WO2021217981A1 - 直流无线供电设备及其控制方法、控制装置 - Google Patents
直流无线供电设备及其控制方法、控制装置 Download PDFInfo
- Publication number
- WO2021217981A1 WO2021217981A1 PCT/CN2020/111654 CN2020111654W WO2021217981A1 WO 2021217981 A1 WO2021217981 A1 WO 2021217981A1 CN 2020111654 W CN2020111654 W CN 2020111654W WO 2021217981 A1 WO2021217981 A1 WO 2021217981A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power supply
- signal
- module
- receiving
- sampled
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D23/00—Control of temperature
- G05D23/19—Control of temperature characterised by the use of electric means
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/10—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
- H02J50/12—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/80—Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/02—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
Definitions
- This application relates to the field of wireless power supply technology, for example, to a direct current wireless power supply device and its control method and control device.
- the power transmitting end and the load receiving end of the DC wireless power supply device transmit energy through electromagnetic induction, and there is no need for contact between the two. Since there is no electrical connection between the power transmitting end and the load receiving end, a communication system is needed to transmit communication signals between the two.
- a wireless transmitting module is set at the load receiving end, and a wireless receiving module is set at the power transmitting end, and the communication between the load receiving end and the power transmitting end is realized through data transmission between the wireless transmitting module and the wireless receiving module.
- a wireless communication module is specially set in the DC wireless power supply device to realize the communication between the load receiving end and the power supply transmitting end, which increases the power of the DC wireless power supply device. cost.
- the embodiments of the present disclosure provide a DC wireless power supply device and a control method and control device thereof, so as to solve the problem that in the prior art, the DC wireless power supply device is specifically provided with a wireless communication module to realize the communication between the load receiving end and the power supply transmitting end.
- the problem of the cost of the DC wireless power supply equipment is increased.
- the DC wireless power supply device for the load receiving end includes a receiving coil, a receiving end processing module, and a load terminal connected in sequence, and further includes:
- the receiving end control module the input end is connected with the output end of the load terminal, and is configured to compile the demand information of the load terminal into a corresponding square wave signal;
- the input end is connected to the output end of the receiving end control module, and connected to the receiving coil, and is configured to adjust the receiving impedance of the receiving coil according to the square wave signal sent by the receiving end control module to make the receiving coil form a variable receiving impedance.
- the DC wireless power supply device for powering the transmitter includes a DC power supply, a transmitter processing module, and a transmitter coil for energy transmission with the receiver coil, which are sequentially connected, and further includes:
- the electrical signal demodulation module the input terminal is connected with the transmitting coil, and is configured to demodulate the sampled electrical signal of the transmitting coil to obtain demodulation information; wherein the electrical signal of the transmitting coil changes with the change of the receiving impedance of the receiving coil;
- the transmitting end control module the input end is connected to the output end of the electrical signal demodulation module, and the output end is connected to the input end of the transmitting end processing module, and is configured to receive the demodulated information sent by the electrical signal demodulation module and process it to the transmitting end
- the module sends a control signal corresponding to the demodulated information to control the transmitting terminal processing module to adjust the output power of the power transmitting terminal or to adjust the opening or closing of the power transmitting terminal.
- control method for the above-mentioned DC wireless power supply device includes:
- control apparatus for the above-mentioned DC wireless power supply device includes a processor and a memory storing program instructions, and the processor is configured to execute the above-mentioned control method for the DC wireless power supply device when the program instructions are executed.
- the receiving end control module compiles the demand information of the load terminal into a corresponding square wave signal, and the modulation module adjusts the receiving impedance of the receiving coil according to the square wave signal sent by the receiving end control module to make the receiving coil form a variable receiving impedance, and the load receives
- the change of the receiving impedance at the end causes the electrical signal (including voltage value and current value) in the resonant network of the power supply transmitting end to change.
- the electrical signal demodulation module demodulates the sampled electrical signal of the transmitting coil to obtain demodulation information
- the transmitting end control module Receive the demodulation information sent by the electrical signal demodulation module, and send the control signal corresponding to the demodulation information to the transmitting end processing module to control the transmitting end processing module to adjust the output power of the power supply transmitting end, so as to realize the load receiving end to the power supply transmitting end. Reverse information feedback. In this way, the communication between the load receiving end and the power supply transmitting end can be realized without special setting of the wireless communication module in the DC wireless power supply equipment, and the cost of the DC wireless power supply equipment is reduced.
- Figure 1a is a schematic structural diagram of a DC wireless power supply device provided by an embodiment of the present disclosure
- Figure 1b is a schematic structural diagram of a DC wireless power supply device provided by an embodiment of the present disclosure
- Figure 2 is a schematic diagram of a square wave signal provided by an embodiment of the present disclosure
- FIG. 3 is a schematic diagram of a circuit structure of a modulation module provided by an embodiment of the present disclosure
- FIG. 4 is a schematic diagram of the circuit structure of a transmitting coil provided by an embodiment of the present disclosure.
- FIG. 5 is a schematic flowchart of a control method for DC wireless power supply equipment provided by an embodiment of the present disclosure
- Fig. 6 is a schematic structural diagram of another control device for DC wireless power supply equipment provided by an embodiment of the present disclosure.
- the term “plurality” means two or more.
- the character "/" indicates that the objects before and after are in an "or” relationship.
- A/B means: A or B.
- the term “and/or” refers to an association relationship describing objects, which means that there can be three relationships.
- a and/or B means: A or B, or, A and B.
- an embodiment of the present disclosure provides a DC wireless power supply device for a load receiving end, including a receiving coil 210, a receiving end processing module 220, and a load terminal 230 connected in sequence, and a receiving end control module 240 and Modulation module 250, where:
- the input end of the receiving end control module 240 is connected to the output end of the load terminal 230, and is configured to compile the demand information of the load terminal 230 into a corresponding square wave signal; the input end of the modulation module 250 and the output end of the receiving end control module 240 It is connected and connected to the receiving coil 210, and is configured to adjust the receiving impedance of the receiving coil 210 according to the square wave signal sent by the receiving end control module 240 so that the receiving coil 210 forms a variable receiving impedance.
- the receiving coil 210 receives the high-frequency electromagnetic energy transmitted by the transmitting coil 130 and converts it into high-frequency electric energy, and the receiving-end processing module 220 (including the rectifier module) converts the high-frequency electric energy into DC electric energy and provides it to the load terminal 230.
- the input power of the power transmitting terminal is adjusted according to the demand information fed back by the load equipment, and the demand information of the load terminal 230 is compiled into a corresponding square wave signal, and according to the square wave signal Adjust the receiving impedance of the receiving coil 210; the change of the receiving impedance of the receiving coil 210 causes the change of the electrical signal in the resonant network of the power supply transmitting end, and the corresponding control signal is obtained by analyzing the changed electrical signal to adjust the power supply transmitting end.
- the demand information of the load terminal 230 includes one or more of load switching information, load protection information, and load switch information.
- the load switching information refers to the information required to switch between different functions of the rice cooker (such as switching between rice cooking, congee cooking, and soup cooking) and the power supply transmitter needs to adjust the transmission power
- load protection information refers to The temperature of the rice cooker is too high or the current is too high, and the power supply transmitter needs to reduce the transmission power information
- the load switch information refers to the information that the power supply transmitter needs to adjust the transmission power when the rice cooker is turned on or off.
- a set of 8-bit binary numbers represents communication signals, 0000 0001 represents load switch information, and 0000 0011 represents load switch information.
- the corresponding square wave signal is shown in Figure 2.
- the modulation module 250 is specifically configured to: modulate to generate an impedance compensation value corresponding to the square wave signal; use the impedance compensation value to adjust the receiving impedance of the receiving coil 210 so that the receiving coil 210 forms a variable receiving impedance.
- the modulation module includes a modulation circuit and a resistor R, wherein: the modulation circuit includes a capacitor C t and a modulation switch Q s connected in series; the resistor R is connected in parallel to both ends of the modulation circuit.
