WO2021218067A1 - 一种饮用水净化装置和方法 - Google Patents
一种饮用水净化装置和方法 Download PDFInfo
- Publication number
- WO2021218067A1 WO2021218067A1 PCT/CN2020/122609 CN2020122609W WO2021218067A1 WO 2021218067 A1 WO2021218067 A1 WO 2021218067A1 CN 2020122609 W CN2020122609 W CN 2020122609W WO 2021218067 A1 WO2021218067 A1 WO 2021218067A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- filter element
- functional
- water
- membrane filter
- chemical cleaning
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/001—Processes for the treatment of water whereby the filtration technique is of importance
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
- C02F1/444—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/20—Heavy metals or heavy metal compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2303/00—Specific treatment goals
- C02F2303/04—Disinfection
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2303/00—Specific treatment goals
- C02F2303/16—Regeneration of sorbents, filters
Definitions
- the invention relates to the technical field of drinking water purification, in particular to a small drinking water purification device and method suitable for household use.
- the filter element is the most important part of the small household drinking water purification equipment.
- the quality of the filter element directly determines the water quality and service life of the water purification equipment.
- the water purification process of small drinking water purification equipment on the market is a multi-stage filter element process: (1) pretreatment, (2) main membrane separation process, and (3) post-treatment.
- the purpose of pretreatment is to remove substances that cause deterioration or pollution of the membrane system of the main membrane separation process, reduce membrane pollution (scaling, blockage, etc.), and ensure long-term and stable operation of the membrane process system.
- the combination of PP cotton filter element + activated carbon filter element (pre-activated carbon) is a more common pretreatment process mode.
- PP cotton is used as the pretreatment process of activated carbon filter element;
- the main process of membrane separation refers to the use of membranes with selective permeability, such as UF , NF and RO membranes are used as media, and the pressure difference between the two sides of the membrane is used to intercept particulate matter, colloids, organic matter, and even harmful ions, so as to achieve deep purification of drinking water.
- UF membrane, NF membrane and RO membrane filter element can be used as the main membrane separation process alone;
- the post-treatment process is mostly activated carbon process, which can be achieved by a conventional single activated carbon filter element (post activated carbon), which can further absorb the peculiar smell in the water, and even supplement it.
- Minerals such as calcium and magnesium ions, enhance the taste of drinking water.
- the market share of household water purification equipment is mostly 4 ⁇ 5 filter element process
- the 4th level process is mostly: PP cotton + front activated carbon + UF membrane + post activated carbon
- the 5th level process is mostly: PP Cotton + granular activated carbon + sintered activated carbon + NF membrane/RO membrane + post activated carbon.
- granular activated carbon + sintered activated carbon are also pre-activated carbon. Because NF membrane/RO membrane filter element requires higher water quality than UF membrane, so It is necessary to combine granular activated carbon and sintered activated carbon as pre-activated carbon to achieve better pretreatment effect.
- the post activated carbon not only further removes the peculiar smell in the water, but also improves the taste.
- the post activated carbon of the conventional UF membrane further ensures the safety of the water from the water purifier.
- the purpose of the present invention is to provide a drinking water purification device and method that can effectively remove chroma, smell, particles, microorganisms, and harmful ions in water by adopting a two-stage filtration process.
- the present invention provides a drinking water purification device, which includes:
- the first-stage filtration system uses a functional nanofiber membrane filter element as a pretreatment process to effectively pre-treat particulate matter, colloids, heavy metals, organic matter, etc. in the influent water, and the produced water directly passes through the second-stage filtration system.
- the water inlet enters the second-stage filtration system, and the functional nanofiber filter element is cleaned through positive diffusion chemical cleaning to realize the membrane pollution control and reuse of the functional nanofiber membrane filter element;
- the second-stage filtration system uses the charged ultrafiltration membrane filter element as the core separation process to further purify and sterilize the influent water after pretreatment of the first-stage filtration system to obtain the final drinking water and pass it through positive diffusion. Chemical cleaning cleans the charged function ultrafiltration membrane filter element to realize the membrane pollution control and reuse of the charged function ultrafiltration membrane filter element.
- the first-stage filtration system includes a functional nanofiber membrane filter element assembly (1) with a built-in functional nanofiber membrane element (14), and the functional nanofiber membrane filter element assembly (1) is provided with a water inlet ( 11)
- a water production port (12) is provided at the upper end of the side, and a concentrated water port (13) is provided at the upper end.
- the tap water enters the lower water inlet (11) at the side of the functional nanofiber membrane filter element assembly (1) under the driving of its own pressure. After the influent water enters the functional nanofiber membrane filter element assembly (1), it passes upwards through the functional micro-ultrafiltration membrane element (14) for effective pretreatment and removal, and the produced water is sent to the water production port (12) on the upper side.
- the chemical cleaning agent dosing box (3) of the functional nanofiber membrane filter element passes through the water inlet pipe, and the chemical cleaning agent in it is pumped in through the functional nanofiber membrane filter element chemical cleaning agent dosing pump (31)
- the functional nanofiber membrane filter element assembly (1) concentrated water and chemical cleaning wastewater are directly discharged outside through the upper concentrated water outlet (13).
- the functional nanofiber membrane element (14) is rolled by different numbers of film bags prepared from functional nanofiber membranes.
- the concentrated water port (13) at the upper end is provided with a concentrated water valve.
- the concentrated water valve is closed.
- the water production valve is closed, and the concentrated water valve is opened. And chemical cleaning wastewater are directly discharged outside.
- the chemical cleaning agent in the chemical cleaning agent adding box of the functional nanofiber membrane filter element is one of citric acid or acetic acid.
- the concentration of the chemical cleaning agent in the chemical cleaning agent adding box of the functional nanofiber membrane filter element is 0.1-3.0 wt.%.
- the second-stage filtration system includes a functional ultrafiltration membrane filter element assembly (2) with a built-in functional ultrafiltration membrane element (24), and a water inlet (21) is provided at the lower end of the functional ultrafiltration membrane filter element assembly (2).
- the upper side is provided with a water production port (22)
- the upper end is provided with a concentrated water port (23)
- the water production port (12) at the upper end of the side is directly connected, and the water from the water production port (12) at the upper end of the functional nanofiber membrane filter element assembly (1) enters through the lower side of the functional ultrafiltration membrane filter element assembly (2).
- the water outlet (21) After the water outlet (21) enters the functional ultrafiltration membrane filter element assembly (2), it passes upwards through the functional ultrafiltration membrane element (24) to further deeply purify and sterilize the pretreated influent water, and obtain the final drinking water through the upper side of the product.
- the output of the nozzle (22), the chemical cleaning agent dosing box (4) of the functional ultrafiltration membrane filter element passes through the water inlet pipe, and the chemical cleaning agent of the functional ultrafiltration membrane filter element inside is metered through the chemical cleaning agent of the functional ultrafiltration membrane filter element
- the pump (41) pumps the functional ultrafiltration membrane filter element assembly (2), and the concentrated water and chemical cleaning wastewater are directly discharged into the outside through the upper concentrated water port (23).
- the functional ultrafiltration membrane element is prepared from PVDF charged functional hollow fiber ultrafiltration membrane filaments.
- the functional nanofiber membrane element (14) and the functional ultrafiltration membrane element (24) can be detached and replaced.
- the present invention also provides a method for implementing a drinking water purification device, which includes the following steps:
- step S1 the first-stage filtration system uses the functional nanofiber membrane filter element as a pretreatment process to effectively pre-treat particulate matter, colloids, heavy metals, organics, etc. in the influent water, and then the produced water directly enters the second stage
- the inlet water of the filtration system enters the second-stage filtration system, and the first-stage filtration system also periodically cleans the functional nanofiber filter element through positive diffusion chemical cleaning, so as to realize the membrane pollution control and reuse of the filter element;
- the second-stage filtration system uses the ultrafiltration membrane filter element of the charging function as the core separation process to further purify and sterilize the influent water after the first-stage filtration system pretreatment, and finally obtain high-quality drinking water.
- the first-stage filtration system also cleans the charged functional ultrafiltration membrane filter element through positive diffusion chemical cleaning, so as to realize the membrane pollution control and reuse of the charged functional ultrafiltration membrane filter element.
- the drinking water purification device and its realization method of the present invention utilize the nanofiber structure, high flux, narrow pore size (1 ⁇ 5 ⁇ m) of the functional nanofiber membrane and the antibacterial group supported by the nanofiber.
- the effective membrane pore size is 10 ⁇ 30nm.
- the negatively charged groups on the surface and the membrane pores further purify and sterilize the pre-treated influent, and finally obtain high-quality drinking water.
- the present invention also improves the functional nanofiber filter element and the functional super through physical washing and positive diffusion chemical cleaning. The membrane filter element is cleaned to realize the membrane pollution control and reuse of the two-stage filter element.
- Figure 1 is a schematic diagram of the structure of a drinking water purification device of the present invention
- Figure 2 is a flow chart of the steps of a method for implementing a drinking water purification device of the present invention.
- FIG. 1 is a schematic diagram of the structure of a drinking water purification device of the present invention.
