WO2021218289A1 - 一种具有在线自校验功能的气体密度继电器及其校验方法 - Google Patents

一种具有在线自校验功能的气体密度继电器及其校验方法 Download PDF

Info

Publication number
WO2021218289A1
WO2021218289A1 PCT/CN2021/076135 CN2021076135W WO2021218289A1 WO 2021218289 A1 WO2021218289 A1 WO 2021218289A1 CN 2021076135 W CN2021076135 W CN 2021076135W WO 2021218289 A1 WO2021218289 A1 WO 2021218289A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas density
density relay
gas
contact
value
Prior art date
Application number
PCT/CN2021/076135
Other languages
English (en)
French (fr)
Inventor
黄小泵
陈进
常敏
夏铁新
金海勇
Original Assignee
上海乐研电气有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海乐研电气有限公司 filed Critical 上海乐研电气有限公司
Priority to US17/997,545 priority Critical patent/US20230160800A1/en
Publication of WO2021218289A1 publication Critical patent/WO2021218289A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/26Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity by measuring pressure differences
    • G01N9/266Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity by measuring pressure differences for determining gas density
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • G01R31/3271Testing of circuit interrupters, switches or circuit-breakers of high voltage or medium voltage devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/53Cases; Reservoirs, tanks, piping or valves, for arc-extinguishing fluid; Accessories therefor, e.g. safety arrangements, pressure relief devices
    • H01H33/56Gas reservoirs
    • H01H33/563Gas reservoirs comprising means for monitoring the density of the insulating gas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H35/00Switches operated by change of a physical condition
    • H01H35/24Switches operated by change of fluid pressure, by fluid pressure waves, or by change of fluid flow
    • H01H35/26Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H35/00Switches operated by change of a physical condition
    • H01H35/24Switches operated by change of fluid pressure, by fluid pressure waves, or by change of fluid flow
    • H01H35/32Switches operated by change of fluid pressure, by fluid pressure waves, or by change of fluid flow actuated by bellows

