WO2021218169A1 - 在位检测电路、充电器及电子设备 - Google Patents

在位检测电路、充电器及电子设备 Download PDF

Info

Publication number
WO2021218169A1
WO2021218169A1 PCT/CN2020/135463 CN2020135463W WO2021218169A1 WO 2021218169 A1 WO2021218169 A1 WO 2021218169A1 CN 2020135463 W CN2020135463 W CN 2020135463W WO 2021218169 A1 WO2021218169 A1 WO 2021218169A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
voltage divider
voltage
port
field effect
Prior art date
Application number
PCT/CN2020/135463
Other languages
English (en)
French (fr)
Inventor
林宋荣
李鹏
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Publication of WO2021218169A1 publication Critical patent/WO2021218169A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • This application relates to the field of electronic technology, in particular to an in-position detection circuit, a charger and an electronic device.
  • a charger In order to control or operate the device, it is often necessary to detect whether the device is in place. For example, in order to charge the battery, a charger needs to detect whether the battery is in place, that is, whether the battery is inserted into the charger. For some small electronic devices, such as chargers used to charge small-sized high-density batteries, usually the structure design cannot use multi-pin output terminals, only positive and negative terminals, so it cannot provide in-position signal detection. . Therefore, it is necessary to provide an in-position detection circuit to solve the above-mentioned problems.
  • This application provides an in-position detection circuit, a charger, and an electronic device, which are used to detect the in-position information of an external device.
  • the present application provides an in-position detection circuit, the in-position detection circuit is used to detect whether an external device is connected to a port circuit of an electronic device, the external device includes a battery; the in-position detection circuit includes:
  • a first voltage divider circuit the first voltage divider circuit is connected in parallel with the port circuit;
  • a second voltage divider circuit the second voltage divider circuit is connected in series with the first voltage divider circuit, and the voltage divider capability of the second voltage divider circuit is greater than the voltage divider capability of the first voltage divider circuit;
  • a charge storage circuit the charge storage circuit is connected in parallel with the second voltage divider circuit
  • a discharge circuit and a first switch circuit the first switch circuit is connected in series between the discharge circuit and the charge storage circuit, and is used to discharge the charge storage circuit;
  • the main control unit of the electronic device can change the voltage of the second voltage divider circuit according to the voltage of the second voltage divider circuit and/or control the discharge circuit to determine the presence information of the external device.
  • one end of the second voltage divider circuit is connected to the first voltage divider circuit, and the other end of the second voltage divider circuit is grounded;
  • One end of the first switch circuit is connected to the port side of the port circuit through the discharge circuit, the other end of the first switch circuit is connected to the ground terminal of the second voltage divider circuit, and the first The switch circuit is controlled by the main control unit of the electronic device.
  • the port circuit includes a second switch circuit, the second switch circuit is controlled by the main control unit of the electronic device, the first voltage divider circuit and the first The two switch circuits are connected in parallel.
  • the first voltage divider circuit includes at least one resistor.
  • the first voltage divider circuit further includes a diode, the diode is connected in series with the resistance of the first voltage divider circuit, and the conduction direction of the diode is the same as that of the port circuit. The direction of current during operation is the same.
  • the anode of the diode is connected to the end of the second switch circuit away from the port, and the cathode of the diode is connected to one end of the resistance of the first voltage divider circuit, so The other end of the resistor of the first voltage divider circuit is connected to one end of the second switch circuit close to the port.
  • the charge storage circuit includes at least one capacitor.
  • the second voltage divider circuit includes at least two resistors, and the two resistors are connected in series.
  • the second voltage divider circuit includes a voltage detection circuit, one end of the voltage detection circuit is connected between two resistors of the second voltage divider circuit, and the voltage detection circuit The other end of the circuit is connected to the main control unit, and is used to detect the voltage of the second voltage divider circuit.
  • the presence detection circuit further includes a filter capacitor, one end of the filter capacitor is connected to the voltage detection circuit, and the other end of the filter capacitor is grounded.
  • the discharge circuit includes at least one resistor, and the resistance of the discharge circuit is smaller than the resistance of the second voltage divider circuit.
  • the first switch circuit includes a field effect tube, one end of the field effect tube of the first switch circuit is connected to the discharge circuit, and the field effect of the first switch circuit The other end of the tube is connected to the ground terminal of the second voltage divider circuit.
  • the second switch circuit includes a first field effect tube, a second field effect tube, and a third field effect tube, and the first field effect tube and the second field effect tube are connected to each other.
  • the gates of the first FET and the second FET are both connected to the drain or source of the third FET, and accordingly the source or drain of the third FET is grounded ,
  • the gate of the third field effect transistor is connected to the main control unit, and is used to receive a control signal of the main control unit to realize the on or off of the second switch circuit.
  • the present application also provides a charger, the charger includes at least one port circuit, the port circuit can be connected to an external device, the external device includes a battery; the port circuit is also connected to any one of the above
  • the presence detection circuit described in the item is used to detect the presence information of the external device, so as to charge the external device according to the presence information.
  • the present application also provides an electronic device, the electronic device includes a port circuit, the port circuit can be connected to an external device, wherein the port circuit is also connected with the in-place detection as described in any of the above The circuit is used to detect the presence information of the external device.
  • the presence detection circuit, charger, and electronic device provided in this application can quickly detect the presence information of the external device connected to the port circuit of the electronic device, and perform corresponding operations based on the presence information.
  • the charger uses the presence detection circuit to detect the presence information of the battery and performs charging based on the presence information.
  • Even a charger that includes only positive and negative terminals can also use the presence detection circuit. The reliability of the charging function of the charger is improved, and at the same time, due to the simple structure of the in-position detection circuit, the cost of the charger can be reduced.
  • FIG. 1 is a schematic diagram of the circuit structure of an existing in-position detection circuit provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of a specific circuit structure of an existing in-position detection circuit provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of a circuit structure of an in-position detection circuit provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of the effect of voltage drain provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of the circuit structure of another in-position detection circuit provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of the circuit structure of a second switch circuit provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of the circuit structure of another in-position detection circuit provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of the circuit structure of another in-position detection circuit provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of the circuit structure of another in-position detection circuit provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of the circuit structure of another in-position detection circuit provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of the circuit structure of another in-position detection circuit provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of the circuit structure of another in-position detection circuit provided by an embodiment of the present application.
  • FIG. 13 is a schematic diagram of the circuit structure of another in-position detection circuit provided by an embodiment of the present application.
  • FIG. 14 is a schematic diagram of the circuit structure of an in-position detection circuit provided by an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a charger provided by an embodiment of the present application.
  • FIG. 16 is a schematic block diagram of the structure of an electronic device provided by an embodiment of the present application.
  • the charger needs to detect the presence information of the battery, that is, whether the battery is inserted into the charger.
