WO2021218195A1 - 一种用于红外窗口材料的智能红外光开关及制作方法 - Google Patents

一种用于红外窗口材料的智能红外光开关及制作方法 Download PDF

Info

Publication number
WO2021218195A1
WO2021218195A1 PCT/CN2020/137998 CN2020137998W WO2021218195A1 WO 2021218195 A1 WO2021218195 A1 WO 2021218195A1 CN 2020137998 W CN2020137998 W CN 2020137998W WO 2021218195 A1 WO2021218195 A1 WO 2021218195A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase change
infrared
semiconductor
infrared light
change material
Prior art date
Application number
PCT/CN2020/137998
Other languages
English (en)
French (fr)
Inventor
詹耀辉
赵海鹏
马鸿晨
徐修冬
章新源
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Publication of WO2021218195A1 publication Critical patent/WO2021218195A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0147Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on thermo-optic effects
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/0009Materials therefor
    • G02F1/009Thermal properties
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0102Constructional details, not otherwise provided for in this subclass

Definitions

  • the invention relates to the technical field of optoelectronic devices, in particular to an intelligent infrared light switch used for infrared window materials.
  • Infrared photoelectric system is an important part of modern high-precision weapons, and is the key to accurate strikes and effective attacks. It has been widely used in advanced weapons such as supersonic fighters and guided missiles.
  • the infrared window is the only channel for transmitting the transmitted signal and receiving the target signal, and its optical properties directly affect the detection result of the photoelectric system.
  • the infrared window is exposed to the external environment, and it also undertakes the mission of protecting the internal optoelectronic components. Therefore, the infrared window is one of the important components of the infrared photoelectric system.
  • germanium is the preferred window material for infrared systems working in the 8-14 ⁇ m band. Its advantages are high mechanical strength, hardness and scratch resistance, good thermal conductivity, low heat absorption coefficient, high refractive index and transmittance. But the biggest problem comes from the decrease in heat radiation and transmittance of the infrared window. Because with the continuous irradiation of energy, the temperature of the window will continue to rise, which will cause the infrared radiation of the window material to increase significantly. In addition, the increase in the temperature of the window will also affect the infrared absorption of the material, resulting in a decrease in the infrared transmittance of the window material.
  • the high temperature infrared radiation of the infrared window will increase the background brightness of the infrared image of the infrared imaging system, causing the infrared detector to saturate and flood the target signal.
  • the temperature is too high, it can even cause permanent damage to the window. Therefore, to ensure that the window material is not affected by strong laser and high temperature, and at the same time can ensure that under normal circumstances, it can pass infrared light of a safe wavelength without being interfered by light of other wavelengths.
  • An intelligent infrared light switch for infrared window materials the working wavelength is infrared light, and it is characterized in that it includes an infrared filter layer, a semiconductor-metal phase change material layer, and a transparent base layer in the working wavelength along the light propagation direction. ;
  • the infrared filter layer is used to shield the light of the wavelength band outside the working wavelength, and allow the infrared light of the working wavelength to pass.
  • the temperature of the semiconductor-metal phase change material layer When the temperature of the semiconductor-metal phase change material layer is lower than the phase change threshold, it is in the semiconductor state, and infrared light of the working wavelength passes; when the temperature of the semiconductor-metal phase change material layer is higher than the phase change threshold, it is in the metal state, and the infrared light of the working wavelength is passed. Unable to pass.
  • the above technical solution uses a semiconductor-metal phase change material layer.
  • the transmittance of the visible light wave band and the infrared wave band has undergone significant changes.
  • the temperature is lower than the phase transition temperature threshold, it is in the semiconductor state, and the semiconductor-metal phase change material layer is highly transparent to infrared light.
  • the semiconductor-metal phase change material layer has a fast response time, and the phase change can be completed in a short time ( ⁇ 1ns).
  • phase change material layer film absorbs light energy, so that the temperature of the semiconductor-metal phase change material layer rises to the phase change temperature point, and the film structure rapidly changes to the metallic state (high temperature state), and the spectral characteristics change from relatively high.
  • the high transmission suddenly changes to the high reflection, thereby rapidly reducing the light energy entering the optical system, so that the optical system will not be saturated or burnt to achieve a protective effect.
  • the temperature drops, it will change to the semiconductor state again and be recycled, so as to spontaneously realize the switching function from transparent to non-transparent state through the perception of temperature.