- the inductor L s , the capacitor C s , the capacitor C t and the modulation switch Q s are sequentially connected in series to form a loop, and the resistor R is connected in parallel to the capacitor C t and the modulation switch Q s. .
- the modulation switch Q s is controlled to be turned on or off according to the square wave signal.
- the modulation switch Q s is controlled to turn on, and when the square wave signal is "0", the modulation switch Q s is controlled to turn off.
- the receiving impedance can be calculated by the following formula:
- Z s is the receiving impedance
- X Ls is the inductive reactance of the inductor L s
- X Cs is the capacitive reactance of the capacitor C s
- ⁇ Z is the compensation value
- R is the resistance value of the resistor R.
- the compensation value ⁇ Z is:
- X Ct is the capacitive reactance of the capacitor C t.
- an embodiment of the present disclosure provides a DC wireless power supply device for powering a transmitter, including a DC power supply 110, a transmitter processing module 120, and a transmitter coil 130 for energy transmission with the receiver coil 210, which are sequentially connected. , which is characterized in that it also includes an electrical signal demodulation module 140 and a transmitter control module 150, wherein:
- the input terminal of the electrical signal demodulation module 140 is connected to the transmitting coil 130, and is configured to demodulate the sampled electrical signal of the transmitting coil 130 to obtain demodulated information.
- the electrical signal in the transmitting coil 130 follows the receiving coil 210.
- the impedance changes; the input end of the transmitting end control module 150 is connected to the output end of the electrical signal demodulation module 140, and the output end is connected to the input end of the transmitting end processing module 120, and is configured to receive the electrical signal demodulation module 140 to send And send a control signal corresponding to the demodulation information to the transmitting terminal processing module 120 to control the transmitting terminal processing module 120 to adjust the output power of the power transmitting terminal.
- the transmitting end processing module 120 (including an inverter module and a resonance module) converts the direct current input from the direct current power supply 110 into high-frequency electric energy and sends it to the transmitting coil 130 to convert it into high-frequency electromagnetic energy for external emission. Adjust the input power of the power transmitting end according to the demand information fed back by the load equipment, and the load receiving end compiles the demand information of the load terminal 230 into a corresponding square wave signal, and adjusts the receiving impedance of the receiving coil 210 according to the square wave signal; The change in the receiving impedance of the coil 210 causes a change in the electrical signal in the resonant network of the power transmitting end. By analyzing the changed electrical signal to obtain the corresponding control signal, the output power of the power transmitting end is adjusted to realize the reverse of the load receiving end to the power transmitting end. information feedback.
- the receiving end control module 240 compiles the demand information of the load terminal 230 into a corresponding square wave signal, and the modulation module 250 controls the receiving coil 210 according to the square wave signal sent by the receiving end control module 240.
- the receiving impedance of the receiving coil 210 is adjusted so that the receiving impedance of the receiving coil 210 changes.
- the change of the receiving impedance of the load receiving end causes the electrical signal in the resonant network of the power supply transmitting end to change.
- the electrical signal demodulation module 140 performs the sampling of the electrical signal of the transmitting coil 130 Demodulate to obtain demodulated information
- the transmitting end control module 150 receives the demodulated information sent by the electrical signal demodulation module 140, and sends a control signal corresponding to the demodulated information to the transmitting end processing module 120 to control the transmitting end processing module 120 Adjust the output power of the power supply transmitting end, so as to realize the reverse information feedback of the load receiving end to the power supply transmitting end. In this way, the communication between the load receiving end and the power supply transmitting end can be realized without special setting of the wireless communication module in the DC wireless power supply equipment, and the cost of the DC wireless power supply equipment is reduced.
- thermostats In addition, traditional toasters, coffee makers, wall breakers, electric kettles and other heating kitchen appliances often use metal expansion thermostats to control the heating temperature.
- the essence of this type of thermostat is 220V. AC switch.
- the DC power distribution system adopts 200V ⁇ 400V DC power supply. When the switch is off, the arc is much longer than 220V AC. Therefore, the traditional thermostat cannot be directly applied to the DC power distribution system, otherwise it will cause temperature The controller cannot be turned on/off normally and the electrical appliances are burnt out.
- the related technology still has the following problems: in the wireless power supply technology, since the traditional thermostat cannot be directly applied to the DC wireless power supply system, it cannot play a temperature control function.
- an embodiment of the present disclosure provides a DC wireless power supply device, which includes a receiving coil 210, a receiving end processing module 220, and a load terminal 230 connected in sequence, and also includes a temperature collection module 260, a receiving end control module 240, and a modulation Module 250, where:
- the input end of the temperature collection module 260 is connected to the load terminal 230 and is configured to collect temperature information of the load terminal 230; the input end of the receiving end control module 240 is connected to the output end of the temperature collection module 260 and is configured to connect the temperature collection module 260
- the transmitted temperature information is compiled into a corresponding square wave signal; the input end of the modulation module 250 is connected to the output end of the receiving end control module 240, and is connected to the receiving coil 210, and is configured according to the square wave signal transmitted by the receiving end control module 240
- the receiving impedance of the receiving coil 210 is adjusted so that the receiving coil 210 forms a varying receiving impedance.
- the temperature information includes normal temperature information and abnormal temperature information.
- the temperature collection module 260 collects the temperature of the load terminal 230 is less than the preset temperature (for example, 45 degrees Celsius), it is considered that the temperature of the load terminal 230 is abnormal; when the temperature collection module 260 collects the temperature of the load terminal 230 is greater than or equal to the preset temperature, it is considered The temperature of the load terminal 230 is abnormal.
- the normal temperature information refers to the information that the temperature of the load terminal 230 is normal and the power transmitting terminal needs to be turned on;
- the abnormal temperature information refers to the information that the temperature of the load terminal 230 is abnormal and the power transmitting terminal needs to be turned off.
- a set of 8-bit binary numbers represents communication signals, 0000 0001 represents normal temperature information, and 0000 0011 represents abnormal temperature information.
- the corresponding square wave signal is shown in Figure 2.
- the temperature acquisition module 260 is connected to the receiving end control module 240.
- the receiving end control module 240 compiles the temperature information transmitted by the temperature acquisition module 260 into a corresponding square wave signal.
- the modulation module 250 receives the square wave signal according to the square wave signal sent by the receiving end control module 240.
- the receiving impedance of the coil 210 is adjusted so that the receiving coil 210 forms a varying receiving impedance.
- the change of the receiving impedance of the load receiving end causes the electrical signal (including the voltage value and the current value) in the resonant network of the power transmitting end to change, and the electrical signal demodulation module 140 demodulates the sampled electrical signal of the transmitting coil 130 to obtain demodulated information, the transmitting end control module 150 receives the demodulated information sent by the electrical signal demodulation module 140, and sends the demodulated information corresponding to the demodulated information to the transmitting end processing module 120
- the control signal is used to control the transmitting terminal processing module 120 to regulate the turning on or off of the power supply transmitting terminal.
- the temperature acquisition module 260 is connected to the control circuit, and the temperature of the load terminal 230 is adjusted by the transmitter control module 150 to control the opening or closing of the power supply transmitter, and the traditional analog control method is converted to the digital control method, thereby realizing the DC wireless The temperature control function of the load terminal 230 in the power supply system.
- the modulation module 250 is specifically configured to: modulate to generate an impedance compensation value corresponding to the square wave signal; use the impedance compensation value to adjust the receiving impedance of the receiving coil 210 so that the receiving coil 210 forms a variable receiving impedance.
- the modulation module 250 includes a modulation circuit and a resistor R, where: the modulation circuit includes a capacitor C t and a modulation switch Q s connected in series; the resistor R is connected in parallel to both ends of the modulation circuit.
- the inductor L s , the capacitor C s , the capacitor C t and the modulation switch Q s are sequentially connected in series to form a loop, and the resistor R is connected in parallel to the capacitor C t and the modulation switch Q s. .
- the modulation switch Q s is controlled to be turned on or off according to the square wave signal.
- the modulation switch Q s is controlled to turn on, and when the square wave signal is "0", the modulation switch Q s is controlled to turn off.
