WO2021218287A1 - 具有密封性能自检的气体密度继电器及其实现方法 - Google Patents

具有密封性能自检的气体密度继电器及其实现方法 Download PDF

Info

Publication number
WO2021218287A1
WO2021218287A1 PCT/CN2021/076133 CN2021076133W WO2021218287A1 WO 2021218287 A1 WO2021218287 A1 WO 2021218287A1 CN 2021076133 W CN2021076133 W CN 2021076133W WO 2021218287 A1 WO2021218287 A1 WO 2021218287A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
gas density
density relay
control unit
relay body
Prior art date
Application number
PCT/CN2021/076133
Other languages
English (en)
French (fr)
Inventor
金海勇
夏铁新
郭正操
金海生
谭庆
Original Assignee
上海乐研电气有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海乐研电气有限公司 filed Critical 上海乐研电气有限公司
Priority to US17/997,544 priority Critical patent/US20230221209A1/en
Publication of WO2021218287A1 publication Critical patent/WO2021218287A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • G01M3/32Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators
    • G01M3/3236Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators by monitoring the interior space of the containers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • G01M3/28Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds
    • G01M3/2853Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds for pipe joints or seals
    • G01M3/2869Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds for pipe joints or seals for seals not incorporated in a pipe joint
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/16Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using electric detection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/20Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/24Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/38Investigating fluid-tightness of structures by using light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/26Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity by measuring pressure differences
    • G01N9/266Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity by measuring pressure differences for determining gas density
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H35/00Switches operated by change of a physical condition
    • H01H35/24Switches operated by change of fluid pressure, by fluid pressure waves, or by change of fluid flow
    • H01H35/26Details
    • H01H35/2671Means to detect leaks in the pressure sensitive element

