereby improving communication security; or only send the remote node address pool once during the process of establishing a PDU session with the relay node, reducing the risk of Signaling burden; or send the remote node address pool when receiving the address pool request of the relay node, thereby realizing on-demand provision, while reducing the signaling burden, ensuring the success of the relay node in allocating communication addresses to the remote node. Rate.
  • the network side device can pre-allocate the remote node address pool to the relay node, so that the relay node does not need to request the address pool from the network side device when allocating addresses to the remote node, which improves Address allocation efficiency and relay session establishment efficiency.
  • step 310 may be specifically shown in FIG. 4 , including steps 411 and 412.
  • the SMF entity sends the remote node address pool to the AMF entity.
  • the SMF entity can add a new message to the AMF entity.
  • the IP address pool field enables the SMF entity to send the remote node address pool to the AMF entity.
  • new fields in the message sent by the SMF entity to the AMF entity are as follows:
  • the "allocated prose remote UE IP pool” field is a new field in this disclosure and carries the remote
  • the node address pool can be located between the "allocated IPv4address” and "interface identifier" fields in the related technology.
  • step 411 may be a subsequent step of establishing an N4 session between the SMF entity and the UPF entity during the PDU session establishment process, and is performed immediately following the step of establishing an N4 session between the SMF entity and the UPF.
  • messages sent by the Message SMF entity to the AMF entity are carried by Namf_Communication_N1N2MessageTransfer messages conveying requests for N2 resources.
  • the AMF sends the remote node address pool to the relay node via the base station.
  • the AMF can transparently transmit the PDU Session Establishment Accept (PDU Session Establishment Accept) message and SMF initiation to the (R)AN through the N2PDU session request.
  • PDU Session Establishment Accept PDU Session Establishment Accept
  • SMF initiation SMF initiation to the (R)AN through the N2PDU session request.
  • the AN-specific resource setup message sends the remote node address pool to AN (Access Network) equipment, such as base stations.
  • the subsequent base station establishes a resource connection with the relay node based on the AN-specific resource setup message and provides the remote node address pool to the relay node.
  • the remote node address pool can be delivered to the relay node by improving the carrying resources on the basis of the PDU session establishment process in related technologies. It requires less changes on the operator's network side and is conducive to low cost. Rapid implementation and popularization of applications.
  • the relay service method of the present disclosure may also include step 341, which is used to communicate with the remote node after the above step 330.
  • the network side device determines the node to which the message belongs based on the source address of the message from the relay node and the correspondence between the identifier of the remote node and the communication address. In some embodiments, since the network side device stores the correspondence between the identifier of the remote node and the communication address in step 330 above, the network side device can determine whether the source node of the uplink message is a relay node or a communication address based on the stored correspondence. Remote nodes, and the remote node to which the message belongs can be distinguished from multiple remote nodes.
  • the node corresponding to the message can be identified in the uplink communication between the network side device and the remote node and relay node, thereby providing a data basis for subsequent refined traffic control.
  • the relay service method of the present disclosure may also include step 342 for communicating with the remote node after the above step 330.
  • the network side device determines the node to which the message belongs based on the destination address of the message sent to the relay node and the correspondence between the identifier of the remote node and the communication address. In some embodiments, the network side device can determine whether the target node of the downlink message is a relay node or a remote node based on the stored correspondence, and can distinguish the remote node to which the message belongs from among multiple remote nodes.
  • the SMF entity may send the corresponding relationship between the identifier of the remote node and the communication address to the UPF entity.
  • UPF can store this correspondence, and then when forwarding downlink messages, when receiving a message whose destination address is the communication address, it forwards it to the relay node through the corresponding PDU session of the relay node to ensure that the downlink message can pass through the relay. The node forwards it to the remote node to ensure the reliability of the downlink transmission of the message.
  • the node corresponding to the message can be identified in the downlink communication between the network side device and the remote node and relay node, thereby providing a data basis for subsequent refined traffic control.
  • the relay service method of the present disclosure may further include step 350.
  • the network side device separately counts services and traffic of the nodes according to the node to which the message belongs.
  • the nodes may include relay nodes and each remote node.
  • traffic statistics refined billing can be facilitated and user-friendliness improved.
  • service statistics, monitoring, and management it is easy to implement differentiated services for different nodes, such as providing value-added services to some users, further improving user friendliness.
  • the layer 3 relay node 52 establishes a connection with the network side, obtains UE to Relay (terminal to network) authorization, and obtains the corresponding configuration; the remote node 51 establishes a connection with the network side, and obtains the remote node authorization and obtain the corresponding configuration.
  • the relay node 52 establishes a PDU session with the network side equipment (including the wireless access network equipment 53, the AMF 54, the SMF 55, and the UPF 56).
  • the relay node 52 may obtain the remote node address pool issued by the network side device and store it.
  • the process of delivering the remote node address pool may be as shown in the corresponding embodiment of Figure 4 .
  • the remote node 51 executes the relay node discovery process; the remote node 51 selects a relay node 52 and establishes a connection.
  • the relay node 52 requests the network side to establish a new PDU session.
  • the relay node may also obtain the remote node address issued by the network side device in the current step and store it.
  • the process of delivering the remote node address pool may be as shown in the corresponding embodiment of Figure 4 .
  • the relay node 52 allocates an IP address (communication address) to the remote node 51, and the remote node 51 configures the IP address to complete the layer 2 connection modification.
  • the relay node 52 modifies the existing session for the relay service and sends a report message of the remote node 51 to the SMF 55.
  • the message includes the Remote User ID (remote node identification) and Remote UE info ( remote node information).
  • Remote UE info is the IP address assigned to the remote node.
  • SMF 55 saves the corresponding relationship between the identifier of the remote node and the IP address and other information in the session context of the current relay node.
  • UPF 56 uses the IP addresses of different remote nodes 51 to perform differential statistics and service control of remote node traffic.
  • UPF 56 can also use the IP addresses of different remote nodes 51 to determine the remote node corresponding to the destination address of the downlink message, and then send the downlink message to the relay node connected to the remote node, thereby ensuring that the downlink report The message can be forwarded to the remote node through the relay node to ensure the reliability of the downlink transmission of the message.
  • FIG. 6 A schematic diagram of some embodiments of the relay node 61 of the present disclosure is shown in FIG. 6 .
  • the address allocation unit 612 can allocate communication addresses to the accessed remote nodes according to the remote node address pool issued by the network side device.
  • the remote node address pool may include an address list of remote nodes that can be used, and the address allocation unit 612 may select unused addresses as communication addresses in order or randomly.
  • the sending unit 613 can send remote node report information to the network side device.
  • the remote node report information includes the identifier and communication address of the remote node, so that the network side device can store the association between the remote node and the communication address for subsequent use.
  • the sending unit 613 may obtain the identity of the remote node when the remote node attempts to connect to the relay node.
  • the sending unit 613 may send the communication address to the remote node for configuring the communication address of the remote node.
  • Such a relay node can use the address assigned to the remote node by the network side device to determine the communication address for the remote node, thereby eliminating the need for NAT in subsequent remote node communication processes, reducing the burden on the remote node and improving the efficiency of the middle node. It also improves the efficiency of relay communication; it also avoids the problem of conflict between the relay node port and the remote node port after NAT, improving the reliability of communication.
  • the relay node 61 also includes a receiving unit 611 capable of receiving the remote node address pool issued by the network side device and storing the remote node address pool.
  • the remote node address pool may be an address list or an address collection.