Definitions

  • the invention relates to the field of electric power technology, in particular to a gas density relay with online self-checking function applied to high-voltage and medium-voltage electrical equipment and a checking method thereof.
  • gas density relay is basically: 1) Use remote SF6 gas density relay to collect and upload density, pressure and temperature to realize online gas density monitoring; 2) Use gas density transmission The device realizes the collection and uploading of density, pressure and temperature, and realizes online monitoring of gas density.
  • SF6 gas density relay is the core and key component.
  • the purpose of the present invention is to provide a gas density relay (or gas density monitoring device) with an online self-checking function and a checking method thereof, so as to solve the problems raised in the above technical background.
  • the first aspect of this application provides a gas density relay with online self-checking function, including: a gas density relay body, a first pressure sensor, a temperature sensor, a force sensor, a contact action mechanism and an intelligent control unit;
  • the gas density relay body includes: a housing, and a pressure detection element, a temperature compensation element, a signal generator, and a signal action mechanism arranged in the housing;
  • the first pressure sensor communicates with the pressure detection element of the gas density relay body
  • the driving contact action mechanism is arranged in or outside the housing, and includes a force applying mechanism and a moving mechanism.
  • the force applying mechanism includes a driving member and a force transmitting member driven by the driving member.
  • the moving mechanism includes a push rod. , The push rod moves under the drive of the force applying mechanism to directly or indirectly displace the signal action mechanism to trigger the signal generator to generate the contact signal action;
  • the load cell is arranged on the driving contact action mechanism or in the housing, and is configured to detect the magnitude of the force applied by the driving contact action mechanism to the gas density relay body;
  • the intelligent control unit is respectively connected to the driving contact action mechanism, the first pressure sensor, the temperature sensor, and the load cell, and is configured to complete the control of the driving contact action mechanism, pressure value collection and temperature value collection, And/or gas density value collection, or/and detection of the contact signal action value and/or contact signal return value of the gas density relay body;
  • the contact signal includes alarm and/or lockout.
  • the above-mentioned gas density relay with on-line self-checking function refers to the design of its constituent elements into an integrated structure; while the gas density monitoring device with on-line self-checking function refers to the design of its constituent elements with a body structure and flexible composition.
  • the signal generator includes a micro switch or a magnetic-assisted electric contact, and the gas density relay body outputs a contact signal through the signal generator.
  • the temperature compensation element adopts a temperature compensation sheet or a gas enclosed in the housing.
  • the pressure detection element includes a Baden tube or a bellows.
  • the load cell includes one of a gravity sensor, a pressure sensor, a magnetic force sensor, a displacement sensor, a deformation sensor, a photoelectric sensor, an angle sensor, and a camera.
  • the drive components include a magnetic drive mechanism, gravity, a motor, a reciprocating motion mechanism, a Carnot cycle mechanism, an air compressor, a compressor, an air release valve, a pressure generating pump, a booster pump, a booster valve, and an electric air pump , Electromagnetic air pump, pneumatic components, magnetic coupling thrust mechanism, heating generating thrust mechanism, electric heating generating thrust mechanism, one of the chemical reaction generating thrust mechanism.
  • the force transmission part includes one of a cam, a connecting rod, a spring, a metal part, a non-metal part, a telescopic part, and a non-telescopic part.
  • the load cell is arranged on the push rod that drives the contact action mechanism; or, the load cell is arranged on the pressure detection element; or, the load cell is arranged on the temperature compensation element; or, The load cell is arranged on the signal action mechanism.
  • the gas density relay body further includes a base, an end base, and a movement arranged in the housing; the movement is fixed on the base; the pressure detection element is filled with a sealing gas One end of the Baden tube is fixed on the base and communicated with it, the other end is connected to one end of the temperature compensation element through the end seat, and the other end of the temperature compensation element is provided with a signal action mechanism
  • the signal action mechanism is provided with an adjustment screw or trigger that pushes the signal generator and makes the contact of the signal generator turn on or off, and the gas density relay body outputs the contact through the signal generator Signal;
  • the driving contact action mechanism is arranged outside the housing of the gas density relay body, the driving contact action mechanism further includes an outer cover provided with an opening, the outer cover is fixedly connected to the housing, and the opening Facing the housing, the driving part, the force transmitting member, and the push rod are arranged in the outer cover; or, the driving contact action mechanism is arranged in the housing of the gas density relay body.
  • one end of the push rod facing the force applying mechanism is provided with a fixing piece, the fixing piece is fixed in the outer cover, and the other end of the push rod penetrates the fixing frame fixed at the opening of the outer cover, The end of the push rod passing through the fixing frame extends into the housing from the air hole on the housing of the gas density relay body; the end seat in the housing is provided with an end seat contact plate, The end of the push rod extending into the housing is arranged opposite to the end seat contact plate.
  • the load cell is connected to the push rod through a contact, or the load cell is directly connected to the push rod.
  • a return spring is sleeved on the push rod between the fixing part and the fixing frame.
  • the force transmission member is a cam
  • the end surface of the cam opposite to the convex portion of the cam is in contact with the end of the push rod facing the cam, and the return spring is in a naturally extended state;
  • the driving component drives the cam to rotate, the convex part of the cam hits the push rod and drives the push rod to move in its axial direction.
  • the convex part of the cam leaves the push rod, the The push rod is reset under the elastic force of the reset spring.
  • the end of the push rod facing the force application mechanism passes through a fixing frame, the fixing frame is fixedly arranged on the housing of the gas density relay body, and the end of the push rod away from the force application mechanism extends from the outer cover. After the opening of the gas density relay is extended, it extends into the shell through the air hole on the shell of the gas density relay body; the end of the push rod extending into the shell is arranged opposite to the pressure detecting element in the shell.
  • the load cell is in contact with the pressure detecting element through a contact piece, or the load cell is in direct contact with the pressure detecting element.
  • a return spring is sleeved on the push rod between the fixing frame and the air hole.
  • the force transmission member is a cam
  • the end surface of the cam opposite to the convex portion of the cam is in contact with the end of the push rod facing the cam, and the return spring is in a naturally extended state;
  • the driving component drives the cam to rotate, the convex part of the cam hits the push rod and drives the push rod to move in its axial direction.
  • the convex part of the cam leaves the push rod, the The push rod is reset under the elastic force of the reset spring.
  • the movement includes a sector gear and a central gear, the first end of the sector gear is meshed with the central gear, and the second end of the sector gear is connected to the other end of the temperature compensation element through a connecting rod or directly
  • the second end of the sector gear is fixedly connected to one end of the sector gear contact, and the other end of the sector gear contact extends out of the housing from the air hole of the housing of the gas density relay body, and is connected to the driving contact
  • the push rod of the action mechanism is arranged opposite to one end away from the force applying mechanism.
  • the force applying mechanism exerts a force on the sector gear contact member through the push rod, the second end of the sector gear is displaced, and the first end of the sector gear meshing with the central gear drives the central gear to rotate, and the central gear
  • Both the pointer and the pointer are installed on the driving rod, and the rotation of the central gear drives the rotation of the driving rod, so that the pointer movement is indicated on the dial.
  • a trigger is provided on the pointer, and the trigger is used to turn on or off the contact of the signal generator.
  • the force sensor is arranged on the force applying mechanism of the driving contact action mechanism.
  • the gas density relay body includes a first bellows arranged in the housing as a pressure detection element, and further includes a second bellows, the first open end of the first bellows is fixed to the housing On the inner wall of the first bellows, the second open end of the first bellows is in sealed connection with the first seal, and the inner wall of the first bellows, the first seal, and the inner wall of the housing collectively enclose a first A sealed gas chamber, the first sealed gas chamber is provided with an interface communicating with the insulating gas of the electrical equipment; the first open end of the second bellows is in hermetically connected with the first sealing member, and the second bellows The second open end of the tube is connected to the inner wall of the housing through a second seal, the outer wall of the first bellows, the first seal, the outer wall of the second bellows, and the second seal The inner wall of the second bellows and the inner wall of the shell jointly enclose a second sealed gas chamber, and the second sealed gas chamber is filled with standard
  • the outer diameter of the first bellows is greater than the outer diameter of the second bellows.
  • the signal action mechanism includes a moving rod, one end of the moving rod extends into the second bellows, is connected with the first sealing member, and is displaced with the deformation of the first bellows;
  • the other end of the moving rod extends out of the second corrugated tube, and is fixedly connected to an adjusting and fixing member.
  • the adjusting and fixing member is provided with an adjusting screw, and the adjusting screw is used to trigger the signal generation under the pushing force of the moving rod. Device.
  • a return spring is sleeved on the push rod between the fixing member and the fixing frame.
  • the load cell is connected to the push rod through a contact, or the load cell is directly connected to the push rod.
  • the force sensor is arranged at an end of the push rod facing the force transmission member, or the force sensor is arranged at an end of the push rod facing away from the force transmission member.
  • the intelligent control unit obtains the gas density value collected by the first pressure sensor and the temperature sensor; or, the intelligent control unit obtains the pressure value collected by the first pressure sensor and the temperature value collected by the temperature sensor, It is used to complete the online monitoring of the gas density of electrical equipment by the gas density relay.
  • the intelligent control unit acquires the pressure value P1 collected by the first pressure sensor and the temperature value T collected by the temperature sensor when the gas density relay body generates a contact signal action or switching, and the force sensor collects
  • the force F is calculated or converted to the corresponding pressure value P2 according to the force F
  • the equivalent gas pressure value P is calculated according to the pressure value P1 and the pressure value P2; according to the equivalent gas pressure value P, and according to the gas pressure-temperature
  • the characteristic is converted into a pressure value corresponding to 20°C, that is, the gas density value P 20 , and the online calibration of the gas density relay is completed; or,
  • the intelligent control unit acquires operation when a contact signal to the bulk of the gas density relay or switch, the first pressure sensor and the temperature sensor gas density acquisition P1 20, and the load force F is collected by the sensor, the bonding temperature collected by the sensor temperature T, it has been calculated, or translated into a value corresponding to the gas density P2 20, and depending on the gas density and gas density value P1 20 P2 20 calculated by the gas density P 20, completing the gas density relay line correction Test; or,
  • the intelligent control unit acquires the pressure value P1 collected by the first pressure sensor, the temperature value T collected by the temperature sensor, and the force F collected by the load cell when the contact signal action or switching occurs in the gas density relay body , And calculate the corresponding gas density value P 20 according to the pressure values P1, T, and F, and complete the online calibration of the gas density relay.
  • the corresponding relationship between the gas density value P 20 and the gas density values P1 20 and P2 20 is pre-designed into a data table, and is based on the gas density values P1 20 and The gas density value P2 20 queries the data table to obtain the corresponding gas density value P 20 to complete the online verification of the gas density relay; or,
  • the corresponding relationship between its gas density value P 20 and gas pressure values P1, P2 and temperature T is pre-designed into a data table, and is based on the gas pressure values P1, P2 and temperature For the value T, query the data table to obtain the corresponding gas density value P 20 , and complete the online verification of the gas density relay; or,
  • the gas density relay body When the gas density relay body produces contact signal action or switching, the corresponding relationship between the gas density value P 20 and the gas pressure value P1, the force F collected by the load cell, and the temperature value T is pre-designed into a data table, and online verification gas pressure value P1, F and the temperature value T obtained querying the data table corresponding to the gas density values P 20, completing the relay according to the density of the gas.
  • the gas density relay (or gas density monitoring device) further includes an online verification contact signal sampling unit, and the online verification contact signal sampling unit is respectively connected to the signal generator and the intelligent control unit of the gas density relay body , Is configured to sample the contact signal of the gas density relay body.
  • the online verification contact signal sampling unit includes an isolation sampling element, and the isolation sampling element is controlled by the gas density relay body, or the contact action mechanism, or the intelligent control unit; in the non-verification state, the The online verification contact signal sampling unit is relatively isolated on the circuit by isolating the sampling element and the contact signal of the gas density relay body; in the verification state, the online verification contact signal sampling unit cuts off the gas density relay body by isolating the sampling element
  • the contact signal control circuit connects the contact of the gas density relay body with the intelligent control unit; wherein, the isolation sampling element includes a travel switch, a micro switch, a button, an electric switch, a displacement switch, an electromagnetic relay, an optocoupler, A kind of thyristor.
  • the online verification contact signal sampling unit includes a first connection circuit and a second connection circuit, the first connection circuit is connected to the contact of the gas density relay body and the contact signal control circuit, and the second connection circuit Connect the contact point of the gas density relay body and the intelligent control unit; in the non-verification state, the second connection circuit is disconnected, and the first connection circuit is closed; in the verification state, the online calibration
  • the test contact signal sampling unit cuts off the first connection circuit, communicates with the second connection circuit, and connects the contact of the gas density relay body to the intelligent control unit.
  • the gas density relay (or gas density monitoring device) further includes: a multi-way connector, the gas density relay body, the first pressure sensor, the driving contact action mechanism, and the online verification contact
  • a multi-way connector the gas density relay body, the first pressure sensor, the driving contact action mechanism, and the online verification contact
  • One or more of the signal sampling unit, the intelligent control unit, and the temperature sensor are arranged on the multi-way connector.
  • control of the intelligent control unit is through on-site control and/or through background control.
  • the housing of the gas density relay body is further provided with a display mechanism for displaying the density of the insulating gas.
  • the display mechanism includes a connection mechanism, a movement, a pointer and a dial, the movement is connected to the signal action mechanism through the connection mechanism, and the pointer is mounted on the movement and is provided with Before the dial, the pointer combines with the dial to display the gas density value; or, the display mechanism includes a liquid crystal or/and a digital tube.
  • the second aspect of this application provides a method for calibrating a gas density relay, including:
  • the gas density relay monitors the gas density value in the electrical equipment
  • the gas density relay is based on the set calibration time or/and calibration command, as well as the gas density value, under the condition that the gas density relay body is allowed to be calibrated:
  • the contact action mechanism is driven by the intelligent control unit, and the movement mechanism of the contact action mechanism is driven by the force applying mechanism to apply force to the components in the gas density relay body, so that the signal action mechanism of the gas density relay body is displaced and triggered
  • the signal generator generates a contact signal action; the intelligent control unit obtains the pressure value P1 collected by the first pressure sensor and the temperature value T collected by the temperature sensor when the gas density relay body produces a contact signal action or switching, and all
  • the force F collected by the force sensor is calculated or converted into the corresponding pressure value P2 according to the force F, and the equivalent gas pressure value P is calculated according to the pressure value P1 and the pressure value P2; according to the equivalent gas pressure value P, and According to the gas pressure-temperature characteristics, it is converted into a pressure value corresponding to 20°C, that is, the gas density value P 20 , and the online calibration of the gas density relay is completed; or,
  • the intelligent control unit acquires operation when a contact signal to the bulk of the gas density relay or switch, the first pressure sensor and the temperature sensor gas density acquisition P1 20, and the load force F is collected by the sensor, the bonding temperature collected by the sensor temperature T, it has been calculated, or translated into a value corresponding to the gas density P2 20, and depending on the gas density and gas density value P1 20 P2 20 calculated by the gas density P 20, completing the gas density relay line correction Test; or,
  • the intelligent control unit acquires the pressure value P1 collected by the first pressure sensor, the temperature value T collected by the temperature sensor, and the force F collected by the load cell when the contact signal action or switching occurs in the gas density relay body , And calculate the corresponding gas density value P 20 according to the pressure values P1, T and F, and complete the online calibration of the gas density relay;
  • the intelligent control unit restores the driving contact action mechanism.
  • the gas density relay further includes an online verification contact signal sampling unit, the online verification contact signal sampling unit is respectively connected to the signal generator and the intelligent control unit of the gas density relay body, and is configured to sample The contact signal of the gas density relay body; the verification method includes:
  • the gas density relay monitors the gas density value in the electrical equipment, and at the same time the gas density relay monitors the gas density value in the electrical equipment online through the first pressure sensor, the temperature sensor and the intelligent control unit;
  • the gas density relay is based on the set calibration time or/and calibration command, as well as the gas density value, under the condition that the gas density relay body is allowed to be calibrated:
  • the online calibration contact signal sampling unit is adjusted to the calibration state through the intelligent control unit.
  • the online calibration contact signal sampling unit cuts off the control circuit of the contact signal of the gas density relay body, and connects the contacts of the gas density relay body Connect to the intelligent control unit;
  • the intelligent control unit drives the contact action mechanism, and the movement mechanism of the contact action mechanism applies force to the components in the gas density relay body under the drive of the force application mechanism, so that the signal action mechanism of the gas density relay body is displaced, and the signal is triggered.
  • the generator generates a contact signal action
  • the intelligent control unit obtains the pressure value P1 collected by the first pressure sensor and the temperature value T collected by the temperature sensor when the gas density relay body produces a contact signal action or switching
  • the The force F collected by the load cell is calculated or converted into the corresponding pressure value P2 according to the force F
  • the equivalent gas pressure value P is calculated according to the pressure value P1 and the pressure value P2; according to the equivalent gas pressure value P, and according to
  • the gas pressure-temperature characteristic is converted into a pressure value corresponding to 20°C, that is, the gas density value P 20 , and the online calibration of the gas density relay is completed; or,
  • the intelligent control unit acquires operation when a contact signal to the bulk of the gas density relay or switch, the first pressure sensor and the temperature sensor gas density acquisition P1 20, and the load force F is collected by the sensor, the bonding temperature collected by the sensor temperature T, it has been calculated, or translated into a value corresponding to the gas density P2 20, and depending on the gas density and gas density value P1 20 P2 20 calculated by the gas density P 20, completing the gas density relay line correction Test; or,
  • the intelligent control unit acquires the pressure value P1 collected by the first pressure sensor, the temperature value T collected by the temperature sensor, and the force F collected by the load cell when the contact signal action or switching occurs in the gas density relay body , And calculate the corresponding gas density value P 20 according to the pressure values P1, T and F, and complete the online calibration of the gas density relay;
  • the intelligent control unit restores the driving contact action mechanism and adjusts the online verification contact signal sampling unit to the working state, and the contact signal control loop of the gas density relay body resumes operation Normal working condition.
  • a calibration method of a gas density relay includes:
  • the corresponding relationship between the gas density value P 20 and the gas density value P1 20 , P2 20 is pre-designed into a data table, and is based on the gas density value P1 20 and the gas density value P2 20 Query the data table to obtain the corresponding gas density value P 20 , and complete the online verification of the gas density relay; or,
  • the corresponding relationship between its gas density value P 20 and gas pressure values P1, P2 and temperature T is pre-designed into a data table, and is based on the gas pressure values P1, P2 and temperature For the value T, query the data table to obtain the corresponding gas density value P 20 , and complete the online verification of the gas density relay; or,
  • the corresponding relationship between the gas density value P 20 and the gas pressure value P1 the force F collected by the load cell and the temperature value T is pre-designed into a data table, and according to gas pressure value P1, the force sensor measuring the force F and the acquired temperature value T obtained querying the data table corresponding to the gas density values P 20, to complete the online verification of the gas density relay.