Definitions

  • the invention relates to the field of electric power technology, in particular to a gas density relay with self-checking of sealing performance applied to high-voltage and medium-voltage electrical equipment and an implementation method thereof.
  • SF6 sulfur hexafluoride
  • SF6 gas can undergo hydrolysis reaction with water at a high temperature of 200°C or higher to generate active HF and SOF 2 , corrode insulating parts and metal parts, and generate a lot of heat, which will increase the pressure of the gas chamber. high. 3) When the temperature drops, too much moisture may form condensation, which will significantly reduce the insulation strength of the surface of the insulator, or even flashover, causing serious harm. Therefore, the power grid operation regulations compulsorily stipulate that the density and water content of SF6 gas must be regularly tested before and during the operation of the equipment.
  • the existing gas density monitoring system (gas density relay) is basically: 1) The remote transmission type SF6 gas density relay is used to collect and upload density, pressure and temperature, and realize online gas density monitoring. 2) Use gas density transmitter to realize the collection and upload of density, pressure and temperature, and realize online monitoring of gas density.
  • the SF6 gas density relay is the core and key component, and the remote SF6 gas density relay or gas density transmitter is the core and key component, and how to ensure its normal operation is very important.
  • 3) As well as leaking gas density relays their performance will be greatly reduced. At the same time, the leaked oil will affect the reliable operation of electrical equipment. Online monitoring is required to find out and deal with it in time.
  • the purpose of the present invention is to provide a gas density relay (or gas density monitoring device) with self-checking performance for high-voltage or medium-voltage electrical equipment and an implementation method thereof, which is used for the gas density of electrical equipment for gas insulation or arc extinguishing While monitoring, it can also perform online gas leakage performance monitoring on gas density relays, which improves efficiency, requires no maintenance, reduces operation and maintenance costs, and ensures the safe operation of the power grid.
  • the first aspect of this application provides a gas density relay (or gas density monitoring device) with self-checking of sealing performance, including: a gas density relay body, a sealing performance detector and an intelligent control unit; wherein,
  • the sealing performance detector is arranged inside or outside the gas density relay body, and is connected to the gas path in the gas density relay body, or is connected to the internal cavity of the gas density relay body, through the collection of the gas path or the internal cavity
  • the gas pressure change, or current change, or gas concentration change, or gas density value change in the body to obtain the leakage information of the gas density relay body;
  • the intelligent control unit is connected to the sealing performance detector, receives and/or calculates the data and/or information monitored by the sealing performance detector, performs diagnosis, and obtains the current sealing performance of the gas density relay body; or
  • the intelligent control unit uploads the received data and/or information to the background, and the background diagnoses the received and/or calculated data and/or information monitored by the sealing performance detector, and obtains the current information of the gas density relay body. Sealing performance.
  • the above-mentioned gas density relay with self-checking of sealing performance refers to the design of its constituent elements into an integrated structure; and the gas density monitoring device with self-checking of sealing performance refers to the design of its constituent components with a body structure and flexible composition.
  • the sealing performance detector includes an electric control valve, a pressure sensor, a voltage actuator, an electrode, a current detector, an oxygen sensor, a nitrogen sensor, an SF6 diagnostic sensor, a halogen sensor, a camera, an output signal contact, a thermal conductivity cell ( TCD) one or more of detectors, spectrum analyzers, and online verification units.
  • TCD thermal conductivity cell
  • the sealing performance detector is arranged outside the body of the gas density relay, and includes an electric control valve and a pressure sensor;
  • the gas outlet of the density relay body is connected to the gas path;
  • the pressure sensor is connected to the gas path of the gas density relay body;
  • the electric control valve is connected to the intelligent control unit, and is closed or opened under the control of the intelligent control unit ,
  • the pressure sensor is connected to the intelligent control unit, and the collected gas pressure on the gas path of the gas density relay body is sent to the intelligent control unit;
  • the gas pressure on the gas path of the gas density relay body gradually decreases, and the intelligent control unit or the background sends out a gas leak alarm signal and/or information; or, the gas pressure drop speed PS X on the gas path of the gas density relay body is higher than the set The lowering speed PS XS , the intelligent control unit or the background sends out a gas leakage alarm signal and/or information; or, within the set time, the gas pressure on the gas path of the gas density relay body is lower than the gas when the electronic control valve is closed According to the pressure value, the intelligent control unit or the background sends out a gas leak alarm signal and/or information.
  • the sealing performance detector is a pressure sensor, which is arranged in the housing of the gas density relay body, and the pressure sensor is connected to the intelligent control unit to measure the collected pressure in the housing of the gas density relay body.
  • the signal P shell is sent to the intelligent control unit;
  • the pressure signal P shell in the shell of the gas density relay body gradually increases, and the intelligent control unit or the background sends out a gas leak alarm signal and/or information; or the pressure signal P shell in the shell of the gas density relay body increases speed PS shell Z is higher than the set rising speed PS shell ZS , the intelligent control unit or the background sends out a gas leakage alarm signal and/or information; or, the pressure signal P shell in the housing of the gas density relay body is higher than the set pressure If the value is P shell S , the intelligent control unit or the background sends out a gas leak alarm signal and/or information.
  • the sealing performance detector includes a voltage exciter, an electrode, and a current detector, and the voltage exciter, electrode, and current detector are arranged in the housing of the gas density relay body; or, the sealing performance detector It includes a voltage exciter, an electrode, a current detector, and a gas hood.
  • the gas hood is arranged on the outside of the gas density relay body and communicates with the housing of the gas density relay body.
  • the internal cavity forms a cavity together, and the voltage exciter, the electrode and the current detector are arranged in the gas hood;
  • the voltage exciter, the electrode, and the current detector form a loop, a high voltage is applied to both ends of the electrode through the voltage exciter, and the intelligent control unit monitors the leakage current I leakage of the current detector;
  • Leakage current I leakage gradually becomes smaller, and the intelligent control unit or the background sends a gas leakage alarm signal and/or information; or, if the leakage current I leakage is less than the set leakage current I leakage S , the intelligent control unit or the background sends a gas leakage alarm signal and / or information; or, when there is no leak leak current I leak 1 is, if (I 1 -I leak leakage) ⁇ preset threshold, or background intelligent control unit emits an alarm signal leakage and / or information.
  • the sealing performance detector includes an oxygen sensor and/or a nitrogen sensor, and the oxygen sensor and/or nitrogen sensor are arranged in the housing of the gas density relay body; or, the sealing performance detector includes an oxygen sensor and / Or a nitrogen sensor and a gas hood, the gas hood is arranged on the outside of the gas density relay body and communicates with the housing of the gas density relay body, and the gas hood and the internal cavity of the housing together form one In the cavity, the oxygen sensor and/or nitrogen sensor are arranged in the gas hood;
  • the intelligent control unit monitors the oxygen concentration and/or nitrogen concentration in the housing through an oxygen sensor and/or a nitrogen sensor. When the monitored oxygen concentration and/or nitrogen concentration is lower than a preset threshold value, the intelligent control unit or A leak alarm signal and/or information is issued in the background; or, when the monitored oxygen concentration and/or nitrogen concentration is lower than the normal oxygen concentration and/or nitrogen concentration, the intelligent control unit or the background sends a leak alarm signal and/or information.
  • the sealing performance detector includes an SF6 diagnostic sensor, the SF6 diagnostic sensor is arranged in the housing of the gas density relay body; or, the sealing performance detector includes an SF6 diagnostic sensor and a gas hood, and the gas hood is arranged On the outside of the gas density relay body and in communication with the housing of the gas density relay body, the gas hood and the internal cavity of the housing form a cavity together, and the SF6 diagnostic sensor is arranged in the Inside the gas hood
  • the intelligent control unit monitors the SF6 gas concentration in the housing through the SF6 diagnostic sensor, and when the monitored SF6 gas concentration is higher than the set preset threshold, the intelligent control unit or the background sends out a gas leak alarm signal and/or information; or, When the monitored SF6 gas concentration is higher than the normal SF6 gas concentration, the intelligent control unit or the background sends out a gas leak alarm signal and/or information.
  • the SF6 diagnostic sensor includes one of an ultrasonic sensor, an infrared sensor, an external laser sensor, and a gas-sensitive semiconductor sensor.
  • the sealing performance detector is arranged outside the body of the gas density relay, and includes an electric control valve and a camera;
  • the gas outlet port connected with the gas path of the relay body;
  • the camera is set corresponding to the display part of the gas density relay body;
  • the electric control valve is connected to the intelligent control unit, and is closed or opened under the control of the intelligent control unit,
  • the camera obtains the gas density value on the gas path of the gas density relay body through image recognition technology, and sends the gas density value to the intelligent control unit;
  • the gas density value on the gas path of the gas density relay body gradually decreases, and the intelligent control unit or the background sends out a gas leak alarm signal and/or information; or, the gas density value on the gas path of the gas density relay body decreases at a rate PS 20X higher than the all When the set descending speed PS 20XS , the intelligent control unit or the background sends out a gas leakage alarm signal and/or information; or, within the set time, the gas density value on the gas path of the gas density relay body is lower than the electric control valve When the gas density value is closed, the intelligent control unit or the background sends out a gas leakage alarm signal and/or information.
  • the sealing performance detector further includes a test paper or a chemical change reagent.
  • the test paper or chemical change reagent is arranged on the gas density relay body. When the gas density relay leaks, the test paper or the chemical change reagent changes color.
  • the camera obtains the discolored image through image recognition technology, obtains the gas leakage information of the gas density relay, and the intelligent control unit or the background sends out the gas leakage alarm signal and/or information.
  • the camera can move and/or rotate.
  • the camera is provided with a shield.
  • the camera obtains information of the gas density relay through image recognition technology, including air leakage, water ingress, rust, foreign matter intrusion, blurred dial, rubber aging, rubber fracture, device damage, device falling, and device jamming. One or more.
  • the sealing performance detector is an output signal contact
  • the output signal contact is arranged on the gas density relay body, and is connected to an intelligent control unit; the intelligent control unit or background is when the output signal contact is activated Issue a gas leak alarm signal and/or message; or,
  • the sealing performance detector includes an electric control valve and an output signal contact.
  • the electric control valve is arranged outside the body of the gas density relay.
  • the gas outlet interface connected with the gas path of the gas density relay body, the electric control valve is connected with the intelligent control unit, and is closed or opened under the control of the intelligent control unit; the output signal contact is set on the gas density relay body , Connected with the intelligent control unit; the intelligent control unit or the background sends out a gas leakage alarm signal and/or information when the output signal contact is activated after the electric control valve is closed.
  • the sealing performance detector includes a thermal conductivity cell (TCD) detector and/or a spectrum analyzer, and the thermal conductivity cell (TCD) detector and/or spectrum analyzer is arranged in the housing of the gas density relay body.
  • the sealing performance detector includes a thermal conductivity cell (TCD) detector and/or a spectrum analyzer, a gas hood, the gas hood is arranged on the outside of the gas density relay body and is connected to the gas density relay body
  • the housing is communicated with, the gas hood and the internal cavity of the housing together form a cavity, and the thermal conductivity cell (TCD) detector and/or spectrum analyzer are arranged in the gas hood;
  • the intelligent control unit monitors the SF6 gas concentration in the sealed cavity through a thermal conductivity cell (TCD) detector and/or a spectrum analyzer.
  • TCD thermal conductivity cell
  • the intelligent control unit or A gas leak alarm signal and/or information is issued in the background; or, when the monitored SF6 gas concentration is higher than the normal SF6 gas concentration, the intelligent control unit or the background sends a gas leak alarm signal and/or information.
  • the sealing performance detector includes an online verification unit, and the online verification unit includes a gas density detection sensor, a pressure adjustment mechanism, and an online verification contact signal sampling unit; the gas path of the pressure adjustment mechanism, and The gas path of the gas density relay body is connected, and the pressure adjustment mechanism is configured to adjust the pressure rise and fall of the gas density relay body, so that the contact signal control part of the gas density relay generates a contact signal action; the gas density The detection sensor is connected to the contact signal control part on the gas line; the online check contact signal sampling unit is connected to the contact signal control part and is configured to sample the contact signal of the contact signal control part; The intelligent control unit is respectively connected with the pressure adjustment mechanism, the gas density detection sensor, and the online verification contact signal sampling unit, and is configured to complete the control of the pressure adjustment mechanism, pressure value collection and temperature Value collection, and/or gas density value collection, and detection of the contact signal action value of the contact signal control part; wherein, the contact signal includes alarm and/or blocking;
  • the intelligent control unit or the background When the detected contact signal action value is less than the set preset threshold, the intelligent control unit or the background sends out a gas leak alarm signal and/or message; or, at time T1, the detected contact signal action value is P 20T1 ; After a set time, at time T2, the detected contact signal action value is P 20T2 ; when (P 20T1 -P 20T2 ) ⁇ the preset threshold, the intelligent control unit or the background sends out a gas leak alarm signal and/or information.
  • the pressure adjusting mechanism is a closed gas chamber, the closed gas chamber communicates with the gas path of the gas density relay body; the outside or inside of the closed gas chamber is provided with heating elements and/or cooling elements, Heating by the heating element and/or cooling by the refrigeration element causes the temperature of the gas in the airtight chamber to change, thereby completing the pressure rise and fall of the gas density relay body; or,
  • the pressure adjusting mechanism is a cavity with one end open, and the other end of the cavity is connected to the gas path of the gas density relay body; there is a piston in the cavity, and one end of the piston is connected with an adjusting rod, The outer end of the adjusting rod is connected to a driving part, the other end of the piston extends into the opening and is in sealing contact with the inner wall of the cavity.
  • the driving part drives the adjusting rod to drive the piston in the Move inside the cavity; or,
  • the pressure adjusting mechanism is a closed gas chamber, the closed gas chamber is connected to the gas path of the gas density relay body; the inside of the closed gas chamber is provided with a piston, and the piston is sealed with the inner wall of the closed gas chamber Contact, a driving part is provided on the outside of the airtight chamber, and the driving part pushes the piston to move in the cavity by electromagnetic force; or,
  • the pressure adjusting mechanism is an air bag with one end connected to a driving part, the air bag changes in volume under the driving of the driving part, and the air bag communicates with the gas path of the gas density relay body; or,
  • the pressure adjusting mechanism is a bellows, one end of the bellows is connected to the gas path of the gas density relay body, and the other end of the bellows is expanded and contracted under the drive of a driving component; or,
  • the pressure regulating mechanism is a purge valve, and the purge valve is a solenoid valve or an electric valve, or other purge valves realized by electric or pneumatic means; or,
  • the pressure regulating mechanism is a compressor; or,
  • the pressure adjusting mechanism is a pump, and the pump includes one of a pressure generating pump, a boosting pump, an electric air pump, and an electromagnetic air pump; or,
  • the pressure regulating mechanism is a booster valve
  • the driving component includes one of a magnetic drive mechanism, a motor, a reciprocating motion mechanism, a Carnot cycle mechanism, a magnetic coupling thrust mechanism, a heating generating thrust mechanism, an electric heating generating thrust mechanism, a chemical reaction generating thrust mechanism, and a pneumatic element. .
  • the sealing performance detector and the intelligent control unit are integrated or independently designed.
  • the gas density relay body and the sealing performance detector are an integrated structure; preferably, the gas density relay body and the sealing performance detector are a remote gas density relay with an integrated structure.
  • the gas density relay (or gas density monitoring device) further includes a gas leakage shutoff element and a contact isolation unit, and the intelligent control unit is respectively connected to the gas leakage shutoff element and the contact isolation unit; the gas leakage One end of the shut-off piece is connected to the electrical equipment, and the other end of the air leakage shut-off piece is connected with the gas density relay body; the air leakage shut-off piece is configured to occur when there is a problem with the sealing performance of the gas density relay body , Used to close the gas circuit connecting the electrical equipment and the gas density relay body; the contact isolation unit is also directly or indirectly connected to the gas density relay body, and is configured to make the gas density The contact of the relay body is not connected to the contact signal control circuit.
  • the leakage shutoff component includes one of an electric control valve, an electromagnetic valve, an electric control self-sealing valve, and a temperature control valve.
  • the gas density relay (or gas density monitoring device) further includes an equipment-side gas density detection sensor, and the equipment-side gas density detection sensor is arranged on the side where the gas leakage shutoff member is connected to the electrical equipment, so The gas density detection sensor on the equipment side is connected with the intelligent control unit, and is configured to monitor the gas density value P SB20 of the electrical equipment;
  • the contact isolation unit includes an isolation connection circuit, and the isolation connection circuit connects the contact of the gas density relay body with a contact signal control circuit;
  • the contact isolation unit cuts off the isolation connection circuit to make the gas density relay body The contact of the device is not connected to the contact signal control circuit; if the gas density value P SB20 of the electrical device monitored by the gas density detection sensor on the device side is ⁇ the preset threshold, the isolation connection circuit is closed to make the contact of the gas density relay body Connect with the contact signal control circuit.
  • the gas density relays are connected to a remote background detection system through communication equipment; wherein, the gas density relays (or gas density monitoring devices) are arranged in the corresponding gas chambers.
  • the communication methods of the communication equipment include wired communication and wireless communication.
  • control of the intelligent control unit is through on-site control and/or through background control.
  • At least two of the gas density relays are connected to a remote background detection system through a hub and a protocol converter in turn; wherein, the gas density relays (or gas density monitoring devices) are arranged in the Corresponding to the electrical equipment of the air chamber.
  • the hub uses an RS485 hub; the protocol converter uses an IEC61850 or IEC104 protocol converter.
  • the second aspect of the application provides a method for implementing a gas density relay with self-checking of sealing performance, including:
  • the intelligent control unit is connected with the sealing performance detection unit, and the intelligent control unit receives and/or calculates the data and/or information monitored by the sealing performance detection unit, performs diagnosis, and obtains the current sealing of the gas density relay body Performance; or,
  • the intelligent control unit uploads the received data and/or information to the background, and the background diagnoses the received and/or calculated data and/or information monitored by the sealing performance detector, and obtains the current sealing of the gas density relay body performance.
  • the sealing performance detector includes an electric control valve, a pressure sensor, a voltage actuator, an electrode, a current detector, an oxygen sensor, a nitrogen sensor, an SF6 diagnostic sensor, a halogen sensor, a camera, an output signal contact, a thermal conductivity cell ( TCD) one or more of detectors, spectrum analyzers, and online verification units.
  • TCD thermal conductivity cell
  • the gas density relay further includes a gas leakage shutoff member, a contact isolation unit, and a gas density detection sensor on the equipment side; wherein one end of the gas leakage shutoff member is connected to the electrical equipment, and the air leakage shutoff member The other end is connected to the gas density relay body, the contact isolation unit includes an isolation connection circuit, the isolation connection circuit connects the contact of the gas density relay body and the contact signal control circuit, and the device side gas density detection sensor is arranged at On the side where the air leakage shut-off piece is connected to the electrical equipment, the equipment side gas density detection sensor is connected to the intelligent control unit; the implementation method further includes:
  • the intelligent control unit closes the gas circuit connecting the electrical equipment and the gas density relay body by controlling the leak shut-off part; when the leak shut-off part is closed, if the gas density on the equipment side If the gas density value P SB20 of the electrical equipment monitored by the detection sensor is greater than the preset threshold, the intelligent control unit controls the contact isolation unit to cut off the isolation connection circuit, so that the contact of the gas density relay body is disconnected from the contact signal control circuit; if the equipment is The gas density value P SB20 of the electrical equipment monitored by the side gas density detection sensor is less than or equal to the preset threshold. The intelligent control unit controls the contact isolation unit to close the isolation connection circuit to connect the contact of the gas density relay body with the contact signal control circuit.
