WO2021218475A1 - 铁路信号灯及其点灯监测控制装置 - Google Patents

铁路信号灯及其点灯监测控制装置 Download PDF

Info

Publication number
WO2021218475A1
WO2021218475A1 PCT/CN2021/081593 CN2021081593W WO2021218475A1 WO 2021218475 A1 WO2021218475 A1 WO 2021218475A1 CN 2021081593 W CN2021081593 W CN 2021081593W WO 2021218475 A1 WO2021218475 A1 WO 2021218475A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
lighting
resistor
constant current
relay
Prior art date
Application number
PCT/CN2021/081593
Other languages
English (en)
French (fr)
Inventor
杨健荣
Original Assignee
厦门荣汇源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门荣汇源科技有限公司 filed Critical 厦门荣汇源科技有限公司
Publication of WO2021218475A1 publication Critical patent/WO2021218475A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/345Current stabilisation; Maintaining constant current

Definitions

  • the invention relates to the field of railway signal lamps, in particular to a railway signal lamp and a lighting monitoring control device thereof.
  • the railway signal lamp adopts the tungsten wire railway signal bulb, and its lighting monitoring and control device includes two sets of tungsten wire signal lamp lighting unit circuits for monitoring and controlling the main and the auxiliary.
  • the main tungsten signal lamp lighting unit circuit fails, it will automatically switch to the auxiliary tungsten signal lamp lighting unit circuit to work and alarm at the same time.
  • the existing lighting monitoring and control devices have problems: 1) There are two sets of circuits, the main circuit and the auxiliary circuit, only the main circuit works for a long time, and the auxiliary circuit is in a long-term non-working state, resulting in high failure rate and short life; 2) No To discover the fault of the auxiliary circuit in time, and whether the auxiliary circuit works normally, professional and technical personnel need to go to the site for inspection on a regular basis.
  • the technical problem to be solved by the present invention is that the prior art has the defects of high failure rate, short life span, and the need for technical personnel to participate.
  • the technical solution adopted by the present invention to solve its technical problems is to construct a lighting monitoring and control device for railway signal lamps, which is connected to two LED filaments, and includes a power module, and also includes: a control module, a switching module, and a
  • the LED filament corresponds to the rectifier module, the detection module, and the constant current drive module one by one, and the rectifier module, the constant current drive module and the corresponding LED filament form a lighting circuit;
  • the rectifier module is configured to convert the output voltage of the power module when the power module is connected, and output it to the constant current drive module;
  • the constant current drive module is used to output a constant current drive signal to the corresponding LED filament
  • the detection module is used to detect whether the corresponding lighting circuit is faulty
  • the control module is used to enter the cyclic working mode when there is no fault in the two lighting circuits; enter the single-channel working mode when a fault in one of the lighting circuits is detected; and,
  • the cyclic working mode is: controlling the two rectifier modules to periodically alternately connect to the power module through the switching module to control the two lighting circuits to alternately be in a lighting state;
  • the single-circuit working mode is: controlling the rectifier module of another lighting circuit through the switching module to connect to the power supply module to control the other lighting circuit to be constantly in the lighting state.
  • it also includes an anti-interference module arranged in each lighting circuit, and,
  • the anti-interference module is used to detect whether there is an interference signal in the corresponding lighting circuit, and when there is an interference signal, eliminate the interference signal.
  • control module is further configured to control the rectification module of the other lighting circuit to connect to the power supply module through the switching module when it is detected that there is an interference signal in a lighting circuit that is being turned on.
  • it also includes:
  • the alarm module is used to output an alarm signal when any lighting circuit fails.
  • it also includes:
  • the transmission module is used to transmit the working status of the two lighting circuits and the detection result of the detection module to the remote monitoring room.
  • the switching module includes: a first relay, a first triode, a first resistor, and a second resistor, wherein the first end of the first resistor is connected to a high level, and the first end of the first resistor is connected to a high level.
  • the two ends are connected to the first end of the coil of the first relay, the second end of the coil of the first relay is connected to the collector of the first triode, and the emitter of the first triode passes through the
  • the second resistor is grounded, the base of the first triode is connected to the first output terminal of the control module; the moving contact of the switch of the first relay is connected to the first output terminal of the power module, so
  • the two static contacts of the switch of the first relay are connected to the first input terminals of the two rectifier modules in a one-to-one correspondence, and the second input terminals of the two rectifier modules are respectively connected to the second output terminals of the power module.
  • the detection module includes a detection resistor connected between the positive output terminal of the corresponding rectifier module and the voltage input terminal of the corresponding constant current drive module.
  • the anti-interference module includes: a third resistor, a fourth resistor, a Zener diode, an optocoupler, and a triac, wherein the first end of the third resistor is connected to the voltage of the constant current drive module At the input end, the second end of the third resistor is connected to the cathode of the Zener diode, the anode of the Zener diode is connected to the positive input end of the optocoupler, and the negative input end of the optocoupler is grounded.
  • the positive output end of the optocoupler is connected to the first end of the fourth resistor, and the second end of the fourth resistor is respectively connected to the current output end of the constant current drive module and the first anode of the triac,
  • the second anode of the triac is connected to the anode of the corresponding LED filament, and the negative output terminal of the optocoupler is connected to the control electrode of the triac.
  • the alarm module includes: a second relay, a second triode, a fifth resistor, and a sixth resistor, wherein the first end of the fifth resistor is connected to a high level, and the first end of the fifth resistor is connected to a high level.
  • the two ends are connected to the first end of the coil of the second relay, the second end of the coil of the second relay is connected to the collector of the second triode, and the emitter of the second triode passes through the
  • the sixth resistor is grounded, the base of the second triode is connected to the second output terminal of the control module; the switch of the second relay is connected to an alarm.
  • the invention also constructs a railway signal lamp, including:
  • the implementation of the technical scheme of the present invention can not only reduce the failure rate, increase the service life, and make the performance more stable; moreover, it is no longer necessary for professional and technical personnel to go to the site for inspection on a regular basis, greatly reducing the configuration of technical personnel, improving work efficiency, and eliminating The safety hazards caused by human factors.
  • Figure 1 is a logical structure diagram of the first embodiment of a railway signal lamp lighting monitoring and control device according to the present invention
  • FIGS. 2A to 2G are circuit diagrams of the second embodiment of the lighting monitoring and control device for railway signal lights according to the present invention.
  • Figure 1 is a logical structure diagram of the first embodiment of the lighting monitoring and control device for railway signal lights of the present invention.
  • the lighting monitoring and control device is connected to two LED filaments 71 and 72, and the lighting monitoring and control device of this embodiment includes a power supply module 10 and a switch The module 20, the control module 30, and two rectifier modules 41, 42, two detection modules 51, 52, two constant current drive modules 61, 62, and two anti-interference modules 81, 82.
  • the rectifier module 41, the detection module 51, the constant current drive module 61 and the anti-interference module 81 correspond to the LED filament 71, and the rectifier module 41, the constant current drive module 51 and the LED filament 71 form the first lighting circuit; the rectifier module 42 , The detection module 52, the constant current drive module 62 and the anti-interference module 82 correspond to the LED filament 72, and the rectifier module 42, the constant current drive module 52 and the LED filament 72 form a second lighting circuit.
  • the rectifier modules 41, 42 are used to convert the output voltage of the power module 10 when the power module 10 is connected, and output to the corresponding constant current drive modules 61, 62; the constant current drive modules 61, 62 is used to output constant current drive signals to the corresponding LED filaments 71 and 72; the detection modules 51 and 52 are used to detect whether the corresponding lighting circuit is faulty; the control module 30 is used to enter the cyclic working mode when there is no fault in the two lighting circuits; When a failure of one of the lighting circuits is detected, it enters the single-circuit working mode.
  • the cyclic working mode is: the two rectifier modules 41, 42 are alternately connected to the power module 10 through the switching module 20 to control the two lighting circuits to alternately be in the lighting state; the single-channel working mode is: through the switching module 20
  • the rectifier module that controls the other lighting circuit is connected to the power module 10 to control the other lighting circuit to be constantly in the lighting state. For example, assuming that the first lighting circuit is faulty, the control module 30 will control the rectification module 42 to be connected through the switching module 20
  • the power supply module 10 makes the second lighting circuit always in the lighting state.
  • two identical lighting circuits are not divided into main and secondary lighting circuits.
  • the control module controls the first lighting circuit to work for a period of time and then automatically switches to the second lighting circuit.
  • the circuit works. After the second lighting circuit works for a period of time, it will automatically switch to the first lighting circuit, so that the two lighting circuits are switched to work cyclically. If one of the lighting circuits fails, immediately switch to the other lighting circuit to work. Therefore, the lighting monitoring and control device of this embodiment is in an intelligent and fully automatic working state.
  • the railway signal lights are installed on the side of the railway, they are very susceptible to interference from electromagnetic signals when the train passes.
  • anti-interference modules 81 and 82 are added to each lighting circuit.
  • the anti-interference module 81 , 82 is used to detect whether there is an interference signal in the corresponding lighting circuit, and when there is an interference signal, eliminate the interference signal.
  • the control module 30 is also used to control the rectifier module of another lighting circuit to connect to the power supply module 10 through the switching module 20 when it detects that there is an interference signal in the lighting circuit that is being turned on.
  • the lighting monitoring control device of this embodiment further includes an alarm module 90, which is used to output an alarm signal when any one of the lighting circuits fails.
  • an alarm module 90 which is used to output an alarm signal when any one of the lighting circuits fails.
  • the control module 30 when the control module 30 is powered on and/or switched, it can also perform a self-check, and when a fault is detected by the self-check, it will also output an alarm signal.
  • the lighting monitoring control device of the present invention further includes a transmission module, such as a remote intelligent control port.
  • the transmission module is used to transmit the working status of the two-way lighting circuit and the detection result of the detection module to the remote monitoring room, which facilitates the monitoring center to know the working status of the product at any time, and makes the system more intelligent.
  • the lighting monitoring and control device of this embodiment includes a power supply module, a switching module, a control module, an alarm module, and two rectifier modules, two detection modules, and two One constant current drive module and two anti-interference modules.
  • the power module L1 is a voltage converter with multiple input interfaces.
  • the switching module includes: a first relay KM1, a first transistor Q1, a first resistor R10, and a second resistor R11, wherein the first end of the first resistor R10 is connected to a high level, and the second end of the first resistor R10 is connected to The first end K1 of the coil of the first relay KM1, the second end K2 of the coil of the first relay KM1 is connected to the collector of the first transistor Q1, and the emitter of the first transistor Q1 is grounded through the second resistor R11, The base of the first transistor Q1 is connected to the first output terminal (C) of the control module through a resistor R12.
  • the resistor R12 can also be omitted in other embodiments.
  • the movable contact K3 of the switch of the first relay KM1 is connected to the first output terminal of the power module L1
  • the first static contact K4 of the switch of the first relay KM1 is connected to the first input terminal (A) of the rectifier module DB1
  • the second static contact K5 of the switch of KM1 is connected to the first input terminal (B) of the rectifier module DB2
  • the second input terminal of the rectifier module DB1 and the second input terminal of the rectifier module DB2 are respectively connected to the second output terminal of the power module ( D).
  • the control module includes MCU U1, data storage chip U2, capacitors C9, C10, and crystal oscillator Y1.
  • the data storage chip U2 is pre-written with a switching period, and the switching period can be any one between 1 hour and 24 hours. Numerical value.