  • the infrared filter layer uses a metal material, and the metal material is provided with a microhole array.
  • the reason for the use of metal materials is that the metal film inherently has a good electromagnetic wave shielding function, and the introduction of the microporous structure is to transmit the light of a specific working band on the basis of the full band shielding.
  • the resonance frequency is consistent with the working frequency through the control of the micro-nano structure, so as to realize the light transmission in the working band and the light shielding in the non-working band.
  • Periodic surfaces with the same micro-nano structure constitute a typical selective filter. The size, shape and periodicity of a single period in the selective filter array will resonate here.
  • the selective filter can pass or block electromagnetic waves within a certain frequency range in free space. Metasurfaces are widely referred to as planar metamaterials with subwavelength thickness, and they can be easily prepared using photolithography and nanoprinting techniques.
  • the filtering characteristics of selective filters can be divided into four types, including low pass, high pass, stop band and pass band.
  • the low-pass FSS filter allows electromagnetic waves in the lower frequency range to pass through the structure while shielding the higher frequency range.
  • the high-pass selective filter filtering is based on the Babinet principle and corresponds to the low-pass filtering function.
  • the stop-band selective filter will shield unwanted frequency bands, while the pass-band selective filter only allows a specific frequency range.
  • the infrared filter layer uses a metal structure micro-hole array to make the infrared filter layer present a metal grid structure. Due to the existence of free conductive electrons in the metal, when the incident frequency of the incident electromagnetic wave reaches the resonance frequency of the metal free electrons, the incident wave Will resonate with free electrons. Thereby there is an enhanced transmission characteristic for a specific frequency. Almost 100% transmission can be achieved. At the same time, because the metal grid structure is a passive original structure, it will not introduce other noise, which makes it the first choice for filters.
  • micropores of the micropore array are periodically arranged by cross-shaped micro-nanopores.
  • the cross hole array structure is the most studied and most successful structure. Due to its symmetry and unbiased dependence, it exhibits excellent characteristics in many aspects.
  • the groove width of the cross-shaped micro-nanopore is 0.5 ⁇ m-5 ⁇ m, the length is 4.0 ⁇ m-10 ⁇ m, and the period is 5.0 ⁇ m-20 ⁇ m.
  • the working wavelength is 8 ⁇ m-14 ⁇ m.
  • the periodic arrangement of the crisscross microporous structure and its variants can achieve selective transmission to the infrared band of 8-14 ⁇ m.
  • the central wavelength of the transmitted light can be controlled according to the size of the cross micro-nano structure, which has good tunability.
  • the material of the semiconductor-metal phase change material layer is vanadium dioxide, and the material of the base layer is infrared window materials such as barium fluoride and zinc selenide.
  • phase change of the semiconductor-metal phase change material can be driven by means of electric field, voltage, pulsed laser, etc.
  • the semiconductor-metal phase-change material layer is provided with a temperature sensor.
  • the temperature sensor sends out a switch signal and drives the semiconductor-metal phase-change material layer to undergo phase change through electric field, voltage, and pulse laser methods.
  • Figure 1 is a schematic diagram of the structure of an intelligent infrared light switch used in infrared window materials.
  • Fig. 2 is a schematic top view of an infrared filter layer.
  • Fig. 3 is a schematic diagram of the function of the structure after being illuminated by the embodiment of the present invention.
  • Fig. 4 is a schematic diagram of the structure of an added electrode according to an embodiment of the present invention.
  • Fig. 5 is a transmission spectrum of an embodiment of the present invention at 1 ⁇ m-20 ⁇ m.
  • 01 infrared filter layer
  • 02 semiconductor-metal phase change layer
  • 03 transparent base layer in working wavelength
  • 04 cross microporous structure
  • 05 first metal electrode
  • 06 second metal electrode.
  • an intelligent infrared light switch for infrared window materials includes an infrared filter layer 01 (which uses a cross microporous structure 04), a semiconductor-metal phase change layer 02, and a transparent substrate 03.
  • the infrared filter layer 01 and the semiconductor-metal phase change layer 02 are arranged on the transparent substrate 03 in sequence.
  • the infrared filter layer 01 includes a cross microporous structure, which can also be Y hole type, Y ring type, round hole type, circular ring type, etc.; it can be realized by photoresist method on metal gold, silver, aluminum and other materials.
  • the semiconductor-metal phase change layer 02 uses materials with reversible phase change properties. This patent mainly describes the use of VO 2 and other phase change materials with this property can also be used.
  • the transparent substrate 03 uses a transparent substrate in the light-opening wavelength band, and BaF 2 , CaF 2 , ZnS, etc. can be used when used at 8-14 ⁇ m.
  • VO 2 When light is incident, VO 2 is in a semiconductor state at this time, and light in the mid-infrared band passes through normally. Except for the light in the specified band, the light in other bands is shielded.