  • gas density relay or gas density monitoring device
  • sealing performance self-checking which is used to monitor the gas density of gas-insulated or arc-extinguishing electrical equipment, and at the same time complete the on-line gas leakage of the gas density relay Performance monitoring improves efficiency, requires no maintenance, reduces operation and maintenance costs, and ensures the safe operation of the power grid.
  • Fig. 1 is a schematic diagram of the structure of a gas density relay with self-checking of sealing performance for high and medium voltage electrical equipment of the first embodiment
  • FIG. 2 is a schematic diagram of the front structure of a gas density relay (or gas density monitoring device) with self-checking of sealing performance for high and medium voltage electrical equipment of the second embodiment;
  • Fig. 3 is a schematic structural diagram of a gas density relay (or gas density monitoring device) with self-checking of sealing performance for high and medium voltage electrical equipment of the third embodiment;
  • FIG. 4 is a schematic diagram of the structure of a gas density relay (or gas density monitoring device) with self-checking of sealing performance for high and medium voltage electrical equipment of the fourth embodiment;
  • FIG. 5 is a schematic structural diagram of a gas density relay (or gas density monitoring device) with self-checking of sealing performance for high and medium voltage electrical equipment of the fifth embodiment
  • Fig. 6 is a schematic structural diagram of a gas density relay (or gas density monitoring device) with self-checking of sealing performance for high and medium voltage electrical equipment of the sixth embodiment;
  • FIG. 7 is a schematic structural diagram of a gas density relay (or gas density monitoring device) with self-checking of sealing performance for high and medium voltage electrical equipment of the seventh embodiment
  • FIG. 8 is a schematic structural diagram of a gas density relay (or gas density monitoring device) with self-checking of sealing performance for high and medium voltage electrical equipment of the eighth embodiment
  • FIG. 9 is a schematic structural diagram of a gas density relay (or gas density monitoring device) with self-checking of sealing performance for high and medium voltage electrical equipment of the ninth embodiment
  • FIG. 10 is a schematic structural diagram of a gas density relay (or gas density monitoring device) with self-checking of sealing performance for high and medium voltage electrical equipment of the tenth embodiment
  • Figures 11-13 are schematic diagrams of a gas density monitoring system with self-checking of sealing performance.
  • a gas density relay (or gas density monitoring device) with self-checking of sealing performance mainly includes: a gas density relay body 1, a gas leakage performance diagnostic detector 3, and an intelligent control unit 7.
  • the gas leakage performance diagnostic detector 3 described in this embodiment is arranged outside the gas density relay body 1 and includes an electric control valve 301 and a pressure sensor 302.
  • the implementation process of this example is that one end of the electronic control valve 301 is provided with an air inlet interface 30101 connected to the electrical equipment, the air inlet interface 30101 is connected to the electrical equipment through the equipment connection joint 110, and the other end of the electronic control valve 301 is connected to the electrical equipment.
  • One end is provided with a gas outlet port 30102 and is connected with the gas circuit of the gas density relay body 1.
  • the gas outlet port 30102 is connected to the pressure detector 103 (Baden tube) of the gas density relay body 1, and the pressure detector 103 (Baden tube) is filled with SF6 gas; the pressure sensor 302 is on the gas path Connect with the gas density relay body 1.
  • the electronic control valve 301 and the pressure sensor 302 are respectively connected to the intelligent control unit 7.
  • the working principle of this embodiment is that the electronic control valve 301 is closed through the intelligent control unit 7 and the collected gas pressure on the gas path of the gas density relay body 1 is uploaded to the intelligent control unit 7 or the background through the pressure sensor 302.
  • the intelligent control unit 7 or the background sends out a gas leak alarm signal and/or information; or, the gas pressure drop speed PS X on the gas path of the gas density relay body 1 is higher than When the set descending speed PS XS , the intelligent control unit 7 or the background sends out a gas leakage alarm signal and/or information; or, within the set time, the gas pressure on the gas path of the gas density relay body 1 is lower than the electric control For the gas pressure value when the valve 301 is closed, the intelligent control unit 7 or the background sends out a gas leakage alarm signal and/or information.
  • the opening or closing of the gas circuit of the gas density relay body 1 is realized by the electric control valve 302 connected with the electric equipment and the gas circuit of the gas density relay body, and the electric control valve 301 is controlled by the intelligent control unit 7 The breaking function.
  • the gas density relay body 1 includes a housing 102, a base 112, a pressure detector 103, a temperature compensation element 104, a terminal block 108, and a plurality of signal generators 109 arranged in the housing 102.
  • the pressure detector 103 includes a Baden tube or a bellows.
  • the first end of the pressure detector 103 is fixedly connected to the base 112, and the second end is fixedly connected to the end of the end base 108; the temperature compensation element 104 adopts a temperature compensation sheet or shell
  • the gas enclosed in the body 102, the temperature compensation element 104 performs temperature compensation on the pressure detector 103;
  • the signal generator 109 includes a micro switch or a magnetic-assisted electrical contact, and the gas density relay body 1 passes through the signal generator 109 outputs alarm and/or blocking contact signals.
  • the gas density relay body 1 monitors the gas density through the pressure detector 103 and the temperature compensation element 104, and outputs the gas density contact signal through the signal generator 109.
  • the principle is: based on the pressure detector 103 and using the temperature compensation element 104 to correct the changed pressure and temperature to reflect the change in the density of the (sulfur hexafluoride) gas. That is, under the pressure of the measured medium (such as SF6) gas, due to the function of the temperature compensation element 104, when the density value of sulfur hexafluoride (or other) gas changes, the pressure value of the gas changes accordingly, forcing the pressure
  • the end of the detector 103 generates a corresponding elastic deformation displacement, which is transmitted to the movement 105 by means of the temperature compensation element 104, and the movement 105 is transmitted to the pointer 106, and the measured (sulfur hexafluoride) gas density value is displayed on the scale.
  • the pressure detector 103 Indicated on the disk. If the gas leaks, the gas density value drops, and the pressure detector 103 produces a corresponding downward displacement. It passes through the temperature compensation element 104 and transmits it to the movement 105. The movement 105 transmits it to the pointer 106, and then the pointer 106 has a smaller value. The degree of air leakage is displayed on the dial; at the same time, the pressure detector 103 drives the beam to move downward through the temperature compensation element 104, and the adjusting member 107 on the beam gradually moves away from the signal generator 109.
  • the signal The contact of the generator 109 is turned on, and the corresponding contact signal (alarm or lockout) is sent out to complete the function of monitoring and controlling the gas density in the electrical switch and other equipment, so that the electrical equipment can work safely.
  • the gas density value increases, that is, when the gas density value in the sealed gas chamber is greater than the set gas density value, the density value increases accordingly, and the end of the pressure detector 103 and the temperature compensation element 104 produce a corresponding upward displacement,
  • the temperature compensation element 104 also causes the cross beam to move upward, and the adjusting member 107 on the cross beam moves upward and pushes the contact of the signal generator 109 to be disconnected, and the contact signal (alarm or lock) is released.
  • the gas path of the gas density relay body 1 is connected to the electrical equipment through the electric control valve 301, and the overall gas path is in a completely sealed state, and the sealing performance needs to be kept reliable and stable for a long time to ensure the normal operation of the electrical equipment.
  • the intelligent control unit 7 controls the electric control valve 301 to close the gas path connected to the electrical equipment.
  • the air pressure in the gas path of the gas density relay body 1 remains unchanged , And constitute an independent sealed air circuit.
  • the pressure sensor 302 is connected to the gas path of the gas density relay body 1 on the gas path, and the collected gas pressure on the gas path of the gas density relay body 1 is uploaded to the intelligent control unit 7 through the pressure sensor 302.
  • the intelligent control unit 7 receives that the gas pressure on the gas path of the gas density relay body 1 gradually decreases, indicating that the pressure detector 103 of the gas density relay body 1 is leaking, the intelligent control unit 7 or the background sends a gas leak alarm signal And/or information; or, when the gas pressure drop speed PS X on the gas path of the gas density relay body 1 is higher than the set drop speed PS XS , the intelligent control unit 7 or the background sends out a gas leak alarm signal and/or information; or In a certain period of time, the gas pressure on the gas path of the gas density relay body 1 is lower than the gas pressure value when the electric control valve 301 is closed, and the intelligent control unit 7 or the background sends out a gas leak alarm signal and/or information.
  • a temperature sensor may also be included.
  • the pressure sensor 302 and the temperature sensor obtain the density value P 20. If the gas density value P 20 on the gas path of the gas density relay body 1 gradually decreases, the intelligent control unit 7 or the background Send out a gas leakage alarm signal and/or information; or, if the gas density value P 20 on the gas path of the gas density relay body decreases at a speed P20S X higher than the set decrease speed P20S XS , the intelligent control unit 7 or the background sends a gas leak alarm Signal and/or information; or, within a set time, the gas density value P 20 on the gas path of the gas density relay body is lower than the gas density value when the electric control valve 301 is closed, and the intelligent control unit 7 or the background sends out a leak Gas alarm signal and/or information.
  • the intelligent control unit 7 controls the electric control valve 301 to reopen the gas circuit connected to the electrical equipment.
  • the gas circuit of the gas density relay body 1 and the gas circuit of the electrical equipment are again In communication with each other, the gas density relay body 1 continues to monitor the gas density of electrical equipment.
  • the equipment-side gas density detection sensor may also include an equipment-side gas density detection sensor and a contact isolation unit, where the equipment-side gas density detection sensor is arranged at the electrical control valve 301 (which can be used as a gas leakage shutoff) connected to the electrical equipment.
  • the intelligent control unit 7 is connected with the equipment-side gas density detection sensor, and is configured to monitor the gas density value P SB20 of the electrical equipment; the contact isolation unit and the intelligent control unit 7 can be set together.
  • the intelligent control unit 7 controls the electric control valve 301 (which can be used as a leakage shut-off part) , Close the gas circuit connecting the electrical equipment and the gas density relay body 1; and when the electric control valve 301 (which can be used as a gas leakage shutoff) is closed, the intelligent control unit 7 monitors the gas density of the electrical equipment through the gas density detection sensor on the equipment side Value P SB20 ; when the monitored electrical equipment gas density value P SB20 is greater than the preset threshold (generally slightly larger than the alarm value), the intelligent control unit 7 controls the contact isolation unit to make the contact of the gas density relay body 1 It is not connected to the contact signal control circuit; and when the monitored gas density value P SB20 of the electrical equipment is ⁇ the preset threshold, the intelligent control unit 7 controls the contact isolation unit to make the contact and the contact of the gas density relay body 1
  • the signal control loop is
  • the outstanding advantage of this is that when there is a gas leakage on the gas density relay body 1 side, you can control the electric control valve 301 (which can be used as a gas leakage shutoff device) to close the gas circuit connecting the electrical equipment and the gas density relay body 1 , To prevent the gas leakage from continuing to occur and prevent the gas leakage accident from continuing to occur.
  • the electric control valve 301 which can be used as a gas leakage shutoff device
  • the intelligent control unit 7 also monitors the gas density value P SB20 of the electrical equipment in real time through the gas density detection sensor on the equipment side to ensure that the electrical equipment is still operating reliably, that is, gas
  • the contact isolation unit is effective and does not cause the wrong signal to be blocked or false alarm; and when the gas density value P SB20 ⁇ the preset threshold value, the contact isolation unit is equivalent to not functioning.
  • the density relay sends out an alarm or a blocking signal.
  • the intelligent control unit 7 or the background sends out the air leakage information in time, so that the operation and maintenance personnel can know in time and deal with the air leakage event in time.
  • FIG. 2 is a schematic diagram of the front structure of a gas density relay (or gas density monitoring device) with self-checking of sealing performance for high-voltage electrical equipment according to the second embodiment of the present invention.
  • the leak performance diagnostic detector 3 in this embodiment is a pressure sensor. connect.
  • the pressure sensor 3 uploads the collected pressure signal P in the housing 102 of the gas density relay body 1 to the intelligent control unit 7.
  • the intelligent control unit 7 or the background sends out a gas leak alarm signal and/or information; or, the pressure in the housing 102 of the gas density relay body 1
  • the intelligent control unit 7 or the background sends out a gas leakage alarm signal and/or information; or, the shell of the gas density relay body 1
  • the pressure signal P shell in 102 is higher than the set pressure value P shell S , and the intelligent control unit 7 or the background sends out a gas leak alarm signal and/or information.
  • the working principle of this example is that the housing 102 of the gas density relay body 1 is a sealed cavity, and the sealed cavity is a sealed space with a relatively stable pressure, and the pressure value of the sealed space can be set within a certain range. As the set pressure value P S.
  • the pressure sensor 3 is used to detect the pressure signal P in the sealed cavity and upload the collected pressure signal P to the intelligent control unit 7. Under normal circumstances, the pressure signal P in the gas density relay body 1 is relatively stable. When the gas path of the gas density relay body 1 is leaking, the gas leaking from the gas path in the housing 102 will be sealed in the housing. In the sealed cavity of the body 102, the pressure signal P in the housing 102 of the gas density relay body 1 will increase.
  • the pressure signal P shell in the housing 102 collected by the pressure sensor 3 gradually increases, and the intelligent control unit 7 or the background sends a gas leak alarm signal and/or information; or, the gas density relay body 1 pressure signal P within the housing 102 housing the rate of increase is higher than the PS shell Z shell raising rate PS ZS, intelligent control unit is set 7 or background leakage issue an alarm signal and / or information; Alternatively, the gas density relay The pressure signal P shell in the shell 102 of the main body 1 is higher than the set pressure value P shell S , and the intelligent control unit 7 or the background sends out a gas leak alarm signal and/or information.
  • the gas density relay (or gas density monitoring device) with self-checking of sealing performance in the third embodiment of the present invention mainly includes: a gas density relay body 1, a sealing performance detector 3 and an intelligent control unit 7.
  • the sealing performance detector 3 includes a voltage exciter 305, an electrode 306, and a current detector 303.
  • the voltage exciter 305, the electrode 306, and the current detector 303 can be arranged in the housing 102 of the gas density relay body 1; or
  • the sealing performance detector 3 may further include a gas cover 304, which is arranged on the outside of the gas density relay body 1 and communicates with the housing 102 of the gas density relay body 1 to jointly form a cavity.
  • the lower part of the cavity is sealed, or the cavity is preferably a sealed cavity.
  • the cavity is configured to collect leaked gas, which is equivalent to a leaked gas collector.
  • the voltage exciter 305, the electrode 306, the current detector 303, and the intelligent control unit 7 are arranged in the gas hood 304.
  • the voltage exciter 305, the electrode 306, and the current detector 303 form a loop.
  • a certain high voltage is applied to both ends of the electrode 306 through the voltage exciter 305, and the intelligent control unit 7 directly or indirectly monitors the leakage current I of the current detector 303. Leak .
  • the intelligent control unit 7 or the background When the leakage current I leakage gradually becomes smaller, the intelligent control unit 7 or the background sends out a gas leakage alarm signal and/or information; or, the leakage current I leakage is less than the set leakage current I leakage S , and the intelligent control unit 7 or the background emits a leakage alarm. Gas alarm signal and/or information; or, the leakage current when there is no gas leakage is I leak 1 , if (I leak 1 -I leak ) ⁇ the preset threshold, the intelligent control unit 7 or the background sends out a gas leak alarm signal and/or information.
  • the working principle of this embodiment is as follows: the gas cover 304 is arranged outside the gas density relay body 1 and communicates with the housing 102 of the gas density relay body 1 to form a sealed cavity.
  • the sealed cavity is normally a gas with certain stable properties, generally dry air.
  • the voltage exciter 305, the electrode 306, and the current detector 303 arranged in the gas hood 304 constitute a loop. A certain high voltage is applied across the electrode 306 through the voltage exciter 305, and the intelligent control unit 7 directly or indirectly monitors the current detector 303.
  • the leakage current I leaks , and the leakage current I leaks is constant or remains within a certain range value under normal conditions. When the gas path of the gas density relay body 1 leaks, the leaked gas will be sealed in the sealed cavity.
  • the gas leaked from the gas path of the gas density relay body 1 is SF6 gas, which has arc extinguishing and insulating properties. Therefore, when the SF6 gas atmosphere having a content of the sealing chamber 305 is applied to the excitation voltage constant leakage current in the high voltage generated across the electrodes 306 I leak significantly reduced, by the intelligent control unit 7 or directly indirect monitoring the leakage current of the current I leak detector 303 can determine a gas density relay body leaks.
  • a gas density relay (or gas density monitoring device) with self-checking of sealing performance in the fourth embodiment of the present invention mainly includes: a gas density relay body 1, a sealing performance detector 3, and an intelligent control unit 7.
  • the sealing performance detector 3 includes an oxygen sensor and/or nitrogen sensor 307, and the oxygen sensor and/or nitrogen sensor 307 may be arranged in the housing 102 of the gas density relay body 1; or, the sealing performance detector 3 It may also include a gas hood 304 (or leaking gas collector), which is arranged outside the gas density relay body 1 and communicates with the housing 102 of the gas density relay body 1 to form a cavity (preferably Using a sealed cavity), the oxygen sensor and/or nitrogen sensor 307 and the intelligent control unit 7 are arranged in the gas hood 304.
  • the oxygen sensor and/or nitrogen sensor 307 is connected to the intelligent control unit 7.
  • the intelligent control unit 7 monitors the oxygen concentration and/or nitrogen concentration C, the oxygen concentration and/or nitrogen concentration C through the oxygen sensor and/or nitrogen sensor 307 When it is lower than the set preset threshold, the intelligent control unit 7 or the background sends out a gas leak alarm signal and/or information; or, the monitored oxygen concentration and/or nitrogen concentration C is lower than the normal oxygen concentration and/or When the nitrogen concentration is present, the intelligent control unit 7 or the background sends out a gas leakage alarm signal and/or information.
  • the working principle of this embodiment is as follows: the gas cover 304 is arranged outside the gas density relay body 1 and communicates with the housing 102 of the gas density relay body 1 to jointly form a sealed cavity.
  • the sealed cavity is normally a gas with certain stable properties, generally one or more of dry air, nitrogen or other mixed oxygen gas. Under normal circumstances, the amount of dry air in the sealed cavity is fixed, and the oxygen sensor and/or nitrogen sensor 307 is used to monitor the oxygen concentration and/or nitrogen concentration C in the dry air, that is to say, the oxygen concentration and/or The nitrogen concentration C is constant.
  • the gas path of the gas density relay body 1 leaks, the leaked gas will be sealed in the sealed cavity, which will affect the original oxygen concentration and/or nitrogen concentration C, and reduce the value of the measured concentration C.
  • the intelligent control unit 7 monitors the oxygen concentration and/or nitrogen concentration C through the oxygen sensor and/or nitrogen sensor 307. When the oxygen concentration and/or nitrogen concentration C is lower than the set preset threshold, the intelligent control unit 7 or background sends out Leak alarm signal and/or information; or, when the monitored oxygen concentration and/or nitrogen concentration C is lower than the normal oxygen concentration and/or nitrogen concentration, the intelligent control unit 7 or the background will issue a leak alarm signal and/or information.
  • the gas density relay (or gas density monitoring device) with self-checking of sealing performance in the fifth embodiment of the present invention mainly includes: a gas density relay body 1, a sealing performance detector 3, and an intelligent control unit 7.
  • the sealing performance detector 3 is an SF6 diagnostic sensor 308, and the SF6 diagnostic sensor 308 can be arranged in the housing 102 of the gas density relay body 1.
  • the sealing performance detector 3 can also include a gas hood 304 (or leaking gas).
  • Collector the gas cover 304 is arranged on the outside of the gas density relay body 1 and communicates with the housing 102 of the gas density relay body 1 to form a cavity (preferably a sealed cavity).
  • the SF6 diagnosis The sensor 308 and the intelligent control unit 7 are arranged in the gas hood 304.
  • the SF6 diagnostic sensor 308 includes, but is not limited to, one of an ultrasonic sensor, an infrared sensor, an external laser sensor, and a gas-sensitive semiconductor sensor.
  • the SF6 diagnostic sensor 308 is connected to the intelligent control unit 7.
  • the intelligent control unit 7 monitors the SF6 gas concentration through the SF6 diagnostic sensor 308. When the SF6 gas concentration is higher than the set preset threshold, the intelligent control unit 7 or the background emits a leak Gas alarm signal and/or information; or, when the monitored SF6 gas concentration is higher than the normal SF6 gas concentration, the intelligent control unit 7 or the background sends out a gas leak alarm signal and/or information.
  • the working principle of this embodiment is as follows: the gas cover 304 is arranged outside the gas density relay body 1 and communicates with the housing 102 of the gas density relay body 1 to form a sealed cavity.
  • the sealed cavity is normally a gas with certain stable properties, generally one or more of dry air, nitrogen or other mixed oxygen gas. Under normal circumstances, the amount of dry air in the sealed cavity is fixed, and the SF6 diagnostic sensor 308 is used to monitor the SF6 gas concentration in the dry air, that is, the SF6 gas concentration in the sealed cavity is fixed.
  • the intelligent control unit 7 monitors the SF6 gas concentration through the SF6 diagnostic sensor.