- the receiving impedance can be calculated by the following formula:
- Z s is the receiving impedance
- X Ls is the inductive reactance of the inductor L s
- X Cs is the capacitive reactance of the capacitor C s
- ⁇ Z is the compensation value
- R is the resistance value of the resistor R.
- the compensation value ⁇ Z is:
- X Ct is the capacitive reactance of the capacitor C t.
- an embodiment of the present disclosure provides a DC wireless power supply device for powering a transmitter, including a DC power supply 110, a transmitter processing module 120, and a transmitter coil 130 for energy transmission with the receiver coil 210, which are sequentially connected. , which is characterized in that it also includes an electrical signal demodulation module 140 and a transmitter control module 150, wherein:
- the input terminal of the electrical signal demodulation module 140 is connected to the transmitting coil 130, and is configured to demodulate the sampled electrical signal of the transmitting coil 130 to obtain demodulated information.
- the electrical signal in the transmitting coil 130 follows the receiving coil 210.
- the impedance changes; the input end of the transmitting end control module 150 is connected to the output end of the electrical signal demodulation module 140, and the output end is connected to the input end of the transmitting end processing module 120, and is configured to receive the electrical signal demodulation module 140 to send And send a control signal corresponding to the demodulation information to the transmitting terminal processing module 120 to control the transmitting terminal processing module 120 to adjust the output power of the power transmitting terminal.
- the transmitting end processing module 120 (including an inverter module and a resonance module) converts the direct current input from the direct current power supply 110 into high-frequency electric energy and sends it to the transmitting coil 130 to convert it into high-frequency electromagnetic energy for external emission. Adjust the input power of the power transmitting end according to the demand information fed back by the load equipment, and the load receiving end compiles the demand information of the load terminal 230 into a corresponding square wave signal, and adjusts the receiving impedance of the receiving coil 210 according to the square wave signal; The change in the receiving impedance of the coil 210 causes a change in the electrical signal in the resonant network of the power transmitting end. By analyzing the changed electrical signal to obtain the corresponding control signal, the output power of the power transmitting end is adjusted to realize the reverse of the load receiving end to the power transmitting end. information feedback.
- the demodulation information includes current demodulation information or voltage demodulation information.
- the transmitting circuit 130 in which the coil, the power supply AC, capacitor C p, inductor L s and a resistor Z s 4 'in series to form a loop.
- the voltage of the transmitting coil 130 can be calculated by the following formula:
- V P is the transmit coil voltage 130
- V is the supply voltage
- X Lp is the inductance of the inductance L p
- X Cp is the capacitance of the capacitance C p
- Z s resistance value ' is the resistance Z s' of.
- the current of the transmitting coil 130 can be calculated by the following formula:
- the electrical signal demodulation module 140 includes a current demodulation module and a voltage demodulation module, wherein: the input end of the current demodulation module is connected to the transmitting coil 130, and the output end is connected to the input end of the transmitting end control module 150, and is configured to The sampled current signal of the transmitting coil 130 is demodulated to obtain current demodulation information; the input end of the voltage demodulation module is connected to the transmitting coil 130, and the output end is connected to the input end of the transmitting end control module 150, and is configured to be connected to the transmitting coil 130. The sampled voltage signal is demodulated to obtain voltage demodulation information.
- the current demodulation module and the voltage demodulation module use amplitude demodulation to demodulate the sampled current signal and the sampled voltage signal to obtain corresponding current demodulation information or voltage demodulation information. For example, when the current amplitude is higher than the preset current amplitude, the current demodulation information is “1”; when the current amplitude is less than the preset current amplitude, the current demodulation information is “0”; in the same way, when the voltage amplitude is higher than the preset current amplitude, the current demodulation information is “0”.
- the voltage demodulation information When the voltage amplitude is set, the voltage demodulation information is "1"; when the voltage amplitude is less than the preset voltage amplitude, the voltage demodulation information is "0".
- the current demodulation module and the voltage demodulation module can demodulate and obtain the current demodulation signal or voltage demodulation signal corresponding to the square wave signal, thereby knowing the demand information of the load terminal 230, and realizing the reaction of the load receiving end to the power supply transmitting end. Feedback to information.
- the electrical signal demodulation module 140 is designed as two independent current demodulation modules and voltage demodulation modules. Two independent channels are used. When the signals of the two channels arrive at the same time, but the signal integrity of each channel is unknown, one of the channels is selected for reception, and if the reception fails, it will jump to the other channel. Since the signal integrity of the two channels will not fail at the same time during the working process of the system, the stability of the system communication can be guaranteed.
- the control signal includes one or more of a switch on-off time control signal, a duty cycle control signal, a frequency control signal, and a phase control signal.
- the switch on-off time control signal is a control signal for adjusting the on/off time of the switch in the transmitting end processing module 120;
- the frequency control signal and the phase control signal are control signals for adjusting the frequency and phase of the current in the transmitting end processing module 120.
- the control signal is used to control the transmitting end processing module 120, and thereby achieve the purpose of adjusting the output power of the power supply transmitting end.
- the control signal is a duty cycle control signal.
- an embodiment of the present disclosure provides a control method for the above-mentioned DC wireless power supply device, including the following steps:
- S501 Demodulate the sampled electrical signal of the transmitting coil to obtain demodulated information.
- S502 Send a control signal corresponding to the demodulation information to the transmitting terminal processing module to control the transmitting terminal processing module to adjust the output power of the power supply transmitting terminal or to adjust the turning on or off of the power supply transmitting terminal.
- the sampled electrical signal of the transmitting coil is demodulated to obtain the demodulation information corresponding to the square wave signal, thereby knowing the demand information of the load terminal, and sending the information corresponding to the demodulation to the transmitting terminal processing module
- the control signal is used to control the transmitting end processing module to adjust the output power of the power supply transmitting end, so as to realize the reverse information feedback of the load receiving end to the power supply transmitting end. In this way, the communication between the load receiving end and the power supply transmitting end can be realized without special setting of the wireless communication module in the DC wireless power supply equipment, and the cost of the DC wireless power supply equipment is reduced.
- the control transmitter processing module regulates the opening or closing of the power supply transmitter.
- the temperature acquisition module is connected to the control circuit, and the temperature of the load terminal is adjusted by the transmitter control module to control the opening or closing of the power supply transmitter, and the traditional analog control method is converted to the digital control method, thereby realizing the DC wireless power supply system Temperature control effect on load terminal.
- the sampled electrical signal includes a sampled voltage signal and a sampled current signal
- demodulating the sampled electrical signal of the transmitting coil to obtain demodulation information includes: demodulating one of the sampled voltage signal and the sampled current signal; when When the sampling voltage signal or the sampling current signal cannot be demodulated within the set time period, the other of the sampling voltage signal and the sampling current signal is demodulated.
- Two independent channels are used. When the signals of the two channels arrive at the same time, but the signal integrity of each channel is unknown, one of the channels is selected for reception, and if the reception fails, it will jump to the other channel. Since the signal integrity of the two channels will not fail at the same time during the working process of the system, the stability of the system communication can be guaranteed.
- demodulating one of the sampled voltage signal and the sampled current signal includes: determining the sampled electrical signal to be demodulated as the sampled voltage signal or the sampled current signal according to the data size of the sampled voltage signal and the sampled current signal; When the demodulated sampled electrical signal is a sampled voltage signal, the sampled voltage signal is demodulated; when the sampled electrical signal to be demodulated is a sampled current signal, the sampled current signal is demodulated. In this way, the amount of data processing can be reduced and the efficiency of data processing can be improved.
- the sampled electrical signal to be demodulated is determined to be the sampled voltage signal, which can improve the sampled electrical signal The accuracy of demodulation.
- a control device for a DC wireless power supply device which includes a processor (processor) 60 and a memory (memory) 61, and may also include a communication interface (Communication Interface) 62 and a bus 63.
- the processor 60, the communication interface 62, and the memory 61 can communicate with each other through the bus 63.
- the communication interface 62 can be used for information transmission.