  • the first layer of filter still functions to shield the light of other bands and pass the mid-infrared light of a specific band, but the second layer of phase change material will be affected by the The change of external conditions changes from a semiconductor state to a metal state, thereby blocking the passage of infrared light. Therefore, the overall performance is no light transmission, and the instrument or material behind the film is protected.
  • the semiconductor-metal phase change layer uses a thermotropic phase change material.
  • a thermotropic phase change material Taking vanadium dioxide as an example, vanadium dioxide is used as a phase change material, and the phase change temperature is about 68°C.
  • VO 2 material is used as a phase change material.
  • the temperature will The structure changes autonomously, thereby changing from the semiconductor state to the metal state, blocking the irradiation of the laser without any external help.
  • This method requires certain requirements for the preparation of VO 2 and the required phase transition temperature must be understood before preparation to play the role of a smart optical switch in a specific environment. It is also possible to independently choose to turn on or off the infrared light switch by increasing the electric field and voltage from the outside.
  • the semiconductor-metal phase change layer is doped with high-valence ions (such as Nb 5+ , Ta 5 + , Mo 6+ , W 6+, etc.) can lower its phase transition temperature threshold, and doping with low-valence ions (such as Al 3+ , Cr 3+ , Fe 3+, etc.) can increase its phase transition temperature.
  • high-valence ions such as Nb 5+ , Ta 5 + , Mo 6+ , W 6+, etc.
  • doping with low-valence ions such as Al 3+ , Cr 3+ , Fe 3+, etc.
  • phase transition temperature point of VO 2 can be customized according to user needs.
  • the phase transition of vanadium dioxide film can be changed by externally applying voltage, changing electric field, applying pressure, and changing temperature. Means such as laser pulse.
  • phase change of VO 2 is reversible, which makes VO 2 very suitable as an optical switch material.
  • the filter and the phase change material VO 2 the infrared light selectively transmitted by the filter is shielded and transmitted according to requirements through VO 2.
  • Figure 1 shows the filter style, where 04 is a hollow cross micro-nano structure.
  • the cross shape is formed by crossing two identical rectangles, and the length and width of the rectangle are the long arm and the short arm respectively.
  • phase change material VO 2 layer is in a semiconductor state, which can make most of the infrared light pass through.
  • the energy of the infrared light exceeds a certain threshold, the phase change of the VO 2 layer will be excited and transformed into a metallic state. Thereby closing the infrared light channel.
  • the invention can independently change the transmittance of infrared light through external input of laser or electric field, magnetic field, etc., and always shield the interference of light waves in other bands.
  • the long-term laser irradiation may cause damage to the sample. (Irradiated object) has a great influence, or when used as a protection, it can avoid damage to the article due to the strong laser.
  • the strong laser is shielded, and when the laser energy is reduced, when the phase change material is lower than the phase change threshold, the phase change material will change, and the infrared laser will pass through normally.
  • the voltage adjusts the VO 2 phase change, and the first metal electrode 05 and the second metal electrode 06 are added to both sides of the structure.
  • the VO 2 film will be affected by the electric field and induce charges. If the electric field strength is large enough to cause the induced charge concentration in the VO 2 film to be high enough, it will cause the phase change material layer of the VO 2 film to undergo phase change.
  • FIG. 5 Shows as an example: BaF 2 used as a base material, the plating VO 2 thin film in the above, the main method for vacuum deposition plating, sputtering, chemical vapor deposition, sol-gel method, VO 2 thin film phase change layer thickness controlled at 40nm, the film according to the required conditions, by changing the doping and coating process, so that the control VO 2 meets predetermined conditions, and then using the photoresist method using a metal plated Al periodically intersecting hollow micro-nano structures ( as shown in picture 2).
  • the white one is air, in which the width of the central cross is 2.5 ⁇ m, the length is 8 ⁇ m, and the period is 10.5 ⁇ m.
  • the arm length and period can be changed to achieve the goal.
  • the transmission spectrum of 1 ⁇ m-20 ⁇ m is shown in Figure 5.
  • the light with a center wavelength of 11 ⁇ m has high transmittance at low temperature (LowT), and it is fully closed at high temperature (HighT).
  • the arm width is mainly controlled at 0.5 ⁇ m -5 ⁇ m, the arm length is controlled at 4.0 ⁇ m -10 ⁇ m, and the period is controlled at 5.0 ⁇ m -20 ⁇ m.
  • infrared interference technology should also have corresponding changes.
  • the light source of the original infrared jammer is mainly various lamps (xenon lamp, arc lamp, infrared lamp, etc.), which can interfere with near-infrared detectors.
  • This kind of jammer is non-directional omni-directional radiation and does not require a stable platform.
  • the development of high-power lasers is an ideal light source in terms of wavelength, radiance or volume quality.
  • DIRCM directional infrared jamming