- a drinking water purification device of the present invention includes:
- the first-stage filtration system 10 uses the functional nanofiber membrane filter element as a pretreatment process, and uses the nanofiber structure, high flux, narrow pore size (1 ⁇ 5 ⁇ m) of the functional nanofiber membrane and the antibacterial group supported by the nanofiber After effective pretreatment and removal of particulate matter, colloids, heavy metals, organic matter, etc. in the influent, the produced water directly enters the second-stage filtration system 20.
- the influent enters the second-stage filtration system 20, and is physically washed and diffused. Chemical cleaning cleans the functional nanofiber filter element to realize the membrane pollution control and reuse of the filter element.
- the first-stage filtration system 10 includes: a functional nanofiber membrane filter element assembly 1 with a built-in functional nanofiber membrane element 14, the functional nanofiber membrane element is rolled by a different number of membrane bags prepared from functional nanofiber membranes
- the functional nanofiber membrane refers to a PVDF nanofiber membrane with high flux, heavy metal adsorption, and antibacterial properties. It has the functions of traditional grade 4 or grade 5 medium PP cotton + pre-activated carbon.
- the nanofiber structure, high flux, narrow pore size (1 ⁇ 5 ⁇ m) of the fiber membrane and the antibacterial group loaded by the nanofiber can effectively pre-treat and remove the particulate matter, colloid, heavy metal, organic matter, etc.
- the functional nanofiber membrane filter element assembly 1 The lower end of the side is provided with a water inlet 11, the upper end of the side is provided with a water inlet 12, and the upper end is provided with a concentrated water outlet 13. Driven by its own pressure, it enters the water inlet 11 at the lower end of the functional nanofiber membrane filter element assembly 1.
- the influent After the influent enters the functional nanofiber membrane filter element assembly 1, it passes upwards through the functional micro ultrafiltration membrane element 14 and uses the functional nano The nanofiber structure, high flux, narrow pore size (1 ⁇ 5 ⁇ m) of the fiber membrane and the antibacterial group supported by the nanofiber effectively pre-treat and remove the particles, colloids, heavy metals, organics, etc. in the influent water.
- the water is sent to the second-stage filtration system 20 through the upper-side water production port 12, and the tap water and chemical cleaning agent are positively diffused and chemically cleaned every 6 ⁇ 72hrs.
- the chemical cleaning agent dosing box of the functional nanofiber membrane filter element 3 Pump the functional nanofiber membrane filter element 1 through the water inlet pipe and chemical cleaning agent through the functional nanofiber membrane filter element chemical cleaning agent dosing metering pump 31, and the concentrated water and chemical cleaning wastewater directly enter the outer drain pipe through the upper end of the concentrated water port 13.
- a thick water valve is provided at the thick water port 13 at the upper end.
- the inlet pressure of the functional nanofiber membrane filter element is recommended to be 0 ⁇ 0.05MPa
- the inlet pressure of concentrated water discharge and flushing is recommended to be 0 ⁇ 0.05MPa
- the inlet pressure can be adjusted according to the actual water production needs. Setting, it can also default to the self-pressure of tap water.
- each valve such as a water production valve, a concentrated water valve, and preferably, a water inlet may also be provided with a water inlet valve
- the control of each valve can be controlled by the device's own program, or can be controlled by a controller according to actual water demand.
- the first-stage filtration system 10 adopts a positive diffusion chemical cleaning system to realize the membrane pollution control and reuse of the functional nanofiber membrane filter element.
- the positive diffusion chemical cleaning system includes physical positive flushing and chemical cleaning of the functional nanofiber membrane filter element.
- the medicament dosing system, the two systems are connected in series and linked operation.
- the positive diffusion chemical cleaning refers to adding a set chemical agent to the positive flushing water at the same time as the physical positive flushing.
- the water containing chemical cleaning agent is used to flush the functional nanofiber membrane element 14 instantaneously and quickly.
- Positive flushing refers to the instantaneous and rapid flushing of the water into the water tank to the functional nanofiber membrane element 14, and the waste water is directly discharged outside. It is a pure physical process.
- the physical flushing system enters the faucet and functional nanofibers through tap water.
- the water inlet 11 at the lower end of the membrane filter element 1 side is connected in series.
- the inlet water is driven by the self-pressure of tap water, and then enters the functional nanofiber membrane element after passing through the functional nanofiber membrane filter element 1.
- the functional nanofiber membrane filter element chemical cleaning agent dosing system consists of a functional nanofiber membrane filter element chemical cleaning agent dosing box 3 and a functional nanofiber membrane filter element chemical cleaning agent dosing metering pump 31 in series Composition, through the functional nanofiber membrane filter element chemical cleaning agent dosing box 3, through the functional nanofiber membrane filter element chemical cleaning agent dosing metering pump 31, connected to the water inlet pipe, that is, the functional nanometer pump is pumped into the water inlet pipe through the dosing metering pump
- the chemical cleaning agent for the fiber membrane filter element is one of citric acid or acetic acid, with a concentration of 0.1-3.0 wt.%.
- the positive diffusion chemical cleaning system of the first-stage filtration system 10 consists of a water inlet, a functional nanofiber membrane filter element, chemical cleaning agent dosing box 3, and tap water pressure, a functional nanofiber membrane filter element, chemical cleaning agent dosing metering pump 31
- the four parts are connected in series and linked operation.
- the washing and cleaning agent is fed by the functional nanofiber membrane filter element, chemical cleaning agent dosing box 3.
- the functional nanofiber membrane filter element, chemical cleaning agent dosing metering pump 31 enters the functional nanofiber membrane filter element through the side lower water inlet 11
- Components, chemical cleaning agents are conventional, easily available, food-grade acetic acid or citric acid.
- the cleaning principle is to discover chemical reactions with alkaline substances on the surface of the membrane filter element to clean the contaminants on the membrane surface and restore the membrane filter element.
- the chemical cleaning wastewater is discharged from the concentrated water port 13 at the upper end.
- neither the physical flushing nor the positive diffusion chemical cleaning process consumes its product water.
- the recommended positive diffusion chemical cleaning interval is 6 to 72 hrs.
- the physical flushing system does not have a water inlet pump, and the positive diffusion chemical cleaning system shares the water inlet with the functional nanofiber membrane filter element assembly.
- the chemical cleaning agent is added to the system, and then enters the functional nanofiber membrane filter element filtration system after passing through the functional nanofiber membrane element, and finally drains from the upper end of the functional nanofiber membrane filter element to the concentrated/waste water outlet. Both the physical flushing and the positive diffusion chemical cleaning process do not consume the water produced by the functional nanofiber membrane filter element.
- the second-stage filtration system 20 uses the charged ultrafiltration membrane filter element as the core separation process, and uses the effective membrane pore size of 10 ⁇ 30nm, the negatively charged groups on the membrane surface and the membrane pores to pre-process the first-stage filtration system 10
- the influent water is further purified and sterilized, and finally high-quality drinking water is obtained.
- the charged functional ultrafiltration membrane filter element is cleaned through physical washing and positive diffusion chemical cleaning to realize the membrane pollution control and repetition of the charged functional ultrafiltration membrane filter element. use.
- the second-stage filtration system 20 further includes a functional ultrafiltration membrane filter element assembly 2 with a built-in functional ultrafiltration membrane element 24, the functional ultrafiltration membrane element is made of PVDF charged functional hollow fiber ultrafiltration membrane filament, the The functional ultrafiltration membrane removes particles, colloids, and some organic matter, and ensures stable turbidity of the effluent, while also reducing the pH value of the effluent.
- the functional ultrafiltration membrane filter element assembly 2 is provided with a water inlet 21 at the lower end of the side and a water production port at the upper end of the side. 22.
- a concentrated water port 23 is provided at the upper end, and the lower side water inlet 21 of the functional ultrafiltration membrane filter element assembly 2 is directly connected to the water production port 12 at the upper end of the functional nanofiber membrane filter element assembly 1, which comes from the functional nanofiber membrane
- the water from the water production port 12 at the upper end of the filter element assembly 1 enters the functional ultrafiltration membrane filter element assembly 2 through the lower side inlet 21 of the functional ultrafiltration membrane filter element assembly 2, it passes upwards through the functional ultrafiltration membrane element 24 to use it.
- the effective membrane pore size is 10 ⁇ 30nm, and the negatively charged groups on the membrane surface and the membrane pores further purify and sterilize the pretreated influent, and finally obtain high-quality drinking water through the water production port 22 on the upper side.
- the negatively charged groups on the surface of the ultrafiltration membrane element also have bactericidal and antibacterial effects, which can play a certain role in controlling the microorganisms in the water entering the small domestic drinking water purification equipment system.
- the chemical cleaning agent of the functional ultrafiltration membrane filter element is added.
- the medicine box 4 passes through the water inlet 12 at the upper side of the functional nanofiber membrane and the water inlet 21 at the lower side of the functional ultrafiltration membrane filter element assembly 2, and the chemical cleaning agent of the functional ultrafiltration membrane filter element passes through the functional ultrafiltration membrane filter element.