  • the structure design cannot use multi-pin output terminals, only positive and negative terminals, so it cannot provide in-position signal detection.
  • the current in-position detection circuit scheme is to set a MOS switch on the charging port of the charger, and use the MOS switch to connect to a negative pin of the battery. , Realize the battery's in-position signal detection.
  • the MOS switch is controlled by the Microcontroller Unit (MCU) of the charger, the drain D of the MOS switch is connected to a preset power source of 3.3V through a resistor R0, and the source S of the MOS switch is grounded, where the MOS switch The drain D is used as the detection point of the in-position signal.
  • MCU Microcontroller Unit
  • the MOS switch is turned off.
  • the preset power supply 3.3V forms a high level at the drain D of the MOS switch through the resistor R0, and the MCU determines that it is in place when the high level is detected.
  • the message is "Battery not inserted”.
  • the two negative pins of the battery are connected to the drain D and source S of the MOS switch, thereby pulling the drain D of the MOS switch low, and the MCU detects a low-level signal and judges
  • the in-position information is "battery insertion”. Due to the current requirement of the battery pin, when the battery is inserted and charging starts, the MCU controls to turn on the MOS switch so that the MOS switch is turned on, thereby realizing the charging of the battery.
  • FIG. 2 the specific circuit structure diagram of the in-position detection circuit in FIG. 1 is shown in FIG. 2 in detail.
  • BAT- is used to connect the negative terminal of the battery
  • the drain D of the MOS switch Q1 is connected to the preset voltage VCC through the resistor R0
  • the preset voltage VCC is 3.3V
  • the source S of the MOS switch Q1 is grounded
  • the MOS switch Q1 The gate G is used to receive the control signal of the MCU.
  • the gate G of the MOS switch Q1 is connected to the control pin of the MCU through a resistor R1, wherein the gate G and the source S of the MOS switch Q1 are also connected through a resistor R2, and the resistor R2 is used to protect the cover MOS switch.
  • the in-position detection circuit scheme in Figure 1 has two disadvantages: one is the need to use a high-priced, low-on-resistance MOS switch.
  • the MOS When charging starts, the MOS is turned on to let a part of the current flow through the MOS; the other is when the rechargeable battery is unplugged At this time, because the MOS switch is in the on state at this time, the in-position signal maintains a low level, so the charger cannot determine whether the battery has been unplugged.
  • a multi-channel output charger that is, it can charge multiple batteries at the same time, it is necessary to detect the presence signal of each battery to manage the charging sequence and charging status of each battery. For example, when a battery is inserted, the charger needs to detect that a new battery is inserted and recharge the sequence; or when a battery is unplugged, if the charger fails to detect it, it cannot charge other batteries.
  • this application provides an in-position detection circuit, charger and electronic equipment.
  • the presence detection circuit can detect the presence information of the external external device, and can detect that the presence information of the external device is "unplugged", and does not need to use high-priced, low-on-resistance MOS switches, and can Reduce the cost of the circuit.
  • the charger can be a charging box for accommodating one or more batteries.
  • the presence detection circuit is set in the charger to detect the presence information of the external device including the battery.
  • FIG. 3 is a schematic diagram of the circuit structure of an in-position detection circuit provided by an embodiment of the present application.
  • the presence detection circuit can be applied to electronic devices such as chargers to detect the presence information of external devices including batteries.
  • the presence detection circuit 100 is connected to the port circuit 10 of the electronic device, and is used to detect the presence information of the external device 20 connected to the port circuit 10.
  • the port circuit 10 can specifically be a charging circuit for charging the external device 20.
  • the port circuit 10 can include a control switch or other electronic components.
  • the port of the port circuit 10 can be inserted into or unplugged from the external device 20. According to the plug-in and pull-out status of the external device 20, correspondingly the presence information of the external device 20 includes information such as "plugged in” and "unplugged”.
  • the external device 20 is an electronic device including a battery, and of course, it can also be a battery device.
  • the presence detection circuit 100 includes: a first voltage divider circuit 11, a second voltage divider circuit 12, a charge storage circuit 13, a discharge circuit 14 and a first switch circuit 15.
  • the first voltage divider circuit 11 is connected in parallel with the port circuit 10, specifically, for example, the first voltage divider circuit 11 is connected in parallel with the control switch k1 of the port circuit 10, or other components or components of the first voltage divider circuit 11 and the port circuit 10 The combination of parallel connection.
  • the second voltage divider circuit 12 is connected in series with the first voltage divider circuit 11 to realize common voltage division with the first voltage divider circuit 11, for example, to divide the voltage Vm.
  • the voltage dividing capacity of the second voltage dividing circuit 12 is greater than that of the first voltage dividing circuit 11, so the voltage dividing of the second voltage dividing circuit 12 is greater than that of the first voltage dividing circuit 11.
  • the voltage dividing capacity of the second voltage divider circuit 12 can be set to be much larger than the voltage dividing capacity of the first voltage divider circuit 11.
  • the voltage division of the second voltage divider circuit 12 is negligible, that is, the voltage of the second voltage divider circuit 12 can be approximately equal to the voltage Vm.
  • the voltage division capability of the second voltage divider circuit 12 is the voltage division of the first voltage divider circuit 11. 100 times the capacity, or other multiples, so the voltage division of the first voltage divider circuit can be ignored.
  • the charge storage circuit 13 is connected in parallel with the second voltage divider circuit 12 to store energy in the second voltage divider circuit 12; the first switch circuit 15 is connected in series between the discharge circuit 14 and the charge storage circuit 13 and is used to store 13 Conduct discharge.
  • one end of the second voltage divider circuit 12 is connected to the first voltage divider circuit 11, and the other end of the second voltage divider circuit 12 is grounded.
  • One end of the first switch circuit 15 is connected to the port side of the port circuit 10 through the discharge circuit 14, the other end of the first switch circuit 15 is connected to the ground end (the other end) of the second voltage divider circuit 12, and the first switch circuit 15 Controlled by the main control unit of the electronic device.
  • the voltage division capability of the second voltage divider circuit 12 is much greater than that of the first voltage divider circuit 11, which can ensure that the energy storage voltage of the charge storage circuit 13 is much greater than the voltage division of the first voltage divider circuit 11.
  • the battery can be protected to prevent the current of the battery from being reversed.
  • the main control unit of the electronic device can change the voltage of the second voltage divider circuit 12 according to the voltage of the second voltage divider circuit 12 and/or control the discharge circuit 14 to determine the external The presence information of the device 20.
  • the control switch K1 of the charger's port circuit 10 is in an off state and the front end is connected to the voltage Vm. Because the battery has not been charged yet, the control switch K1 is controlled. In the off state, the first voltage divider circuit 11 and the second voltage divider circuit 12 divide Vm, the charge storage circuit 13 stores energy, and the voltage across the charge storage circuit 13 is the voltage of the second divider circuit 12. Since the voltage dividing capacity of the second voltage dividing circuit 12 is greater than the voltage dividing capacity of the first voltage dividing circuit 11, for example, if it is much larger than the voltage, the voltage across the charge storage circuit 13 can be approximately Vm.
  • the first switch circuit 15 Under the control of the charger's main control unit, the first switch circuit 15 is turned on at a timing (for example, 500ms). Since the first switch circuit 15 is turned on, the electric energy stored in the charge storage circuit 13 will be discharged through the discharge circuit 14, thereby forming a drain The voltage and the depth of the drain voltage are determined by the conduction time of the first switch circuit 15. If the conduction time of the first switch circuit 15 is long enough, the voltage of the second voltage divider circuit 12 will be pulled to 0V, forming a square Wave.
  • the voltage ditch phenomenon as shown in FIG. 4, the conduction time of the first switch circuit 15 is from t1 to t2, and from t1 to t2, the electric energy stored in the charge storage circuit 13 is discharged through the discharge circuit 14 , And then the voltage ditch phenomenon appears.
  • determining the presence information of the external device 20 is specifically:
  • the main control unit of the charger controls the port circuit 10 to disconnect Do not charge the battery, and check the voltage of the second voltage divider circuit 12 again. If the detected voltage does not change, it means that the battery is fully charged. If the detected voltage drops out, it means that the battery’s presence information is unplugged. .
  • the in-position detection circuit provided in this application can determine other information such as “short circuit” and “battery saturation” in addition to the in-position information such as battery insertion or removal.
  • the details are shown in Table 1.
  • Table 1 shows the battery information
  • an electronic device can quickly and accurately detect the presence information of an external device connected to the electronic device. Since there is no need to charge the battery through the first switch circuit, there is no need to use a high-priced, low-on-resistance MOS switch, thereby reducing the cost of the circuit. At the same time, the presence detection circuit can also determine the battery's "unplugged" information, so it is suitable for multi-channel chargers.
  • the port circuit 10 includes a second switch circuit 16, and the second switch circuit 16 is controlled by the main control unit of the electronic device, that is, the second switch circuit is controlled by the main control unit. 16 turn on and off, control to charge the battery or stop charging. Among them, the first voltage divider circuit 11 and the second switch circuit 16 are connected in parallel.
  • the second switch circuit 16 may be a switch circuit, or include a transistor, such as a MOS tube or a triode.
  • the second switch circuit 16 includes a first field effect transistor Q11, a second field effect transistor Q12, and a third field effect transistor Q13.
  • the first field effect transistor Q11 and The second field effect transistor Q12 is connected to each other.
  • the connection means that the drain of the field effect transistor is connected.
  • the gates of the first field effect transistor Q11 and the second field effect transistor Q12 are both connected to the drain or source of the third field effect transistor Q13.
  • the source or drain of the third field effect transistor is grounded, and the gate of the third field effect transistor Q13 is connected to the main control unit for receiving the control signal of the main control unit to realize the second switch circuit 16 is turned on or off.
  • the second switch circuit 16 further includes a resistor R11, a resistor R12, a resistor R13, and a resistor R14.
  • the resistor R11 is connected between the drain and the gate of the first field effect transistor Q11, or it can be said that the resistor R11 is connected between the drain and the gate of the second field effect transistor Q12.
  • the resistor R12 is connected between the gate of the first field effect transistor Q11 and the drain of the third field effect transistor Q13.
  • the gate of the third field effect transistor Q13 is connected to the main control unit through a resistor R13 for receiving the Charge signal.
  • the resistor R14 is connected between the gate and the source of the third field effect transistor Q13.
  • the second switch circuit 16 also includes a capacitor C11, and the capacitor C11 is connected in parallel with the resistor R11 to play a filter protection role.
  • the first voltage divider circuit 11 includes at least one resistor, specifically the resistor R4 in FIG. 5.
  • the resistor R4 in FIG. 5 the resistor
  • multiple resistors can also be included, and the multiple resistors can be connected in series or in parallel.
  • other voltage divider components can also be included.
  • the first voltage divider circuit 11 further includes a diode D1.
  • the diode D1 is connected in series with the resistor R4 of the first voltage divider circuit 11, and the conduction direction of the diode D1 is the same as when the port circuit 10 works. The current direction is the same.
  • the diode D1 prevents current backflow, plays a role in protecting the circuit, and further improves the safety of the circuit.
  • the anode of the diode D1 is connected to the end (Vm input end) of the second switch circuit 16 far from the port, and the cathode of the diode D2 is connected to one end of the resistor R4 of the first voltage divider circuit 11.
  • the other end of the resistor R4 of the voltage divider circuit 11 is connected to the end of the second switch circuit 16 close to the port.
  • the charge storage circuit 13 includes at least one capacitor C1, and the capacitor C1 is connected in parallel with the second voltage divider circuit 12 for storing energy in the second voltage divider circuit 12.
  • the charge storage circuit 13 may also include multiple capacitors or other energy storage elements, which are not limited here.
  • the second voltage divider circuit 12 includes at least two resistors, and the two resistors are connected in series. Specifically, the resistors R5 and R6 are respectively connected in series, and one end of the resistor R5 is connected to the first voltage divider circuit 11, for example, it can be connected to the resistor R4, and one end of the resistor R6 is grounded.
  • the voltage dividing capacity of the second voltage dividing circuit 12 is greater than the voltage dividing capacity of the first voltage dividing circuit 11, which can be specifically achieved by selecting the resistance values of the resistor R4, the resistor R5, and the resistor R6.
  • the second voltage divider circuit 12 includes a voltage detection circuit 121.
  • One end of the voltage detection circuit 121 is connected between two resistors of the second voltage divider circuit 12. The other end is connected to the main control unit for detecting the voltage of the second voltage divider circuit 12.
  • the in-position detection circuit 100 further includes a filter capacitor C2, one end of the filter capacitor C2 is connected to the voltage detection circuit 121, The other end of the capacitor C2 is grounded for filtering.
  • the first switch circuit 15 includes a field effect transistor Q2.
  • One end (source or drain) of the field effect transistor Q2 of the first switch circuit 15 is connected to the discharge circuit 14.
  • the other end (drain or source) of the field effect transistor Q2 of the switch circuit 15 is connected to the ground end of the second voltage divider circuit 12.
  • the gate of the field effect transistor Q2 receives the control signal of the main control unit through a resistor R8, and protects the field effect transistor Q2.
  • a resistor R9 is connected between the source and the gate of the field effect transistor Q2.
  • the discharge circuit 14 includes at least one resistor R7, and the resistance R7 of the discharge circuit 14 is smaller than the resistance of the second voltage divider circuit 12, such as smaller than the resistance of the resistors R5 and R6.
  • the sum of, or less than any resistance value of the resistors R5 and R6, realizes the discharge of the charge storage circuit 13.
  • an in-position detection circuit is provided on each port circuit 100, used to detect the presence information of external devices. For example, it is used to detect the presence information of multiple batteries, which is a multi-channel (port circuit) charger.
  • Reasonable charging can be carried out by detecting the battery presence information of each channel, such as controlling the charging sequence and charging state of multiple batteries, for example, when the charging state is saturated, turn off the switch on the channel and prompt for unplugging the battery. Battery, so that the battery is overcharged, thereby increasing the service life and safety of the battery.
  • FIG. 15 is a schematic structural diagram of a charger provided by an embodiment of the present application.
  • the charger uses the presence detection circuit of any one of the foregoing embodiments to detect the presence information of the battery, and charge the battery according to the presence information of the battery.
  • the charger includes at least one port circuit, the port circuit can be connected to an external device, and the external device includes a battery; The presence information of the external device, so as to charge the external device according to the presence information.
  • the charger 200 includes a plurality of charging bins 201, and each charging bin 201 corresponds to a port circuit.
  • each charging bin 201 corresponds to a port circuit.
  • the battery 202 is inserted into the battery bin 201, the battery 202 is charged through the port circuit.
  • each port circuit is also connected with an in-position detection circuit, the in-position information of each battery can be detected, and the battery can be charged according to the in-position information of the battery.
  • the battery when the battery is detected to be inserted, the battery is charged; when the battery is detected to be unplugged, the switch on the port circuit is turned off to stop charging; or, when multiple batteries are connected to the charger at the same time, according to the battery presence information, Charge according to the presence information of multiple batteries.
  • FIG. 16 is a schematic block diagram of the structure of a charger provided by an embodiment of the present application.
  • the electronic device 300 includes a port circuit that is connected to a port provided on the housing of the electronic device.
  • the electronic device 300 includes four ports, respectively Port 1, port 2, port 3, and port 4, each of which can be connected to an external device, and the external device includes a battery.
  • the port circuit is also connected with the presence detection circuit as described in any one of the above, for detecting the presence information of the external device.