  • This application provides a gas density relay with online self-checking function and its calibration method for high-voltage and medium-voltage electrical equipment, including a gas density relay body, a first pressure sensor, a temperature sensor, a load cell, and a driving contact Action mechanism and intelligent control unit.
  • the driving contact action mechanism is configured to directly or indirectly drive the signal action mechanism of the gas density relay body to move, so that the gas density relay body generates a contact signal action, and the intelligent control unit is based on the density value when the contact is activated,
  • the alarm and/or blocking contact signal action value and/or return value of the gas density relay body are detected, and the calibration of the gas density relay can be completed without the need for maintenance personnel to go to the scene, which improves the reliability of the power grid, improves the efficiency, and reduces In order to reduce the cost, the maintenance-free gas density relay can be realized.
  • the entire calibration process has achieved zero emission of SF6 gas, which meets the requirements of environmental protection regulations.
  • the contact action mechanism is not connected to the gas density relay body or the SF6 main gas circuit of the electrical equipment, which can greatly improve the reliability of the power grid, reduce its sealing requirements, and reduce Manufacturing cost improves the convenience and flexibility of on-site installation.
  • This application realizes online verification of the gas density relay, and then realizes the intelligent management of the entire life cycle of the gas density relay: repairs are made only if there is a problem, and operation and maintenance services are not required if there is no problem.
  • Fig. 1 is a schematic diagram of the structure of a gas density relay with online self-checking function in the first embodiment
  • FIG. 2 is a schematic diagram of the structure of the gas density relay with online self-checking function of the second embodiment
  • FIG. 3 is a schematic diagram of the structure of the gas density relay with online self-checking function in the third embodiment
  • Fig. 4 is a schematic structural diagram of a gas density relay with online self-checking function of the fourth embodiment.
  • FIG. 1 is a schematic diagram of the structure of a gas density relay (or gas density monitoring device) according to the first embodiment of the application.
  • a gas density relay includes a gas density relay body 1, a first pressure sensor 2, a temperature sensor 3, a force sensor 16, a contact action mechanism 15, an online verification contact signal sampling unit 6 and an intelligent control Unit 7.
  • the gas density relay body 1 includes a housing 101, a base 102, an end seat 108, a pressure detection element 103, a temperature compensation element 104, a number of signal generators 109, a movement 105, Pointer 106, connecting rod 112, and dial 107.
  • the movement 105 is fixed on the base 102; one end of the pressure detection element 103 (Baden tube) is fixed on and communicated with the base 102, and the pressure detection element 103 (Baden tube) ) Is filled with sealing gas, the other end of the pressure detection element 103 (Baden tube) is connected to one end of the temperature compensation element 104 through the end seat 108, and the temperature compensation element 104 adopts a temperature compensation sheet,
  • the other end of the temperature compensation element 104 is provided with a signal action mechanism 111; the signal action mechanism 111 is provided with an adjustment member that pushes the signal generator 109 and makes the contact of the signal generator 109 turn on or off (For example, an adjustment screw), the signal generator 109 includes a micro switch or a magnetic-assisted electric contact, and the gas density relay body 1 outputs a contact signal through the signal generator 109.
  • the end seat 108 is provided with an end seat contact plate 108A.
  • the other end of the temperature compensation element 104 is also connected to the movement 105 through a connecting rod 112 or directly connected to the movement 105; the pointer 106 is mounted on the movement 105 and is arranged on the dial Before 107, the pointer 106 combined with the dial 107 to display the gas density value.
  • the gas density relay body 1 may also include a digital device or a liquid crystal device with an indication display.
  • the gas density relay body 1 of this embodiment may be: an oil-filled density relay, an oil-free density relay, a gas density meter, a gas density switch, or a gas pressure gauge.
  • the first pressure sensor 2, the temperature sensor 3, the online verification contact signal sampling unit 6 and the intelligent control unit 7 are arranged on the connector 110.
  • the load cell 16 and the driving contact action mechanism 15 are arranged on the outside of the housing 101.
  • the first pressure sensor 2, the temperature sensor 3, the online verification contact signal sampling unit 6, the load cell 16 and the intelligent control unit 7 are connected; the online verification contact signal sampling unit 6 is connected to the signal generator 109 .
  • the driving contact action mechanism 15 is arranged on the outside of the housing 101 and is arranged corresponding to the end seat contact plate 108A on the end seat 108 of the gas density relay body 1; the driving contact action mechanism 15 is configured to be indirectly
  • the signal action mechanism 111 of the gas density relay body 1 is displaced correspondingly, and the contact signal action of the gas density relay body 1 is generated.
  • the contact action mechanism 15 includes an outer cover 158 provided with an opening, and a driving part 151, a force transmission member 152 and a push rod 153 arranged in the outer cover 158.
  • the push rod 153 is arranged corresponding to the end seat contact plate 108A,
  • the opening of the outer cover 158 faces the housing 101 of the gas density relay body 1.
  • the force transmitting member 152 rotates under the driving of the driving member 151; the push rod 153 is provided with a fixing member 156 at one end close to the force transmitting member 152, and the fixing member 156 is fixedly arranged on the inner wall of the outer cover 158.
  • One end penetrates the fixing frame 155 fixed at the opening of the outer cover 158.
  • the fixing frame 155 is provided with a through guide hole for the push rod 153 to pass through and install.
  • the inner diameter of the guide hole is larger than the outer diameter of the push rod 153.
  • the driving component 151 is a motor
  • the force transmitting member 152 is a cam
  • the cam is driven by the motor to rotate.
  • the motor to drive the cam to rotate.
  • a rotating shaft is connected between the two support plates through a bearing, and the cam is set between the two support plates through the rotating shaft.
  • the output shaft of the motor is fixedly connected to one end of the rotating shaft, and the motor rotates. When the time, the rotating shaft is driven to rotate, thereby driving the cam fixedly mounted on the rotating shaft to rotate.
  • a rotatable rotating shaft is erected above the push rod, the cam and a large gear are coaxially fixed and installed on the rotating shaft, and a small gear is fixedly installed on the output shaft of the motor, and the small gear meshes with the large gear.
  • the motor rotates, it drives the small gear to rotate, and the big gear rotates accordingly, driving the rotating shaft for mounting the big gear to rotate, thereby driving the cam fixed on the rotating shaft to rotate.
  • a return spring 154 is sleeved on the push rod 153 between the fixing part 156 and the fixing frame 155.
  • One end of the return spring 154 is fixedly connected to the fixing part 156, and the other end is fixedly connected to the fixing frame 155.
  • the push rod 153 is in an unstressed state, the end surface of the cam opposite to the convex portion of the cam is in contact with the end of the push rod 153 where the fixing member 156 is provided, the return spring 154 is in a natural extension state, and the push rod 153 extends out of the fixing frame
  • the part 155 is located on one side of the terminal base contact plate 108A of the gas density relay body 1 and is not in contact with the terminal base contact plate 108A.
  • the driving contact action mechanism 15 further includes a load cell 16, and the load cell 16 is connected to the push rod 153 through a contact 1501.
  • the load cell 16 is a displacement sensor or a deformation sensor, and is provided at one end of the push rod 153 where the fixing member 156 is provided.
  • the force sensor 16 is connected to the intelligent control unit 7 and is used to detect the force F applied by the driving contact action mechanism 15 to the end base 108.
  • the force sensor 16 is connected to the push rod 153 through a contact 1501.
  • the push rod 153 is acted on by the force applying member 151 and the force transmitting member 152.
  • the force F of the spring 154 can be detected by the force sensor 16
  • the force transmitting member 152 is rotated by the force applying member 151, and then the push rod 153 is pushed to move to the right, and then the force F is applied to the spring 154 and the end seat contact plate 108A (that is, the end seat 108).
  • the force member 151 exerts a force on the end base 108 through the force transmission member 152 to cause the gas density relay body 1 to generate a contact signal action.
  • the aforementioned drive components 151 include, but are not limited to, magnetic drive mechanisms, gravity, motors (such as electric push rod motors, stepper motors), reciprocating motion mechanisms, Carnot cycle mechanisms, air compressors, compressors, air release valves, pressure generating One of a pump, a booster pump, a booster valve, an electric air pump, an electromagnetic air pump, a pneumatic element, a magnetic coupling thrust mechanism, a heating generating thrust mechanism, an electric heating generating thrust mechanism, and a chemical reaction generating thrust mechanism;
  • the force transmission member 152 includes, but is not limited to, one of cams, connecting rods, springs, metal parts, non-metal parts, telescopic parts, and non-telescopic parts;
  • the load cell 16 includes, but is not limited to, a gravity sensor, a pressure sensor, and a magnetic sensor , Displacement sensor, deformation sensor, photoelectric sensor, angle sensor, deformation sheet sensor, force sensor, camera, and displacement sensor includes, but not limited to laser displacement sensor, infrared
  • the intelligent control unit 7 monitors the gas pressure and temperature of the electrical equipment according to the first pressure sensor 2 and the temperature sensor 3, and obtains the corresponding 20°C pressure value P 20 (that is, the gas density value). When it is necessary to calibrate the gas density relay body 1, if the gas density value P 20 ⁇ the set safety calibration density value P S ; the intelligent control unit 7 disconnects the control circuit of the gas density relay body 1 to enable online calibration The gas density relay body 1 will not affect the safe operation of electrical equipment, and will not send an alarm signal by mistake or block the control circuit during calibration.
  • the intelligent control unit 7 is connected to the contact sampling circuit of the gas density relay body 1.
  • the contact action mechanism 15 is driven by the intelligent control unit 7 to displace the end base 108 of the gas density relay body 1, and the signal action mechanism 111 is displaced by means of the temperature compensation element 104.
  • the adjustment piece on the signal action mechanism 111 The signal generator 109 (for example, a micro switch) is pushed (for example, an adjustment screw), the contact of the signal generator 109 is turned on, and a corresponding contact signal (alarm or lock) is sent out.
  • the push rod 153 is reset under the elastic force of the return spring 154, and no more force is applied to the end seat contact plate 108A, the temperature compensation element 104 is reset, the adjusting part is far away from the signal generator 109, and the contact of the signal generator 109 is disconnected. The contact signal (alarm or lockout) is released.
  • the intelligent control unit 7 acquires the pressure value P1 collected by the first pressure sensor 2 and the temperature value T collected by the temperature sensor 3 when the gas density relay body 1 performs contact signal action or switching, and the force sensor 16
  • the collected force F is calculated or converted into the corresponding pressure value P2 according to the force F
  • the equivalent gas pressure value P is calculated according to the pressure value P1 and the pressure value P2; according to the equivalent gas pressure value P, and according to the gas pressure -
  • the temperature characteristic is converted into a pressure value corresponding to 20°C, that is, the gas density value P 20 , and the online calibration of the gas density relay is completed.
  • the intelligent control unit 7 obtains the gas density value P1 20 collected by the first pressure sensor 2 and the temperature sensor 3 when the gas density relay body 1 performs contact signal action or switching, and the force sensor 16
  • the collected force F combined with the temperature value T collected by the temperature sensor 3, is calculated or converted into the corresponding gas density value P2 20 , and calculated according to the gas density value P1 20 and the gas density value P2 20 to obtain the gas density value P 20 , complete Online verification of the gas density relay.
  • K is a preset coefficient, which is obtained according to the characteristics of the gas density relay; according to the equivalent gas pressure value P, temperature value T, and according to the gas pressure-temperature characteristics, it is converted into a pressure value corresponding to 20 °C, that is, the gas density value P 20.
  • the corresponding relationship between the gas density value P 20 and the gas density values P1 20 and P2 20 is designed as a data table, and the gas density value P1 20 and The gas density value P2 20 queries the data table to obtain the corresponding gas density value P 20 to complete the online verification of the gas density relay; or, when the gas density relay body 1 is activated or switched by the contact signal, its gas density value P
  • the corresponding relationship between 20 and the gas pressure values P1, P2 and temperature value T is designed into a data table, and the data table is inquired according to the gas pressure values P1, P2 and temperature value T to obtain the corresponding gas density value P 20 , and the completion of all The online calibration of the gas density relay.
  • the intelligent control unit 7 disconnects the contact sampling circuit of the gas density relay body 1, and the contact of the gas density relay body 1 is not connected to the intelligent control unit 7 at this time.
  • the driving contact action mechanism 15 is restored by the intelligent control unit 7.
  • the control circuit of the gas density relay body 1 is connected through the intelligent control unit 7, the density monitoring circuit of the gas density relay body 1 works normally, and the gas density relay body 1 safely monitors the gas density of electrical equipment, so that the electrical equipment can work safely and reliably. In this way, it is convenient to complete the online verification work of the gas density relay body 1, and at the same time, the safe operation of the electrical equipment will not be affected when the gas density relay body 1 is verified online.
  • the gas density relay body 1 After the gas density relay body 1 completes the verification work, the gas density relay will make a judgment and can announce the test result.
  • the method is flexible, specifically: 1) Local notification, such as display by indicator light, digital or LCD; 2) or uploading through online remote communication, for example, uploading to the background of the online monitoring system; 3) or Through wireless upload, upload to a specific terminal, such as wireless upload to mobile phone; 4) or upload through other means; 5) or upload abnormal results through the alarm signal line or dedicated signal line; 6) upload alone, or with other signals Bundled upload.
  • the gas density relay after completing the online verification of the gas density relay, if there is an abnormality, it can automatically send an alarm, which can be uploaded to the remote end, or can be sent to a designated receiver, such as a mobile phone.
  • the intelligent control unit 7 can upload the remote end (monitoring room, background monitoring platform, etc.) through the alarm contact signal of the gas density relay body 1, and can also display on-site Notice.
  • the simple version of the gas density relay online calibration can upload the abnormal results of the calibration through the alarm signal line. It can be uploaded according to a certain rule. For example, when there is an abnormality, connect a contact in parallel with the alarm signal contact to regularly close and open, and the status can be obtained through analysis; or upload through an independent check signal line.
  • the communication method is wired or wireless.
  • the wired communication method can be RS232, RS485, CAN-BUS and other industrial buses, optical fiber Ethernet, 4-20mA, Hart, IIC, SPI, Wire, coaxial cable, PLC power carrier, etc.;
  • the wireless communication method can be 2G/3G/4G/5G, etc., WIFI, Bluetooth, Lora, Lorawan, Zigbee, infrared, ultrasonic, sound wave, satellite, light wave, quantum communication, sonar, sensor built-in 5G/NB-IOT communication module (such as NB-IOT) and so on.
  • multiple methods and multiple combinations can be used to fully ensure the reliable performance of the gas density relay.
  • the gas density relay can be checked online according to the set time, or according to the set temperature (such as extreme high temperature, high temperature, extreme low temperature, low temperature, normal temperature, 20 degrees, etc.).
  • the error judgment requirements are different.
  • the accuracy requirement of the gas density relay can be 1.0 or 1.6
  • high temperature Time can be 2.5 levels.
  • it can be implemented according to temperature requirements and related standards. For example, in accordance with the 4.8 temperature compensation performance regulations in DL/T 259 "Sulfur hexafluoride Gas Density Relay Calibration Regulations", each temperature value corresponds to the accuracy requirements.
  • the gas density relay can compare its error performance at different temperatures and time periods. That is to compare the performance of gas density relays and electrical equipment in different periods and within the same temperature range. It has the comparison of various periods of history, the comparison of history and the present.
  • the gas density relay can be calibrated multiple times (for example, 2 to 3 times), and the average value is calculated based on the results of each calibration. When necessary, the gas density relay can be checked online at any time.
  • the gas density relay has the functions of pressure and temperature measurement and software conversion.
  • the alarm and/or blocking contact action value and/or return value of the gas density relay body 1 can be detected online.
  • the return value of the alarm and/or blocking contact signals can also be tested without testing.
  • the gas density relay can also monitor the gas density value, and/or pressure value, and/or temperature value of the electrical equipment online, and upload it to the target device for online monitoring.
  • the above-mentioned gas density relay body 1 can be: a gas density relay with bimetallic strip compensation, a gas-compensated gas density relay with gas compensation, or a gas density relay with a mixture of bimetallic strip and gas compensation; a fully mechanical gas density relay, digital type Gas density relay, mechanical and digital combination type gas density relay; density relay with indicator (density relay with pointer display, density relay with digital display, density relay with liquid crystal display), density relay without indicator (ie density switch ); SF6 gas density relay, SF6 mixed gas density relay, N2 gas density relay, other gas density relays, etc.
  • the type of the above-mentioned first pressure sensor 2 may be an absolute pressure sensor, a relative pressure sensor, or an absolute pressure sensor and a relative pressure sensor, and the number may be several.
  • the pressure sensor can be in the form of a diffused silicon pressure sensor, MEMS pressure sensor, chip pressure sensor, coil induction pressure sensor (such as a pressure measurement sensor with an induction coil in a Baden tube), a resistance pressure sensor (such as a slip wire resistance with a Baden tube)
  • the pressure measurement sensor can be an analog pressure sensor or a digital pressure sensor.
  • Pressure collection is a variety of pressure-sensitive components such as pressure sensors and pressure transmitters, such as diffused silicon type, sapphire type, piezoelectric type, strain gauge type (resistance strain gauge type, ceramic strain gauge type).
  • the above-mentioned temperature sensor 3 may be a thermocouple, a thermistor, or a semiconductor type; it may be a contact type or a non-contact type; it may be a thermal resistance or a thermocouple.
  • temperature collection can use various temperature sensing elements such as temperature sensors and temperature transmitters.
  • the above-mentioned online verification contact signal sampling unit 6 is used to complete the contact signal sampling of the gas density relay body 1. That is, the basic requirements or functions of the online verification contact signal sampling unit 6 are: 1) Do not affect the safe operation of electrical equipment during verification. That is, during calibration, when the contact signal of the gas density relay body 1 is activated, it will not affect the safe operation of electrical equipment; 2) The contact signal control circuit of the gas density relay body 1 does not affect the performance of the gas density relay, especially if it does not The performance of the intelligent control unit 7 is affected, and the gas density relay will not be damaged, or the test work will not be affected.
  • the basic requirement or function of the above-mentioned intelligent control unit 7 is: it can detect the pressure value and temperature value when the contact signal of the gas density relay body 1 is activated, and convert it into the corresponding pressure value P 20 (density value) at 20°C , That is, the contact action value P D20 of the gas density relay body 1 can be detected, and the verification work of the gas density relay body 1 can be completed.
  • the density value P D20 when the contact signal of the gas density relay body 1 is activated can be directly detected, and the verification work of the gas density relay body 1 can be completed.
  • the intelligent control unit 7 can also realize: test data storage; and/or test data export; and/or test data can be printed; and/or can communicate with the host computer; and/or can input analog and digital quantities information.
  • the intelligent control unit 7 also includes a communication module, which realizes remote transmission of test data and/or verification results and other information through the communication module; when the rated pressure value of the gas density relay body 1 outputs a signal, the intelligent control unit 7 simultaneously collects the current Complete the calibration of the rated pressure value of the gas density relay body 1. At the same time, the self-checking work between the gas density relay body 1, the pressure sensor 2, and the temperature sensor 3 can be completed through the test of the rated pressure value of the gas density relay body 1, and maintenance-free is realized.
  • the above-mentioned electrical equipment includes SF6 gas electrical equipment, SF6 mixed gas electrical equipment, environmentally friendly gas electrical equipment, or other insulated gas electrical equipment.
  • electrical equipment includes GIS, GIL, PASS, circuit breakers, current transformers, voltage transformers, transformers, gas-filled cabinets, ring network cabinets, and so on.
  • the gas density relay body 1, the first pressure sensor 2, the temperature sensor 3, the driving contact action mechanism 15, the online verification contact signal sampling unit 6 and the intelligent control unit 7 can be flexibly configured as required.
  • the gas density relay body 1, the pressure sensor 2 and the temperature sensor 3 are set together; in short, the settings between them can be flexibly arranged and combined.
  • the force applying mechanism and the moving mechanism can also be designed in an integrated manner; alternatively, the driving part of the force applying mechanism and the force transmitting part driven by the driving part can also be designed in an integrated manner; the push rod of the moving mechanism generally refers to the pushing part, so The push rod (pushing member) moves under the drive of the force applying mechanism to directly or indirectly displace the signal action mechanism.
  • the force transmission member generally refers to a force transmission member, including but not limited to one of cams, connecting rods, springs, metal parts, non-metal parts, telescopic parts, and non-telescopic parts.
  • the driving contact action mechanism may be provided in the housing of the gas density relay body.