- the cleaning agent dosing metering pump 41 pumps into the functional ultrafiltration membrane filter element assembly.
- the concentrated water and chemical cleaning wastewater directly enters the external drainage pipeline.
- the concentrated water and chemical cleaning wastewater directly enters the external drainage pipeline through the upper concentrated water port 23, and the upper concentrated water port 23 is provided with a concentrated water valve.
- the inlet pressure of the functional ultrafiltration membrane filter element is recommended to be 0 ⁇ 0.25MPa, and the inlet pressure of concentrated water discharge and flushing is recommended to be 0 ⁇ 0.25Mpa.
- the inlet pressure can be based on the actual water production volume. Need to be set, or default to tap water pressure.
- the concentrated water valve is closed.
- the concentrated water valve is opened and the water production valve is closed. Both concentrated water and chemical cleaning wastewater are directly discharged.
- the second-stage filtration system 20 also adopts a positive diffusion chemical cleaning system to realize the membrane pollution control and reuse of the functional ultrafiltration membrane filter element.
- the positive diffusion chemical cleaning system includes physical positive flushing and functional ultrafiltration membrane filter element chemistry.
- the cleaning agent dosing system, the two systems are connected in series and linked operation.
- the positive diffusion chemical cleaning refers to adding a set chemical agent to the positive flushing water at the same time as the physical positive flushing, and using the water containing chemical cleaning agent to flush the functional ultrafiltration membrane element 24 instantaneously and quickly.
- Positive flushing refers to the instantaneous and rapid flushing of the water into the water tank to the functional ultrafiltration membrane element 24, and the waste water is directly discharged outside, which is a purely physical process.
- the physical positive flushing system passes through the functional nanofiber membrane filter element assembly. 1
- the upper water production port 12 and the functional ultrafiltration membrane filter element module side lower water inlet 21 are connected in series.
- the inlet water is driven by the self-pressure of the upper end of the functional nanofiber membrane filter module 1 and passes through the functional ultrafiltration membrane filter element.
- the filter membrane filter element chemical cleaning agent dosing box 4 and the functional ultrafiltration membrane filter element chemical cleaning agent dosing metering pump 41 are composed of two parts in series, through the functional ultrafiltration membrane filter element, the chemical cleaning agent dosing box 4 is chemically cleaned by the functional ultrafiltration membrane filter element
- the pharmaceutical dosing metering pump 41 is connected to the water inlet pipe, that is, the functional ultrafiltration membrane filter element chemical cleaning agent is pumped into the functional ultrafiltration membrane filter element assembly 2 through the dosing metering pump in the inlet pipe.
- the chemical cleaning agent in the chemical cleaning agent adding box of the functional ultrafiltration membrane filter element is one of citric acid or acetic acid, and the concentration is 0.1-3.0 wt.%.
- the positive diffusion chemical cleaning system of the second-stage filtration system 20 consists of the water inlet (the water outlet from the upper end of the functional nanofiber membrane filter element assembly 1 side) and the functional ultrafiltration membrane filter element chemical cleaning agent dosing box 4 through the function Nanofiber membrane water production has its own pressure, functional ultrafiltration membrane filter element, chemical cleaning agent dosing metering pump 41, four parts in series, linkage operation, washing and cleaning agents are chemical cleaning agent dosing box 4, chemical cleaning agent dosing metering pump 41 , Enter the functional ultrafiltration membrane filter element assembly through the water inlet 21 at the lower side, and the chemical cleaning wastewater is discharged from the concentrated water port 23 at the upper end.
- the positive diffusion chemical cleaning interval is recommended to be 6 ⁇ 72 hrs.
- the physical flushing system does not have a water inlet pump, and the positive diffusion chemical cleaning system and the functional ultrafiltration membrane filter element module share the water inlet.
- the water's own pressure through adding chemical cleaning agent to the positive diffusion chemical cleaning system, and then through the functional ultrafiltration membrane module, enters the functional ultrafiltration membrane filter element filtration system, the physical flushing and the positive diffusion chemical cleaning process do not consume the functional ultrafiltration membrane
- the filter element produces water.
- FIG. 2 is a flow chart of the steps of a method for implementing a drinking water purification device of the present invention. As shown in Figure 2, the implementation method of a drinking water purification device of the present invention includes the following steps:
- Step S1 the first-stage filtration system uses the functional nanofiber membrane filter element as the pretreatment process, and uses the nanofiber structure, high flux, narrow pore size (1 ⁇ 5 ⁇ m) and nanofiber load of the functional nanofiber membrane to inhibit bacteria
- the produced water directly enters the second-stage filtration system.
- the influent enters the second-stage filtration system.
- the first-stage filtration system The functional nanofiber filter element is also regularly cleaned by positive diffusion chemical cleaning to realize the membrane pollution control and reuse of the filter element.
- step S1 further includes:
- step S100 the inlet water is driven by the self-pressure of tap water, enters the functional nanofiber membrane filter element assembly 1 through the water inlet at the lower end of the functional nanofiber membrane filter element assembly 1, and then passes upwards through the functional nanofiber membrane element 14 and the upper water outlet 12 in turn.
- the produced water flows through the production water pump 51 to the second-stage filtration system.
- the functional nanofiber membrane filter element assembly 1 has a built-in functional nanofiber membrane element 14.
- the functional nanofiber membrane element 14 has the functions of traditional 4 or 5 grade medium PP cotton + pre-activated carbon.
- the nanofiber structure, high flux, narrow pore size (1 ⁇ 5 ⁇ m) of the fiber membrane and the antibacterial group loaded by the nanofiber can effectively pre-treat and remove the particulate matter, colloid, heavy metal, organic matter, etc.
- the charged groups carried by nanofibers on the surface of the fiber membrane element have bactericidal and antibacterial effects, which can control the microorganisms in the water entering the small household drinking water purification equipment system to a certain extent, and the functional nanofiber membrane filter element component 1
- the functional nanofiber membrane element 14 in the functional nanofiber membrane element 14 can be disassembled and replaced.
- the influent water enters the functional nanofiber membrane filter element 1 and then enters the functional nanofiber membrane element 14.
- the nanofiber structure, high flux, and narrow aperture of the functional nanofiber membrane ( 1 ⁇ 5 ⁇ m) and nanofiber-loaded antibacterial groups for effective pretreatment of particles, colloids, heavy metals, organics, etc. in the influent.
- step S101 the first-stage filtration system periodically performs positive diffusion chemical cleaning to realize the membrane pollution control and reuse of the filter element.
- the chemical cleaning agent is fed from the functional nanofiber membrane filter element, chemical cleaning agent dosing box 3.
- the functional nanofiber membrane filter element, chemical cleaning agent dosing metering pump 31 enters the functional nanofiber membrane filter element through the lower side inlet 11, and chemically cleans the wastewater. It is discharged from the concentrated water outlet 13 at the upper end. Among them, neither the physical flushing nor the positive diffusion chemical cleaning process consumes its product water.
- the positive diffusion chemical cleaning interval is recommended to be 6 ⁇ 72 hrs.
- Step S2 the second-stage filtration system uses the charged functional ultrafiltration membrane filter element as the core separation process.
- the effective membrane pore size is 10-30nm, and the negatively charged groups on the membrane surface and the membrane pores pre-process the first-stage filtration system 10
- the treated influent is further purified and sterilized, and finally high-quality drinking water is obtained.
- the first-stage filtration system also cleans the charged functional ultrafiltration membrane filter element through positive diffusion chemical cleaning to realize the charged functional ultrafiltration membrane filter element Control and reuse of membrane fouling.
- step S2 further includes:
- step S200 the water from the water production port 12 at the upper side of the functional nanofiber membrane filter element assembly 1 enters the functional ultrafiltration membrane filter element assembly 2 through the lower side water inlet 21 of the functional ultrafiltration membrane filter element assembly 2, and then upwards
- the effective membrane pore size is 10 ⁇ 30nm, and the negatively charged groups on the membrane surface and the membrane pores further purify and sterilize the pretreated influent, and finally obtain high-quality drinking water.
- step S201 the second-stage filtration system periodically performs positive diffusion chemical cleaning to realize the membrane pollution control and reuse of the charged ultrafiltration membrane filter element.
- the functional ultrafiltration membrane filter chemical cleaning agent dosing box 4 passes through the functional nanofiber membrane to produce water.
- Pressure, functional ultrafiltration membrane filter element, chemical cleaning agent dosing metering pump 41, four parts in series and linked operation, flushing cleaning agent is fed by chemical cleaning agent dosing box 4, chemical cleaning agent dosing metering pump 41, through the lower side of the water inlet 21 enters the functional ultrafiltration membrane filter element assembly, and the chemical cleaning wastewater is discharged from the concentrated water port 23 at the upper end.
- the positive diffusion chemical cleaning interval is recommended to be 6 ⁇ 72 hrs.
- a drinking water purification device and its implementation method of the present invention utilize the nanofiber structure, high flux, narrow pore diameter (1 ⁇ 5 ⁇ m) of the functional nanofiber membrane and the antibacterial group supported by the nanofiber to charge the charge.