- the processor 60 may call logic instructions in the memory 61 to execute the control method for the DC wireless power supply device in the foregoing embodiment.
- the above-mentioned logical instructions in the memory 61 can be implemented in the form of a software functional unit and when sold or used as an independent product, they can be stored in a computer readable storage medium.
- the memory 61 can be used to store software programs and computer-executable programs, such as program instructions/modules corresponding to the methods in the embodiments of the present disclosure.
- the processor 60 executes functional applications and data processing by running the program instructions/modules stored in the memory 61, that is, realizes the control method for the DC wireless power supply device in the above method embodiment.
- the memory 61 may include a program storage area and a data storage area, where the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the terminal device, and the like.
- the memory 61 may include a high-speed random access memory, and may also include a non-volatile memory.
- the embodiments of the present disclosure provide an electronic device, including the above-mentioned control device for a direct current wireless power supply device.
- the embodiment of the present disclosure provides a computer-readable storage medium that stores computer-executable instructions, and the computer-executable instructions are configured to execute the above-mentioned control method for a direct current wireless power supply device.
- the embodiments of the present disclosure provide a computer program product, the computer program product includes a computer program stored on a computer-readable storage medium, the computer program includes program instructions, when the program instructions are executed by a computer, the computer program The computer executes the above-mentioned control method for DC wireless power supply equipment.
- the aforementioned computer-readable storage medium may be a transitory computer-readable storage medium or a non-transitory computer-readable storage medium.
- the technical solutions of the embodiments of the present disclosure can be embodied in the form of a software product.
- the computer software product is stored in a storage medium and includes one or more instructions to enable a computer device (which can be a personal computer, a server, or a network). Equipment, etc.) execute all or part of the steps of the method described in the embodiments of the present disclosure.
- the aforementioned storage medium may be a non-transitory storage medium, including: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disks or optical disks, etc.
- the first element can be called the second element, and likewise, the second element can be called the first element, as long as all occurrences of the "first element” are renamed consistently and all occurrences "Second component” can be renamed consistently.
- the first element and the second element are both elements, but they may not be the same element.
- the terms used in this application are only used to describe the embodiments and are not used to limit the claims. As used in the description of the embodiments and claims, unless the context clearly indicates, the singular forms "a” (a), “an” (an) and “the” (the) are intended to also include plural forms .
- the term “and/or” as used in this application refers to any and all possible combinations that include one or more of the associated lists.
- the term “comprise” (comprise) and its variants “comprises” and/or including (comprising) and the like refer to the stated features, wholes, steps, operations, elements, and/or The existence of components does not exclude the existence or addition of one or more other features, wholes, steps, operations, elements, components, and/or groups of these. If there are no more restrictions, the element defined by the sentence “including a" does not exclude the existence of other same elements in the process, method, or device that includes the element.
- each embodiment focuses on the differences from other embodiments, and the same or similar parts between the various embodiments can be referred to each other.
- the relevant parts can be referred to the description of the method parts.
- the disclosed methods and products can be implemented in other ways.
- the device embodiments described above are only illustrative.
- the division of the units may only be a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined. Or it can be integrated into another system, or some features can be ignored or not implemented.