  • the intelligent control unit 7 or the background When the monitored SF6 gas concentration is higher than the set preset threshold, the intelligent control unit 7 or the background sends out a gas leak alarm signal and/or information; or, the monitored SF6 gas concentration is higher than the preset threshold. When the SF6 gas concentration is higher than the normal SF6 gas concentration, the intelligent control unit 7 or the background sends out a gas leakage alarm signal and/or information.
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • the gas density relay (or gas density monitoring device) with self-checking of sealing performance of the sixth embodiment of the present invention mainly includes: a gas density relay body 1, a sealing performance detector 3 and an intelligent control unit 7.
  • the sealing performance detector 3 includes an electric control valve 301 and a camera 309.
  • the electric control valve 301 is arranged outside the gas density relay body 1.
  • the other end of the electronic control valve 301 is provided with a gas outlet port 30102 and is connected to the gas circuit of the gas density relay body 1.
  • the implementation process of this embodiment is: the gas outlet port 30102 is connected to the pressure detector 103 of the gas density relay body 1. Connected, the pressure detector 103 is filled with SF6 gas.
  • the camera 309 is arranged outside (or inside the body) of the gas density relay body 1, and the camera 309 is arranged corresponding to the display part of the gas density relay body 1.
  • the electric control valve 301 and the camera 309 are respectively connected to the intelligent control unit 7.
  • the working principle is as follows: the electric control valve 301 is closed through the intelligent control unit 7, and the camera 309 obtains the gas density value P 20 on the gas path of the gas density relay body 1 through image recognition technology, and the collected gas density value on the gas path of the gas density relay body 1
  • the gas density value P 20 is uploaded to the intelligent control unit 7.
  • the gas density value P 20 on the gas path of the gas density relay body 1 gradually decreases, and the intelligent control unit 7 or the background sends out a gas leak alarm signal and/or information; or, the gas density value P 20 on the gas path of the gas density relay body 1
  • the intelligent control unit 7 or the background sends out a gas leakage alarm signal and/or information; or, within a certain period of time, the gas density on the gas path of the gas density relay body 1
  • the value P 20 is lower than the gas density value when the electronic control valve 301 is closed, and the intelligent control unit 7 or the background sends out a gas leakage alarm signal and/or information.
  • the sealing performance detector 3 further includes a test paper or chemical change reagent 311, and the test paper or chemical change reagent 311 is arranged on the gas density relay body 1.
  • the test paper or chemical change reagent 311 changes color
  • the camera 309 obtains the image of the discolored test paper 311 through image recognition technology, obtains the gas leakage information of the gas density relay, and the intelligent control unit 7 or the background sends out Air leak alarm signal and/or information.
  • the above-mentioned camera 309 can move and/or rotate, and can take pictures from multiple angles.
  • the camera 309 can also be provided with a shield 310.
  • the camera 309 obtains the information of the gas density relay through image recognition technology, including, but not limited to, air leakage performance, water ingress, rust, foreign body intrusion, blurred dial, rubber aging, rubber fracture, device damage, device falling, device card One or more types of stagnation.
  • the gas density relay (or gas density monitoring device) with sealing performance self-checking according to the seventh embodiment of the present invention mainly includes: a gas density relay body 1, a sealing performance detector 3 and an intelligent control unit 7.
  • the sealing performance detector 3 is composed of an output signal contact 1012, the output signal contact 1012 is arranged on the gas density relay body 1, and on the circuit, the output signal contact 1012 is connected to the intelligent control unit 7.
  • the output signal contact 1012 on the gas density relay body 1 acts, and the intelligent control unit 7 or the background sends out a gas leakage alarm signal and/or information.
  • the sealing performance detector 3 includes an electric control valve 301 and an output signal contact 1012.
  • the electronic control valve 301 is arranged outside the gas density relay body 1, one end of the electronic control valve 301 is provided with an air inlet port 30101 connected to electrical equipment, and the other end of the electronic control valve 301 is provided with an air outlet port 30102, It is connected to the gas circuit of the gas density relay body 1.
  • the gas outlet port 30102 is connected to the pressure detector 103 of the gas density relay body 1, and the pressure detector 103 is filled with SF6 gas; the output signal contact 1012 is installed on the gas density relay body 1.
  • the electric control valve 301 and the output signal contact 1012 are respectively connected to the intelligent control unit 7, and the electric control valve 301 is closed by the intelligent control unit 7.
  • the output signal on the gas density relay body 1 The contact 1012 acts, and the intelligent control unit 7 or the background sends out a gas leak alarm signal and/or information.
  • the output signal contact 1012 is set on the gas density relay body 1, based on the pressure detector 103 and through the adjustment member 1013 fixed on the terminal base 108 to trigger the output signal contact 1012 to act.
  • the density value of sulfur hexafluoride (or other) gas in the gas path of the gas density relay body 1 changes due to gas leakage, the pressure value of the gas changes accordingly, forcing the end of the pressure detector 103 to produce a corresponding elastic deformation displacement .
  • the output signal contact 1012 is triggered to act by driving the adjusting member 1013.
  • the output signal contact 1012 on the gas density relay body 1 acts, and the intelligent control unit 7 or the background sends out a gas leakage alarm signal and/or information.
  • the sealing performance detector 3 further includes an electronic control valve 301, and the electronic control valve 301 is closed by the intelligent control unit 7. At this time, the air pressure in the gas path of the gas density relay body 1 remains unchanged, and an independent seal is formed. Gas line.
  • the pressure value of the gas changes accordingly, forcing the end of the pressure detector 103 to generate The corresponding elastic deformation displacement drives the adjusting member 1013 to trigger the output signal contact 1012 to act.
  • the output signal contact 1012 on the gas density relay body 1 acts, and the intelligent control unit 7 or the background sends out a gas leakage alarm signal and/or information.
  • Embodiment 8 is a diagrammatic representation of Embodiment 8
  • the eighth embodiment of the present invention has a gas density relay (or gas density monitoring device) with self-checking of sealing performance, which mainly includes: a gas density relay body 1, a sealing performance detector 3, and an intelligent control unit 7.
  • the sealing performance detector 3 includes a thermal conductivity cell (TCD) detector and/or a spectrum analyzer 312, and the thermal conductivity cell (TCD) detector and/or a spectrum analyzer 312 can be installed in the gas density relay body 1.
  • the sealing performance detector 3 may further include a gas cover 304, which is arranged outside the gas density relay body 1 and communicates with the housing 102 of the gas density relay body 1, A sealed cavity is formed together, and the thermal conductivity cell (TCD) detector and/or spectrum analyzer 312 and the intelligent control unit 7 are arranged in the gas hood 304.
  • TCD thermal conductivity cell
  • the thermal conductivity cell (TCD) detector and/or spectrum analyzer 312 is connected to the intelligent control unit 7, and the intelligent control unit 7 monitors the inside of the sealed cavity through the thermal conductivity cell (TCD) detector and/or spectrum analyzer 312 SF6 gas concentration, when the monitored SF6 gas concentration is higher than the set preset threshold, the intelligent control unit 7 or the background sends out a gas leak alarm signal and/or information; or, the monitored SF6 gas concentration is higher than the normal When the concentration of SF6 gas, the intelligent control unit 7 or the background sends out a gas leakage alarm signal and/or information.
  • TCD thermal conductivity cell
  • the working principle of this embodiment is as follows: the gas cover 304 is arranged outside the gas density relay body 1 and communicates with the housing 102 of the gas density relay body 1 to form a sealed cavity.
  • the sealed cavity is normally a gas with certain stable properties, and is generally not limited to one or more of dry air, nitrogen or other mixed oxygen gases. Under normal circumstances, the amount of dry air in the sealed cavity is fixed, and the thermal conductivity cell (TCD) detector and/or spectrum analyzer 312 is used to monitor the concentration of SF6 gas in the dry air, that is to say , The SF6 gas concentration in the sealed cavity is fixed. When the gas path of the gas density relay body 1 leaks, the leaked gas will be sealed in the sealed cavity, which will increase the SF6 gas concentration in the sealed cavity.
  • TCD thermal conductivity cell
  • the intelligent control unit 7 monitors the SF6 gas concentration through a thermal conductivity cell (TCD) detector and/or spectrum analyzer 312. When the monitored SF6 gas concentration is higher than the set preset threshold, the intelligent control unit 7 or the background emits a leak Gas alarm signal and/or information; or, when the monitored SF6 gas concentration is higher than the normal SF6 gas concentration, the intelligent control unit 7 or the background sends out a gas leak alarm signal and/or information.
  • TCD thermal conductivity cell
  • a gas density relay (or gas density monitoring device) with self-checking of sealing performance in the ninth embodiment of the present invention mainly includes: a gas density relay body 1, a sealing performance detector 3 and an intelligent control unit 7.
  • the sealing performance detector 3 includes an online verification unit 313 that includes a gas density detection sensor 31301, a pressure adjustment mechanism 31302, an online verification contact signal sampling unit 31303, and an electronic control valve 31304.
  • the working principle of this embodiment is as follows: wherein the gas path of the pressure regulating mechanism 31302 is in communication with the gas density relay body 1 and one end (the gas outlet end) of the electric control valve 31304, and the pressure regulating mechanism 30102 is configured to regulate The gas pressure of the gas density relay body 1 rises and falls to cause the contact signal control part of the gas density relay body 1 (such as a signal generator, including a micro switch or a magnetic-assisted electric contact) to generate a contact signal action;
  • the other end (intake end) of the control valve 31304 is connected to the electrical equipment 8 through the multi-way connector 9;
  • the online check contact signal sampling unit 31303 is connected to the contact signal control part of the gas density relay body 1, and is It is configured to sample the contact signal of the contact signal control part of the gas density relay body 1;
  • the gas density detection sensor 31301 communicates with the contact signal control part of the gas density relay body 1 on the gas path, and is configured to collect the gas density relay body 1 temperature value, pressure value, and/or gas
  • the electronic control valve 31304 is connected and is configured to complete the control of the pressure adjustment mechanism 31302, pressure value collection, temperature value collection, and/or gas density value collection, and detect the contact signal control part of the gas density relay body 1 The contact signal action value and/or the contact signal return value, and control the closing or opening of the electronic control valve 31304.
  • the intelligent control unit 7 or the background When the detected contact signal action value is less than the set preset threshold value, the intelligent control unit 7 or the background sends out a gas leak alarm signal and/or information; or, at time T1, the detected contact signal action value is P 20T1 ; After a certain period of time, at time T2, the detected contact signal action value is P 20T2 ; when (P 20T1 -P 20T2 ) ⁇ the preset threshold, the intelligent control unit 7 or the background sends out a gas leak alarm signal and/or information.
  • the pressure adjusting mechanism 30102 of this embodiment is a cavity with one end open, the cavity has a piston, the piston is provided with a sealing ring, one end of the piston is connected with an adjusting rod, and the outer end of the adjusting rod is connected with the drive Component, the other end of the piston extends into the opening and is in contact with the inner wall of the cavity, and the driving component drives the adjusting rod to drive the piston to move in the cavity.
  • the drive components include, but are not limited to, a magnetic drive mechanism, a motor, a reciprocating motion mechanism, a Carnot cycle mechanism, a magnetic coupling thrust mechanism, a heating generating thrust mechanism, an electric heating generating thrust mechanism, a chemical reaction generating thrust mechanism, and pneumatic components. A sort of.
  • the pressure adjusting mechanism 30102 may further include a sealing element coupling member, the sealing element coupling element is arranged between the cavity and the driving part, so that the adjusting rod passes through the sealing element coupling element to be connected to the driving part, Ensure that the entire pressure regulating mechanism 30102 has good sealing performance.
  • the seal coupling includes, but is not limited to, one of a bellows, an air bag, and a sealing ring.
  • the pressure adjusting mechanism 30102 may also be composed of a bellows and a driving part, and the bellows and the gas path of the gas density relay body 1 are sealed together to form a reliable sealed cavity. According to the control of the intelligent control unit 7, the pressure adjusting mechanism 30102 causes the driving component to push the bellows to change in volume, and then the sealed cavity to change in volume, thereby completing the lifting and lowering of the gas pressure of the gas density relay body 1.
  • the pressure adjustment mechanism 30102 may also be composed of a gas chamber, a heating element, and a heat insulating member.
  • the gas chamber and the gas path of the gas density relay body 1 are sealed together, and the outside of the gas chamber (or Inside) there is a heating element, which causes temperature change through heating, and then completes the rise and fall of the gas pressure of the gas density relay body 1.
  • pressure adjusting mechanism 30102 can also have many other forms, which are not limited to the above-listed ones, and other mechanisms that can realize the gas pressure lifting function are also covered by the protection scope of the present application.
  • FIG. 10 is a schematic diagram of the front structure of a gas density relay (or gas density monitoring device) with self-checking of sealing performance for high-voltage electrical equipment according to the tenth embodiment of the present invention.
  • this embodiment also adds a multi-way connector 9, an air leakage shutoff member 10, a contact isolation unit 11, and a device-side gas density detection sensor 12.
  • the intelligent control unit 7 is respectively connected with the air leakage shut-off component 10, the contact isolation unit 11, and the gas density detection sensor 12 on the equipment side.
  • the shut-off member 10 is configured to close the gas circuit connecting the electrical equipment 8 and the gas density relay body 1 side when the sealing performance of the gas density relay body 1 side is problematic.
  • the contact isolation unit 11 is also directly or indirectly connected to the gas density relay body 1 and is configured to disconnect the contact of the gas density relay body 1 and the contact signal control circuit when the gas leakage shutoff 10 is closed.
  • the device-side gas density detection sensor 12 (in this case, a pressure sensor and a temperature sensor, or a pressure sensor and a temperature sensor on the online calibration can be used) is arranged on the side where the air leakage shut-off member 10 is connected to the electrical device 8.
  • the intelligent control unit 7 is connected to the gas density detection sensor 12 on the equipment side, and is configured to monitor the gas density value P SB20 of the electrical equipment 8.
  • the contact isolation unit 11 and the intelligent control unit 7 can be arranged together.
  • the principle of air leakage monitoring in this embodiment is the same as that in Embodiment 2, and will not be repeated here. The difference is that when air leakage occurs on the side of the gas density relay body 1, you can control the air leakage shut-off piece 10 to close the gas circuit connecting the electrical equipment 8 and the gas density relay body 1 side to prevent the leakage from continuing to occur. That is to prevent the leakage accident from continuing to occur.
  • the air leakage shutoff 10 in this embodiment may include one of an electric control valve, an electromagnetic valve, an electric control self-sealing valve, and a temperature control valve.
  • the intelligent control unit 7 shuts down the electrical equipment 8 by controlling the gas leakage shut-off piece 10
  • the intelligent control unit 7 also monitors the gas density value P SB20 of the electrical equipment 8 in real time through the equipment side gas density detection sensor 12, and controls the contact isolation unit 11 in real time according to the situation to ensure The electrical equipment 8 is still operating reliably, that is, when the gas density value P SB20 is greater than the preset threshold value, the contact isolation unit 11 plays a role and does not upload the wrong signal to cause blocking or false alarm; and when the gas density value P SB20 ⁇ the preset threshold value , The contact isolation unit 11 is equivalent to not working, and the gas density relay body 1 sends out an alarm or a blocking signal.
  • the intelligent control unit 7 or the background sends out the air leakage information in time, so that the operation and maintenance personnel can know in time and deal with the air leakage event in time.
  • the air leakage problem of the gas density relay body 1 can be avoided, and the emission of SF6 gas into the air can be reduced, which is safer and is also beneficial to environmental protection.
  • the above-mentioned gas leakage on the side of the gas density relay body 1 generally refers to the gas density relay body 1 (such as Baden tube, welding place, connection), or part of the sealing performance detector, or online verification unit (such as gas density detection) Sensors, pressure regulating mechanism) and other devices or components have air leakage.
  • the gas density relay After the gas density relay completes the gas leakage performance diagnosis of the gas density relay body 1, if there is an abnormality, it can automatically send an alarm, which can be uploaded to the remote end, or can be sent to a designated receiver, such as a mobile phone.
  • the communication method is wired or wireless.
  • the wired communication method can be RS232, RS485, CAN-BUS and other industrial buses, optical fiber Ethernet, 4-20mA, Hart, IIC, SPI, Wire, coaxial cable, PLC power carrier, etc.;
  • the wireless communication method can be 2G/3G/4G/5G, etc., WIFI, Bluetooth, Lora, Lorawan, Zigbee, infrared, ultrasonic, sound wave, satellite, light wave, quantum communication, sonar, sensor built-in 5G/NB-IOT communication module (such as NB-IOT) and so on.
  • multiple methods and multiple combinations can be used to fully ensure the reliable performance of the gas density relay.
  • Figures 11-13 show a gas density system with self-checking of sealing performance.
  • the gas density monitoring system includes the above-mentioned gas density relay (or gas density monitoring device) with self-checking of sealing performance.
  • a number of electrical equipment with gas chambers and a number of gas density relays (or gas density monitoring devices) with self-checking of sealing performance are connected to the remote background detection system through a hub and an IEC61850 protocol converter in turn;
  • gas density relays (or gas density monitoring devices) with self-checking of sealing performance are respectively arranged on the electrical equipment corresponding to the gas chamber.
  • PC is the online monitoring background host and system
  • Gateway is the network switch
  • Server is the integrated application server
  • ProC is the protocol converter/online monitoring intelligent unit
  • HUB is the hub
  • Z is the self-sealing performance.
  • the online monitoring system architecture includes detailed system diagrams such as simple architecture ( Figure 11), conventional architecture ( Figure 12), and complex architecture.
  • System architecture diagram and simple description 1), background software platform: based on Windows, Linux and others, or VxWorks, Android, Unix, UCos, FreeRTOS, RTX, embOS, MacOS. 2) Key business modules and basic functions of the background software: such as authority management, equipment management, data storage in query, etc.; and user management, alarm management, real-time data, historical data, real-time curve, historical curve, configuration management, data collection, Data analysis, recording conditions, and exception handling. 3). Interface configuration: such as Form interface, Web interface, configuration interface, etc.
  • the online monitoring background host and the system PC communicate with multiple hubs HUB (HUB1, HUB2,...HUBm) through the hub HUB0.
  • Each hub HUB is connected to a set of gas density relays (or gas density monitoring devices) Z with self-checking of sealing performance
  • the hub HUB1 is connected to gas density relays (or gas density monitoring devices) Z11, Z12, ... ...Z1n
  • hub HUBm is connected to a gas density relay (or gas density monitoring Device) Zm1, Zm2, ... Zmn, where m and n are all natural numbers.
  • the online monitoring background host and system PC are connected to two integrated application servers Server1 and Server2 through the network switch Gateway.
  • the two integrated application servers Server1 and Server2 are connected to multiple protocol converters through the station control layer A network and B network.
  • /Online monitoring intelligent unit ProC ProC1, ProC2,...ProCn
  • protocol converter/online monitoring intelligent unit ProC communicates with multiple hubs (HUB1, HUB2,...HUBm) through the R5485 network.
  • Each hub HUB is connected to a set of gas density relays (or gas density monitoring devices) Z with self-checking of sealing performance, for example, the hub HUB1 is connected to gas density relays (or gas density monitoring devices) Z11, Z12, ...
  • hub HUB2 is connected to a gas density relay (or gas density monitoring device) with sealing performance self-checking Z21, Z22, isingZ2n, ...
  • hub HUBm is connected to a gas density relay (or gas density monitoring Device) Zm1, Zm2, ... Zmn, where m and n are all natural numbers.
  • Figure 13 is a system diagram of the wireless transmission mode architecture.
  • the dashed box in the figure indicates that the wireless module Wn and the gas density relay Zn can be integrated or separated, and the specific scheme can be flexible.
  • Multiple integrated application servers Server1, Server2,...Server n communicate wirelessly with each gas density relay through cloud Cluod, wireless gateway (Wireless Gateway), and wireless modules of each gas density relay.
  • n is a natural number.
  • the gas density relay (or gas density monitoring device) with self-checking of sealing performance can diagnose whether the gas density relay (or gas density monitoring device) is leaking and send out a gas leak alarm signal and/or information.
  • the gas density relay with self-checking of sealing performance described in this application generally refers to its constituent elements designed into an integrated structure; while the gas density monitoring device with self-checking of sealing performance generally refers to its constituent elements. Design a body structure, flexible composition.
  • the gas density relay can utilize the original gas density relay of the substation for technical transformation and upgrading.
  • the sealing performance detector includes an oxygen sensor and/or a nitrogen sensor and a gas hood.
  • the gas hood is arranged on the outside of the gas density relay body. The leaking area is covered to form a cavity, and the oxygen sensor and/or nitrogen sensor (or other sealing performance detector) are arranged in the gas cover.
  • the gas hood is configured to collect the leaking gas, which is convenient for accumulating more leaking gas and can make the test more accurate.
  • the gas hood can be set accordingly as required.
  • the sealing performance detector is set inside or outside the gas density relay body, and is connected to the gas path in the gas density relay body, or is connected to the cavity formed by the gas hood, and is formed by collecting the gas path or the gas hood.
  • the gas pressure change, or the current change, or the gas concentration change, or the gas density value change in the cavity obtain the leakage information of the gas density relay body or device.