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明属于光学器件领域,为解决现有红外窗口材料激光能量阈值不高导致的材料易损坏问题,公开了一种用于红外窗口材料的智能红外光开关及制作方法,工作波长为红外光,其特征在于:沿着光传播方向依次包括红外滤波器层、半导体-金属相变材料层、工作波长内透明的基底层;所述的红外滤波器层用于屏蔽工作波长之外波段的光,并使工作波长的红外光通过;半导体-金属相变材料层的温度低于相变阈值时为半导体态,工作波长的红外光通过,半导体-金属相变材料层的温度高于相变阈值时为金属态,工作波长的红外光无法通过。使用本技术方案可对特定红外光的入射光波段进行智能调节。

Description

一种用于红外窗口材料的智能红外光开关及制作方法 技术领域
本发明涉及光电器件技术领域,具体涉及一种用于红外窗口材料的智能红外光开关。
背景技术
红外光电系统是现代高精尖武器的重要组成部分,是实现精确打击和有效攻击的关键,目前已被广泛应用于超音速战机、制导导弹等先进武器中。在红外光电系统中,红外窗口是传递发射信号与接受目标信号的唯一通道,它的光学性质直接影响到光电系统的探测结果。此外红外窗口裸露于外部环境之中,还承担着保护内部光电元器件的使命。因此红外窗口是红外光电系统的重要部件之一。
技术问题
而目前的红外窗口材料,对于8-14μm的波段工作的红外系统,首选的窗口材料是锗。他的优点是机械强度高,坚硬耐划,导热性好,热吸收系数低,折射率和透射率高。但其中最大的问题来自于红外窗口的热辐射和透过率下降。因为随着能量的不断照射,窗口温度会不断升高,进而造成窗口材料的红外辐射显著增高。此外,窗口温度的升高,也会影响材料的红外吸收,导致窗口材料的红外透过率下降。红外窗口的高温红外辐射会使红外成像系统的红外图像背景亮度增加,造成红外探测器饱和,淹没目标信号。温度过高时甚至会对窗口造成永久性损伤。因此保证窗口材料不受到强激光和高温影响,同时又能保证在正常情况下可通过安全波长的红外光,不被其他波段的光干扰,我们设计了一种对特定的红外波长具有智能光开关的结构。
技术解决方案
为解决现有技术中存在的为解决现有红外窗口材料激光能量阈值不高导致的材料损坏问题,采用如下技术方案。
一种用于红外窗口材料的智能红外光开关,工作波长为红外光,其特征在于:沿着光传播方向依次包括红外滤波器层、半导体-金属相变材料层、工作波长内透明的基底层;所述的红外滤波器层用于屏蔽工作波长之外波段的光,并使工作波长的红外光通过。
半导体-金属相变材料层的温度低于相变阈值时为半导体态,工作波长的红外光通过;半导体-金属相变材料层的温度高于相变阈值时为金属态,工作波长的红外光无法通过。
上述技术方案为解决红外窗口材料激光能量阈值不高导致的材料损坏问题,使用了半导体-金属相变材料层,在相变前后其可见光波段和红外波段的透过率发生了明显突变,其在温度低于相变温度阈值时为半导体态,半导体-金属相变材料层对红外光高透过,温度高于相变温度阈值时呈金属态,对红外光高吸收,低透过。同时半导体-金属相变材料层具有很快的响应时间,可在短时间内(<1ns)完成相变。当强激光入射到窗口上时,相变材料层薄膜吸收光能量,使得半导体-金属相变材料层温度上升到相变温度点,膜结构迅速向金属态(高温态)转变,光谱特性由较高的透射突变为较高的反射,从而迅速降低了进入光学系统的光能量,使得光学系统不至于饱和或烧毁达到防护作用。当温度下降后,会再次变为半导体态,循环使用,从而通过对温度的感知自发地实现透明到非透明状态的开关作用。