  • the remote node address pool may include a Or multiple addresses for allocation to remote nodes can be obtained through one or more messages and then aggregated and stored.
  • the remote node address pool may be delivered to the relay node by the network side device during the initial process of establishing a PDU session with the network side device for the relay node to store and use.
  • the remote node address pool can be issued by the network side device to the central node when the remote node attempts to accept the relay service through the relay node, and then the relay node establishes a new PDU session to the network side.
  • Relay node for storage and use by relay nodes.
  • Such a relay node can obtain the remote node address pool in advance, so that it does not need to request the address pool from the network side device when allocating addresses to the remote node, which improves address allocation efficiency and relay session establishment efficiency.
  • the relay node 61 also includes an uplink transmission unit 614, capable of receiving uplink messages from the remote node.
  • the source address of the uplink message is the communication assigned to the remote node. address; furthermore, the uplink transmission unit 614 does not need to convert the source address and forwards the uplink message to the network side device.
  • Such a relay node does not need to perform message address translation during the uplink communication process of the remote node, which reduces the burden on the remote node and improves the efficiency of relay communication.
  • the relay node 61 also includes a downlink transmission unit 615 capable of receiving downlink messages from the network side device. If the destination address of the downlink message is the communication address assigned to the remote node, Then the downlink message is the corresponding remote node; furthermore, the downlink transmission unit 615 does not need to convert the destination address and forwards the message whose destination address is the communication address in the downlink message to the corresponding remote node.
  • Such a relay node does not need to perform message address translation during the downlink communication process of the remote node, which reduces the burden on the remote node and improves the efficiency of relay communication.
  • FIG. 7 A schematic diagram of some embodiments of the network side device 72 of the present disclosure is shown in FIG. 7 .
  • the report receiving unit 722 can receive remote node report information from the relay node, where the remote node report information includes the identifier and communication address of the remote node, and the communication address is the remote node issued by the relay node according to the network side device.
  • the node address pool is allocated for connected remote nodes.
  • the storage unit 723 can save the corresponding relationship between the identifier of the remote node and the communication address in the session context of the relay node.
  • the communication address of the remote node stored by such a network-side device belongs to the address pre-allocated by the network-side device. Therefore, there is no need for the relay node to perform NAT during the subsequent communication process of the remote node, which reduces the burden on the remote node and improves the efficiency of the remote node.
  • the efficiency of relay communication also avoids the problem of the conflict between the relay node port and the remote node port after NAT, improving the reliability of communication.
  • the storage unit 723 can also store the corresponding relationship between the identifier of the remote node and the communication address. It is sent from the SMF entity to the UPF entity for storage so that the UPF entity can use it in the downlink packet forwarding process.
  • the network side device 72 includes a transceiver unit, which can perform the work of sending and receiving uplink and downlink messages. In the process of forwarding downlink messages, the transceiver unit can perform the identification and communication address of the remote node based on the UPF stored.
  • Correspondence relationship when a message whose destination address is the communication address is received, it is forwarded to the relay node through the corresponding PDU session of the relay node, ensuring that the downlink message can be forwarded to the remote node through the relay node and ensuring the downlink transmission of the message. reliability.
  • the network side device 72 also includes a home node determination unit 721 capable of communicating with the remote node based on the source address of the message from the relay node and the identity of the remote node. The corresponding relationship between the addresses determines the node to which the message belongs; the home node determination unit 721 can also determine the destination address of the message sent to the relay node, and the corresponding relationship between the identifier of the remote node and the communication address. , determine the node to which the message belongs.
  • Such a network-side device can identify the node corresponding to the message in the communication between the network-side device and the remote node and relay node, thereby providing a data basis for subsequent refined traffic control.
  • the network side device 72 also includes an address pool sending unit 724, capable of generating a remote node address pool and sending the remote node address pool to the relay node.
  • the address pool sending unit 724 may send the remote node address pool to the relay node during the process of establishing a PDU session between the network side device 72 and the relay node.
  • the addresses in the remote node address pool need to avoid the addresses of the relay nodes, thereby avoiding address conflicts and improving communication reliability and security.
  • the remote node address pool can be sent by the SMF to the AMF, and then the AMF sends the remote node address pool to the relay node via the base station.
  • Such a network-side device can pre-allocate the remote node address pool to the relay node, so that the relay node does not need to request the address pool from the network-side device when allocating addresses to the remote node, which improves the efficiency of address allocation and the establishment of relay sessions. efficiency.
  • the network-side device may also include a statistics unit that can separately count services and traffic of the node according to the node to which the message belongs.
  • the node may include a relay node and each remote node.
  • through traffic statistics, refined billing can be facilitated and user-friendliness improved.
  • through service statistics, monitoring, and management it is easy to implement differentiated services for different nodes, such as providing value-added services to some users, further improving user friendliness.
  • the network side device may be a relay node or a network side device.
  • the network device includes memory 801 and processor 802.
  • storage Storage 801 may be a disk, flash memory, or any other non-volatile storage medium.
  • the memory is used to store instructions in the above corresponding embodiments of the relay service method executed by the relay node or the network side device.
  • Processor 802 is coupled to memory 801 and may be implemented as one or more integrated circuits, such as a microprocessor or microcontroller.
  • the processor 802 is used to execute instructions stored in the memory, which can reduce the burden on the relay node and improve the efficiency of relay communication.
  • the network device 900 includes a memory 901 and a processor 902 .
  • Processor 902 is coupled to memory 901 via BUS bus 903 .
  • the network device 900 can also be connected to an external storage device 905 through a storage interface 904 to call external data, and can also be connected to a network or another computer system (not shown) through a network interface 906 . No further details will be given here.
  • the burden on the relay node can be reduced and the efficiency of relay communication can be improved.
  • a computer-readable storage medium has computer program instructions stored thereon. When the instructions are executed by a processor, the steps of the method in the corresponding embodiment of the relay service method are implemented.
  • embodiments of the present disclosure may be provided as methods, apparatuses, or computer program products. Accordingly, the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects.
  • the present disclosure may take the form of a computer program product embodied on one or more computer-usable non-transitory storage media (including, but not limited to, disk memory, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein. .
  • These computer program instructions may also be stored in a computer-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction means, the instructions
  • the device implements the functions specified in a process or processes of the flowchart and/or a block or blocks of the block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operating steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby executing on the computer or other programmable device.
  • Instructions provide steps for implementing the functions specified in a process or processes of a flowchart diagram and/or a block or blocks of a block diagram.
  • the methods and apparatus of the present disclosure may be implemented in many ways.
  • the methods and devices of the present disclosure can be implemented through software, hardware, firmware, or any combination of software, hardware, and firmware.
  • the above order for the steps of the methods is for illustration only, and the steps of the methods of the present disclosure are not limited to the order specifically described above unless otherwise specifically stated.
  • the present disclosure may also be implemented as programs recorded in recording media, and these programs include machine-readable instructions for implementing methods according to the present disclosure.
  • the present disclosure also covers recording media storing programs for executing methods according to the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提出一种中继服务方法、中继节点及网络侧、网络设备和存储介质,涉及通信技术领域。本公开的一种中继服务方法包括:中继节点根据网络侧设备下发的远端节点地址池,为接入的远端节点分配通信地址;向网络侧设备发送远端节点报告信息,远端节点报告信息中包括远端节点的标识和通信地址。