- the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
- the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to implement this embodiment.
- the functional units in the embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
- each block in the flowchart or block diagram may represent a module, program segment, or part of the code, and the module, program segment, or part of the code contains one or more functions for realizing the specified logical function.
- Executable instructions may also occur in a different order from the order marked in the drawings. For example, two consecutive blocks can actually be executed substantially in parallel, and they can sometimes be executed in the reverse order, depending on the functions involved.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
一种直流无线供电设备和用于直流无线供电设备的控制方法及装置,涉及无线供电技术领域,用于负载接收端,包括依次连接的接收线圈(210)、接收端处理模块(220)和负载终端(230),还包括接收端控制模块(240)和调制模块(250),接收端控制模块(240)被配置为将负载终端(230)的需求信息编译为相应的方波信号;调制模块(250)被配置为根据接收端控制模块(240)发送的方波信号对接收线圈(210)的接收阻抗进行调节以使接收线圈(210)形成变化的接收阻抗,接收线圈(210)的接收阻抗的变化引起供电发射端谐振网络中电信号的变化,通过分析变化的电信号从而获得相应的控制信号,实现负载接收端对供电发射端的反向信息反馈,无需专门设置无线通信模块即可实现负载接收端与供电发射端之间的通信。
Description
本申请基于申请号为202010434206.0、申请日为2020年05月21日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
本申请基于申请号为202010434203.7、申请日为2020年05月21日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
本申请涉及无线供电技术领域,例如涉及一种直流无线供电设备及其控制方法、控制装置。
目前,无线供电技术中,直流无线供电设备的供电发射端和负载接收端是通过电磁感应进行能量传输的,两者之间不需要触点接触。由于供电发射端和负载接收端没有电气连接,所以需要一个通信系统来在两者之间传递通信信号。现有技术中在负载接收端设置无线发射模块、在供电发射端设置无线接收模块,通过无线发射模块和无线接收模块之间的数据传输实现负载接收端与供电发射端之间的通信。
在实现本公开实施例的过程中,发现相关技术中至少存在如下问题:在直流无线供电设备专门设置无线通信模块来实现负载接收端与供电发射端之间的通信,增加了直流无线供电设备的成本。
发明内容
为了对披露的实施例的一些方面有基本的理解,下面给出了简单的概括。所述概括不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围,而是作为后面的详细说明的序言。
本公开实施例提供了一种直流无线供电设备及其控制方法、控制装置,以解决现有技术中在直流无线供电设备专门设置无线通信模块来实现负载接收端与供电发射端之间的通信,增加了直流无线供电设备的成本的问题。
在一些实施例中,用于负载接收端的直流无线供电设备包括依次连接的接收线圈、接收端处理模块和负载终端,还包括:
接收端控制模块,输入端与负载终端的输出端连接,被配置为将负载终端的需求信息编译为相应的方波信号;
调制模块,输入端与接收端控制模块的输出端连接,并与接收线圈连接,被配置为根 据接收端控制模块发送的方波信号对接收线圈的接收阻抗进行调节以使接收线圈形成变化的接收阻抗。
在一些实施例中,用于供电发射端的直流无线供电设备包括依次连接的直流供电电源、发射端处理模块和与接收线圈进行能量传输的发射线圈,还包括:
电信号解调模块,输入端与发射线圈连接,被配置为对发射线圈的采样电信号进行解调以获得解调信息;其中,发射线圈的电信号随接收线圈的接收阻抗的变化而变化;
发射端控制模块,输入端与电信号解调模块的输出端连接,输出端与发射端处理模块的输入端连接,被配置为接收电信号解调模块发送的解调信息,并向发射端处理模块发送与解调信息相对应的控制信号以控制发射端处理模块调节供电发射端的输出功率或调控所述供电发射端的开启或关闭。
在一些实施例中,用于上述直流无线供电设备的控制方法包括:
对发射线圈的采样电信号进行解调以获得解调信息;
向发射端处理模块发送与解调信息相对应的控制信号以控制发射端处理模块调节供电发射端的输出功率或调控所述供电发射端的开启或关闭。
在一些实施例中,用于上述直流无线供电设备的控制装置包括处理器和存储有程序指令的存储器,处理器被配置为在执行程序指令时,执行上述用于直流无线供电设备的控制方法。
本公开实施例提供的直流无线供电设备及其控制方法、控制装置,可以实现以下技术效果:
接收端控制模块将负载终端的需求信息编译为相应的方波信号,调制模块根据接收端控制模块发送的方波信号对接收线圈的接收阻抗进行调节以使接收线圈形成变化的接收阻抗,负载接收端接收阻抗的变化引起供电发射端谐振网络中电信号(包括电压值和电流值)的变化,电信号解调模块对发射线圈的采样电信号进行解调以获得解调信息,发射端控制模块接收电信号解调模块发送的解调信息,并向发射端处理模块发送与解调信息相对应的控制信号以控制发射端处理模块调节供电发射端的输出功率,从而实现负载接收端对供电发射端的反向信息反馈。这样,无需在直流无线供电设备中专门设置无线通信模块即可实现负载接收端与供电发射端之间的通信,降低了直流无线供电设备的成本。
以上的总体描述和下文中的描述仅是示例性和解释性的,不用于限制本申请。
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明和附图并不构成对实施例的限定,附图中具有相同参考数字标号的元件示为类似的元件,附图不构成比例限制,并且其中:
图1a是本公开实施例提供的一个直流无线供电设备的结构示意图;
图1b是本公开实施例提供的一个直流无线供电设备的结构示意图;
图2是本公开实施例提供的方波信号的示意图;
图3是本公开实施例提供的一个调制模块的电路结构示意图;
图4是本公开实施例提供的一个发射线圈的电路结构示意图;
图5是本公开实施例提供的一个用于直流无线供电设备的控制方法的流程示意图;
图6是本公开实施例提供的另一个用于直流无线供电设备的控制装置的结构示意图。
为了能够更加详尽地了解本公开实施例的特点与技术内容,下面结合附图对本公开实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本公开实施例。在以下的技术描述中,为方便解释起见,通过多个细节以提供对所披露实施例的充分理解。然而,在没有这些细节的情况下,一个或多个实施例仍然可以实施。在其它情况下,为简化附图,熟知的结构和装置可以简化展示。
本公开实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开实施例的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。
除非另有说明,术语“多个”表示两个或两个以上。字符“/”表示前后对象是一种“或”的关系。例如,A/B表示:A或B。术语“和/或”是一种描述对象的关联关系,表示可以存在三种关系。例如,A和/或B,表示:A或B,或,A和B这三种关系。
结合图1a所示,本公开实施例提供一种直流无线供电设备,用于负载接收端,包括依次连接的接收线圈210、接收端处理模块220和负载终端230,还包括接收端控制模块240和调制模块250,其中:
接收端控制模块240的输入端与负载终端230的输出端连接,被配置为将负载终端230的需求信息编译为相应的方波信号;调制模块250的输入端与接收端控制模块240的输出端连接,并与接收线圈210连接,被配置为根据接收端控制模块240发送的方波信号对接收线圈210的接收阻抗进行调节以使接收线圈210形成变化的接收阻抗。
接收线圈210接收发射线圈130传输的高频电磁能量并转换为高频电能,接收端处理模块220(包括整流模块)将高频电能转化为直流电能提供给负载终端230。为了实现负载接收端与供电发射端之间的通信,根据负载设备反馈的需求信息对供电发射端的输入电源作调整,将负载终端230的需求信息编译为相应的方波信号,并根据方波信号对接收线圈210的接收阻抗进行调节;接收线圈210的接收阻抗的变化引起供电发射端谐振网络中电信号的变化,通过分析变化的电信号从而获得相应的控制信号对供电发射端进行调节,实现负载接收端对供电发射端的反向信息反馈。
负载终端230的需求信息包括负载切换信息、负载保护信息及负载开关信息中的一种或多种。以电饭煲作为负载终端230为例,负载切换信息是指电饭煲不同功能之间进行切 换(例如煮饭、煮粥、煲汤之间切换)而需要供电发射端调整发射功率的信息;负载保护信息是指电饭煲温度过高或者电流过高而需要供电发射端降低发射功率的信息;负载开关信息是指电饭煲开通或关闭而需要供电发射端调整发射功率的信息。例如以一组8位二进制的数列代表通信信号,0000 0001代表负载开关信息,0000 0011代表负载切换信息,其对应的方波信号如图2所示。
可选地,调制模块250具体被配置为:调制产生与方波信号相对应的阻抗补偿值;利用阻抗补偿值对接收线圈210的接收阻抗进行调节以使接收线圈210形成变化的接收阻抗。
可选地,所述调制模块包括调制电路和电阻R,其中:调制电路包括串联的电容C