- Electrically functional ultrafiltration membranes are pre-removed from colloids, particulate matter, natural organic matter, etc. in the incoming water, and at the same time, the harmful heavy metal ions adsorbed in the incoming water are pretreated.
- the negatively charged groups in the membrane pores further deeply purify and sterilize the pretreated influent, and finally obtain high-quality drinking water.
- the present invention also performs physical washing and positive diffusion chemical cleaning on the functional nanofiber filter element and the functional ultrafiltration membrane. The filter element is cleaned to realize the membrane pollution control and reuse of the two-stage filter element.
- the present invention has the following advantages:
- the present invention can effectively alleviate the problem that microorganisms are easy to form biofilm or grow and reproduce in the water purifier.
- Both the functional nanofiber membrane filter element and the charged functional ultrafiltration membrane filter element have antibacterial effects: against Staphylococcus aureus and Escherichia coli The activity values are all greater than 3.
- the present invention adopts a two-stage filtration process: functional nanofiber membrane + charged functional ultrafiltration membrane, the pretreatment process is functional nanofiber membrane, and the core separation process is charged functional ultrafiltration membrane.
- the functional nanofiber membrane filter element filtration system has the pretreatment function of the PP cotton + pre-activated carbon filtration process in the traditional water purifier filtration process.
- the charged ultrafiltration membrane removes particles, colloids, and some organic matter, and ensures the stable turbidity of the effluent, while also reducing the pH value of the effluent.
- the present invention adopts a functional nanofiber membrane filter element filtration system as the first-stage filtration system, using the nanofiber structure, high flux, narrow pore size (1 ⁇ 5 ⁇ m) of the functional nanofiber membrane and the antibacterial base supported by nanofibers.
- the pellets, colloids, heavy metals, organics, etc. in the influent are effectively pretreated and removed.
- the functional nanofiber membrane filter element and the charged functional ultrafiltration membrane filter element used in the present invention can be replaced and disassembled, and can be recycled through physical washing, positive diffusion chemical cleaning, convenient replacement, and a service life of 1 to 4 years.
- the positive diffusion chemical cleaning system is simple, does not consume produced water, has a long cleaning interval, and is highly efficient (after positive diffusion chemical cleaning, the effective operating flux recovery rate of the functional nanofiber membrane filter element is not less than 97%, and the functional ultrafiltration membrane filter element The effective operating flux recovery rate is not less than 95%), the chemical cleaning agent required is easily available citric acid or acetic acid, which has the advantages of long cleaning cycle, small consumption of agent, short cleaning time, and fewer cleaning steps.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
一种饮用水净化装置,包括:第一级过滤系统(10),通过利用功能纳米纤维膜滤芯(1)作为预处理工艺,对进水中的颗粒物、胶体、重金属、有机物等进行有效预处理去除后,产出的水直接通过第二级过滤系统(20)的进水口进入第二级过滤系统(20),并通过物理冲洗、正扩散化学清洗对功能纳米纤维滤芯(1)进行清洗,实现功能纳米纤维膜滤芯(1)的膜污染控制及重复利用;第二级过滤系统(20),通过利用荷电功能超滤膜滤芯作为核心分离工艺,对所述第一级过滤系统(10)预处理后的进水进一步深度净化、杀菌,得到最终的饮用水,并通过物理冲洗、正扩散化学清洗对荷电功能超滤膜滤芯进行清洗,实现荷电功能超滤膜滤芯的膜污染控制及重复利用。还公开了一种饮用水净化装置的实现方法。
Description
本发明涉及饮用水净化技术领域,特别是涉及一种适于家用的小型饮用水净化装置和方法。
随着生活质量的提高,如今越来越多的家庭中安装了家用小型饮用水净化设备。绝大多数家庭安装小型饮用水净化设备的初衷是为了更安全、更健康的饮用水。
滤芯是家用小型饮用水净化设备最重要的组成部分,滤芯的好坏直接决定了净水设备的出水质量和使用寿命。目前市场上小型饮用水净化设备的净水工艺为多级滤芯工艺:(1)预处理,(2)膜分离主工艺,(3)后处理。预处理的目的是去除进水中致使膜分离主工艺的膜系统劣化或者污染的物质,减轻膜污染(结垢、堵塞等),确保膜工艺系统长期、稳定运行。其中,PP棉滤芯+活性炭滤芯(前置活性炭)组合是较为常见的预处理工艺模式,PP棉作为活性炭滤芯的预处理工艺;膜分离主工艺是指以具有选择透过性的膜,如UF、NF及RO膜为介质,利用膜两侧的压力差,将颗粒物、胶体、有机物、甚至有害离子等截留,实现饮用水深度净化。UF膜、NF膜及RO膜滤芯均可单独作为膜分离主工艺;后处理工艺多为活性炭工艺,常规单个活性炭滤芯(后置活性炭那)即可实现,通过进一步吸附水中的异味,甚至补充有益矿物质,如钙镁离子,提升饮用水口感。