  • the end of the push rod that penetrates the fixing frame extends from the air hole on the housing of the gas density relay body into the housing, and the push rod can be in sealed contact with the inner wall of the housing, or No contact; the push rod is arranged opposite to the pressure detection element, or temperature compensation element, or signal generator, or signal action mechanism, or the push rod is directly or indirectly connected to the pressure detection element, or temperature compensation element, or signal generation Device, or signal action mechanism connected or contacted.
  • the load cell can also be connected to the pressure detection element, or temperature compensation element, or signal generator, or signal action mechanism through a contact or directly.
  • the signal action mechanism is provided with a trigger that pushes the signal generator and makes the contact of the signal generator turn on or off.
  • the trigger completes the signal generator (specifically, according to the gas density value).
  • the contact of the magnetic-assisted electrical contact is turned on or off, and the gas density relay body outputs a contact signal through the signal generator (specifically, the magnetic-assisted electrical contact).
  • the second embodiment of the present invention provides a gas density relay (or gas density monitoring device) with an online self-checking function.
  • the difference from the first embodiment is:
  • the driving contact action mechanism 15 is arranged on the outside of the housing 101 and is arranged opposite to the pressure detection element 103 (Baden tube) of the gas density relay body 1; the driving contact action mechanism 15 is configured to be indirectly
  • the signal action mechanism 111 of the gas density relay body 1 is displaced correspondingly, and the contact signal action of the gas density relay body 1 is generated.
  • the driving contact action mechanism 15 includes an outer cover 158 with an open end, and a driving member 151, a force transmission member 152 (cam), a push rod 153, a spring 154, and a fixing frame 155 arranged in the outer cover 158; the opening of the outer cover 158 Towards the housing 101 of the gas density relay body 1, the push rod 153 is arranged opposite to the pressure detecting element 103 (Baden tube) in the housing 101.
  • the load cell 16 (in this case, the pressure sensor, or displacement sensor, or deformation sensor, or photoelectric sensor, or deformation sheet sensor) is arranged opposite to the pressure detection element 103 (Baden tube), where the force of the load cell 16 is in contact with The piece 16A is in contact with the pressure detecting element 103 (Baden tube), and the force F applied by the push rod 153 to the pressure detecting element 103 (Baden tube) can be detected by the load cell 16.
  • the force transmission member 152 rotates under the drive of the driving part 151; the fixing frame 155 is fixedly arranged on the housing 101 of the gas density relay body 1; After one end of the force member 152 protrudes from the opening of the outer cover 158, it extends into the housing 101 through the air hole on the housing 101 of the gas density relay body 1 and is in sealing contact with the inner wall of the housing 101, so The end of the push rod 153 extending into the housing 101 is opposite to the pressure detecting element 103 (Baden tube) in the housing 101.
  • a return spring 154 is sleeved on the push rod 153 between the fixing frame 155 and the air hole of the housing 101.
  • One end of the return spring 154 is fixedly connected to the fixing frame 155 and the other end is fixedly connected to the housing 101.
  • the end surface of the force transmitting member 152 (cam) opposite to the convex part of the force transmitting member 152 (cam) is in contact with the end of the push rod 153 passing through the fixing frame 155, and the return spring 154
  • the part of the push rod 153 extending into the housing 101 is located on the side of the pressure detecting element 103 (Baden tube) of the gas density relay body 1 and is not in contact with the pressure detecting element 103 (Baden tube), that is, pushing The rod 153 exerts no force on the pressure detecting element 103 (Baden tube).
  • the driving component 151 drives the power transmission member 152 (cam) to rotate, the protrusion of the power transmission member 152 (cam) hits the push rod 153, and the push rod 153 is driven to move along its axial direction.
  • 153 applies force F to the pressure detecting element 103 (Baden tube), forcing the end seat 108 at the end of the pressure detecting element 103 (Baden tube) to displace.
  • the signal action mechanism 111 is displaced and the signal is activated.
  • the adjusting member for example, an adjusting screw
  • the signal generator 109 for example, a micro switch
  • the contact of the signal generator 109 is turned on, and a corresponding contact signal (alarm or lock) is sent out.
  • the protruding part of the force transmission member 152 cam
  • the push rod 153 is reset under the elastic force of the return spring 154, and the pressure detection element 103 (Baden tube)
  • the temperature compensation element 104 is reset, the adjusting member is far away from the signal generator 109, the contact of the signal generator 109 is disconnected, and the contact signal (alarm or lock) is released.
  • the intelligent control unit 7 acquires the pressure value P1 collected by the first pressure sensor 2 and the temperature value T collected by the temperature sensor 3 when the gas density relay body 1 performs contact signal action or switching, and the force measurement
  • the force F collected by the sensor 16 is calculated or converted into the corresponding pressure value P2 according to the force F
  • the equivalent gas pressure value P is calculated according to the pressure value P1 and the pressure value P2; according to the equivalent gas pressure value P, and according to the gas
  • the pressure-temperature characteristic is converted into a pressure value corresponding to 20°C, that is, the gas density value P 20 , and the online calibration of the gas density relay is completed.
  • the first pressure sensor 2, the online verification contact signal sampling unit 6 and the intelligent control unit 7 are arranged on the connector 110.
  • the temperature sensor 3 is arranged in the housing 101 and close to the temperature compensation element 104, or the temperature sensor 3 is directly arranged on the temperature compensation element 104.
  • the first pressure sensor 2, the temperature sensor 3, the online verification contact signal sampling unit 6, and the load cell 16 are respectively connected to the intelligent control unit 7; the online verification contact signal sampling unit 6 is also connected to the signal generator 109.
  • the third embodiment of the present invention provides a gas density relay (or gas density monitoring device) with an online self-checking function.
  • the difference from the first embodiment is:
  • the driving contact action mechanism 15 is arranged on the outside of the housing 101, and includes an outer cover 158 with an open end, and a driving part 151, a force transmission member 152 (cam) and a push rod 153 arranged in the outer cover 158; the outer cover 158 is sealed (Mainly waterproof intrusion) It is connected to the housing 101 of the gas density relay body 1, and the opening of the outer cover 158 faces the housing 101.
  • the driving contact action mechanism 15 is configured to indirectly cause the signal action mechanism 111 of the gas density relay body 1 to correspondingly displace, thereby causing the gas density relay body 1 to generate a contact signal action.
  • the movement 105 of the gas density relay body 1 includes a sector gear 1051 and a central gear.
  • the first end of the sector gear 1051 is meshed with the central gear, and the second end of the sector gear 1051 is directly compensated for the temperature through the connecting rod 112 or directly.
  • the other end of the element 104 is connected; the second end of the sector gear 1051 is fixedly connected to one end of the sector gear contact 1051A, and the other end of the sector gear contact 1051A extends from the air hole of the housing 101 of the gas density relay body 1.
  • the push rod 153 of the driving contact action mechanism 15 is arranged opposite to the end of the push rod 153 away from the force applying mechanism.
  • the driving member 151 and the force transmitting member 152 exert a force on the sector gear contact piece 1051A through the push rod 153, the second end of the sector gear 1051 is displaced, and the first end of the sector gear 1051 meshed with the central gear is driven
  • the central gear rotates, and both the central gear and the pointer 106 are installed on the driving rod.
  • the rotation of the central gear drives the driving rod to rotate, so that the pointer 106 moves and indicates on a certain scale of the dial 107.
  • the load cell 16 (in this case, the pressure sensor, or displacement sensor, or deformation sensor, or photoelectric sensor, or deformation sheet sensor) is arranged on the driving contact action mechanism 15, which can detect the push rod 153 against the sector gear contact 1051A The applied force F.
  • the working principle is: when the driving component 151 does not apply force, the push rod 153 is away from the sector gear contact 1051A, and the push rod 153 does not apply force to the sector gear contact 1051A.
  • the driving component 151 applies a force F to the sector gear contact 1051A through the push rod 153, so that the sector gear 1051 is displaced accordingly.
  • the signal action mechanism 111 With the help of the connecting rod 112 and the temperature compensation element 104, the signal action mechanism 111 is driven to produce displacement.
  • the adjustment member for example, an adjustment screw
  • the signal action mechanism 111 pushes the signal generator 109 to make the contact of the signal generator 109 turn on or off, and drive the gas density relay body 1 to generate a contact signal action.
  • the intelligent control unit 7 acquires the pressure value P1 collected by the first pressure sensor 2 and the temperature value T collected by the temperature sensor 3 when the gas density relay body 1 performs contact signal action or switching, and the basis
  • the force F collected by the load cell 16 is calculated or converted into the corresponding pressure value P2 according to the force F, and the equivalent gas pressure value P is calculated according to the pressure value P1 and the pressure value P2; the pressure value P according to the equivalent gas, and According to the gas pressure-temperature characteristics, it is converted into a pressure value corresponding to 20°C, that is, the gas density value P 20 , and the online calibration of the gas density relay is completed.
  • the online verification contact signal sampling unit 6 and the intelligent control unit 7 are arranged on the connector 110.
  • the first pressure sensor 2 is provided on the base 102, and the temperature sensor 3 is provided inside the housing 101.
  • the first pressure sensor 2, the temperature sensor 3, the online verification contact signal sampling unit 6, and the force sensor 16 are respectively connected to the intelligent control unit 7.
  • a gas density relay (or gas density monitoring device) with an online self-checking function.
  • a gas density relay includes: a gas density relay body 1, a first pressure sensor 2, a temperature sensor 3, a load cell 16, a contact action mechanism 15, an online verification contact signal sampling unit 6 and a smart Control unit 7.
  • the gas density relay body 1 of this embodiment adopts a bellows type gas density relay. Specifically, it includes a housing 101, a first bellows 103 (that is, a pressure detection element), a second bellows 113, a signal generator 109 (a micro switch in this embodiment), and a signal action mechanism 111.
  • the first open end of the first bellows 103 is fixed on the inner wall of the housing 101
  • the second open end of the first bellows 103 is in sealed connection with the first sealing member 118
  • the first The inner wall of the bellows 103, the first sealing member 118, and the inner wall of the housing 101 jointly enclose a first sealed gas chamber G1, and the first pressure sensor 2 is in communication with the first sealed gas chamber G1.
  • the first sealed gas chamber G1 is in communication with the insulating gas of the electrical equipment 8 through the multi-way joint 9 and the electrical equipment joint 13.
  • the first open end of the second bellows 113 is hermetically connected to the first sealing member 118, and the second open end of the second bellows 113 is connected to the inner wall of the housing 101 through a second sealing member 119 ,
  • the outer wall of the first bellows 103, the first seal 118, the outer wall of the second bellows 113, the second seal 119 and the inner wall of the housing 101 collectively enclose a second seal
  • the gas chamber G2, the second sealed gas chamber G2 is filled with a standard compensation gas with a density value of P 20BC , that is, the second sealed gas chamber G2 is a temperature compensation standard gas chamber and constitutes a temperature compensation element.
  • the inner wall of the second bellows 113, the second sealing member 119, and the inner wall of the housing 101 jointly enclose a third air chamber G3, which may be relatively sealed or semi-open.
  • the signal action mechanism 111 and the signal generator 109 are arranged in the third gas chamber G3.
  • the signal action mechanism 111 is connected to the first sealing member 118, the signal generator 109 is provided corresponding to the signal action mechanism 111, and the gas density relay body 1 outputs a contact signal through the signal generator 109.
  • the signal action mechanism 111 includes a moving rod, one end of the moving rod extends into the second bellows 113, is fixedly connected to the first sealing member 118, and follows the first bellows 103 Deformation produces displacement; the other end of the moving rod extends out of the second bellows 113, and is fixedly connected to an adjustment fixing member.
  • the outer side of the adjustment fixing member is provided with a plurality of adjustment screws 10101, and the plurality of adjustment screws 10101 are connected to the corresponding
  • the signal generator 109 is set correspondingly.
  • the gas density is monitored through the first sealed gas chamber G1 and the second sealed gas chamber G2, combined with the signal generator 109 to monitor the gas density, when the gas density is lower or/and higher than the set gas density
  • the gas density relay body 1 outputs an alarm or/and a blocking contact signal through a signal generator 109.
  • the driving contact action mechanism 15 is arranged in the housing 101 of the gas density relay body 1, located above the signal action mechanism 111, and is configured to directly apply a force to the signal action mechanism 111 to push the moving rod to move, and the first sealing gas
  • the balance of the forces acting on the upper end surface of the first bellows 103 in the chamber G1 and the third air chamber G3 is broken, and the first bellows 103 is deformed with the movement of the moving rod, and generates a certain displacement.
  • the moving rod drives the adjusting screw 10101 to touch the button of the signal generator 109, and the signal generator 109 sends out alarm and lock signals.
  • the force transmission member 152 is driven by the driving member 151 to rotate, pushing the push rod 153 to move downward, and then applying a force F to the spring 154 and the signal action mechanism 111, that is, the driving member 151 passes the force transmission member 152
  • Applying force to the signal action mechanism 111 the adjusting screw 10101 on the signal action mechanism 111 pushes the signal generator 109, the contact of the signal generator 109 is connected, and the corresponding contact signal (alarm or lock) is sent out, that is, the contact action mechanism 15 is driven
  • the gas density relay main body 1 is caused to generate a contact signal operation.
  • the load cell 16 is arranged at an end of the push rod 153 facing the force transmission member, and may also be arranged above or below the adjustment fixing member, opposite to the adjustment fixing member.
  • the intelligent control unit 7 monitors the gas pressure and temperature of the electrical equipment 8 according to the first pressure sensor 2 and the temperature sensor 3, and obtains the corresponding 20°C pressure value P 20 (that is, the gas density value), which can be remotely transmitted online Monitoring, that is, the intelligent control unit 7 acquires the gas density value collected by the first pressure sensor 2 and the temperature sensor 3; or, the intelligent control unit 7 acquires the pressure value and the temperature sensor collected by the first pressure sensor 2 3 The collected temperature value completes the online monitoring of the gas density of the monitored electrical equipment by the gas density relay.
  • P 20 that is, the gas density value
  • the gas density value of the first sealed gas chamber G1 is greater than the gas density value of the third gas chamber G3, that is, the difference between the gas density value of the first sealed gas chamber G1 and the gas density value of the third gas chamber G3 is greater than a certain value.
  • a set value as shown in Figure 4, there is a corresponding distance between the adjusting screw 10101 of the signal action mechanism 111 and the signal generator 109.
  • the adjusting screw 10101 does not touch the signal generator 109, that is, the signal generator 109 is not triggered.
  • the signal generator 109 has no action, and its contact signal is not output.
  • the intelligent control unit 7 controls the driving component 151 of the contact action mechanism 15 to drive the force transmission member 152 to rotate, and the force transmission member 152 rotates to push the push rod 153 to move downward, and then to the spring 154 and
  • the signal action mechanism 111 applies a force F, that is, the driving member 151 applies a force F to the moving rod of the signal action mechanism 111 through the force transmission member 152, and the pressure acting on the upper end surface of the first bellows 103 increases, driving the first bellows 103 A bellows 103 is displaced downward and deformed.
  • the moving rod is displaced downward, so that the distance between the adjusting screw 10101 and the signal generator 109 is reduced.
  • the adjusting screw 10101 of the signal action mechanism 111 touches the signal generator 109, that is, the trigger signal generator 109.
  • the contact of the signal generator 109 acts (turns on) and sends out a corresponding contact signal (alarm or lock).
  • the contact action is uploaded to the intelligent control unit 7 through the online verification contact signal sampling unit 6.
  • the intelligent control unit 7 obtains the pressure collected by the first pressure sensor 2 when the gas density relay body 1 undergoes contact signal action or switching.
  • the value P1, the temperature value T collected by the temperature sensor 3, and the force F collected by the load cell 16 are calculated or converted to the corresponding pressure value P2 according to the force F, and the equivalent is calculated according to the pressure value P1 and the pressure value P2 Gas pressure value P; According to the equivalent gas pressure value P, and according to the gas pressure-temperature characteristics, it is converted into a pressure value corresponding to 20°C, that is, the gas density value P 20 , and the online calibration of the gas density relay is completed.
  • the intelligent control unit 7 obtains the gas density value P1 20 collected by the first pressure sensor 2 and the temperature sensor 3 when the gas density relay body 1 performs contact signal action or switching, and the force sensor 16
  • the collected force F combined with the temperature value T collected by the temperature sensor 3, is calculated or converted into the corresponding gas density value P2 20 , and calculated according to the gas density value P1 20 and the gas density value P2 20 to obtain the gas density value P 20 , complete Online verification of the gas density relay.
  • the corresponding relationship between the gas density value P 20 and the gas density values P1 20 and P2 20 is pre-designed into a data table, and is based on the gas density value P1 20 Query the data table with the gas density value P2 20 to obtain the corresponding gas density value P 20 to complete the on-line verification of the gas density relay; or, when the gas density relay body 1 generates contact signal action or switching, its gas density value
  • the corresponding relationship between P 20 and the gas pressure values P1, P2 and the temperature value T is designed as a data table, and the data table is queried according to the gas pressure values P1, P2 and the temperature value T to obtain the corresponding gas density value P 20 , complete Online verification of the gas density relay. Repeat the calibration for many times (for example, 2 to 3 times), and then calculate the average value, thus completing the calibration of the gas density relay.
  • the intelligent control unit 7 disconnects the contact sampling circuit of the gas density relay body 1, and the contact of the gas density relay body 1 is not connected to the intelligent control unit 7 at this time.
  • the control circuit of the gas density relay body 1 is connected through the intelligent control unit 7, the density monitoring circuit of the gas density relay body 1 works normally, and the gas density relay body 1 safely monitors the gas density of electrical equipment, so that the electrical equipment can work safely and reliably. In this way, it is convenient to complete the online verification of the gas density relay, and at the same time, the safe operation of the electrical equipment will not be affected when the gas density relay is verified online.
  • this application provides a gas density relay with online self-checking function and a calibration method thereof, which are used for high-voltage and medium-voltage electrical equipment, including the gas density relay body, the first pressure sensor, the temperature sensor, and the measuring method. Force sensor, drive contact action mechanism and intelligent control unit.
  • the driving contact action mechanism is configured to exert a force on at least one main element of the gas density relay body, for example, to drive the end seat of the gas density relay body, or the pressure detection element, or the movement to be displaced, thereby causing
  • the signal action mechanism is displaced to cause the gas density relay body to generate a contact signal action; or, the driving contact action mechanism directly drives the signal action mechanism of the gas density relay body to displace, so that the gas density relay body generates a contact point Signal action.
  • the load cell is connected to or associated with at least one main element of the contact action mechanism or the gas density relay body, and is used to detect the force applied by the force applying mechanism to the main element of the bulk density relay body.
  • the main element can include: pressure detection element, end seat, temperature compensation element, signal generator, signal action mechanism, movement, pointer.
  • at least one diagnostic sensor may be provided on the gas density relay body to collect the corresponding position, and/or the corresponding displacement, and/or the corresponding deformation amount of at least one of the main components of the gas density relay body. According to the gas pressure during monitoring and the force applied to drive the contact operating mechanism, it is determined whether the data monitored by the diagnostic sensor meets the preset requirements, so as to diagnose whether the current working state of the gas density relay body is a normal working state.
  • the intelligent control unit detects the alarm and/or blocking contact signal action value and/or return value of the gas density relay body according to the density value when the contact action occurs, and the gas density relay can be completed without the need for maintenance personnel to go to the site
  • the verification work improves the reliability of the power grid, improves work efficiency, reduces operation and maintenance costs, and can achieve maintenance-free gas density relays.
  • the entire calibration process has achieved zero emission of SF6 gas, which meets the requirements of environmental protection regulations.
  • the contact action mechanism is not connected to the gas density relay body or the main gas circuit of the SF6 of the electrical equipment, which can greatly improve the reliability of the power grid, reduce its sealing requirements, and can Reduce manufacturing costs and improve the convenience and flexibility of on-site installation.
  • This application realizes online verification of the gas density relay, and then realizes the intelligent management of the entire life cycle of the gas density relay: repairs are made only if there is a problem, and operation and maintenance services are not required if there is no problem.
  • a gas density relay with on-line self-checking function generally refers to the design of its constituent elements into an integrated structure; and the gas density monitoring device generally refers to the design of its constituent elements into a body structure and flexible composition.
  • the gas density relay can utilize the original gas density relay of the substation for technical transformation and upgrading.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