Abstract

一种具有密封性能自检的气体密度继电器,包括气体密度继电器本体(1)、密封性能检测器(3)和智控单元(7);密封性能检测器与(3)气体密度继电器本体(1)的气路相连通,或与气体密度继电器本体(1)内的密封腔体连通,获取气体密度继电器本体(1)的漏气信息;智控单元(7)与密封性能检测器(3)相连接,接收和/或计算密封性能检测器(3)监测的数据或/和信息,并进行诊断,获取气体密度继电器本体(1)的当前密封性能;或者,智控单元(7)将接收的数据或/和信息上传至后台,后台进行诊断,获取气体密度继电器本体(1)的当前密封性能,还公开了一种具有密封性能自检的气体密度继电器的实现方法,对气体绝缘或灭弧的电气设备气体密度进行监测的同时,还完成对气体密度继电器的在线漏气性能监测,降低了运行维护成本,保障电网安全运行。

Description

具有密封性能自检的气体密度继电器及其实现方法
本申请请求 20200429日申请的申请号为 202010355134.0(发明名称: 具有密封性能自检的气体密度继电器及其实现方法)的中国专利申请的优先权。
技术领域
本发明涉及电力技术领域,具体涉及一种应用在高压、中压电气设备上、具有密封性能自检的气体密度继电器及其实现方法。
背景技术
目前,SF6(六氟化硫)电气设备已广泛应用在电力部门、工矿企业,促进了电力行业的快速发展。近年来,随着经济高速发展,我国电力系统容量急剧扩大,SF6电气设备用量越来越多。SF6气体在高压电气设备中的作用是灭弧和绝缘,高压电气设备内SF6气体的密度降低和微水含量如果超标将严重影响SF6高压电气设备的安全运行:1)SF6气体密度降低至一定程度将导致绝缘和灭弧性能的丧失。2)在一些金属物的参与下,SF6气体在高温200℃以上温度可与水发生水解反应,生成活泼的HF和SOF 2,腐蚀绝缘件和金属件,并产生大量热量,使气室压力升高。3)在温度降低时,过多的水分可能形成凝露水,使绝缘件表面绝缘强度显著降低,甚至闪络,造成严重危害。因此电网运行规程强制规定,在设备投运前和运行中都必须对SF6气体的密度和含水量进行定期检测。另外,目前大量使用的充油型电接点式密度继电器,从实际运行情况来看,这些密度继电器观察窗(表玻璃)处的漏气性能现象非常普遍,严重影响系统的安全和可靠。由于漏气的气体密度继电器的性能会大大降低,同时漏出的油会影响电气设备的可靠工作,因此需要及时发现和处理。
随着无人值守变电站向网络化、数字化方向发展以及对遥控、遥测的要求不断加强,对SF6电气设备的气体密度和微水含量状态的在线监测具有重要的现实意义。随着中国智能电网的不断大力发展,智能高压电气设备作为智能变电站的重要组成部分和关键节点,对智能电网的安全起着举足轻重的作用。高压电气设备目前大多为SF6气体绝缘设备,如果气体密度降低(如泄漏等引起)将严重影响设备的电气性能,对安全运行造成严重隐患。目前 在线监测SF6高压电气设备中的气体密度值已经非常普遍了,为此气体密度监测系统(气体密度继电器)应用将蓬勃发展。而现有的气体密度监测系统(气体密度继电器)基本上是:1)应用远传式SF6气体密度继电器实现密度、压力和温度的采集,上传,实现气体密度在线监测。2)应用气体密度变送器实现密度、压力和温度的采集,上传,实现气体密度在线监测。SF6气体密度继电器是核心和关键部件,远传式SF6气体密度继电器或气体密度变送器是核心和关键部件,对其如何保证正常工作非常关键。3)以及漏气的气体密度继电器,其性能会大大降低,同时漏出的油会影响电气设备的可靠工作,需要进行在线监测,及时发现并及时处理。
因此,现在非常有必要研发出一种具有密封性能自检的气体密度继电器或气体密度监测装置,应用在基于泛在电力物联网的气体密度监测系统中,有利于现有气体密度继电器壳体的密封性能检测,实现免维护,提高效率,保证安全。
发明内容
本发明的目的在于提供一种高压或中压电气设备用的、具有密封性能自检的气体密度继电器(或气体密度监测装置)及实现方法,用于对气体绝缘或灭弧的电气设备气体密度进行监测的同时,还能对气体密度继电器进行在线漏气性能监测,提高了效率,无需维护,降低了运行维护成本,保障了电网安全运行。
为实现上述目的,本发明采用以下技术方案:
本申请第一个方面提供了一种具有密封性能自检的气体密度继电器(或气体密度监测装置),包括:气体密度继电器本体、密封性能检测器和智控单元;其中,
所述密封性能检测器,设置在气体密度继电器本体内或本体外,与气体密度继电器本体内的气路相连通,或与气体密度继电器本体的内部腔体相连通,通过采集气路上或内部腔体内的气体压力变化、或电流变化、或气体浓度变化、或气体密度值变化,获取气体密度继电器本体的漏气信息;
所述智控单元,与所述密封性能检测器相连接,接收和/或计算所述密封性能检测器监测的数据和/或信息,并进行诊断,获取气体密度继电器本体的当前密封性能;或者,所述智控单元将接收的数据和/或信息上传至后台,所述后台对接收和/或计算所述密封性能检测器监测的数据和/或信息进行诊断,获取气体密度继电器本体的当前密封性能。
其中,上述具有密封性能自检的气体密度继电器指的是其组成元件设计成一体结构;而 具有密封性能自检的气体密度监测装置指的是其组成元件设计成分体结构,灵活组成。
优选地,所述密封性能检测器包括电控阀、压力传感器、电压激励器、电极、电流检测器、氧气传感器、氮气传感器、SF6诊断传感器、卤素传感器、摄像机、输出信号接点、热导池(TCD)检测器、光谱分析器、在线校验单元中的一种或几种。
更优选地,所述密封性能检测器设置在气体密度继电器本体外,包括电控阀和压力传感器;所述电控阀的一端设有与电气设备连接的进气接口,另一端设有与气体密度继电器本体的气路连通的出气接口;所述压力传感器与气体密度继电器本体的气路相连通;所述电控阀与所述智控单元相连接,在智控单元的控制下关闭或开启,所述压力传感器与所述智控单元相连接,将采集到的气体密度继电器本体的气路上的气体压力发送给智控单元;
气体密度继电器本体的气路上的气体压力逐渐变小,智控单元或后台发出漏气报警信号和/或信息;或者,气体密度继电器本体的气路上的气体压力下降速度PS X高于所设定的下降速度PS XS,智控单元或后台发出漏气报警信号和/或信息;或者,在设定时间内,气体密度继电器本体的气路上的气体压力低于所述电控阀关闭时的气体压力值,智控单元或后台发出漏气报警信号和/或信息。
更优选地,所述密封性能检测器为压力传感器,设置在气体密度继电器本体的壳体内,所述压力传感器与所述智控单元相连接,将采集到的气体密度继电器本体的壳体内的压力信号P 发送给智控单元;
气体密度继电器本体的壳体内的压力信号P 逐渐变大,智控单元或后台发出漏气报警信号和/或信息;或者,气体密度继电器本体的壳体内的压力信号P 升高速度PS 壳Z高于所设定的升高速度PS 壳ZS,智控单元或后台发出漏气报警信号和/或信息;或者,气体密度继电器本体的壳体内的压力信号P 高于所设定的压力值P 壳S,智控单元或后台发出漏气报警信号和/或信息。
更优选地,所述密封性能检测器包括电压激励器、电极、电流检测器,所述电压激励器、电极、电流检测器设置在气体密度继电器本体的壳体内;或者,所述密封性能检测器包括电压激励器、电极、电流检测器和气罩,所述气罩设置在气体密度继电器本体的外部,且与所述气体密度继电器本体的壳体相连通,所述气罩与所述壳体的内部腔体共同形成一个腔体,所述电压激励器、电极和电流检测器设置在所述气罩内;
所述电压激励器、电极、电流检测器构成回路,通过电压激励器在电极两端施加高电压,智控单元监测电流检测器的泄漏电流I 泄漏
泄漏电流I 泄漏逐渐变小,智控单元或后台发出漏气报警信号和/或信息;或者,泄漏电流I 泄漏小于所设定的泄漏电流I 泄漏S,智控单元或后台发出漏气报警信号和/或信息;或者,没有漏气时的泄漏电流为I 泄漏1,若(I 泄漏1-I 泄漏)≥预设阈值,智控单元或后台发出漏气报警信号和/或信息。
更优选地,所述密封性能检测器包括氧气传感器和/或氮气传感器,所述氧气传感器和/或氮气传感器设置在气体密度继电器本体的壳体内;或者,所述密封性能检测器包括氧气传感器和/或氮气传感器和气罩,所述气罩设置在气体密度继电器本体的外部,且与所述气体密度继电器本体的壳体相连通,所述气罩与所述壳体的内部腔体共同形成一个腔体,所述氧气传感器和/或氮气传感器设置在所述气罩内;
所述智控单元通过氧气传感器和/或氮气传感器监测壳体内的氧气浓度和/或氮气浓度,所监测的氧气浓度和/或氮气浓度低于所设定的预设阈值时,智控单元或后台发出漏气报警信号和/或信息;或者,所监测的氧气浓度和/或氮气浓度低于正常时的氧气浓度和/或氮气浓度时,智控单元或后台发出漏气报警信号和/或信息。
更优选地,所述密封性能检测器包括SF6诊断传感器,所述SF6诊断传感器设置在气体密度继电器本体的壳体内;或者,所述密封性能检测器包括SF6诊断传感器和气罩,所述气罩设置在气体密度继电器本体的外部,且与所述气体密度继电器本体的壳体相连通,所述气罩与所述壳体的内部腔体共同形成一个腔体,所述SF6诊断传感器设置在所述气罩内;
所述智控单元通过SF6诊断传感器监测壳体内的SF6气体浓度,所监测的SF6气体浓度高于设定的预设阈值时,智控单元或后台发出漏气报警信号和/或信息;或者,所监测的SF6气体浓度高于正常时的SF6气体浓度时,智控单元或后台发出漏气报警信号和/或信息。
进一步地,所述SF6诊断传感器包括超声波传感器、红外传感器、激光外传感器、气敏半导体传感器中的一种。
更优选地,所述密封性能检测器设置在气体密度继电器本体外,包括电控阀和摄像机;所述电控阀的一端设有与电气设备连接的进气接口,另一端设有与气体密度继电器本体的气路连通的出气接口;所述摄像机与气体密度继电器本体的显示部件相对应设置;所述电控阀与所述智控单元相连接,在智控单元的控制下关闭或开启,所述摄像机通过图像识别技术获取气体密度继电器本体的气路上的气体密度值,并将气体密度值发送给智控单元;
气体密度继电器本体的气路上的气体密度值逐渐变小,智控单元或后台发出漏气报警信号和/或信息;或者,气体密度继电器本体的气路上的气体密度值下降速度PS 20X高于所设 定的下降速度PS 20XS时,智控单元或后台发出漏气报警信号和/或信息;或者,在设定时间内,气体密度继电器本体的气路上的气体密度值低于所述电控阀关闭时的气体密度值,智控单元或后台发出漏气报警信号和/或信息。
进一步地,所述密封性能检测器还包括试纸或化学变化试剂,所述试纸或化学变化试剂设置在气体密度继电器本体上,气体密度继电器出现漏气时,所述试纸或化学变化试剂发生变色,所述摄像机通过图像识别技术获取变色的图像,获取气体密度继电器的漏气信息,智控单元或后台发出漏气报警信号和/或信息。
进一步地,所述摄像机可移动和/或转动。
进一步地,所述摄像机设有护罩。
进一步地,所述摄像机通过图像识别技术获取气体密度继电器的信息包括漏气、进水、生锈、异物侵入、表盘模糊、橡胶老化、橡胶断裂、器件破损、器件掉落、器件卡滞中的一种或几种。
更优选地,所述密封性能检测器为输出信号接点,所述输出信号接点设置在气体密度继电器本体上,与智控单元相连接;所述智控单元或后台在所述输出信号接点动作时发出漏气报警信号和/或信息;或者,
所述密封性能检测器包括电控阀和输出信号接点,所述电控阀设置在气体密度继电器本体外,所述电控阀的一端设有与电气设备连接的进气接口,另一端设有与气体密度继电器本体的气路连通的出气接口,所述电控阀与所述智控单元相连接,在智控单元的控制下关闭或开启;所述输出信号接点设置在气体密度继电器本体上,与智控单元相连接;所述智控单元或后台在所述电控阀关闭后、输出信号接点动作时发出漏气报警信号和/或信息。
更优选地,所述密封性能检测器包括热导池(TCD)检测器和/或光谱分析器,所述热导池(TCD)检测器和/或光谱分析器设置在气体密度继电器本体的壳体内;或者,所述密封性能检测器包括热导池(TCD)检测器和/或光谱分析器、气罩,所述气罩设置在气体密度继电器本体的外部,且与所述气体密度继电器本体的壳体相连通,所述气罩与所述壳体的内部腔体共同形成一个腔体,所述热导池(TCD)检测器和/或光谱分析器设置在所述气罩内;
所述智控单元通过热导池(TCD)检测器和/或光谱分析器监测密封腔体内的SF6气体浓度,所监测的SF6气体浓度高于所设定的预设阈值时,智控单元或后台发出漏气报警信号和/或信息;或者,所监测的SF6气体浓度高于正常时的SF6气体浓度时,智控单元或后台发出漏气报警信号和/或信息。
更优选地,所述密封性能检测器包括在线校验单元,所述在线校验单元包括气体密度检测传感器、压力调节机构和在线校验接点信号采样单元;所述压力调节机构的气路,与所述气体密度继电器本体的气路连通,所述压力调节机构被配置为调节所述气体密度继电器本体的压力升降,使所述气体密度继电器的接点信号控制部分发生接点信号动作;所述气体密度检测传感器,与所述接点信号控制部分在气路上连通;所述在线校验接点信号采样单元,与所述接点信号控制部分相连接,被配置为采样所述接点信号控制部分的接点信号;所述智控单元,分别与所述压力调节机构、所述气体密度检测传感器、和所述在线校验接点信号采样单元相连接,被配置为完成所述压力调节机构的控制,压力值采集和温度值采集、和/或气体密度值采集,以及检测所述接点信号控制部分的接点信号动作值;其中,所述接点信号包括报警、和/或闭锁;
当所检测的接点信号动作值小于设定的预设阈值时,智控单元或后台发出漏气报警信号和/或信息;或者,在时间T1时,所检测的接点信号动作值为P 20T1;过一设定时间后,在时间T2时,所检测的接点信号动作值为P 20T2;当(P 20T1-P 20T2)≥预设阈值,智控单元或后台发出漏气报警信号和/或信息。
进一步地,所述压力调节机构为一密闭气室,所述密闭气室连通所述气体密度继电器本体的气路;所述密闭气室的外部或内部设有加热元件、和/或制冷元件,通过所述加热元件加热、和/或通过所述制冷元件制冷,导致所述密闭气室内的气体的温度变化,进而完成所述气体密度继电器本体的压力升降;或者,
所述压力调节机构为一端开口的腔体,所述腔体的另一端连通所述气体密度继电器本体的气路;所述腔体内有活塞,所述活塞的一端连接有一个调节杆,所述调节杆的外端连接驱动部件,所述活塞的另一端伸入所述开口内,且与所述腔体的内壁密封接触,所述驱动部件驱动所述调节杆进而带动所述活塞在所述腔体内移动;或者,
所述压力调节机构为一密闭气室,所述密闭气室连通所述气体密度继电器本体的气路;所述密闭气室的内部设有活塞,所述活塞与所述密闭气室的内壁密封接触,所述密闭气室的外面设有驱动部件,所述驱动部件通过电磁力推动所述活塞在所述腔体内移动;或者,
所述压力调节机构为一端连接驱动部件的气囊,所述气囊在所述驱动部件的驱动下发生体积变化,所述气囊连通所述气体密度继电器本体的气路;或者,
所述压力调节机构为波纹管,所述波纹管的一端连通所述气体密度继电器本体的气路,所述波纹管的另一端在驱动部件的驱动下伸缩;或者,
所述压力调节机构为一放气阀,所述放气阀为电磁阀或电动阀,或其它通过电的或气的方式实现的放气阀;或者,
所述压力调节机构为一压缩机;或者,
所述压力调节机构为一泵,所述泵包括造压泵、增压泵、电动气泵、电磁气泵中的一种;或者,
所述压力调节机构为增压阀;
其中,所述驱动部件包括磁力驱动机构、电机、往复运动机构、卡诺循环机构、磁耦合推力机构、加热产生推力机构、电加热产生推力机构、化学反应产生推力机构、气动元件中的一种。
优选地,所述密封性能检测器和智控单元为一体化设计,或独立设计。
优选地,所述气体密度继电器本体、所述密封性能检测器为一体化结构;优选地,所述气体密度继电器本体、所述密封性能检测器为一体化结构的远传式气体密度继电器。
优选地,所述气体密度继电器(或气体密度监测装置)还包括漏气关断件、接点隔离单元,所述智控单元分别与漏气关断件、接点隔离单元相连接;所述漏气关断件的一端与电气设备相连接,所述漏气关断件的另一端与气体密度继电器本体相连接;所述漏气关断件被配置为当气体密度继电器本体的密封性能出现问题时,用来关闭电气设备和气体密度继电器本体相连接的气路;所述接点隔离单元,还与气体密度继电器本体直接或间接相连接,被配置为当漏气关断件关闭时,使气体密度继电器本体的接点与接点信号控制回路不连通。
更优选地,所述漏气关断件包括电控阀、电磁阀、电控自封阀、温控阀的一种。
更优选地,所述气体密度继电器(或气体密度监测装置)还包括设备侧气体密度检测传感器,所述设备侧气体密度检测传感器设置在漏气关断件与电气设备相连接的一侧,所述设备侧气体密度检测传感器与智控单元相连接,被配置为监测电气设备的气体密度值P SB20
所述接点隔离单元包括隔离连接电路,所述隔离连接电路连接所述气体密度继电器本体的接点与接点信号控制回路;
在漏气关断件关闭时,若设备侧气体密度检测传感器所监测到的电气设备的气体密度值P SB20大于预设阈值,接点隔离单元切断所述隔离连接电路,使所述气体密度继电器本体的接点与接点信号控制回路不连通;若设备侧气体密度检测传感器所监测到的电气设备的气体密度值P SB20≤预设阈值,所述隔离连接电路闭合,使所述气体密度继电器本体的接点与接点信号控制回路相连通。
优选地,至少两个所述气体密度继电器(或气体密度监测装置)均通过通讯设备与远程后台检测系统连接;其中,所述气体密度继电器(或气体密度监测装置)设置在其对应气室的电气设备上,所述通讯设备的通讯方式包括有线通讯方式和无线通讯方式。
优选地,所述智控单元的控制通过现场控制,和/或通过后台控制。
优选地,至少两个所述气体密度继电器(或气体密度监测装置)均依次通过集线器、协议转换器与远程后台检测系统连接;其中,所述气体密度继电器(或气体密度监测装置)设置在其对应气室的电气设备上。
更优选地,所述集线器采用RS485集线器;所述协议转换器采用IEC61850或IEC104协议转换器。
本申请第二个方面提供了一种具有密封性能自检的气体密度继电器的实现方法,包括:
将密封性能检测单元设置在气体密度继电器本体内或本体外,与气体密度继电器本体内的气路相连通,或与气体密度继电器本体的内部腔体连通,通过采集气路上或内部腔体内的气体压力变化、或电流变化、或气体浓度变化、或气体密度值变化,获取气体密度继电器本体的漏气信息;
将智控单元与所述密封性能检测单元相连接,所述智控单元接收和/或计算所述密封性能检测单元监测的数据和/或信息,并进行诊断,获取气体密度继电器本体的当前密封性能;或者,
所述智控单元将接收的数据和/或信息上传至后台,所述后台对接收和/或计算所述密封性能检测器监测的数据和/或信息进行诊断,获取气体密度继电器本体的当前密封性能。
优选地,所述密封性能检测器包括电控阀、压力传感器、电压激励器、电极、电流检测器、氧气传感器、氮气传感器、SF6诊断传感器、卤素传感器、摄像机、输出信号接点、热导池(TCD)检测器、光谱分析器、在线校验单元中的一种或几种。