Abstract

一种在位检测电路(100),包括:第一分压电路(11)、第二分压电路(12)、电荷储存电路(13)和放电电路(14);第一分压电路(11)与端口电路(10)并联;第二分压电路(12)与第一分压电路(11)串联;电荷储存电路(13)与第二分压电路(12)并联;第一开关电路(15)串联在放电电路(14)和电荷储存电路(13)之间,用于对电荷储存电路(13)进行放电;其中,电子设备(300)的主控单元能够根据第二分压电路(12)的电压和/或控制放电电路(14)改变第二分压电路(12)的电压,确定外部设备的在位信息。还提供了充电器(200)及电子设备(300)。

Description

在位检测电路、充电器及电子设备 技术领域
本申请涉及电子技术领域,尤其涉及一种在位检测电路、充电器及电子设备。
背景技术
为了对设备进行控制或者操作,常常需要检测设备是否在位,比如充电器为了给电池充电,需要检测电池是否在位,即电池是否插入该充电器。对于一些小型的电子设备,比如用于给小尺寸的高密度电池充电的充电器,通常结构设计没法使用多脚输出的端子,仅有的正负极端子,因此没法提供在位信号检测。因此有必要提供一种在位检测电路以解决上述问题。
发明内容
本申请提供了一种在位检测电路、充电器及电子设备,用于检测外部设备的在位信息。
第一方面,本申请提供了一种在位检测电路,所述在位检测电路用于检测电子设备的端口电路是否连接有外部设备,所述外部设备包括电池;所述在位检测电路包括:
第一分压电路,所述第一分压电路与所述端口电路并联;
第二分压电路,所述第二分压电路与所述第一分压电路串联,所述第二分压电路的分压能力大于所述第一分压电路的分压能力;
电荷储存电路,所述电荷储存电路与所述第二分压电路并联;
放电电路和第一开关电路,所述第一开关电路串联在所述放电电路和电荷储存电路之间,用于对所述电荷储存电路进行放电;
其中,所述电子设备的主控单元能够根据所述第二分压电路的电压和/或控制所述放电电路改变所述第二分压电路的电压,确定所述外部设备的在位信息。
在本申请提供的在位检测电路中,所述第二分压电路的一端与所述第一分 压电路连接,所述第二分压电路的另一端接地;
所述第一开关电路的一端通过所述放电电路与所述端口电路中靠近端口侧连接,所述第一开关电路的另一端与所述第二分压电路的接地端连接,所述第一开关电路受控于所述电子设备的主控单元。
在本申请提供的在位检测电路中,所述端口电路包括第二开关电路,所述第二开关电路受控于所述电子设备的主控单元,所述第一分压电路与所述第二开关电路并联。
在本申请提供的在位检测电路中,所述第一分压电路包括至少一个电阻。
在本申请提供的在位检测电路中,所述第一分压电路还包括二极管,所述二极管与所述第一分压电路的电阻串联,且所述二极管的导通方向与所述端口电路工作时的电流方向相同。
在本申请提供的在位检测电路中,所述二极管的正极与所述第二开关电路中远离端口的一端连接,所述二极管的负极与所述第一分压电路的电阻的一端连接,所述第一分压电路的电阻的另一端与所述第二开关电路中靠近所述端口的一端连接。
在本申请提供的在位检测电路中,所述电荷储存电路包括至少一个电容。
在本申请提供的在位检测电路中,所述第二分压电路包括至少两个电阻,所述两个电阻串联。
在本申请提供的在位检测电路中,所述第二分压电路包括电压检测电路,所述电压检测电路的一端连接在所述第二分压电路的两个电阻之间,所述电压检测电路的另一端与所述主控单元连接,用于检测所述第二分压电路的电压。
在本申请提供的在位检测电路中,所述在位检测电路还包括滤波电容,所述滤波电容的一端与所述电压检测电路连接,所述滤波电容的另一端接地。
在本申请提供的在位检测电路中,所述放电电路包括至少一个电阻,且所述放电电路的电阻小于所述第二分压电路的电阻的阻值。
在本申请提供的在位检测电路中,所述第一开关电路包括场效应管,所述第一开关电路的场效应管的一端与所述放电电路连接,所述第一开关电路的场效应管的另一端与所述第二分压电路的接地端连接。
在本申请提供的在位检测电路中,所述第二开关电路包括第一场效应管、第二场效应管和第三场效应管,所述第一场效应管和第二场效应管对接,所述 第一场效应管和第二场效应管的栅极均与所述第三场效应管的漏极或源极连接,相应地所述第三场效应管的源极或漏极接地,所述第三场效应管的栅极与所述主控单元连接,用于接收主控单元的控制信号实现所述第二开关电路的导通或断开。
第二方面,本申请还提供一种充电器,所述充电器包括至少一个端口电路,所述端口电路能够接入外部设备,所述外部设备包括电池;所述端口电路还连接有如上述任一项所述的在位检测电路,用于检测所述外部设备的在位信息,以便根据所述在位信息对所述外部设备进行充电。
第三方面,本申请还提供一种电子设备,所述电子设备包括端口电路,所述端口电路能够接入外部设备,其中,所述端口电路还连接有如上述任一项所述的在位检测电路,用于检测所述外部设备的在位信息。
本申请提供的在位检测电路、充电器及电子设备,可以快速检测出连接在电子设备端口电路的外部设备的在位信息,并根据该在位信息进行相应的操作。比如,充电器使用该在位检测电路用于检测电池的在位信息,并根据该在位信息进行充电等,即使仅包括正负极端子的充电器也可以使用该在位检测电路,由此提高了充电器的充电功能的可靠性,同时由于该在位检测电路结构简单,进而可以降低充电器的成本。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。
附图说明
为了更清楚地说明本申请实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请的实施例提供的现有的在位检测电路的电路结构示意图;
图2是本申请的实施例提供的现有的在位检测电路的具体电路结构示意图;
图3是本申请的实施例提供的一种在位检测电路的电路结构示意图;
图4是本申请的实施例提供的电压掉沟的效果示意图;
图5是本申请的实施例提供的另一种在位检测电路的电路结构示意图;
图6是本申请的实施例提供的第二开关电路的电路结构示意图;
图7是本申请的实施例提供的另一种在位检测电路的电路结构示意图;
图8是本申请的实施例提供的另一种在位检测电路的电路结构示意图;
图9是本申请的实施例提供的另一种在位检测电路的电路结构示意图;
图10是本申请的实施例提供的另一种在位检测电路的电路结构示意图;
图11是本申请的实施例提供的另一种在位检测电路的电路结构示意图;
图12是本申请的实施例提供的另一种在位检测电路的电路结构示意图;
图13是本申请的实施例提供的另一种在位检测电路的电路结构示意图;
图14是本申请的实施例提供的一种在位检测电路的电路结构示意图;
图15是本申请的实施例提供的一种充电器的结构示意图;
图16是本申请的实施例提供的一种电子设备的结构示意框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
还应当理解,在此本申请说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本申请。如在本申请说明书和所附权利要求书中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。