本申请提供一种具有在线自校验功能的气体密度继电器及其校验方法,用于高压和中压电气设备,气体密度继电器包括气体密度继电器本体、第一压力传感器、温度传感器、测力传感器、驱使接点动作机构和智控单元。所述驱使接点动作机构被配置为直接或间接地驱使所述气体密度继电器本体的信号动作机构发生位移,使所述气体密度继电器本体发生接点信号动作,智控单元根据接点动作时的密度值,检测出气体密度继电器本体的报警和/或闭锁接点信号动作值和/或返回值,无须检修人员到现场就能完成气体密度继电器的校验工作,提高了电网的可靠性,提高了效率,降低了运行维护成本,可以实现气体密度继电器的免维护。

Description

一种具有在线自校验功能的气体密度继电器及其校验方法
本申请请求 20200429日申请的申请号为 202010354510.4(发明名称: 一种具有在线自校验功能的气体密度继电器及其校验方法)的中国专利申请的优先权。
技术领域
本发明涉及电力技术领域,具体涉及一种应用在高压、中压电气设备上,具有在线自校验功能的气体密度继电器及其校验方法。
背景技术
随着无人值守变电站向网络化、数字化方向发展以及对遥控、遥测的要求不断加强,SF6电气设备的气体密度和微水含量状态的在线监测具有重要的现实意义。随着中国智能电网的不断发展,智能高压电气设备作为智能变电站的重要组成部分和关键节点,对智能电网的安全起着举足轻重的作用。高压电气设备目前大多为SF6气体绝缘设备,如果气体密度降低(如泄漏等引起)将严重影响设备的电气性能,对安全运行造成严重隐患。目前在线监测SF6高压电气设备中的气体密度值已经非常普遍了,为此气体密度监测系统(气体密度继电器)应用将蓬勃发展。而目前的气体密度监测系统(气体密度继电器)基本上是:1)应用远传式SF6气体密度继电器实现密度、压力和温度的采集,上传,实现气体密度在线监测;2)应用气体密度变送器实现密度、压力和温度的采集,上传,实现气体密度在线监测。SF6气体密度继电器是核心和关键部件。
对电气设备上的气体密度继电器进行定期检验,是防患于未然,保障电气设备安全可靠运行的必要措施。《电力预防性试验规程》和《防止电力生产重大事故的二十五项重点要求》都要求要定期地对气体密度继电器进行校验。从实际运行情况来看,对气体密度继电器进行定期校验是保障电力设备安全、可靠运行的必要手段之一。因此,目前气体密度继电器的校验在电力系统已经非常重视和普及,各供电公司、发电厂、大型厂矿企业都已经实施。而供电公司、发电厂、大型厂矿企业为完成气体密度继电器的现场校验检测工作需配备测试人员、设备车辆和高价值的SF6气体。包括检测时的停电营业损失在内,粗略计算,每个高压开 关站的每年分摊的检测费用约在数万到几十万元左右。另外,检测人员现场校验如果不规范操作,还存在安全隐患。为此,非常必要在现有的气体密度自校验气体密度继电器,尤其是气体密度在线自校验气体密度继电器或系统中进行创新,以实现气体密度在线监测的气体密度继电器或组成的监测系统中还具有气体密度继电器的校验功能,进而完成(机械式)气体密度继电器的定期校验工作,无须检修人员到现场,以提高工作效率,降低运行维护成本。
发明内容
本发明的目的在于提供一种具有在线自校验功能的气体密度继电器(或气体密度监测装置)及其校验方法,以解决上述技术背景中提出的问题。
为实现上述目的,本发明采用以下技术方案:
本申请第一个方面提供了一种具有在线自校验功能的气体密度继电器,包括:气体密度继电器本体、第一压力传感器、温度传感器、测力传感器、驱使接点动作机构和智控单元;
所述气体密度继电器本体包括:壳体,以及设于壳体内的压力检测元件、温度补偿元件、信号发生器、信号动作机构;
所述第一压力传感器,与所述气体密度继电器本体的压力检测元件相连通;
所述驱使接点动作机构,设置于所述壳体内或壳体外,包括施力机构和运动机构,所述施力机构包括驱动部件和由驱动部件驱动的传力件,所述运动机构包括推杆,所述推杆在施力机构的驱动下运动,直接或间接地使信号动作机构发生位移,以触发信号发生器产生接点信号动作;
所述测力传感器,设置在驱使接点动作机构上或设置在壳体内,被配置为检测所述驱使接点动作机构对所述气体密度继电器本体施加的力的大小;
所述智控单元,分别与所述驱使接点动作机构、第一压力传感器、温度传感器、测力传感器相连接,被配置为完成所述驱使接点动作机构的控制,压力值采集和温度值采集、和/或气体密度值采集,或/和检测所述气体密度继电器本体的接点信号动作值和/或接点信号返回值;
其中,所述接点信号包括报警、和/或闭锁。
上述具有在线自校验功能的气体密度继电器指的是其组成元件设计成一体结构;而具有在线自校验功能的气体密度监测装置指的是其组成元件设计成分体结构,灵活组成。
优选地,所述信号发生器包括微动开关或磁助式电接点,所述气体密度继电器本体通过 所述信号发生器输出接点信号。
优选地,所述温度补偿元件采用温度补偿片或壳体内封闭的气体。
优选地,所述压力检测元件包括巴登管或波纹管。
优选地,所述测力传感器包括重力传感器、压力传感器、磁力传感器、位移传感器、形变量传感器、光电传感器、角度传感器、摄像机中的一种。
优选地,所述驱动部件包括磁力驱动机构、重力、电机、往复运动机构、卡诺循环机构、空压机、压缩机、放气阀、造压泵、增压泵、增压阀、电动气泵、电磁气泵、气动元件、磁耦合推力机构、加热产生推力机构、电加热产生推力机构、化学反应产生推力机构中的一种。
优选地,所述传力件包括凸轮、连接杆、弹簧、金属件、非金属件、伸缩件、非伸缩件中的一种。
优选地,所述测力传感器设置在驱使接点动作机构的推杆上;或者,所述测力传感器设置在压力检测元件上;或者,所述测力传感器设置在温度补偿元件上;或者,所述测力传感器设置在信号动作机构上。
优选地,所述气体密度继电器本体还包括设于所述壳体内的基座、端座、机芯;所述机芯固定在所述基座上;所述压力检测元件为内充有密封气体的巴登管,其一端固定在所述基座上并与之连通,另一端通过所述端座与所述温度补偿元件的一端相连接,所述温度补偿元件的另一端设有信号动作机构;所述信号动作机构上设有推动所述信号发生器、使所述信号发生器的接点接通或断开的调节螺钉或触发件,所述气体密度继电器本体通过所述信号发生器输出接点信号;所述驱使接点动作机构设于所述气体密度继电器本体的壳体外,所述驱使接点动作机构还包括设有开口的外罩,所述外罩固定连接于所述壳体上,且所述开口朝向所述壳体,所述驱动部件、传力件、推杆设置在所述外罩内;或者,所述驱使接点动作机构设于所述气体密度继电器本体的壳体内。
更优选地,所述推杆朝向施力机构的一端设有固定件,所述固定件固定于所述外罩内,所述推杆的另一端贯穿固定于所述外罩的开口处的固定架,所述推杆穿出所述固定架的端部自所述气体密度继电器本体的壳体上的气孔伸入所述壳体内;所述壳体内的所述端座上设有端座接触板,所述推杆伸入所述壳体的端部与所述端座接触板相对设置。
进一步地,所述测力传感器通过接触件与所述推杆相连接,或者,所述测力传感器直接与所述推杆相连接。
进一步地,所述固定件与固定架之间的推杆上套设有复位弹簧。
更进一步地,所述传力件为凸轮,所述凸轮上与所述凸轮的凸起部相对的端面与所述推杆朝向凸轮的一端相接触,所述复位弹簧为自然伸展状态;所述驱动部件驱动所述凸轮转动,所述凸轮的凸起部击打所述推杆,驱动所述推杆沿其轴向方向运动,所述凸轮的凸起部离开所述推杆时,所述推杆在所述复位弹簧的弹力作用下复位。
更优选地,所述推杆朝向施力机构的一端穿过一固定架,所述固定架固定设置在气体密度继电器本体的壳体上,所述推杆远离施力机构的一端自所述外罩的开口伸出后,通过气体密度继电器本体的壳体上的气孔伸入所述壳体内;所述推杆伸入所述壳体的端部与壳体内的压力检测元件相对设置。
进一步地,所述测力传感器通过接触件与所述压力检测元件相接触,或者,所述测力传感器直接与所述压力检测元件相接触。
进一步地,所述固定架与所述气孔之间的推杆上套设有复位弹簧。
更进一步地,所述传力件为凸轮,所述凸轮上与所述凸轮的凸起部相对的端面与所述推杆朝向凸轮的一端相接触,所述复位弹簧为自然伸展状态;所述驱动部件驱动所述凸轮转动,所述凸轮的凸起部击打所述推杆,驱动所述推杆沿其轴向方向运动,所述凸轮的凸起部离开所述推杆时,所述推杆在所述复位弹簧的弹力作用下复位。
更优选地,所述机芯包括扇形齿轮和中心齿轮,扇形齿轮的第一端部与中心齿轮相啮合,扇形齿轮的第二端部通过连杆或直接与所述温度补偿元件的另一端连接;所述扇形齿轮的第二端部固定连接扇形齿轮接触件的一端,扇形齿轮接触件的另一端自所述气体密度继电器本体的壳体的气孔伸出所述壳体外、与所述驱使接点动作机构的推杆远离施力机构的一端相对设置。
进一步地,所述施力机构通过所述推杆对扇形齿轮接触件施加作用力,扇形齿轮的第二端部产生位移,扇形齿轮与中心齿轮啮合的第一端部驱动中心齿轮转动,中心齿轮和指针均安装在驱动杆上,中心齿轮的转动带动驱动杆转动,使指针移动指示在刻度盘上。
更进一步地,所述指针上设有触发器,所述触发器用于使所述信号发生器的接点接通或断开。
进一步地,所述测力传感器设置在所述驱使接点动作机构的施力机构上。
优选地,所述气体密度继电器本体包括设于所述壳体内作为压力检测元件的第一波纹管,还包括第二波纹管,所述第一波纹管的第一开口端固定在所述壳体的内壁上,所述第一波纹管的第二开口端与第一密封件密封连接,所述第一波纹管的内壁、所述第一密封件、所 述壳体的内壁共同围成第一密封气室,所述第一密封气室设有与电气设备的绝缘气体相连通的接口;所述第二波纹管的第一开口端与所述第一密封件密封连接,所述第二波纹管的第二开口端通过第二密封件与所述壳体的内壁连接,所述第一波纹管的外壁、所述第一密封件、所述第二波纹管的外壁、所述第二密封件及所述壳体的内壁共同围成第二密封气室,所述第二密封气室内充有标准补偿气体,构成温度补偿元件;所述第二波纹管的内壁、所述第二密封件及所述壳体的内壁共同围成第三气室,所述信号发生器和信号动作机构设置在所述第三气室内,所述信号动作机构与所述第一密封件连接,所述信号发生器对应所述信号动作机构设置;所述驱使接点动作机构设于所述气体密度继电器本体的壳体内,所述推杆靠近所述传力件的一端设有固定件,所述推杆远离所述传力件的一端贯穿固定于壳体内壁的固定架,并延伸至固定架的下方与信号动作机构相对设置。
更优选地,所述第一波纹管的外径大于所述第二波纹管的外径。
更优选地,所述信号动作机构包括一移动杆,所述移动杆的一端伸入所述第二波纹管内,与所述第一密封件连接,并随第一波纹管的形变产生位移;所述移动杆的另一端伸出所述第二波纹管,固定连接一调节固定件,所述调节固定件设有调节螺钉,所述调节螺钉用于在移动杆的推动力下触动所述信号发生器。
更优选地,所述固定件与固定架之间的推杆上套设有复位弹簧。
更优选地,所述测力传感器通过接触件与所述推杆相连接,或者,所述测力传感器直接与所述推杆相连接。
进一步地,所述测力传感器设于所述推杆朝向传力件的一端,或者,所述测力传感器设于所述推杆背向传力件的一端。
优选地,所述智控单元获取所述第一压力传感器、温度传感器采集的气体密度值;或者,所述智控单元获取所述第一压力传感器采集的压力值和温度传感器采集的温度值,用于完成气体密度继电器对电气设备的气体密度的在线监测。
优选地,所述智控单元获取所述气体密度继电器本体发生接点信号动作或切换时、所述第一压力传感器采集的压力值P1和温度传感器采集的温度值T,以及所述测力传感器采集的力F,根据力F计算或换算成为对应的压力值P2,并根据压力值P1和压力值P2计算得到等效气体压力值P;依照该等效气体压力值P,以及按照气体压力-温度特性换算成为对应20℃的压力值,即气体密度值P 20,完成所述气体密度继电器的在线校验;或者,
所述智控单元获取所述气体密度继电器本体发生接点信号动作或切换时、所述第一压力 传感器和温度传感器采集的气体密度值P1 20,以及所述测力传感器采集的力F,结合温度传感器采集的温度值T,经过计算或换算成为对应的气体密度值P2 20,并根据气体密度值P1 20和气体密度值P2 20计算得到气体密度值P 20,完成所述气体密度继电器的在线校验;或者,
所述智控单元获取所述气体密度继电器本体发生接点信号动作或切换时、所述第一压力传感器采集的压力值P1和温度传感器采集的温度值T,以及所述测力传感器采集的力F,并根据压力值P1、T和F计算得到对应的气体密度值P 20,完成所述气体密度继电器的在线校验。
更优选地,气体密度继电器本体发生接点信号动作或切换时,其等效气体压力值P=P1-P2;依照该等效气体压力值P,以及按照气体压力-温度特性换算成为对应20℃的压力值,即气体密度值P 20,完成所述气体密度继电器的在线校验;或者,气体密度继电器本体发生接点信号动作或切换时,其等效气体压力值P=P1-P2*K;其中K为预设系数;依照该等效气体压力值P、温度值T,以及按照气体压力-温度特性换算成为对应20℃的压力值,即气体密度值P 20,完成所述气体密度继电器的在线校验。
更优选地,气体密度继电器本体发生接点信号动作或切换时,其气体密度值P 20和气体密度值P1 20、P2 20之间的对应关系预先设计成数据表格,并根据气体密度值P1 20和气体密度值P2 20查询所述数据表格得到对应的气体密度值P 20,完成所述气体密度继电器的在线校验;或者,
气体密度继电器本体发生接点信号动作或切换时,其气体密度值P 20和气体压力值P1、P2以及温度值T之间的对应关系预先设计成数据表格,并根据气体压力值P1、P2以及温度值T查询所述数据表格得到对应的气体密度值P 20,完成所述气体密度继电器的在线校验;或者,
气体密度继电器本体发生接点信号动作或切换时,其气体密度值P 20和气体压力值P1、所述测力传感器采集的力F、以及温度值T之间的对应关系预先设计成数据表格,并根据气体压力值P1、F以及温度值T查询所述数据表格得到对应的气体密度值P 20,完成所述气体密度继电器的在线校验。
优选地,所述气体密度继电器(或气体密度监测装置)还包括在线校验接点信号采样单元,在线校验接点信号采样单元分别与所述气体密度继电器本体的信号发生器和智控单元相连接,被配置为采样所述气体密度继电器本体的接点信号。
更优选地,所述在线校验接点信号采样单元包括隔离采样元件,所述隔离采样元件由气体密度继电器本体、或驱使接点动作机构、或智控单元控制;在非校验状态时,所述在线校验接点信号采样单元通过隔离采样元件与气体密度继电器本体的接点信号在电路上相对隔离;在校验状态时,所述在线校验接点信号采样单元通过隔离采样元件切断气体密度继电器本体的接点信号控制回路,将所述气体密度继电器本体的接点与所述智控单元相连接;其中,隔离采样元件包括行程开关、微动开关、按钮、电动开关、位移开关、电磁继电器、光耦、可控硅中的一种。
进一步地,所述在线校验接点信号采样单元包括第一连接电路和第二连接电路,所述第一连接电路连接所述气体密度继电器本体的接点与接点信号控制回路,所述第二连接电路连接所述气体密度继电器本体的接点与所述智控单元;在非校验状态下,所述第二连接电路断开,所述第一连接电路闭合;在校验状态下,所述在线校验接点信号采样单元切断所述第一连接电路,连通所述第二连接电路,将气体密度继电器本体的接点与所述智控单元相连接。
更优选地,所述气体密度继电器(或气体密度监测装置)还包括:多通接头,所述气体密度继电器本体、所述第一压力传感器、所述驱使接点动作机构、所述在线校验接点信号采样单元、所述智控单元、所述温度传感器中的一个或多个设置在所述多通接头上。
优选地,所述智控单元的控制通过现场控制,和/或通过后台控制。
优选地,所述气体密度继电器本体的壳体上还设有用于显示绝缘气体密度的显示机构。
更优选地,所述显示机构包括连接机构、机芯、指针和刻度盘,所述机芯通过所述连接机构与所述信号动作机构相连接,所述指针安装于所述机芯上且设于所述刻度盘之前,所述指针结合所述刻度盘显示气体密度值;或者,所述显示机构包括液晶或/和数码管。
本申请第二个方面提供了一种气体密度继电器的校验方法,包括:
正常工作状态时,气体密度继电器监控电气设备内的气体密度值;
气体密度继电器根据设定的校验时间或/和校验指令,以及气体密度值情况,在允许校验气体密度继电器本体的状况下:
通过智控单元驱动驱使接点动作机构,使驱使接点动作机构的运动机构在施力机构的驱动下向气体密度继电器本体内的元件施加作用力,使气体密度继电器本体的信号动作机构发生位移,触发信号发生器产生接点信号动作;所述智控单元获取所述气体密度继电器本体发生接点信号动作或切换时、所述第一压力传感器采集的压力值P1和温度传感器采集的温度值T,以及所述测力传感器采集的力F,根据力F计算或换算成为对应的压力值P2,并根 据压力值P1和压力值P2计算得到等效气体压力值P;依照该等效气体压力值P,以及按照气体压力-温度特性换算成为对应20℃的压力值,即气体密度值P 20,完成所述气体密度继电器的在线校验;或者,
所述智控单元获取所述气体密度继电器本体发生接点信号动作或切换时、所述第一压力传感器和温度传感器采集的气体密度值P1 20,以及所述测力传感器采集的力F,结合温度传感器采集的温度值T,经过计算或换算成为对应的气体密度值P2 20,并根据气体密度值P1 20和气体密度值P2 20计算得到气体密度值P 20,完成所述气体密度继电器的在线校验;或者,
所述智控单元获取所述气体密度继电器本体发生接点信号动作或切换时、所述第一压力传感器采集的压力值P1和温度传感器采集的温度值T,以及所述测力传感器采集的力F,并根据压力值P1、T和F计算得到对应的气体密度值P 20,完成所述气体密度继电器的在线校验;
当所有的接点信号校验工作完成后,所述智控单元复原所述驱使接点动作机构。
优选地,所述气体密度继电器还包括在线校验接点信号采样单元,所述在线校验接点信号采样单元分别与所述气体密度继电器本体的信号发生器和智控单元相连接,被配置为采样所述气体密度继电器本体的接点信号;所述校验方法,包括:
正常工作状态时,气体密度继电器监控电气设备内的气体密度值,同时气体密度继电器通过第一压力传感器、温度传感器以及智控单元在线监测电气设备内的气体密度值;
气体密度继电器根据设定的校验时间或/和校验指令,以及气体密度值情况,在允许校验气体密度继电器本体的状况下:
通过智控单元把在线校验接点信号采样单元调整到校验状态,在校验状态下,在线校验接点信号采样单元切断气体密度继电器本体的接点信号的控制回路,将气体密度继电器本体的接点连接至智控单元;
智控单元驱动驱使接点动作机构,使驱使接点动作机构的运动机构在施力机构的驱动下向气体密度继电器本体内的元件施加作用力,使气体密度继电器本体的信号动作机构发生位移,触发信号发生器产生接点信号动作,所述智控单元获取所述气体密度继电器本体发生接点信号动作或切换时、所述第一压力传感器采集的压力值P1和温度传感器采集的温度值T,以及所述测力传感器采集的力F,根据力F计算或换算成为对应的压力值P2,并根据压力值P1和压力值P2计算得到等效气体压力值P;依照该等效气体压力值P,以及按照气体 压力-温度特性换算成为对应20℃的压力值,即气体密度值P 20,完成所述气体密度继电器的在线校验;或者,
所述智控单元获取所述气体密度继电器本体发生接点信号动作或切换时、所述第一压力传感器和温度传感器采集的气体密度值P1 20,以及所述测力传感器采集的力F,结合温度传感器采集的温度值T,经过计算或换算成为对应的气体密度值P2 20,并根据气体密度值P1 20和气体密度值P2 20计算得到气体密度值P 20,完成所述气体密度继电器的在线校验;或者,
所述智控单元获取所述气体密度继电器本体发生接点信号动作或切换时、所述第一压力传感器采集的压力值P1和温度传感器采集的温度值T,以及所述测力传感器采集的力F,并根据压力值P1、T和F计算得到对应的气体密度值P 20,完成所述气体密度继电器的在线校验;