优选地,气体密度继电器还包括漏气关断件、接点隔离单元、设备侧气体密度检测传感器;其中,所述漏气关断件的一端与电气设备相连接,所述漏气关断件的另一端与气体密度继电器本体相连接,所述接点隔离单元包括隔离连接电路,所述隔离连接电路连接所述气体密度继电器本体的接点与接点信号控制回路,所述设备侧气体密度检测传感器设置在漏气关断件与电气设备相连接的一侧,所述设备侧气体密度检测传感器与智控单元相连接;所述实现方法还包括:
当气体密度继电器本体的密封性能出现问题时,智控单元通过控制漏气关断件,关闭电 气设备和气体密度继电器本体连接的气路;在漏气关断件关闭时,若设备侧气体密度检测传感器所监测到的电气设备的气体密度值P SB20大于预设阈值,智控单元控制接点隔离单元切断隔离连接电路,使所述气体密度继电器本体的接点与接点信号控制回路不连通;若设备侧气体密度检测传感器所监测到的电气设备的气体密度值P SB20≤预设阈值,智控单元控制接点隔离单元闭合隔离连接电路,使气体密度继电器本体的接点与接点信号控制回路连通。
与现有技术相比,本发明的技术方案具有以下有益效果:
1)提供一种具有密封性能自检的气体密度继电器(或气体密度监测装置),用于对气体绝缘或灭弧的电气设备气体密度进行监测的同时,还完成对气体密度继电器的在线漏气性能监测,提高了效率,无需维护,降低了运行维护成本,保障了电网安全运行。
2)提供一种具有密封性能自检的气体密度继电器的实现方法,能够支持上述具有密封性能自检的气体密度继电器的正常运行。
附图说明
构成本申请的一部分附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是实施例一的高中压电气设备用的、具有密封性能自检的气体密度继电器的结构示意图;
图2是实施例二的高中压电气设备用的、具有密封性能自检的气体密度继电器(或气体密度监测装置)的正面结构示意图;
图3是实施例三的高中压电气设备用的、具有密封性能自检的气体密度继电器(或气体密度监测装置)的结构示意图;
图4是实施例四的高中压电气设备用的、具有密封性能自检的气体密度继电器(或气体密度监测装置)的结构示意图;
图5是实施例五的高中压电气设备用的、具有密封性能自检的气体密度继电器(或气体密度监测装置)的结构示意图;
图6是实施例六的高中压电气设备用的、具有密封性能自检的气体密度继电器(或气体密度监测装置)的结构示意图;
图7是实施例七的高中压电气设备用的、具有密封性能自检的气体密度继电器(或气体密度监测装置)的结构示意图;
图8是实施例八的高中压电气设备用的、具有密封性能自检的气体密度继电器(或气体密度监测装置)的结构示意图;
图9是实施例九的高中压电气设备用的、具有密封性能自检的气体密度继电器(或气体密度监测装置)的结构示意图;
图10是实施例十的高中压电气设备用的、具有密封性能自检的气体密度继电器(或气体密度监测装置)的结构示意图;
图11~图13是一种具有具有密封性能自检的气体密度监测系统的结构示意图。
具体实施方式
为使本发明的目的、技术方案及效果更加清楚、明确,以下参照附图并举实例对本发明进一步详细说明。应当理解,具体实施例仅用以解释本发明,并不用于限定本发明。
实施例一:
如图1所示,一种具有密封性能自检的气体密度继电器(或气体密度监测装置),主要包括:气体密度继电器本体1、漏气性能诊断检测器3和智控单元7。本实施例中所述的漏气性能诊断检测器3设置在气体密度继电器本体1外,包括电控阀301、压力传感器302。本实例的实施过程是,所述电控阀301的一端设有与电气设备连接的进气接口30101,进气接口30101通过设备连接接头110与电气设备相连接,所述电控阀301的另一端设有出气接口30102,并与气体密度继电器本体1的气路相连接。本实施例中,出气接口30102与气体密度继电器本体1的压力检测器103(巴登管)相连接,压力检测器103(巴登管)内充有SF6气体;所述压力传感器302在气路上与气体密度继电器本体1相连通。电路上,所述电控阀301、压力传感器302分别与智控单元7相连接。本实施例的工作原理是,通过智控单元7关闭电控阀301,通过压力传感器302把采集到的气体密度继电器本体1的气路上的气体压力上传到智控单元7或后台。若气体密度继电器本体1气路上的气体压力逐渐变小,则智控单元7或后台发出漏气报警信号和/或信息;或者,气体密度继电器本体1气路上的气体压力下降速度PS X高于所设定的下降速度PS XS时,智控单元7或后台发出漏气报警信号和/或信息;或者,在设定时间内,气体密度继电器本体1气路上的气体压力低于所述电控阀301关闭时的气体压力值,智控单元7或后台发出漏气报警信号和/或信息。
本实施例中,气体密度继电器本体1的气路打开或关闭是通过与电气设备和气体密度继电器本体的气路相连接的电控阀302实现的,并通过智控单元7控制电控阀301的开断 功能。其中,气体密度继电器本体1包括:壳体102,以及设于所述壳体102内的基座112、压力检测器103、温度补偿元件104、端座108、若干信号发生器109。压力检测器103包括巴登管或波纹管,压力检测器103的第一端部固定连接基座112,第二端部固定连接端座108的端部;温度补偿元件104采用温度补偿片或壳体102内封闭的气体,温度补偿元件104对压力检测器103进行温度补偿;所述信号发生器109包括微动开关或磁助式电接点,所述气体密度继电器本体1通过所述信号发生器109输出报警和/或闭锁接点信号。所述气体密度继电器本体1通过压力检测器103和温度补偿元件104监测气体密度,并通过所述信号发生器109输出气体密度接点信号。其原理是:基于压力检测器103并利用温度补偿元件104对变化的压力和温度进行修正,以反映(六氟化硫)气体密度的变化。即在被测介质(如SF6)气体的压力作用下,由于有了温度补偿元件104的作用,六氟化硫(或其它)气体密度值变化时,气体的压力值也相应地变化,迫使压力检测器103的末端产生相应的弹性变形位移,借助于温度补偿元件104,传递给机芯105,机芯105又传递给指针106,遂将被测的(六氟化硫)气体密度值在刻度盘上指示出来。如果漏气了,气体密度值下降了,压力检测器103产生相应地向下位移,通过温度补偿元件104,传递给机芯105,机芯105又传递给指针106,指针106就往示值小的方向走,在刻度盘上具体显示漏气程度;同时,压力检测器103通过温度补偿元件104带动横梁向下位移,横梁上的调节件107渐离信号发生器109,到一定程度时,信号发生器109的接点接通,发出相应的接点信号(报警或闭锁),完成监视和控制电气开关等设备中的气体密度的功能,使电气设备安全工作。如果气体密度值升高了,即密封气室内的气体密度值大于设定的气体密度值时,密度值也相应地升高,压力检测器103的末端和温度补偿元件104产生相应的向上位移,温度补偿元件104使横梁也向上位移,横梁上的调节件107就向上位移并推动信号发生器109的接点断开,接点信号(报警或闭锁)就解除。
本实施例中,气体密度继电器本体1的气路通过电控阀301与电气设备连接,其整体气路处于完全密封的状态,并需要长久保持密封性能可靠稳定,以保证电气设备的正常运行。当需要对气体密度继电器本体1的密封性能做自检时,所述智控单元7控制电控阀301关闭与电气设备连接的气路,此时气体密度继电器本体1气路内气压保持不变,并构成独立的密封气路。所述压力传感器302在气路上与气体密度继电器本体1气路相连通,并通过压力传感器302把采集到的气体密度继电器本体1气路上的气体压力上传到智控单元7。如果所述智控单元7接收到气体密度继电器本体1气路上的气体压力逐渐变小,说明气体密 度继电器本体1的压力检测器103存在漏气,则智控单元7或后台发出漏气报警信号和/或信息;或者,气体密度继电器本体1气路上的气体压力下降速度PS X高于所设定的下降速度PS XS时,智控单元7或后台发出漏气报警信号和/或信息;或者,在一定时间内,气体密度继电器本体1气路上的气体压力低于所述电控阀301关闭时的气体压力值,智控单元7或后台发出漏气报警信号和/或信息。本实施例中,还可以包括温度传感器,由压力传感器302和温度传感器,得到密度值P 20,若气体密度继电器本体1的气路上的气体密度值P 20逐渐变小,智控单元7或后台发出漏气报警信号和/或信息;或者,气体密度继电器本体的气路上的气体密度值P 20下降速度P20S X高于所设定的下降速度P20S XS,智控单元7或后台发出漏气报警信号和/或信息;或者,在设定时间内,气体密度继电器本体的气路上的气体密度值P 20低于所述电控阀301关闭时的气体密度值,智控单元7或后台发出漏气报警信号和/或信息。当发出漏气报警信号和/或信息后,所述智控单元7控制电控阀301重新开启与电气设备连接的气路,此时气体密度继电器本体1的气路与电气设备的气路又相互连通,气体密度继电器本体1继续监控电气设备的气体密度。
或者,本实施例中,还可包括设备侧气体密度检测传感器、接点隔离单元,所述设备侧气体密度检测传感器设置在电控阀301(可以作为漏气关断件)与电气设备相连接的一侧,智控单元7与设备侧气体密度检测传感器相连接,被配置为监测电气设备的气体密度值P SB20;所述接点隔离单元与智控单元7可以设置在一起。当气体密度继电器本体1的密封性能出现问题时,即智控单元7或后台发出漏气报警信号和/或信息时,智控单元7通过控制电控阀301(可以作为漏气关断件),关闭电气设备和气体密度继电器本体1连接的气路;并在电控阀301(可以作为漏气关断件)关闭时,智控单元7通过设备侧气体密度检测传感器监测电气设备的气体密度值P SB20;当所监测到的电气设备的气体密度值P SB20大于预设阈值(一般比报警值略大一些),智控单元7通过控制接点隔离单元,使所述气体密度继电器本体1的接点与接点信号控制回路不相连通;而在所监测到的电气设备的气体密度值P SB20≤预设阈值,智控单元7通过控制接点隔离单元,使所述气体密度继电器本体1的接点与接点信号控制回路相连通或又相连通。这样一来的突出优点是:当气体密度继电器本体1侧出现漏气时,可以通过控制电控阀301(可以作为漏气关断件),关闭电气设备和气体密度继电器本体1连接的气路,防止该漏气继续发生,杜绝该漏气事故继续发生,同时由于智控单元7通过设备侧气体密度检测传感器还实时监测电气设备的气体密度值P SB20,确保电气设备依然可靠运行,即气体密度值P SB20大于预设阈值时,接点隔离单元起到作用, 不把错误信号上去造成闭锁或误报;而气体密度值P SB20≤预设阈值时,接点隔离单元相当于不起作用,气体密度继电器发出报警或闭锁信号。另外智控单元7或后台及时发出漏气信息,使运维人员能够及时知晓,并及时处理漏气事件。
实施例二:
图2为本发明实施例二高压电气设备用的、具有密封性能自检的气体密度继电器(或气体密度监测装置)的正面结构示意图。如图2所示,与实施例一不同的是,本实施例中漏气性能诊断检测器3为压力传感器,压力传感器3设置在气体密度继电器本体1的壳体102内,与智控单元7连接。压力传感器3把采集到的气体密度继电器本体1的壳体102内的压力信号P上传到智控单元7。如果气体密度继电器本体1的壳体102内的压力信号P 逐渐变大,智控单元7或后台发出漏气报警信号和/或信息;或者,气体密度继电器本体1的壳体102内的压力信号P 的升高速度PS 壳Z高于所设定的升高速度PS 壳ZS时,智控单元7或后台发出漏气报警信号和/或信息;或者,气体密度继电器本体1的壳体102内的压力信号P 高于所设定的压力值P 壳S,智控单元7或后台发出漏气报警信号和/或信息。
本实例的工作原理是,气体密度继电器本体1的壳体102内是密封腔体,所述密封腔体内是一个具有相对稳定压力的密封空间,密封空间的压力值可设定在一定范围内,作为设定的压力值P S。压力传感器3用于检测所述密封腔体内的压力信号P,并将采集到的压力信号P上传到智控单元7。正常情况下,气体密度继电器本体1内的压力信号P是相对稳定的,当气体密度继电器本体1的气路发生漏气性能时,置于壳体102内的气路泄漏的气体会密封在壳体102的密封腔体内,会使气体密度继电器本体1的壳体102内的压力信号P升高。所以,当发生漏气,压力传感器3采集到的壳体102内的压力信号P 逐渐变大,智控单元7或后台发出漏气报警信号和/或信息;或者,气体密度继电器本体1的壳体102内的压力信号P 升高速度PS 壳Z高于所设定的升高速度PS 壳ZS时,智控单元7或后台发出漏气报警信号和/或信息;或者,气体密度继电器本体1的壳体102内的压力信号P 高于所设定的压力值P 壳S,智控单元7或后台发出漏气报警信号和/或信息。
实施例三:
如图3所示,本发明实施例三的具有密封性能自检的气体密度继电器(或气体密度监测装置),主要包括:气体密度继电器本体1、密封性能检测器3和智控单元7。所述密封性能检测器3包括电压激励器305、电极306、电流检测器303,所述电压激励器305、电极306、电流检测器303可以设置在气体密度继电器本体1的壳体102内;或者,所述密 封性能检测器3还可以包括气罩304,所述气罩304设置在气体密度继电器本体1的外部,并与气体密度继电器本体1的壳体102相连通,共同形成一个腔体,所述腔体下部是密封的,或所述腔体优先采用密封腔体。所述腔体被配置为收集泄漏的气体,相当于泄漏气体收集器。所述电压激励器305、电极306、电流检测器303、智控单元7设置在所述气罩304内。所述电压激励器305、电极306、电流检测器303构成回路,通过电压激励器305在电极306的两端施加一定的高电压,智控单元7直接或间接监测电流检测器303的泄漏电流I 泄漏。当泄漏电流I 泄漏逐渐变小,智控单元7或后台发出漏气报警信号和/或信息;或者,泄漏电流I 泄漏小于所设定的泄漏电流I 泄漏S,智控单元7或后台发出漏气报警信号和/或信息;或者,没有漏气时的泄漏电流为I 泄漏1,若(I 泄漏1-I 泄漏)≥预设阈值,智控单元7或后台发出漏气报警信号和/或信息。
本实施例的工作原理如下:气罩304设置在气体密度继电器本体1的外部,并与气体密度继电器本体1的壳体102相通,形成一个密封腔体。密封腔体内正常情况下是具有一定稳定属性的气体,一般为干燥空气。气罩304内设置的电压激励器305、电极306、电流检测器303构成回路,通过电压激励器305在电极306两端施加一定的高电压,智控单元7直接或间接监测电流检测器303的泄漏电流I 泄漏,泄漏电流I 泄漏在正常情况下是不变的或保持在一定范围值内。当气体密度继电器本体1的气路发生漏气时,泄漏的气体会密封在密封腔体内,气体密度继电器本体1的气路泄漏的气体为SF6气体,SF6气体具有灭弧和绝缘的属性。所以,当在具有一定含量的SF6气体环境中,密封腔体内的电压激励器305在电极306两端施加一定的高电压所产生的泄漏电流I 泄漏会明显减小,通过智控单元7直接或间接监测电流检测器303的泄漏电流I 泄漏就可以判断气体密度继电器本体1是否漏气。
实施例四:
如图4所示,本发明实施例四具有密封性能自检的气体密度继电器(或气体密度监测装置),主要包括:气体密度继电器本体1、密封性能检测器3和智控单元7。所述密封性能检测器3包括氧气传感器和/或氮气传感器307,所述氧气传感器和/或氮气传感器307可以设置在气体密度继电器本体1的壳体102内;或者,所述密封性能检测器3还可以包括气罩304(或泄漏气体收集器),所述气罩304设置在气体密度继电器本体1的外部,并与气体密度继电器本体1的壳体102相连通,共同形成一个腔体(优先采用密封的腔体),所述氧气传感器和/或氮气传感器307、智控单元7设置在所述气罩304内。所述氧气传感器和/或氮气传感器307与智控单元7相连接,智控单元7通过氧气传感器和/或氮气传感器 307监测到氧气浓度和/或氮气浓度C,氧气浓度和/或氮气浓度C低于所设定的预设阈值时,智控单元7或后台发出漏气报警信号和/或信息;或者,所监测的氧气浓度和/或氮气浓度C低于正常时的氧气浓度和/或氮气浓度时,智控单元7或后台发出漏气报警信号和/或信息。
本实施例的工作原理如下:气罩304设置在气体密度继电器本体1的外部,并与气体密度继电器本体1的壳体102相通,共同形成一个密封腔体。密封腔体内正常情况下是具有一定稳定属性的气体,一般为干燥空气、氮气或其他混合氧气气体的一种或几种。正常情况下,干燥空气在密封腔体内的量是固定不变的,氧气传感器和/或氮气传感器307用于监测干燥空气中氧气浓度和/或氮气浓度C,也就是说其中氧气浓度和/或氮气浓度C是固定不变的。当气体密度继电器本体1的气路发生漏气时,泄漏的气体会密封在密封腔体内,会影响原来氧气浓度和/或氮气浓度C,使其所测浓度C数值减小。智控单元7通过氧气传感器和/或氮气传感器307监测到氧气浓度和/或氮气浓度C,氧气浓度和/或氮气浓度C低于所设定的预设阈值时,智控单元7或后台发出漏气报警信号和/或信息;或者,所监测的氧气浓度和/或氮气浓度C低于正常时的氧气浓度和/或氮气浓度时,智控单元7或后台发出漏气报警信号和/或信息。
实施例五:
如图5所示,本发明实施例五具有密封性能自检的气体密度继电器(或气体密度监测装置),主要包括:气体密度继电器本体1、密封性能检测器3和智控单元7。所述密封性能检测器3为SF6诊断传感器308,SF6诊断传感器308可以设置在气体密度继电器本体1的壳体102内;或者,所述密封性能检测器3还可以包括气罩304(或泄漏气体收集器),所述气罩304设置在气体密度继电器本体1的外部,并与气体密度继电器本体1的壳体102相连通,共同形成一个腔体(优先采用密封腔体),所述SF6诊断传感器308、智控单元7设置在所述气罩304内。所述SF6诊断传感器308包括、但不限于超声波传感器、红外传感器、激光外传感器、气敏半导体传感器中的一种。所述SF6诊断传感器308与智控单元7相连接,智控单元7通过SF6诊断传感器308监测SF6气体浓度,SF6气体浓度高于所设定的预设阈值时,智控单元7或后台发出漏气报警信号和/或信息;或者,所监测的SF6气体浓度高于正常时的SF6气体浓度时,智控单元7或后台发出漏气报警信号和/或信息。
本实施例的工作原理如下:气罩304设置在气体密度继电器本体1的外部,并与气体密度继电器本体1的壳体102相通,形成一个密封腔体。密封腔体内正常情况下是具有一定稳定属性的气体,一般为干燥空气、氮气或其他混合氧气气体的一种或几种。正常情况下, 干燥空气在密封腔体内的量是固定不变的,SF6诊断传感器308用于监测干燥空气中SF6气体浓度,也就是说,密封腔体中的SF6气体浓度是固定不变的。当气体密度继电器本体1的气路发生漏气时,泄漏的气体会密封在密封腔体内,会使密封腔体内的SF6气体浓度增大。智控单元7通过SF6诊断传感器监测SF6气体浓度,所监测的SF6气体浓度高于所设定的预设阈值时,智控单元7或后台发出漏气报警信号和/或信息;或者,所监测的SF6气体浓度高于正常时的SF6气体浓度时,智控单元7或后台发出漏气报警信号和/或信息。
实施例六:
如图6所示,本发明实施例六的具有密封性能自检的气体密度继电器(或气体密度监测装置),主要包括:气体密度继电器本体1、密封性能检测器3和智控单元7。所述密封性能检测器3包括电控阀301和摄像机309,电控阀301设置在气体密度继电器本体1外,所述电控阀301的一端设有与电气设备连接的进气接口30101,所述电控阀301的另一端设有出气接口30102,并与气体密度继电器本体1的气路相连接,本实施例的实施过程为:出气接口30102与气体密度继电器本体1的压力检测器103相连接,压力检测器103内充有SF6气体。所述摄像机309设置在气体密度继电器本体1外(或本体内),所述摄像机309与气体密度继电器本体1的显示部件相对应设置。电路上,所述电控阀301和摄像机309分别与智控单元7相连接。其工作原理为:通过智控单元7关闭电控阀301,摄像机309通过图像识别技术获取气体密度继电器本体1的气路上的气体密度值P 20,把采集到的气体密度继电器本体1的气路上的气体密度值P 20上传到智控单元7。气体密度继电器本体1的气路上的气体密度值P 20逐渐变小,智控单元7或后台发出漏气报警信号和/或信息;或者,气体密度继电器本体1的气路上的气体密度值P 20下降速度PS 20X高于所设定的下降速度PS 20XS时,智控单元7或后台发出漏气报警信号和/或信息;或者,在一定时间内,气体密度继电器本体1的气路上的气体密度值P 20低于电控阀301关闭时的气体密度值,智控单元7或后台发出漏气报警信号和/或信息。
在另一种优选实施例中,所述密封性能检测器3还包括试纸或化学变化试剂311,试纸或化学变化试剂311设置在气体密度继电器本体1上。当气体密度继电器出现漏气时,试纸或化学变化试剂311发生变色,所述摄像机309通过图像识别技术获取变色的试纸311的图像,获取气体密度继电器的漏气信息,智控单元7或后台发出漏气报警信号和/或信息。
上述摄像机309可以移动和/或转动,能够多角度地进行摄像,摄像机309还可以设有护罩310。所述摄像机309通过图像识别技术获取气体密度继电器的信息包括、但不限于 漏气性能、进水、生锈、异物侵入、表盘模糊、橡胶老化、橡胶断裂、器件破损、器件掉落、器件卡滞中的一种或几种。
实施例七:
如图7所示,本发明实施例七的具有密封性能自检的气体密度继电器(或气体密度监测装置),主要包括:气体密度继电器本体1、密封性能检测器3和智控单元7。所述密封性能检测器3由输出信号接点1012组成,所述输出信号接点1012设置在气体密度继电器本体1上,电路上,所述输出信号接点1012与智控单元7相连接。气体密度继电器本体1上的输出信号接点1012动作,智控单元7或后台发出漏气报警信号和/或信息。
在另一种优选实施例中,所述密封性能检测器3包括电控阀301和输出信号接点1012。所述电控阀301设置在气体密度继电器本体1外,所述电控阀301的一端设有与电气设备连接的进气接口30101,所述电控阀301的另一端设有出气接口30102,并与气体密度继电器本体1的气路相连接,本实施例中,出气接口30102与气体密度继电器本体1的压力检测器103相连接,压力检测器103内充有SF6气体;所述输出信号接点1012设置在气体密度继电器本体1上。电路上,所述电控阀301和输出信号接点1012分别与智控单元7相连接,通过所述智控单元7关闭电控阀301,在一定时间内,气体密度继电器本体1上的输出信号接点1012动作,智控单元7或后台发出漏气报警信号和/或信息。
本实施例的工作原理如下:所述输出信号接点1012设置在气体密度继电器本体1上,基于压力检测器103并通过固定在端座108上的调节件1013以触发输出信号接点1012动作。当气体密度继电器本体1的气路中的六氟化硫(或其它)气体密度值因漏气变化时,气体的压力值也相应地变化,迫使压力检测器103的末端产生相应的弹性变形位移,通过带动调节件1013触发输出信号接点1012动作。气体密度继电器本体1上的输出信号接点1012动作,智控单元7或后台发出漏气报警信号和/或信息。
或者,所述密封性能检测器3还包括电控阀301,通过所述智控单元7关闭电控阀301,此时气体密度继电器本体1的气路内气压保持不变,并构成独立的密封气路。在一定时间内,当气体密度继电器本体1的气路中的六氟化硫(或其它)气体密度值因漏气变化时,气体的压力值也相应地变化,迫使压力检测器103的末端产生相应的弹性变形位移,通过带动调节件1013触发输出信号接点1012动作。气体密度继电器本体1上的输出信号接点1012动作,智控单元7或后台发出漏气报警信号和/或信息。
实施例八:
如图8所示,本发明实施例八具有密封性能自检的气体密度继电器(或气体密度监测装置),主要包括:气体密度继电器本体1、密封性能检测器3和智控单元7。所述密封性能检测器3包括热导池(TCD)检测器和/或光谱分析器312,所述热导池(TCD)检测器和/或光谱分析器312可以设置在气体密度继电器本体1的壳体102内;或者,所述密封性能检测器3还可以包括气罩304,所述气罩304设置在气体密度继电器本体1的外部,并与气体密度继电器本体1的壳体102相连通,共同形成一个密封腔体,所述热导池(TCD)检测器和/或光谱分析器312、智控单元7设置在所述气罩304内。所述热导池(TCD)检测器和/或光谱分析器312与智控单元7相连接,智控单元7通过热导池(TCD)检测器和/或光谱分析器312监测密封腔体内的SF6气体浓度,所监测的SF6气体浓度高于所设定的预设阈值时,智控单元7或后台发出漏气报警信号和/或信息;或者,所监测的SF6气体浓度高于正常时的SF6气体浓度时,智控单元7或后台发出漏气报警信号和/或信息。
本实施例的工作原理如下:气罩304设置在气体密度继电器本体1的外部,并与气体密度继电器本体1的壳体102相通,形成一个密封腔体。密封腔体内正常情况下是具有一定稳定属性的气体,一般为不限于干燥空气、氮气或其他混合氧气气体的一种或几种。正常情况下,所述干燥空气在密封腔体内的量是固定不变的,所述热导池(TCD)检测器和/或光谱分析器312用于监测干燥空气中SF6气体浓度,也就是说,密封腔体内的SF6气体浓度是固定不变的。当气体密度继电器本体1的气路发生漏气时,泄漏的气体会密封在所述密封腔体内,会使密封腔体内的SF6气体浓度增大。智控单元7通过热导池(TCD)检测器和/或光谱分析器312监测SF6气体浓度,所监测的SF6气体浓度高于所设定的预设阈值时,智控单元7或后台发出漏气报警信号和/或信息;或者,所监测的SF6气体浓度高于正常时的SF6气体浓度时,智控单元7或后台发出漏气报警信号和/或信息。
实施例九:
如图9所示,本发明实施例九具有密封性能自检的气体密度继电器(或气体密度监测装置),主要包括:气体密度继电器本体1、密封性能检测器3和智控单元7。所述密封性能检测器3包括在线校验单元313,所述在线校验单元313包括气体密度检测传感器31301、压力调节机构31302、在线校验接点信号采样单元31303和电控阀31304。
本实施例的工作原理如下:其中所述压力调节机构31302的气路,与所述气体密度继电器本体1和电控阀31304的一端(出气端)连通,所述压力调节机构30102被配置为调节所述气体密度继电器本体1的气体压力升降,使所述气体密度继电器本体1的接点信号 控制部分(如信号发生器,包括微动开关或磁助式电接点)发生接点信号动作;所述电控阀31304的另一端(进气端)通过多通接头9与电气设备8连接;所述在线校验接点信号采样单元31303,与所述气体密度继电器本体1的接点信号控制部分相连接,被配置为采样所述气体密度继电器本体1的接点信号控制部分的接点信号;所述气体密度检测传感器31301与气体密度继电器本体1的接点信号控制部分在气路上连通,被配置为采集气体密度继电器本体1的温度值、压力值、和/或气体密度值;所述智控单元7,分别与所述气体密度检测传感器31301、所述压力调节机构30102、所述在线校验接点信号采样单元31303、电控阀31304相连接,被配置为完成所述压力调节机构31302的控制,压力值采集和温度值采集、和/或气体密度值采集,检测所述气体密度继电器本体1的接点信号控制部分的接点信号动作值和/或接点信号返回值,以及控制电控阀31304的关闭或开启。
当所检测的接点信号动作值小于设定的预设阈值时,智控单元7或后台发出漏气报警信号和/或信息;或者,在时间T1时,所检测的接点信号动作值为P 20T1;过一定时间后,在时间T2时,所检测的接点信号动作值为P 20T2;当(P 20T1-P 20T2)≥预设阈值,智控单元7或后台发出漏气报警信号和/或信息。
本实施例的压力调节机构30102为一端开口的腔体,所述腔体内有活塞,所述活塞设有密封圈,所述活塞的一端连接有一个调节杆,所述调节杆的外端连接驱动部件,所述活塞的另一端伸入所述开口内,且与所述腔体的内壁相接触,所述驱动部件驱动所述调节杆进而带动所述活塞在所述腔体内移动。所述驱动部件包括、但不限于磁力驱动机构、电机、往复运动机构、卡诺循环机构、磁耦合推力机构、加热产生推力机构、电加热产生推力机构、化学反应产生推力机构、气动元件中的一种。所述压力调节机构30102还可以包括密封件联结件,密封件联结件设置在所述腔体和所述驱动部件之间,使所述调节杆穿过所述密封件联结件连接到驱动部件,确保整个压力调节机构30102具有很好的密封性能。所述密封件联结件包括、但不限于波纹管、气囊、密封圈中的一种。
在另一种优选实施例中,所述压力调节机构30102还可以由波纹管和驱动部件组成,波纹管与气体密度继电器本体1的气路密封连接在一起,组成一个可靠的密封腔体。压力调节机构30102根据智控单元7的控制,使得驱动部件推动波纹管发生体积变化,进而密封腔体发生体积变化,从而完成气体密度继电器本体1的气体压力的升降。
在另一种优选实施例中,所述压力调节机构30102还可以由气室、加热元件、保温件组成,气室与气体密度继电器本体1的气路密封连接在一起,气室的外部(或内部)带有 加热元件,通过加热,导致温度变化,进而完成气体密度继电器本体1的气体压力的升降。
当然,压力调节机构30102还可以有多种其它形式,不限于上述所列举的,其它能够实现气体压力升降功能的机构也均涵盖在本申请的保护范围内。
实施例十:
图10为本发明实施例十高压电气设备用的、具有密封性能自检的气体密度继电器(或气体密度监测装置)的正面结构示意图。如图10所示,与实施例二不同的是,本实施例中还增加了多通接头9、漏气关断件10、接点隔离单元11、设备侧气体密度检测传感器12。所述智控单元7分别与漏气关断件10、接点隔离单元11、设备侧气体密度检测传感器12相连接。漏气关断件10的一端与多通接头9相连接,多通接头9与电气设备8相连接,漏气关断件10的另一端与气体密度继电器本体1的接头110相连接;漏气关断件10被配置为当气体密度继电器本体1一侧的密封性能出现问题时,用来关闭电气设备8和气体密度继电器本体1一侧连接的气路。接点隔离单元11还与气体密度继电器本体1直接或间接相连接,被配置为当漏气关断件10关闭时,使气体密度继电器本体1的接点与接点信号控制回路不连通。所述设备侧气体密度检测传感器12(本案例可以采用压力传感器和温度传感器,或者压力传感器和在线校验上的温度传感器)设置在漏气关断件10与电气设备8相连接的一侧的多通接头9上,智控单元7与设备侧气体密度检测传感器12相连接,被配置为监测电气设备8的气体密度值P SB20。所述接点隔离单元11与智控单元7可以设置在一起。
本实施例的漏气监测原理同实施例2,在此不再赘述。区别在于,当气体密度继电器本体1一侧出现漏气时,可以通过控制漏气关断件10,关闭电气设备8和气体密度继电器本体1一侧连接的气路,防止该漏气继续发生,即杜绝该漏气事故继续发生。具体工作原理为:本实施例中的漏气关断件10可以包括电控阀、电磁阀、电控自封阀、温控阀的一种。当气体密度继电器本体1一侧的密封性能出现问题时,即智控单元7或后台发出漏气报警信号和/或信息时,智控单元7通过控制漏气关断件10,关闭电气设备8和气体密度继电器本体1一侧连接的气路;并在漏气关断件10(例如电控阀)关闭时,智控单元7通过设备侧气体密度检测传感器12监测电气设备8的气体密度值P SB20;当所监测到的电气设备8的气体密度值P SB20大于预设阈值(一般比闭锁值或报警值略大一些),智控单元7通过控制接点隔离单元11,使所述气体密度继电器本体1的接点与接点信号控制回路不相连通;而在所监测到的电气设备8的气体密度值P SB20≤预设阈值,智控单元7通过控制接点隔离单元11,使所述气体密度继电器本体1的接点与接点信号控制回路相连通或又相连通(原 先不连通要又切换到连通)。这样一来就实现:当气体密度继电器本体1一侧出现漏气时,可以通过控制漏气关断件10,关闭电气设备8和气体密度继电器本体1一侧连接的气路,防止该漏气继续发生,即杜绝该漏气事故继续发生;同时由于智控单元7通过设备侧气体密度检测传感器12还实时监测电气设备8的气体密度值P SB20,并根据情况实时控制接点隔离单元11,确保电气设备8依然可靠运行,即气体密度值P SB20大于预设阈值时,接点隔离单元11起到作用,不把错误信号上传造成闭锁或误报;而当气体密度值P SB20≤预设阈值时,接点隔离单元11相当于不起作用,气体密度继电器本体1发出报警或闭锁信号。另外智控单元7或后台及时发出漏气信息,使运维人员能够及时知晓,并及时处理漏气事件。这样可以避免气体密度继电器本体1发生漏气问题,减少SF6气体排放到空气中,更安全,也有利于环保。上述的气体密度继电器本体1一侧出现漏气,泛指气体密度继电器本体1(例如巴登管、焊接处、连接处)、或部分密封性能检测器、或在线校验单元(例如气体密度检测传感器、压力调节机构)等器件或部件出现漏气。
总之,气体密度继电器完成气体密度继电器本体1的漏气性能诊断工作后,如有异常,能够自动发出报警,可以上传到远端,或可以发送到指定的接收机上,例如发送到手机。其通信方式为有线或无线,有线的通讯方式可以为RS232、RS485、CAN-BUS等工业总线、光纤以太网、4-20mA、Hart、IIC、SPI、Wire、同轴电缆、PLC电力载波等;无线通讯方式可以为2G/3G/4G/5G等、WIFI、蓝牙、Lora、Lorawan、Zigbee、红外、超声波、声波、卫星、光波、量子通信、声呐、传感器内置5G/NB-IOT通讯模块(如NB-IOT)等。总之,可以多重方式,多种组合,充分保证气体密度继电器的可靠性能。
图11~图13是一种具有密封性能自检的气体密度系统,所述气体密度监测系统包括上述的具有密封性能自检的气体密度继电器(或气体密度监测装置)。
如图11所示,多个设有气室的电气设备、多个具有密封性能自检的气体密度继电器(或气体密度监测装置)均依次通过集线器、IEC61850协议转换器与远程后台检测系统连接;其中,具有密封性能自检的气体密度继电器(或气体密度监测装置)分别设置在对应气室的电气设备上。
如图11和12所示,PC为在线监测后台主机及系统,Gateway为网络交换机,Server为综合应用服务器,ProC为规约转换器/在线监测智能单元,HUB为集线器,而Z为具有密封性能自检的气体密度继电器(或气体密度监测装置)。在线监测系统架构包括:详列简单架构(图11)、常规架构(图12)、复杂架构等系统图。
系统架构图及简单说明:1)、后台软件平台:基于Windows、Linux及其他等,或VxWorks、Android、Unix、UCos、FreeRTOS、RTX、embOS、MacOS。2)、后台软件关键业务模块、基本功能:例如权限管理、设备管理、数据存储于查询等;以及用户管理、报警管理、实时数据、历史数据、实时曲线、历史曲线、配置管理、数据采集、数据解析、记录条件、异常处理。3)、界面组态:例如Form界面、Web界面、组态界面等。
具体地,如图11所示,在线监测后台主机及系统PC通过集线器HUB0与多个集线器HUB(HUB1、HUB2、……HUBm)通讯。每个集线器HUB连接一组具有密封性能自检的气体密度继电器(或气体密度监测装置)Z,如集线器HUB1连接具有密封性能自检的气体密度继电器(或气体密度监测装置)Z11、Z12、……Z1n,集线器HUB2连接具有密封性能自检的气体密度继电器(或气体密度监测装置)Z21、Z22、……Z2n,……,集线器HUBm连接具有密封性能自检的气体密度继电器(或气体密度监测装置)Zm1、Zm2、……Zmn,其中,m、n均为自然数。
如图12所示,在线监测后台主机及系统PC通过网络交换机Gateway连接两个综合应用服务器Server1、Server2,两个综合应用服务器Server1、Server2通过站控层A网和B网与多个规约转换器/在线监测智能单元ProC(ProC1、ProC2、……ProCn)通讯,规约转换器/在线监测智能单元ProC通过R5485网络与多个集线器HUB(HUB1、HUB2、……HUBm)通讯。每个集线器HUB连接一组具有密封性能自检的气体密度继电器(或气体密度监测装置)Z,如集线器HUB1连接具有密封性能自检的气体密度继电器(或气体密度监测装置)Z11、Z12、……Z1n,集线器HUB2连接具有密封性能自检的气体密度继电器(或气体密度监测装置)Z21、Z22、……Z2n,……,集线器HUBm连接具有密封性能自检的气体密度继电器(或气体密度监测装置)Zm1、Zm2、……Zmn,其中,m、n均为自然数。
图13为无线传输方式的架构系统图。图中虚框表示无线模块Wn和气体密度继电器Zn可以做成一体或者分体,具体方案可以灵活。多个综合应用服务器Server1、Server2、……Server n通过云端Cluod、无线网关(Wireless Gateway)、以及各个气体密度继电器的无线模块与各个气体密度继电器进行无线通信。其中,n为自然数。
具有密封性能自检的气体密度继电器(或气体密度监测装置)可以实现诊断气体密度继电器(或气体密度监测装置)是否漏气并发出漏气报警信号和/或信息。
需要说明的是,本申请中所述的具有密封性能自检的气体密度继电器一般指的是其组成 元件设计成一体结构;而具有密封性能自检的气体密度监测装置一般指的是其组成元件设计成分体结构,灵活组成。所述气体密度继电器可以利用变电站原有的气体密度继电器进行技术改造升级。另外,所述密封性能检测器包括氧气传感器和/或氮气传感器和气罩,气罩设置在气体密度继电器本体的外部,可以与所述气体密度继电器本体的壳体不直接相连通,而是把存在漏气的地方罩起来,形成一个腔体,所述氧气传感器和/或氮气传感器(或其它密封性能检测器)设置在所述气罩内。所述气罩被配置为收集漏气的气体,便于积累更多的漏气气体,能够使测试更加准确。所述气罩可以根据需要进行相应的设置。总之,所述密封性能检测器,设置在气体密度继电器本体内或本体外,与气体密度继电器本体内的气路相连通,或与气罩组成的腔体连通,通过采集气路上或气罩组成的腔体内的气体压力变化、或电流变化、或气体浓度变化、或气体密度值变化,获取气体密度继电器本体或装置的漏气信息。
以上对本发明的具体实施例进行了详细描述,但其只是作为范例,本发明并不限制于以上描述的具体实施例。对于本领域技术人员而言,任何对本发明进行的等同修改和替代也都在本发明的范畴之中。因此,在不脱离本发明的精神和范围下所作的均等变换和修改,都应涵盖在本发明的范围内。