t和调制开关Q
s;电阻R并联于所述调制电路两端。
在一些实际应用场景中,如图3所示,电感L
s、电容C
s、电容C
t和调制开关Q
s依次串联并形成环路,电阻R并联于电容C
t和调制开关Q
s两端。
根据方波信号控制调制开关Q
s的开启或关闭,当方波信号为“1”时,控制调制开关Q
s开启,当方波信号为“0”时,控制调制开关Q
s关闭。通过控制调制开关Q
s的开启或关闭以产生不同的补偿值。接收阻抗可以通过以下公式计算获得:
Z
s=X
Ls+X
Cs+ΔZ
其中,Z
s为接收阻抗,X
Ls为电感L
s的感抗,X
Cs为电容C
s的容抗,ΔZ为补偿值。
当调制开关Q
s关闭时,补偿值ΔZ为:
Z
s=R
其中,R为电阻R的电阻值。
当调制开关Q
s开启时,补偿值ΔZ为:
其中,X
Ct为电容C
t的容抗。
结合图1所示,本公开实施例提供一种直流无线供电设备,用于供电发射端,包括依次连接的直流供电电源110、发射端处理模块120和与接收线圈210进行能量传输的发射线圈130,其特征在于,还包括电信号解调模块140和发射端控制模块150,其中:
电信号解调模块140的输入端与发射线圈130连接,被配置为对发射线圈130的采样电信号进行解调以获得解调信息,其中,发射线圈130中的电信号随接收线圈210的接收阻抗的变化而变化;发射端控制模块150的输入端与电信号解调模块140的输出端连接,输出端与发射端处理模块120的输入端连接,被配置为接收电信号解调模块140发送的解调信息,并向发射端处理模块120发送与解调信息相对应的控制信号以控制发射端处理模块120调节供电发射端的输出功率。
发射端处理模块120(包括逆变模块和谐振模块)将直流供电电源110输入的直流电 转化为高频电能并送入发射线圈130转化为高频电磁能量向外发射。根据负载设备反馈的需求信息对供电发射端的输入电源作调整,负载接收端将负载终端230的需求信息编译为相应的方波信号,并根据方波信号对接收线圈210的接收阻抗进行调节;接收线圈210的接收阻抗的变化引起供电发射端谐振网络中电信号的变化,通过分析变化的电信号从而获得相应的控制信号对供电发射端的输出功率进行调节,实现负载接收端对供电发射端的反向信息反馈。
采用本公开实施例提供的直流无线供电设备,接收端控制模块240将负载终端230的需求信息编译为相应的方波信号,调制模块250根据接收端控制模块240发送的方波信号对接收线圈210的接收阻抗进行调节以使接收线圈210形成变化的接收阻抗,负载接收端接收阻抗的变化引起供电发射端谐振网络中电信号的变化,电信号解调模块140对发射线圈130的采样电信号进行解调以获得解调信息,发射端控制模块150接收电信号解调模块140发送的解调信息,并向发射端处理模块120发送与解调信息相对应的控制信号以控制发射端处理模块120调节供电发射端的输出功率,从而实现负载接收端对供电发射端的反向信息反馈。这样,无需在直流无线供电设备中专门设置无线通信模块即可实现负载接收端与供电发射端之间的通信,降低了直流无线供电设备的成本。
此外,传统烤面包机、咖啡机、破壁机、电热水壶等加热类厨房电器中常采用金属膨胀式温控器来实现对加热温度的开关控制,这类温控器的本质是一种220V的交流开关。而无线供电技术中,直流配电系统采用200V~400V直流电源供电,在开关断开时电弧远远长于220V交流,因此,传统温控器无法直接应用到直流配电系统中,否则会导致温控器无法正常开通/关断而烧毁电器。在实现本公开实施例的过程中,发现相关技术中还存在如下问题:在无线供电技术中,由于传统温控器无法直接应用于直流无线供电系统,因而不能起到温控作用。
结合图1b所示,本公开实施例提供一种直流无线供电设备,包括依次连接的接收线圈210、接收端处理模块220和负载终端230,还包括温度采集模块260、接收端控制模块240和调制模块250,其中:
温度采集模块260的输入端与负载终端230连接,被配置为采集负载终端230的温度信息;接收端控制模块240的输入端与温度采集模块260的输出端连接,被配置为将温度采集模块260传输的温度信息编译为相应的方波信号;调制模块250的输入端与接收端控制模块240的输出端连接,并与接收线圈210连接,被配置为根据接收端控制模块240传输的方波信号对接收线圈210的接收阻抗进行调节以使接收线圈210形成变化的接收阻抗。
温度信息包括温度正常信息和温度异常信息。当温度采集模块260采集负载终端230的温度小于预设温度(例如45摄氏度)时,认为负载终端230的温度异常;当温度采集模块260采集负载终端230的温度大于或等于预设温度时,认为负载终端230的温度异常。温度正常信息是指负载终端230的温度正常而需要供电发射端开启的信息;温度异常信息 是指负载终端230的温度异常而需要供电发射端关闭的信息。例如以一组8位二进制的数列代表通信信号,0000 0001代表温度正常信息,0000 0011代表温度异常信息,其对应的方波信号如图2所示。
温度采集模块260与接收端控制模块240连接,接收端控制模块240将温度采集模块260传输的温度信息编译为相应的方波信号,调制模块250根据接收端控制模块240发送的方波信号对接收线圈210的接收阻抗进行调节以使接收线圈210形成变化的接收阻抗,负载接收端接收阻抗的变化引起供电发射端谐振网络中电信号(包括电压值和电流值)的变化,电信号解调模块140对发射线圈130的采样电信号进行解调以获得解调信息,发射端控制模块150接收电信号解调模块140发送的解调信息,并向发射端处理模块120发送与解调信息相对应的控制信号以控制发射端处理模块120调控供电发射端的开启或关闭。这样,将温度采集模块260接入控制电路,通过发射端控制模块150控制供电发射端的开启或关闭来调节负载终端230的温度,将传统的模拟控制方式转换为数字控制方式,从而实现了直流无线供电系统中对负载终端230的温控作用。
可选地,调制模块250具体被配置为:调制产生与方波信号相对应的阻抗补偿值;利用阻抗补偿值对接收线圈210的接收阻抗进行调节以使接收线圈210形成变化的接收阻抗。
可选地,所述调制模块250包括调制电路和电阻R,其中:调制电路包括串联的电容C
t和调制开关Q
s;电阻R并联于所述调制电路两端。
在一些实际应用场景中,如图3所示,电感L
s、电容C
s、电容C
t和调制开关Q
s依次串联并形成环路,电阻R并联于电容C
t和调制开关Q
s两端。
根据方波信号控制调制开关Q
s的开启或关闭,当方波信号为“1”时,控制调制开关Q
s开启,当方波信号为“0”时,控制调制开关Q
s关闭。通过控制调制开关Q
s的开启或关闭以产生不同的补偿值。接收阻抗可以通过以下公式计算获得:
Z
s=X
Ls+X
Cs+ΔZ
其中,Z
s为接收阻抗,X
Ls为电感L
s的感抗,X
Cs为电容C
s的容抗,ΔZ为补偿值。
当调制开关Q
s关闭时,补偿值ΔZ为:
Z
s=R
其中,R为电阻R的电阻值。
当调制开关Q
s开启时,补偿值ΔZ为:
其中,X
Ct为电容C
t的容抗。
结合图1b所示,本公开实施例提供一种直流无线供电设备,用于供电发射端,包括依次连接的直流供电电源110、发射端处理模块120和与接收线圈210进行能量传输的发 射线圈130,其特征在于,还包括电信号解调模块140和发射端控制模块150,其中:
电信号解调模块140的输入端与发射线圈130连接,被配置为对发射线圈130的采样电信号进行解调以获得解调信息,其中,发射线圈130中的电信号随接收线圈210的接收阻抗的变化而变化;发射端控制模块150的输入端与电信号解调模块140的输出端连接,输出端与发射端处理模块120的输入端连接,被配置为接收电信号解调模块140发送的解调信息,并向发射端处理模块120发送与解调信息相对应的控制信号以控制发射端处理模块120调节供电发射端的输出功率。
发射端处理模块120(包括逆变模块和谐振模块)将直流供电电源110输入的直流电转化为高频电能并送入发射线圈130转化为高频电磁能量向外发射。根据负载设备反馈的需求信息对供电发射端的输入电源作调整,负载接收端将负载终端230的需求信息编译为相应的方波信号,并根据方波信号对接收线圈210的接收阻抗进行调节;接收线圈210的接收阻抗的变化引起供电发射端谐振网络中电信号的变化,通过分析变化的电信号从而获得相应的控制信号对供电发射端的输出功率进行调节,实现负载接收端对供电发射端的反向信息反馈。
可选地,解调信息包括电流解调信息或电压解调信息。
在一些实际应用场景中,发射线圈130所处的电路如图4所示,电源AC、电容C
p、电感L
s和电阻Z
s’依次串联形成回路。
发射线圈130的电压可以通过以下公式计算获得:
其中,V
p为发射线圈130的电压,V为电源电压,X
Lp为电感L
p的感抗,X
Cp为电容C
p的容抗,Z
s’为电阻Z
s’的电阻值。
发射线圈130的电流可以通过以下公式计算获得:
其中,I
p发射线圈130的电流,V
p为发射线圈130的电压,X
Lp为电感L
p的感抗,Z
s’为电阻Z
s’的电阻值。
由于Z
s发生变化引起Z
s’发生变化,所以发射线圈130的电压V
p和电流I
p相应发生改变。
可选地,电信号解调模块140包括电流解调模块和电压解调模块,其中:电流解调模块的输入端连接发射线圈130,输出端连接发射端控制模块150的输入端,被配置为对发射线圈130的采样电流信号进行解调以获得电流解调信息;电压解调模块的输入端连接发射线圈130,输出端连接发射端控制模块150的输入端,被配置为对发射线圈130的采样电压信号进行解调以获得电压解调信息。
在实际应用中,电流解调模块和电压解调模块利用振幅解调的方式分别对采样电流信 号和采样电压信号进行解调以获得相应的电流解调信息或电压解调信息。例如,当电流振幅高于预设电流振幅时,电流解调信息为“1”;当电流振幅小于预设电流振幅时,电流解调信息为“0”;同理,当电压振幅高于预设电压振幅时,电压解调信息为“1”;当电压振幅小于预设电压振幅时,电压解调信息为“0”。这样,电流解调模块和电压解调模块可以解调获得与方波信号相对应的电流解调信号或电压解调信号,进而知悉负载终端230的需求信息,实现负载接收端对供电发射端的反向信息反馈。
电信号解调模块140设计为两个独立的电流解调模块和电压解调模块。采用两路独立通道,在两个通道信号同步到达,但每个通道的信号完整性未知的情况下,任选其中一个通道进行接收,若接收失败,则跳转到另一个通道。由于系统工作过程中,一般不会出现两个通道的信号完整性同时失败的情况,故而可以保证系统通信的稳定性。