优选方案:所述的红外滤波器层使用的是金属材料,该金属材料上设置有微孔阵列。采用金属材料的原因是金属薄膜天生具有良好的电磁波屏蔽功能,而微孔结构的引入是为了在全波段屏蔽的基础之上透过特定工作波段的光。基于周期性金属微孔结构的表面等离激元共振,通过微纳结构调控达到共振频率和工作频率一致,从而实现工作波段的光透过和非工作波段的光屏蔽。具有相同微纳结构的周期表面构成了典型的选择性滤波器。选择性滤波器阵列中单个周期的大小,形状和周期性会到这共振。当电磁波的频率与选择性滤波器阵列的共振频率相匹配时,根据阵列结构的不同性质,入射的平面波可以全部或者部分地透射(通带)或反射回来(阻带)。因此,选择性滤波器能够在自由空间中通过或阻挡一定频率范围内的电磁波。超表面被广泛地称为具有亚波长厚度的平面超材料,利用光刻和纳米印刷技术可以很容易地制备它们。选择性滤波器的滤波特性可分为四种,其中包括低通、高通、阻带和通带。低通FSS滤波器允许较低的频率范围的电磁波通过结构,而屏蔽较高的频率范围。高通选择性滤波器滤波是应用Babinet原理,与低通滤波功能的对应。类似地,阻带选择性滤波器会屏蔽不需要的频率波段,而通带选择性滤波器只允许特定的频率范围。红外滤波器层使用金属结构微孔阵列使得红外滤波器层呈现金属网格结构,其间的结构由于金属中存在自由的导电电子,当入射的电磁波的入射频率达到金属自由电子共振频率时,入射波就会和自由电子发生共振。从而对于特定的频率有增强透射的特性。几乎可以实现100%的透射。同时由于金属网格结构是无源的原件结构,不会引入其他的噪声,这使得其成为滤波器的首选结构。
进一步方案为:所述的微孔阵列的微孔由十字形微纳孔周期性排列而成。在金属网格结构中,十字孔阵列结构是研究最多也是最成功的一种结构。由于它的对称性以及无偏依赖性,在很多方面都表现出优异的特性。
十字形微纳孔的槽宽为0.5μm-5 μm,长为4.0μm-10μm,周期为5.0μm-20μm。所述的工作波长为8μm-14μm。周期性排列十字交叉微孔结构及其变体可以实现对8-14μm红外波段的选择性透过。其透过光的中心波长可根据十字微纳结构的尺寸进行控制,具有良好的可调性。
所述的半导体-金属相变材料层的材料为二氧化钒,基底层材料为氟化钡、硒化锌等红外窗口材料。
进一步的,半导体-金属相变材料的相变可由电场,电压,脉冲激光等方式驱动。
所述的半导体-金属相变材料层处设置有温度传感器,当温度大于设定阈值时,温度传感器发出开关信号并通过电场、电压、脉冲激光方式驱动半导体-金属相变材料层发生相变。
附图说明
图1为用于红外窗口材料的智能红外光开关结构示意图。
图2为红外滤波器层的俯视示意图。
图3为本发明实施例受到光照后结构的作用示意图。
图4为本发明实施例添加电极的结构示意图。
图5为本发明实施例在1μm- 20μm透过光谱。
其中:01—红外滤波器层、02—半导体-金属相变层、03—工作波长内透明的基底层、04—十字微孔结构;05-第一金属电极;06-第二金属电极。
本发明的实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本发明保护的范围。
以下结合说明书附图对本发明的技术方案做进一步的详细说明。
如图1所示,一种用于红外窗口材料的智能红外光开关,包含红外滤波器层01(其中采用十字微孔结构04),半导体-金属相变层02,透明基底03。
红外滤波器层01和半导体-金属相变层02依次设与透明基底03上。
红外滤波器层01包含十字微孔结构,也可以是Y孔型,Y环型,圆孔型,圆环型等;可以在金属金,银,铝等材料上通过光刻胶的方法实现。
半导体-金属相变层02使用具有可逆相变性质的材料,本专利主要讲述VO 2的使用,也可以使用具有该性质的其他相变材料。
透明基底03使用在光开光波段透明的基底,在8-14μm使用时可以使用BaF 2,CaF 2,ZnS等。
当光入射时,此时VO 2出于半导体态,中红外波段的光正常通过,除指定波段的光,其他波段光被屏蔽。当光照过强(或接受外界电场,磁场,温度变化后),第一层滤波器作用依旧是屏蔽其他波段的光,并使特定波段的中红外光通过,但第二层相变材料会因为外界条件的变化,从半导体态转变为金属态,从而阻断了红外光的通过。从而整体呈无光透过的性能,保护薄膜后面的仪器或者材料。