Description

中继服务方法、中继节点及网络侧、网络设备和存储介质
相关申请的交叉引用
本申请是以CN申请号为202210981473.9,申请日为2022年8月15日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中。
技术领域
本公开涉及通信技术领域,特别是一种中继服务方法、中继节点及网络侧、网络设备和存储介质。
背景技术
在3GPP近域通信场景下,远端UE(User Equipment,用户终端),在无信号覆盖或弱覆盖时,可以通过距离通信技术,经中继终端中转接入移动网使用数据业务,如图1所示,远端终端Remote UE通过PC5接口,利用层三终端到网络中继(Layer-3 UE-to-Network Relay)节点的中继功能,与NG-RAN(New Generation Radio Access Network,新一代无线接入网)与5GC(5G Core,5G核心网)连接,进而通过N6接口实现与数据网络(Data Network)的交互。
在3GPP层三中继(5G ProSe Layer-3 UE-to-Network Relay without N3IWF)方案中,远端UE与核心网只有用户面连接,中继UE作为路由器,基于本地设置的IP地址池,为远端UE提供DHCP(Dynamic Host Configuration Protocol,动态主机配置协议)地址分配,并为远端UE做NAT(Network Address Translation,网络地址转换),将本地分配的地址转换为核心网为中继UE分配的中继IP地址。
发明内容
本公开的一个目的在于降低中继节点负担,提高中继通信的效率。
根据本公开的一些实施例的一个方面,提出一种中继服务方法,包括:中继节点根据网络侧设备下发的远端节点地址池,为接入的远端节点分配通信地址;向网络侧设备发送远端节点报告信息,远端节点报告信息中包括远端节点的标识和通信地址。
在一些实施例中,该方法还包括:中继节点接收网络侧设备下发的远端节点地址池,并存储远端节点地址池。
在一些实施例中,该方法还包括:中继节点接收来自远端节点的上行报文;将上行报文转发给网络侧设备。
在一些实施例中,该方法还包括:中继节点接收来自网络侧设备的下行报文;将下行报文中目的地址为通信地址的报文转发给对应的远端节点。
在一些实施例中,中继节点接收网络侧设备下发的远端节点地址池包括:中继节点在与网络侧设备建立PDU(Packet Data Unit,分组数据单元)会话的过程中,获取网络侧设备下发的远端节点地址池。
在一些实施例中,中继节点接收网络侧设备下发的远端节点地址池包括:中继节点在与网络侧设备建立PDU会话的过程中,接收来自基站的远端节点地址池,其中,基站根据通过AMF(Access and Mobility Management Function,接入和移动性管理功能)实体获取SMF(Session Management Function,会话管理功能)实体下发的远端节点地址池。
根据本公开的一些实施例的一个方面,提出一种中继服务方法,包括:网络侧设备接收来自中继节点的远端节点报告信息,其中,远端节点报告信息中包括远端节点的标识和通信地址,通信地址为中继节点根据网络侧设备下发的远端节点地址池为接入的远端节点分配的地址;网络侧设备在中继节点的会话上下文中保存远端节点的标识与通信地址的对应关系。
在一些实施例中,该方法还包括以下至少一项:根据来自中继节点的报文的源地址,以及远端节点的标识与通信地址的对应关系,确定报文归属的节点;根据发送给中继节点的报文的目的地址,以及远端节点的标识与通信地址的对应关系,确定报文归属的节点,其中,目的地址为通信地址的报文被发送给通信地址对应的远端节点所连接的中继节点。
在一些实施例中,该方法还包括:根据报文归属的节点,分别统计中继节点,以及每个远端节点的服务或流量,其中,中继节点为一个或多个远端节点提供中继服务。
在一些实施例中,该方法还包括:生成远端节点地址池,并将远端节点地址池发送给中继节点。
在一些实施例中,将远端节点地址池发送给中继节点包括:在与中继节点建立PDU会话的过程中,将远端节点地址池发送给中继节点。
在一些实施例中,将远端节点地址池发送给中继节点包括:SMF实体向AMF实体发送远端节点地址池;AMF将远端节点地址池经基站发送给中继节点。
在一些实施例中,该方法还包括:SMF实体在根据远端节点报告信息获取远端节点的标识和通信地址的对应关系后,将对应关系发送给UPF(User Plane Function,用户面功能)实体;UPF实体在收到目的地址为通信地址的下行报文后,将下行报文通过中继节点的对应分组数据单元PDU会话发送给对应的中继节点。
根据本公开的一些实施例的一个方面,提出一种中继节点,包括:地址分配单元,被配置为根据网络侧设备下发的远端节点地址池,为接入的远端节点分配通信地址;发送单元,被配置为向网络侧设备发送远端节点报告信息,远端节点报告信息中包括远端节点的标识和通信地址。
在一些实施例中,该节点还包括:接收单元,被配置为接收网络侧设备下发的远端节点地址池,并存储远端节点地址池。
在一些实施例中,该节点还包括:上行传输单元,被配置为接收来自远端节点的上行报文,并将上行报文转发给网络侧设备。
在一些实施例中,该节点还包括:下行传输单元,被配置为接收来自网络侧设备的下行报文,将下行报文中目的地址为通信地址的报文转发给对应的远端节点。
根据本公开的一些实施例的一个方面,提出一种网络侧设备,包括:报告接收单元,被配置为接收来自中继节点的远端节点报告信息,其中,远端节点报告信息中包括远端节点的标识和通信地址,通信地址为中继节点根据网络侧设备下发的远端节点地址池为接入的远端节点分配的地址;存储单元,被配置为在中继节点的会话上下文中保存远端节点的标识与通信地址的对应关系。
在一些实施例中,该设备还包括归属节点确定单元,被配置为执行以下至少一项:根据来自中继节点的报文的源地址,以及远端节点的标识与通信地址的对应关系,确定报文归属的节点;或根据发送给中继节点的报文的目的地址,以及远端节点的标识与通信地址的对应关系,确定报文归属的节点。
在一些实施例中,该设备还包括:地址池发送单元,被配置为生成远端节点地址池,并将远端节点地址池发送给中继节点。
根据本公开的一些实施例的一个方面,提出一种网络设备,包括:存储器;以及耦接至存储器的处理器,处理器被配置为基于存储在存储器的指令执行上文中任意一种中继服务方法。
根据本公开的一些实施例的一个方面,提出一种非瞬时性计算机可读存储介质,其上存储有计算机程序指令,该指令被处理器执行时实现上文中任意一种方法的步骤。
根据本公开的一些实施例的一个方面,提出一种计算机程序,用于使处理器执行上文中任意一种方法。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本公开的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。
图1为层三中继无N3IWF(Non-3GPP InterWorking Function,非3GPP互通功能)场景的示意图。