当所有的接点信号校验工作完成后,所述智控单元复原所述驱使接点动作机构,并将在线校验接点信号采样单元调整到工作状态,气体密度继电器本体的接点信号的控制回路恢复运行正常工作状态。
优选地,一种气体密度继电器的校验方法,包括:
气体密度继电器本体发生接点信号动作或切换时,其等效气体压力值P=P1-P2;依照该等效气体压力值P,以及按照气体压力-温度特性换算成为对应20℃的压力值,即气体密度值P 20,完成所述气体密度继电器的在线校验;或者,
气体密度继电器本体发生接点信号动作或切换时,其等效气体压力值P=P1-P2*K;其中K为预设系数;依照该等效气体压力值P、温度值T,以及按照气体压力-温度特性换算成为对应20℃的压力值,即气体密度值P 20,完成所述气体密度继电器的在线校验;或者,
气体密度继电器本体发生接点信号动作或切换时,其气体密度值P 20和气体密度值P1 20、P2 20之间的对应关系预先设计成数据表格,并根据气体密度值P1 20和气体密度值P2 20查询所述数据表格得到对应的气体密度值P 20,完成所述气体密度继电器的在线校验;或者,
气体密度继电器本体发生接点信号动作或切换时,其气体密度值P 20和气体压力值P1、P2以及温度值T之间的对应关系预先设计成数据表格,并根据气体压力值P1、P2以及温度值T查询所述数据表格得到对应的气体密度值P 20,完成所述气体密度继电器的在线校验;或者,
气体密度继电器本体发生接点信号动作或切换时,其气体密度值P 20和气体压力值P1、 所述测力传感器采集的力F以及温度值T之间的对应关系预先设计成数据表格,并根据气体压力值P1、所述测力传感器采集的力F以及温度值T查询所述数据表格得到对应的气体密度值P 20,完成所述气体密度继电器的在线校验。
与现有技术相比,本发明的技术方案具有以下有益效果:
本申请提供一种具有在线自校验功能的气体密度继电器及其校验方法,用于高压、中压电气设备,包括气体密度继电器本体、第一压力传感器、温度传感器、测力传感器、驱使接点动作机构和智控单元。所述驱使接点动作机构被配置为直接、或间接驱使所述气体密度继电器本体的信号动作机构发生位移,使所述气体密度继电器本体发生接点信号动作,智控单元根据接点动作时的密度值,检测出气体密度继电器本体的报警和/或闭锁接点信号动作值和/或返回值,无须检修人员到现场就能完成气体密度继电器的校验工作,提高了电网的可靠性,提高了效率,降低了成本,可以实现气体密度继电器的免维护。同时整个校验过程实现了SF6气体零排放,符合环保规程要求。最重要的是,由于本发明进行了技术创新:驱使接点动作机构不是与气体密度继电器本体或电气设备的SF6主气路相连通,能够大大提高电网的可靠性,降低其密封要求,以及能够降低制造成本,提高现场安装的方便性和灵活性。本申请对气体密度继电器实现了在线校验,进而实现对气体密度继电器的全寿命周期智能化管理:有问题才修理,没有问题就不需要运维服务。
附图说明
构成本申请的一部分附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是实施例一的具有在线自校验功能的气体密度继电器的结构示意图;
图2是实施例二的具有在线自校验功能的气体密度继电器的结构示意图;
图3是实施例三的具有在线自校验功能的气体密度继电器的结构示意图;
图4是实施例四的具有在线自校验功能的气体密度继电器的结构示意图。
具体实施方式
为使本发明的目的、技术方案及效果更加清楚、明确,以下参照附图并举实例对本发明进一步详细说明。应当理解,具体实施例仅用以解释本发明,并不用于限定本发明。
实施例一:
图1为本申请实施例一的气体密度继电器(或气体密度监测装置)的结构示意图。如图1所示,一种气体密度继电器包括气体密度继电器本体1、第一压力传感器2、温度传感器3、测力传感器16、驱使接点动作机构15、在线校验接点信号采样单元6和智控单元7。
其中,气体密度继电器本体1包括壳体101,以及设于所述壳体101内的基座102、端座108、压力检测元件103、温度补偿元件104、若干信号发生器109、机芯105、指针106、连杆112、刻度盘107。所述机芯105固定在所述基座102上;所述压力检测元件103(巴登管)的一端固定在所述基座102上并与之连通,所述压力检测元件103(巴登管)内充有密封气体,所述压力检测元件103(巴登管)的另一端通过所述端座108与所述温度补偿元件104的一端相连接,所述温度补偿元件104采用温度补偿片,所述温度补偿元件104的另一端设有信号动作机构111;所述信号动作机构111上设有推动所述信号发生器109、使所述信号发生器109的接点接通或断开的调节件(例如调节螺钉),所述信号发生器109包括微动开关或磁助式电接点,所述气体密度继电器本体1通过所述信号发生器109输出接点信号。端座108上设有端座接触板108A。所述温度补偿元件104的另一端还通过连杆112与所述机芯105连接或直接与所述机芯105连接;所述指针106安装于所述机芯105上且设于所述刻度盘107之前,所述指针106结合所述刻度盘107显示气体密度值。所述气体密度继电器本体1还可以包括具有示值显示的数码器件或液晶器件。
本实施例的气体密度继电器本体1可以是:充油型密度继电器、无油型密度继电器、气体密度表、气体密度开关或者气体压力表。第一压力传感器2、温度传感器3、在线校验接点信号采样单元6和智控单元7设置在接头110上。测力传感器16和驱使接点动作机构15设置在壳体101的外面。第一压力传感器2、温度传感器3、在线校验接点信号采样单元6、测力传感器16和智控单元7相连接;所述在线校验接点信号采样单元6与所述信号发生器109相连接。
所述驱使接点动作机构15设置在壳体101的外面,与所述气体密度继电器本体1的端座108上的端座接触板108A相对应设置;所述驱使接点动作机构15被配置为间接地使所述气体密度继电器本体1的信号动作机构111发生相应位移,进而使所述气体密度继电器本体1发生接点信号动作。具体地,所述接点动作机构15包括设有开口的外罩158,以及设于外罩158内的驱动部件151、传力件152和推杆153,推杆153与端座接触板108A相对应设置,所述外罩158的开口朝向所述气体密度继电器本体1的壳体101。传力件152在驱动部件151的驱动下转动;推杆153靠近传力件152的一端设有固定件156,固定件 156固定设置在外罩158的内壁上,推杆153远离传力件152的一端贯穿固定于所述外罩158的开口处的固定架155,固定架155上设有贯通的供推杆153穿过安装的导向孔,导向孔的内径大于推杆153的外径,推杆153远离传力件152的一端穿过固定架155上的导向孔后,通过气体密度继电器本体1的壳体101上的气孔伸入所述壳体101内,所述推杆153伸入所述壳体101的端部与壳体101内的端座接触板108A相对设置。
本实施例中,所述驱动部件151为电机,传力件152为凸轮,凸轮在电机的驱动下转动。电机驱动凸轮转动的具体方式有很多,例如,两个支撑板之间通过轴承连接有转轴,将凸轮通过转轴设置在两个支撑板之间,电机的输出轴与转轴的一端固定连接,电机转动时,带动转轴转动,从而带动转轴上固定安装的凸轮转动。再例如,在推杆的上方架设一可转动的转动轴,将凸轮和一大齿轮同轴固定安装在转动轴上,将一小齿轮固定安装在电机的输出轴上,小齿轮与大齿轮啮合连接,电机转动时,带动小齿轮转动,大齿轮随之转动,带动用于安装大齿轮的转动轴发生转动,从而带动转动轴上固定安装的凸轮发生转动。
固定件156与固定架155之间的推杆153上套设有复位弹簧154,复位弹簧154的一端与固定件156固定连接,另一端与固定架155固定连接。推杆153在未受力状态下,凸轮上与凸轮的凸起部相对的端面与推杆153设有固定件156的一端相接触,复位弹簧154处于自然伸展状态,推杆153伸出固定架155的部分位于气体密度继电器本体1的端座接触板108A的一侧且与端座接触板108A不接触。当电机驱动凸轮转动,凸轮的凸起部击打推杆153,驱动推杆153沿其轴向方向运动,凸轮的凸起部离开推杆153设有固定件156的一端时,推杆153又在复位弹簧154的弹力作用下复位。
所述驱使接点动作机构15还包括测力传感器16,测力传感器16通过接触件1501与推杆153相连接。本实施例中,测力传感器16为位移传感器或形变量传感器,设于推杆153设有固定件156的一端。所述测力传感器16与智控单元7相连接,用于检测所述驱使接点动作机构15对所述端座108所施加的力F。
驱动部件151没有施力时,在弹簧154的作用下,推杆153远离端座接触板108A,推杆153对端座接触板108A不施加力。测力传感器16通过接触件1501与推杆153相连接,推杆153受到施力部件151和传力件152的作用,其对弹簧154的作用力F可以通过测力传感器16检测到弹簧154的形变量得到(F=L*N,式中:L为形变量,mm;N为弹性系数,kg/mm)。校验时,通过施力部件151转动传力件152,继而推动推杆153向右运动,进而对弹簧154和端座接触板108A(也即端座108)施加作用力F,即所述施力部件 151通过传力件152对端座108施加作用力,使气体密度继电器本体1发生接点信号动作。
上述驱动部件151包括、但不限于磁力驱动机构、重力、电机(如电动推杆电机、步进电机)、往复运动机构、卡诺循环机构、空压机、压缩机、放气阀、造压泵、增压泵、增压阀、电动气泵、电磁气泵、气动元件、磁耦合推力机构、加热产生推力机构、电加热产生推力机构、化学反应产生推力机构中的一种;所述传力件152包括、但不限于凸轮、连接杆、弹簧、金属件、非金属件、伸缩件、非伸缩件中的一种;所述测力传感器16包括、但不限于重力传感器、压力传感器、磁力传感器、位移传感器、形变量传感器、光电传感器、角度传感器、形变片传感器、力传感器、摄像机中的一种,而位移传感器包括、但不限于激光位移传感器、红外位移传感器、接触式位移传感器、非接触式位移传感器的一种。
其工作原理如下:
智控单元7根据第一压力传感器2、温度传感器3监测到电气设备的气体压力和温度,得到相应的20℃压力值P 20(即气体密度值)。当需要校验气体密度继电器本体1时,此时如果气体密度值P 20≥设定的安全校验密度值P S;智控单元7断开气体密度继电器本体1的控制回路,使得在线校验气体密度继电器本体1时不会影响电气设备的安全运行,也不会在校验时,误发报警信号,或闭锁控制回路。因为气体密度继电器在开始校验前,已经进行气体密度值P 20≥设定的安全校验密度值P S的监测和判断,电气设备的气体是在安全运行范围内的,况且气体泄漏是个缓慢的过程,校验时是安全的。同时,智控单元7连通气体密度继电器本体1的接点采样电路。
通过智控单元7驱动驱使接点动作机构15,使所述气体密度继电器本体1的端座108发生位移,借助于温度补偿元件104,使信号动作机构111发生位移,信号动作机构111上的调节件(例如,调节螺钉)推动信号发生器109(例如,微动开关),信号发生器109的接点接通,发出相应的接点信号(报警或闭锁)。
接着,推杆153在复位弹簧154的弹力作用下复位,不再给端座接触板108A施加作用力,温度补偿元件104复位,调节件远离信号发生器109,信号发生器109的接点断开,接点信号(报警或闭锁)解除。
所述智控单元7获取所述气体密度继电器本体1发生接点信号动作或切换时、所述第一压力传感器2采集的压力值P1和温度传感器3采集的温度值T,以及所述测力传感器16采集的力F,根据力F计算或换算成为对应的压力值P2,并根据压力值P1和压力值P2计算得到等效气体压力值P;依照该等效气体压力值P,以及按照气体压力-温度特性换算成 为对应20℃的压力值,即气体密度值P 20,完成所述气体密度继电器的在线校验。或者,所述智控单元7获取所述气体密度继电器本体1发生接点信号动作或切换时、所述第一压力传感器2和温度传感器3采集的气体密度值P1 20,以及所述测力传感器16采集的力F,结合温度传感器3采集的温度值T,经过计算或换算成为对应的气体密度值P2 20,并根据气体密度值P1 20和气体密度值P2 20计算得到气体密度值P 20,完成所述气体密度继电器的在线校验。进一步来说,气体密度继电器本体1发生接点信号动作或切换时,其等效气体压力值P=P1-P2;依照该等效气体压力值P,以及按照气体压力-温度特性换算成为对应20℃的压力值,即气体密度值P 20,完成所述气体密度继电器的在线校验;或者,气体密度继电器本体1发生接点信号动作或切换时,其等效气体压力值P=P1-P2*K;其中K为预设系数,根据气体密度继电器本体特性得到;依照该等效气体压力值P、温度值T,以及按照气体压力-温度特性换算成为对应20℃的压力值,即气体密度值P 20,完成所述气体密度继电器的在线校验。或者还可以,气体密度继电器本体1发生接点信号动作或切换时,其气体密度值P 20和气体密度值P1 20、P2 20之间的对应关系设计成数据表格,并根据气体密度值P1 20和气体密度值P2 20查询所述数据表格得到对应的气体密度值P 20,完成所述气体密度继电器的在线校验;或者,气体密度继电器本体1发生接点信号动作或切换时,其气体密度值P 20和气体压力值P1、P2以及温度值T之间的对应关系设计成数据表格,并根据气体压力值P1、P2以及温度值T查询所述数据表格得到对应的气体密度值P 20,完成所述气体密度继电器的在线校验。如此反复校验多次(例如2~3次),然后计算其平均值,这样就完成了气体密度继电器本体1的校验工作。然后,智控单元7断开气体密度继电器本体1的接点采样电路,此时气体密度继电器本体1的接点就与智控单元7不相连接。同时,通过智控单元7复原驱使接点动作机构15。通过智控单元7连通气体密度继电器本体1的控制回路,气体密度继电器本体1的密度监控回路正常工作,气体密度继电器本体1安全监控电气设备的气体密度,使电气设备安全可靠地工作。这样就方便完成气体密度继电器本体1的在线校验工作,同时在线校验气体密度继电器本体1时不会影响电气设备的安全运行。
当气体密度继电器本体1完成了校验工作后,气体密度继电器就进行判定,可以告示检测结果。方式灵活,具体来说可以:1)就地告示,例如通过指示灯、数码或液晶等显示;2)或通过在线远传通讯方式实施上传,例如可以上传到在线监测系统的后台;3)或通过无线上传,上传到特定的终端,例如可以无线上传手机;4)或通过别的途径上传;5)或把异常结果通过报警信号线或专用信号线上传;6)单独上传,或与其它信号捆绑上传。总 之,完成气体密度继电器的在线校验工作后,如有异常,能够自动发出报警,可以上传到远端,或可以发送到指定的接收机上,例如发送到手机。或者,完成气体密度继电器的校验工作后,如有异常,智控单元7可以通过气体密度继电器本体1的报警接点信号上传远端(监控室、后台监控平台等),以及还可以就地显示告示。简单版的气体密度继电器在线校验,可以把校验有异常的结果通过报警信号线上传。可以以一定的规律上传,例如异常时,在报警信号接点并联一个接点,有规律地闭合和断开,可以通过解析得到状况;或通过独立的校验信号线上传。具体可以状态好上传,或有问题上传,也可以通过远传密度在线监测上传,或把校验结果通过单独的校验信号线上传,或通过就地显示,就地报警,或通过无线上传,与智能手机联网上传。其通信方式为有线或无线,有线的通讯方式可以为RS232、RS485、CAN-BUS等工业总线、光纤以太网、4-20mA、Hart、IIC、SPI、Wire、同轴电缆、PLC电力载波等;无线通讯方式可以为2G/3G/4G/5G等、WIFI、蓝牙、Lora、Lorawan、Zigbee、红外、超声波、声波、卫星、光波、量子通信、声呐、传感器内置5G/NB-IOT通讯模块(如NB-IOT)等。总之,可以多重方式,多种组合,充分保证气体密度继电器的可靠性能。
气体密度继电器可以根据设定的时间进行在线校验,也可以根据设定的温度(例如极限高温、高温、极限低温、低温、常温、20度等)进行在线校验。高温、低温、常温、20℃环境温度在线校验时,其误差判定要求是不一样的,例如20℃环境温度校验时,可以根据气体密度继电器的精度要求是1.0级、或1.6级,高温时可以是2.5级。具体可以根据温度的要求,按照相关标准实施。例如按照DL/T 259《六氟化硫气体密度继电器校验规程》中的4.8条温度补偿性能规定,每个温度值所对应的精度要求。
气体密度继电器能够在不同的温度下,不同的时间段进行其误差性能的比较。即不同时期,相同温度范围内的比较,判定气体密度继电器、电气设备的性能。具有历史各个时期的比对、历史与现在的比对。
气体密度继电器可以反复校验多次(例如2~3次),根据每次的校验结果,计算其平均值。必要时,可以随时对气体密度继电器进行在线校验。
气体密度继电器具有压力、温度测量及软件换算功能。在不影响电气设备安全运行的前提下,能够在线检测出气体密度继电器本体1的报警和/或闭锁接点动作值和/或返回值。当然,报警和/闭锁接点信号的返回值也可以根据要求不进行测试。同时,气体密度继电器还可以在线监测电气设备的气体密度值,和/或压力值,和/或温度值,并上传到目标设备实现在线监测。
上述的气体密度继电器本体1,可以是:双金属片补偿的气体密度继电器、气体补偿的气体密度继电器、或者双金属片和气体补偿混合型的气体密度继电器;完全机械的气体密度继电器、数字型气体密度继电器、机械和数字结合型的气体密度继电器;带指示的密度继电器(指针显示的密度继电器、或数码显示的密度继电器、液晶显示的密度继电器),不带指示的密度继电器(即密度开关);SF6气体密度继电器、SF6混合气体密度继电器、N2气体密度继电器、其它气体密度继电器等等。
上述的第一压力传感器2的类型,可以是绝对压力传感器、相对压力传感器、或绝对压力传感器和相对压力传感器,数量可以是若干个。压力传感器的形式可以是扩散硅压力传感器、MEMS压力传感器、芯片式压力传感器、线圈感应压力传感器(如巴登管附带感应线圈的压力测量传感器)、电阻压力传感器(如巴登管附带滑线电阻的压力测量传感器);可以是模拟量压力传感器,也可以是数字量压力传感器。压力采集为压力传感器、压力变送器等各种感压元件,例如扩散硅式、蓝宝石式、压电式、应变片式(电阻应变片式、陶瓷应变片式)。
上述的温度传感器3可以是热电偶、热敏电阻、半导体式;可以是接触式和非接触式;可以是热电阻和热电偶。总之,温度采集可以用温度传感器、温度变送器等各种感温元件。
上述的在线校验接点信号采样单元6用于完成气体密度继电器本体1的接点信号采样。即在线校验接点信号采样单元6的基本要求或功能是:1)在校验时不影响电气设备的安全运行。就是在校验时,气体密度继电器本体1的接点信号发生动作时,不会影响电气设备的安全运行;2)气体密度继电器本体1的接点信号控制回路不影响气体密度继电器的性能,特别是不影响智控单元7的性能,不会使得气体密度继电器发生损坏、或影响测试工作。
上述的智控单元7的基本要求或功能是:能够检测到气体密度继电器本体1的接点信号发生动作时的压力值和温度值,换算成对应的20℃时的压力值P 20(密度值),即能够检测到气体密度继电器本体1的接点动作值P D20,完成气体密度继电器本体1的校验工作。或者,能够直接检测到气体密度继电器本体1的接点信号发生动作时的密度值P D20,完成气体密度继电器本体1的校验工作。当然,智控单元7还可以实现:测试数据存储;和/或测试数据导出;和/或测试数据可打印;和/或可与上位机进行数据通讯;和/或可输入模拟量、数字量信息。所述智控单元7还包括通讯模块,通过通讯模块实现远距离传输测试数据和/或校验结果等信息;当气体密度继电器本体1的额定压力值输出信号时,智控单元7同时采集当时的密度值,完成气体密度继电器本体1的额定压力值校验。同时可以通过所述的 气体密度继电器本体1的额定压力值的测试,完成气体密度继电器本体1、压力传感器2、温度传感器3之间的自校验工作,实现免维护。