可选地,控制信号包括开关通断时间控制信号、占空比控制信号、频率控制信号和相位控制信号中的一种或多种。开关通断时间控制信号为对发射端处理模块120中的开关的开通/关断时间进行调节的控制信号;占空比控制信号为对发射端处理模块120中的电路被接通的时间占整个电路工作周期的百分比进行调节的控制信号;频率控制信号和相位控制信号为对发射端处理模块120中的电流的频率和相位进行调节的控制信号。控制信号用于控制发射端处理模块120,进而起到调节供电发射端的输出功率的目的。例如,当负载设备的需求信息为负载切换信息时,控制信号为占空比控制信号,通过调节发射端处理模块120中的电路被接通的时间占整个电路工作周期的百分比,从而调整供电发射端的输出功率。
结合图5所示,本公开实施例提供一种用于上述直流无线供电设备的控制方法,包括以下步骤:
S501:对发射线圈的采样电信号进行解调以获得解调信息。
S502:向发射端处理模块发送与解调信息相对应的控制信号以控制发射端处理模块调节供电发射端的输出功率或调控供电发射端的开启或关闭。
本公开实施例中,对发射线圈的采样电信号进行解调以获得与方波信号相对应的解调信息,进而知悉负载终端的需求信息,并向发射端处理模块发送与解调信息相对应的控制信号以控制发射端处理模块调节供电发射端的输出功率,从而实现负载接收端对供电发射端的反向信息反馈。这样,无需在直流无线供电设备中专门设置无线通信模块即可实现负载接收端与供电发射端之间的通信,降低了直流无线供电设备的成本。
此外,对发射线圈的采样电信号进行解调以获得与方波信号相对应的解调信息,进而知悉负载终端的温度信息,并向发射端处理模块发送与解调信息相对应的控制信号以控制发射端处理模块调控供电发射端的开启或关闭。这样,将温度采集模块接入控制电路,通过发射端控制模块控制供电发射端的开启或关闭来调节负载终端的温度,将传统的模拟控制方式转换为数字控制方式,从而实现了直流无线供电系统中对负载终端的温控作用。
可选地,采样电信号包括采样电压信号和采样电流信号;对发射线圈的采样电信号进 行解调以获得解调信息,包括:对采样电压信号和采样电流信号中的一个进行解调;当在设定时长内无法解调采样电压信号或采样电流信号时,对采样电压信号和采样电流信号中的另一个进行解调。
采用两路独立通道,在两个通道信号同步到达,但每个通道的信号完整性未知的情况下,任选其中一个通道进行接收,若接收失败,则跳转到另一个通道。由于系统工作过程中,一般不会出现两个通道的信号完整性同时失败的情况,故而可以保证系统通信的稳定性。
可选地,对采样电压信号和采样电流信号中的一个进行解调,包括:根据采样电压信号和采样电流信号的数据大小确定待解调采样电信号为采样电压信号或采样电流信号;当待解调采样电信号为采样电压信号时,对采样电压信号进行解调;当待解调采样电信号为采样电流信号时,对采样电流信号进行解调。这样,可以减少数据的处理量,提高数据处理效率。
可选地,根据采样电压信号和采样电流信号的数据大小确定待解调采样电信号为采样电压信号或采样电流信号,包括:当采样电压信号的数据大小小于或等于采样电流信号的数据大小时,确定待解调采样电信号为采样电压信号;当采样电压信号的数据大小大于采样电流信号的数据大小时,确定待解调采样电信号为采样电流信号。由于采样电压信号的变化幅值大于采样电流信号的变化幅值,当采样电压信号的数据大小等于采样电流信号的数据大小时,确定待解调采样电信号为采样电压信号,可以提高采样电信号解调的准确性。
结合图6所示本公开实施例提供一种用于直流无线供电设备的控制装置,包括处理器(processor)60和存储器(memory)61,还可以包括通信接口(Communication Interface)62和总线63。其中,处理器60、通信接口62、存储器61可以通过总线63完成相互间的通信。通信接口62可以用于信息传输。处理器60可以调用存储器61中的逻辑指令,以执行上述实施例的用于直流无线供电设备的控制方法。
此外,上述的存储器61中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。
存储器61作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序,如本公开实施例中的方法对应的程序指令/模块。处理器60通过运行存储在存储器61中的程序指令/模块,从而执行功能应用以及数据处理,即实现上述方法实施例中的用于直流无线供电设备的控制方法。
存储器61可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端设备的使用所创建的数据等。此外,存储器61可以包括高速随机存取存储器,还可以包括非易失性存储器。
本公开实施例提供了一种电子设备,包含上述的用于直流无线供电设备的控制装置。
本公开实施例提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行上述用于直流无线供电设备的控制方法。
本公开实施例提供了一种计算机程序产品,所述计算机程序产品包括存储在计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行上述用于直流无线供电设备的控制方法。
上述的计算机可读存储介质可以是暂态计算机可读存储介质,也可以是非暂态计算机可读存储介质。
本公开实施例的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括一个或多个指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开实施例所述方法的全部或部分步骤。而前述的存储介质可以是非暂态存储介质,包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等多种可以存储程序代码的介质,也可以是暂态存储介质。
以上描述和附图充分地示出了本公开的实施例,以使本领域的技术人员能够实践它们。其他实施例可以包括结构的、逻辑的、电气的、过程的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施例的部分和特征可以被包括在或替换其他实施例的部分和特征。本公开实施例的范围包括权利要求书的整个范围,以及权利要求书的所有可获得的等同物。当用于本申请中时,虽然术语“第一”、“第二”等可能会在本申请中使用以描述各元件,但这些元件不应受到这些术语的限制。这些术语仅用于将一个元件与另一个元件区别开。例如,在不改变描述的含义的情况下,第一元件可以叫做第二元件,并且同样第,第二元件可以叫做第一元件,只要所有出现的“第一元件”一致重命名并且所有出现的“第二元件”一致重命名即可。第一元件和第二元件都是元件,但可以不是相同的元件。而且,本申请中使用的用词仅用于描述实施例并且不用于限制权利要求。如在实施例以及权利要求的描述中使用的,除非上下文清楚地表明,否则单数形式的“一个”(a)、“一个”(an)和“所述”(the)旨在同样包括复数形式。类似地,如在本申请中所使用的术语“和/或”是指包含一个或一个以上相关联的列出的任何以及所有可能的组合。另外,当用于本申请中时,术语“包括”(comprise)及其变型“包括”(comprises)和/或包括(comprising)等指陈述的特征、整体、步骤、操作、元素,和/或组件的存在,但不排除一个或一个以上其它特征、整体、步骤、操作、元素、组件和/或这些的分组的存在或添加。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法或者设备中还存在另外的相同要素。本文中,每个实施例重点说明的可以是与其他实施例的不同之处,各个实施例之间相同相似部分可以互相参见。对于实施例公开的方法、产品等而言,如果其与实施例公开的方法部分相对应,那么相关之处可以参见方法部分的描述。
本领域技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件 还是软件方式来执行,可以取决于技术方案的特定应用和设计约束条件。所述技术人员可以对每个特定的应用来使用不同方法以实现所描述的功能,但是这种实现不应认为超出本公开实施例的范围。所述技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本文所披露的实施例中,所揭露的方法、产品(包括但不限于装置、设备等),可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,可以仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例。另外,在本公开实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
附图中的流程图和框图显示了根据本公开实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。在附图中的流程图和框图所对应的描述中,不同的方框所对应的操作或步骤也可以以不同于描述中所披露的顺序发生,有时不同的操作或步骤之间不存在特定的顺序。例如,两个连续的操作或步骤实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
Claims (12)
- 一种直流无线供电设备,用于负载接收端,包括依次连接的接收线圈、接收端处理模块和负载终端,其特征在于,还包括:接收端控制模块,输入端与所述负载终端的输出端连接,被配置为将所述负载终端的需求信息编译为相应的方波信号;调制模块,输入端与所述接收端控制模块的输出端连接,并与所述接收线圈连接,被配置为根据所述接收端控制模块发送的方波信号对所述接收线圈的接收阻抗进行调节以使所述接收线圈形成变化的接收阻抗。
- 根据权利要求1所述的直流无线供电设备,其特征在于,还包括:温度采集模块,输入端与所述负载终端连接,被配置为采集所述负载终端的温度信息;其中,所述接收端控制模块的输入端与所述温度采集模块的输出端连接,并且所述接收端控制模块被进一步配置为将所述温度采集模块传输的所述温度信息编译为相应的方波信号。
- 根据权利要求1或2所述的直流无线供电设备,其特征在于,所述调制模块具体被配置为:调制产生与所述方波信号相对应的阻抗补偿值;利用所述阻抗补偿值对所述接收线圈的接收阻抗进行调节以使所述接收线圈形成变化的接收阻抗。
- 根据权利要求3所述的直流无线供电设备,其特征在于,所述调制模块包括:调制电路,包括串联的电容和调制开关;电阻,并联于所述调制电路两端。
- 一种直流无线供电设备,用于供电发射端,包括依次连接的直流供电电源、发射端处理模块和与接收线圈进行能量传输的发射线圈,其特征在于,还包括:电信号解调模块,输入端与所述发射线圈连接,被配置为对所述发射线圈的采样电信号进行解调以获得解调信息;其中,所述发射线圈的电信号随所述接收线圈的接收阻抗的变化而变化;发射端控制模块,输入端与所述电信号解调模块的输出端连接,输出端与所述发射端处理模块的输入端连接,被配置为接收所述电信号解调模块发送的解调信息,并向所述发射端处理模块发送与所述解调信息相对应的控制信号以控制所述发射端处理模块调节所述供电发射端的输出功率或调控所述供电发射端的开启或关闭。