图2为本公开的中继服务方法的一些实施例的流程图。
图3为本公开的中继服务方法的另一些实施例的流程图。
图4为本公开的中继服务方法的又一些实施例的流程图。
图5为本公开的中继服务方法的一些实施例的信令流程图。
图6为本公开的中继节点的一些实施例的示意图。
图7为本公开的网络侧设备的一些实施例的示意图。
图8为本公开的网络设备的一些实施例的示意图。
图9为本公开的网络设备的另一些实施例的示意图。
具体实施方式
下面通过附图和实施例,对本公开的技术方案做进一步的详细描述。
发明人发现,相关技术的方案中,中继终端需要做NAT,对中继终端的设备能力、功耗都有较大要求,影响通信效率,且可能存在NAT后中继UE端口与各远端UE端口冲突的问题。
基于上述原因,本公开提出一种中继服务的方案,为中继终端统一分配地址池,且中继终端不需要做NAT的方案。
本公开的中继服务方法的一些实施例的流程图如图2所示,包括步骤220和230。在一些实施例中,图2所示实施例中的方法由中继节点执行。在一些实施例中,中继节点可以为具备中继功能的用户终端。
在步骤220中,中继节点根据网络侧设备下发的远端节点地址池,为接入的远端节点分配通信地址。在一些实施例中,中继节点可以预先接收网络侧设备下发的远端节点地址池并存储。在一些实施例中,网络侧设备可以为远端节点分配地址,且为远 端节点分配的地址不会分配给中继节点使用。在一些实施例中,网络侧设备可以针对中继节点分配远端节点地址池,确保通过不同中继节点接入网络的远端节点间地址不冲突。
在一些实施例中,远端节点地址池可以为包括能够被使用的远端节点的地址列表,中继节点可以按照次序或随机选择未被使用的地址作为通信地址。
在步骤230中,中继节点向网络侧设备发送远端节点报告信息,远端节点报告信息中包括远端节点的标识和通信地址,供网络侧设备存储远端节点与通信地址之间的关联关系,以便后续与远端节点通信。在一些实施例中,中继节点可以在远端节点尝试与中继节点连接的过程中获取远端节点的标识。在一些实施例中,中继节点可以将通信地址发送给远端节点,用于配置远端节点的通信地址。
基于上文实施例中的方法,中继节点能够利用网络侧设备分配给远端节点的地址为远端节点确定通信地址,从而在后续远端节点通信过程中无需进行NAT,降低了远端节点的负担,也提高了中继通信的效率;避免中继节点端口与远端节点端口冲突的问题,提高了通信的可靠性。
在一些实施例中,本公开的中继服务方法还可以包括步骤210。
在步骤210中,中继节点接收网络侧设备下发的远端节点地址池,并存储远端节点地址池。在一些实施例中,远端节点地址池可以为地址列表或地址集合。在一些实施例中,远端节点地址池可以包括一个或多个用于分配给远端节点的地址,可以通过一个或多个报文获得,进而汇总存储。
在一些实施例中,远端节点地址池可以在中继节点初始与网络侧设备建立PDU会话的过程中,由网络侧设备下发给中继节点,供中继节点存储和使用。在一些实施例中,远端节点地址池可以在远端节点试图通过中继节点接受中继服务、进而中继节点向网络侧建立新的PDU会话的过程中,由网络侧设备下发给中继节点,供中继节点存储和使用。
在一些实施例中,网络侧设备可以包括基站、AMF实体和SMF实体,由SMF实体将远端节点地址池发送给AMF实体,AMF实体将远端节点地址池传递给基站,由基站发送给下发的远端节点地址池。
通过上文实施例中的方法,中继节点能够预先获得远端节点地址池,从而在为远端节点分配地址时无需向网络侧设备请求地址池,提高了地址分配效率和中继会话的建立效率。
在一些实施例中,如图2所示,本公开的中继服务方法还可以包括步骤241和步骤242,用于在远端节点配置完成后,为远端节点进行上行通信的中继。
在步骤241中,中继节点接收来自远端节点的上行报文,该上行报文的源地址即为分配给远端节点的通信地址。
在步骤242中,中继节点无需进行源地址的转换,将上行报文转发给网络侧设备。
通过这样的方法,在远端节点上行通信过程中,中继节点无需进行报文地址转换,降低了远端节点的负担,也提高了中继通信的效率。
在一些实施例中,如图2所示,本公开的中继服务方法还可以包括步骤251和步骤252,用于在远端节点配置完成后,为远端节点进行下行通信的中继。
在步骤251中,中继节点接收来自网络侧设备的下行报文,若下行报文的目的地址为分配给远端节点的通信地址,则该下行报文为对应的远端节点。
在步骤252中,中继节点无需进行目的地址的转换,将下行报文中目的地址为通信地址的报文转发给对应的远端节点。
通过这样的方法,在远端节点下行通信过程中,中继节点无需进行报文地址转换,降低了远端节点的负担,也提高了中继通信的效率。
本公开的中继服务方法的另一些实施例的流程图如图3所示,包括步骤320和330。在一些实施例中,图3所示实施例中的方法由网络侧设备执行。
在步骤320中,网络侧设备接收来自中继节点的远端节点报告信息,其中,远端节点报告信息中包括远端节点的标识和通信地址,通信地址为中继节点根据网络侧设备下发的远端节点地址池为接入的远端节点分配的通信地址。
在步骤330中,网络侧设备在中继节点的会话上下文中保存远端节点的标识与通信地址的对应关系。
通过这样的方法,网络侧设备存储的远端节点的通信地址属于由网络侧设备预先分配的地址,从而在后续远端节点通信过程中无需中继节点进行NAT,降低了远端节点的负担,也提高了中继通信的效率;也避免了中继节点端口与远端节点端口冲突的问题,提高了通信的可靠性。
在一些实施例中,本公开的中继服务方法还可以包括步骤310。
在步骤310中,网络侧设备生成远端节点地址池,并将远端节点地址池发送给中继节点。在一些实施例中,网络侧设备可以在与中继节点建立PDU会话的过程中,将远端节点地址池发送给中继节点。
在一些实施例中,远端节点地址池中的地址需要规避中继节点的地址,从而避免产生地址冲突,提高通信的可靠性和安全性。
在一些实施例中,远端节点地址池可以由SMF实体发送给AMF实体,进而再由AMF实体将远端节点地址池经基站发送给中继节点。
在一些实施例中,网络侧设备可以按照预定时间间隔更新远端节点地址池,从而提高通信的安全性;或只在与中继节点建立PDU会话的过程中发送一次远端节点地址池,降低信令负担;或在收到中继节点的地址池请求时发送远端节点地址池,从而实现按需提供,在减少信令负担的同时,确保中继节点为远端节点分配通信地址的成功率。
通过上文所示实施例中的方式,网络侧设备能够预先向中继节点分配远端节点地址池,从而使中继节点为远端节点分配地址时无需向网络侧设备请求地址池,提高了地址分配效率和中继会话的建立效率。
在一些实施例中,上述步骤310具体的可以如图4所示,包括步骤411和412。
在步骤411中,SMF实体向AMF实体发送远端节点地址池。在一些实施例中,可以通过在中继节点的PDU会话建立过程中(如下图所示,对应上述方法步骤2、4中的PDU会话建立流程),SMF实体发送给AMF实体的消息中新增IP地址池字段的方式,使得SMF实体将远端节点地址池发送给AMF实体。在一些实施例中,SMF实体发送给AMF实体的消息中新增的字段示例如下:
上述示例中“//”及其后面的文字为注释信息,不包括在PDU会话建立接受消息的消息体中,“allocated prose remote UE IP pool”字段为本公开中新增的字段,承载远端节点地址池,其位置可以位于相关技术中“allocated IPv4address”与“interface identifier”字段之间,PDU会话建立接受消息中的其他字段可以参考相关技术,此处 不再详细示出。
在一些实施例中,步骤411可以为PDU会话建立过程中、SMF实体与UPF实体建立N4会话的后续步骤,紧随SMF实体与UPF建立N4会话的步骤执行。在一些实施例中,消息SMF实体发送给AMF实体的消息由传递N2资源的请求的Namf_Communication_N1N2MessageTransfer消息承载。
在步骤412中,AMF将远端节点地址池经基站发送给中继节点。在一些实施例中,可以在PDU会话建立过程中,当AMF收到远端节点地址池后,通过N2PDU会话请求向(R)AN透传PDU Session Establishment Accept(PDU会话建立接受)消息以及SMF发起的AN-specific resource setup(接入网专用资源建立)消息,将远端节点地址池发送给AN(Access Network,接入网)设备,如基站。后续基站根据AN-specific resource setup消息与中继节点建立资源连接,将远端节点地址池提供给中继节点。
通过这样的方法,能够在相关技术中PDU会话建立过程的基础上通过对携带资源的改进实现向中继节点下发远端节点地址池,对于运营商网络侧的改动较少,有利于低成本的快速实现和推广应用。
在一些实施例中,如图3所示,本公开的中继服务方法还可以包括步骤341,用于上述步骤330后,与远端节点进行通信。
在步骤341中,网络侧设备根据来自中继节点的报文的源地址,以及远端节点的标识与通信地址的对应关系,确定报文归属的节点。在一些实施例中,由于上文步骤330中网络侧设备存储了远端节点的标识与通信地址的对应关系,网络侧设备能够基于存储的对应关系确定上行报文的源节点是中继节点还是远端节点,以及可以从多个远端节点中区分出报文归属的远端节点。
通过这样的方法,能够实现在网络侧设备与远端节点、中继节点的上行通信中识别报文对应的节点,从而为后续精细化的流量控制提供数据基础。
在一些实施例中,如图3所示,本公开的中继服务方法还可以包括步骤342,用于在上述步骤330后,与远端节点进行通信。
在步骤342中,网络侧设备根据发送给中继节点的报文的目的地址,以及远端节点的标识与通信地址的对应关系,确定报文归属的节点。在一些实施例中,网络侧设备能够基于存储的对应关系确定下行报文的目标节点是中继节点还是远端节点,以及可以从多个远端节点中区分出报文归属的远端节点。
在一些实施例中,在上述步骤330后,SMF实体可以将远端节点的标识与通信地址的对应关系发送给UPF实体。UPF可以存储该对应关系,进而在转发下行报文时,当收到目的地址为通信地址的报文时,通过中继节点的对应PDU会话转发给中继节点,确保下行报文能够通过中继节点转发给远端节点,保证报文下行传输的可靠性。
通过这样的方法,能够实现在网络侧设备与远端节点、中继节点的下行通信中识别报文对应的节点,从而为后续精细化的流量控制提供数据基础。
在一些实施例中,如图3所示,本公开的中继服务方法还可以包括步骤350。
在步骤350中,网络侧设备根据报文归属的节点,分别统计节点的服务、流量,节点可以包括中继节点,以及每个远端节点。在一些实施例中,通过对于流量的统计,可以便于精细化计费,提高用户友好度。在一些实施例中,通过服务统计和监测、管理,便于实现对不同节点的差异化服务,如对部分用户提供增值服务,进一步提高用户友好度。
本公开的中继服务方法的一些实施例的信令流程图如图5所示。
在501a~501b中,层三中继节点52与网络侧建立连接,得到UE to Relay(终端到网络)的授权,并获得相应的配置;远端节点51与网络侧建立连接,得到远端节点的授权,并获得相应的配置。
在502中,中继节点52与网络侧设备(包括无线接入网设备53、AMF 54、SMF 55、以及UPF 56)建立PDU会话。在一些实施例中,在当前步骤中,中继节点52可以获取网络侧设备下发的远端节点地址池并存储。在一些实施例中,远端节点地址池下发的过程可以如图4对应的实施例中所示。
在503~504中,远端节点51执行中继节点发现流程;远端节点51选择一个中继节点52并建立连接。
在505中,中继节点52向网络侧请求建立新的PDU会话。在一些实施例中,中继节点在当前步骤中也可以获取网络侧设备下发的远端节点地址并存储。在一些实施例中,远端节点地址池下发的过程可以如图4对应的实施例中所示。
在506~507中,中继节点52为远端节点51分配IP地址(通信地址),远端节点51配置该IP地址,完成层2连接修改。
在508~509中,中继节点52为中继服务修改已有的会话,并向SMF 55发送远端节点51的报告消息,消息中包含Remote User ID(远端节点标识)和Remote UE info(远端节点信息)。在一些实施例中,在网络环境为IPv4环境的情况下,此处的 Remote UE info为分配给远端节点的IP地址。SMF 55在当前中继节点的会话上下文中保存远端节点的标识与IP地址等信息的对应关系。
在510中,UPF 56利用不同远端节点51的IP地址进行远端节点流量的区别统计、服务控制。此外,UPF 56还能够利用不同远端节点51的IP地址,确定下行报文的目的地址对应的远端节点,进而将下行报文发送给远端节点所连接的中继节点,从而确保下行报文能够通过中继节点转发给远端节点,保证报文下行传输的可靠性。
通过这样的方法,面向ProSe(Proximity-based Services,邻近业务),通过在SMF做全局的远端UE地址池规划,并通过消息字段扩展,在PDU会话建立或更新过程中下发给中继UE,供中继UE进行远端UE IP地址分配,并直接做IP路由,无需NAT,同时中继UE将远端UE与IP地址的绑定关系通过消息字段增强发送给SMF,从而实现核心网对远端UE的流量区别标识,最后UPF利用不同的IP地址做不同远端UE的流量识别及统计,规避了端口冲突的风险,提高业务体验,也方便系统进行灵活的服务设计。
本公开的中继节点61的一些实施例的示意图如图6所示。
地址分配单元612能够根据网络侧设备下发的远端节点地址池,为接入的远端节点分配通信地址。在一些实施例中,远端节点地址池可以为包括能够被使用的远端节点的地址列表,地址分配单元612可以按照次序或随机选择未被使用的地址作为通信地址。
发送单元613能够向网络侧设备发送远端节点报告信息,远端节点报告信息中包括远端节点的标识和通信地址,供网络侧设备存储远端节点与通信地址之间的关联关系,以便后续与远端节点通信。在一些实施例中,发送单元613可以在远端节点尝试与中继节点连接的过程中获取远端节点的标识。在一些实施例中,发送单元613可以将通信地址发送给远端节点,用于配置远端节点的通信地址。
这样的中继节点能够利用网络侧设备分配给远端节点的地址为远端节点确定通信地址,从而在后续远端节点通信过程中无需进行NAT,降低了远端节点的负担,也提高了中继通信的效率;也避免了NAT后中继节点端口与远端节点端口冲突的问题,提高了通信的可靠性。