上述的电气设备,包括SF6气体电气设备、SF6混合气体电气设备、环保型气体电气设备、或其它绝缘气体电气设备。具体地,电气设备包括GIS、GIL、PASS、断路器、电流互感器、电压互感器、变压器、充气柜、环网柜等等。
气体密度继电器本体1、第一压力传感器2、温度传感器3、驱使接点动作机构15、在线校验接点信号采样单元6和智控单元7可以根据需要进行灵活设置。例如气体密度继电器本体1、压力传感器2和温度传感器3设置在一起;总之,它们之间的设置可以灵活排列组合。
施力机构和运动机构也可以一体化设计;或者,所述施力机构的驱动部件和由驱动部件驱动的传力件也可以一体化设计;所述运动机构的推杆泛指推动件,所述推杆(推动件)在施力机构的驱动下运动,直接或间接地使信号动作机构发生位移。所述传力件泛指传力部件,包括、但不限于凸轮、连接杆、弹簧、金属件、非金属件、伸缩件、非伸缩件中的一种。所述驱使接点动作机构可以设于所述气体密度继电器本体的壳体内。所述推杆穿出所述固定架的端部自所述气体密度继电器本体的壳体上的气孔伸入所述壳体内,所述推杆与所述壳体的内壁可密封接触,也可没有接触;所述推杆与压力检测元件、或温度补偿元件、或信号发生器、或信号动作机构相对设置,或者所述推杆直接或间接与压力检测元件、或温度补偿元件、或信号发生器、或信号动作机构相连接或接触。所述测力传感器还可以通过接触件或直接与所述压力检测元件、或温度补偿元件、或信号发生器、或信号动作机构相连接。所述信号动作机构上设有推动所述信号发生器、使所述信号发生器的接点接通或断开的触发件,具体来说,所述触发件根据气体密度值完成信号发生器(具体为磁助式电接点)的接点接通或断开,所述气体密度继电器本体通过所述信号发生器(具体为磁助式电接点)输出接点信号。
实施例二:
如图2所示,本发明实施例二提供了一种具有在线自校验功能的气体密度继电器(或气体密度监测装置)。与实施例一有区别的是:
1)所述驱使接点动作机构15设置在壳体101的外面,与所述气体密度继电器本体1的压力检测元件103(巴登管)相对设置;所述驱使接点动作机构15被配置为间接地使所述气体密度继电器本体1的信号动作机构111产生相应位移,进而使所述气体密度继电器本体1发生接点信号动作。
所述驱使接点动作机构15包括一端开口的外罩158,以及设于外罩158内的驱动部件151、传力件152(凸轮)、推杆153、弹簧154、固定架155;其中,外罩158的开口朝向气体密度继电器本体1的壳体101,推杆153与壳体101内的压力检测元件103(巴登管)相对设置。测力传感器16(本案例为压力传感器、或位移传感器、或形变量传感器、或光电传感器、或形变片传感器)与压力检测元件103(巴登管)相对设置,其中测力传感器16的力接触件16A与压力检测元件103(巴登管)接触,通过该测力传感器16能够检测到推杆153对压力检测元件103(巴登管)所施加的力F。
传力件152在驱动部件151的驱动下转动;固定架155固定设置在气体密度继电器本体1的壳体101上;推杆153靠近传力件152的一端贯穿固定架155,推杆153远离传力件152的一端自所述外罩158的开口伸出后,通过气体密度继电器本体1的壳体101上的气孔伸入所述壳体101内且与所述壳体101的内壁密封接触,所述推杆153伸入所述壳体101的端部与壳体101内的压力检测元件103(巴登管)相对设置。固定架155与壳体101的气孔之间的推杆153上套设有复位弹簧154,复位弹簧154的一端与固定架155固定连接,另一端与壳体101固定连接。推杆153在未受力状态下,传力件152(凸轮)上与传力件152(凸轮)的凸起部相对的端面与推杆153穿过固定架155的一端相接触,复位弹簧154处于自然伸展状态,推杆153伸入壳体101的部分位于气体密度继电器本体1的压力检测元件103(巴登管)的一侧且与压力检测元件103(巴登管)不接触,即推杆153对压力检测元件103(巴登管)不施加力。
校验时,驱动部件151(电机)驱动传力件152(凸轮)转动,传力件152(凸轮)的凸起部击打推杆153,驱动推杆153沿其轴向方向运动,推杆153对压力检测元件103(巴登管)施加力F,迫使压力检测元件103(巴登管)末端的端座108发生位移,借助于温度补偿元件104,使信号动作机构111发生位移,信号动作机构111上的调节件(例如,调节螺钉)推动信号发生器109(例如,微动开关),信号发生器109的接点接通,发出相应的接点信号(报警或闭锁)。接着,传力件152(凸轮)的凸起部离开推杆153穿过固定架155的一端时,推杆153在复位弹簧154的弹力作用下复位,不再给压力检测元件103(巴登管)施加作用力,温度补偿元件104复位,调节件远离信号发生器109,信号发生器109的接点断开,接点信号(报警或闭锁)解除。
所述智控单元7获取所述气体密度继电器本体1发生接点信号动作或切换时、所述第一压力传感器2采集的压力值P1和温度传感器3采集的温度值T,以及所述根据测力传感 器16采集的力F,根据力F计算或换算成为对应的压力值P2,并根据压力值P1和压力值P2计算得到等效气体压力值P;依照该等效气体压力值P,以及按照气体压力-温度特性换算成为对应20℃的压力值,即气体密度值P 20,完成所述气体密度继电器的在线校验。
2)本实施例中,第一压力传感器2、在线校验接点信号采样单元6和智控单元7设置在接头110上。温度传感器3设置在壳体101内且靠近温度补偿元件104设置,或者,温度传感器3直接设置在温度补偿元件104上。第一压力传感器2、温度传感器3、在线校验接点信号采样单元6、测力传感器16分别与智控单元7相连接;在线校验接点信号采样单元6还与信号发生器109相连接。
实施例三:
如图3所示,本发明实施例三提供了一种具有在线自校验功能的气体密度继电器(或气体密度监测装置)。与实施例一有区别的是:
1)所述驱使接点动作机构15设置在壳体101的外面,包括一端开口的外罩158,以及设于外罩158内的驱动部件151、传力件152(凸轮)和推杆153;外罩158密封(主要防水侵入)连接于气体密度继电器本体1的壳体101上,且外罩158的开口朝向所述壳体101。所述驱使接点动作机构15被配置为间接地使所述气体密度继电器本体1的信号动作机构111发生相应位移,进而使所述气体密度继电器本体1发生接点信号动作。
气体密度继电器本体1的机芯105包括扇形齿轮1051和中心齿轮,扇形齿轮1051的第一端部与中心齿轮相啮合,扇形齿轮1051的第二端部通过连杆112或直接与所述温度补偿元件104的另一端连接;所述扇形齿轮1051的第二端部固定连接扇形齿轮接触件1051A的一端,扇形齿轮接触件1051A的另一端自所述气体密度继电器本体1的壳体101的气孔伸出所述壳体101外、与所述驱使接点动作机构15的推杆153远离施力机构的一端相对设置。所述驱动部件151、传力件152通过所述推杆153对扇形齿轮接触件1051A施加作用力,扇形齿轮1051的第二端部产生位移,扇形齿轮1051与中心齿轮啮合的第一端部驱动中心齿轮转动,中心齿轮和指针106均安装在驱动杆上,中心齿轮的转动带动驱动杆转动,使指针106移动指示在刻度盘107的某一刻度上。
测力传感器16(本案例为压力传感器、或位移传感器、或形变量传感器、或光电传感器、或形变片传感器)设置在驱使接点动作机构15上,能够检测到推杆153对扇形齿轮接触件1051A所施加的力F。
其工作原理为:所述驱动部件151没有施力时,推杆153远离扇形齿轮接触件1051A, 推杆153对扇形齿轮接触件1051A不施加力。校验时,所述驱动部件151通过推杆153对扇形齿轮接触件1051A施加力F,使得扇形齿轮1051发生相应位移,借助于连杆112、温度补偿元件104,带动信号动作机构111产生位移,使得信号动作机构111上的调节件(例如调节螺钉)推动信号发生器109,使信号发生器109的接点接通或断开,驱使所述气体密度继电器本体1发生接点信号动作。同时,所述智控单元7获取所述气体密度继电器本体1发生接点信号动作或切换时、所述第一压力传感器2采集的压力值P1和温度传感器3采集的温度值T,以及所述根据测力传感器16采集的力F,根据力F计算或换算成为对应的压力值P2,并根据压力值P1和压力值P2计算得到等效气体压力值P;依照等效气体该压力值P,以及按照气体压力-温度特性换算成为对应20℃的压力值,即气体密度值P 20,完成所述气体密度继电器的在线校验。
2)本实施例中,在线校验接点信号采样单元6和智控单元7设置在接头110上。第一压力传感器2设置在基座102上,温度传感器3设置在壳体101内部。第一压力传感器2、温度传感器3、在线校验接点信号采样单元6、测力传感器16分别与智控单元7相连接。
实施例四:
如图4所示,本发明实施例四提供了一种具有在线自校验功能的气体密度继电器(或气体密度监测装置)。如图4所示,一种气体密度继电器包括:气体密度继电器本体1、第一压力传感器2、温度传感器3、测力传感器16、驱使接点动作机构15、在线校验接点信号采样单元6和智控单元7。
与实施例一有区别的是:
1)本实施例的气体密度继电器本体1采用波纹管式气体密度继电器。具体地,包括壳体101、第一波纹管103(即压力检测元件)、第二波纹管113、信号发生器109(本实施例为微动开关)、信号动作机构111。其中,所述第一波纹管103的第一开口端固定在所述壳体101的内壁上,所述第一波纹管103的第二开口端与第一密封件118密封连接,所述第一波纹管103的内壁、所述第一密封件118、所述壳体101的内壁共同围成第一密封气室G1,第一压力传感器2与所述第一密封气室G1连通。所述第一密封气室G1通过多通接头9、电气设备接头13与电气设备8的绝缘气体相连通。所述第二波纹管113的第一开口端与所述第一密封件118密封连接,所述第二波纹管113的第二开口端通过第二密封件119与所述壳体101的内壁连接,所述第一波纹管103的外壁、所述第一密封件118、所述第二波纹管113的外壁、所述第二密封件119及所述壳体101的内壁共同围成第二密封气 室G2,所述第二密封气室G2内充有密度值为P 20BC的标准补偿气体,即第二密封气室G2为温度补偿标准气室,构成温度补偿元件。所述第二波纹管113的内壁、所述第二密封件119及所述壳体101的内壁共同围成第三气室G3,第三气室G3可以相对密封,或者半敞开式。所述信号动作机构111和所述信号发生器109设置在所述第三气室G3内。所述信号动作机构111与所述第一密封件118连接,所述信号发生器109对应所述信号动作机构111设置,所述气体密度继电器本体1通过所述信号发生器109输出接点信号。本实施例中,所述信号动作机构111包括一移动杆,所述移动杆的一端伸入所述第二波纹管113内,与第一密封件118固定连接,并随第一波纹管103的形变产生位移;所述移动杆的另一端伸出所述第二波纹管113,固定连接一调节固定件,所述调节固定件的外侧设有若干调节螺钉10101,所述若干调节螺钉10101与相应的信号发生器109相对应设置。通过所述第一密封气室G1和第二密封气室G2监测气体密度,并结合信号发生器109实现对气体密度的监控,当气体密度低于或/和高于所设定的气体密度时,所述气体密度继电器本体1通过信号发生器109输出报警或/和闭锁接点信号。
所述驱使接点动作机构15设置在气体密度继电器本体1的壳体101内,位于信号动作机构111的上方,被配置为直接对信号动作机构111施加作用力,推动移动杆移动,第一密封气室G1和第三气室G3作用于第一波纹管103的上端面上的力的平衡被打破,第一波纹管103随移动杆的移动发现形变,产生一定的位移。移动杆带动调节螺钉10101触动信号发生器109的按钮,信号发生器109发出报警、闭锁信号。
传力件152(凸轮)没有施力时,在复位弹簧154的作用下,推杆153远离信号动作机构111的移动杆,推杆153对信号动作机构111的移动杆不施加力。传力件152(凸轮)施力时,推杆153受到驱动部件151和传力件152的作用,其对复位弹簧154的作用力F可以通过测力传感器16检测复位弹簧154的形变量得到(F=L*N,式中:L为形变量,mm;N为弹性系数,kg/mm)。校验时,传力件152在驱动部件151的驱动下转动,推动推杆153向下运动,进而对弹簧154和信号动作机构111施加作用力F,即所述驱动部件151通过传力件152对信号动作机构111施加作用力,信号动作机构111上的调节螺钉10101推动信号发生器109,信号发生器109的接点接通,发出相应的接点信号(报警或闭锁),即驱使接点动作机构15使所述气体密度继电器本体1发生接点信号动作。所述测力传感器16设于所述推杆153朝向传力件的一端,也可以设置于调节固定件的上方或下方,与调节固定件相对设置。
工作原理:
非校验状态,智控单元7根据第一压力传感器2、温度传感器3监测到电气设备8的气体压力和温度,得到相应的20℃压力值P 20(即气体密度值),可以远传在线监测,即所述智控单元7获取所述第一压力传感器2、温度传感器3采集的气体密度值;或者,所述智控单元7获取所述第一压力传感器2采集的压力值和温度传感器3采集的温度值,完成所述气体密度继电器对所监测的电气设备的气体密度的在线监测。此时,第一密封气室G1的气体密度值大于第三气室G3的气体密度值,即第一密封气室G1的气体密度值与第三气室G3的气体密度值的差值大于某一设定值,由图4可知,信号动作机构111的调节螺钉10101和信号发生器109之间存在相应的距离,此时的调节螺钉10101没有接触信号发生器109,即没有触发信号发生器109,信号发生器109没有动作,其接点信号没有输出。
当需要校验密度继电器本体1时,智控单元7控制驱使接点动作机构15的驱动部件151驱动传力件152转动,传力件152转动从而推动推杆153向下运动,进而对弹簧154和信号动作机构111施加作用力F,即所述驱动部件151通过传力件152对信号动作机构111的移动杆施加作用力F,作用于第一波纹管103的上端面的压力增大,带动第一波纹管103向下产生位移,发生形变。移动杆向下产生位移,使得调节螺钉10101和信号发生器109之间的距离减小,当距离小于相应的值,信号动作机构111的调节螺钉10101接触到了信号发生器109,即触发信号发生器109,信号发生器109的接点动作(接通),发出相应的接点信号(报警或闭锁)。接点动作通过在线校验接点信号采样单元6上传到智控单元7,所述智控单元7获取所述气体密度继电器本体1发生接点信号动作或切换时、所述第一压力传感器2采集的压力值P1和温度传感器3采集的温度值T,以及所述测力传感器16采集的力F,根据力F计算或换算成为对应的压力值P2,并根据压力值P1和压力值P2计算得到等效气体压力值P;依照该等效气体压力值P,以及按照气体压力-温度特性换算成为对应20℃的压力值,即气体密度值P 20,完成所述气体密度继电器的在线校验。或者,所述智控单元7获取所述气体密度继电器本体1发生接点信号动作或切换时、所述第一压力传感器2和温度传感器3采集的气体密度值P1 20,以及所述测力传感器16采集的力F,结合温度传感器3采集的温度值T,经过计算或换算成为对应的气体密度值P2 20,并根据气体密度值P1 20和气体密度值P2 20计算得到气体密度值P 20,完成所述气体密度继电器的在线校验。进一步来说,气体密度继电器本体1发生接点信号动作或切换时,其等效气体压力值P=P1-P2;依照该等效气体压力值P,以及按照气体压力-温度特性换算成为对应20℃ 的压力值,即气体密度值P 20,完成所述气体密度继电器的在线校验;或者,气体密度继电器本体1发生接点信号动作或切换时,其等效气体压力值P=P1-P2*M,其中M为预设系数,根据气体密度继电器特性得到;依照该等效气体压力值P、温度值T,以及按照气体压力-温度特性换算成为对应20℃的压力值,即气体密度值P 20,完成所述气体密度继电器的在线校验。或者还可以,气体密度继电器本体1发生接点信号动作或切换时,其气体密度值P 20和气体密度值P1 20、P2 20之间的对应关系预先设计成数据表格,并根据气体密度值P1 20和气体密度值P2 20查询所述数据表格得到对应的气体密度值P 20,完成所述气体密度继电器的在线校验;或者,气体密度继电器本体1发生接点信号动作或切换时,其气体密度值P 20和气体压力值P1、P2以及温度值T之间的对应关系设计成数据表格,并根据气体压力值P1、P2以及温度值T查询所述数据表格得到对应的气体密度值P 20,完成所述气体密度继电器的在线校验。如此反复校验多次(例如2~3次),然后计算其平均值,这样就完成了气体密度继电器的校验工作。
然后,智控单元7断开气体密度继电器本体1的接点采样电路,此时气体密度继电器本体1的接点就与智控单元7不相连接。通过智控单元7连通气体密度继电器本体1的控制回路,气体密度继电器本体1的密度监控回路正常工作,气体密度继电器本体1安全监控电气设备的气体密度,使电气设备安全可靠地工作。这样就方便完成气体密度继电器的在线校验工作,同时在线校验气体密度继电器时不会影响电气设备的安全运行。
综上所述,本申请提供一种具有在线自校验功能的气体密度继电器及其校验方法,用于高压、中压电气设备,包括气体密度继电器本体、第一压力传感器、温度传感器、测力传感器、驱使接点动作机构和智控单元。所述驱使接点动作机构被配置为对气体密度继电器本体的至少一个主要元件施加作用力,例如,驱使所述气体密度继电器本体的端座、或压力检测元件、或机芯等发生位移,进而使信号动作机构发生位移,使所述气体密度继电器本体发生接点信号动作;或者,所述驱使接点动作机构直接驱使所述气体密度继电器本体的信号动作机构发生位移,使所述气体密度继电器本体发生接点信号动作。所述测力传感器与驱使接点动作机构或气体密度继电器本体的至少一个主要元件相连接或相关联,用于检测施加作用力机构对体密度继电器本体的主要元件所施加的力,这里,主要元件可以包括:压力检测元件、端座、温度补偿元件、信号发生器、信号动作机构、机芯、指针。或者,还可以在气体密度继电器本体上设置至少一个诊断传感器,用于采集气体密度继电器本体的主要元件中的至少一个的对应位置、和/或对应位移、和/或对应形变量。根据监测时的气体压力和驱使接点动 作机构所施加的力,判断诊断传感器监测的数据是否符合预设要求,从而诊断所述气体密度继电器本体的当前工作状态是否为正常工作状态。当发生接点动作时,智控单元根据接点动作时的密度值,检测出气体密度继电器本体的报警和/或闭锁接点信号动作值和/或返回值,无须检修人员到现场就能完成气体密度继电器的校验工作,提高了电网的可靠性,提高了工作效率,降低了运行维护成本,可以实现气体密度继电器的免维护。同时整个校验过程实现了SF6气体零排放,符合环保规程要求。最重要的是,由于本发明进行了技术创新:驱使接点动作机构不是与气体密度继电器本体或电气设备的SF6的主气路相连通,能够大大提高电网的可靠性,降低其密封要求,以及能够降低制造成本,提高现场安装的方便性和灵活性。本申请对气体密度继电器实现了在线校验,进而实现对气体密度继电器的全寿命周期智能化管理:有问题才修理,没有问题就不需要运维服务。
需要说明的是,一种具有在线自校验功能的气体密度继电器一般指的是其组成元件设计成一体结构;而气体密度监测装置一般指的是其组成元件设计成分体结构,灵活组成。所述气体密度继电器可以利用变电站原有的气体密度继电器进行技术改造升级。
以上对本发明的具体实施例进行了详细描述,但其只是作为范例,本发明并不限制于以上描述的具体实施例。对于本领域技术人员而言,任何对本发明进行的等同修改和替代也都在本发明的范畴之中。因此,在不脱离本发明的精神和范围下所作的均等变换和修改,都应涵盖在本发明的范围内。