至少一个实施例中半导体-金属相变层使用热致相变材料。以二氧化钒为例,二氧化钒作为相变材料,相变温度在68℃左右,VO 2材料作为相变材料,当激光照射过强或者时间过长,温度高于相变温度时,会自主发生结构变化,从而从半导体态改变为金属态,阻断激光的照射,不需要任何外界帮助。 此方法需要对VO 2制备有一定要求,制备前要了解所需的相变温度,在特定的坏境发挥智能光开关的作用。也可以通过外界增加电场,电压等手段,自主选择打开或者关闭红外光开关。
虽然 VO 2 是目前已知相变材料中相变温度(Tc)最为接近室温的材料,但纯VO 2 材料的 68℃相变温度仍然与 25℃的室温相去甚远,期望 VO 2 材料在室温下或者其它的温度下相变,就必须通过各种手段重新调整其相变温度,为调整相变温度阈值,在半导体-金属相变层中掺杂高价态离子(如 Nb 5+ 、Ta 5+ 、Mo 6+ 、W 6+等)可降低其相变温度阈值,掺入低价态离子(如 Al 3+ 、Cr 3+ 、Fe 3+ 等)可提高其相变温度。由于目前电子器件等生活场所对温度要求不同,VO 2 的相变温度点可以根据用户需要进行自定义设计,二氧化钒薄膜的相变可以通过外部施加电压,改变电场,施加压力,改变温度。激光脉冲等手段。
并且VO 2的相变是可逆的,这使得VO 2作为光开关材料是非常合适的。将滤波器和相变材料VO 2结合,通过VO 2对滤波器选择性透过的红外光进行根据要求的屏蔽和透过。
制备 VO 2 的方法很多,除了上面的反应蒸发法、磁控溅射法、脉冲激光沉积法等方法,还有许多其它简单可行的方法,如K.R.Speck等人曾用四异丙醇化钒的溶胶-凝胶(Sol-Gel)法在石英片上生长出多晶 VO 2 薄膜,相变温度约为 67℃,其电阻的变化达 1-2 个数量级。
如图1所示为滤波器的样式, 其中04为空心的交叉微纳结构。
如图2所示,交叉十字形状为两个相同的长方形交叉形成,长方形的长和宽分别是长臂和短臂。
如图3所示,当光入射到结构表面时,首先通过周期性交叉空心微纳结构,对特定波段之外的光进行滤波作用,只透过指定波段的红外光,紧接着通过相变材料层,此时相变材料VO 2层呈半导体态,可以使得大部分的红外光透过,当红外光的能量超过一定的阈值,VO 2层的相变将会被激发,转变为金属态,从而关闭红外光通道。
本发明可以通过外部输入激光或者电场,磁场等自主改变对红外光的透过率,并始终屏蔽其他波段的光波干扰,当作为红外激光的防护时,由于激光的长时间的照射可能会对样品(被照射物体)有很大的影响,或者在作为防护时,可以避免由于强激光而对物品造成损伤,使用本发明后,当激光过强时,会使得相变材料层发生相变而转变为金属态,将强激光屏蔽,而当激光能量降低后,相变材料低于相变阈值时,、会发生转变,此时红外激光将正常透过。
如图4所示,对于电场,电压调节VO 2相变,对结构两边加第一金属电极05以及第二金属电极06。对金属电极之间施加电场或者电压,VO 2薄膜会受到电场的作用,产生感应电荷。如果电场强度足够大,导致VO 2薄膜中感应电荷浓度足够高时,就会引起相变材料层VO 2薄膜发生相变。
如图5所示。为实例展示:使用BaF 2作为基底材料,在上面镀VO 2薄膜,目前主要的镀膜方法有真空蒸镀法,溅射法,化学气相沉积,溶胶凝胶法,相变层VO 2薄膜的厚度控制在40nm左右,薄膜根据需要的条件,通过改变掺杂和镀膜工艺,使得VO 2的控制符合既定的条件,然后使用光刻胶的方法,使用金属Al镀上周期性交叉空心微纳结构(如图2所示)。白色的为空气,其中中心十字形的宽为2.5μm,长8μm,周期为10.5μm,对于不同的波段的调控可以改变臂长和周期来达到目的。此时在1μm- 20μm透过光谱如图5所示,低温(LowT)时中心波长11μm的光有高透过性,当高温(HighT)状态时为全关闭状态。
臂宽主要控制在0.5μm -5μm,臂长控制在4.0μm -10μm,周期控制在5.0μm -20μm。