在一些实施例中,如图6所示,中继节点61还包括接收单元611,能够接收网络侧设备下发的远端节点地址池,并存储远端节点地址池。在一些实施例中,远端节点地址池可以为地址列表或地址集合。在一些实施例中,远端节点地址池可以包括一个 或多个用于分配给远端节点的地址,可以通过一个或多个报文获得,进而汇总存储。在一些实施例中,远端节点地址池可以在中继节点初始的在与网络侧设备建立PDU会话的过程中,由网络侧设备下发给中继节点,供中继节点存储和使用。在一些实施例中,远端节点地址池可以在远端节点试图通过中继节点接受中继服务,进而中继节点向网络侧建立新的PDU会话的过程中,由网络侧设备下发给中继节点,供中继节点存储和使用。
这样的中继节点能够预先获得远端节点地址池,从而在为远端节点分配地址时无需向网络侧设备请求地址池,提高了地址分配效率和中继会话的建立效率。
在一些实施例中,如图6所示,中继节点61还包括上行传输单元614,能够接收来自远端节点的上行报文,该上行报文的源地址即为分配给远端节点的通信地址;进而上行传输单元614无需进行源地址的转换,将上行报文转发给网络侧设备。
这样的中继节点在远端节点上行通信过程中无需进行报文地址转换,降低了远端节点的负担,也提高了中继通信的效率。
在一些实施例中,如图6所示,中继节点61还包括下行传输单元615能够接收来自网络侧设备的下行报文,若下行报文的目的地址为分配给远端节点的通信地址,则该下行报文为对应的远端节点;进而下行传输单元615无需进行目的地址的转换,将下行报文中目的地址为通信地址的报文转发给对应的远端节点。
这样的中继节点在远端节点下行通信过程中无需进行报文地址转换,降低了远端节点的负担,也提高了中继通信的效率。
本公开的网络侧设备72的一些实施例的示意图如图7所示。
报告接收单元722能够接收来自中继节点的远端节点报告信息,其中,远端节点报告信息中包括远端节点的标识和通信地址,通信地址为中继节点根据网络侧设备下发的远端节点地址池为接入的远端节点分配。
存储单元723能够在中继节点的会话上下文中保存远端节点的标识与通信地址的对应关系。
这样的网络侧设备存储的远端节点的通信地址属于由网络侧设备预先分配的地址,从而在后续远端节点通信过程中无需中继节点进行NAT,降低了远端节点的负担,也提高了中继通信的效率;也避免了NAT后中继节点端口与远端节点端口冲突的问题,提高了通信的可靠性。
在一些实施例中,存储单元723还能够将远端节点的标识与通信地址的对应关系 从SMF实体发送给UPF实体存储,以便UPF实体在下行报文转发过程中使用。在一些实施例中,网络侧设备72包括收发单元,能够执行上下行报文的收发工作,其中,收发单元在下行报文转发过程中,能够基于UPF存储的远端节点的标识与通信地址的对应关系,当收到目的地址为通信地址的报文时,通过中继节点的对应PDU会话转发给中继节点,确保下行报文能够通过中继节点转发给远端节点,保证报文下行传输的可靠性。
在一些实施例中,如图7所示,网络侧设备72还包括归属节点确定单元721能够根据来自所述中继节点的报文的源地址,以及所述远端节点的标识与所述通信地址的对应关系,确定报文归属的节点;归属节点确定单元721还能够根据发送给所述中继节点的报文的目的地址,以及所述远端节点的标识与所述通信地址的对应关系,确定报文归属的节点。
这样的网络侧设备能够实现在网络侧设备与远端节点、中继节点的通信中识别报文对应的节点,从而为后续精细化的流量控制提供数据基础。
在一些实施例中,网络侧设备72还包括地址池发送单元724,能够生成远端节点地址池,并将远端节点地址池发送给中继节点。在一些实施例中,地址池发送单元724可以在网络侧设备72与中继节点建立PDU会话的过程中,将远端节点地址池发送给中继节点。在一些实施例中,远端节点地址池中的地址需要规避中继节点的地址,从而避免产生地址冲突,提高通信的可靠性和安全性。
在一些实施例中,远端节点地址池可以由SMF发送给AMF,进而再由AMF将远端节点地址池经基站发送给中继节点。
这样的网络侧设备能够预先向中继节点分配远端节点地址池,从而使中继节点为远端节点分配地址时无需向网络侧设备请求地址池,提高了地址分配效率和中继会话的建立效率。
在一些实施例中,网络侧设备还可以包括统计单元,能够根据报文归属的节点,分别统计节点的服务、流量,节点可以包括中继节点,以及每个远端节点。在一些实施例中,通过对于流量的统计,可以便于精细化计费,提高用户友好度。在一些实施例中,通过服务统计和监测、管理,便于实现对不同节点的差异化服务,如对部分用户提供增值服务,进一步提高用户友好度。
本公开网络设备的一个实施例的结构示意图如图8所示,该网络侧设备可以为中继节点,也可以为网络侧设备。网络设备包括存储器801和处理器802。其中:存储 器801可以是磁盘、闪存或其它任何非易失性存储介质。存储器用于存储上文中由中继节点或网络侧设备执行的中继服务方法的对应实施例中的指令。处理器802耦接至存储器801,可以作为一个或多个集成电路来实施,例如微处理器或微控制器。该处理器802用于执行存储器中存储的指令,能够降低中继节点负担,提高中继通信的效率。
在一个实施例中,还可以如图9所示,网络设备900包括存储器901和处理器902。处理器902通过BUS总线903耦合至存储器901。该网络设备900还可以通过存储接口904连接至外部存储装置905以便调用外部数据,还可以通过网络接口906连接至网络或者另外一台计算机系统(未标出)。此处不再进行详细介绍。
在该实施例中,通过存储器存储数据指令,再通过处理器处理上述指令,能够降低中继节点负担,提高中继通信的效率。
在另一个实施例中,一种计算机可读存储介质,其上存储有计算机程序指令,该指令被处理器执行时实现中继服务方法对应实施例中的方法的步骤。本领域内的技术人员应明白,本公开的实施例可提供为方法、装置、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用非瞬时性存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
至此,已经详细描述了本公开。为了避免遮蔽本公开的构思,没有描述本领域所公知的一些细节。本领域技术人员根据上面的描述,完全可以明白如何实施这里公开的技术方案。
可能以许多方式来实现本公开的方法以及装置。例如,可通过软件、硬件、固件或者软件、硬件、固件的任何组合来实现本公开的方法以及装置。用于所述方法的步骤的上述顺序仅是为了进行说明,本公开的方法的步骤不限于以上具体描述的顺序,除非以其它方式特别说明。此外,在一些实施例中,还可将本公开实施为记录在记录介质中的程序,这些程序包括用于实现根据本公开的方法的机器可读指令。因而,本公开还覆盖存储用于执行根据本公开的方法的程序的记录介质。
最后应当说明的是:以上实施例仅用以说明本公开的技术方案而非对其限制;尽管参照较佳实施例对本公开进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本公开的具体实施方式进行修改或者对部分技术特征进行等同替换;而不脱离本公开技术方案的精神,其均应涵盖在本公开请求保护的技术方案范围当中。