还应当进一步理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
对于一些电子设备,有时需要知道其外接的外部设备的在位信息,才方便进行相应的控制或操作。比如充电器为了给电池充电,需要检测电池的在位信息,即电池是否插入该充电器。对于一些小型的充电器,通常结构设计没法使用多脚输出的端子,只有正负极端子,因此没法提供在位信号检测。
因此需要设计相应的在位检测电路,如图1所示,目前多采用的在位检测电路方案是在充电器的充电端口上设置MOS开关,利用该MOS开关与电池的一 个负极管脚相接,实现电池的在位信号检测。具体地,该MOS开关由充电器的微主控单元(Microcontroller Unit,MCU)控制,MOS开关的漏极D通过电阻R0连接预设电源3.3V,MOS开关的源极S接地,其中,MOS开关的漏极D作为在位信号的侦测点。
具体地,当电池插入充电器之前,MOS开关为关闭状态,此时预设电源3.3V通过电阻R0在MOS开关的漏极D极形成高电平,MCU侦测到该高电平时确定在位信息为“电池未插入”。当电池插入充电器之后,电池的两个负极管脚与MOS开关的漏极D和源极S相接,从而把MOS开关的漏极D拉低,MCU侦测到低电平信号,即判断在位信息为“电池插入”。由于电池管脚通流需要,在电池插入并开始充电时,MCU控制打开MOS开关使得MOS开关导通,进而实现对电池进行充电。
其中,图1中的在位检测电路的具体电路结构图,具体如图2所示。该电路中BAT-用于电池的负极端子连接,MOS开关Q1的漏极D通过电阻R0与预设电压VCC连接,预设电压VCC为3.3V,MOS开关Q1的源极S接地,MOS开关Q1的栅极G用于接收MCU的控制信号。具体地,MOS开关Q1的栅极G通过电阻R1与MCU的控制管脚连接,其中,MOS开关Q1的栅极G和源极S还通过电阻R2连接,电阻R2用于保护盖MOS开关。
图1中的在位检测电路方案存在两个缺点:一是需要使用高价格、低导通阻抗的MOS开关,当充电开始后,打开MOS,让一部分电流通过MOS;二是当充电电池拔出时,由于此时MOS开关为导通状态,所以在位信号维持低电平,所以充电器没法判断该电池是否已拔出。
此外,对于多通道输出的充电器,即可以同时给多个电池充电,需要检测每个电池的在位信号,用于管理各个电池的充电顺序和充电状态。比如,当一个电池插入后,充电器需要检测到有新电池插入,重新进行充电排序;或者当一个电池拔出后,充电器如果没法检测到,则无法对其它电池进行充电。
为此,本申请提供了一个在位检测电路、充电器及电子设备。在位检测电路可以检测出外接的外部设备的在位信息,并且可以检测出外部设备的在位信息为“拔出状态”,并且不需要使用高价格、低导通阻抗的MOS开关,进而可以降低电路的成本。充电器可以是充电箱,用于容置一个或多个电池。在位检测电路设于充电器中,用于检测包括电池的外部设备的在位信息。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
请参阅图3,图3是本申请一实施例提供的一种在位检测电路的电路结构示意图。该在位检测电路可以应用在充电器等电子设备中,用于检测包括电池的外部设备的在位信息。
如图3所示,该在位检测电路100连接在电子设备的端口电路10上,用于检测端口电路10上连接的外部设备20的在位信息。端口电路10具体可以给外部设备20充电的充电电路,端口电路10上可包括控制开关或其他电子元器件等,端口电路10的端口可以插入或拔出外部设备20。根据外部设备20的插入和拔出等状态,相应地外部设备20的在位信息包括:“插入”和“拔出”等信息。
需要说明的是,在本申请的实施例中,外部设备20为包括电池的电子设备,当然也可以为电池设备。
其中,该在位检测电路100包括:第一分压电路11、第二分压电路12、电荷储存电路13、放电电路14和第一开关电路15。
第一分压电路11与端口电路10并联,具体地,比如第一分压电路11与端口电路10的控制开关k1并联,或者第一分压电路11与端口电路10的其他元器件或元器件的组合并联。
第二分压电路12与第一分压电路11串联,用于实现与第一分压电路11共同分压,比如对电压Vm进行分压。其中,第二分压电路12的分压能力大于第一分压电路11的分压能力,由此第二分压电路12的分压大于第一分压电路11的分压。
在一些实施例中,可以将第二分压电路12的分压能力设为远大于第一分压电路11的分压能力,该远大于目的是为了使得第一分压电路11的分压相对于第二分压电路12的分压可以忽略不计,即第二分压电路12的电压可以约等于电压Vm,比如第二分压电路12的分压能力为第一分压电路11的分压能力的100倍,或者是其他倍数,因此第一分压电路的分压可以忽略不计。
电荷储存电路13与第二分压电路12并联,用于对第二分压电路12进行储能;第一开关电路15串联在放电电路14和电荷储存电路13之间,用于对电荷储存电路13进行放电。
具体地,第二分压电路12的一端与第一分压电路11连接,第二分压电路12的另一端接地。第一开关电路15的一端通过放电电路14与端口电路10中靠近端口侧连接,第一开关电路15的另一端与第二分压电路12的接地端(另一端)连接,第一开关电路15受控于所述电子设备的主控单元。
需要说明的是,第二分压电路12的分压能力远大于第一分压电路11的分压能力,可以确保电荷储存电路13的储能电压远大于第一分压电路11的分压,以确保侦测第二分压电路的12的电压接近Vm,进而可以对电池进行保护,防止电池的电流出现倒灌。
通过使用在端口电路10上连接在位检测电路100,该电子设备的主控单元能够根据第二分压电路12的电压和/或控制放电电路14改变第二分压电路12的电压,确定外部设备20的在位信息。
以电子设备为充电器为例进行介绍,在充电器开机后,充电器的端口电路10的控制开关K1处于断开状态且其前端接有电压Vm,因为还没有对电池进行充电,控制开关K1处于断开状态,因此第一分压电路11和第二分压电路12对Vm进行分压,电荷储存电路13进行储能,且电荷储存电路13的两端电压为第二分压电路12的电压,由于第二分压电路12的分压能力大于第一分压电路11的分压能力,比如为远大于的话,电荷储存电路13的两端电压可以近似为Vm。在充电器的主控单元控制下,定时(比如500ms)打开第一开关电路15,由于第一开关电路15导通会通过放电电路14对电荷储存电路13存储的电能进行放电,进而形成掉沟电压,掉沟电压的深度由第一开关电路15的导通时间长短决定,如果第一开关电路15的导通时间足够长,则第二分压电路12的电压会被拉到0V,形成方波。
其中,电压出现掉沟现象,具体如图4所示,第一开关电路15的导通时间为t1至t2时刻,在t1至t2时刻,通过放电电路14对电荷储存电路13存储的电能进行放电,进而电压出现掉沟现象。
其中,确定外部设备20的在位信息,具体为:
1)、在电池插入时,由于电池并联到电荷储存电路13的两端,所以不管第一开关电路15是导通还是关闭,第二分压电路12的电压均不会改变。由此,当充电器的主控单元侦测到的第二分压电路12的电压不会改变时,可以确定电池的在位信息为“插入”,也可以称为“在线”。