  • the first end of crystal oscillator Y1 is grounded through capacitor C9, and the second end of crystal oscillator Y1 is grounded through capacitor C10.
  • the first and second ends of crystal oscillator Y1 are respectively connected to pins 2 and 3 of data storage chip U2.
  • Pin 5 is connected to pin 8 of MCU U1 for transmitting a reset signal (RST); pin 6 of data storage chip U2 is connected to pin 9 of MCU U1; pin 7 of data storage chip U2 is connected to pin 10 of MCU U1.
  • the two rectifier modules are rectifier bridges DB1 and DB2.
  • Both detection modules are detection resistors RI1 and RI2, and the detection resistor RI1 is connected in series between the positive output terminal of the rectifier module DB1 and the voltage input terminal (G) of the constant current drive module, and the detection resistor RI2 is connected in series with the rectifier module DB2.
  • the detection resistor RI1 is connected in series between the positive output terminal of the rectifier module DB1 and the voltage input terminal (G) of the constant current drive module
  • the detection resistor RI2 is connected in series with the rectifier module DB2.
  • the second end (E) of the detection resistor RI1 is also connected to the pin 11 of the MCU U1
  • the second end (F) of the detection resistor RI2 is also connected to the pin 7 of the MCU U1.
  • the voltage input end (pin 7) of the constant current drive chip U3 is connected to the second end of the detection resistor RI1 through the fuse F1, and the constant current output end of the constant current drive chip U3 ( Pin 8) Connect the anode of the first LED filament.
  • the first end of the resistor RM1 is connected to the voltage input terminal (G) of the first constant current drive module, the second end of the resistor RM1 is connected to the cathode of the Zener diode WE1, and the anode of the Zener diode WE1 is connected
  • the positive input terminal of optocoupler U5, the negative input terminal of optocoupler U5 are grounded through resistor RM2, the positive output terminal of optocoupler U5 is connected to the first end of resistor RM3, and the second end of resistor RM3 is respectively connected to the current of constant current drive chip U3
  • the output end and the first anode of the triac Q3, the second anode of the triac Q3 are connected to the anode of the first LED filament, and the negative output end of the optocoupler U5 is connected to the control electrode of the triac Q3.
  • the voltage input terminal (pin 7) of the constant current drive chip U4 is connected to the second end of the detection resistor RI2 through the fuse F2, and the constant current output terminal of the constant current drive chip U4 ( Pin 8) Connect the anode of the second LED filament.
  • the first end of the resistor RM4 is connected to the voltage input terminal (I) of the second constant current drive module, the second end of the resistor RM4 is connected to the cathode of the Zener diode D1, and the anode of the Zener diode WE2 is connected
  • the positive input terminal of optocoupler U6, the negative input terminal of optocoupler U6 is grounded through resistor RM5, the positive output terminal of optocoupler U6 is connected to the first end of resistor RM6, and the second end of resistor RM6 is respectively connected to the current of constant current drive chip U4
  • the output end and the first anode of the triac Q4, the second anode of the triac Q4 are connected to the anode of the second LED filament, and the negative output end of the optocoupler U6 is connected to the control electrode of the triac Q4.
  • the alarm module includes: a second relay KM2, a second transistor Q2, a fifth resistor R1, and a sixth resistor R2, wherein the first end of the fifth resistor R1 is connected to a high level, and the fifth resistor R1
  • the second end is connected to the first end of the coil of the second relay KM2, the second end of the coil of the second relay KM2 is connected to the collector of the second transistor Q2, and the emitter of the second transistor Q2 passes through the sixth resistor R2 Ground, the base of the second transistor Q2 is connected to the second output terminal (K) of the MCU U1.
  • the switch of the second relay is connected to the alarm.
  • MCU U1 can perform self-check to determine whether it is working normally, if it is abnormal, cancel the cycle and alarm.
  • the data storage chip U2 When the MCU self-check is normal, the data storage chip U2 has a preset switching time, so it can enter the cyclic working mode according to the switching time (for example, 24 hours): the rectifier modules DB1 and DB2 that control the two lighting circuits are alternately connected
  • the power module L1 realizes the alternate lighting of two LED filaments. Specifically, when it is necessary to switch to the second LED filament, the first output terminal (pin 6) of the MCU U1 outputs a high level, the first transistor Q1 is turned on, and the coil of the first relay KM1 is powered on.
  • the contact K3 is connected to the static contact K5, so that the rectifier module DB2 is connected to the power module L1.
  • the first output terminal (pin 6) of MCU U1 When it is necessary to switch to the first LED filament, the first output terminal (pin 6) of MCU U1 outputs low level, the first transistor Q1 is cut off, the coil of the first relay KM1 is powered off, and its moving contact K3 is connected The static contact K4, in this way, connects the rectifier module DB1 to the power module L1.
  • the rectifier module DB1 converts the AC voltage output by the power module L1 into a DC voltage, and outputs it to the constant current drive chip U3 through the current detection resistor RI1.
  • the current driving chip U3 outputs a constant current driving signal to the first LED filament through its pin 8 to light up the first LED filament.
  • MCU U1 can also detect the voltages of resistors RI1 and RI2 in real time, and use the detected voltages to determine whether the lighting circuit is open or short, and when an open or short occurs, By changing its pin 6 output level signal to switch to another lighting loop to work.
  • the voltage stabilizer tube WE1 in the first lighting circuit will be Limit the interference voltage, so that the constant current drive chip U3 has a stable working environment.
  • the MCU U1 judges that the voltage change range of its pin 11 exceeds the preset value, and switches to the second lighting circuit to light by changing the voltage of its pin 6 end.
  • the voltage regulator tube WE2 in the second lighting circuit The interference voltage will be limited.
  • the input voltage is less than the turn-on voltage of the optocoupler U6 by properly setting the parameters of the components, the optocoupler U6 will not operate, and the triac Q4 will not conduct, so it can prevent the interference voltage from being transmitted. This leads to the role of the second LED filament in the back, which prevents the second LED filament from being turned on by mistake.
  • the fault types can include: any lighting circuit open/short circuit (for example, LED filament fault, constant current drive module fault, switching module fault), MCU self-check fault, alarm
  • any lighting circuit open/short circuit for example, LED filament fault, constant current drive module fault, switching module fault
  • MCU self-check fault alarm
  • the second transistor Q2 is turned on, the coil of the second relay KM2 is powered on, and the alarm works to output an alarm signal .