随着红外技术的发展,红外探测、跟踪、制导武器的作用距离越来越远,其使用波段也更宽。红外干扰技术也应有相应的变化。原红外干扰机的光源主要是各种灯(氙灯、弧光灯、红外灯等),可干扰近红外探测器。这种干扰机是非定向的全方位辐射,不需要稳定平台。高功率激光器的发展,无论从使用波段、辐射亮度或体积质量等方面都是一种理想的光源。近年来将激光辐射用于干扰装置,已成为光电对抗技术中的一个重要分支,并称为定向红外干扰(DIRCM)技术。为避免这种情况,使用本技术方案的一种用于红外窗口材料的智能红外光开关可对特定红外光的入射光波段进行智能调节,屏蔽激光的干扰。对于红外探测系统和红外窗口等,使用本技术方案可保护光学系统不受到高能激光的损害,以及避免受到长时间照射使得系统的温度升高,造成系统的噪音增强甚至永久性损害等情况。
工业实用性
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种用于红外窗口材料的智能红外光开关,工作波长为中远红外光,其特征在于:沿着光传播方向依次包括红外滤波器层、半导体-金属相变材料层、工作波长内透明的基底层; 所述的红外滤波器层用于屏蔽工作波长之外波段的光,并使工作波长的红外光通过;半导体-金属相变材料层的温度低于相变阈值时为半导体态,工作波长的红外光通过,半导体-金属相变材料层的温度高于相变阈值时为金属态,工作波长的红外光无法通过。
  2. 根据权利要求1所述的一种用于红外窗口材料的智能红外光开关,其特征在于:所述的红外滤波器层使用的是金属材料,该金属材料上设置有微孔阵列。
  3. 根据权利要求2所述的一种用于红外窗口材料的智能红外光开关,其特征在于:所述的微孔阵列由十字形微纳孔周期性排列而成。
  4. 根据权利要求3所述的一种用于红外窗口材料的智能红外光开关,其特征在于:所述的十字形微纳孔的槽宽为0.5μm-5 μm,长为4.0 μm-10 μm,周期为5.0 μm-20 μm。
  5. 根据权利要求1所述的一种用于红外窗口材料的智能红外光开关,其特征在于:所述的半导体-金属相变材料层的材料包括:二氧化钒,基底层材料包括:氟化钡、硒化锌。
  6. 根据权利要求1所述的一种用于红外窗口材料的智能红外光开关,其特征在于:半导体-金属相变材料的相变驱动方式包括:温度、电场、电压、脉冲激光、磁场。
  7. 根据权利要求1所述的一种用于红外窗口材料的智能红外光开关,其特征在于:所述的半导体-金属相变材料层处设置有温度传感器,当半导体-金属相变材料层中温度大于设定阈值时,温度传感器发出开关信号并通过电场、电压、脉冲激光或磁场方式驱动半导体-金属相变材料层发生相变。
  8. 根据权利要求1至7之一所述的一种用于红外窗口材料的智能红外光开关,其特征在于:所述的工作波长为8μm-14μm。
  9. 一种用于红外窗口材料的智能红外光开关的制作方法,工作波长为红外光,其特征在于:使用工作波长内透明的材料作为基底层材料,在基底层上面镀半导体-金属相变材料层薄膜,然后在半导体-金属相变材料层之上使用电子束刻蚀或光刻的方法获得微纳图形,最后用电子束蒸镀或真空蒸镀等镀膜方法制备红外滤波器层。
  10. 根据权利要求9所述的一种用于红外窗口材料的智能红外光开关的制作方法,其特征在于:在基底层上面镀半导体-金属相变材料层薄膜的镀膜方式包括:脉冲激光沉积法、真空蒸镀法,溅射法,化学气相沉积,溶胶凝胶法。
PCT/CN2020/137998 2020-04-28 2020-12-21 一种用于红外窗口材料的智能红外光开关及制作方法 WO2021218195A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010350614.8 2020-04-28
CN202010350614.8A CN111562685B (zh) 2020-04-28 2020-04-28 一种用于红外窗口材料的智能红外光开关及制作方法