2)、当第二分压电路12的电压为预设电压(比如近似为Vm)时,存在电池充饱或电池被拔出两种情况,通过充电器的主控单元控制端口电路10断开不给电池进行充电,再次检测第二分压电路12的电压,若检测到的电压不变,表示电池为充满,若检测到的电压出现掉沟现象,表示电池的在位信息为被拔出。
本申请提供的在位检测电路除了可以确定电池的插入或拔出等在位信息外,还可以确定其他信息,比如“短路”和“电池饱和”等。具体如表1所示。
表1为电池的在位信息
Figure PCTCN2020135463-appb-000001
由此可见,电子设备通过使用上述在位检测电路,可以快速准确地检测出与该电子设备连接的外部设备的在位信息。由于不需要通过第一开关电路给电池充电,因此无需使用高价格、低导通阻抗的MOS开关,进而可以降低电路的成本。同时,该在位检测电路还可以确定电池的“被拔出”信息,因此适用于多通道的充电器。
在一些实施例中,如图5所示,端口电路10包括第二开关电路16,第二开关电路16受控于所述电子设备的主控单元,即由主控单元控制该第二开关电路16导通和关断,控制给电池充电或停止充电。其中,第一分压电路11与第二开关电路16并联。
其中,第二开关电路16可以为开关电路,或者包括一个晶体管,比如为MOS管或三极管等。
示例性,如图6所示,为了提高电路的安全性,第二开关电路16包括第一场效应管Q11、第二场效应管Q12和第三场效应管Q13,第一场效应管Q11和第二场效应管Q12对接,该对接是指场效应管的漏极相连,第一场效应管Q11 和第二场效应管Q12的栅极均与第三场效应管Q13的漏极或源极连接,相应地所述第三场效应管的源极或漏极接地,第三场效应管Q13的栅极与所述主控单元连接,用于接收主控单元的控制信号实现第二开关电路16的导通或断开。
为了提高电路的安全性,如图6所示,第二开关电路16还包括电阻R11、电阻R12、电阻R13和电阻R14。电阻R11连接在第一场效应管Q11的漏极与栅极之间,或者也可以说电阻R11连接在第二场效应管Q12的漏极与栅极之间。电阻R12连接在第一场效应管Q11的栅极与第三场效应管Q13的漏极之间。第三场效应管Q13的栅极通过电阻R13与主控单元连接,用于接收Charge信号。电阻R14连接在第三场效应管Q13的栅极与源极之间。第二开关电路16还包括电容C11,该电容C11与电阻R11并联,起到滤波保护作用。
在一些实施例中,如图7所示,第一分压电路11包括至少一个电阻,具体为图5中的电阻R4。当然也可以包括多个电阻,多个电阻的连接方式可以为串联或并联。当然也可以包括其他分压元器件。
在一些实施例中,如图8所示,第一分压电路11还包括二极管D1,二极管D1与第一分压电路11的电阻R4串联,且二极管D1的导通方向与端口电路10工作时的电流方向相同。该二极管D1防止出现电流倒灌,起到保护电路的作用,进而提高了电路的安全性。
具体地,如图8所示,二极管D1的正极与第二开关电路16中远离端口的一端(Vm输入端)连接,二极管D2的负极与第一分压电路11的电阻R4的一端连接,第一分压电路11的电阻R4的另一端与第二开关电路16中靠近所述端口的一端连接。
在一些实施例中,如图9所示,电荷储存电路13包括至少一个电容C1,该电容C1与第二分压电路12并联,用于对第二分压电路12进行储能。当然,电荷储存电路13也可以包括多个电容或者其他储能元件,在此不做限定。
在一些实施例中,如图10所示,第二分压电路12包括至少两个电阻,所述两个电阻串联。具体地,分别为电阻R5和电阻R6,电阻R5和电阻R6串联,电阻R5的一端与第一分压电路11连接,具体可以比如与电阻R4连接,电阻R6的一端接地。
需要说明的是,第二分压电路12的分压能力大于第一分压电路11的分压能力,具体可以通过选择电阻R4、电阻R5与电阻R6的阻值实现。
在一些实施例中,如图10所示,第二分压电路12包括电压检测电路121,电压检测电路121的一端连接在第二分压电路12的两个电阻之间,电压检测电路121的另一端与所述主控单元连接,用于检测第二分压电路12的电压。
在一些实施例中,如图11所示,为了提高第二分压电路12的电压的检测精度,在位检测电路100还包括滤波电容C2,滤波电容C2的一端与电压检测电路121连接,滤波电容C2的另一端接地,起到滤波作用。
在一些实施例中,如图12所示,第一开关电路15包括场效应管Q2,第一开关电路15的场效应管Q2的一端(源极或漏极)与放电电路14连接,第一开关电路15的场效应管Q2的另一端(漏极或源极)与第二分压电路12的接地端连接。具体地,场效应管Q2的栅极通过电阻R8接收主控单元的控制信号,并且为保护场效应管Q2,场效应管Q2的源极和栅极之间连接有电阻R9。
在一些实施例中,如图13所示,放电电路14包括至少一个电阻R7,且放电电路14的电阻R7小于第二分压电路12的电阻的阻值,比如小于电阻R5和R6的阻值的和,或者小于电阻R5和R6任意一个阻值,实现对电荷储存电路13进行放电。
在一些实施例中,若电子设备包括多个端口电路,如图14所示,包括端口电路1、端口电路2....端口电路n,在每个端口电路上均设置一个在位检测电路100,用于检测外部设备的在位信息。比如,用于检测多个电池的在位信息,即为多通道(端口电路)的充电器。可通过检测每一个通道的电池在位信息进行合理的充电,比如控制多个电池的充电顺序和充电状态,具体比如充电状态为饱和时,断开该通道上的开关并提示用于拔出该电池,以便该电池过充,进而提高了电池的使用寿命以及安全性。
请参阅图15,图15是本申请一实施例提供的一种充电器的结构示意图。该充电器使用上述实施例提供的任一项所述的在位检测电路,以检测电池的在位信息,并根据电池的在位信息对电池进行充电。
该充电器包括至少一个端口电路,所述端口电路能够接入外部设备,所述外部设备包括电池;所述端口电路还连接有如上述任一项所述的在位检测电路,用于检测所述外部设备的在位信息,以便根据所述在位信息对所述外部设备进行充电。
具体地,如图15所示,该充电器200包括多个充电仓201,每个充电仓201 对应一个端口电路,当电池202插入在电池仓201内,通过端口电路给电池202充电。由于每个端口电路上还连接有在位检测电路,因此可以检测每个电池的在位信息,根据电池的在位信息对电池进行充电。
比如,检测到电池插入时,对电池进行充电;检测到电池拔出时,关闭端口电路上的开关停止充电;再或者,充电器上同时连接有多个电池时,根据电池的在位信息,根据多个电池的在位信息进行充电。
请参阅图16,图16是本申请一实施例提供的一种充电器的结构示意框图。如图16所示,该电子设备300包括端口电路,所述端口电路与设置在电子设备的壳体上的端口连接,具体地如图16所示,该电子设备300包括四个端口,分别为端口1、端口2、端口3和端口4,其中每一个端口均能够接入外部设备,该外部设备包括电池。其中,所述端口电路还连接有如上述任一项所述的在位检测电路,用于检测所述外部设备的在位信息。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (15)