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

本发明公开了一种铁路信号灯及其点灯监测控制装置,该点灯监测控制装置包括检测模块,用于检测相应点灯回路是否故障;控制模块,用于在两路点灯回路均无故障时,进入循环工作模式;在检测到其中一路点灯回路故障时,进入单路工作模式,而且,循环工作模式为:通过切换模块控制两个整流模块周期性地交替接入电源模块;单路工作模式为:通过切换模块控制另一点灯回路的整流模块接入电源模块。

Description

铁路信号灯及其点灯监测控制装置 技术领域
本发明涉及铁路信号灯领域,尤其涉及一种铁路信号灯及其点灯监测控制装置。
背景技术
目前,铁路信号灯采用钨丝铁路信号灯泡,而且,其点灯监测控制装置包括用于监测控制主副两套钨丝信号灯点灯单元电路。当主钨丝信号灯点灯单元电路出现故障时,自动切换到到副钨丝信号灯点灯单元电路工作,同时报警。但是,现有的点灯监测控制装置所存在问题:1)是主副两套电路,只有主电路长期工作,而副电路又长期处于不工作状态,导致故障率高、寿命较短;2)不能及时发现副电路的故障,副电路工作是否正常,需要专业技术人员定期到现场进行检测。
技术问题
本发明要解决的技术问题在于,现有技术存在的故障率高、寿命较短、需要技术人员参与的缺陷。
技术解决方案
本发明解决其技术问题所采用的技术方案是:构造一种铁路信号灯的点灯监测控制装置,与两路LED灯丝相连,且包括电源模块,还包括:控制模块、切换模块及与每路所述LED灯丝一一对应的整流模块、检测模块、恒流驱动模块,而且,所述整流模块、所述恒流驱动模块与相应LED灯丝组成一路点灯回路;其中,
所述整流模块,用于在接入所述电源模块时,对所述电源模块的输出电压进行转换,并输出至所述恒流驱动模块;
所述恒流驱动模块,用于向相应LED灯丝输出恒流驱动信号;
所述检测模块,用于检测相应点灯回路是否故障;
所述控制模块,用于在两路点灯回路均无故障时,进入循环工作模式;在检测到其中一路点灯回路故障时,进入单路工作模式;而且,
所述循环工作模式为:通过所述切换模块控制两个所述整流模块周期性地交替接入所述电源模块来控制两路点灯回路交替处于点亮状态;
所述单路工作模式为:通过所述切换模块控制另一点灯回路的整流模块接入所述电源模块来控制所述另一点灯回路恒处于点亮状态。
优选地,还包括设置在每一路点灯回路中的抗干扰模块,而且,
所述抗干扰模块,用于检测相应点灯回路是否存在干扰信号,并在存在干扰信号时,消除所述干扰信号。
优选地,所述控制模块,还用于在检测到正在点亮的一路点灯回路存在干扰信号时,通过所述切换模块控制另一点灯回路的整流模块接入所述电源模块。
优选地,还包括:
报警模块,用于在任何一路点灯回路故障时,输出报警信号。
优选地,还包括:
传送模块,用于将两路点灯回路的工作状态、所述检测模块的检测结果传送至远程监控室。
优选地,所述切换模块包括:第一继电器、第一三极管、第一电阻和第二电阻,其中,所述第一电阻的第一端连接高电平,所述第一电阻的第二端连接所述第一继电器的线圈的第一端,所述第一继电器的线圈的第二端连接所述第一三极管的集电极,所述第一三极管的发射极通过所述第二电阻接地,所述第一三极管的基极连接所述控制模块的第一输出端;所述第一继电器的开关的动触头连接所述电源模块的第一输出端,所述第一继电器的开关的两个静触头与两个整流模块的第一输入端一一对应连接,两个整流模块的第二输入端分别连接所述电源模块的第二输出端。
优选地,所述检测模块包括连接在相应整流模块的正输出端与相应恒流驱动模块的电压输入端之间的检测电阻。
优选地,所述抗干扰模块包括:第三电阻、第四电阻、稳压二极管、光耦和双向可控硅,其中,所述第三电阻的第一端连接所述恒流驱动模块的电压输入端,所述第三电阻的第二端连接所述稳压二极管的负极,所述稳压二极管的正极连接所述光耦的正输入端,所述光耦的负输入端接地,所述光耦的正输出端连接所述第四电阻的第一端,所述第四电阻的第二端分别连接所述恒流驱动模块的电流输出端及所述双向可控硅的第一阳极,所述双向可控硅的第二阳极连接相应的LED灯丝的正极,所述光耦的负输出端连接所述双向可控硅的控制极。
优选地,所述报警模块包括:第二继电器、第二三极管、第五电阻和第六电阻,其中,所述第五电阻的第一端连接高电平,所述第五电阻的第二端连接所述第二继电器的线圈的第一端,所述第二继电器的线圈的第二端连接所述第二三极管的集电极,所述第二三极管的发射极通过所述第六电阻接地,所述第二三极管的基极连接所述控制模块的第二输出端;所述第二继电器的开关接入报警器。
本发明还构造一种铁路信号灯,包括:
两路LED灯丝;
以上所述的点灯监测控制装置。
有益效果
实施本发明的技术方案,不但可以降低故障率、提高使用寿命,使得性能更加稳定;而且,不再需要专业技术人员定期到现场进行检测,大大减少了技术人员配置,提高了工作效率,且消除了人为因素的安全隐患。
附图说明
图1是本发明铁路信号灯的点灯监测控制装置实施例一的逻辑结构图;
图2A至图2G为本发明铁路信号灯的点灯监测控制装置实施例二的电路图。