目前,家用净水设备中市场占有率较大的多为4~5级滤芯工艺,4级工艺多为:PP棉+前置活性炭+UF膜+后置活性炭,而5级工艺多为:PP棉+颗粒活性炭+烧结活性炭+NF膜/RO膜+后置活性炭,其中,颗粒活性炭+烧结活性炭也统属前置活性炭,由于NF膜/RO膜滤芯对进水水质的要求高于UF膜,因而需要颗粒活性炭与烧结活性炭联用作为前置活性炭,以实现更优的预处理效果。由于NF膜/RO膜滤芯均对钙镁离子有去除效果,且产水接近纯水,其后置活性炭除了进一步去除水中的异味外,还改善口感。而常规UF膜的后置活性炭则是进一步确保净水器的出水安全。
然而,由于家用小型饮用水净化设备本身的工艺与滤芯问题,用户在净水设备的选择、使用、维护等方面受专业限制,家用小型饮用水净化设备出水的微生物二次污染现象十分普遍。20世纪90年代,国外对家用小型饮用水净化设备的二次污染研究发现,净水设备产水中微生物浓度高于同一住处自来水的微生物浓度的比例高达64%。家用小型饮用水净化设备的细菌污染存在着引发疾病的潜在危险因素,一方面原因是净水器生产制造门槛较低,国内大量净水器生产企业通常采用外购配件进行改/组装生产,活性炭、NF/RO膜等滤芯耗材参差不齐,致使净水设备整机的质量堪忧;另一方面原因是多数净水器生产企业缺乏主动执行标准的意识。
根据中国疾控中心环境与健康相关产品安全所对涉及国产与进口的307台不同类型的家用小型饮用水净化设备的卫生学检测资料进行不合格原因分析,结果显示:(1)家用小型饮用水净化设备中含有颗粒活性炭滤芯的不合格率最高,达到18.5%,进口同类产品与国产产品相似,达到17.5%;(2)含RO膜滤芯的家用小型饮用水净化设备不合格的原因主要是微生物浸泡试验不合格。结论显示活性炭滤芯及NF/RO膜滤芯是影响家用小型饮用水净化设备水处理滤芯工艺安全的重要因素,也成为制约家用净水器整机卫生安全的关键因素。
为克服上述现有技术存在的不足,本发明之目的在于提供一种饮用水净化装置和方法,通过采用2级过滤工艺,实现有效去除水中的色度、嗅味、颗粒物、微生物、有害离子,确保饮用水安全的目的。
为达上述目的,本发明提出一种饮用水净化装置,包括:
第一级过滤系统,通过利用功能纳米纤维膜滤芯作为预处理工艺,对进水中的颗粒物、胶体、重金属、有机物等进行有效预处理去除后,产出的水直接通过第二级过滤系统的进水口进入第二级过滤系统,并通过正扩散化学清洗对功能纳米纤维滤芯进行清洗,实现功能纳米纤维膜滤芯的膜污染控制及重复利用;
第二级过滤系统,通过利用荷电功能超滤膜滤芯作为核心分离工艺,对所述第一级过滤系统预处理后的进水进一步深度净化、杀菌,得到最终的饮用水,并通过正扩散化学清洗对荷电功能超滤膜滤芯进行清洗,实现荷电功能超滤膜滤芯的膜污染控制及重复利用。
优选地,所述第一级过滤系统包括功能纳米纤维膜滤芯组件(1),其内置功能纳米纤维膜元件(14),所述功功能纳米纤维膜滤芯组件(1)侧下端设置进水口(11),侧上端设置产水口(12),正上端设置浓水口(13),自来水在其自有压力的驱动下进入所述功能纳米纤维膜滤芯组件(1)侧下端进水口(11),进水进入所述功能纳米纤维膜滤芯组件(1)后,向上经过功能微超滤膜元件(14)进行有效预处理去除后,产出的水经上侧端产水口(12)送入至第二级过滤系统,功能纳米纤维膜滤芯的化学清洗药剂加药箱(3)通过进水管道,其内的化学清洗药剂经由功能纳米纤维膜滤芯化学清洗药剂加药计量泵(31)泵入所述功能纳米纤维膜滤芯组件(1),浓水及化学清洗废水经正上端浓水口(13)直接外排。
优选地,所述功能纳米纤维膜元件(14)由功能纳米纤维膜片制备的不同数量的膜袋卷制而成。
优选地,所述正上端浓水口(13)设置浓水阀,产水过程运行时,浓水阀关闭,当物理冲洗及正扩散化学清洗时,产水阀关闭,浓水阀开启,浓水及化学清洗废水均直接外排。
优选地,所述功能纳米纤维膜滤芯化学清洗药剂加药箱中的化学清洗药剂为柠檬酸或者醋酸中的一种。
优选地,所述功能纳米纤维膜滤芯化学清洗药剂加药箱中的化学清洗药剂的浓度为0.1~3.0 wt.%。
优选地,所述第二级过滤系统包括功能超滤膜滤芯组件(2),其内置功能超滤膜元件(24),所述功能超滤膜滤芯组件(2)侧下端设置进水口(21),侧上端设置产水口(22),正上端设置浓水口(23),所述功能超滤膜滤芯组件(2)的侧下端进水口(21)与所述功能纳米纤维膜滤芯组件(1)侧上端的产水口(12)直接连接,来自所述功能纳米纤维膜滤芯组件(1)侧上端的产水口(12)的水通过所述功能超滤膜滤芯组件(2)的侧下端进水口(21)进入所述功能超滤膜滤芯组件(2)后,向上经过功能超滤膜元件(24)对预处理后的进水进一步深度净化、杀菌,得到最终饮用水经侧上端设置产水口(22)产出,功能超滤膜滤芯的化学清洗药剂加药箱(4)通过进水管道,其内的功能超滤膜滤芯化学清洗药剂经由功能超滤膜滤芯化学清洗药剂加药计量泵(41)泵入所述功能超滤膜滤芯组件(2),浓水及化学清洗废水经正上端浓水口(23)直接进入外排。
优选地,所述功能超滤膜元件由PVDF荷电功能中空纤维超滤膜丝制备而成。
优选地,所述功能纳米纤维膜元件(14)及功能超滤膜元件(24)可拆卸更换。
为达到上述目的,本发明还提供一种可饮用水净化装置的实现方法,包括如下步骤:
步骤S1,由第一级过滤系统通过利用功能纳米纤维膜滤芯作为预处理工艺,对进水中的颗粒物、胶体、重金属、有机物等进行有效预处理去除后,产出的水直接进入第二级过滤系统的进水进入第二级过滤系统,所述第一级过滤系统还通过正扩散化学清洗对功能纳米纤维滤芯进行定时清洗,以实现滤芯的膜污染控制及重复利用;
步骤S2,由第二级过滤系统通过利用荷电功能超滤膜滤芯作为核心分离工艺,对所述第一级过滤系统预处理后的进水进一步深度净化、杀菌,最终得到高品质饮用水,所述第一级过滤系统还通过正扩散化学清洗对荷电功能超滤膜滤芯进行清洗,实现荷电功能超滤膜滤芯的膜污染控制及重复利用。
与现有技术相比,本发明一种饮用水净化装置及其实现方法通过利用功能纳米纤维膜的纳米纤维结构、高通量、窄孔径(1~5μm)及纳米纤维负载的抑菌基团对荷电功能超滤膜进水中的胶体、颗粒物、天然有机物等进行预去除,同时预处理吸附进水中的有害重金属离子,通过荷电功能超滤膜利用有效膜孔径10~30nm,膜表面及膜孔内的荷负电基团对预处理后的进水进一步深度净化、杀菌,最终得到高品质饮用水,同时本发明还通过物理冲洗、正扩散化学清洗对功能纳米纤维滤芯及功能超滤膜滤芯进行清洗,实现两级滤芯的膜污染控制及重复利用。
图1为本发明一种饮用水净化装置的结构示意图;
图2为本发明一种饮用水净化装置的实现方法的步骤流程图。
以下通过特定的具体实例并结合附图说明本发明的实施方式,本领域技术人员可由本说明书所揭示的内容轻易地了解本发明的其它优点与功效。本发明亦可通过其它不同的具体实例加以施行或应用,本说明书中的各项细节亦可基于不同观点与应用,在不背离本发明的精神下进行各种修饰与变更。
图1为本发明一种饮用水净化装置的结构示意图。如图1所示,本发明一种饮用水净化装置,包括:
第一级过滤系统10,通过利用功能纳米纤维膜滤芯作为预处理工艺,利用功能纳米纤维膜片的纳米纤维结构、高通量、窄孔径(1~5μm)及纳米纤维负载的抑菌基团对进水中的颗粒物、胶体、重金属、有机物等进行有效预处理去除后,产出的水直接进入第二级过滤系统20的进水进入第二级过滤系统20,并通过物理冲洗、正扩散化学清洗对功能纳米纤维滤芯进行清洗,实现滤芯的膜污染控制及重复利用。
具体地,第一级过滤系统10包括:功能纳米纤维膜滤芯组件1,其内置功能纳米纤维膜元件14,所述功能纳米纤维膜元件由功能纳米纤维膜片制备的不同数量的膜袋卷制而成,所述功能纳米纤维膜是指具有高通量、吸附重金属、抑菌性能的PVDF纳米纤维膜,其兼具传统4或5级中PP棉+前置活性炭的功能,所述功能纳米纤维膜片的纳米纤维结构、高通量、窄孔径(1~5μm)及纳米纤维负载的抑菌基团对进水中的颗粒物、胶体、重金属、有机物等进行有效预处理去除,并且功能纳米纤维膜元件表面的纳米纤维负载的荷电基团,具有杀菌、抑菌作用,可对家用小型饮用水净化设备系统进水中的微生物起到一定的控制作用,所述功能纳米纤维膜滤芯组件1侧下端设置进水口11,侧上端设置产水口12,正上端设置浓水口13,其侧上端产水口12与第二级过滤系统20的功能超滤膜滤芯组件的进水口直接连接,自来水在其自有压力的驱动下进入所述功能纳米纤维膜滤芯组件1侧下端进水口11,进水进入所述功能纳米纤维膜滤芯组件1后,向上经过功能微超滤膜元件14,利用功能纳米纤维膜片的纳米纤维结构、高通量、窄孔径(1~5μm)及纳米纤维负载的抑菌基团对进水中的颗粒物、胶体、重金属、有机物等进行有效预处理去除后,产出的水经上侧端产水口12送入至第二级过滤系统20,自来水和化学清洗药剂每隔6~72hrs进行正扩散化学清洗,具体地,功能纳米纤维膜滤芯的化学清洗药剂加药箱3通过进水管、化学清洗药剂经由功能纳米纤维膜滤芯化学清洗药剂加药计量泵31泵入功能纳米纤维膜滤芯组件1,浓水及化学清洗废水经正上端浓水口13直接进入外排管道,正上端浓水口13设置有浓水阀。在本发明具体实施例中,功能纳米纤维膜滤芯的进水压力建议为0~0.05MPa,浓水外排及冲洗进水压力建议为0~0.05MPa,进水压力可根据实际产水量需要进行设置,也可默认为自来水自有压力。产水过程运行时,浓水阀关闭,当进行物理冲洗及正扩散化学清洗时,浓水阀开启,产水阀关闭,浓水及化学清洗废水均直接外排。本发明中,各阀门(例如产水阀、浓水阀,优选地,进水口也可设置有进水阀)的控制可由设备的自有程序控制,也可以根据实际用水需求通过控制器控制。