  1. 一种在位检测电路,其特征在于,用于检测电子设备的端口电路是否连接有外部设备,所述外部设备包括电池;所述在位检测电路包括:
    第一分压电路,所述第一分压电路与所述端口电路并联;
    第二分压电路,所述第二分压电路与所述第一分压电路串联;
    电荷储存电路,所述电荷储存电路与所述第二分压电路并联;
    放电电路和第一开关电路,所述第一开关电路串联在所述放电电路和电荷储存电路之间,用于对所述电荷储存电路进行放电;
    其中,所述电子设备的主控单元能够根据所述第二分压电路的电压和/或控制所述放电电路改变所述第二分压电路的电压,确定所述外部设备的在位信息。
  2. 根据权利要求1所述的电路,其特征在于,所述第二分压电路的一端与所述第一分压电路连接,所述第二分压电路的另一端接地;
    所述第一开关电路的一端通过所述放电电路与所述端口电路中靠近端口侧连接,所述第一开关电路的另一端与所述第二分压电路的接地端连接,所述第一开关电路受控于所述电子设备的主控单元。
  3. 根据权利要求1所述的电路,其特征在于,所述端口电路包括第二开关电路,所述第二开关电路受控于所述电子设备的主控单元,所述第一分压电路与所述第二开关电路并联。
  4. 根据权利要求1至3任一项所述的电路,其特征在于,所述第一分压电路包括至少一个电阻;和/或,所述第二分压电路包括至少两个电阻,所述两个电阻串联。
  5. 根据权利要求4所述的电路,其特征在于,所述第一分压电路还包括二极管,所述二极管与所述第一分压电路的电阻串联,且所述二极管的导通方向与所述端口电路工作时的电流方向相同。
  6. 根据权利要求5所述的电路,其特征在于,所述二极管的正极与所述第二开关电路中远离端口的一端连接,所述二极管的负极与所述第一分压电路的电阻的一端连接,所述第一分压电路的电阻的另一端与所述第二开关电路中靠近所述端口的一端连接。
  7. 根据权利要求4所述的电路,其特征在于,所述第二分压电路包括电压 检测电路,所述电压检测电路的一端连接在所述第二分压电路的两个电阻之间,所述电压检测电路的另一端与所述主控单元连接,用于检测所述第二分压电路的电压。
  8. 根据权利要求7所述的电路,其特征在于,所述在位检测电路还包括滤波电容,所述滤波电容的一端与所述电压检测电路连接,所述滤波电容的另一端接地。
  9. 根据权利要求1至3任一项所述的电路,其特征在于,所述第二分压电路的分压能力大于所述第一分压电路的分压能力。
  10. 根据权利要求1至3任一项所述的电路,其特征在于,所述电荷储存电路包括至少一个电容。
  11. 根据权利要求1至3任一项所述的电路,其特征在于,所述放电电路包括至少一个电阻,且所述放电电路的电阻小于所述第二分压电路的电阻的阻值。
  12. 根据权利要求1至3任一项所述的电路,其特征在于,所述第一开关电路包括场效应管,所述第一开关电路的场效应管的一端与所述放电电路连接,所述第一开关电路的场效应管的另一端与所述第二分压电路的接地端连接。
  13. 根据权利要求1至3任一项所述的电路,其特征在于,所述第二开关电路包括第一场效应管、第二场效应管和第三场效应管,所述第一场效应管和第二场效应管对接,所述第一场效应管和第二场效应管的栅极均与所述第三场效应管的漏极或源极连接,相应地所述第三场效应管的源极或漏极接地,所述第三场效应管的栅极与所述主控单元连接,用于接收主控单元的控制信号实现所述第二开关电路的导通或断开。
  14. 一种充电器,其特征在于,所述充电器包括至少一个端口电路,所述端口电路能够接入外部设备,所述外部设备包括电池;所述端口电路还连接有如上述权利要求1至13任一项所述的在位检测电路,用于检测所述外部设备的在位信息,以便根据所述在位信息对所述外部设备进行充电。
  15. 一种电子设备,其特征在于,所述电子设备包括端口电路,所述端口电路能够接入外部设备,其中,所述端口电路还连接有如上述权利要求1至13任一项所述的在位检测电路,用于检测所述外部设备的在位信息。
PCT/CN2020/135463 2020-04-26 2020-12-10 在位检测电路、充电器及电子设备 WO2021218169A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202020659431.X 2020-04-26
CN202020659431.XU CN212781148U (zh) 2020-04-26 2020-04-26 在位检测电路、充电器及电子设备