本发明的实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1是本发明铁路信号灯的点灯监测控制装置实施例一的逻辑结构图,点灯监测控制装置与两路LED灯丝71、72相连,而且,该实施例的点灯监测控制装置包括电源模块10、切换模块20、控制模块30、以及两个整流模块41、42、两个检测模块51、52、两个恒流驱动模块61、62、两个抗干扰模块81、82。其中,整流模块41、检测模块51、恒流驱动模块61及抗干扰模块81与LED灯丝71对应,且整流模块41、恒流驱动模块51与LED灯丝71组成第一路点灯回路;整流模块42、检测模块52、恒流驱动模块62及抗干扰模块82与LED灯丝72对应,且整流模块42、恒流驱动模块52与LED灯丝72组成第二路点灯回路。
在该实施例中,整流模块41、42用于在接入电源模块10时,对电源模块10的输出电压进行转换,并输出至相应的恒流驱动模块61、62;恒流驱动模块61、62用于向相应LED灯丝71、72输出恒流驱动信号;检测模块51、52用于检测相应点灯回路是否故障;控制模块30用于在两路点灯回路均无故障时,进入循环工作模式;在检测到其中一路点灯回路故障时,进入单路工作模式。其中,循环工作模式为:通过切换模块20控制两个整流模块41、42周期性地交替接入电源模块10来控制两路点灯回路交替处于点亮状态;单路工作模式为:通过切换模块20控制另一点灯回路的整流模块接入电源模块10来控制另一点灯回路恒处于点亮状态,例如,假设第一点灯回路处于故障,控制模块30将会通过切换模块20控制整流模块42接入电源模块10,以使第二点灯回路恒处于点亮状态。
通过该实施例的技术方案,两个相同的点灯回路并无主副之分,而且,在两个点灯回路均无故障时,控制模块控制第一点灯回路工作一段时间后自动切换到第二点灯回路工作,第二点灯回路工作一段时间后,再自动切换到第一点灯回路,从而使两路点灯回路循环切换工作。如果其中一个点灯回路出现故障,立即切换到另一个点灯回路工作,因此,该实施例的点灯监测控制装置是智能的全自动工作状态。这样,不但可以降低故障率、提高使用寿命,使得性能更加稳定;而且,不再需要专业技术人员定期到现场进行检测,大大减少了技术人员配置,提高了工作效率,且消除了人为因素的安全隐患。
进一步地,由于铁路信号灯装设在铁道边,火车经过时,极易受电磁信号的干扰,为了消除干扰信号的影响,在每一路点灯回路里增设抗干扰模块81、82,该抗干扰模块81、82用于检测相应点灯回路是否存在干扰信号,并在存在干扰信号时,消除该干扰信号。另外,控制模块30还用于在检测到正在点亮的一路点灯回路存在干扰信号时,通过切换模块20控制另一点灯回路的整流模块接入电源模块10。
进一步地,该实施例的点灯监测控制装置还包括报警模块90,该报警模块90用于在任何一路点灯回路故障时,输出报警信号。另外,控制模块30在上电和/或切换时,还可进行自检,当自检出故障时,也会输出报警信号。
进一步地,本发明的点灯监测控制装置还包括传送模块,例如为远程智能控制端口。该传送模块用于将两路点灯回路的工作状态、检测模块的检测结果传送至远程监控室,方便监控中心随时了解产品工作状态,使系统更加智能化。
图2A至图2G为本发明点灯监测控制装置实施例二的电路图,该实施例的点灯监测控制装置包括电源模块、切换模块、控制模块、报警模块以及两个整流模块、两个检测模块、两个恒流驱动模块、两个抗干扰模块。
结合图2A,电源模块L1为一多输入接口的电压转换器。切换模块包括:第一继电器KM1、第一三极管Q1、第一电阻R10和第二电阻R11,其中,第一电阻R10的第一端连接高电平,第一电阻R10的第二端连接第一继电器KM1的线圈的第一端K1,第一继电器KM1的线圈的第二端K2连接第一三极管Q1的集电极,第一三极管Q1的发射极通过第二电阻R11接地,第一三极管Q1的基极通过电阻R12连接控制模块的第一输出端(C),当然,电阻R12在其它实施例中也可省去。第一继电器KM1的开关的动触头K3连接电源模块L1的第一输出端,第一继电器KM1的开关的第一静触头K4连接整流模块DB1的第一输入端(A),第一继电器KM1的开关的第二静触头K5连接整流模块DB2的第一输入端(B),整流模块DB1的第二输入端与整流模块DB2的第二输入端分别连接电源模块的第二输出端(D)。
结合图2B,控制模块包括MCU U1、数据存储芯片U2、电容C9、C10和晶振Y1,其中,数据存储芯片U2预先写入有切换周期,切换周期可为1小时至24小时之间的任一数值。晶振Y1的第一端通过电容C9接地,晶振Y1的第二端通过电容C10接地,晶振Y1的第一端和第二端分别连接数据存储芯片U2的脚2和脚3,数据存储芯片U2的脚5与MCU U1的脚8连接,用于传输复位信号(RST);数据存储芯片U2的脚6与MCU U1的脚9连接;数据存储芯片U2的脚7与MCU U1的脚10连接。