Publications (1)

Publication Number Publication Date
WO2021218195A1 true WO2021218195A1 (zh) 2021-11-04

Family

ID=72070795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/137998 WO2021218195A1 (zh) 2020-04-28 2020-12-21 一种用于红外窗口材料的智能红外光开关及制作方法

Country Status (2)

Country Link
CN (1) CN111562685B (zh)
WO (1) WO2021218195A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114665859A (zh) * 2022-03-25 2022-06-24 电子科技大学 一种基于二氧化钒薄膜的热电协同调控的红外光开关
CN117535624A (zh) * 2024-01-10 2024-02-09 季华实验室 具有氧化钒薄膜的红外窗口及制备方法和应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111562685B (zh) * 2020-04-28 2022-02-08 苏州大学 一种用于红外窗口材料的智能红外光开关及制作方法
CN114488550B (zh) * 2022-01-25 2024-02-06 秦皇岛本征晶体科技有限公司 红外多角度连续可变分光比镀膜氟化物分光镜及制作方法
CN117192676A (zh) * 2022-10-20 2023-12-08 上海交通大学 一种中红外拓扑热辐射波导结构及开关

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103094647A (zh) * 2013-01-30 2013-05-08 中国科学院长春光学精密机械与物理研究所 一种具有变频功能的双层频率选择表面滤波器
CN103346367A (zh) * 2013-06-24 2013-10-09 中国科学院长春光学精密机械与物理研究所 一种使用温度控制通带开关的空间滤波器
US20180059440A1 (en) * 2016-08-29 2018-03-01 The Trustees Of Columbia University In The City Of New York Systems and methods for active photonic devices using correlated perovskites
CN108732672A (zh) * 2018-08-14 2018-11-02 中山科立特光电科技有限公司 一种光学滤波器结构及其制备方法和透射特性的调节方法
CN111562685A (zh) * 2020-04-28 2020-08-21 苏州大学 一种用于红外窗口材料的智能红外光开关及制作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103094647A (zh) * 2013-01-30 2013-05-08 中国科学院长春光学精密机械与物理研究所 一种具有变频功能的双层频率选择表面滤波器
CN103346367A (zh) * 2013-06-24 2013-10-09 中国科学院长春光学精密机械与物理研究所 一种使用温度控制通带开关的空间滤波器
US20180059440A1 (en) * 2016-08-29 2018-03-01 The Trustees Of Columbia University In The City Of New York Systems and methods for active photonic devices using correlated perovskites
CN108732672A (zh) * 2018-08-14 2018-11-02 中山科立特光电科技有限公司 一种光学滤波器结构及其制备方法和透射特性的调节方法
CN111562685A (zh) * 2020-04-28 2020-08-21 苏州大学 一种用于红外窗口材料的智能红外光开关及制作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHEN NAN, CHEN SHI, WANG WEIJUN, SHI RUN, CHEN PENGCHENG, KONG DEJUN, LIANG YUXING, AMINI ABBAS, WANG JIANBO, CHENG CHUN: "Joule heating driven infrared switching in flexible VO2 nanoparticle films with reduced energy consumption for smart windows", JOURNAL OF MATERIALS CHEMISTRY A, vol. 7, no. 9, 26 February 2019 (2019-02-26), GB, pages 4516 - 4524, XP055863067, ISSN: 2050-7488, DOI: 10.1039/C8TA11071A *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114665859A (zh) * 2022-03-25 2022-06-24 电子科技大学 一种基于二氧化钒薄膜的热电协同调控的红外光开关
CN117535624A (zh) * 2024-01-10 2024-02-09 季华实验室 具有氧化钒薄膜的红外窗口及制备方法和应用
CN117535624B (zh) * 2024-01-10 2024-04-05 季华实验室 具有氧化钒薄膜的红外窗口及制备方法和应用

Also Published As

Publication number Publication date
CN111562685B (zh) 2022-02-08
CN111562685A (zh) 2020-08-21

Similar Documents

Publication Publication Date Title
WO2021218195A1 (zh) 一种用于红外窗口材料的智能红外光开关及制作方法
CN112698433B (zh) 一种超材料红外吸收体及其制造方法
US6844976B1 (en) Heat-absorbing filter and method for making same
KR102122090B1 (ko) 이중 밴드 완전흡수 메타물질을 이용한 적외선 스텔스 소자
CA2304019A1 (en) Transparent metallo-dielectric photonic band gap structure
US6028699A (en) Electromagnetically shielded window, sensor system using the window, and method of manufacture
CN108089350A (zh) 一种基于硫系相变材料的全光开关及其制备方法
CN110346854A (zh) 一种与偏振无关的超窄多频带可调谐完美吸收器
CN110687622A (zh) 一种偏振可调光谱双重差异性响应的完美光学吸波器及其制备方法
CN114879282A (zh) 一种基于介质超表面的激光防护膜及其制备方法
CN111913329B (zh) 可见至中红外波段可调控光性能的电致变色薄膜器件及制备方法
US10254169B2 (en) Optical detector based on an antireflective structured dielectric surface and a metal absorber
CN111308587B (zh) 可调谐多波段超窄带电磁波吸收器
CN114200559A (zh) 超宽带可见光与近红外超材料吸波体
EP4035211A1 (en) Method for protecting ir transmitting windows and domes from emi
Yunos et al. Microstructure FSS patterning to improve 5G microwave signals through low-e plastic windows
KR102579825B1 (ko) 투명 적외선 선택적 방사체
CN117970540A (zh) 一种非偏振长波红外宽带吸收结构及制备方法
CN115061230B (zh) 双频域激光与多波段红外兼容的智能隐身复合薄膜材料
KR20230031547A (ko) 파장 선택성 전자기파 투과 소자
CN116705887B (zh) 一种红外探测器用吸收膜及其制备方法
US20230103350A1 (en) Optical filter
CN115051157B (zh) 基于表面等离子体的透红外超宽带电磁屏蔽天线防护器件
CN110530206B (zh) 用于激光信息场光学码盘的高损伤阈值保护膜制备工艺
CN115236777A (zh) 一种可见光透明的红外/激光兼容隐身器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20933174

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20933174

Country of ref document: EP

Kind code of ref document: A1