Claims (23)

  1. 一种中继服务方法,包括:
    中继节点根据网络侧设备下发的远端节点地址池,为接入的远端节点分配通信地址;
    向网络侧设备发送远端节点报告信息,所述远端节点报告信息中包括所述远端节点的标识和所述通信地址。
  2. 根据权利要求1所述的中继服务方法,还包括:
    所述中继节点接收网络侧设备下发的远端节点地址池,并存储所述远端节点地址池。
  3. 根据权利要求1所述的中继服务方法,还包括:
    所述中继节点接收来自所述远端节点的上行报文;
    所述中继节点将所述上行报文转发给网络侧设备。
  4. 根据权利要求1、2或3所述的中继服务方法,还包括:
    所述中继节点接收来自网络侧设备的下行报文;
    将所述下行报文中目的地址为所述通信地址的报文转发给对应的所述远端节点。
  5. 根据权利要求2所述的中继服务方法,其中,所述中继节点接收网络侧设备下发的远端节点地址池包括:
    所述中继节点在与网络侧设备建立分组数据单元PDU会话的过程中,获取所述网络侧设备下发的远端节点地址池。
  6. 根据权利要求2或5所述的中继服务方法,其中,所述中继节点接收网络侧设备下发的远端节点地址池包括:
    所述中继节点在与网络侧设备建立PDU会话的过程中,接收来自基站的远端节点地址池,其中,所述基站根据通过接入和移动管理功能AMF实体获取会话管理功能SMF实体下发的远端节点地址池。
  7. 一种中继服务方法,包括:
    网络侧设备接收来自中继节点的远端节点报告信息,其中,所述远端节点报告信息中包括所述远端节点的标识和所述通信地址,所述通信地址为所述中继节点根据网络侧设备下发的远端节点地址池为接入的远端节点分配的地址;
    所述网络侧设备在所述中继节点的会话上下文中保存所述远端节点的标识与所述通信地址的对应关系。
  8. 根据权利要求7所述的中继服务方法,还包括以下至少一项:
    根据来自所述中继节点的报文的源地址,以及所述远端节点的标识与所述通信地址的对应关系,确定报文归属的节点;
    根据发送给所述中继节点的报文的目的地址,以及所述远端节点的标识与所述通信地址的对应关系,确定报文归属的节点,其中,目的地址为通信地址的报文被发送给所述通信地址对应的远端节点所连接的中继节点。
  9. 根据权利要求8所述的中继服务方法,还包括:
    根据报文归属的节点,分别统计所述中继节点,以及每个远端节的服务或流量,其中,所述中继节点为一个或多个远端节点提供中继服务。
  10. 根据权利要求7所述的中继服务方法,还包括:
    生成远端节点地址池,并将所述远端节点地址池发送给所述中继节点。
  11. 根据权利要求10所述的中继服务方法,其中,所述将所述远端节点地址池发送给所述中继节点包括:
    在与所述中继节点建立分组数据单元PDU会话的过程中,将所述远端节点地址池发送给所述中继节点。
  12. 根据权利要求10或11所述的中继服务方法,其中,所述将所述远端节点地址池发送给所述中继节点包括:
    会话管理功能SMF实体向接入和移动管理功能AMF实体发送所述远端节点地址池;和
    所述AMF将所述远端节点地址池经基站发送给所述中继节点。
  13. 根据权利要求7~11任意一项所述的中继服务方法,还包括:
    SMF实体在根据所述远端节点报告信息获取所述远端节点的标识和所述通信地址的对应关系后,将所述对应关系发送给用户面功能UPF实体;
    所述UPF实体在收到目的地址为所述通信地址的下行报文后,将所述下行报文通过中继节点的对应分组数据单元PDU会话发送给对应的中继节点。
  14. 一种中继节点,包括:
    地址分配单元,被配置为根据网络侧设备下发的远端节点地址池,为接入的远端 节点分配通信地址;
    发送单元,被配置为向网络侧设备发送远端节点报告信息,所述远端节点报告信息中包括所述远端节点的标识和所述通信地址。
  15. 根据权利要求14所述的中继节点,还包括:
    接收单元,被配置为接收网络侧设备下发的远端节点地址池,并存储所述远端节点地址池。
  16. 根据权利要求14所述的中继节点,还包括:
    上行传输单元,被配置为接收来自所述远端节点的上行报文,并将所述上行报文转发给网络侧设备。
  17. 根据权利要求14或16所述的中继节点,还包括:
    下行传输单元,被配置为接收来自网络侧设备的下行报文,将所述下行报文中目的地址为所述通信地址的报文转发给对应的所述远端节点。
  18. 一种网络侧设备,包括:
    报告接收单元,被配置为接收来自中继节点的远端节点报告信息,其中,所述远端节点报告信息中包括所述远端节点的标识和所述通信地址,所述通信地址为所述中继节点根据网络侧设备下发的远端节点地址池为接入的远端节点分配的地址;和
    存储单元,被配置为在所述中继节点的会话上下文中保存所述远端节点的标识与所述通信地址的对应关系。
  19. 根据权利要求18所述的网络侧设备,还包括归属节点确定单元,被配置为执行以下至少一项:
    根据来自所述中继节点的报文的源地址,以及所述远端节点的标识与所述通信地址的对应关系,确定报文归属的节点;或
    根据发送给所述中继节点的报文的目的地址,以及所述远端节点的标识与所述通信地址的对应关系,确定报文归属的节点。
  20. 根据权利要求19所述的网络侧设备,还包括:
    地址池发送单元,被配置为生成远端节点地址池,并将所述远端节点地址池发送给所述中继节点。
  21. 一种网络设备,包括:
    存储器;以及
    耦接至所述存储器的处理器,所述处理器被配置为基于存储在所述存储器的指令执行如权利要求1至13任一项所述的方法。
  22. 一种非瞬时性计算机可读存储介质,其上存储有计算机程序指令,该指令被处理器执行时实现权利要求1至13任意一项所述的方法的步骤。
  23. 一种计算机程序,用于使处理器执行权利要求1至13任意一项所述的方法。
PCT/CN2023/112915 2022-08-15 2023-08-14 中继服务方法、中继节点及网络侧、网络设备和存储介质 WO2024037502A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210981473.9A CN117641434A (zh) 2022-08-15 2022-08-15 中继服务方法、中继节点及网络侧、网络设备和存储介质
CN202210981473.9 2022-08-15