结合图2C、图2D,两个整流模块均为整流桥DB1、DB2。两个检测模块均为检测电阻RI1、RI2,而且,检测电阻RI1串联在整流模块DB1的正输出端与恒流驱动模块的电压输入端(G)之间,检测电阻RI2串联在整流模块DB2的正输出端与恒流驱动模块的电压输入端(I)之间。而且,检测电阻RI1的第二端(E)还连接MCU U1的脚11,检测电阻RI2的第二端(F)还连接MCU U1的脚7。
结合图2E,在第一恒流驱动模块中,恒流驱动芯片U3的电压输入端(脚7)通过熔断器F1连接检测电阻RI1的第二端,恒流驱动芯片U3的恒流输出端(脚8)连接第一LED灯丝的正极。在第一抗干扰模块中,电阻RM1的第一端连接第一恒流驱动模块的电压输入端(G),电阻RM1的第二端连接稳压二极管WE1的负极,稳压二极管WE1的正极连接光耦U5的正输入端,光耦U5的负输入端通过电阻RM2接地,光耦U5的正输出端连接电阻RM3的第一端,电阻RM3的第二端分别连接恒流驱动芯片U3的电流输出端及双向可控硅Q3的第一阳极,双向可控硅Q3的第二阳极连接第一LED灯丝的正极,光耦U5的负输出端连接双向可控硅Q3的控制极。
结合图2F,在第二恒流驱动模块中,恒流驱动芯片U4的电压输入端(脚7)通过熔断器F2连接检测电阻RI2的第二端,恒流驱动芯片U4的恒流输出端(脚8)连接第二LED灯丝的正极。在第二抗干扰模块中,电阻RM4的第一端连接第二恒流驱动模块的电压输入端(I),电阻RM4的第二端连接稳压二极管D1的负极,稳压二极管WE2的正极连接光耦U6的正输入端,光耦U6的负输入端通过电阻RM5接地,光耦U6的正输出端连接电阻RM6的第一端,电阻RM6的第二端分别连接恒流驱动芯片U4的电流输出端及双向可控硅Q4的第一阳极,双向可控硅Q4的第二阳极连接第二LED灯丝的正极,光耦U6的负输出端连接双向可控硅Q4的控制极。
结合图2G,报警模块包括:第二继电器KM2、第二三极管Q2、第五电阻R1和第六电阻R2,其中,第五电阻R1的第一端连接高电平,第五电阻R1的第二端连接第二继电器KM2的线圈的第一端,第二继电器KM2的线圈的第二端连接第二三极管Q2的集电极,第二三极管Q2的发射极通过第六电阻R2接地,第二三极管Q2的基极连接MCU U1的第二输出端(K)。第二继电器的开关接入报警器。
下面说明该实施例的点灯监测控制装置的工作原理:
首先,在以下任一情况下:开机、重启、准备切换点灯回路、定期,MCU U1可进行自检,确定是否正常工作,如果异常,取消循环并报警。
当MCU自检正常时,数据存储芯片U2由于预设写入有切换时间,所以可根据该切换时间(例如24小时)进入循环工作模式:控制两路点灯回路的整流模块DB1、DB2交替接入电源模块L1,从而实现两个LED灯丝交替点亮。具体地,当需要切换至第二路LED灯丝时,MCU U1的第一输出端(脚6)输出高电平,第一三极管Q1导通,第一继电器KM1的线圈上电,其动触头K3连接静触头K5,这样,便将整流模块DB2接入了电源模块L1。当需要切换至第一路LED灯丝时,MCU U1的第一输出端(脚6)输出低电平,第一三极管Q1截止,第一继电器KM1的线圈掉电,其动触头K3连接静触头K4,这样,便将整流模块DB1接入了电源模块L1。
当整流模块接入电源模块L1后,以第一路点灯回路为例,整流模块DB1将电源模块L1输出的交流电压转换成直流电压,并通过电流检测电阻RI1输出至恒流驱动芯片U3,恒流驱动芯片U3通过其脚8向第一LED灯丝输出恒流驱动信号,从而点亮该第一LED灯丝。应理解,第二路点灯回路的工作原理与第一路点灯回路相同,在此不做赘述。
在该点灯监测控制装置工作时, MCU U1还可实时检测电阻RI1、RI2的电压,并通过所检测的电压判断正在点亮的一路点灯回路是否发生开路、短路,并在发生开路或短路时,通过改变其脚6输出的电平信号来切换至另一点灯回路工作。
另外,假设当前第一点灯回路处于点亮状态,若第一点灯回路(即点亮的一路点灯回路)受到了电磁信号干扰源的影响,此时,第一点灯回路中的稳压管WE1会对干扰电压进行限制,从而使恒流驱动芯片U3有一个稳定的工作环境。同时,假如干扰电压很大,MCU U1判断其脚11端的电压变化幅度超过预设值,通过改变其脚6端的电压来切换至第二点灯回路点亮。反之,假设当前第一点灯回路处于点亮状态,若第二点灯回路(即非点亮的一路点灯回路)受到了电磁信号干扰源的影响,此时,第二点灯回路中的稳压管WE2会对干扰电压进行限制,通过合适设置元器件的参数来输入电压小于光耦U6的导通电压,光耦U6不动作,进而双向可控硅Q4不导通,因此可起到防止干扰电压传导致后面的第二LED灯丝中的作用,避免了第二LED灯丝误点亮。
该点灯监测控制装置在工作过程中,如有故障,故障类型可包括:任一点灯回路开路/短路(例如, LED灯丝故障、恒流驱动模块故障、切换模块故障)、MCU自检故障、报警模块自身故障,MCU均通过其第二输出端(脚2)输出高电平,此时,第二三极管Q2导通,第二继电器KM2的线圈上电,报警器工作,以输出报警信号。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的权利要求范围之内。