- 根据权利要求5所述的直流无线供电设备,其特征在于,所述解调信息包括电流解调信息或电压解调信息。
- 根据权利要求6所述的直流无线供电设备,其特征在于,所述电信号解调模块包括:电流解调模块,输入端连接所述发射线圈,输出端连接所述发射端控制模块的输入端, 被配置为对所述发射线圈的采样电流信号进行解调以获得所述电流解调信息;和,电压解调模块,输入端连接所述发射线圈,输出端连接所述发射端控制模块的输入端,被配置为对所述发射线圈的采样电压信号进行解调以获得所述电压解调信息。
- 根据权利要求5、6或7所述的直流无线供电设备,其特征在于,所述控制信号包括开关通断时间控制信号、占空比控制信号、频率控制信号和相位控制信号中的一种或多种。
- 一种用于直流无线供电设备的控制方法,所述直流无线供电设备为如权利要求5至8任一项所述的直流无线供电设备,其特征在于,包括:对发射线圈的采样电信号进行解调以获得解调信息;向发射端处理模块发送与所述解调信息相对应的控制信号以控制所述发射端处理模块调节供电发射端的输出功率或调控供电发射端的开启或关闭。
- 根据权利要求9所述的控制方法,其特征在于,所述采样电信号包括采样电压信号和采样电流信号;所述对发射线圈的采样电信号进行解调以获得解调信息,包括:对所述采样电压信号和所述采样电流信号中的一个进行解调;当在设定时长内无法解调所述采样电压信号或所述采样电流信号时,对所述采样电压信号和所述采样电流信号中的另一个进行解调。
- 根据权利要求10所述的控制方法,其特征在于,所述对所述采样电压信号和所述采样电流信号中的一个进行解调,包括:根据所述采样电压信号和所述采样电流信号的数据大小确定待解调采样电信号为所述采样电压信号或所述采样电流信号;当待解调采样电信号为所述采样电压信号时,对所述采样电压信号进行解调;当待解调采样电信号为所述采样电流信号时,对所述采样电流信号进行解调。
- 一种用于直流无线供电设备的控制装置,所述直流无线供电设备为如权利要求5至8任一项所述的直流无线供电设备,包括处理器和存储有程序指令的存储器,其特征在于,所述处理器被配置为在执行所述程序指令时,执行如权利要求9、10或11所述的用于直流无线供电设备的控制方法。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010434206.0A CN113708510A (zh) | 2020-05-21 | 2020-05-21 | 直流无线供电设备及其控制方法、控制装置 |
CN202010434203.7 | 2020-05-21 | ||
CN202010434206.0 | 2020-05-21 | ||
CN202010434203.7A CN113708509A (zh) | 2020-05-21 | 2020-05-21 | 直流无线供电设备及其控制方法、控制装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021217981A1 true WO2021217981A1 (zh) | 2021-11-04 |
Family
ID=78373286
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/111654 WO2021217981A1 (zh) | 2020-05-21 | 2020-08-27 | 直流无线供电设备及其控制方法、控制装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2021217981A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113955084A (zh) * | 2021-12-22 | 2022-01-21 | 四川承天翼航空科技有限公司 | 旋翼变距控制系统、方法、同步/不同步变距控制方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103855782A (zh) * | 2014-01-14 | 2014-06-11 | 深圳市普林泰克科技有限公司 | 一种无线充电器自适应功率输出功率控制算法 |
US20150171635A1 (en) * | 2013-12-18 | 2015-06-18 | Canon Kabushiki Kaisha | Electronic apparatus and method |
CN106558924A (zh) * | 2016-11-10 | 2017-04-05 | 深圳市普林泰克科技有限公司 | 一种无线充电器及无线充电控制方法 |
CN107257168A (zh) * | 2016-11-18 | 2017-10-17 | 深圳市无为智能科技有限公司 | 一种一对多无线充电方法及系统 |
CN208078737U (zh) * | 2017-10-24 | 2018-11-09 | 佛山市顺德区美的电热电器制造有限公司 | 电磁感应式无线供电系统及其负载突变保护电路和分离式烹饪器具 |
-
2020
- 2020-08-27 WO PCT/CN2020/111654 patent/WO2021217981A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150171635A1 (en) * | 2013-12-18 | 2015-06-18 | Canon Kabushiki Kaisha | Electronic apparatus and method |
CN103855782A (zh) * | 2014-01-14 | 2014-06-11 | 深圳市普林泰克科技有限公司 | 一种无线充电器自适应功率输出功率控制算法 |
CN106558924A (zh) * | 2016-11-10 | 2017-04-05 | 深圳市普林泰克科技有限公司 | 一种无线充电器及无线充电控制方法 |
CN107257168A (zh) * | 2016-11-18 | 2017-10-17 | 深圳市无为智能科技有限公司 | 一种一对多无线充电方法及系统 |
CN208078737U (zh) * | 2017-10-24 | 2018-11-09 | 佛山市顺德区美的电热电器制造有限公司 | 电磁感应式无线供电系统及其负载突变保护电路和分离式烹饪器具 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113955084A (zh) * | 2021-12-22 | 2022-01-21 | 四川承天翼航空科技有限公司 | 旋翼变距控制系统、方法、同步/不同步变距控制方法 |
CN113955084B (zh) * | 2021-12-22 | 2022-03-25 | 四川承天翼航空科技有限公司 | 旋翼变距控制系统、方法、同步/不同步变距控制方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104052161B (zh) | 适应多负载动态切换的无线电能传输系统 | |
CN102821501B (zh) | 一种适应不同材质锅具的电磁炉控制电路及功率控制方法 | |
JP6469100B2 (ja) | 無線電力伝送のための熱バリア | |
US20110253706A1 (en) | Heating device with plural induction coils | |
US20190327794A1 (en) | Induction heating device having improved control algorithm and circuit structure | |
US11265973B2 (en) | Induction heating device having improved control algorithm and circuit structure | |
US11936201B2 (en) | Wireless power transfer | |
CN111669855A (zh) | 用于控制感应线圈的方法以及感应线圈装置 | |
WO2021217981A1 (zh) | 直流无线供电设备及其控制方法、控制装置 | |
KR102040219B1 (ko) | 간섭 소음 제거 및 출력 제어 기능이 개선된 유도 가열 장치 | |
CN113708510A (zh) | 直流无线供电设备及其控制方法、控制装置 | |
EP3787151A1 (en) | A power transmitter, system and method therefor | |
CN202442371U (zh) | 一种并灶电磁炉 | |
CN113708509A (zh) | 直流无线供电设备及其控制方法、控制装置 | |
CN112394244B (zh) | 一种检测电路、电器及控制方法 | |
CN220108252U (zh) | 一种电磁加热电路及电器设备 | |
CN102538040B (zh) | 一种并灶电磁炉 | |
CN216650039U (zh) | 电磁感应加热电路及电磁加热设备 | |
CN104977462B (zh) | 一种计算烹饪器具中的烹饪对象耗电量的设备和方法 | |
RU2813601C1 (ru) | Беспроводная передача энергии | |
CN215734908U (zh) | 一种烹饪器具控制电路及烹饪器具 | |
US11658515B2 (en) | Wireless power transmission apparatus and method of operating the same | |
CN210095457U (zh) | 一种能精准控温的电炒锅 | |
CN108141923A (zh) | 感应加热方法和系统 | |
CN112416048B (zh) | 基于交流输出供电设备的功率调节方法及系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20933316 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20933316 Country of ref document: EP Kind code of ref document: A1 |