Publications (1)

Publication Number Publication Date
WO2021218169A1 true WO2021218169A1 (zh) 2021-11-04

Family

ID=75067409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/135463 WO2021218169A1 (zh) 2020-04-26 2020-12-10 在位检测电路、充电器及电子设备

Country Status (2)

Country Link
CN (1) CN212781148U (zh)
WO (1) WO2021218169A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114137424A (zh) * 2021-11-29 2022-03-04 深圳市太美亚电子科技有限公司 一种电池电量检测电路
CN115021696A (zh) * 2022-08-02 2022-09-06 宁波中车时代传感技术有限公司 一种电荷放大器电路及振动传感器
CN116722631A (zh) * 2023-08-11 2023-09-08 深圳市高斯宝电气技术有限公司 一种宽电压输出充电器接口电路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10185968A (ja) * 1996-12-27 1998-07-14 Sony Corp 電圧検知用電気回路
US20090267609A1 (en) * 2008-04-28 2009-10-29 Brother Kogyo Kabushiki Kaisha Battery Connection Detecting Device and Image Forming Apparatus Including the Same
CN202333903U (zh) * 2011-12-01 2012-07-11 德明通讯(上海)有限公司 电池插入检测和电池温度保护电路
CN103814298A (zh) * 2011-04-28 2014-05-21 佐尔循环公司 自动检测电池插入的系统和方法
CN105705046A (zh) * 2013-09-10 2016-06-22 吉瑞高新科技股份有限公司 电子烟盒及电池杆插入或拔出电子烟盒的检测方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10185968A (ja) * 1996-12-27 1998-07-14 Sony Corp 電圧検知用電気回路
US20090267609A1 (en) * 2008-04-28 2009-10-29 Brother Kogyo Kabushiki Kaisha Battery Connection Detecting Device and Image Forming Apparatus Including the Same
CN103814298A (zh) * 2011-04-28 2014-05-21 佐尔循环公司 自动检测电池插入的系统和方法
CN202333903U (zh) * 2011-12-01 2012-07-11 德明通讯(上海)有限公司 电池插入检测和电池温度保护电路
CN105705046A (zh) * 2013-09-10 2016-06-22 吉瑞高新科技股份有限公司 电子烟盒及电池杆插入或拔出电子烟盒的检测方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114137424A (zh) * 2021-11-29 2022-03-04 深圳市太美亚电子科技有限公司 一种电池电量检测电路
CN115021696A (zh) * 2022-08-02 2022-09-06 宁波中车时代传感技术有限公司 一种电荷放大器电路及振动传感器
CN115021696B (zh) * 2022-08-02 2023-06-27 宁波中车时代传感技术有限公司 一种电荷放大器电路及振动传感器
CN116722631A (zh) * 2023-08-11 2023-09-08 深圳市高斯宝电气技术有限公司 一种宽电压输出充电器接口电路
CN116722631B (zh) * 2023-08-11 2024-03-22 深圳市高斯宝电气技术有限公司 一种宽电压输出充电器接口电路

Also Published As

Publication number Publication date
CN212781148U (zh) 2021-03-23

Similar Documents

Publication Publication Date Title
WO2021218169A1 (zh) 在位检测电路、充电器及电子设备
CN107894567B (zh) 电池包以及电池包接口状态的检测系统和检测方法
US7902794B2 (en) Over-voltage protected battery charger with bypass
US8102154B2 (en) Energy source isolation and protection circuit for an electronic device
KR20200041711A (ko) 배터리 관리 장치 및 방법
US11689031B2 (en) Balancing apparatus, and battery management system and battery pack including the same
US10622819B2 (en) Rechargeable battery protection integrated circuit, rechargeable battery protection device, and battery pack
US11228062B2 (en) Battery pack and power system comprising same
WO2021258755A1 (zh) 充电器检测电路、方法及电化学装置
CN112165156A (zh) 充放电装置、电池系统、充放电控制方法及存储介质
CN111740388A (zh) 电源保护电路、电子烟、电源保护方法及装置
CN209860582U (zh) 电源保护电路、电子烟、电源保护装置
WO2006126023A1 (en) Battery power management
US9935472B2 (en) Battery pack
KR100734128B1 (ko) 외부 배터리 기능과 메모리장치 기능을 겸비한 유에스비 방식 충전 및 데이터 링크 장치
CN113419617A (zh) 一种可穿戴设备充电复位电路及控制方法
KR20210146660A (ko) 복수의 배터리 모듈들이 구비된 충전용 배터리팩 장치 및 그 동작 방법
CN113676166B (zh) 一种电池低压自动切断电路及其工作方法
CN115954977A (zh) 双电池管理电路、方法及电子设备
KR200478231Y1 (ko) 리모컨 장치
KR101628606B1 (ko) 과방전 배터리의 충전제어회로 및 방법
US20160156211A1 (en) Battery charging method and battery pack using the same
KR102347920B1 (ko) 배터리 관리 장치 및 방법
CN112271802A (zh) 一种可进行太阳能充电的电源
JP2006340451A (ja) 充電方法及び充電装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20933098

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20933098

Country of ref document: EP

Kind code of ref document: A1