Claims (10)

  1. 一种铁路信号灯的点灯监测控制装置,与两路LED灯丝相连,且包括电源模块,其特征在于,还包括:控制模块、切换模块及与每路所述LED灯丝一一对应的整流模块、检测模块、恒流驱动模块,而且,所述整流模块、所述恒流驱动模块与相应LED灯丝组成一路点灯回路;其中,
    所述整流模块,用于在接入所述电源模块时,对所述电源模块的输出电压进行转换,并输出至所述恒流驱动模块;
    所述恒流驱动模块,用于向相应LED灯丝输出恒流驱动信号;
    所述检测模块,用于检测相应点灯回路是否故障;
    所述控制模块,用于在两路点灯回路均无故障时,进入循环工作模式;在检测到其中一路点灯回路故障时,进入单路工作模式;而且,
    所述循环工作模式为:通过所述切换模块控制两个所述整流模块周期性地交替接入所述电源模块来控制两路点灯回路交替处于点亮状态;
    所述单路工作模式为:通过所述切换模块控制另一点灯回路的整流模块接入所述电源模块来控制所述另一点灯回路恒处于点亮状态。
  2. 根据权利要求1所述的点灯监测控制装置,其特征在于,还包括设置在每一路点灯回路中的抗干扰模块,而且,
    所述抗干扰模块,用于检测相应点灯回路是否存在干扰信号,并在存在干扰信号时,消除所述干扰信号。
  3. 根据权利要求2所述的点灯监测控制装置,其特征在于,
    所述控制模块,还用于在检测到正在点亮的一路点灯回路存在干扰信号时,通过所述切换模块控制另一点灯回路的整流模块接入所述电源模块。
  4. 根据权利要求1所述的点灯监测控制装置,其特征在于,还包括:
    报警模块,用于在任何一路点灯回路故障时,输出报警信号。
  5. 根据权利要求1所述的点灯监测控制装置,其特征在于,还包括:
    传送模块,用于将两路点灯回路的工作状态、所述检测模块的检测结果传送至远程监控室。
  6. 根据权利要求1-5所述的点灯监测控制装置,其特征在于,所述切换模块包括:第一继电器、第一三极管、第一电阻和第二电阻,其中,所述第一电阻的第一端连接高电平,所述第一电阻的第二端连接所述第一继电器的线圈的第一端,所述第一继电器的线圈的第二端连接所述第一三极管的集电极,所述第一三极管的发射极通过所述第二电阻接地,所述第一三极管的基极连接所述控制模块的第一输出端;所述第一继电器的开关的动触头连接所述电源模块的第一输出端,所述第一继电器的开关的两个静触头与两个整流模块的第一输入端一一对应连接,两个整流模块的第二输入端分别连接所述电源模块的第二输出端。
  7. 根据权利要求1-5所述的点灯监测控制装置,其特征在于,所述检测模块包括连接在相应整流模块的正输出端与相应恒流驱动模块的电压输入端之间的检测电阻。
  8. 根据权利要求2所述的点灯监测控制装置,其特征在于,所述抗干扰模块包括:第三电阻、第四电阻、稳压二极管、光耦和双向可控硅,其中,所述第三电阻的第一端连接所述恒流驱动模块的电压输入端,所述第三电阻的第二端连接所述稳压二极管的负极,所述稳压二极管的正极连接所述光耦的正输入端,所述光耦的负输入端接地,所述光耦的正输出端连接所述第四电阻的第一端,所述第四电阻的第二端分别连接所述恒流驱动模块的电流输出端及所述双向可控硅的第一阳极,所述双向可控硅的第二阳极连接相应的LED灯丝的正极,所述光耦的负输出端连接所述双向可控硅的控制极。
  9. 根据权利要求4所述的点灯监测控制装置,其特征在于,所述报警模块包括:第二继电器、第二三极管、第五电阻和第六电阻,其中,所述第五电阻的第一端连接高电平,所述第五电阻的第二端连接所述第二继电器的线圈的第一端,所述第二继电器的线圈的第二端连接所述第二三极管的集电极,所述第二三极管的发射极通过所述第六电阻接地,所述第二三极管的基极连接所述控制模块的第二输出端;所述第二继电器的开关接入报警器。
  10. 一种铁路信号灯,其特征在于,包括:
    两路LED灯丝;
    权利要求1-9任一项所述的点灯监测控制装置。
PCT/CN2021/081593 2020-04-28 2021-03-18 铁路信号灯及其点灯监测控制装置 WO2021218475A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010350542.7A CN111479364A (zh) 2020-04-28 2020-04-28 铁路信号灯及其点灯监测控制装置
CN202010350542.7 2020-04-28