Claims (20)

  1. 具有密封性能自检的气体密度继电器,其特征在于,包括:气体密度继电器本体、密封性能检测器和智控单元;其中,
    所述密封性能检测器,设置在气体密度继电器本体内或本体外,与气体密度继电器本体内的气路相连通,或与气体密度继电器本体的内部腔体相连通,通过采集气路上或内部腔体内的气体压力变化、或电流变化、或气体浓度变化、或气体密度值变化,获取气体密度继电器本体的漏气信息;
    所述智控单元,与所述密封性能检测器相连接,接收和/或计算所述密封性能检测器监测的数据或/和信息,并进行诊断,获取气体密度继电器本体的当前密封性能;或者,所述智控单元将接收的数据或/和信息上传至后台,所述后台对接收和/或计算所述密封性能检测器监测的数据或/和信息进行诊断,获取气体密度继电器本体的当前密封性能。
  2. 根据权利要求1所述的具有密封性能自检的气体密度继电器,其特征在于:所述密封性能检测器包括电控阀、压力传感器、电压激励器、电极、电流检测器、氧气传感器、氮气传感器、SF6诊断传感器、卤素传感器、摄像机、输出信号接点、热导池检测器、光谱分析器、在线校验单元中的一种或几种。
  3. 根据权利要求2所述的具有密封性能自检的气体密度继电器,其特征在于:所述密封性能检测器设置在气体密度继电器本体外,包括电控阀和压力传感器;所述电控阀的一端设有与电气设备连接的进气接口,另一端设有与气体密度继电器本体的气路连通的出气接口;所述压力传感器与气体密度继电器本体的气路相连通;所述电控阀与所述智控单元相连接,在智控单元的控制下关闭或开启,所述压力传感器与所述智控单元相连接,将采集到的气体密度继电器本体的气路上的气体压力发送给智控单元;
    气体密度继电器本体的气路上的气体压力逐渐变小,智控单元或后台发出漏气报警信号或/和信息;或者,气体密度继电器本体的气路上的气体压力下降速度PS X高于所设定的下降速度PS XS,智控单元或后台发出漏气报警信号或/和信息;或者,在设定时间内,气体密度继电器本体的气路上的气体压力低于所述电控阀关闭时的气体压力值,智控单元或后台发出漏气报警信号或/和信息。
  4. 根据权利要求2所述的具有密封性能自检的气体密度继电器,其特征在于:所述密封性能检测器为压力传感器,设置在气体密度继电器本体的壳体内,所述压力传感器与所述智控单元相连接,将采集到的气体密度继电器本体的壳体内的压力信号P 发送给智控单元;
    气体密度继电器本体的壳体内的压力信号P 逐渐变大,智控单元或后台发出漏气报警信号或/和信息;或者,气体密度继电器本体的壳体内的压力信号P 升高速度PS 壳Z高于所设定的升高速度PS 壳ZS,智控单元或后台发出漏气报警信号或/和信息;或者,气体密度继电器本体的壳体内的压力信号P 高于所设定的压力值P 壳S,智控单元或后台发出漏气报警信号或/和信息。
  5. 根据权利要求2所述的具有密封性能自检的气体密度继电器,其特征在于:所述密封性能检测器包括电压激励器、电极、电流检测器,所述电压激励器、电极、电流检测器设置在气体密度继电器本体的壳体内;或者,所述密封性能检测器包括电压激励器、电极、电流检测器和气罩,所述气罩设置在气体密度继电器本体的外部,且与所述气体密度继电器本体的壳体相连通,所述气罩与所述壳体的内部腔体共同形成一个腔体,所述电压激励器、电极和电流检测器设置在所述气罩内;
    所述电压激励器、电极、电流检测器构成回路,通过电压激励器在电极两端施加高电压,智控单元监测电流检测器的泄漏电流I 泄漏
    泄漏电流I 泄漏逐渐变小,智控单元或后台发出漏气报警信号或/和信息;或者,泄漏电流I 泄漏小于所设定的泄漏电流I 泄漏S,智控单元或后台发出漏气报警信号或/和信息;或者,没有漏气时的泄漏电流为I 泄漏1,若(I 泄漏1-I 泄漏)≥预设阈值,智控单元或后台发出漏气报警信号或/和信息。
  6. 根据权利要求2所述的具有密封性能自检的气体密度继电器,其特征在于:所述密封性能检测器包括氧气传感器或/和氮气传感器,所述氧气传感器或/和氮气传感器设置在气体密度继电器本体的壳体内;或者,所述密封性能检测器包括氧气传感器或/和氮气传感器和气罩,所述气罩设置在气体密度继电器本体的外部,且与所述气体密度继电器本体的壳体相连通,所述气罩与所述壳体的内部腔体共同形成一个腔体,所述氧气传感器或/和氮气传感器设置在所述气罩内;
    所述智控单元通过氧气传感器或/和氮气传感器监测壳体内的氧气浓度或/和氮气浓度,所监测的氧气浓度或/和氮气浓度低于所设定的预设阈值时,智控单元或后台发出漏气报警信号或/和信息;或者,所监测的氧气浓度或/和氮气浓度低于正常时的氧气浓度或/和氮气浓度时,智控单元或后台发出漏气报警信号或/和信息。
  7. 根据权利要求2所述的具有密封性能自检的气体密度继电器,其特征在于:所述密封性能检测器包括SF6诊断传感器,所述SF6诊断传感器包括超声波传感器、红外传感器、 激光传感器、气敏半导体传感器中的一种;所述SF6诊断传感器设置在气体密度继电器本体的壳体内;或者,所述密封性能检测器包括SF6诊断传感器和气罩,所述气罩设置在气体密度继电器本体的外部,且与所述气体密度继电器本体的壳体相连通,所述气罩与所述壳体的内部腔体共同形成一个腔体,所述SF6诊断传感器设置在所述气罩内;
    所述智控单元通过SF6诊断传感器监测壳体内的SF6气体浓度,所监测的SF6气体浓度高于所设定的预设阈值时,智控单元或后台发出漏气报警信号或/和信息;或者,所监测的SF6气体浓度高于正常时的SF6气体浓度时,智控单元或后台发出漏气报警信号或/和信息。
  8. 根据权利要求2所述的具有密封性能自检的气体密度继电器,其特征在于:所述密封性能检测器设置在气体密度继电器本体外,包括电控阀和摄像机;所述电控阀的一端设有与电气设备连接的进气接口,另一端设有与气体密度继电器本体的气路连通的出气接口;所述摄像机与气体密度继电器本体的显示部件相对应设置;所述电控阀与所述智控单元相连接,在智控单元的控制下关闭或开启,所述摄像机通过图像识别技术获取气体密度继电器本体的气路上的气体密度值,并将气体密度值发送给智控单元;
    气体密度继电器本体的气路上的气体密度值逐渐变小,智控单元或后台发出漏气报警信号或/和信息;或者,气体密度继电器本体的气路上的气体密度值下降速度PS 20X高于所设定的下降速度PS 20XS时,智控单元或后台发出漏气报警信号或/和信息;或者,在设定时间内,气体密度继电器本体的气路上的气体密度值低于所述电控阀关闭时的气体密度值,智控单元或后台发出漏气报警信号或/和信息。
  9. 根据权利要求8所述的具有密封性能自检的气体密度继电器,其特征在于:所述密封性能检测器还包括试纸或化学变化试剂,所述试纸或化学变化试剂设置在气体密度继电器本体上,气体密度继电器出现漏气时,所述试纸或化学变化试剂发生变色,所述摄像机通过图像识别技术获取变色的图像,获取气体密度继电器的漏气信息,智控单元或后台发出漏气报警信号或/和信息。
  10. 根据权利要求8所述的具有密封性能自检的气体密度继电器,其特征在于:所述摄像机通过图像识别技术获取气体密度继电器的信息包括漏气、进水、生锈、异物侵入、表盘模糊、橡胶老化、橡胶断裂、器件破损、器件掉落、器件卡滞中的一种或几种。
  11. 根据权利要求2所述的具有密封性能自检的气体密度继电器,其特征在于:所述密封性能检测器为输出信号接点,输出信号接点设置在气体密度继电器本体上,与智控单元 相连接;智控单元或后台在所述输出信号接点动作时发出漏气报警信号或/和信息;或者,
    所述密封性能检测器包括电控阀和输出信号接点,所述电控阀设置在气体密度继电器本体外,所述电控阀的一端设有与电气设备连接的进气接口,另一端设有与气体密度继电器本体的气路连通的出气接口,所述电控阀与所述智控单元相连接,在智控单元的控制下关闭或开启;所述输出信号接点设置在气体密度继电器本体上,与智控单元相连接;所述智控单元或后台在所述电控阀关闭后、输出信号接点动作时发出漏气报警信号或/和信息。
  12. 根据权利要求2所述的具有密封性能自检的气体密度继电器,其特征在于:所述密封性能检测器包括热导池检测器或/和光谱分析器,所述热导池检测器或/和光谱分析器设置在气体密度继电器本体的壳体内;或者,所述密封性能检测器包括热导池检测器或/和光谱分析器、气罩,所述气罩设置在气体密度继电器本体的外部,且与所述气体密度继电器本体的壳体相连通,所述气罩与所述壳体的内部腔体共同形成一个腔体,所述热导池检测器或/和光谱分析器设置在所述气罩内;
    所述智控单元通过热导池检测器或/和光谱分析器监测密封腔体内的SF6气体浓度,所监测的SF6气体浓度高于所设定的预设阈值时,智控单元或后台发出漏气报警信号或/和信息;或者,所监测的SF6气体浓度高于正常时的SF6气体浓度时,智控单元或后台发出漏气报警信号或/和信息。
  13. 根据权利要求2所述的具有密封性能自检的气体密度继电器,其特征在于:所述密封性能检测器包括在线校验单元,所述在线校验单元包括气体密度检测传感器、压力调节机构和在线校验接点信号采样单元;所述压力调节机构的气路,与所述气体密度继电器本体的气路连通,所述压力调节机构被配置为调节所述气体密度继电器本体的压力升降,使所述气体密度继电器的接点信号控制部分发生接点信号动作;所述气体密度检测传感器,与所述接点信号控制部分在气路上连通;所述在线校验接点信号采样单元,与所述接点信号控制部分相连接,被配置为采样所述接点信号控制部分的接点信号;所述智控单元,分别与所述压力调节机构、所述气体密度检测传感器、和所述在线校验接点信号采样单元相连接,被配置为完成所述压力调节机构的控制,压力值采集和温度值采集、和/或气体密度值采集,以及检测所述接点信号控制部分的接点信号动作值;其中,所述接点信号包括报警、和/或闭锁;
    当所检测的接点信号动作值小于设定的预设阈值时,智控单元或后台发出漏气报警信号或/和信息;或者,在时间T1时,所检测的接点信号动作值为P 20T1;过一设定时间后,在时间T2时,所检测的接点信号动作值为P 20T2;当(P 20T1-P 20T2)≥预设阈值,智控单元或 后台发出漏气报警信号或/和信息。
  14. 根据权利要求13所述的具有密封性能自检的气体密度继电器,其特征在于:所述压力调节机构为一密闭气室,所述密闭气室连通所述气体密度继电器本体的气路;所述密闭气室的外部或内部设有加热元件、和/或制冷元件,通过所述加热元件加热、和/或通过所述制冷元件制冷,导致所述密闭气室内的气体的温度变化,进而完成所述气体密度继电器本体的压力升降;或者,
    所述压力调节机构为一端开口的腔体,所述腔体的另一端连通所述气体密度继电器本体的气路;所述腔体内有活塞,所述活塞的一端连接有一个调节杆,所述调节杆的外端连接驱动部件,所述活塞的另一端伸入所述开口内,且与所述腔体的内壁密封接触,所述驱动部件驱动所述调节杆进而带动所述活塞在所述腔体内移动;或者,
    所述压力调节机构为一密闭气室,所述密闭气室连通所述气体密度继电器本体的气路;所述密闭气室的内部设有活塞,所述活塞与所述密闭气室的内壁密封接触,所述密闭气室的外面设有驱动部件,所述驱动部件通过电磁力推动所述活塞在所述腔体内移动;或者,
    所述压力调节机构为一端连接驱动部件的气囊,所述气囊在所述驱动部件的驱动下发生体积变化,所述气囊连通所述气体密度继电器本体的气路;或者,
    所述压力调节机构为波纹管,所述波纹管的一端连通所述气体密度继电器本体的气路,所述波纹管的另一端在驱动部件的驱动下伸缩;或者,
    所述压力调节机构为一放气阀,所述放气阀为电磁阀或电动阀;或者,
    所述压力调节机构为一压缩机;或者,
    所述压力调节机构为一泵,所述泵包括造压泵、增压泵、电动气泵、电磁气泵中的一种;或者,
    所述压力调节机构为增压阀;
    其中,所述驱动部件包括磁力驱动机构、电机、往复运动机构、卡诺循环机构、磁耦合推力机构、加热产生推力机构、电加热产生推力机构、化学反应产生推力机构、气动元件中的一种。
  15. 根据权利要求1所述的具有密封性能自检的气体密度继电器,其特征在于:所述气体密度继电器还包括漏气关断件、接点隔离单元,所述智控单元分别与漏气关断件、接点隔离单元相连接;所述漏气关断件的一端与电气设备相连接,所述漏气关断件的另一端与气体密度继电器本体相连接;所述漏气关断件包括电控阀、电磁阀、电控自封阀、温控阀的一 种,被配置为当气体密度继电器本体的密封性能出现问题时,用来关闭电气设备和气体密度继电器本体相连接的气路;所述接点隔离单元,还与所述气体密度继电器本体直接或间接相连接,被配置为当漏气关断件关闭时,使所述气体密度继电器本体的接点与接点信号控制回路不相连通。
  16. 根据权利要求15所述的具有密封性能自检的气体密度继电器,其特征在于:所述气体密度继电器还包括设备侧气体密度检测传感器,所述设备侧气体密度检测传感器设置在漏气关断件与电气设备相连接的一侧,所述设备侧气体密度检测传感器与智控单元相连接,被配置为监测电气设备的气体密度值P SB20
    所述接点隔离单元包括隔离连接电路,所述隔离连接电路连接所述气体密度继电器本体的接点与接点信号控制回路;
    在漏气关断件关闭时,若设备侧气体密度检测传感器所监测到的电气设备的气体密度值P SB20大于预设阈值,接点隔离单元切断所述隔离连接电路,使所述气体密度继电器本体的接点与接点信号控制回路不相连通;若设备侧气体密度检测传感器所监测到的电气设备的气体密度值P SB20≤预设阈值,所述隔离连接电路闭合,使所述气体密度继电器本体的接点与接点信号控制回路相连通。
  17. 根据权利要求1所述的具有密封性能自检的气体密度继电器,其特征在于:至少两个所述气体密度继电器均依次通过集线器、协议转换器与远程后台检测系统连接;其中,所述气体密度继电器设置在其对应气室的电气设备上。
  18. 一种如权利要求1所述的具有密封性能自检的气体密度继电器的实现方法,其特征在于,包括:
    将密封性能检测单元设置在气体密度继电器本体内或本体外,与气体密度继电器本体内的气路相连通,或与气体密度继电器本体的内部腔体连通,通过采集气路上或内部腔体内的气体压力变化、或电流变化、或气体浓度变化、或气体密度值变化,获取气体密度继电器本体的漏气信息;
    将智控单元与所述密封性能检测单元相连接,所述智控单元接收和/或计算所述密封性能检测单元监测的数据或/和信息,并进行诊断,获取气体密度继电器本体的当前密封性能;或者,
    所述智控单元将接收的数据或/和信息上传至后台,所述后台对接收和/或计算所述密封性能检测器监测的数据或/和信息进行诊断,获取气体密度继电器本体的当前密封性能。
  19. 根据权利要求18所述的具有密封性能自检的气体密度继电器的实现方法,其特征在于:所述密封性能检测器包括电控阀、压力传感器、电压激励器、电极、电流检测器、氧气传感器、氮气传感器、SF6诊断传感器、卤素传感器、摄像机、输出信号接点、热导池检测器、光谱分析器、在线校验单元中的一种或几种。
  20. 根据权利要求18所述的具有密封性能自检的气体密度继电器的实现方法,其特征在于,所述气体密度继电器还包括漏气关断件、接点隔离单元、设备侧气体密度检测传感器;其中,所述漏气关断件的一端与电气设备相连接,所述漏气关断件的另一端与气体密度继电器本体相连接,所述接点隔离单元包括隔离连接电路,所述隔离连接电路连接所述气体密度继电器本体的接点与接点信号控制回路,所述设备侧气体密度检测传感器设置在漏气关断件与电气设备相连接的一侧,所述设备侧气体密度检测传感器与智控单元相连接;所述实现方法还包括:
    当气体密度继电器本体的密封性能出现问题时,智控单元通过控制漏气关断件,关闭电气设备和气体密度继电器本体连接的气路;在漏气关断件关闭时,若设备侧气体密度检测传感器所监测到的电气设备的气体密度值P SB20大于预设阈值,智控单元控制接点隔离单元切断隔离连接电路,使所述气体密度继电器本体的接点与接点信号控制回路不相连通;若设备侧气体密度检测传感器所监测到的电气设备的气体密度值P SB20≤预设阈值,智控单元控制接点隔离单元闭合隔离连接电路,使所述气体密度继电器本体的接点与接点信号控制回路连通。
PCT/CN2021/076133 2020-04-29 2021-02-09 具有密封性能自检的气体密度继电器及其实现方法 WO2021218287A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/997,544 US20230221209A1 (en) 2020-04-29 2021-02-09 Gas density relay with sealing performance self-checking function, and implementation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010355134.0 2020-04-29
CN202010355134.0A CN111487017A (zh) 2020-04-29 2020-04-29 具有密封性能自检的气体密度继电器及其实现方法

Publications (1)

Publication Number Publication Date
WO2021218287A1 true WO2021218287A1 (zh) 2021-11-04

Family

ID=71792043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/076133 WO2021218287A1 (zh) 2020-04-29 2021-02-09 具有密封性能自检的气体密度继电器及其实现方法

Country Status (3)

Country Link
US (1) US20230221209A1 (zh)
CN (1) CN111487017A (zh)
WO (1) WO2021218287A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114659724A (zh) * 2021-11-11 2022-06-24 华能澜沧江水电股份有限公司 一种检测六氟化硫气体泄漏故障的方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111487017A (zh) * 2020-04-29 2020-08-04 上海乐研电气有限公司 具有密封性能自检的气体密度继电器及其实现方法
CN113686509B (zh) * 2021-09-13 2022-10-25 华东理工大学 一种具有自检功能的阀门填料密封监测装置
CN115060426A (zh) * 2022-08-16 2022-09-16 江苏东海半导体股份有限公司 一种igbt的密封性检测装置及检测方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000139009A (ja) * 1998-10-30 2000-05-16 Saginomiya Seisakusho Inc 電気絶縁用気体の圧力監視装置
CN2906595Y (zh) * 2006-06-12 2007-05-30 上海哈德电气技术有限公司 六氟化硫气体密度继电器校验分析装置
CN101221109A (zh) * 2007-01-08 2008-07-16 苏丽芳 自动测试sf6气体密度继电器额定值并记录的方法
CN108321007A (zh) * 2018-03-06 2018-07-24 国网甘肃省电力公司经济技术研究院 一种基于gsm网络的远传监控六氟化硫气体密度继电器
CN110429002A (zh) * 2019-09-04 2019-11-08 上海乐研电气有限公司 一种绝缘性能自测试的气体密度继电器
CN110568350A (zh) * 2019-09-04 2019-12-13 上海卓电电气有限公司 一种免维护的智能式气体密度监测装置、方法和系统
CN110849768A (zh) * 2019-09-04 2020-02-28 上海卓电电气有限公司 具有在线校验的气体密度继电器、校验方法及监测系统
CN111487017A (zh) * 2020-04-29 2020-08-04 上海乐研电气有限公司 具有密封性能自检的气体密度继电器及其实现方法
CN211927197U (zh) * 2020-04-29 2020-11-13 上海乐研电气有限公司 具有密封性能自检的气体密度继电器及气体密度监测装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000139009A (ja) * 1998-10-30 2000-05-16 Saginomiya Seisakusho Inc 電気絶縁用気体の圧力監視装置
CN2906595Y (zh) * 2006-06-12 2007-05-30 上海哈德电气技术有限公司 六氟化硫气体密度继电器校验分析装置
CN101221109A (zh) * 2007-01-08 2008-07-16 苏丽芳 自动测试sf6气体密度继电器额定值并记录的方法
CN108321007A (zh) * 2018-03-06 2018-07-24 国网甘肃省电力公司经济技术研究院 一种基于gsm网络的远传监控六氟化硫气体密度继电器
CN110429002A (zh) * 2019-09-04 2019-11-08 上海乐研电气有限公司 一种绝缘性能自测试的气体密度继电器
CN110568350A (zh) * 2019-09-04 2019-12-13 上海卓电电气有限公司 一种免维护的智能式气体密度监测装置、方法和系统
CN110849768A (zh) * 2019-09-04 2020-02-28 上海卓电电气有限公司 具有在线校验的气体密度继电器、校验方法及监测系统
CN111487017A (zh) * 2020-04-29 2020-08-04 上海乐研电气有限公司 具有密封性能自检的气体密度继电器及其实现方法
CN211927197U (zh) * 2020-04-29 2020-11-13 上海乐研电气有限公司 具有密封性能自检的气体密度继电器及气体密度监测装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114659724A (zh) * 2021-11-11 2022-06-24 华能澜沧江水电股份有限公司 一种检测六氟化硫气体泄漏故障的方法
CN114659724B (zh) * 2021-11-11 2023-11-24 华能澜沧江水电股份有限公司 一种检测六氟化硫气体泄漏故障的方法

Also Published As

Publication number Publication date
CN111487017A (zh) 2020-08-04
US20230221209A1 (en) 2023-07-13

Similar Documents

Publication Publication Date Title
WO2021218287A1 (zh) 具有密封性能自检的气体密度继电器及其实现方法
CN211927197U (zh) 具有密封性能自检的气体密度继电器及气体密度监测装置
EP4027154A1 (en) Electrical system with on-line sampling verification function and verification method thereof
WO2021043036A1 (zh) 实现气体密度继电器免维护的现场检测装置、系统及方法
WO2021218288A1 (zh) 一种气体密度继电器在线校验装置及其在线校验方法
WO2021218285A1 (zh) 一种全寿命周期智能监控的气体密度继电器及其实现方法
CN110444442B (zh) 一种远传气体密度继电器系统及其校验方法
CN110988667A (zh) 一种具有在线自校验功能的气体密度继电器及其校验方法
CN211426165U (zh) 一种具有在线自校验功能的气体密度继电器及监测装置
CN111446115A (zh) 一种全寿命周期智能监控的气体密度继电器及其实现方法
CN211718032U (zh) 一种具有在线自校验功能的气体密度继电器及监测装置
CN110429002B (zh) 一种绝缘性能自测试的气体密度继电器
CN111446114A (zh) 一种能诊断漏油的气体密度继电器及其漏油诊断方法
WO2021043039A1 (zh) 一种气体密度继电器的改造方法、一种具有在线自校验功能的气体密度继电器及其校验方法
WO2021043042A1 (zh) 一种免维护的气体密度继电器及其相互校验方法
CN211929385U (zh) 一种全寿命周期智能监控的气体密度继电器及监测系统
CN110927566A (zh) 一种具有在线自校验功能的气体密度继电器及其校验方法
CN110514996A (zh) 一种气体密度继电器的改造方法
CN212646903U (zh) 一种气体密度继电器在线校验装置
CN110429005A (zh) 一种在线监测气体微水含量的气体密度继电器及监测系统
CN210775758U (zh) 一种具有在线自校验功能的气体密度继电器及监测装置
CN211043029U (zh) 一种自测试接点接触电阻的气体密度继电器及监测系统
US20220390518A1 (en) Method for modifying gas density relay, and gas density relay having online self-checking function and checking method therefor
EP4145483A1 (en) Self-diagnostic gas density relay and use method thereof
CN210668212U (zh) 一种在线监测气体微水含量的气体密度继电器及监测系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21796564

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21796564

Country of ref document: EP

Kind code of ref document: A1