Publications (1)

Publication Number Publication Date
WO2024037502A1 true WO2024037502A1 (zh) 2024-02-22

Family

ID=89940739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/112915 WO2024037502A1 (zh) 2022-08-15 2023-08-14 中继服务方法、中继节点及网络侧、网络设备和存储介质

Country Status (2)

Country Link
CN (1) CN117641434A (zh)
WO (1) WO2024037502A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180069618A1 (en) * 2015-07-31 2018-03-08 Panasonic Intellectual Property Corporation Of America Scheduling mechanism for prose relays serving remote ues
CN113518319A (zh) * 2020-04-09 2021-10-19 华为技术有限公司 一种临近服务的业务处理方法、设备及系统
CN114039947A (zh) * 2020-07-21 2022-02-11 中国电信股份有限公司 终端地址分配方法、upf、系统以及存储介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180069618A1 (en) * 2015-07-31 2018-03-08 Panasonic Intellectual Property Corporation Of America Scheduling mechanism for prose relays serving remote ues
CN113518319A (zh) * 2020-04-09 2021-10-19 华为技术有限公司 一种临近服务的业务处理方法、设备及系统
CN114039947A (zh) * 2020-07-21 2022-02-11 中国电信股份有限公司 终端地址分配方法、upf、系统以及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Replacing Incorrect Reference for business trunking Specification TS", 3GPP DRAFT; S2-160136, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. Saint Kitts, KN; 20160125 - 20160129, 17 January 2016 (2016-01-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051059791 *

Also Published As

Publication number Publication date
CN117641434A (zh) 2024-03-01

Similar Documents

Publication Publication Date Title
CN109257827B (zh) 通信方法、装置、系统、终端和接入网设备
JP5745032B2 (ja) Mtcデバイスの帯域幅削減
US20200127968A1 (en) Information processing method and apparatus
WO2022152238A1 (zh) 一种通信方法及通信装置
WO2014047939A1 (zh) 数据分流的方法和设备
US20120182934A1 (en) Application layer communication via an intermediate node
WO2022001761A1 (zh) 通信方法及装置
WO2015062287A1 (zh) 终端的本地交换方法及系统
WO2014075534A1 (zh) 通信路径的切换方法及装置、切换处理装置及系统
US20220263879A1 (en) Multicast session establishment method and network device
WO2020019925A1 (zh) 一种切换方法、装置及通信系统
WO2010081368A1 (zh) 数据发送、传输、接收方法及装置、局域网建立方法及装置
CN106792428B (zh) 基站、近距离业务功能实体及通信资源分配、调度方法
EP4145906A1 (en) Non-ip type data transmission processing method, device and apparatus, and medium
WO2024061228A1 (zh) 网络地址转换方法、中继设备、通信系统以及存储介质
WO2021115429A1 (zh) 一种通信方法及装置
WO2024037502A1 (zh) 中继服务方法、中继节点及网络侧、网络设备和存储介质
US11950179B2 (en) Method and apparatus for obtaining network slice identifier
WO2014169590A1 (zh) 一种数据业务通信方法、设备及系统
CN115734173A (zh) 用于设备间通信的方法和装置
CN104662816A (zh) 用于检测来自移动通信系统的小数据的方法和装置
WO2022032543A1 (zh) 一种通信方法及装置
WO2023011137A1 (zh) 一种通信方法及装置
WO2006074612A1 (fr) Procede pour la realisation de transmission de signalisation de couche superieure dans le systeme ieee 802.16
WO2013155938A1 (zh) 用户地址通告方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23854403

Country of ref document: EP

Kind code of ref document: A1