Publications (1)

Publication Number Publication Date
WO2021218475A1 true WO2021218475A1 (zh) 2021-11-04

Family

ID=71761896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/081593 WO2021218475A1 (zh) 2020-04-28 2021-03-18 铁路信号灯及其点灯监测控制装置

Country Status (2)

Country Link
CN (1) CN111479364A (zh)
WO (1) WO2021218475A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116685038A (zh) * 2023-07-31 2023-09-01 璞洛泰珂(上海)智能科技有限公司 一种机场助航灯无线监控装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111479364A (zh) * 2020-04-28 2020-07-31 厦门荣汇源科技有限公司 铁路信号灯及其点灯监测控制装置
CN113242639B (zh) * 2021-04-22 2024-04-26 东风电驱动系统有限公司 汽车仪表报警灯软硬双控且相互隔离保护电路及工作方法
CN114802349A (zh) * 2022-04-24 2022-07-29 厦门荣汇源科技有限公司 Led铁路信号灯系统及其智能点灯单元
KR102475801B1 (ko) * 2022-08-02 2022-12-08 주식회사 세화 표시부의 거리 또는 온도에 따른 전류 보정 및 자기 진단기능을 갖는 이중계 모듈형 led 신호기

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102098841A (zh) * 2011-01-05 2011-06-15 张荣博 铁路led信号灯点亮控制电路及其点亮控制方法
CN106817805A (zh) * 2017-01-19 2017-06-09 深圳市科信通信技术股份有限公司 指示灯控制方法和装置
CN108551706A (zh) * 2018-06-25 2018-09-18 广东工业大学 一种led隧道照明系统
US20190342971A1 (en) * 2018-04-28 2019-11-07 Wanjiong Lin Lighting Load Abnormality Detecting Device and Corresponding Lighting System
CN111479364A (zh) * 2020-04-28 2020-07-31 厦门荣汇源科技有限公司 铁路信号灯及其点灯监测控制装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102098841A (zh) * 2011-01-05 2011-06-15 张荣博 铁路led信号灯点亮控制电路及其点亮控制方法
CN106817805A (zh) * 2017-01-19 2017-06-09 深圳市科信通信技术股份有限公司 指示灯控制方法和装置
US20190342971A1 (en) * 2018-04-28 2019-11-07 Wanjiong Lin Lighting Load Abnormality Detecting Device and Corresponding Lighting System
CN108551706A (zh) * 2018-06-25 2018-09-18 广东工业大学 一种led隧道照明系统
CN111479364A (zh) * 2020-04-28 2020-07-31 厦门荣汇源科技有限公司 铁路信号灯及其点灯监测控制装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116685038A (zh) * 2023-07-31 2023-09-01 璞洛泰珂(上海)智能科技有限公司 一种机场助航灯无线监控装置
CN116685038B (zh) * 2023-07-31 2023-11-07 璞洛泰珂(上海)智能科技有限公司 一种机场助航灯无线监控装置

Also Published As

Publication number Publication date
CN111479364A (zh) 2020-07-31

Similar Documents

Publication Publication Date Title
WO2021218475A1 (zh) 铁路信号灯及其点灯监测控制装置
CN111629491B (zh) 一种安全型led智能信号机控制系统及方法
CN202587479U (zh) 一种智能led驱动电源
US9392671B2 (en) Lamp controller with extended life
CN110536505B (zh) 一种用于远程led景观亮化的系统故障自诊断装置
CN104582188B (zh) 一种基于Zigbee技术的无线智能路灯控制系统
WO2023207680A1 (zh) Led铁路信号灯系统及其智能点灯单元
CN113630936A (zh) 一种新型铁路信号led点灯电路及其工作方法
CN110085046B (zh) 信号灯与信号控制机相结合的信号灯故障检测电路及方法
CN102098841A (zh) 铁路led信号灯点亮控制电路及其点亮控制方法
CN114590286B (zh) 一种安全信号机及其控制方法
CN212183785U (zh) 铁路信号灯及其点灯监测控制装置
CN210405743U (zh) 一种铁路色灯点灯单元
CN212086547U (zh) 一种铁路信号直流供电led点灯系统
CN104797061A (zh) 带有双电源驱动的led照明电路
CN215121283U (zh) 一种建筑照明故障监控装置
CN110831288A (zh) Led照明装置
CN219496626U (zh) 掉电检测电路及照明灯具
CN219834422U (zh) 一种具有主副灯泡自动切换功能的卤素灯控制板
CN212890365U (zh) 铁路信号灯的灯丝监控系统
CN216820157U (zh) 一种车道指示控制装置
CN220105217U (zh) 一种电加热设备的继电器粘连检测电路及其空调器
CN219269122U (zh) 一种复合光源
CN213718270U (zh) 轨道车辆照明灯具电源故障瞬时自动替换电路
CN220367536U (zh) 一种用于电子工程的智能开关

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21796594

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21796594

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21796594

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05.06.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21796594

Country of ref document: EP

Kind code of ref document: A1