Claims (20)

  1. 一种具有在线自校验功能的气体密度继电器,其特征在于:气体密度继电器本体、第一压力传感器、温度传感器、测力传感器、驱使接点动作机构和智控单元;
    所述气体密度继电器本体包括:壳体,以及设于壳体内的压力检测元件、温度补偿元件、信号发生器、信号动作机构;
    所述第一压力传感器,与所述气体密度继电器本体的压力检测元件相连通;
    所述驱使接点动作机构,设置于所述壳体内或壳体外,包括施力机构和运动机构,所述施力机构包括驱动部件和由驱动部件驱动的传力件,所述运动机构包括推杆,所述推杆在施力机构的驱动下运动,直接或间接地使信号动作机构发生位移,以触发信号发生器产生接点信号动作;
    所述测力传感器,设置在驱使接点动作机构上或设置在壳体内,被配置为检测所述驱使接点动作机构对所述气体密度继电器本体施加的力的大小;
    所述智控单元,分别与所述驱使接点动作机构、第一压力传感器、温度传感器、测力传感器相连接,被配置为完成所述驱使接点动作机构的控制,压力值采集和温度值采集、和/或气体密度值采集,或/和检测所述气体密度继电器本体的接点信号动作值和/或接点信号返回值;
    其中,所述接点信号包括报警、和/或闭锁。
  2. 根据权利要求1所述的一种具有在线自校验功能的气体密度继电器,其特征在于:所述信号发生器包括微动开关或磁助式电接点,所述气体密度继电器本体通过所述信号发生器输出接点信号;所述温度补偿元件采用温度补偿片或壳体内封闭的气体;所述压力检测元件包括巴登管或波纹管。
  3. 根据权利要求1所述的一种具有在线自校验功能的气体密度继电器,其特征在于:所述测力传感器包括重力传感器、压力传感器、磁力传感器、位移传感器、形变量传感器、光电传感器、角度传感器、摄像机中的一种。
  4. 根据权利要求1所述的一种具有在线自校验功能的气体密度继电器,其特征在于:所述驱动部件包括磁力驱动机构、重力、电机、往复运动机构、卡诺循环机构、空压机、压缩机、放气阀、造压泵、增压泵、增压阀、电动气泵、电磁气泵、气动元件、磁耦合推力机构、加热产生推力机构、电加热产生推力机构、化学反应产生推力机构中的一种。
  5. 根据权利要求1所述的一种具有在线自校验功能的气体密度继电器,其特征在于: 所述传力件包括凸轮、连接杆、弹簧、金属件、非金属件、伸缩件、非伸缩件中的一种。
  6. 根据权利要求1所述的一种具有在线自校验功能的气体密度继电器,其特征在于:所述测力传感器设置在驱使接点动作机构的推杆上;或者,
    所述测力传感器设置在压力检测元件上;或者,
    所述测力传感器设置在温度补偿元件上;或者,
    所述测力传感器设置在信号动作机构上。
  7. 根据权利要求1所述的一种具有在线自校验功能的气体密度继电器,其特征在于:所述气体密度继电器本体还包括设于所述壳体内的基座、端座、机芯;所述机芯固定在所述基座上;所述压力检测元件为内充有密封气体的巴登管,其一端固定在所述基座上并与之连通,另一端通过所述端座与所述温度补偿元件的一端相连接,所述温度补偿元件的另一端设有信号动作机构;所述信号动作机构上设有推动所述信号发生器、使所述信号发生器的接点接通或断开的调节螺钉或触发件,所述气体密度继电器本体通过所述信号发生器输出接点信号;所述驱使接点动作机构设于所述气体密度继电器本体的壳体外,所述驱使接点动作机构还包括设有开口的外罩,所述外罩固定连接于所述壳体上,且所述开口朝向所述壳体,所述驱动部件、传力件、推杆设置在所述外罩内;或者,所述驱使接点动作机构设于所述气体密度继电器本体的壳体内。
  8. 根据权利要求7所述的一种具有在线自校验功能的气体密度继电器,其特征在于:所述推杆朝向施力机构的一端设有固定件,所述固定件固定于所述外罩内,所述推杆的另一端贯穿固定于所述外罩的开口处的固定架,所述推杆穿出所述固定架的端部自所述气体密度继电器本体的壳体上的气孔伸入所述壳体内;所述壳体内的所述端座上设有端座接触板,所述推杆伸入所述壳体的端部与所述端座接触板相对设置;所述测力传感器通过接触件与所述推杆相连接,或者,所述测力传感器直接与所述推杆相连接。
  9. 根据权利要求7所述的一种具有在线自校验功能的气体密度继电器,其特征在于:所述推杆朝向施力机构的一端穿过一固定架,所述固定架固定设置在气体密度继电器本体的壳体上,所述推杆远离施力机构的一端自所述外罩的开口伸出后,通过气体密度继电器本体的壳体上的气孔伸入所述壳体内;所述推杆伸入所述壳体的端部与壳体内的压力检测元件相对设置;所述测力传感器通过接触件与所述压力检测元件相接触,或者,所述测力传感器直接与所述压力检测元件相接触。
  10. 根据权利要求7所述的一种具有在线自校验功能的气体密度继电器,其特征在于: 所述机芯包括扇形齿轮和中心齿轮,扇形齿轮的第一端部与中心齿轮相啮合,扇形齿轮的第二端部通过连杆或直接与所述温度补偿元件的另一端连接;所述扇形齿轮的第二端部固定连接扇形齿轮接触件的一端,扇形齿轮接触件的另一端自所述气体密度继电器本体的壳体的气孔伸出所述壳体外、与所述驱使接点动作机构的推杆远离施力机构的一端相对设置。
  11. 根据权利要求1所述的一种具有在线自校验功能的气体密度继电器,其特征在于:所述气体密度继电器本体包括设于所述壳体内作为压力检测元件的第一波纹管,还包括第二波纹管,所述第一波纹管的第一开口端固定在所述壳体的内壁上,所述第一波纹管的第二开口端与第一密封件密封连接,所述第一波纹管的内壁、所述第一密封件、所述壳体的内壁共同围成第一密封气室,所述第一密封气室设有与电气设备的绝缘气体相连通的接口;所述第二波纹管的第一开口端与所述第一密封件密封连接,所述第二波纹管的第二开口端通过第二密封件与所述壳体的内壁连接,所述第一波纹管的外壁、所述第一密封件、所述第二波纹管的外壁、所述第二密封件及所述壳体的内壁共同围成第二密封气室,所述第二密封气室内充有标准补偿气体,构成温度补偿元件;所述第二波纹管的内壁、所述第二密封件及所述壳体的内壁共同围成第三气室,所述信号发生器和信号动作机构设置在所述第三气室内,所述信号动作机构与所述第一密封件连接,所述信号发生器对应所述信号动作机构设置;所述驱使接点动作机构设于所述气体密度继电器本体的壳体内,所述推杆靠近所述传力件的一端设有固定件,所述推杆远离所述传力件的一端贯穿固定于壳体内壁的固定架,并延伸至固定架的下方与信号动作机构相对设置。
  12. 根据权利要求11所述的一种具有在线自校验功能的气体密度继电器,其特征在于:所述第一波纹管的外径大于所述第二波纹管的外径;所述信号动作机构包括一移动杆,所述移动杆的一端伸入所述第二波纹管内,与所述第一密封件连接,并随第一波纹管的形变产生位移;所述移动杆的另一端伸出所述第二波纹管,固定连接一调节固定件,所述调节固定件设有调节螺钉,所述调节螺钉用于在移动杆的推动力下触动所述信号发生器。
  13. 根据权利要求11所述的一种具有在线自校验功能的气体密度继电器,其特征在于:所述测力传感器设于所述推杆朝向传力件的一端,或者,所述测力传感器设于所述推杆背向传力件的一端。
  14. 根据权利要求1所述的一种具有在线自校验功能的气体密度继电器,其特征在于:所述气体密度继电器还包括在线校验接点信号采样单元,所述在线校验接点信号采样单元分别与所述气体密度继电器本体的信号发生器和智控单元相连接,被配置为采样所述气体密度 继电器本体的接点信号;
    所述在线校验接点信号采样单元包括隔离采样元件,所述隔离采样元件由气体密度继电器本体、或驱使接点动作机构、或智控单元控制;在非校验状态时,所述在线校验接点信号采样单元通过隔离采样元件与气体密度继电器本体的接点信号在电路上相对隔离;在校验状态时,所述在线校验接点信号采样单元通过隔离采样元件切断气体密度继电器本体的接点信号控制回路,将所述气体密度继电器本体的接点与所述智控单元相连接;其中,隔离采样元件包括行程开关、微动开关、按钮、电动开关、位移开关、电磁继电器、光耦、可控硅中的一种。
  15. 根据权利要求14所述的一种具有在线自校验功能的气体密度继电器,其特征在于:所述气体密度继电器还包括多通接头,所述气体密度继电器本体、所述第一压力传感器、所述驱使接点动作机构、所述在线校验接点信号采样单元、所述智控单元、所述温度传感器中的一个或多个设置在所述多通接头上。
  16. 根据权利要求1所述的一种具有在线自校验功能的气体密度继电器,其特征在于:所述智控单元的控制通过现场控制,和/或通过后台控制。
  17. 根据权利要求1所述的一种具有在线自校验功能的气体密度继电器,其特征在于:所述气体密度继电器本体的壳体上还设有用于显示绝缘气体密度的显示机构。
  18. 一种如权利要求1所述的具有在线自校验功能的气体密度继电器的校验方法,其特征在于:正常工作状态时,气体密度继电器监控电气设备内的气体密度值;
    气体密度继电器根据设定的校验时间或/和校验指令,以及气体密度值情况,在允许校验气体密度继电器本体的状况下:
    通过智控单元驱动驱使接点动作机构,使驱使接点动作机构的运动机构在施力机构的驱动下向气体密度继电器本体内的元件施加作用力,使气体密度继电器本体的信号动作机构发生位移,触发信号发生器产生接点信号动作;所述智控单元获取所述气体密度继电器本体发生接点信号动作或切换时、所述第一压力传感器采集的压力值P1和温度传感器采集的温度值T,以及所述测力传感器采集的力F,根据力F计算或换算成为对应的压力值P2,并根据压力值P1和压力值P2计算得到等效气体压力值P;依照该等效气体压力值P,以及按照气体压力-温度特性换算成为对应20℃的压力值,即气体密度值P 20,完成所述气体密度继电器的在线校验;或者,
    所述智控单元获取气体密度继电器本体发生接点信号动作或切换时、所述第一压力传感 器和温度传感器采集的气体密度值P1 20,以及所述测力传感器采集的力F,结合温度传感器采集的温度值T,经过计算或换算成为对应的气体密度值P2 20,并根据气体密度值P1 20和气体密度值P2 20计算得到气体密度值P 20,完成所述气体密度继电器的在线校验;或者,
    所述智控单元获取气体密度继电器本体发生接点信号动作或切换时、所述第一压力传感器采集的压力值P1和温度传感器采集的温度值T,以及所述测力传感器采集的力F,根据压力值P1、T和F计算得到对应的气体密度值P 20,完成所述气体密度继电器的在线校验;
    当所有的接点信号校验工作完成后,所述智控单元复原所述驱使接点动作机构。
  19. 根据权利要求18所述的一种具有在线自校验功能的气体密度继电器的校验方法,其特征在于:所述气体密度继电器还包括在线校验接点信号采样单元,所述在线校验接点信号采样单元分别与所述气体密度继电器本体的信号发生器和智控单元相连接,被配置为采样所述气体密度继电器本体的接点信号;所述校验方法,包括:
    正常工作状态时,气体密度继电器监控电气设备内的气体密度值,同时气体密度继电器通过第一压力传感器、温度传感器以及智控单元在线监测电气设备内的气体密度值;
    气体密度继电器根据设定的校验时间或/和校验指令,以及气体密度值情况,在允许校验气体密度继电器本体的状况下:
    通过智控单元把在线校验接点信号采样单元调整到校验状态,在校验状态下,在线校验接点信号采样单元切断气体密度继电器本体的接点信号的控制回路,将气体密度继电器本体的接点连接至智控单元;
    智控单元驱动驱使接点动作机构,使驱使接点动作机构的运动机构在施力机构的驱动下向气体密度继电器本体内的元件施加作用力,使气体密度继电器本体的信号动作机构发生位移,触发信号发生器产生接点信号动作,所述智控单元获取所述气体密度继电器本体发生接点信号动作或切换时、所述第一压力传感器采集的压力值P1和温度传感器采集的温度值T,以及所述测力传感器采集的力F,根据力F计算或换算成为对应的压力值P2,并根据压力值P1和压力值P2计算得到等效气体压力值P;依照该等效气体压力值P,以及按照气体压力-温度特性换算成为对应20℃的压力值,即气体密度值P 20,完成所述气体密度继电器的在线校验;或者,
    所述智控单元获取所述气体密度继电器本体发生接点信号动作或切换时、所述第一压力传感器和温度传感器采集的气体密度值P1 20,以及所述测力传感器采集的力F,结合温度传感器采集的温度值T,经过计算或换算成为对应的气体密度值P2 20,并根据气体密度值 P1 20和气体密度值P2 20计算得到气体密度值P 20,完成所述气体密度继电器的在线校验;或者,
    所述智控单元获取所述气体密度继电器本体发生接点信号动作或切换时、所述第一压力传感器采集的压力值P1和温度传感器采集的温度值T,以及所述测力传感器采集的力F,并根据压力值P1、T和F计算得到对应的气体密度值P 20,完成所述气体密度继电器的在线校验;
    当所有的接点信号校验工作完成后,所述智控单元复原所述驱使接点动作机构,并将在线校验接点信号采样单元调整到工作状态,气体密度继电器本体的接点信号的控制回路恢复运行正常工作状态。
  20. 根据权利要求18或19所述的一种具有在线自校验功能的气体密度继电器的校验方法,其特征在于,包括:气体密度继电器本体发生接点信号动作或切换时,其等效气体压力值P=P1-P2;依照该等效气体压力值P,以及按照气体压力-温度特性换算成为对应20℃的压力值,即气体密度值P 20,完成所述气体密度继电器的在线校验;或者,
    气体密度继电器本体发生接点信号动作或切换时,其等效气体压力值P=P1-P2*K;其中K为预设系数;依照该等效气体压力值P、温度值T,以及按照气体压力-温度特性换算成为对应20℃的压力值,即气体密度值P 20,完成所述气体密度继电器的在线校验;或者,
    气体密度继电器本体发生接点信号动作或切换时,其气体密度值P 20和气体密度值P1 20、P2 20之间的对应关系预先设计成数据表格,并根据气体密度值P1 20和气体密度值P2 20查询所述数据表格得到对应的气体密度值P 20,完成所述气体密度继电器的在线校验;或者,
    气体密度继电器本体发生接点信号动作或切换时,其气体密度值P 20和气体压力值P1、P2以及温度值T之间的对应关系预先设计成数据表格,并根据气体压力值P1、P2以及温度值T查询所述数据表格得到对应的气体密度值P 20,完成所述气体密度继电器的在线校验;或者,
    气体密度继电器本体发生接点信号动作或切换时,其气体密度值P 20和气体压力值P1、所述测力传感器采集的力F以及温度值T之间的对应关系预先设计成数据表格,并根据气体压力值P1、所述测力传感器采集的力F以及温度值T查询所述数据表格得到对应的气体密度值P 20,完成所述气体密度继电器的在线校验。
PCT/CN2021/076135 2020-04-29 2021-02-09 一种具有在线自校验功能的气体密度继电器及其校验方法 WO2021218289A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/997,545 US20230160800A1 (en) 2020-04-29 2021-02-09 Gas density relay with online self-checking function, and checking method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010354510.4A CN111446111A (zh) 2020-04-29 2020-04-29 一种具有在线自校验功能的气体密度继电器及其校验方法
CN202010354510.4 2020-04-29

Publications (1)

Publication Number Publication Date
WO2021218289A1 true WO2021218289A1 (zh) 2021-11-04

Family

ID=71656535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/076135 WO2021218289A1 (zh) 2020-04-29 2021-02-09 一种具有在线自校验功能的气体密度继电器及其校验方法

Country Status (3)

Country Link
US (1) US20230160800A1 (zh)
CN (1) CN111446111A (zh)
WO (1) WO2021218289A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110535058B (zh) * 2019-09-04 2024-05-03 上海乐研电气有限公司 具有在线采样校验功能的电气系统及其校验方法
CN110456266A (zh) * 2019-09-04 2019-11-15 上海乐研电气有限公司 具有在线采样校验功能的电气系统及其校验方法
CN110411892A (zh) * 2019-09-04 2019-11-05 上海乐研电气有限公司 一种现场在线校验气体密度继电器用的接点信号采集电路
CN111446111A (zh) * 2020-04-29 2020-07-24 上海乐研电气有限公司 一种具有在线自校验功能的气体密度继电器及其校验方法
CN117686899B (zh) * 2024-02-02 2024-05-10 国网湖北省电力有限公司 一种密度继电器检测用装配模板及装配方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3973094A (en) * 1975-04-28 1976-08-03 Allen-Bradley Company Two-stage snap-action switch
CN110988667A (zh) * 2019-12-11 2020-04-10 上海乐研电气有限公司 一种具有在线自校验功能的气体密度继电器及其校验方法
CN111029211A (zh) * 2019-12-11 2020-04-17 上海乐研电气有限公司 一种气体密度继电器的改造方法
CN111446111A (zh) * 2020-04-29 2020-07-24 上海乐研电气有限公司 一种具有在线自校验功能的气体密度继电器及其校验方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3973094A (en) * 1975-04-28 1976-08-03 Allen-Bradley Company Two-stage snap-action switch
CN110988667A (zh) * 2019-12-11 2020-04-10 上海乐研电气有限公司 一种具有在线自校验功能的气体密度继电器及其校验方法
CN111029211A (zh) * 2019-12-11 2020-04-17 上海乐研电气有限公司 一种气体密度继电器的改造方法
CN111446111A (zh) * 2020-04-29 2020-07-24 上海乐研电气有限公司 一种具有在线自校验功能的气体密度继电器及其校验方法

Also Published As

Publication number Publication date
US20230160800A1 (en) 2023-05-25
CN111446111A (zh) 2020-07-24

Similar Documents

Publication Publication Date Title
WO2021218289A1 (zh) 一种具有在线自校验功能的气体密度继电器及其校验方法
WO2021218288A1 (zh) 一种气体密度继电器在线校验装置及其在线校验方法
WO2021218286A1 (zh) 一种具有在线自校验功能的气体密度继电器及其校验方法
WO2021218291A1 (zh) 一种具有在线自校验功能的气体密度继电器及其校验方法
WO2021043039A1 (zh) 一种气体密度继电器的改造方法、一种具有在线自校验功能的气体密度继电器及其校验方法
CN110988667A (zh) 一种具有在线自校验功能的气体密度继电器及其校验方法
CN110554309B (zh) 一种现场气体密度继电器的在线校验方法
CN111029211B (zh) 一种气体密度继电器的改造方法
WO2021218284A1 (zh) 具有仿真校验功能的气体密度继电器及其仿真校验方法
WO2021218290A1 (zh) 一种具有在线自校验功能的气体密度继电器及其校验方法
CN212136345U (zh) 一种具有在线自校验功能的气体密度继电器及监测装置
CN211718032U (zh) 一种具有在线自校验功能的气体密度继电器及监测装置
CN110441195B (zh) 一种具有在线自校验功能的气体密度继电器及其校验方法
CN211719510U (zh) 一种具有在线自校验功能的气体密度继电器及监测装置
CN211719508U (zh) 一种具有在线自校验功能的气体密度继电器及监测装置
CN211719506U (zh) 一种具有在线自校验功能的气体密度继电器及监测装置
CN211318092U (zh) 一种具有在线自校验功能的气体密度继电器及监测装置
CN110927566A (zh) 一种具有在线自校验功能的气体密度继电器及其校验方法
WO2021218283A1 (zh) 一种自诊断的气体密度继电器及其使用方法
CN211179416U (zh) 一种具有在线自校验功能的气体密度继电器及监测装置
CN211929384U (zh) 一种自诊断的气体密度继电器及气体密度监测装置
WO2021115289A1 (zh) 一种气体密度继电器的改造方法、一种具有在线自校验功能的气体密度继电器及其校验方法
US20220336172A1 (en) Method for modifying gas density relay, and gas density relay having online self-checking function and checking method therefor
CN211426166U (zh) 一种具有在线自校验功能的气体密度继电器及监测装置
CN212646903U (zh) 一种气体密度继电器在线校验装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21796088

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21796088

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21796088

Country of ref document: EP

Kind code of ref document: A1