在本发明中,第一级过滤系统10采用正扩散化学清洗系统实现功能纳米纤维膜滤芯的膜污染控制及重复利用,所述正扩散化学清洗系统包括物理正冲和功能纳米纤维膜滤芯化学清洗药剂加药系统,该两个系统串联、联动运行。所述正扩散化学清洗指物理正冲的同时,向正冲的进水中投加设定好的化学药剂,采用含化学清洗药剂的进水瞬时、快速冲向功能纳米纤维膜元件14,物理正冲则是指进水箱的水瞬时、快速冲到功能纳米纤维膜元件14,废水直接外排,为纯物理过程,具体地,所述物理正冲系统通过自来水进水水龙头和功能纳米纤维膜滤芯组件1侧下端进水口11两部分串联,进水经由自来水自有压力驱动,经过功能纳米纤维膜滤芯组件1后进入功能纳米纤维膜元件,功能纳米纤维膜元件表面错流的浓水经由正上端浓水口13排出;所述功能纳米纤维膜滤芯化学清洗药剂加药系统由功能纳米纤维膜滤芯化学清洗药剂加药箱3和功能纳米纤维膜滤芯化学清洗药剂加药计量泵31两部分串联组成,通过功能纳米纤维膜滤芯化学清洗药剂加药箱3经由功能纳米纤维膜滤芯化学清洗药剂加药计量泵31,接入进水管道,即通过加药计量泵于进水管道泵入功能纳米纤维膜滤芯化学清洗药剂,在本发明具体实施例中,所述功能纳米纤维膜滤芯化学清洗药剂加药箱中的化学清洗药剂为柠檬酸或者醋酸中的一种,浓度为0.1~3.0
wt.%。
也就是说,第一级过滤系统10的正扩散化学清洗系统由进水口、功能纳米纤维膜滤芯化学清洗药剂加药箱3,通过自来水压力、功能纳米纤维膜滤芯化学清洗药剂加药计量泵31四部分串联、联动运行,冲洗清洗药剂由功能纳米纤维膜滤芯化学清洗药剂加药箱3、功能纳米纤维膜滤芯化学清洗药剂加药计量泵31,经侧下端进水口11进入功能纳米纤维膜滤芯组件,化学清洗药剂为常规一定浓度、易得的、食品级的醋酸或者柠檬酸,其清洗原理是与膜滤芯表面的碱性物质发现化学反应,对膜表面的污染物进行清洗,恢复膜滤芯本身的性能,化学清洗废水由正上端浓水口13排出。其中,物理冲洗和正扩散化学清洗过程均不消耗其产水。本发明具体实施例中,正扩散化学清洗间隔时间建议为6~72 hrs。
可见,在第一级过滤系统10中,物理冲洗系统无进水泵,正扩散化学清洗系统与功能纳米纤维膜滤芯组件共用进水口,进水驱动力为自来水自有压力,通过向正扩散化学清洗系统投加化学清洗药剂,再经过功能纳米纤维膜元件后进入功能纳米纤维膜滤芯过滤系统,最后由功能纳米纤维膜滤芯组件的正上端浓/废水口外排。物理冲洗和正扩散化学清洗过程均不消耗功能纳米纤维膜滤芯产水。
第二级过滤系统20,通过利用荷电功能超滤膜滤芯作为核心分离工艺,利用有效膜孔径10~30nm,膜表面及膜孔内的荷负电基团对第一级过滤系统10预处理后的进水进一步深度净化、杀菌,最终得到高品质饮用水,并通过物理冲洗、正扩散化学清洗对荷电功能超滤膜滤芯进行清洗,实现荷电功能超滤膜滤芯的膜污染控制及重复利用。
具体地,第二级过滤系统20进一步包括功能超滤膜滤芯组件2,其内置功能超滤膜元件24,所述功能超滤膜元件由PVDF荷电功能中空纤维超滤膜丝制备,所述功能超滤膜在去除颗粒物、胶体、部分有机物,确保出水浊度稳定的同时,还可降低出水的pH值,所述功能超滤膜滤芯组件2侧下端设置进水口21,侧上端设置产水口22,正上端设置浓水口23,所述功能超滤膜滤芯组件2的侧下端进水口21与所述功能纳米纤维膜滤芯组件1侧上端的产水口12直接连接,来自所述功能纳米纤维膜滤芯组件1侧上端的产水口12的水通过所述功能超滤膜滤芯组件2的侧下端进水口21进入所述功能超滤膜滤芯组件2后,向上经过功能超滤膜元件24,利用其有效膜孔径10~30nm,膜表面及膜孔内的荷负电基团对预处理后的进水进一步深度净化、杀菌,最终得到高品质饮用水经侧上端设置产水口22产出,此外,功能超滤膜元件表面的荷负电基团,还具有杀菌、抑菌作用,可对家用小型饮用水净化设备系统进水中的微生物起到一定的控制作用,功能超滤膜滤芯的化学清洗药剂加药箱4通过功能纳米纤维膜上侧端产水口12与所述功能超滤膜滤芯组件2的侧下端进水口21的进水管道,功能超滤膜滤芯化学清洗药剂经由功能超滤膜滤芯化学清洗药剂加药计量泵41泵入功能超滤膜滤芯组件,浓水及化学清洗废水直接进入外排管道,浓水及化学清洗废水经正上端浓水口23直接进入外排管道,正上端浓水口23设置有浓水阀。在本发明具体实施例中,功能超滤膜滤芯的进水压力建议为0~0.25MPa,浓水外排及冲洗进水压力建议为0~0.25Mpa,同样,进水压力可根据实际产水量需要进行设置,也可默认为自来水自有压力。产水过程运行时,浓水阀关闭,物理冲洗及正扩散化学清洗时,浓水阀开启,产水阀关闭,浓水及化学清洗废水均直接外排。
在本发明中,第二级过滤系统20也采用正扩散化学清洗系统实现功能超滤膜滤芯的膜污染控制及重复利用,所述正扩散化学清洗系统包括物理正冲和功能超滤膜滤芯化学清洗药剂加药系统,该两个系统串联、联动运行。所述正扩散化学清洗指物理正冲的同时,向正冲的进水中投加设定好的化学药剂,采用含化学清洗药剂的进水瞬时、快速冲向功能超滤膜元件24,物理正冲则是指进水箱的水瞬时、快速冲到功能超滤膜元件24,废水直接外排,为纯物理过程,具体地,所述物理正冲系统通过所述功能纳米纤维膜滤芯组件1上侧端产水口12和功能超滤膜滤芯组件侧下端进水口21两部分串联,进水经由所述功能纳米纤维膜滤芯组件1侧上端产水自有压力驱动,经过功能超滤膜滤芯组件2侧下端进水口21后进入功能超滤膜元件,功能超滤膜元件表面错流的浓水经由正上端浓水口23排出;所述功能超滤膜滤芯化学清洗药剂加药系统由功能超滤膜滤芯化学清洗药剂加药箱4和功能超滤膜滤芯化学清洗药剂加药计量泵41两部分串联组成,通过功能超滤膜滤芯化学清洗药剂加药箱4经由功能超滤膜滤芯化学清洗药剂加药计量泵41,接入进水管道,即通过加药计量泵于进水管道泵入功能超滤膜滤芯化学清洗药剂至功能超滤膜滤芯组件2,在本发明具体实施例中,所述功能超滤膜滤芯化学清洗药剂加药箱中的化学清洗药剂为柠檬酸或者醋酸中的一种,浓度为0.1~3.0
wt.%。
也就是说,所述第二级过滤系统20的正扩散化学清洗系统由进水(功能纳米纤维膜滤芯组件1侧上端产水口出水)、功能超滤膜滤芯化学清洗药剂加药箱4通过功能纳米纤维膜产水的自有压力、功能超滤膜滤芯化学清洗药剂加药计量泵41四部分串联、联动运行,冲洗清洗药剂由化学清洗药剂加药箱4、化学清洗药剂加药计量泵41,经下侧端进水口21进入功能超滤膜滤芯组件,化学清洗废水由正上端浓水口23排出。其中,物理冲洗和正扩散化学清洗过程均不消耗其产水。本发明具体实施例中,正扩散化学清洗间隔时间建议为6~72
hrs。
可见,在第二级过滤系统20中,物理冲洗系统无进水泵,正扩散化学清洗系统与功能超滤膜膜滤芯组件共用进水口,进水驱动力为功能纳米纤维膜滤芯组件上侧端产水的自有压力,通过向正扩散化学清洗系统投加化学清洗药剂,再经过功能超滤膜组件后进入功能超滤膜滤芯过滤系统,物理冲洗和正扩散化学清洗过程均不消耗功能超滤膜滤芯产水。
图2为本发明一种饮用水净化装置的实现方法的步骤流程图。如图2所示,本发明一种可饮用水净化装置的实现方法,包括如下步骤:
步骤S1,由第一级过滤系统通过利用功能纳米纤维膜滤芯作为预处理工艺,利用功能纳米纤维膜片的纳米纤维结构、高通量、窄孔径(1~5μm)及纳米纤维负载的抑菌基团对进水中的颗粒物、胶体、重金属、有机物等进行有效预处理去除后,产出的水直接进入第二级过滤系统的进水进入第二级过滤系统,所述第一级过滤系统还通过正扩散化学清洗对功能纳米纤维滤芯进行定时清洗,以实现滤芯的膜污染控制及重复利用。
具体地,步骤S1进一步包括:
步骤S100,进水经由自来水自有压力驱动,经功能纳米纤维膜滤芯组件1侧下端进水口进入功能纳米纤维膜滤芯组件1,向上依次经过功能纳米纤维膜元件14、上侧端产水口12,所产出的水经产水泵51流向第二级过滤系统。
在本发明中,所述功能纳米纤维膜滤芯组件1内置功能纳米纤维膜元件14,该功能纳米纤维膜元件14兼具传统4或5级中PP棉+前置活性炭的功能,所述功能纳米纤维膜片的纳米纤维结构、高通量、窄孔径(1~5μm)及纳米纤维负载的抑菌基团对进水中的颗粒物、胶体、重金属、有机物等进行有效预处理去除,并且功能纳米纤维膜元件表面的纳米纤维负载的荷电基团,具有杀菌、抑菌作用,可对家用小型饮用水净化设备系统进水中的微生物起到一定的控制作用,且功能纳米纤维膜滤芯组件1中的功能纳米纤维膜元件14可拆卸、更换,进水进入功能纳米纤维膜滤芯组件1后进入功能纳米纤维膜元件14,利用功能纳米纤维膜片的纳米纤维结构、高通量、窄孔径(1~5μm)及纳米纤维负载的抑菌基团对进水中的颗粒物、胶体、重金属、有机物等进行有效预处理。
步骤S101,所述第一级过滤系统定时进行正扩散化学清洗,以实现滤芯的膜污染控制及重复利用。
在进行正扩散化学清洗时,由侧下端进水口11、功能纳米纤维膜滤芯化学清洗药剂加药箱3,通过自来水压力、功能纳米纤维膜滤芯化学清洗药剂加药计量泵31四部分串联、联动运行,化学清洗药剂由功能纳米纤维膜滤芯化学清洗药剂加药箱3、功能纳米纤维膜滤芯化学清洗药剂加药计量泵31,经侧下端进水口11进入功能纳米纤维膜滤芯组件,化学清洗废水由正上端浓水口13排出。其中,物理冲洗和正扩散化学清洗过程均不消耗其产水。本发明具体实施例中,正扩散化学清洗间隔时间建议为6~72
hrs。
步骤S2,由第二级过滤系统通过利用荷电功能超滤膜滤芯作为核心分离工艺,利用有效膜孔径10~30nm,膜表面及膜孔内的荷负电基团对第一级过滤系统10预处理后的进水进一步深度净化、杀菌,最终得到高品质饮用水,所述第一级过滤系统还通过正扩散化学清洗对荷电功能超滤膜滤芯进行清洗,实现荷电功能超滤膜滤芯的膜污染控制及重复利用。
具体地,步骤S2进一步包括:
步骤S200,来自所述功能纳米纤维膜滤芯组件1侧上端的产水口12的水通过所述功能超滤膜滤芯组件2的侧下端进水口21进入所述功能超滤膜滤芯组件2后,向上经过功能超滤膜元件24,利用其有效膜孔径10~30nm,膜表面及膜孔内的荷负电基团对预处理后的进水进一步深度净化、杀菌,最终得到高品质饮用水经侧上端设置产水口22产出。
步骤S201,所述第二级过滤系统定时进行正扩散化学清洗,以实现荷电功能超滤膜滤芯的膜污染控制及重复利用。
具体地,在进行正扩散化学清洗时,由进水(功能纳米纤维膜滤芯组件1侧上端产水口出水)、功能超滤膜滤芯化学清洗药剂加药箱4通过功能纳米纤维膜产水的自有压力、功能超滤膜滤芯化学清洗药剂加药计量泵41四部分串联、联动运行,冲洗清洗药剂由化学清洗药剂加药箱4、化学清洗药剂加药计量泵41,经下侧端进水口21进入功能超滤膜滤芯组件,化学清洗废水由正上端浓水口23排出。其中,物理冲洗和正扩散化学清洗过程均不消耗其产水。本发明具体实施例中,正扩散化学清洗间隔时间建议为6~72
hrs。
综上所述,本发明一种饮用水净化装置及其实现方法通过利用功能纳米纤维膜的纳米纤维结构、高通量、窄孔径(1~5μm)及纳米纤维负载的抑菌基团对荷电功能超滤膜进水中的胶体、颗粒物、天然有机物等进行预去除,同时预处理吸附进水中的有害重金属离子,通过荷电功能超滤膜利用有效膜孔径10~30nm,膜表面及膜孔内的荷负电基团对预处理后的进水进一步深度净化、杀菌,最终得到高品质饮用水,同时本发明还通过物理冲洗、正扩散化学清洗对功能纳米纤维滤芯及功能超滤膜滤芯进行清洗,实现两级滤芯的膜污染控制及重复利用。
与现有技术相比,本发明具有如下优点:
1,本发明可有效缓解微生物易在净水器内形成生物膜或生长繁殖的问题,功能纳米纤维膜滤芯及荷电功能超滤膜滤芯均具有抑菌效能:对金黄色葡萄球菌和大肠杆菌活性值均大于3。
2,本发明采用2级过滤工艺:功能纳米纤维膜+荷电功能超滤膜,预处理工艺为功能纳米纤维膜,核心分离工艺是荷电功能超滤膜。其中,功能纳米纤维膜滤芯过滤系统兼具传统净水器过滤工艺中的PP棉+前置活性炭过滤工艺的预处理功能。荷电功能超滤膜在去除颗粒物、胶体、部分有机物,确保出水浊度稳定的同时,还可降低出水的pH值。
3,本发明采用了功能纳米纤维膜滤芯过滤系统作为第一级过滤系统,利用功能纳米纤维膜片的纳米纤维结构、高通量、窄孔径(1~5μm)及纳米纤维负载的抑菌基团对进水中的颗粒物、胶体、重金属、有机物等进行有效预处理去除。
4,本发明采用的功能纳米纤维膜滤芯及荷电功能超滤膜滤芯均可更换、拆卸,且可通过物理冲洗、正扩散化学清洗而循环使用,更换方便,使用寿命为1~4年。正扩散化学清洗系统简洁,不消耗产水,清洗间隔时间长、效率高(正扩散化学清洗后,功能纳米纤维膜滤芯的有效运行通量恢复率不低于97%,而功能超滤膜滤芯的有效运行通量恢复率不低于95%),所需化学清洗药剂为易得到的柠檬酸或醋酸,具有清洗周期长、药剂消耗量小、清洗时间短、清洗步骤少等优势。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何本领域技术人员均可在不违背本发明的精神及范畴下,对上述实施例进行修饰与改变。因此,本发明的权利保护范围,应如权利要求书所列。
所属领域技术人员根据上文的记载容易得知,本发明技术方案适合在工业中制造并在生产、生活中使用,因此本发明具备工业实用性。
Claims (1)
- 一种饮用水净化装置,包括:第一级过滤系统,通过利用功能纳米纤维膜滤芯作为预处理工艺,对进水中的颗粒物、胶体、重金属、有机物等进行有效预处理去除后,产出的水直接通过第二级过滤系统的进水口进入第二级过滤系统,并通过正扩散化学清洗对功能纳米纤维滤芯进行清洗,实现功能纳米纤维膜滤芯的膜污染控制及重复利用;第二级过滤系统,通过利用荷电功能超滤膜滤芯作为核心分离工艺,对所述第一级过滤系统预处理后的进水进一步深度净化、杀菌,得到最终的饮用水,并通过正扩散化学清洗对荷电功能超滤膜滤芯进行清洗,实现荷电功能超滤膜滤芯的膜污染控制及重复利用。2、如权利要求1所述的一种饮用水净化装置,其特征在于:所述第一级过滤系统包括功能纳米纤维膜滤芯组件(1),其内置功能纳米纤维膜元件(14),所述功功能纳米纤维膜滤芯组件(1)侧下端设置进水口(11),侧上端设置产水口(12),正上端设置浓水口(13),自来水在其自有压力的驱动下进入所述功能纳米纤维膜滤芯组件(1)侧下端进水口(11),进水进入所述功能纳米纤维膜滤芯组件(1)后,向上经过功能微超滤膜元件(14)进行有效预处理去除后,产出的水经上侧端产水口(12)送入至第二级过滤系统,功能纳米纤维膜滤芯的化学清洗药剂加药箱(3)通过进水管道,其内的化学清洗药剂经由功能纳米纤维膜滤芯化学清洗药剂加药计量泵(31)泵入所述功能纳米纤维膜滤芯组件(1),浓水及化学清洗废水经正上端浓水口(13)直接外排。3、如权利要求2所述的一种饮用水净化装置,其特征在于:所述功能纳米纤维膜元件(14)由功能纳米纤维膜片制备的不同数量的膜袋卷制而成。4、如权利要求2所述的一种饮用水净化装置,其特征在于:所述正上端浓水口(13)设置浓水阀,产水运行时,浓水阀关闭,当物理冲洗及正扩散化学清洗时,产水阀关闭,浓水阀开启,浓水及化学清洗废水均直接外排。5、如权利要求2所述的一种饮用水净化装置,其特征在于:所述功能纳米纤维膜滤芯化学清洗药剂加药箱中的化学清洗药剂为柠檬酸或者醋酸中的一种。6、如权利要求5所述的一种饮用水净化装置,其特征在于:所述功能纳米纤维膜滤芯化学清洗药剂加药箱中的化学清洗药剂的浓度为0.1~3.0 wt.%。7、如权利要求1所述的一种饮用水净化装置,其特征在于:所述第二级过滤系统包括功能超滤膜滤芯组件(2),其内置功能超滤膜元件(24),所述功能超滤膜滤芯组件(2)侧下端设置进水口(21),侧上端设置产水口(22),正上端设置浓水口(23),所述功能超滤膜滤芯组件(2)的侧下端进水口(21)与所述功能纳米纤维膜滤芯组件(1)侧上端的产水口(12)直接连接,来自所述功能纳米纤维膜滤芯组件(1)侧上端的产水口(12)的水通过所述功能超滤膜滤芯组件(2)的侧下端进水口(21)进入所述功能超滤膜滤芯组件(2)后,向上经过功能超滤膜元件(24)对预处理后的进水进一步深度净化、杀菌,得到最终饮用水经侧上端设置产水口(22)产出,功能超滤膜滤芯的化学清洗药剂加药箱(4)通过进水管道,其内的功能超滤膜滤芯化学清洗药剂经由功能超滤膜滤芯化学清洗药剂加药计量泵(41)泵入所述功能超滤膜滤芯组件(2),浓水及化学清洗废水经正上端浓水口(23)直接进入外排。8、如权利要求7所述的一种饮用水净化装置,其特征在于:所述功能超滤膜元件由PVDF荷电功能中空纤维超滤膜丝制备而成。9、如权利要求2或7所述的一种饮用水净化装置,其特征在于:所述功能纳米纤维膜元件(14)及功能超滤膜元件(24)可拆卸更换。10、一种可饮用水净化装置的实现方法,包括如下步骤:步骤S1,由第一级过滤系统通过利用功能纳米纤维膜滤芯作为预处理工艺,对进水中的颗粒物、胶体、重金属、有机物等进行有效预处理去除后,产出的水直接进入第二级过滤系统的进水进入第二级过滤系统,所述第一级过滤系统还通过正扩散化学清洗对功能纳米纤维滤芯进行定时清洗,以实现滤芯的膜污染控制及重复利用;步骤S2,由第二级过滤系统通过利用荷电功能超滤膜滤芯作为核心分离工艺,对所述第一级过滤系统预处理后的进水进一步深度净化、杀菌,最终得到高品质饮用水,所述第一级过滤系统还通过正扩散化学清洗对荷电功能超滤膜滤芯进行清洗,实现荷电功能超滤膜滤芯的膜污染控制及重复利用。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010367159.2 | 2020-04-30 | ||
CN202010367159.2A CN111362446A (zh) | 2020-04-30 | 2020-04-30 | 一种饮用水净化装置和方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021218067A1 true WO2021218067A1 (zh) | 2021-11-04 |
Family
ID=71205782
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/122609 WO2021218067A1 (zh) | 2020-04-30 | 2020-10-21 | 一种饮用水净化装置和方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111362446A (zh) |
WO (1) | WO2021218067A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114014452A (zh) * | 2021-11-24 | 2022-02-08 | 武汉锦美环保科技有限公司 | 一种可循环环保污水处理系统及其处理方法 |
CN117509826A (zh) * | 2023-12-13 | 2024-02-06 | 湖州浩宇膜科技有限公司 | 一种自动疏通式超滤膜水处理设备 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111362446A (zh) * | 2020-04-30 | 2020-07-03 | 上海城市水资源开发利用国家工程中心有限公司 | 一种饮用水净化装置和方法 |
CN113144715A (zh) * | 2021-05-21 | 2021-07-23 | 上海城市水资源开发利用国家工程中心有限公司 | 一种新型功能纳米纤维可反洗精密滤芯过滤装置和方法 |
CN113648833A (zh) * | 2021-09-15 | 2021-11-16 | 上海城市水资源开发利用国家工程中心有限公司 | 一种新型低压高回收率纳滤系统及方法 |
CN114163053B (zh) * | 2021-11-26 | 2024-06-28 | 楚天华通医药设备有限公司 | 水处理系统、模块化水处理装置及其工作方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105036378A (zh) * | 2015-05-05 | 2015-11-11 | 南通百博丝纳米科技有限公司 | 龙头式净水器用过滤芯 |
CN204848368U (zh) * | 2015-07-20 | 2015-12-09 | 南通百博丝纳米科技有限公司 | 一种微/纳米纤维膜卷式滤芯 |
CN209519449U (zh) * | 2018-11-16 | 2019-10-22 | 北京大学深圳研究生院 | 一种直饮水滤芯 |
KR20200011179A (ko) * | 2018-07-24 | 2020-02-03 | 주식회사 퓨어코리아 | 바이러스 및 박테리아 제거용 일체형 정수필터 |
CN110790344A (zh) * | 2019-07-26 | 2020-02-14 | 上海城市水资源开发利用国家工程中心有限公司 | 一种新型饮用水深度处理净化装置和方法 |
CN111362446A (zh) * | 2020-04-30 | 2020-07-03 | 上海城市水资源开发利用国家工程中心有限公司 | 一种饮用水净化装置和方法 |
US20200299150A1 (en) * | 2019-03-24 | 2020-09-24 | Mind Body (Asia) Limited | Multi-stage water filtration system |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101555048B (zh) * | 2009-05-21 | 2011-04-06 | 上海交通大学 | 同时去除水中天然有机物和重金属的方法 |
WO2012027242A1 (en) * | 2010-08-23 | 2012-03-01 | The Research Foundation Of State University Of New York | High flux microfiltration membranes with virus and metal ion adsorption capability for liquid purification |
EP2661317B1 (en) * | 2011-01-04 | 2021-11-17 | The Research Foundation for The State University of New York | Functionalization of nanofibrous microfiltration membranes for water purification |
CN102806021A (zh) * | 2012-07-27 | 2012-12-05 | 东华大学 | 一种纤维素纳米晶体/静电纺纳米纤维过滤膜的制备方法 |
CN105198106A (zh) * | 2015-09-23 | 2015-12-30 | 江苏省科建成套设备有限公司 | 一种自来水水厂工艺排水回收的集成设备 |
CN106362601B (zh) * | 2016-09-28 | 2019-11-05 | 扬州云彩新材料科技有限公司 | 一种具有抗菌功能的纳米纤维膜过滤材料及其制备方法 |
CN212222605U (zh) * | 2020-04-30 | 2020-12-25 | 上海城市水资源开发利用国家工程中心有限公司 | 一种饮用水净化装置 |
-
2020
- 2020-04-30 CN CN202010367159.2A patent/CN111362446A/zh active Pending
- 2020-10-21 WO PCT/CN2020/122609 patent/WO2021218067A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105036378A (zh) * | 2015-05-05 | 2015-11-11 | 南通百博丝纳米科技有限公司 | 龙头式净水器用过滤芯 |
CN204848368U (zh) * | 2015-07-20 | 2015-12-09 | 南通百博丝纳米科技有限公司 | 一种微/纳米纤维膜卷式滤芯 |
KR20200011179A (ko) * | 2018-07-24 | 2020-02-03 | 주식회사 퓨어코리아 | 바이러스 및 박테리아 제거용 일체형 정수필터 |
CN209519449U (zh) * | 2018-11-16 | 2019-10-22 | 北京大学深圳研究生院 | 一种直饮水滤芯 |
US20200299150A1 (en) * | 2019-03-24 | 2020-09-24 | Mind Body (Asia) Limited | Multi-stage water filtration system |
CN110790344A (zh) * | 2019-07-26 | 2020-02-14 | 上海城市水资源开发利用国家工程中心有限公司 | 一种新型饮用水深度处理净化装置和方法 |
CN111362446A (zh) * | 2020-04-30 | 2020-07-03 | 上海城市水资源开发利用国家工程中心有限公司 | 一种饮用水净化装置和方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114014452A (zh) * | 2021-11-24 | 2022-02-08 | 武汉锦美环保科技有限公司 | 一种可循环环保污水处理系统及其处理方法 |
CN117509826A (zh) * | 2023-12-13 | 2024-02-06 | 湖州浩宇膜科技有限公司 | 一种自动疏通式超滤膜水处理设备 |
CN117509826B (zh) * | 2023-12-13 | 2024-05-14 | 湖州浩宇膜科技有限公司 | 一种自动疏通式超滤膜水处理设备 |
Also Published As
Publication number | Publication date |
---|---|
CN111362446A (zh) | 2020-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021218067A1 (zh) | 一种饮用水净化装置和方法 | |
CN203613057U (zh) | 一种自来水多级净化装置 | |
WO2013065358A1 (ja) | 浄水装置、および浄水システム | |
WO2023040018A1 (zh) | 一种新型低压高回收率纳滤系统及方法 | |
CN111470686A (zh) | 一种饮用水除氟净化处理工艺和设备 | |
CN100534923C (zh) | 一种家用水净化的处理方法及其处理系统 | |
CN210122529U (zh) | 一种反渗透直饮水净化设备 | |
CN205603429U (zh) | 一种微污染水源水净化系统 | |
CN202729924U (zh) | 反渗透纯水机 | |
CN212222605U (zh) | 一种饮用水净化装置 | |
CN206279021U (zh) | 一种多功能净水器 | |
CN205367936U (zh) | 多级过滤反渗透水净化装置 | |
CN201433151Y (zh) | 一种处理微污染地表水的装置 | |
CN104556509B (zh) | 一种基于膜技术的自来水除菌系统 | |
CN203513412U (zh) | 一种带净化功能的环保饮水机 | |
CN206751574U (zh) | 一种药用纯化水处理系统 | |
CN205907145U (zh) | 一种生产生活污水零排放处理系统 | |
CN211035451U (zh) | 一种陶瓷纳滤膜净水器 | |
CN215327474U (zh) | 一种反渗透过滤装置 | |
CN106396214B (zh) | 一种可拆卸冲洗式多级过滤净水系统 | |
CN211170262U (zh) | 一种稳定出水流量的净水器 | |
CN213895296U (zh) | 一种便于tds调控的净水系统和净水设备 | |
CN104591450B (zh) | 一种自来水低温智能除菌管路系统 | |
CN205528234U (zh) | 一种家用净水器 | |
CN202164178U (zh) | 一种家用净水装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20933561 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20933561 Country of ref document: EP Kind code of ref document: A1 |